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ABSTRACT 

As a branch of healthcare, medical diagnosis can be defined as finding the disease based on the signs 

and symptoms of the patient. To this end, the required information is gathered from different sources 

like physical examination, medical history and general information of the patient. Development of 

smart classification models for medical diagnosis is of great interest amongst the researchers. This 

is mainly owing to the fact that the machine learning and data mining algorithms are capable of 

detecting the hidden trends between features of a database. Hence, classifying the medical datasets 

using smart techniques paves the way to design more efficient medical diagnostic decision support 

systems.  

Several databases have been provided in the literature to investigate different aspects of diseases. 

As an alternative to the available diagnosis tools/methods, this research involves machine learning 

algorithms called Classification and Regression Tree (CART), Random Forest (RF) and Extremely 

Randomized Trees or Extra Trees (ET) for the development of classification models that can be 

implemented in computer-aided diagnosis systems. As a decision tree (DT), CART is fast to create, 

and it applies to both the quantitative and qualitative data. For classification problems, RF and ET 

employ a number of weak learners like CART to develop models for classification tasks. 

We employed Wisconsin Breast Cancer Database (WBCD), Z-Alizadeh Sani dataset for coronary 

artery disease (CAD) and the databanks gathered in Ghaem Hospital’s dermatology clinic for the 

response of patients having common and/or plantar warts to the cryotherapy and/or immunotherapy 

methods. To classify the breast cancer type based on the WBCD, the RF and ET methods were 

employed. It was found that the developed RF and ET models forecast the WBCD type with 100% 

accuracy in all cases. To choose the proper treatment approach for warts as well as the CAD 

diagnosis, the CART methodology was employed. The findings of the error analysis revealed that 

the proposed CART models for the applications of interest attain the highest precision and no 

literature model can rival it. 
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The outcome of this study supports the idea that methods like CART, RF and ET not only improve 

the diagnosis precision, but also reduce the time and expense needed to reach a diagnosis. However, 

since these strategies are highly sensitive to the quality and quantity of the introduced data, more 

extensive databases with a greater number of independent parameters might be required for further 

practical implications of the developed models. 

 

 

KEYWORDS: Decision tree; ensemble method; machine learning; classification; computer-aided 

diagnosis 
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1 INTRODUCTION  

The last decades witnessed the utilization of machine learning and data mining approaches for 

investigating a large number of topics/problems in the realm of different sciences and engineering 

disciplines. This rapidly developing branch of artificial intelligence encompasses a wide variety of 

algorithms by which the method learns to perform tasks like regression and classification when 

exposed to data. Each of these methods has its advantages and disadvantages. In the medical domain, 

these methods have achieved success for supervised learning tasks. Indeed, many researchers have 

conducted smart techniques over medical data to uncover hidden knowledge and use them to learn 

regressors or classifiers for clinical decision making.  

Although smart techniques have shown promising performance for medical diagnosis, the success 

of such algorithms in real-world applications largely depends on the employed data for training and 

testing the model. Generally, machine learning-based methodologies require massive training 

datasets to generate an accurate yet reliable model for a correct diagnosis of the unseen cases. As 

modern hospitals and research institutes are well equipped with different data gathering tools, it is 

expected that having extensive medical datasets is achievable in the near future.  

In addition to the quantity of available data, the quality of the data plays a substantial rule in the 

development of a reliable model. For imbalanced datasets, the performance of the developed model 

is towards the class with higher instances. In the case of an imbalanced dataset for a classification 

task, accuracy is not a good criterion for the performance of presented models. Further to the 

accuracy, other parameters like sensitivity and specificity are helpful to ensure the classification 

performance of the models.  

Fig. 1.1 illustrates a typical medical diagnostic decision support system (MDDSS). As can be seen, 

by introducing medical data the MDDSS provides suggestion for healthcare professionals and they 

can make a decision based on their expertise and the system’s output.  
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Fig. 1.1: A typical medical diagnostic decision support system 

 

Utilization of machine learning approaches and others statistical pattern recognition models can 

improve the performance of MDDSSs. This research aims at designing and developing decision 

tree-based models that can be implemented in MDDSSs. To this end, CART, RF and ET algorithms 

were employed, and several classifiers were developed for: 

- Classification of breast cancer into benign and malignant; 

- Diagnosis of coronary artery disease; and  

- Selecting a proper approach for wart treatment. 

This dissertation consists of a review paper, and three original research works as follows: 

- Chapter 2: A review paper on breast cancer classification (submitted for publication) 

In the past few years, researchers developed several predictive models capable of classifying 

breast cancer types. Amongst all publicly available databases for breast cancer, the WBCD 

is the most widely used dataset to develop BC classification models. Chapter 1 of this thesis 

aims at identifying the published studies related to the implementation of machine learning 

and data mining algorithms for WBCD classification. Herein, the developed classifiers based 

on such algorithms as the artificial neural network (ANN), support vector machine (SVM), 

fuzzy logic (FL), DT and K-nearest neighbour (KNN), from 1995 to 2020, are reviewed and 
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analyzed employing statistical parameters namely classification accuracy, sensitivity and 

specificity. 

 

- Chapter 3: A research work on the classification of breast cancer (submitted for 

publication) 

The first chapter of this thesis presented a review of published classification models for the 

WBCD. The main goal of this chapter is to evaluate the performance of two ensemble 

methods, namely RF and ET, in the classification of WBCD. To the best of the authors’ 

knowledge, this is the first work that presents simple visualized models based on the ET 

methodology in conjunction with the CART method to classify the WBCD. The RF and ET 

approaches include four main stages; namely input identification, determination of optimal 

number of trees, voting analysis, and final decision. The models implemented in this research 

consider important factors such as uniformity of cell size, bland chromatin, mitoses, and 

clump thickness as the input parameters. 

- Chapter 4: A research work on selecting a proper approach for wart treatment 

(published in Computers in Biology and Medicine 108, 400-409) 

In this work, the CART algorithm is employed to develop accurate predictive models capable 

of analyzing the response of patients having common and/or plantar warts to the cryotherapy 

and/or immunotherapy methods. To develop a CART classifier for the cryotherapy method, 

independent parameters including the age and gender of patient, number of warts, type of 

wart, surface area of warts and the time elapsed before treatment are used. In the case of 

immunotherapy, in addition to the above-mentioned variables, the induration diameter of the 

initial test is also considered. To the best of our knowledge, there no research studies in the 

literature that use CART-based methods for selection of the best approach for wart removal. 

The primary objective of the present work is to introduce simple-to-employ and accurate 
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DT-based models that can be used by physicians to select the best treatment method for 

common and/or plantar warts. 

 

- Chapter 5: A research work on the diagnosis of coronary artery disease (published in 

Computer Methods and Programs in Biomedicine 192, 105400) 

This paper involves a DT learning algorithm, namely CART, for a simple and reliable 

diagnosis of coronary artery disease, also called ischemic heart disease. Several CART 

models are developed based on the recently coronary artery disease dataset published in the 

literature. To the best of our knowledge, this is the first work on the application of CART to 

study the Z-Alizadeh Sani CAD dataset for diagnosis/classification purposes. 

The last section of this dissertation provides the readers with a summary, conclusions, and 

recommendations for future work. 
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ABSTRACT 

Breast cancer (BC) is one of the most frequently diagnosed cancers among women around the globe. 

Over the past few decades, several studies have attempted to develop classification models to 

identify BC by applying machine learning and data mining (MLDM) approaches to both private and 

public BC datasets. These classifiers can be used for the development of computer-aided diagnosis/ 

detection (CAD) systems to investigate BC. Up until now, several databases have been provided in 

the literature to investigate different aspects of BC. Amongst all available BC databanks, the 

Wisconsin Breast Cancer Database (WBCD) is the most widely used dataset to develop BC 

classification models. This research aims at identifying the published studies related to the 

implementation of MLDM algorithms for WBCD classification. Herein, the developed classifiers 

based on such algorithms as the artificial neural network (ANN), support vector machine (SVM), 

fuzzy logic (FL), decision tree (DT) and K-nearest neighbour (KNN), from 1995 to 2020, are 

reviewed and analyzed employing statistical parameters namely classification accuracy, sensitivity 

and specificity. It was found that some of these techniques are capable of providing excellent results 

for breast cancer diagnosis. However, to implement these systems on large scales, further analyses 

should be performed on different breast cancer datasets.  

 

KEYWORDS: Breast cancer; WBCD; classification; machine learning; data mining; computer 

aided diagnosis; review 

 

 

2.1 INTRODUCTION 

2.1.1 BC Overview  

BC occurs in both women and men. However, as opposed to other cancers like lung, prostate, 

colorectal and stomach, BC is rare cancer amongst men. Nevertheless, this heterogeneous disease is 

one of the most common cancers amongst females worldwide. The abnormal breast cells are the 

starting points for BC development. Commonly, BC appears in the ducts, lobules, milk-producing 

glands and the milk-carrying tubes. The simplified anatomy of the woman adult breast is depicted 

in Fig. 2.1.  
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(a) 

 

(b) 

Fig. 2.1: Anatomy of the woman breast; (a) front view; (b) cross section view (Adapted from Ref. 

[376])  
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BCs can be split into two main categories: the sarcomas and the carcinomas. Sarcomas, that account 

for less than 1% of primary BCs [1], are cancers originating in connective tissues of the breast like 

blood vessel cells and myofibroblasts. As the most common BCs, carcinomas start in epithelial 

tissues of the breast, i.e. the components that line the terminal ducts and the lobules. In situ and 

invasive carcinomas are significant types of carcinomas. As pre-invasive carcinoma, in situ 

carcinoma grows inside of the normal ducts and/or lobules (stages 0 and I). Invasive carcinomas 

(stages II to IV) are the cancers that have infiltrated the outside of the normal breast ducts/lobules. 

Invasive cancers may spread to other parts of the body in the way of metastases.  

A worldwide estimation of the age-standardized rates (ASR) of incidence and mortality of common 

cancers in 2018, for both genders and all ages, is depicted in Fig. 2.2. As can be observed from Fig. 

2.2(a), BC is the most prevalent cancer in the world. Moreover, Fig. 2.2(b) shows that this 

multifaceted and complex disease is the primary cause of cancer death for women.  

Cancer

Breast Prostate Lung Colorectum Cervix uteri

A
S

R
 p

e
r 

1
0
0
,0

0
0

0

10

20

30

40

50

Incidence
Mortality

 

(a) 



 

9 

 

Cancer

Breast Colorectum Lung Cervix uteri Thyroid

A
S

R
 p

e
r 

1
0
0
,0

0
0

0

10

20

30

40

50

Incidence
Mortality

 

(b) 

Fig. 2.2: Estimated ASR of incidence and mortality of most common cancers in 2018 (a) 

worldwide, all ages, both genders; (b) worldwide, all ages, women (Based on the data from 

GLOBOCAN 2018 [2]) 

 

The occurrence of BC for women of all ages in different regions, in terms of incidence and mortality 

rates, is illustrated in Fig. 2.3. Fig. 2.3 shows that the incidence and mortality rates vary across 

different regions, ranging between 34.4-86.7 and 11.3-17.2, respectively [2]. Generally, more 

developed areas, i.e. Oceania, Europe and North America, experience much higher BC incidence 

rates than other regions, including Africa, Asia, Latin America and the Caribbean. As can be seen 

from Fig. 2.3, the lowest BC incidence rate is found in Africa, but here has the highest BC mortality 

rate as well.    

Studies showed that the incidence of BC has increased over the last decades. However, a research 

study showed that the survival rate from BC in the previous four decades has risen from 40% to 80% 

[3]. Another work showed that the five-year survival rate for patients with BC had been increased 
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from 75% in 1976 to more than 90% in 2017 [4]. Another study indicated that the ASR of BC 

mortality fell from 33 per 100,000 per year in 1990 to 21.3 per 100,000 per year in 2010, which 

shows a 36% decline in mortality rate [5]. The improvements in survival rates from BC are 

commonly attributed to two main lines of thought [5]. A group of researchers believe that 

mammographic screening yields positive results [6-8]. On the other hand, it is claimed that the 

decline in deaths from BC is due to the adjuvant systemic therapies [9, 10].   
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Fig. 2.3: Estimated ASR of incidence and mortality of BC in women in different regions. (Based 

on the data from GLOBOCAN 2018 [2])  

 

2.1.2 Classification Studies 

The last decades witnessed the utilization of MLDM approaches and/or CAD systems for 

investigating a large number of topics/problems in the realm of different sciences and engineering 

disciplines. In the case of BC, there are a large number of publications employing methods like 

ANN, FL, SVM, DT and KNN for developing the classification models and/or CAD systems. There 
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are publicly available databases for BC. For example, the Mammographic Image Analysis Society 

(MIAS) digital mammogram database [11], Image Retrieval in Medical Applications (IRMA) 

databank [12], Digital Database for Screening Mammography (DDSM) [13], WBCD [14] and 

Wisconsin Diagnostic Breast Cancer Database (WDBC) [15-17].  

In addition to the publicly accessible databases, there are various private databanks in the literature. 

Utilizing these private databases, researchers employed MLDM methods to study breast cancer. For 

example, researchers employed fuzzy C-means (FCM) to detect suspicious breast tissue regions 

[18]. The used database included 40 malignant and 21 benign samples. These samples were biopsy-

confirmed lesions in 34 female cases. It was revealed that fuzzy-based detection of breast masses, 

benign or malignant, using appropriate feature sets could provide 100% accuracy. The FCM method 

was also employed in another study to analyze a private database for breast cancer [19]. The 

achieved accuracies were around 95%. Schaefer [20] applied the ACO-based classification method 

to study the breast thermograms (117 benign and 29 malignant samples). The proposed model 

provided 79.5% accuracy for the test data. In another work [21], the ultrasound images of patients 

at the University of Chicago Medical Center were analysed using linear discriminant analysis (LDA) 

algorithm to classify the nodes that were negative for metastasis (114 cases) and nodes that were 

positive for metastasis (109 cases). Applying multiple discriminant analysis (MDA) on private 363 

ultrasound images, the obtained accuracies for invasive carcinomas, non-invasive carcinomas, 

fibroadenomas and cysts were 88.4%, 80.6%, 86.0% and 84.1%, respectively [22].     

Using the KNN algorithm, a study was performed on a database, including 97 ultrasonographic 

images of the breast at Mie University Hospital [23]. This database has 49 malignant samples and 

48 benign cases. In the observer investigation, three breast surgeons (expert) and seven clinicians 

(general) were employed. It was found that utilization of KNN model as a CAD scheme improved 

the capability of viewing the probability of the histological classifications of non-mass lesions that 

appear as the hypoechoic zone in a mammary gland for both the general and expert cases. In another 

work [24], the KNN technique was applied on a databank of 200 women patients’ magnetic 
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resonance images in order to classify the non-invasive lesion subtype. From the group of 200 women 

patients, it was identified that 148 lesions were suitable for investigation. For all histological 

subtypes, including lobular, ductal and DCIS, the accuracy of the KNN classification was about 

75%. Studying 234 female patients (149 malignant and 85 benign lesions) by magnetic resonance 

imaging (MRI) at the Sun Yat-sen University Cancer Center, researchers defined 28 features for 

each lesion [25]. Then, KNN, SVM and random forest (RF) methods were used to test their 

classification performance. Using different feature subsets, the average accuracy of the SVM and 

KNN models was around 80%, and the RF provided an accuracy of about 70%. Both KNN and ANN 

methods were used to classify a database of mammograms into biopsy-proven malignant mass (80 

samples) and masses without cancer (120 samples) [26]. In a research study [27], the ANN model 

was developed to classify the density of breast tissue using mammograms collected at EL FARABI 

radiologic center.  

For lesion classification, employment of SVM method with different kernels including linear, 

polynomial, radial basis function (RBF) and sigmoid on a database containing 84 MRI images (23 

benign and 61 malignant lesions) was evaluated in the literature [28]. A group of researchers 

presented a phase-based texture descriptor for discriminating the malignant and benign cases in 

breast ultrasound images [29]. To this end, the authors employed the SVM approach with the RBF 

kernel function. The used databank contains 138 images (69 benign samples and 69 malignant 

samples) that were obtained from Huashan Hospital. Although the proposed model, with around 

85% accuracy, provided satisfactory results, this CAD system is not fully automatic. In another work 

[30], the combined performance of morphological and textural features for detecting the breast 

masses in 120 ultrasound images was assessed. The used database consists of 50 malignant cases 

and 70 benign samples. For the classification purpose, a particle swarm optimization (PSO)-based 

SVM method with RBF kernel was employed that provided an accuracy of higher than 95%. To 

classify the ultrasound breast tumour images of 90 malignant cases and 120 benign cases, Wu, Lin 

and Moon [31] employed immune system-based SVM strategy. The proposed classification model 
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achieved accuracy of 96.7%. Other related works in this regard can be found in the literature [32-

135].  

 

2.1.3 Study Objectives  

Based on recent research, a large number of deaths happens because of cancers like BC. The most 

important reason is the detection of cancer at an advanced stage. Hence, early-stage detection of BC 

is crucial to adopt a proper treatment. As an alternative to traditional approaches for BC 

investigations, MLDM algorithms have been used in the literature for BC studies. The primary 

objective of the present study is to review the published works on the implementation of MLDM 

algorithms and CAD systems for investigation of the BC; in particular, the classification models 

developed using WBCD.  

To this end, the rest of the work is organized as follows: In Section 2.2, the theoretical aspects related 

to the BC, like factors causing BC, prevention of BC, BC diagnosis methods, imaging modalities 

for BC and different therapy approaches of BC is presented. Section 2.3 briefly presents a general 

development procedure of the CAD system for BC. In Section 2.4, the classification models 

developed based on the WBCD are reviewed. Using some statistical parameters, the performance of 

the developed classifiers for WBCD is assessed in Section 2.5. The study is concluded in Section 

2.6. Finally, Section 2.7 presents the recommendations for future studies. 

 

2.2 THEORETICAL ASPECTS 

2.2.1 Factors that Affect BC 

The risk factor is defined as anything that increases the chances of developing a specific disease. 

Generally, the more risk factors an individual has, the higher the chance that he/she gets the disease. 

However, the presence of a risk factor, and even several risk factors, doesn't necessarily mean that 

developing a particular condition is inevitable. In other words, the risk factors do not directly cause 
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disease. Furthermore, risk factors can be categorized as unchangeable and changeable factors. 

Factors like gender and age are fixed risk factors and cannot be modified, while variable risk factors 

like smoking and blood pressure can be modified with changing the lifestyle or treatment.  

Different risk factors are associated with different diseases like cancers [136]. Leading contributing 

factors in BC development are known to be as follow: 

- Gender: the most substantial risk factor for BC is gender (being a woman) [136]. Indeed, 

around 99 percent of BC cases occur in women [137]. However, BC incidence amongst 

males has risen 60 percent since 1990 [138]. With an estimated 41000 deaths in 2018, BC 

has the second-highest mortality rate amongst females [139]. Studies showed that the 

lifetime risk for women in the UK and the USA of being detected with BC was one in every 

eight cases [140, 141]. 

- Age: ageing is another considerable risk factor for the development of BC. Getting older 

increases the likelihood of developing BC. For example, if the current age of a woman is 20, 

the probability of developing BC in the next ten years is 0.05%. On the other hand, the 

probability value for a woman of age 70 is 4.14% [142]. Due to the fact that the probability 

of a female developing BC is dependent on her age, it is suggested to consider the risk 

estimation at certain ages instead of considering the lifetime risk estimation [138]. 

- Family history/genetics: although more than 85% of women diagnosed with BC do not have 

a family history of BC, it is believed that women with a family history of BC have an 

increased likelihood of BC development [143, 144]. In the period from 1950 to 1979, family 

history was identified as a risk factor for BC [145]. Three main variables are at play in 

examining the role of family history: the degree of relationship between relatives with BC 

and the patient (first degree, second degree or beyond), the age of BC diagnosis in the 

relatives and the history of other genetic factors/cancers that are related to BC [138]. The 

lifetime risk of BC increases by 40-85% as a result of high penetrance gene mutations called 

BRCA1 and BRCA2 [146, 147]. In addition to family history, the personal history of BC or 
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other types of cancers is also known to be a risk factor. Indeed, women who are BC survivors 

or women with a history of specific cancers have an increased risk of BC development [148]. 

- Ethnicity/race: as can be observed from Fig. 2.3, ASRs of incidence and mortality of BC in 

women vary from region to region. The reasons behind these differences are not well 

addressed in the literature yet. However, the roles of factors like access to health care, 

lifestyle and genetics are considered to be important in this regard. For example, it was found 

that the risk profile of daughters of Asian women who are born in North America are similar 

to white American women [138].  

- Lifestyle: studies relate some behavioural factors to the risk of developing BC. For example, 

the risk of developing BC increases by 30-60% by being overweight [149]. Doing regular 

exercise is a factor that reduces the risk of BC [150]. The association of tall stature with 

increased BC risk is also documented in the literature [151]. Alcohol consumption is known 

as a factor that increases BC risk [152]. Diet is another risk factor that is modifiable [153-

155]. Exposure to radiation ranging between 1 and 3 Gy for treatment o some diseases like 

scoliosis increases the risk of BC in women aged less than 40 years [156]. 

-  Reproductive and menstrual factors: high levels of estradiol circulation in the bloodstream 

increases the risk of BC amongst postmenopausal females [157]. This study also showed that 

girls who began menses after age 15 have a decreased risk compared with girls who started 

before age 12 [157]. There is a slight increase in BC risk for the first ten years after the 

delivery of the baby. However, eventually, BC risk decreases to below that of a female 

without children. Furthermore, breastfeeding leads to a reduction in BC risk [138]. The 

protection from BC is even better if women breastfeed for more than 25 months [158]. 

Studies also revealed a relationship between the use of hormone replacement therapy and 

BC risk [159]. Females with high bone density are considered at higher risks for BC [160]. 

More considerable amounts of connective and milk duct tissues in the breast, i.e. higher 

breast density, is found to increase the risk of BC [159]. 
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Identification of BC risk factors and, consequently, underlying the impact of each of them on 

developing BC is a crucial task. The widely available way to reduce the risk of BC is the 

implementation of proper lifestyle modifications according to the impacts of modifiable risk factors. 

In addition to the lifestyle modifications, chemoprevention and genetic counselling are other 

strategies for BC risk reduction. Furthermore, one of the most critical actions that should be taken 

is following the early detection approaches and guidelines. Although early detection of BC does not 

prevent the disease, it increases the chances of successful treatment. 

 

2.2.2 Methods for BC Diagnosis 

Early detection of BC improves the likelihood of survival and increases the possible options for 

treatment as well. Furthermore, early BC detection reduces treatment expenses [161]. Currently, 

average treatment costs for stages 0, I, II, III and IV are $60637, $82121, $82121, $129387 and 

$182655, respectively [162]. Several screening approaches are proposed in the literature for the 

detection of BC. According to the Canadian Cancer Society [163], screening is defined as checking 

for a particular disease in a group of individuals who have no symptoms of the disease. The manual 

self-examination is the most straightforward and widely available technique for BC screening. In 

this method, every breast is palpated for abnormal lumps and distortions [161]. As the self-

examination can detect up to 50% of asymptomatic BCs [164], monthly self-exam is recommended 

by the American Medical Association. However, studies have shown that this method might lead to 

a high rate of false positives. As a result, women who practice self-exams may experience depression 

and anxiety [161].  

Several image modalities can be utilized for examination of the breast for probable cancer. In 

general, these imaging modalities are helpful for precise analysis of certain facets of breast tissue 

organs. The most common choice in clinical practice is the mammography that employs low-dose 

x-rays. Since mammography might be less accurate for women with dense breasts [165], ultrasound 
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imaging can be considered as a proper modality [166]. To form pictures of the whole breast volume, 

the magnetic resonance imaging (MRI) technique can be utilized. Other conventional image 

modalities are infrared thermography and microscopic imaging. The rest of this section gives a brief 

introduction to the mammography, ultrasound and MRI modalities for BC screening. 

A typical mammographic picture of a woman’s breast is shown in Fig. 2.4. Although mammography 

is a low-cost proper screening method for BC, mass detection in mammograms could be challenging. 

This is owing to the fact that masses available in different sizes, shapes and margins [167]. 

Moreover, masses are often indistinguishable from their surrounding tissues [168, 169]. Over the 

past years, more efficient mammography systems were introduced. The replacement of x-ray films 

by electronics is the most significant improvement in this regard. This technique, called digital 

mammography or full-field digital mammography (FFDM), needs a lower radiation dose and 

provides better pictures [170]. For women aged under 50 years, FFDM found to be more accurate 

[165]. Some studies indicated that BC detection rate with FFDM is more than 4.2 per thousand 

mammograms [171, 172]. 

 

Fig. 2.4: A mammographic picture of a woman’s breast (adapted from Ref. [377]) 
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For women with dense breasts, breast ultrasound is suggested as a proper alternative for 

mammography. As an advantage over the mammography, the ultrasound modality is a radiation-

free approach and patients well tolerate it [45]. However, according to a report by the American 

College of Radiology Imaging Network [173], the combination of mammography and ultrasound 

methods improves the BC detection. To perform high-quality breast ultrasound, the American 

College of Radiology (ACR) standards established professional guidelines that cover technical 

parameters, equipment, personnel and image annotation [174]. Based on the ACR standards, Baker 

and Soo [175] assessed the imaging appearance and technical quality of breast sonograms. In Fig. 

2.5, a sample of the ultrasound images is depicted.  

 

 

Fig. 2.5: A picture of a woman’s breast captured using ultrasound modality (adapted from Ref. 

[378]) 

 

Another valuable tool for assessment of the BC is MRI. Fig. 2.6 shows an image of a woman's breast 

generated using the MRI.  
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Fig. 2.6: A picture of a woman’s breasts obtained via MRI (adapted from Ref. [177]) 

 

This imaging modality that entails injecting the contrast medium in the patient's body is often 

utilized in high-risk cases. Furthermore, this technique is a good tool to evaluate the newly detected 

BC before operation [176]. Indeed, MRI enables us to get more information on probable deep 

involvement, and it is capable of revealing signs of chest structure and underlying muscles' 

inflammation [177]. The sensitivity of the MRI modality in BC ranges between 85 and 100%. As a 

result, this technique is efficient in excluding the BC recurrence in cases without any access to image 

the primary tumor region on mammography [178]. On the other hand, since the specificity of this 

imaging modality may be moderate (ranged from 60 to 90%), it can be impossible to define the 

tumor’s origin, i.e. malignant or benign [178-180]. For breast MRI with final evaluations that are 

connected to suggestions for care, a lexicon is provided by the American College of Radiology 

Breast Imaging Reporting and Data System (BI-RADS) [181]. 
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Further to the above, positron emission tomography (PET) is another tool that visualizes the areas 

of higher metabolism in the region of interest. In this method, the body receives a slightly radioactive 

sugar; consequently, more tracer substance is absorbed by the tissues having a higher metabolism. 

Compared to other tissues, tissues with higher metabolic rates show brighter [161]. Utilization of 

the PET technique in combination with the computed tomography plays a progressively significant 

role in all facets of BC like staging, curative treatment as well as follow-ups [182, 183]. PET-CT 

method has high sensitivity in the detection of primary breast tissue. Furthermore, this technique has 

revealed high specificity as well as a high positive predictive value [184]. Surgical options are also 

available for the diagnosis of BC [185].  

 

2.2.3 Therapy/Treatment Methods of BC 

A range of treatments and therapies are available to deal with BC. However, decision making 

regarding the BC treatment approach for each patient is a multidisciplinary task, and all the cons 

and pros of the possible options must be discussed before finalization of the plan [186]. Due to the 

discussions of tumor board about the patient status, the mortality from BC has been reduced [187]. 

Biometric data of the patient like age, height and weight is an essential factor that must be taken into 

account to design a BC treatment plan. The tumour size and biological characteristics, cancer type, 

involvement of axillary nodes as well as nearby regions like the breast skin, estrogen receptor, 

metastases and also the financial status of the patient are some other important factors in this regard 

[188]. The main approaches for BC treatment are surgery, radiotherapy, chemotherapy, hormonal 

therapy and targeted therapy. In some cases, a combination of these treatments may be utilized.  

Nowadays, the surgical approach is the central aspect of BC therapy and treatment, as it was before. 

The primary treatment modality for the majority of females diagnosed with early BC is the surgical 

option [3]. Generally, mastectomy and breast-conserving surgery are the two fundamental types of 

this treatment approach. The form of surgery is substantially associated with the size of the tumor 

[188]. In cases that the tumour is too large, the surgery is in the form of mastectomy. However, 
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breast-conserving surgery can be utilized if the neoadjuvant chemotherapy could shrink the tumour 

to small enough size [136]. For early-stage invasive carcinomas, breast-conserving surgery is the 

most fundamental part of the patient's treatment [189-191]. After the mastectomy, the next essential 

step of the procedure might be the breast reconstruction that has emotional and psychological 

benefits to the patients [192, 193].  

Generally, BC treatment consists of surgery with or without systemic therapy like hormonal therapy 

and chemotherapy and with or without radiation. Systemic therapy might be applied before surgery 

(known as neoadjuvant) or after surgery. If the systemic therapy must be administered after the 

surgery, it might be employed after radiation, concurrent with radiation or before radiation [138]. 

For the systemic chemotherapy, there are several regimens that typically contains a taxane and an 

anthracycline [194-196]. Patients with HER2-positive BC are treated utilizing chemotherapy in 

combination with targeted therapy [197]. For patients with stage I HER2-positive BC, employing 

the paclitaxel with trastuzumab is a common regimen [198]. For stage II and II HER2-positive BC, 

the standard is the administration of dual-HER2 agents [199]. Commonly, endocrine therapy is 

recommended for patients with HR-positive BC [200]. 

Cancer treatments might have physical and psychosocial side effects. Fatigue, pain, nausea, changes 

in skin and nail, appetite changes, loss of sex drive, fertility issues in females, memory and sleeping 

problems, nerve problems and changing body image are some common side effects on the physical 

status of the patients [201]. Psychosocial side effects of BC are related to the psychological, lifestyle 

and social aspects of the patient [188]. Complementary therapies can be helpful in the effective 

management of the BC treatment side effects and the recovery process. This type of therapy (like 

music and energy therapy, hypnotherapy, acupressure, meditation, etc.) is not part of/alternatives to 

the medical treatments [188]. Since the recurrence of BC after the treatment procedures is probable, 

surveillance of BC survivors is a crucial part of their care. American Society of Clinical Oncology 

(ASCO) developed the guidelines for post-treatment surveillance in BC [202]. 
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2.3 CAD SYSTEMS FOR BC STUDIES 

2.3.1 Development Procedure 

The development of CAD systems for investigation of the BC is considered as a practical approach 

to detect masses and classifying them as well. Indeed, CAD systems are beneficial, helping experts 

to interpret the breast images (mammogram, ultrasound, MRI, microscopic, or infrared 

thermography). Research showed that CAD-based approaches are being more accurate as the 

MLDM methods and related areas are developing [203, 204]. Since the majority of the published 

studies utilized mammograms to detect BC via CADs, this section overviews the CAD development 

procedure for mammograms. It is worthwhile to mention that CAD in mammograms was approved 

by FDA in 1998 [205]. 

Considering the mammograms, the CAD systems can be employed to classify the mammographic 

lesions into malignant or benign mass. There are several main steps in the development of a typical 

CAD system for breast mass detection and classification. Fig. 2.7 schematically demonstrates a 

typical CAD, which includes four main stages, for the application of interest. CAD also can be 

divided into two parts, namely computer-aided detection (CADe) and computer-aided diagnosis 

(CADx). Utilizing CADe, such abnormalities in breast lesion as clustered masses and micro-

calcifications can be detected. Then, the CADx is used to classify the detected anomalies. Finally, 

the computer flags the regions of concern on the image [206].  

As can be observed from Fig. 2.7, the first step is the digitization of the mammograms and pre-

processing the images. As shown in Fig. 2.8, and having the anatomy of the breast (Fig. 2.1) into 

consideration, it is demonstrated that the dense tissues, like glandular, are represented by bright 

areas, and the less tense tissues, like fatty, are less bright. Generally, the brighter areas have higher 

noise levels. In other words, different brightness levels in different sections of the image produce 

some noise. Hence, the pre-processing step should be performed for decreasing/ equalizing the noise 
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level in mammograms and improving the image's contrast. Proper pre-processing substantially 

increases the success probability in the next steps of CAD design for breast cancer study. 

 

 

Fig. 2.7: Schematic of a typical mammogram-based CAD system for breast mass classification   

 

Since most mammograms are high resolution and large size images, applying a size reduction 

technique is usually done during the pre-processing step. The detailed information regarding the 

mammogram pre-processing can be found in the literature [207-214].  

 

 

(a) 
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(b) 

Fig. 2.8: (a) A typical ROI showing a mass in the mammogram; (b) mass segmentation from the 

tissue of the background (adapted from Ref. [379]) 

 

The segmentation phase can be defined as the separation of the main sections from the other parts 

of the image. Indeed, the contours of the suspected lesion, or region of interest (ROI), are identified 

and separated to define meaningful regions for speeding up the next steps of CAD system 

development. Fig. 2.8 demonstrates a sample of mass segmentation from the tissue of the 

background in a mammogram. However, due to the problems like homogeneity between breast and 

pectoral tissues, imperfections in the process of mammograms scanning, tags and light leakages, this 

step is a challenging task [215, 216]. There are many methods and techniques in the literature 

proposed for the segmentation of mammograms [217-233].  

The segmented regions, then, are employed to extract out the features. These features that are 

quantitative measures are the primary representative of the mammograms of the breast. A variety of 

feature extraction methods have been used and evaluated in the literature [77, 234-243]. As opposed 

to feature extraction methods that build a new set of attributes via combining the existing features, 

a value of importance is assigned to each feature in the feature selection algorithms [244]. Indeed, 
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the feature selection methodologies eliminate the redundant and irrelevant features from the original 

set [245]. As a result, the informative features are selected for the classification phase.    

The next primary step in the development of a CAD system for BC is the classification. In this phase, 

corresponding to a malignancy/benignancy and/or the lesion type, the vector of features is labelled 

as a specific class. The previous steps directly affect the accuracy of the classification process. 

ANNs, SVMs, FL, adaptive neuro-fuzzy inference system (ANFIS), KNN, DTs and Naïve Bayesian 

(NB) are good examples of classifiers that can be used to perform the classification task. The 

constructed model can be utilized for the prediction of future samples. The final step in the CAD 

system development can be defined as the assessment stage. The purpose of this step is to evaluate 

the accuracy and robustness of the developed CAD system for the investigation of BC.    

 

2.3.2 Software and Computational Tools for BC Classification 

Several data mining tools and software are available that can be utilized for BC investigations. 

Waikato Environment for Knowledge Analysis, also known as Weka, is free software that has an 

assortment of modeling and visualization techniques. Data mining and modeling tasks like data pre-

processing, data visualization, feature selection, regression, classification and clustering can be 

performed using Weka. Orange is another toolkit for MLDM and data visualization. This open-

source component-based visual programming software can be used as a Python library for widget 

alteration and data manipulation. KNIME provides an easy to implement tool for fast data 

exploration. As a new platform for data analytics, KNIME has a wide variety of machine learning 

algorithms, from decision trees to deep learning networks, for predictive modeling. Another free 

suite of MLDM approaches for researchers is Tangara. This tool consists of techniques and 

algorithms for instance selection, feature selection and construction, descriptive statistics, data 

visualization, classification, clustering, regression and association rule learning.  
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2.3.3 Current Status and Future Prospects of BC Classification 

The last decade witnessed an increase in applying different MLDM techniques like ANNs, SVMs, 

fuzzy logic and evolutionary algorithms for BC investigations. As a result, the diagnosis of BC, 

especially at the early stages, has boosted up. However, there is still a need for better models in 

terms of accuracy, precision and speed.  

Amongst the available MLDM methods, deep learning showed a good potential for solving 

regression, classification and pattern recognition problems. The deep learning approach provided 

satisfactory results, especially in tasks related to image processing. This is owing to the fact that this 

approach enables the user to capture even the smallest changes in images. This feature is very vital 

in tasks like BC detection/classification. Besides all the advantages that deep learning has to offer 

for BC studies, some considerable drawbacks are associated with this approach. Indeed, a large 

amount of data is required to develop predictive models based on deep learning. Furthermore, due 

to its complex data models, training a system using deep learning can be expensive.    

 

2.4 WBCD CLASSIFICATION STUDIES 

2.4.1 WBCD: An Overview 

This section briefly introduces the WBCD. The WBCD, originally reported by Dr. William H. 

Wolberg at the University of Wisconsin Hospitals in Madison [14], presents some measurements 

related to BC. This databank is provided in accordance with the FNAB data [246]. Each dataset of 

this database comprised of nine cytological characteristics of benign or malignant breast fine-needle 

aspirates. The WBCD has a total number of 699 records where 458 (65.5%) datasets are defined as 

"benign," and 241 (34.5%) datasets are classified as "malignant." 

Excluding the ID number, each dataset of the WBCD has ten attributes, nine of which are 

independent parameters and the breast cancer type, i.e. benign or malignant, is the dependent 
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parameters. Each independent characteristic is graded with a value that ranges between 1 and 10. In 

respective order, 1 and 10 indicate the typical benign and typical malignant. There are 16 datasets 

in the WBCD with missing values. The remaining datasets contain 444 benign and 239 malignant 

cases. Further information about the WBCD independent attributes is given in Table 2.1. 

 

Table 2.1: Information about the refined WBCD 

Feature  Range Average 

Uniformity of Cell Size 1-10 4.442 

Uniformity of Cell Shape 1-10 3.151 

Bare Nuclei 1-10 3.215 

Single Epithelial Cell Size 1-10 2.830 

Bland Chromatin 1-10 3.234 

Normal Nucleoli 1-10 3.545 

Clump Thickness 1-10 3.445 

Marginal Adhesion 1-10 2.870 

Mitoses 1-10 1.603 

  

From the early nineties, a great number of modeling attempts have been made by implementing 

different MLDM algorithms to analyze the WBCD. In this section, the published works on the 

classification of breast cancer based on the WBCD using various MLDM techniques such as ANNs, 

FL and SVMs, from 1995 to 2020, are reviewed. It should be noted that although ANNs and SVMs, 

as the most employed approaches in BC classification, can be used for performing nonlinear 

modeling, they mainly have a "black box" nature. Indeed, ANNs and SVMs do not provide detailed 

insights into the mathematical formulation/structure of the function. Moreover, these techniques, in 

general, suffer from overfitting problems. Being stuck in multiple local minima is another serious 

drawback for a majority of connectionist tools. To improve the accuracy of the modeling, the 
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methods might be implemented in conjunction with various algorithms such as genetic algorithm 

(GA) and PSO. Besides, the models appear to be complicated. 

 

2.4.2 ANN-Based Models 

ANN frameworks are able to learn to do assignments by pondering models, generally without being 

programmed by task-explicit guidelines. ANNs are trainable even with deficient information. 

However, ANNs give a superior exhibition when there is an extensive dataset for training. These 

algorithms have the ability to break the main problem into simpler ones. On the other hand, ANNs 

function as a black box. Furthermore, there is no universal method for deciding the structure of an 

ANN. 

Using a neural network (NN) pruning algorithm, Setiono [247] presented three-layer feed-forward 

(FF) ANN models having a different number of neurons in the hidden layer. Then, some rules were 

extracted from the developed NN models for the diagnosis of breast cancer. Setiono and Liu [248] 

used a standard FF-ANN to obtain the most useful attributes of the WBCD for defining the breast 

cancer classes. For this database, 30 ANNs with 12 hidden neurons were created. Results suggested 

that the performance of the network can be increased using about one-third of the total input features. 

Unfortunately, the selected input features are not reported in this study. In another study, Setiono 

and Liu [249] compared the DT and three-layer FF-ANN rules for the WBCD. Amongst the 

available DT methods, the authors employed the C4.5 model [250]. Although the FF-ANN slightly 

provided better results than the DT, the neuron-based model has more rules than the DT. The number 

of extracted rules from the ANN and DT models were seven and four, respectively. Moreover, using 

the DT produces interpretable rules. However, the ANN models are commonly known as "black-

box" models that are hard to interpret. As a continuation of the published series on the application 

of FF-ANN method for WBCD classification, Setiono [251] investigated the influence of the data 

pre-processing on the accuracies of both the networks and the associated rules (the rules extracted 
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from the developed networks). First, the datasets with missing values were discarded from the 

databank. Second, the most relevant independent parameters of the WBCD were selected for 

classification. It was found that data pre-processing improves the performance of the networks and 

the extracted rules for the problem of WBCD classification.  

Further to the above, Taha and Ghosh [252] introduced an extracted rule-based system using the 

ANN strategy. Then, they integrated the trained ANN model and the rule-based system to improve 

classification accuracy. Indeed, the authors employed three methods to extract rules from trained 

FF-ANNs, including the binarized input-output rule extraction (BIO-RE), partial-RE and full-RE. 

The use of four different NN architectures, including the multi-layer perceptron (MLP), RBF, a 

mixture of experts (MOE) and general regression (GR) network for the breast cancer classification, 

was evaluated by West and West [253]. Results showed that all these methods approximately 

provide the same accuracies. The MLP-ANN method, in combination with a learning algorithm that 

applies linear least square, is also used in a different study as the classifier for the database of WBC 

[254]. The authors compared the proposed linear algorithm with four well-known learning 

algorithms: gradient descent (GD), gradient descent with adaptive momentum and step sizes (GDX), 

Levenberg-Marquardt (LM) and scaled conjugated gradient (SCG). The best results in terms of 

accuracy, as well as the processing speed obtained from the GDX methodology. However, the speed 

of the proposed linear algorithm found to be better than GD, LM and SCG techniques. In summary, 

this linear method offers an acceptable combination of simplicity, accuracy and speed. Utilizing 

three models, including RBF, MLP and probabilistic NNs,  Azar and El-Said [255] classified the 

WBCD into two categories. Amongst the presented models, probabilistic ANN provided the best 

outputs.  

Using a particular type of MLPs, namely artificial metaplasticity (AM) MLP algorithm, a 

classification model/approach was developed by researchers to deal with the information of WBCD 

[256]. The developed AM-MLP, then, was compared to the classical back-propagation (BP) ANN. 

According to the outcomes, the AM-MLP is superior to the BP-ANN training in all samples. 
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Application of several BP algorithms including the batch gradient descent (BGD), Quasi-Newton 

(QN), batch gradient descent with momentum (BGDM), resilient back-propagation (RBP), LM and 

conjugate gradient (CG) in WBCD classification was also evaluated in some other literature studies 

[257, 258]. In addition to the BP-ANN, Šter and Dobnikar [259] tested a special type of ANNs 

known as learning vector quantization (LVQ) for the WBCD case. Classification and regression tree 

(CART), LDA, quadratic discriminant analysis (QDA), KNN, look ahead feature construction 

(LFC), assistant-I (ASI), assistant-R (ASR), NB and semi-Naïve Bayesian (SNB) are other 

employed methods in this study. Based on the error analysis, the QDA model provided the lowest 

accuracy. Other developed models have approximately equal performance. Janghel, Shukla, Tiwari 

and Kala [260] implemented several ANN algorithms, including BP-ANN, LVQ, recurrent ANN 

(R-ANN), RBF-ANN, probabilistic ANN (P-ANN) and competitive learning (CL) ANN for the 

breast cancer classification. LVQ, big LVQ, and artificial immune recognition system (AIRS) were 

applied to the WBC database by Goodman, Boggess and Watkins [261]. 

Three classification models using BP-ANN, real coded GA, and binary-coded GA were presented 

by Örkcü and Bal [262]. Results showed a better performance of the real code GA over other 

investigated algorithms. Implementing the GA and adaptive resonance theory (ART) ANN, Punitha 

and Santhanam [263] studied the classification of the breast cancer datasets. In their proposed model, 

the dimension is reduced by GA and the ART implemented with the reduced parameters. In another 

study [264], a wavelet ANN (W-ANN), that combines NN and wavelet transform, was trained with 

the GA for WBCD classification. Indeed, the excitation function of NN is the wavelet and 

optimization of the weights was done using the GA algorithm. For the breast cancer prediction, 

Ahmad, Mat Isa, Hussain and Sulaiman [265] used a combination of a multi-objective GA-based 

Pareto-optima and ANN (GA-MOO-ANN). Senapati and Dash [266] developed local linear wavelet 

ANN (LLW-ANN) and RBF-ANN models for breast cancer data's classification. The parameters of 

the LLW-ANN model was optimized using a recursive least square (RLS) method. The Kalman 

filter and RLS were employed to find the BP-ANN parameters. Beside the ANN, Liou and Chang 
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[267] utilized GA, LR, and C4.5 to forecast the breast cancer. Ahmad, Mat Isa, Hussain, Osman and 

Sulaiman [268] implemented the GA linked to the ANNs trained with BP, LM, and GD algorithms 

on the WBCD. 

For the case of WBC classification, Huang, Hung and Chen [269] used a PSO optimization 

algorithm to train the ANN system. Moreover, the authors presented two case-based reasoning 

(CBR) classifiers as well as an ANFIS model. To assign the attribute weights for CBR models, C4.5 

and logistic regression (LR) were employed. Malmir, Farokhi and Sabbaghi-Nadooshan [270] 

developed MLP-ANN models using the PSO method and imperialist competitive algorithm (ICA). 

They also presented traditional genetic classification (TGC) and classification rules mining model 

with GA in cloud computing (CGCRMM) models. Leema, Nehemiah and Kannan [271] optimized 

the ANN classifier using differential evolution PSO and GD-based BP. Senapati, Panda and Dash 

[272] employed the RBF-ANN classification model. They used KPSO and extended Kalman filter 

(EKF) to initialize the centers and variances of the network. For updating these parameters, the BP 

algorithm was utilized. 

For the BC classification, Abbass [273] utilized the memetic pareto  (MP) ANN, which is a category 

of evolutionary neural network models. Verma and Hassan [274] proposed two categories of a 

hybrid combination, including parallel neural-based strong clusters fusion (PNSCF) and parallel 

neural-based clusters fusion (PNCF) for classification of the breast cancer databank. Moreover, the 

MLP, k-means and self-organizing map (SOM) models were also investigated. 

Employing the rotation forest (RF) ANN, Koyuncu and Ceylan [275] proposed an ensemble 

classifier. In this model, the principal component analysis (PCA) is used as the feature selector. 

Furthermore, they presented another PSO-based classifier for breast cancer detection Uzer, Inan and 

Yılmaz [276] studied the WBCD for classification, through implementing ANN and two hybrid 

feature selection methods namely sequential forward selection (SFS) and sequential backward 

selection (SBS). In another work [277], both the generally optimized (GO) ANN and BP-ANN 
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methodologies were utilized. Nahato, Harichandran and Arputharaj [278] investigated the WBCD 

using rough set theory (RST) combined with BP-ANN. Implementation of the artificial meta-

plasticity (AM) in MLP at the artificial neuron learning level for the diagnosis of breast cancer data 

is investigated in a research study [279]. In addition to an ANN model, Tsai, Lu, Wu and Lee [280] 

developed three different ANN-based hybrid classification systems for breast cancer cases: 

association rule-based ANN, GA-based ANN and correlation-based ANN. A stimulus-sampling 

technique for boosting the BP-ANN was introduced by Gorunescu and Belciug [281]. The presented 

model, denoted as BPSS-BP-ANN, is a hybrid model combining the MLP and stimulus-sampling 

algorithm. This model, then, was compared to the SVM, NB and KNN models.  Abdel-Zaher and 

Eldeib [282] suggested a breast cancer classifier employing a deep belief network (DBN) 

unsupervised path or randomly initialized weight (RIW) network followed by an LM or CG 

algorithm. A hybrid model of BP-ANN and NSGA-II algorithm was also developed by Ibrahim, 

Shamsuddin and Saleh [283] for classification of breast cancer. 

In 2020, Korani and Mouhoub [284] implemented a deep feed-forward neural network (DFNN), 

mother tree optimization (MTO), MTO algorithm with climate change (MTOCL) and PSO for 

classifying the WBCD. Using a two-step feature selection algorithm in conjunction with ANN, 

Rahman and Muniyandi [285] developed a classification model. 

 

2.4.3 SVM-Based Models 

In the SVM method, which is a supervised learning algorithm, the principal thought is to discover 

the isolating hyperplane that can amplify the edge of the training dataset ideally. The objective is to 

increase the space between the closest points to each class and the hyperplane that prompts an ideal 

breaking hyperplane. It works effectively on datasets with smaller training data as well as linearly 

and nonlinearly splittable datasets. However, SVMs are not the best choice for working on large 

datasets because of the high training time and exhaustive computations. 
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Bennett and Blue [286] made an effort to generalize the SVMs to DTs. The proposed method is 

something between a univariate DT and a single SVM. Indeed, for each DT in the tree, a SVM was 

employed. The developed method was then applied to several databanks like WBCD. Based on the 

results for WBCD classification, however, the SVM model provided the best outcomes as compared 

to C4.5 and OC1 as DTs and global tree optimization (GTO) and GTO-SVM. Polat and Güneş [287] 

used the least-squares version of SVM (LS-SVM) for the classification of breast cancer. They 

employed RBF kernel functions. Subashini, Ramalingam and Palanivel [288] developed SVM and 

RBF-ANN models for the same goal, i.e. WBCD classification, where a polynomial kernel function 

was employed. Using the WBCD, Akay [289] presented a SVM-based classifier model with the 

feature selection utilizing F-score. The used kernel function was a RBF kernel. Similarly, employing 

FS feature selection method and SVM algorithm, WBCD is classified in another work [290]. 

Furthermore, the authors also presented a SVM-based model using kernel FS. 

Using the Gaussian kernel function, Chen, Yang, Liu and Liu [291] developed a SVM classifier 

coupled with a rough set reduction algorithm for removing the redundant features/points of the 

database. Stoean and Stoean [292] utilized the SVMs and evolutionary algorithms (EAs). The 

authors presented four different models for WBCD classification: SVM, cooperative coevolution 

(CC), pedagogical CC-SVM and decompositional CC-SVM. In another study [293], The SVM-

based model was developed for breast cancer classification through using polynomial and RBF 

kernel functions with varying arguments (poly order, BoxConstraint and RBF-sigma). In different 

research studies, automated diagnostic systems, including various types of ANNs as well as  SVMs, 

were implemented by Übeyli [294] and Shahare and Giri [295] for detection of BC type using the 

WBCD.  

For simultaneously solving the feature selection and model selection in SVM, a literature study 

suggested the PSO optimization algorithm [296]. To control the global and local search in PSO, the 

authors employed the inertia weight and time-varying acceleration coefficients. Ibrikci, Ustun and 

Kaya [297] presented the SVM classifier using the exponential-Gaussian combined kernel functions 
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for breast cancer. Employing a sigmoid kernel function, Zheng, Yoon and Lam [298] developed a 

hybrid model of SVM and K-means for the WBCD problem (denoted as K-SVM). 

In a comparative study conducted by Vig [299], the effectiveness of SVMs, ANN, RF, and NB in 

classifying breast cancer was evaluated. In addition to the SVM technique, Bashir, Qamar and Khan 

[300] presented several classification models, including NB, Gini index-DT, DT using information 

gain (IG), and memory-based learner (MBL). SVM, MLP-ANN, RBF-ANN, C4.5, RF, and the 

rotational forest were employed in a systematic study by Aličković and Subasi [301] for dealing 

with the BC databanks.  

Based on employing kernels with feature spaces composed by logical propositions, Polato and  

Aiolli [302]  presented an approach, namely BK-SVM, to extract explanation rules from SVM. Mao 

et al. [303] proposed the transformed ensemble learning (TrEnL) technique for breast cancer 

classification. They also compared seven ensemble methods, including bagging, AdaBoost, 

weighted majority vote (WMV), NB, evolutionary ensemble classifiers (EVEN), combining 

classifiers by using correspondence analysis (SCANN) and MDM. The authors used SVM and 

CART as base learners in their experiments. Abdar and Makarenkov [304] presented several 

classifiers based on SVM and ANN algorithms.  

 

2.4.4 Rule/Fuzzy-Based Models 

Among real-world problems, there are several cases in various fields with a level of uncertainty and 

vagueness. The rule/fuzzy-based modes can be implemented for this type of problems. Generally, 

in a fuzzy rule-based system, the fuzzy sets are used in a way that demonstrate various forms of 

knowledge about the problem. The simple reasoning process in these algorithms enables them to 

save computing power. However, lots of data and expertise are required to develop a fuzzy system 

model.  
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Several works in the literature proposed rule/fuzzy-based methods in engineering, science, and 

medicine disciplines for screening, diagnosis, prediction, and classification. Hamilton, Shan and 

Cercone [305] applied a rule induction algorithm based on the approximate classification (RIAC) 

method to induce the rules from the database. The accuracy of the RIAC model was then compared 

to that of the C4.5 method. Peña-Reyes and Sipper [306] presented fuzzy systems in combination 

with the GA algorithm for WBCD classification. The applied GA defined four main parameters, 

including input membership function (MF) values, antecedents, relevant variables and consequents 

of rules. The reasoning mechanism of the proposed models (we denote the models by GA-FLs) was 

based on Takagi-Sugeno-Kang fuzzy system. In another study [307], the employed fuzzy systems 

were combined with evolutionary algorithms for breast cancer diagnosis. The authors used a 

singleton-type fuzzy system for the models. Mallinson and Bentley [308] used a hybrid fuzzy-

genetic programming (GP) methodology to discover patterns in the WBCD. In a research 

investigation carried out by Nauck and Kruse [309], a neuro-fuzzy system, namely NEFCLASS, 

was developed to obtain classification rules from the WBCD.  

A fuzzy classifier based on a fuzzy entropy measure, known as a fuzzy entropy-based fuzzy classifier 

(FEBFC), was proposed by Lee, Chen, Chen and Jou [310] for the BC pattern classification. In a 

literature study [311], a methodology was described for extracting the crisp and fuzzy logical rules 

from WBCD. This method was obtained by changing the MLP network into a logical network (LN) 

that called MLP2LN. C-MLP2LN method starts from a single neuron and builds the LN employing 

training data points directly. Authors also proposed two more methods, namely separability split 

value (SSV) and feature space mapping (FSM).  

A fuzzy classifier structure was developed by Abonyi and Szeifert [312] on the basis of the 

unsupervised Gath-Geva clustering technique. The proposed approach can be considered as an 

extension of the quadratic Bayes classifier. Based on fuzzy subsethood measurements, Rasmani and 

Shen [313] conducted quantifier-based fuzzy modeling to classify the breast cancer database. They 

compared the accuracy of the proposed approach, denoted by FuzzyQSBA, to that of weighted 
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subsethood-based algorithm. As an adaptive fuzzy pattern classification method, an influential rule 

search scheme (IRSS) was applied to the breast cancer classification problem by Chatterjee and 

Rakshit [314].  

An ANFIS classification strategy was proposed in the literature [315] as a diagnosis system on the 

WBCD. In addition to the ANFIS models, the authors also developed several AdaBoost models for 

comparison. In this study, three different methods were used as a dominant input selector: GA 

algorithm, DT learning and correlation coefficient computation. Wang and Cheng [316] suggested 

a fuzzy clustering based on the aggregate attribute method (AAM) for breast cancer detection. To 

achieve the decision rules from the breast cancer database, Chen and Hsu [317] used the GA-based 

approach. Şahan, Polat, Kodaz and Güneş [318] hybridized a fuzzy-artificial immune system (FAIS) 

with the algorithm of KNN. Based on the KNN, neural fuzzy and quadratic classifier (QC) 

algorithms, researchers developed WBCD classifier models [319]. Furthermore, NF ensemble 

(NFE), QC ensemble (QCE) and KNN ensemble (KNNE)-based models were also presented. 

Lekkas and Mikhailov [320] recommended architecture for evolvable fuzzy rule-based classifiers to 

be implemented for breast cancer detection. On the basis of association rules (ARs) and neural 

network, Karabatak and Ince [321] proposed an expert system to classify the breast cancer types. 

Fuzzy robust principal component analysis (FRPCA) algorithms were used by Luukka [322] for data 

pre-processing. Then, the classification was made by the similarity classifier (SC). A hybrid hidden 

Markov model (HMM) fuzzy approach was also proposed for WBCD classification [323]. Based on 

fuzzy entropy measures (FEMs), Luukka [324] presented a feature selection method in combination 

with the SC for the application of interest.  

Ramathilagam and Huang [325] developed an extended Gaussian version of FCM for the 

classification task. Vannucci and Colla [326] proposed a model, called LASCUS, based on the FIS 

and SOM. Fuzzy neural networks, namely fuzzy Gaussian potential neural network (FGPNN) and 

hierarchical fuzzy neural network (HFNN), were investigated to categorize the database of breast 
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cancer [327]. The used training procedures were GD and EKF. Jaganathan and Kuppuchamy [328] 

presented a feature selection method based on a threshold fuzzy entropy (FE). For feature selection, 

three different criteria were employed: mean selection strategy (MSS), half selection strategy (HSS) 

and neural network for threshold selection (NNTS). Further to the hyper-rectangular composite 

neural network (HRCNN) model, a PSO-based fuzzy HRCNN model was also developed in another 

study [329] for the WBCD problem. Though using the theoretical concept of a fuzzy-rough nearest 

neighbor (FRNN) algorithm, a classification model was developed by Onan [330]. 

Fuzzy-based models namely linguistic hedges neuro-fuzzy classifier with selected features 

(LHNFCSF), conjugate gradient neuro-fuzzy classifier (CGNFC), an adaptive neuro-fuzzy classifier 

with the linguistic hedges (ANFCLH) and speeding up scaled conjugate gradient neuro-fuzzy 

classifier (SSCGNFC) were utilized by Azar and El-Said [331] to develop breast cancer classifiers. 

A hybrid classification system consisting of the CART, RF and/or fuzzy min-max (FMM) neural 

network was proposed by Seera and Lim [332]. In a BC classification study by Panda and Abraham 

[333], the ant colony optimization (ACO), PSO, SVM, RF, fuzzy rough KNN (FRKNN) and 

synthetic minority over-sampling technique (SMOTE) approaches were used. For WBCD 

classification, there several classification models in a published work on the basis of fuzzy 

ARTMAP (FARTMAP), fuzzy SAM (FSAM), GA-FSAM, ANFIS, P-ANN and SVM [334]. In 

another work, researchers employed the wavelet transformation and interval type-2 fuzzy logic 

system (T2FLS) for data classification [335]. Authors also used Karnik–Mendel iterative procedure 

(KMIP) and Greenfield–Chiclana Collapsing Defuzzifier (GCCD) algorithm. Hassani and Jafarian 

[336] evaluated the ability of hybrid methods such as harmony search fuzzy-ART, GA fuzzy-ART, 

and PSO fuzzy-ART in classifying the datasets of breast cancer. Satishkumar, Sita Mahalakshmi 

and Katneni [337] proposed a rule discovery algorithm on the basis of swarm intelligence for the 

breast cancer classification.  

Recently, Pota, Esposito and De Pietro [338] presented several rule-based fuzzy systems for 

classifying the medical databases like WBCD. Recently, another research paper was published on 
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the use of fuzzy SVM-RWTS AIRS (FSRAIRS) and AIRS techniques for the classification of 

WBCD [339]. In a study done by Pourpanah et l. [340], brain storm optimization (BSO) is used for 

the classification of the WBCD. Furthermore, a hybrid model was built by combining BSO with 

FARTMAP. Hancer [341] presented a fuzzy kernel filter criterion by combining the fuzzy and kernel 

mutual information estimators for the application of interest.  

 

2.4.5 Other Models  

Quinlan [342] used a divide-and-conquer approach of the C4.5 decision tree classifier for WBCD 

classification. He presented two classification models based on C4.5 and modified C4.5 in a research 

study [343], a learning technique that combines the classical perceptron algorithm (PA) with the 

logarithmic simulated annealing (LSA) is implemented to categorize the breast cancer database. In 

addition to the C4.5 decision tree, Smith and Bull [344] employed the genetic algorithm and 

programming (GAP) for analysis of the WBCD. Bagui, Bagui, Pal and Pal [345] compared the 

results of the k-rank nearest neighbour (KRNN) with the conventional KNN. Using a Bayesian 

feature selection (BFS) method, a classification model was proposed for classifying the breast cancer 

data [346]. In another study [347], the Bayesian networks were utilized for imputation in the breast 

cancer classification.  

The kernel principal component analysis (KPCA) on the BC database was performed by Hoffmann 

[348]. The KPCA was then compared with PCA, SVM and Parzen density. The FS-AIRS 

methodology is another approach that was proposed in the literature for WBCD classification [349].  

Using the ordered weighted averaging (OWA) operator, Cheng, Wang and Wu [350] introduced a 

classifier for this database. Mohammed, Naugler and Far [351] applied OWA-based methods 

employing KNN, Laplace and logistic regression (LLR) and SVM to the problem of breast cancer 

detection. The variable predictive model based class discrimination (VPMCD) and discriminating 

partial correlation coefficient metric (DPCCM) machine learning approaches were used in the 
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literature [352] for the classification of BC. Furthermore, LDA, CART and TreeNet methods were 

used as a basis for comparison.  

Several classification models were developed by Lavanya and Rani [353] for breast cancer 

classification. The best model was obtained using the principal components attribute evaluation 

(PCAE) FS method. Other FS methods were CFS subset evaluation (CFSSE), Chi-squared attribute 

evaluation (CSAE), classifier subset evaluation (CSE), consistency subset evaluation (COSE), 

filtered attribute evaluation (FAE), filtered subset evaluation (FSE), gain ratio attribute evaluation 

(GRAE), information gain attribute evaluation (IGAE), relief attribute evaluation (RAE), SVM 

attribute evaluation (SVMAE), symmetric uncertainty attribute evaluation (SUAE) and symmetric 

uncertainty attribute set evaluation (SUASE). Malar and Nadarajan [354] developed different 

classification models based on the DT, SVM, isotonic separation (IS), and evolutionary IS (EIS) 

methods. The EIS method used GA for the training phase. Using the cluster analysis methods with 

feature selection, a hybrid model was suggested by Chen [355] to analyze the WBCD database. 

Combining the RST and KNN classifier, El-Baz [356] investigated the breast cancer database in 

terms of screening and categorization. To achieve a reliable method for the breast cancer detection, 

Onan [357] developed ensembles of bagging, AdaBoost, dagging, multi boost, random sunspace, 

and decorate in conjunction with the SVM, MLP, LMT, RF, Bayes Net, KNNs, FURIA, C4.5, KR, 

kernel logistic regression (KLR), RIPPER, KStar, NB, and simple CART. Karabatak [358] 

introduced another NB and weighted NB (W-NN) classifiers to detect the BC type. In another 

published research [359], the BC classification ability of SMO, C4.5, decorate, NB, bagging, and 

IBK algorithms was examined and compared. 

Rashmi, Lekha and Bawane [360] implemented the KNN algorithm for the classification of the BC 

datasets. Modi and Ghanchi [361] investigated several classification and feature selection methods 

and machine learning algorithms, including NB, C4.5, RF, Bayes net (BN) and KNN to classify the 

breast cancer datasets. Sheikhpour, Sarram and Sheikhpour [362] developed several kernel density 

estimation (KDE)-based classifiers for various breast cancer cases. They used the PSO and GA 
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algorithms for the feature selection and bandwidth determination of the classifiers. For the problem 

of breast cancer classification, Azar, Inbarani and Renuga Devi [363] developed several classifiers 

using several methods such as Zero R, decision table, C4.5, random tree (RT), RF, MLP-ANN, IBk, 

KStar, LWL, NB, KNN, classical RST and improved dominance-based rough set (IDRSA). Sayed, 

Darwish, Hassanien and Pan [364] compared the breast cancer classification ability of whale 

optimization algorithm (WOA) to that of GA, PCA, statistical dependency, mutual information 

(MI), random subset feature selection (RSFS), sequential forward selection (SFS), and sequential 

floating forward selection (SFFS). Dora, Agrawal, Panda and Abraham [365] implemented the 

Gauss-Newton representation-based algorithm (GNRBA) on the cancer databases. The GNRBA 

model then was compared to other models like BP-ANN, Koza’s model (KM) and GO-ANN.  

Lu et al. [366] developed a genetic algorithm-based online gradient boosting (GAOGB) classifier. 

They also implemented other methods like online gradient boosting with the adaptive linear 

regressor (OLRGB), online adaptive boosting with the adaptive linear regressor (OLRAB), online 

sequential extreme learning machine (OSELM) and online linear regressor (OLR). With the aim of 

efficient dimensionality reduction, Hu et al. [367] applied ELM-SOM+ technique to the WBCD. 

Mohamed et al. [368] compared the classification performance of the Parasitism-Predation 

algorithm (PPA) to that of Cuckoo search (CS), cat swarm optimization (CSO) and crow search 

algorithm (CSA). Alroobaea et al. [369] developed several Bayesian-based models, including 

Gaussian distribution (GDis), Generalized Gaussian distribution (GGDis), Bounded Gaussian 

distribution and Bounded generalized Gaussian distribution (BGGDis) in conjunction with Bayesian 

inference (B) or maximum likelihood (ML). Mushtaq [370] presented several KNN-based models 

for breast cancer classification. 

In 2020, Devarria et al. [371] proposed two frameworks, namely D score and F2 score in 

combination with the GP algorithm and to classify between malignant and benign cases. In another 

study, Hancer [372] employed the WBCD for multi-objective clustering. Nayak et al. [373] 

implemented a Filter Approach using Elitism based Multi-objective Differential Evolution for 
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feature selection (FAEMODE) and compared the results to the outputs of methods based on SFS 

and SBS. Employing several datasets, including the WBCD, Aydemir [374] applied the Polygon 

Area Metric method to evaluate the performance of classifiers. In another study, Habib et al. [375] 

employed multi-objective particle swarm optimization (MOPSO), multi-objective evolutionary 

algorithm based on decomposition (MOEA/D) and non-dominated sorting genetic algorithm 

(NSGA-II).  

 

2.5 ANALYSIS OF THE LITERATURE MODELS  

2.5.1 Assessment Parameters  

To evaluate the performance of the created models for classification purposes, the following 

parameters are commonly determined: classification accuracy, sensitivity and specificity. Eqs (2.1) 

to (2.3) mathematically represent these parameters in a respective order.  
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where tn, tp, fp, and fn denote the true negative, true positive, false positive, and false negative, 

respectively.   

 

2.5.2 Evaluation of the WBCD Models  

Table 2.2 gives the error analysis results of the presented neural-based models in the literature for 

WBCD classification. Fig. 2.9 demonstrates the histogram of the literature ANN-based models’ 
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accuracy for WBCD classification. As can be observed from this figure, most of the published ANN-

based models provide accuracies more than 95%. However, some developed models have very low 

accuracy. According to Table 2.2, these models were presented by Janghel et al. [260]. Other models 

with accuracies less than 90% are BGD-ANN [257], BGDM-ANN [257], SOM [274] and MLP-

ANN [274]. 

 

Table 2.2: Performance of the available neural-based WBCD classification models in the literature 

Model  Year  
Performance (%) 

Accuracy Sensitivity Specificity  

FF-ANN (all features) [248]  1997 96.8 * * 

FF-ANN (selected features) [248]   1997 98.6 * * 

FF-ANN [249] 1996 96.5 * * 

PFF-ANN (rule#1) [247] 1996 95.4 * * 

PFF-ANN (rule#2) [247] 1996 94.7 * * 

PFF-ANN (rule#3) [247] 1996 97.1 * * 

PFF-ANN (rule#1, pre-processed data) [251] 2000 97.4 * * 

PFF-ANN (rule#2, pre-processed data) [251] 2000 98.1 * * 

PFF-ANN (rule#3, pre-processed data) [251] 2000 98.2 * * 

Binarized ANN [252] 1997 95.2 * * 

Normalized ANN [252] 1997 95.8 * * 

Continuous ANN [252] 1997 97.4 * * 

MLP-ANN [253] 2000 95.7 91.3 98.1 

MOE-ANN [253] 2000 96.3 93.7 97.7 

RBF-ANN [253] 2000 97.0 97.0 97.1 

GR-ANN [253] 2000 96.8 94.6 98.0 

GDX-ANN [254] 2007 97.7 * * 

Linear-ANN [254] 2007 96.0 * * 

AM-MLP [256] 2013 99.3 100 97.9 

BP-ANN [256] 2013 94.5 87.4 98.3 

BGD-ANN [257] 2011 83.3 * * 

QN-ANN [257] 2011 98.4 * * 

BGDM-ANN [257] 2011 84.4 * * 

RBP-ANN [257] 2011 98.6 * * 

LM-ANN [257] 2011 99.3 * * 

CG-AMM [257] 2011 99.0 * * 

BP-ANN [258] 2017 98.0 * * 

BP-ANN [259] 1996 96.7 * * 

LVQ [259] 1996 96.6 * * 

LVQ [261] 2002 96.7 * * 

BLVQ [261] 2002 96.8 * * 

BP-ANN [260] 2010 51.9 17.4 79.5 

RBF-ANN [260] 2010 49.8 19.6 74.2 

*indicates that the value of the parameter in not reported in the original work 
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Table 2.2: Continued. 

Model  Year  
Performance (%) 

Accuracy Sensitivity Specificity  

LVQ [260] 2010 95.8 95.8 95.8 

P-ANN [260] 2010 49.8 19.6 74.2 

R-ANN [260] 2010 52.7 21.0 75.5 

CL-ANN [260] 2010 74.5 25.0 77.1 

GA-ART-ANN [263] 2007 97.6 * * 

BP-ANN [264] 2010 98.2 * * 

GA-W-ANN [264] 2010 98.6 * * 

GA-MOO-ANN [264] 2012 98.9 98.5 99.1 

RLS-LLW-ANN [20] 2011 97.3 * * 

KF-RBF-ANN [20] 2011 96.4 * * 

RLS-RBF-ANN [20]  2011 97.1 * * 

ANN [21] 2015 95.0 96.3 92.7 

GA-RP-ANN [22] 2014 99.4 99.5 97.6 

GA-LM-ANN [22] 2014 98.9 97.8 98.0 

GA-GD-ANN [22] 2014 99.4 98.5 97.1 

ICA-MLP-ANN [270] 2013 97.8 * * 

PSO-MLP-ANN [270] 2013 97.6 * * 

BP-ANN [271] 2016 91.2 88.9 93.8 

DE-BP- ANN [271] 2016 92.6 91.4 93.9 

PSO-BP- ANN [271] 2016 95.6 94.3 97.0 

KPS-RBF-ANN [272] 2012 97.9 * * 

EKF-RBF-ANN [272] 2012 96.4 * * 

MP-ANN [273] 2002 98.1 * * 

SOM [274] 2011 86.5 81.3 89.4 

MLP-ANN [274] 2011 87.5 91.75 95.0 

PNCF [274] 2011 96.0 99.0 90.0 

PNSCF [274] 2011 97.9 98.5 94.3 

RF-PCA-ANN [275] 2013 98.0 * * 

PSO-ANN [275] 2013 97.4 * * 

SBSP-ANN [276] 2013 98.6 * * 

BP-ANN (average) [277] 2015 91.2 95.3 82.8 

GO-ANN (average) [277] 2015 98.8 99.1 98.4 

RST-BP-ANN [278]  2015 98.6 98.8 98.6 

AM-MLP-ANN [279] 2015 97.9 98.9 96.9 

ANN [280] 2015 95.3 97.6 97.2 

AR-ANN [280] 2015 94.1 93.7 96.1 

C-ANN [280] 2015 95.9 98.5 97.5 

GA-ANN [280] 2015 94.7 97.1 96.1 

BPSS-BP-ANN [281] 2016 95.3 * * 

CG-RIW-BP-ANN [282] 2016 98.9 100 98.2 

LM-RIW-BP-ANN [282] 2016 99.0 99.1 99.0 

CG-DBN-BP-ANN [282] 2016 99.6 100 99.4 

LM-DBN-BP-ANN [282] 2016 99.7 100 99.5 

NSGA-II-BP-ANN [283] 2018 97.7 97.6 97.1 

RBF-ANN [288] 2009 96.6 97.3 96.5 

FF-ANN [295] 2015 96.2 * * 
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Table 2.2: Continued. 

Model  Year  
Performance (%) 

Accuracy Sensitivity Specificity  

MLP-ANN [294] 2007 91.9 91.2 92.3 

R-ANN [294] 2007 98.6 98.1 98.9 

C-ANN [294] 2007 97.5 96.9 97.8 

P-ANN [294] 2007 98.2 98.1 98.9 

ANN [299] 2014 92.4 93.0 92.0 

MLP-ANN [301] 2017 96.7 * * 

RBF-ANN [301] 2017 95.8 * * 

GA-MLP-ANN [301] 2017 98.5 * * 

GA-RBF-ANN [301] 2017 98.4 * * 

MLP-ANN [309] 1999 94.8 * * 

MLP-ANN [321] 2009 95.2 * * 

P-ANN [334]  2015 93.9 * * 

PCA-P-ANN [334] 2015 94.9 * * 

Wavelets-P-ANN [334] 2015 93.8 * * 

MLP-ANN [363] 2017 95.1 * * 

BP-ANN [363] 2017 95.1 * * 

BP-ANN (average) [365] 2017 91.2 * * 

GO-ANN (average) [365] 2017 98.8 * * 

MLP [304] 2019 96.7 97.1 96.4 

RBF [304] 2019 95.4 93.4 96.5 

MLP-boosting [304] 2019 98.1 97.8 99.8 

RBF-boosting [304] 2019 96.4 94.4 97.5 

DFNN-PSO [284] 2020 * 97.9 * 

DFNN-MTO [284] 2020 * 100 * 

DFNN-MTOCL [284] 2020 * 97.9 * 

ANN [285] 2020 99.4 99.9 98.4 

 

Statistical parameters values of the studied SVM-based classifiers for the WBCD problem are given 

in Table 2.3. In accordance with Table 2.3, more than 70% of the investigated SVM-based models 

for the application of interest provided accuracies more than 95%. On the other hand, three models, 

including the SVM (quadratic) [299], SVM (linear) [299] and SVM [281] showed accuracies less 

than 90%.  

 



 

45 

 

ANN-based Models

Accuracyof the Model (%)

50 60 70 80 90 100

C
o

u
n

t

0

20

40

60

80

 

Fig. 2.9: Histogram of the accuracies obtained from the developed ANN-based models in the 

literature 

 

Table 2.3: Performance of the available SVM-based WBCD classification models in the literature 

Model  Year  
Performance (%) 

Accuracy Sensitivity Specificity  

SVM [281] 2016 83.0 *. * 

SVM [286] 1998 97.2 *. * 

GTO-SVM [286]  1998 96.6 *. * 

LS-SVM (average) [287] 2007 96.5 95.8 97.3 

SVM [288] 2009 92.1 86.7 95.9 

FS-SVM [289] 2009 99.51 99.6 97.7 

FS-SVM [290] 2013 95.6 97.0 95.0 

KFS-SVM [290] 2013 97.0 97.0 96.0 

RS-SVM (average) [291] 2011 96.7 99.9 100 

SVM [292] 2013 96.5 * * 

CC-SVM (pedagogical) [292] 2013 97.1 * * 

CC-SVM (decompositional) [292] 2013 95.9 * * 

SVM [293] 2014 97.1 * * 

SVM (RBF) [294] 2007 99.5 99.4 99.6 

SVM (linear) [295] 2015 97.9 * * 

SVM (quadratic) [295] 2015 97.3 * * 

SVM (polynomil) [295] 2015 97.5 * * 

*indicates that the value of the parameter in not reported in the original work 
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Table 2.3: Continued. 

Model  Year  
Performance (%) 

Accuracy Sensitivity Specificity  

SVM (RBF) [295] 2015 98.0 * * 

SVM (MLP) [295] 2015 96.7 * * 

FS-SVM [296] 2012 97.0 95.2 97.8 

PSO-SVM [296] 2012 99.3 99.5 99.1 

SVM (exponential-Gaussian) [297] 2012 98.3 99.4 94.4 

K-SVM [298] 2014 97.4 * * 

SVM (RBF) [299] 2014 93.6 94.0 92.0 

SVM (linear) [299] 2014 78.5 72.0 81.0 

SVM (quadratic) [299] 2014 72.9 68.0 75.0 

SVM [300] 2014 93.7 99.2 86.5 

SVM [301] 2017 96.8 * * 

GA-SVM [301] 2017 99.0 * * 

SMOTE-SVM (average) [333] 2014 96.4 * * 

FRSE-PSO-SVM (average) [333] 2014 96.4 * * 

SVM [334] 2015 93.9 * * 

PCA-SVM [334] 2015 94.9 * * 

Wavelets-SVM [334] 2015 93.8 * * 

OWA-SVM [351] 2016 96.3 * * 

SVMAE[353] 2011 94.6 * * 

SVM [354] 2013 96.6 96.5 96.8 

BK-SVM [302] 2019 97.5 * * 

Bagging (SVM/CART) [302] 2019 98.5 * * 

AdaBoost (SVM/CART) [302]  2019 98.1 * * 

WMV (SVM/CART) [302] 2019 98.5 * * 

NB (SVM/CART) [302] 2019 98.3 * * 

EVEN (SVM/CART) [302] 2019 98.5 * * 

MDM (SVM/CART) [302] 2019 98.5 * * 

SCANN (SVM/CART) [302] 2019 98.5 * * 

TrEnL (SVM/CART) [302] 2019 98.2 * * 

SVM [304] 2019 97.1 95.5 98.0 

polynomial-SVM [304] 2019 98.4 98.7 98.3 

CPG-SVM (average) [304] 2019 99.7 99.5 99.4 

CWV-BANN-SVM [304] 2019 100 100 100 

SVM [374] 2020 98.0 100 95.0 

 

Histogram of the accuracy of the SVM-based models presented for WBCD is depicted in Fig. 2.10. 

With accuracy, sensitivity and specificity of 100%, the CWV-BANN-SVM model [304] is the best 

literature model for the classification of the WBCD. Looking at other effective SVM-based models 

for BC classification, it can be observed that hybrid of SVM with other techniques is a great way to 

improve the classification performance of the final model for the WBCD. 
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Fig. 2.10: Histogram of the accuracies obtained from the developed SVM-based models in the 

literature 

 

For the literature rule/fuzzy-based models, the error analysis results are tabulated in Table 2.4. the 

majority of these classifiers provide satisfactory outcomes. However, nine models out of 82 studied 

rule/fuzzy-based literature models have accuracies below 95%. Histogram of the rule/fuzzy-based 

models’ accuracy is demonstrated in Fig. 2.11. As given in Table 2.4, a fuzzy-based model, namely 

FSRAIRS [339], provided the best achievable accuracy, i.e. 100%. However, since there is no 

information regarding the sensitivity and specificity values of this model and some other models as 

well, it is not possible to conclude that this model presents the best results for the WBCD problem. 

Similar to SVM-based models, hybrid of fuzzy models with some algorithms provided satisfactory 

results.    
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Table 2.4: Performance of the rule/fuzzy-based WBCD classification models in the literature 

Model  Year  
Performance (%) 

Accuracy Sensitivity Specificity  

RIAC [305] 1996 95.0 * * 

GA-FL (two-rule) [306] 1998 96.7 *. * 

GA-FL (single-rule) [306] 1998 96.4 * * 

GA-FL (single-rule) [307] 1999 97.1 * * 

GA-FL (two-rule) [307] 1999 97.4 * * 

GA-FL (three-rule) [307] 1999 97.8 * * 

GA-FL (four-rule) [307] 1999 97.8 * * 

GA-FL (five-rule) [307] 1999 97.5 * * 

GP-FL [308] 1999 95.0 * * 

NEFCLASS [309] 1999 95.1 * * 

FEBFC [310] 2001 94.7 * * 

FEBFC (with feature selection) [310]  2001 95.1 * * 

SSV (3 crisp rules) [311] 2001 96.5 * * 

FSM (12 fuzzy rules) [311] 2001 96.3 * * 

C-MLP2LN (average) [311] 2001 97.2 * * 

GG-FL (average) [312] 2003 94.1 * * 

FuzzyQSBA [313] 2004 92.2 * * 

WSBA [313] 2004 92.8 * * 

IRSS [314] 2004 95.9 * * 

ANFIS [315] 2005 95.9 * * 

GA-ANFIS [315] 2005 97.7 * * 

DT-ANFIS [315] 2005 98.0 * * 

CC-ANFIS [315] 2005 97.4 * * 

AAM-FL [316]  2006 98.2 * * 

GA-Rule [317] 2006 96.6 * * 

FAIS-KNN [318] 2007 99.1 * * 

NF [319] 2012 94.3 * * 

NFE [319]  2012 96.6 * * 

NF-KNN-QC [319] 2012 97.1 * * 

eClass [320] 2009 99.5 * * 

FS-eClass [320] 2009 99.5 * * 

AR1-ANN [321] 2009 97.4 * * 

AR2-ANN [321] 2009 95.6 * * 

FRPCA1 [322] 2009 98.2 * * 

FRPCA2 [322]  2009 98.1 * * 

FRPCA3 [322] 2009 98.2 * * 

SC-FEM1 [324] 2011 97.1 * * 

SC-FEM2 [324] 2011 97.2 * * 

LASCUS [326] 2011 98.0 * * 

GD-FGPNN [327] 2012 98.1 98.0 98.1 
EKF-FGPNN [327] 2012 98.2 98.3 98.1 
GD-HFNN [327]  2012 98.1 98.0 98.1 

EKF-HFNN [327]  2012 98.2 98.3 98.1 
GD-FNN [327] 2012 98.2 98.3 97.8 

EKF-FNN [327] 2012 97.8 97.2 98.3 

*indicates that the value of the parameter in not reported in the original work 



 

49 

 

Table 2.4: Continued. 

Model  Year  
Performance (%) 

Accuracy Sensitivity Specificity  

NNTS-FE [328] 2013 97.3 94.0 99.0 

MSS-FE [328] 2013 96.0 93.0 97.0 

HSS-FE [328] 2013 96.7 94.0 98.0 

HRCNN [329] 2014 95.0 * * 

PSO-HRCNN [329] 2014 97.8 * * 

FRNN [330] 2015 99.7 * * 

LHNFCSF [331] 2013 98.9 * * 

ANFCLH [331] 2013 97.5 * * 

SSCGNFC [331] 2013 97.5 * * 

SCGNFC [331] 2013 97.8 * * 

FMM (average) [332] 2014 95.2 * * 

CART-FMM (average) [332] 2014 94.6 * * 

CART-RF-FMM (average) [332] 2014 97.9 * * 

FRSE-ACO-FRKNN (average) [333]  2014 95.6 * * 

FRSE-PSO-FRNN (average) [333]  2014 95.6 * * 

SMOTE-FRNN (average) [333] 2014 98.0 * * 

FARTMAP [334] 2015 94.9 * * 

PCA-FARTMAP [334] 2015 96.3 * * 

Wavelets-FARTMAP [334] 2015 95.6 * * 

ANFIS [334]  2015 93.1 * * 

PCA-ANFIS [334] 2015 95.5 * * 

Wavelets-ANFIS [334] 2015 95.7 * * 

FSAM [334] 2015 94.9 * * 

PCA-FSAM [334] 2015 95.3 * * 

Wavelets-FSAM [334] 2015 96.2 * * 

GA-FSAM [334] 2015 95.6 * * 

GA-PCA-FSAM [334] 2015 95.9 * * 

GA-Wavelets-FSAM [334] 2015 97.4 * * 

IT2FLS-KMIP [335] 2015 95.8 * * 

PCA-IT2FLS-KMIP [335] 2015 96.3 * * 

Wavelets-IT2FLS-KMIP [335] 2015 97.8 * * 

IT2FLS-GCCD [335] 2015 96.9 * * 

PCA-IT2FLS-GCCD [335]  2015 96.9 * * 

Wavelets-IT2FLS-GCCD [335] 2015 97.9 * * 

FL [338] 2017 97.6 * * 

FSRAIRS [339] 2015 100 * * 

AIRS (average) [339] 2015 96.9 * * 

FARTMAP [340] 2019 96.0 * * 

FARTMAP-BSO (best) [340] 2019 96.7 * * 
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Fig. 2.11: Histogram of the accuracies obtained from the developed rule/fuzzy-based models in the 

literature 

 

Table 2.5 presents the overall performance of the developed WBCD classifiers based on the decision 

trees. The histogram graph for the accuracies of the tree-based models is shown in Fig. 2.12. 

According to the error analysis presented in Table 2.5 and Fig. 2.12, more than half of the available 

tree-based classifiers can be used for the WBCD problem with accuracies more than 95%. Except 

for a model called DT-AdaBoost [315], other models predict the breast cancer class with accuracies 

higher than 90%.  

Table 2.6 presents the error analysis for KNN-based models. Histogram of the accuracies of the 

reviewed KNN-based models is shown in Fig. 2.13. As can be seen, most developed KNN models 

provided results with accuracies higher than 95%. Furthermore, it can be observed that hybrid 
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models like RST-KNN [356] and KNN-Chi2 [370] reproduced the targets with satisfactory 

accuracy, sensitivity and specificity.  

 

Table 2.5: Performance of the available tree-based WBCD classification models in the literature 

Model  Year  
Performance (%) 

Accuracy Sensitivity Specificity  

C4.5 [249]  1996 95.8 *. * 

CART [259] 1996 94.2 *. * 

C4.5 [21] 2015 94.3 96.2 91.1 

C4.5 [286] 1998 93.4 * * 

RF (10 trees) [299] 2014 90.1 92.0 89.0 

RF (100 trees) [299] 2014 95.6 97.0 94.0 

IG-DT [300] 2014 95.6 93.7 93.7 

Gini-DT [300] 2014 94.0 90.0 92.7 

C4.5  [301] 2017 94.0 * * 

GA-C4.5 [301] 2017 93.2 * * 

DT-AdaBoost [315] 2005 61.0 * * 

GA-RF [301] 2017 95.3 * * 

C4.5 [309] 1999 95.1 * * 

C4.5 [342] 1996 94.7 * * 

Modified-C4.5 [342] 1996 94.7 * * 

C4.5 [305] 1996 96.0 * * 

FRSE-PSO-RF (average) [333] 2014 97.3 * * 

SMOTE-RF (average) [333] 2014 97.4 * * 

C4.5 [344] 2003 94.4 * * 

CART [352] 2009 98.7 * * 

TreeNet [352] 2009 98.4 * * 

DT [354]  2013 92.4 93.0 93.4 

C4.5 [359] 2015 94.6 94.6 95.6 

SMO-C4.5-NB-Decorate [359] 2015 97.0 96.3 97.4 

SMO-C4.5-NB-IBK [359] 2015 97.3 97.5 97.2 

SMO-C4.5-Bagging-NB [359] 2015 96.9 97.1 96.7 

RF [301] 2017 95.4 * * 

C4.5 [361] 2016 94.6 * * 

C4.5-KNN-BN  [361] 2016 95.3 * * 

C4.5-BN [361] 2016 94.9 * * 

C4.5-NB [361]  2016 97.0 * * 

C4.5-RF [361] 2016 95.7 * * 

RF [361] 2016 96.9 * * 

C4.5 [363]  2017 94.2 * * 

RF [363]  2017 95.4 * * 

*indicates that the value of the parameter in not reported in the original work 
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Fig. 2.12: Histogram of the accuracies obtained from the developed tree-based models in the 

literature 

 

Table 2.6: Performance of the available KNN-based WBCD classification models in the literature 

Model  Year  
Performance (%) 

Accuracy Sensitivity Specificity  

KNN [259] 1996 96.6 * * 

KNN [281] 2016 90.6 * * 

KNN [319] 2012 96.4 * * 

KNN (average) [345] 2003 96.4 * * 

OWA-KNN [351] 2016 99.7 * * 

KNN [356] 2015 98.8 98.8 98.9 

RST-KNN [356] 2015 99.4 100 99.2 

KNNE [319] 2012 96.4 * * 

KNN [360] 2016 85.6 * * 

KNN [363] 2017 93.5 * * 

KNN [374] 2020 98.0 99.0 95.0 

KNN (best model) [370] 2019 96.6 98.2 96.3 

KNN-LSVC (best model) [370] 2019 97.7 99.0 98.4 

KNN-Chi2 (best model) [370] 2019 99.4 99.1 100 

*indicates that the value of the parameter in not reported in the original work 
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Fig. 2.13: Histogram of the accuracies obtained from the developed KNN-based models in the 

literature 

 

Similar to the ANN-based, SVM-based, rule/fuzzy-based, tree-based and KNN-based models, the 

error analysis for other available WBCD classification models, reviewed in this study, is collected 

and given in Table 2.7.  

The accuracy histogram for these classifiers is depicted in Fig. 2.14. With accuracies less than 75%, 

nine models including QDA [259], MBL [300], AdaBoost [315], GA-AdaBoost [315], CC-

AdaBoost [315], NB , Zero R [363], TGC [24], CGCRM [24] are amongst the weakest developed 

models in the literature. On the other hand, GNRBA [365], RST-KNN [356], RotationF [301], GA-

RotationF [301], OWA-KNN [351] provide accuracies more than 99% for classifying the WBCD. 
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Table 2.7: Performance of the other available WBCD classification models in the literature 

Model  Year  
Performance (%) 

Accuracy Sensitivity Specificity  

LFC [259] 1996 94.4 * * 

LDA [259] 1996 96.0 * * 

QDA [259] 1996 34.5 * * 

ASR [259] 1996 94.7 * * 

ASI [259] 1996 95.6 * * 

SNB [259] 1996 96.6 * * 

NB [259] 1996 96.4 * * 

AIRS [261] 2002 97.2 * * 

LR [21] 2015 94.3 97.2 94.8 

GA [21] 2015 98.8 100 98.0 

CGCRMM [24] 2013 72.0 * * 

TGC [24] 2013 70.0 * * 

k-means [274] 2011 89.9 94.2 85.5 

NB [281] 2016 88.7 * * 

OC1 [286] 1998 95.9 * * 

OTG [286] 1998 95.7 * * 

NB [299] 2014 65.3 57.0 72.0 

NB [300] 2014 96.7 99.6 92.0 

MBL [300] 2014 63.1 45.7 36.6 

Ensemble [300]  2014 97.4 97.9 95.1 

LR  [301] 2017 98.5 * * 

BN  [301] 2017 95.3 * * 

RotationF [301] 2017 99.5 * * 

GA-LR [301] 2017 98.4 * * 

GA-BN [301] 2017 95.3 * * 

GA-RotationF [301] 2017 99.5 * * 

GG [312] 2003 93.1 * * 

AdaBoost [315]  2005 61.9 * * 

GA-AdaBoost [315] 2005 62.2 * * 

CC-AdaBoost [315] 2005 63.1 * * 

QC [319] 2012 94.5 * * 

QCE [319] 2012 96.6 * * 

PCA [322] 2009 97.7 * * 

SC [324] 2011 97.5 * * 

PA-LSA [343] 2002 98.3 * * 

GAP [344] 2003 95.6 * * 

KRNN (average) [345] 2003 96.2 * * 

BFS [346] 2004 96.5 * * 

FS-AIRS [349] 2005 98.5 * * 

OWA [350]  2009 98.4 * * 

OWA-LLR [351] 2016 95.5 * * 

DPCCM [352] 2009 97.1 * * 

VPMCD [352] 2009 97.1 * * 

LDA [352] 2009 95.7 * * 

PCAE [353]  2011 97.0 * * 

*indicates that the value of the parameter in not reported in the original work 



 

55 

 

Table 2.7: Continued. 

Model  Year  
Performance (%) 

Accuracy Sensitivity Specificity  

CFSSE [353]  2011 94.8 * * 

CSAE [353]  2011 94.6 * * 

CSE [353] 2011 95.1 * * 

COSE [353] 2011 95.1 * * 

FAE [353] 2011 94.6 * * 

FSE [353]  2011 94.8 * * 

GRAE [353] 2011 94.4 * * 

IGAE [353]  2011 94.6 * * 

RAE [353] 2011 94.6 * * 

SUAE [353] 2011 94.6 * * 

SUASE [353] 2011 94.0 * * 

IS [354] 2013 97.5 95.4 96.1 

EIS [354] 2013 98.6 98.3 97.5 

NB [358] 2015 96.2 * * 

W-NB [358] 2015 98.5 99.1 98.3 

Decorate [359] 2015 96.4 94.6 96.7 

Dagging [359] 2015 96.6 96.2 97.5 

IBK [359] 2015 95.1 95.1 96.7 

NB [359] 2015 96.0 95.9 95.2 

SMO [359] 2015 97.0 96.2 97.3 

SMO-Bagging-NB-IBK [359] 2015 97.0 97.1 96.9 

BN [361] 2016 97.1 * * 

NB [361] 2016 96.0 * * 

PSO-KDE (average) [362] 2016 97.7 94.0 99.7 

GA-KDE (average) [362] 2016 96.9 91.6 99.7 

IDRSA [363] 2017 96.5 * * 

RST [363] 2017 95.3 * * 

Zero R [363] 2017 65.5 * * 

NB [363] 2017 95.6 * * 

PSO [363] 2017 95.4 * * 

IBK [363] 2017 93.7 * * 

KSTAR [363] 2017 94.7 * * 

LWL [363] 2017 92.2 * * 

M-Classifier [363] 2017 95.7 * * 

Decision table [363]  2017 93.3 * * 

RT [363] 2017 93.3 * * 

WOA [364] 2017 98.7 * * 

SFFS [364]  2017 92.9 * * 

SFS[364]   2017 89.1 * * 

RSFS [364] 2017 94.4 * * 

MI [364]  2017 93.1 * * 

PCA [364]  2017 92.3 * * 

SD [364]  2017 93.9 * * 

GA [364] 2017 95.9 * * 

KM (average) [365] 2017 92.5 * * 

GNRBA (average) [365] 2017 99.3 * * 
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Table 2.7: Continued. 

Model  Year  
Performance (%) 

Accuracy Sensitivity Specificity  

D score-GP (average) [371] 2020 98.9 98.9 98.4 

F2 score-GP (average) [371] 2020 99.4 98.7 99.1 

SFS [373] 2020 90.1 * * 

SBS  [373]  2020 89.9 * * 

FAEMODE [373] 2020 95.3 * * 

GAOGB [366] 2019 94.3 93.1 93.2 

OSELM [366] 2019 93.3 89.6 95.6 

OLRAB [366] 2019 90.6 91.0 90.6 

OLRGB [366] 2019 87.8 86.7 88.6 

OLR [366] 2019 66.6 63.3 68.5 

PPA (average) [368] 2019 99.4 * * 

CS (average) [368] 2019 99.2 * * 

CSA (average) [368] 2019 99.0 * * 

CSO (average) [368] 2019 99.3 * * 

WOA (average) [368] 2019 99.2 * * 

GDis-ML [369] 2020 88.3 * * 

GGDis-ML [369]  2020 92.3 * * 

BGDis-ML[369] 2020 89.2 * * 

BGGDis-ML[369] 2020 93.2 * * 

GDis-B [369] 2020 89.8 * * 

GGDis-B [369] 2020 93.1 * * 

BGDis-B [369] 2020 90.8 * * 

BGGDis-B [369] 2020 94.6 * * 

LDA [374] 2020 97.0 100 92.0 

MOPSO [375] 2019 91.9 95.8 86.3 

NSGA-II [375] 2019 90.4 93.1 85.2 

MOEA/D [375] 2019 90.2 94.5 84.2 

 

 

Average accuracies obtained from each category of the studied literature models, i.e. ANN-based, 

SVM-based, rule/fuzzy-based, tree-based, KNN-based and other ones, for WBCD classification are 

shown in Fig 2.15. As can be observed from this figure, the average accuracy of the investigated 

rule/fuzzy-based tools is higher than that of other categories.   
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Fig. 2.14: Histogram of the accuracies obtained from other available models in the literature 
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Fig. 2.15: Average accuracies obtained from the studied literature models for WBCD classification 



 

58 

 

2.6 SUMMARY AND CONCLUSION  

A reliable diagnosis of BC is of great importance amongst the researchers, as it has a considerable 

impact on patients’ lives. In addition to the laboratory tests and examinations for BC investigations, 

a group of researchers have focused on the application of artificial intelligence and MLDM 

approaches in the development of CAD systems for fast, reliable and inexpensive BC detection. As 

smart models are able to extract hidden knowledge from BC databases, these systems can pave the 

way for more advanced studies in this medical field.  

Among all the available databases for BC, the WBCD is the most employed database for BC 

classification studies. This work identified papers on the application of MLDM approaches for 

WBCD classification, published between 1995 and 2020. The time scale of studies on the WBCD 

utilizing MLDM techniques indicates that the number of works has been increased over the years. 

The presented classification models in the reviewed papers were analysed according to some 

statistical parameters, including accuracy, sensitivity and specificity. As some papers just reported 

the accuracy of the proposed models, this parameter selected as the main variable for comparisons. 

This was the major limitation of our study.  

Based on the obtained results, hybrid MLDM classifiers are generally effective in classifying the 

WBCD into malignant or benign cases. This shows the potential of the MLDM approaches for BC 

detection, especially at the early stages. Further implementation and improvements of the predictive 

modeling techniques for BC classification can pave the way for better medical diagnostic decision 

support systems. 

Indeed, the majority of the reviewed hybrid MLDM algorithms like CWV-BANN-SVM model 

[304], RST-KNN [356], and GA-RotationF [301] have flexible capability of nonlinear modeling. 

Hence, it can be concluded that a combination of machine learning algorithms and optimization 

techniques can lead to higher accuracy and precision. However, as some approaches are known to 
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be black boxes, the resulting model might not be clear and could not be easily understood by non-

experts like physicians.  

 

2.7 RECOMMENDATIONS  

The main recommendations for future studies are summarized as follows: 

• This work just investigated the MLDM models for the WBCD. It is recommended to review 

the studies on the application of MLDM techniques in modeling other databases like MIAS, 

IRMA and DDSM. 

• According to some studies, employing feature extraction techniques may boost the overall 

performance of the employed classifier. Hence, evaluating different feature extraction 

techniques should be considered.  

• Hybrid models like provided excellent outcomes for the WBCD classification. It is 

recommended to assess the sustainability of different hybrid models on different datasets.  

• In the case of small datasets like the WBCD, the speed of the employed MLDM technique 

might not be significant. However, slow performance caused by massive computations is a 

problem to be solved when big databases are employed. Therefore, researchers are 

encouraged to evaluate the models in terms of computation speed as well.  

• Last but not least, having a thorough database with a sufficient number of features for BC 

can help to build more reliable and novel CAD systems. Hence, in addition to employing the 

available databases for BC, the development of an extensive database for BC investigations 

is also recommended.  
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Abbreviations 

ACO ant colony optimization  

ACR American College of Radiology 

AIRS artificial immune recognition system  

AM artificial metaplasticity  

AM artificial meta-plasticity 

ANFCLH adaptive neuro-fuzzy classifier with the linguistic hedges  

ANFIS adaptive neuro-fuzzy inference system  

ANN artificial neural network 

ART adaptive resonance theory  

ART association rule 

ASCO American Society of Clinical Oncology 

ASI assistant-I  

ASR age-standardized rates 

ASR assistant-R  

B Bayesian inference  

BC Breast cancer 

BFS Bayesian feature selection  

BGD batch gradient descent  

BGDis Bounded Gaussian distribution 

BGDM batch gradient descent with momentum  

BGGDis Bounded generalized Gaussian distribution  

BI-RADS Breast Imaging Reporting and Data System  

BN Bayes net  

BP back-propagation  

BSO brain storm optimization  

CADe computer aided detection 

CADx computer aided diagnosis 

CART Classification and regression tree  

CBR case-based reasoning  

CC cooperative coevolution  
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CFSSE CFS subset evaluation  

CG conjugate gradient  

CGCRMM classification rules mining model with GA in cloud computing 

CGNFC conjugate gradient neuro-fuzzy classifier  

CL competitive learning  

COSE consistency subset evaluation  

CS Cuckoo search  

CSA crow search algorithm 

CSAE Chi squared attribute evaluation 

CSE classifier subset evaluation  

CSO cat swarm optimization  

DBN deep belief network  

DDSM Digital Database for Screening Mammography 

DFNN deep feed-forward neural network  

DPCCM discriminating partial correlation coefficient metric  

DT Decision tree 

EA evolutionary algorithm 

EIS evolutionary IS  

EKF extended Kalman filter 

EVEN evolutionary ensemble classifiers  

FAE filtered attribute evaluation  

FAEMODE  Multi objective Differential Evolution for feature selection  

FAIS fuzzy-artificial immune system  

FARTMAP fuzzy ARTMAP 

FCM fuzzy C-means  

FE fuzzy entropy  

FEBFC fuzzy entropy-based fuzzy classifier  

FEM fuzzy entropy measure 

FF feed forward  

FFDM full-field digital mammography 

FGPNN fuzzy Gaussian potential neural network  
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FL Fuzzy logic 

FMM fuzzy min-max  

FRNN fuzzy-rough nearest neighbor  

FRPCA Fuzzy robust principal component analysis  

FSAM  fuzzy SAM  

FSE filtered subset evaluation  

FSM feature space mapping  

FSRAIRS fuzzy SVM-RWTS AIRS  

GA Genetic Algorithm  

GA-MOO-ANN GA-based Pareto-optima and ANN  

GAOGB genetic algorithm-based online gradient boosting  

GCCD Greenfield–Chiclana Collapsing Defuzzifier  

GD gradient descent  

GDis Gaussian distribution  

GDX gradient descent with adaptive momentum and step sizes 

GGDis Generalized Gaussian distribution  

GNRBA Gauss-Newton representation-based algorithm  

GO generally optimized  

GP genetic programming  

GR general regression  

GRAE gain ratio attribute evaluation  

GTO global tree optimization  

HFNN hierarchical fuzzy neural network  

HMM hybrid hidden Markov model  

HRCNN hyper-rectangular composite neural network  

HSS half selection strategy  

IDRSA improved dominance-based rough set 

IG information gain  

IGAE information gain attribute evaluation  

IRMA Image Retrieval in Medical Applications 

IRSS influential rule search scheme  
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IS isotonic separation  

KDE kernel density estimation 

KLR kernel logistic regression  

KM Koza’s model  

KMIP Karnik–Mendel iterative procedure 

KNN K-nearest neighbour 

KNNE KNN ensemble  

KPCA kernel principal component analysis  

KRNN k-rank nearest neighbour  

LDA linear discriminant analysis  

LFC look ahead feature construction  

LHNFCSF linguistic hedges neuro-fuzzy classifier with selected features  

LLR Laplace and logistic regression  

LLW-ANN local linear wavelet ANN  

LM Levenberg-Marquardt  

LN logical network  

LR logistic regression  

LS-SVM least squares version of SVM  

LSA logarithmic simulated annealing  

LVQ learning vector quantization  

MBL memory based learner  

MF membership function  

MI mutual information  

MIAS Mammographic Image Analysis Society 

ML Maximum likelihood 

MLDM machine learning and data mining 

MLP multi-layer perceptron  

MOE mixture of experts  

MOEA/D multi objective evolutionary algorithm based on decomposition 

MOPSO multi-objective particle swarm optimization 

MP memetic pareto   
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MRI magnetic resonance imaging 

MSS mean selection strategy  

MTO mother tree optimization  

MTOCL MTO algorithm with climate change  

NB Naïve Bayesian 

NFE NF ensemble  

NNTS neural network for threshold selection  

NSGA-II non-dominated sorting genetic algorithm 

OWA ordered weighted averaging  

P-ANN probabilistic ANN 

PCA principal component analysis  

PET Positron Emission Tomography 

PNCF parallel neural-based clusters fusion  

PNSCF parallel neural-based strong clusters fusion  

PPA Parasitism-Predation algorithm  

PSO Particle Swarm Optimization 

QC quadratic classifier  

QCE QC ensemble  

QDA quadratic discriminant analysis  

QN Quasi-Newton  

R-ANN recurrent ANN  

RAE relief attribute evaluation  

RBF radial basis function  

RF rotation forest  

RIAC rule induction algorithm based on the approximate classification 

RIW randomly initialized weight  

RLS recursive least square 

RST rough set theory  

RT random tree  

SBS sequential backward selection  

SCANN combining classifiers by using correspondence analysis  



 

65 

 

SCG scaled conjugated gradient  

SFFS sequential floating forward selection  

SFS sequential forward selection  

SMOTE synthetic minority over-sampling technique  

SNB semi-Naïve Bayesian  

SOM self-organizing map  

SSCGNFC scaled conjugate gradient neuro-fuzzy classifier 

SSV separability split value  

SUASE symmetric uncertainty attribute set evaluation 

SVM support vector machine 

SVMAE SVM attribute evaluation  

T2FLS type-2 fuzzy logic system 

TGC traditional genetic classification  

TrEnL transformed ensemble learning  

VPMCD variable predictive model-based class discrimination  

W-ANN wavelet ANN  

W-NB weighted NB  

WBCD Wisconsin Breast Cancer Database 

WDBC Wisconsin Diagnostic Breast Cancer Database 

WMV weighted majority vote  

WOA whale optimization algorithm  

 

Acronyms 

fn false negative 

fp   false positive 

tn true negative 

tp true positive 

 

 



 

66 

 

REFERENCES  

[1] Types of Breast Cancer, Johns Hopkins Medicine Pathology. Available online: 

https://pathology.jhu.edu/breast/my-results/types-of-breast-cancer/ 

[2] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 

2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, 

CA: A Cancer Journal for Clinicians, 68 (2018) 394-424. 

[3] A. Ring, M. Parton, Breast Cancer Survivorship: Consequences of early breast cancer and its 

treatment, Springer International Publishing, 2016. 

[4] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2017, CA: A Cancer Journal for Clinicians, 

67 (2017) 7-30. 

[5] S.A. Narod, J. Iqbal, A.B. Miller, Why have breast cancer mortality rates declined?, Journal of 

Cancer Policy, 5 (2015) 8-17. 

[6] R. Blanks, S. Moss, C. McGahan, M. Quinn, P. Babb, Effect of NHS breast screening programme 

on mortality from breast cancer in England and Wales, 1990-8: comparison of observed with 

predicted mortality, British Medical Journal, 321 (2000) 665-669. 

[7] Reduction in Breast Cancer Mortality from Organized Service Screening with Mammography: 

1. Further Confirmation with Extended Data, Cancer Epidemiology Biomarkers &amp; Prevention, 

15 (2006) 45-51. 

[8] A. Kricker, A.P. HØyer, M. McCredie, L.A. Porter, Breast cancer in NSW women: a shift in 

tumour size, Medical Journal of Australia, 163 (1995) 79-81. 

[9] P. Autier, M. Boniol, A. Gavin, L.J. Vatten, Breast cancer mortality in neighbouring European 

countries with different levels of screening but similar access to treatment: trend analysis of WHO 

mortality database, BMJ, 343 (2011) d4411. 

[10] M. Kalager, M. Zelen, F. Langmark, H.-O. Adami, Effect of Screening Mammography on 

Breast-Cancer Mortality in Norway, New England Journal of Medicine, 363 (2010) 1203-1210. 

[11] J. Suckling, J. Parker, D. Dance, S. Astley, I. Hutt, C. Boggis, I. Ricketts, E. Stamatakis, N. 

Cerneaz, S. Kok, P. Taylor, D. Betal, J. Savage, The Mammographic Image Analysis Society digital 

mammogram database, in: A. Gale, S. Astley, D. Dance, A. Cairns (Eds.) proceedings of the 2nd 

International Workshop on Digital Mammography, York, England, 1994. 

[12] T.M. Lehmann, B.B. Wein, J. Dahmen, J. Bredno, F. Vogelsang, M. Kohnen, Content-based 

image retrieval in medical applications: a novel multistep approach,  Electronic Imaging, SPIE, 

(1999) 9. 

[13] M. Heath, K. Bowyer, D. Kopans, R. Moore, W.P. Kegelmeyer, The digital database for 

screening mammography,  5th international workshop on digital mammography, Medical Physics 

Publishing, Toronto, Canada, (2001) 212-218. 

[14] O.L. Mangasarian, W.H. Wolberg, Cancer diagnosis via linear programming, SIAM News, 23 

(1990) 1-18. 

https://pathology.jhu.edu/breast/my-results/types-of-breast-cancer/


 

67 

 

[15] K.P. Bennett, O.L. Mangasarian, Robust linear programming discrimination of two linearly 

inseparable sets, Optimization Methods and Software, 1 (1992) 23-34. 

[16] W.H. Wolberg, O.L. Mangasarian, R. Setiono, Pattern Recognition Via Linear Programming: 

Theory and Application to Medical Diagnosis, University of Wisconsin-Madison, USA, 1989. 

[17] W.H. Wolberg, W.N. Street, O.L. Mangasarian, Image Analysis and Machine Learning Applied 

to Breast Cancer Diagnosis and Prognosis, Analytical and Quantitative Cytology and Histology, 17 

(1995) 77-87. 

[18] Y.-H. Huang, Y.-C. Chang, C.-S. Huang, J.-H. Chen, R.-F. Chang, Computerized Breast Mass 

Detection Using Multi-Scale Hessian-Based Analysis for Dynamic Contrast-Enhanced MRI, J. 

Digital Imaging, 27 (2014) 649-660. 

[19] L. Vivona, D. Cascio, F. Fauci, G. Raso, Fuzzy technique for microcalcifications clustering in 

digital mammograms, BMC Medical Imaging, 14 (2014) 23. 

[20] G. Schaefer, ACO classification of thermogram symmetry features for breast cancer diagnosis, 

Memetic Computing, 6 (2014) 207-212. 

[21] K. Drukker, M. Giger, L.A. Meinel, A. Starkey, J. Janardanan, H. Abe, Quantitative ultrasound 

image analysis of axillary lymph node status in breast cancer patients, International Journal of 

Computer Assisted Radiology and Surgery, 8 (2013) 895-903. 

[22] A. Hizukuri, R. Nakayama, Y. Kashikura, H. Takase, H. Kawanaka, T. Ogawa, S. Tsuruoka, 

Computerized Determination Scheme for Histological Classification of Breast Mass Using 

Objective Features Corresponding to Clinicians’ Subjective Impressions on Ultrasonographic 

Images, Journal of Digital Imaging, 26 (2013) 958-970. 

[23] M. Shibusawa, R. Nakayama, Y. Okanami, Y. Kashikura, N. Imai, T. Nakamura, H. Kimura, 

M. Yamashita, N. Hanamura, T. Ogawa, The usefulness of a computer-aided diagnosis scheme for 

improving the performance of clinicians to diagnose non-mass lesions on breast ultrasonographic 

images, Journal of Medical Ultrasonics, 43 (2016) 387-394. 

[24] S.A. Waugh, C.A. Purdie, L.B. Jordan, S. Vinnicombe, R.A. Lerski, P. Martin, A.M. 

Thompson, Magnetic resonance imaging texture analysis classification of primary breast cancer, 

European Radiology, 26 (2016) 322-330. 

[25] H. Cai, L. Liu, Y. Peng, Y. Wu, L. Li, Diagnostic assessment by dynamic contrast-enhanced 

and diffusion-weighted magnetic resonance in differentiation of breast lesions under different 

imaging protocols, BMC Cancer, 24 (2014) 366-377. 

[26] R. Hupse, M. Samulski, M. Lobbes, A. den Heeten, M.W. Imhof-Tas, D. Beijerinck, R. 

Pijnappel, C. Boetes, N. Karssemeijer, Standalone computer-aided detection compared to 

radiologists’ performance for the detection of mammographic masses, European Radiology, 23 

(2013) 93-100. 

[27] A.D. Masmoudi, N.G. Ben Ayed, D.S. Masmoudi, R. Abid, LBPV descriptors-based automatic 

ACR/BIRADS classification approach, EURASIP Journal on Image and Video Processing, 2013 

(2013) 19. 

[28] S. Hoffmann, J.D. Shutler, M. Lobbes, B. Burgeth, A. Meyer-Bäse, Automated analysis of non-

mass-enhancing lesions in breast MRI based on morphological, kinetic, and spatio-temporal 



 

68 

 

moments and joint segmentation-motion compensation technique, EURASIP Journal on Advances 

in Signal Processing, 2013 (2013) 172. 

[29] L. Cai, X. Wang, Y. Wang, Y. Guo, J. Yu, Y. Wang, Robust phase-based texture descriptor for 

classification of breast ultrasound images, BioMedical Engineering OnLine, 14 (2015) 26. 

[30] K.M. Prabusankarlal, P. Thirumoorthy, R. Manavalan, Assessment of combined textural and 

morphological features for diagnosis of breast masses in ultrasound, Human-centric Computing and 

Information Sciences, 5 (2015) 12. 

[31] W.-J. Wu, S.-W. Lin, W.K. Moon, An Artificial Immune System-Based Support Vector 

Machine Approach for Classifying Ultrasound Breast Tumor Images, Journal of Digital Imaging, 

28 (2015) 576-585. 

[32] S. Sanchez Gómez, M. Torres Tabanera, A. Vega Bolivar, M. Sainz Miranda, A. Baroja Mazo, 

M. Ruiz Diaz, P. Martinez Miravete, E. Lag Asturiano, P. Muñoz Cacho, T. Delgado Macias, Impact 

of a CAD system in a screen-film mammography screening program: A prospective study, European 

Journal of Radiology, 80 (2011) 317-321. 

[33] D. Van de Sompel, S.M. Brady, J. Boone, Task-based performance analysis of FBP, SART and 

ML for digital breast tomosynthesis using signal CNR and Channelised Hotelling Observers, 

Medical Image Analysis, 15 (2011) 53-70. 

[34] C. Romero Castellano, C. Varela Nuñez, R. Cuena Boy, A. Almenar Gil, J.M. Pinto Varela, M. 

Botella Lopez, Impact of mammographic breast density on computer-assisted detection (CAD) in a 

breast imaging department, Radiología (English Edition), 53 (2011) 456-461. 

[35] D.-R. Chen, Y.-L. Huang, S.-H. Lin, Computer-aided diagnosis with textural features for breast 

lesions in sonograms, Computerized Medical Imaging and Graphics, 35 (2011) 220-226. 

[36] W.K. Moon, Y.-W. Shen, C.-S. Huang, L.-R. Chiang, R.-F. Chang, Computer-Aided Diagnosis 

for the Classification of Breast Masses in Automated Whole Breast Ultrasound Images, Ultrasound 

in Medicine & Biology, 37 (2011) 539-548. 

[37] W.K. Moon, S.-C. Chang, C.-S. Huang, R.-F. Chang, Breast Tumor Classification Using Fuzzy 

Clustering for Breast Elastography, Ultrasound in Medicine & Biology, 37 (2011) 700-708. 

[38] M.X. Rodríguez-Álvarez, P.G. Tahoces, C. Cadarso-Suárez, M.J. Lado, Comparative study of 

ROC regression techniques—Applications for the computer-aided diagnostic system in breast 

cancer detection, Computational Statistics & Data Analysis, 55 (2011) 888-902. 

[39] A. Sadaf, P. Crystal, A. Scaranelo, T. Helbich, Performance of computer-aided detection 

applied to full-field digital mammography in detection of breast cancers, European Journal of 

Radiology, 77 (2011) 457-461. 

[40] X. Wang, D. Lederman, J. Tan, X.H. Wang, B. Zheng, Computerized prediction of risk for 

developing breast cancer based on bilateral mammographic breast tissue asymmetry, Medical 

Engineering & Physics, 33 (2011) 934-942. 

[41] A.M. Sayed, E. Zaghloul, T.M. Nassef, Automatic Classification of Breast Tumors Using 

Features Extracted from Magnetic Resonance Images, Procedia Computer Science, 95 (2016) 392-

398. 



 

69 

 

[42] S. Kaymak, A. Helwan, D. Uzun, Breast cancer image classification using artificial neural 

networks, Procedia Computer Science, 120 (2017) 126-131. 

[43] S.P.K. Angeline, M. Anburajan, B. Venkataraman, M. Menaka, A case study on asymmetrical 

texture features comparison of breast thermogram and mammogram in normal and breast cancer 

subject, Biocatalysis and Agricultural Biotechnology, DOI 

https://doi.org/10.1016/j.bcab.2018.07.001(2018). 

[44] T. Salahuddin, F. Haouari, F. Islam, R. Ali, S. Al-Rasbi, N. Aboueata, E. Rezk, A. Jaoua, Breast 

Cancer Image Classification using Pattern-based Hyper Conceptual Sampling Method, Informatics 

in Medicine Unlocked, DOI https://doi.org/10.1016/j.imu.2018.07.002(2018). 

[45] W.K. Moon, I.L. Chen, J.M. Chang, S.U. Shin, C.-M. Lo, R.-F. Chang, The adaptive computer-

aided diagnosis system based on tumor sizes for the classification of breast tumors detected at 

screening ultrasound, Ultrasonics, 76 (2017) 70-77. 

[46] A. Alharbi, F. Tchier, Using a genetic-fuzzy algorithm as a computer aided diagnosis tool on 

Saudi Arabian breast cancer database, Mathematical Biosciences, 286 (2017) 39-48. 

[47] P. Alirezazadeh, B. Hejrati, A. Monsef-Esfahani, A. Fathi, Representation learning-based 

unsupervised domain adaptation for classification of breast cancer histopathology images, 

Biocybernetics and Biomedical Engineering, 38 (2018) 671-683. 

[48] M.A. Aswathy, M. Jagannath, Detection of breast cancer on digital histopathology images: 

Present status and future possibilities, Informatics in Medicine Unlocked, 8 (2017) 74-79. 

[49] C. Balleyguier, J. Arfi-Rouche, L. Levy, P.R. Toubiana, F. Cohen-Scali, A.Y. Toledano, B. 

Boyer, Improving digital breast tomosynthesis reading time: A pilot multi-reader, multi-case study 

using concurrent Computer-Aided Detection (CAD), European Journal of Radiology, 97 (2017) 83-

89. 

[50] M. Banaie, H. Soltanian-Zadeh, H.-R. Saligheh-Rad, M. Gity, Spatiotemporal features of DCE-

MRI for breast cancer diagnosis, Computer Methods and Programs in Biomedicine, 155 (2018) 153-

164. 

[51] V. Bevilacqua, A. Brunetti, A. Guerriero, G.F. Trotta, M. Telegrafo, M. Moschetta, A 

performance comparison between shallow and deeper neural networks supervised classification of 

tomosynthesis breast lesions images, Cognitive Systems Research, DOI 

https://doi.org/10.1016/j.cogsys.2018.04.011(2018). 

[52] I. Fondón, A. Sarmiento, A.I. García, M. Silvestre, C. Eloy, A. Polónia, P. Aguiar, Automatic 

classification of tissue malignancy for breast carcinoma diagnosis, Computers in Biology and 

Medicine, 96 (2018) 41-51. 

[53] Q. Huang, X. Huang, L. Liu, Y. Lin, X. Long, X. Li, A case-oriented web-based training system 

for breast cancer diagnosis, Computer Methods and Programs in Biomedicine, 156 (2018) 73-83. 

[54] Y.-S. Huang, E. Takada, S. Konno, C.-S. Huang, M.-H. Kuo, R.-F. Chang, Computer-Aided 

tumor diagnosis in 3-D breast elastography, Computer Methods and Programs in Biomedicine, 153 

(2018) 201-209. 

[55] J.J. James, E. Giannotti, Y. Chen, Evaluation of a computer-aided detection (CAD)-enhanced 

2D synthetic mammogram: comparison with standard synthetic 2D mammograms and conventional 

https://doi.org/10.1016/j.bcab.2018.07.001(2018
https://doi.org/10.1016/j.imu.2018.07.002(2018
https://doi.org/10.1016/j.cogsys.2018.04.011(2018


 

70 

 

2D digital mammography, Clinical Radiology, DOI 

https://doi.org/10.1016/j.crad.2018.05.028(2018). 

[56] N.D. Khalilabad, H. Hassanpour, M.R. Abbaszadegan, Fully automatic classification of breast 

cancer microarray images, Journal of Electrical Systems and Information Technology, 3 (2016) 348-

359. 

[57] S. Liu, J. Zeng, H. Gong, H. Yang, J. Zhai, Y. Cao, J. Liu, Y. Luo, Y. Li, L. Maguire, X. Ding, 

Quantitative analysis of breast cancer diagnosis using a probabilistic modelling approach, 

Computers in Biology and Medicine, 92 (2018) 168-175. 

[58] M.A. Mohammed, B. Al-Khateeb, A.N. Rashid, D.A. Ibrahim, M.K. Abd Ghani, S.A. Mostafa, 

Neural network and multi-fractal dimension features for breast cancer classification from ultrasound 

images, Computers & Electrical Engineering, DOI 

https://doi.org/10.1016/j.compeleceng.2018.01.033(2018). 

[59] M.R. Mohebian, H.R. Marateb, M. Mansourian, M.A. Mañanas, F. Mokarian, A Hybrid 

Computer-aided-diagnosis System for Prediction of Breast Cancer Recurrence (HPBCR) Using 

Optimized Ensemble Learning, Computational and Structural Biotechnology Journal, 15 (2017) 75-

85. 

[60] W.K. Moon, I.L. Chen, A. Yi, M.S. Bae, S.U. Shin, R.-F. Chang, Computer-aided prediction 

model for axillary lymph node metastasis in breast cancer using tumor morphological and textural 

features on ultrasound, Computer Methods and Programs in Biomedicine, 162 (2018) 129-137. 

[61] R. Rasti, M. Teshnehlab, S.L. Phung, Breast cancer diagnosis in DCE-MRI using mixture 

ensemble of convolutional neural networks, Pattern Recognition, 72 (2017) 381-390. 

[62] E. Rezk, Z. Awan, F. Islam, A. Jaoua, S. Al Maadeed, N. Zhang, G. Das, N. Rajpoot, 

Conceptual data sampling for breast cancer histology image classification, Computers in Biology 

and Medicine, 89 (2017) 59-67. 

[63] A. Rodríguez-Cristerna, W. Gómez-Flores, W.C. de Albuquerque Pereira, A computer-aided 

diagnosis system for breast ultrasound based on weighted BI-RADS classes, Computer Methods and 

Programs in Biomedicine, 153 (2018) 33-40. 

[64] B.K. Singh, K. Verma, L. Panigrahi, A.S. Thoke, Integrating radiologist feedback with 

computer aided diagnostic systems for breast cancer risk prediction in ultrasonic images: An 

experimental investigation in machine learning paradigm, Expert Systems with Applications, 90 

(2017) 209-223. 

[65] W. Sun, T.-L. Tseng, W. Qian, E.C. Saltzstein, B. Zheng, H. Yu, S. Zhou, A new near-term 

breast cancer risk prediction scheme based on the quantitative analysis of ipsilateral view 

mammograms, Computer Methods and Programs in Biomedicine, 155 (2018) 29-38. 

[66] D. Sun, A. Li, B. Tang, M. Wang, Integrating genomic data and pathological images to 

effectively predict breast cancer clinical outcome, Computer Methods and Programs in Biomedicine, 

161 (2018) 45-53. 

[67] P. Wang, X. Hu, Y. Li, Q. Liu, X. Zhu, Automatic cell nuclei segmentation and classification 

of breast cancer histopathology images, Signal Processing, 122 (2016) 1-13. 

https://doi.org/10.1016/j.crad.2018.05.028(2018
https://doi.org/10.1016/j.compeleceng.2018.01.033(2018


 

71 

 

[68] J.C.M. van Zelst, T. Tan, B. Platel, M. de Jong, A. Steenbakkers, M. Mourits, A. Grivegnee, C. 

Borelli, N. Karssemeijer, R.M. Mann, Improved cancer detection in automated breast ultrasound by 

radiologists using Computer Aided Detection, European Journal of Radiology, 89 (2017) 54-59. 

[69] Y. Zheng, Z. Jiang, F. Xie, H. Zhang, Y. Ma, H. Shi, Y. Zhao, Feature extraction from 

histopathological images based on nucleus-guided convolutional neural network for breast lesion 

classification, Pattern Recognition, 71 (2017) 14-25. 

[70] W.K. Moon, C.-M. Lo, J.M. Chang, C.-S. Huang, J.-H. Chen, R.-F. Chang, Quantitative 

Ultrasound Analysis for Classification of BI-RADS Category 3 Breast Masses, Journal of Digital 

Imaging, 26 (2013) 1091-1098. 

[71] F. Retter, C. Plant, B. Burgeth, G. Botella, T. Schlossbauer, A. Meyer-Bäse, Computer-aided 

diagnosis for diagnostically challenging breast lesions in DCE-MRI based on image registration and 

integration of morphologic and dynamic characteristics, EURASIP Journal on Advances in Signal 

Processing, 2013 (2013) 157. 

[72] J. Dheeba, S.T. Selvi, A Swarm Optimized Neural Network System for Classification of 

Microcalcification in Mammograms, Journal of Medical Systems, 36 (2012) 3051-3061. 

[73] U.R. Acharya, E.Y.K. Ng, J.-H. Tan, S.V. Sree, Thermography Based Breast Cancer Detection 

Using Texture Features and Support Vector Machine, Journal of Medical Systems, 36 (2012) 1503-

1510. 

[74] W. Jian, X. Sun, S. Luo, Computer-aided diagnosis of breast microcalcifications based on dual-

tree complex wavelet transform, BioMedical Engineering OnLine, 11 (2012) 96. 

[75] J. Ding, H.D. Cheng, J. Huang, J. Liu, Y. Zhang, Breast Ultrasound Image Classification Based 

on Multiple-Instance Learning, Journal of Digital Imaging, 25 (2012) 620-627. 

[76] F.S. Zakeri, H. Behnam, N. Ahmadinejad, Classification of Benign and Malignant Breast 

Masses Based on Shape and Texture Features in Sonography Images, Journal of Medical Systems, 

36 (2012) 1621-1627. 

[77] R. Ramos-Pollán, M.A. Guevara-López, C. Suárez-Ortega, G. Díaz-Herrero, J.M. Franco-

Valiente, M. Rubio-del-Solar, N. González-de-Posada, M.A.P. Vaz, J. Loureiro, I. Ramos, 

Discovering Mammography-based Machine Learning Classifiers for Breast Cancer Diagnosis, 

Journal of Medical Systems, 36 (2012) 2259-2269. 

[78] T. Kooi, G. Litjens, B. van Ginneken, A. Gubern-Mérida, C.I. Sánchez, R. Mann, A. den 

Heeten, N. Karssemeijer, Large scale deep learning for computer aided detection of mammographic 

lesions, Medical Image Analysis, 35 (2017) 303-312. 

[79] M. Abdel-Nasser, J. Melendez, A. Moreno, O.A. Omer, D. Puig, Breast tumor classification in 

ultrasound images using texture analysis and super-resolution methods, Engineering Applications 

of Artificial Intelligence, 59 (2017) 84-92. 

[80] Q. Zhang, Y. Xiao, W. Dai, J. Suo, C. Wang, J. Shi, H. Zheng, Deep learning based 

classification of breast tumors with shear-wave elastography, Ultrasonics, 72 (2016) 150-157. 

[81] J. Shan, S.K. Alam, B. Garra, Y. Zhang, T. Ahmed, Computer-Aided Diagnosis for Breast 

Ultrasound Using Computerized BI-RADS Features and Machine Learning Methods, Ultrasound in 

Medicine & Biology, 42 (2016) 980-988. 



 

72 

 

[82] J. Arevalo, F.A. González, R. Ramos-Pollán, J.L. Oliveira, M.A. Guevara Lopez, 

Representation learning for mammography mass lesion classification with convolutional neural 

networks, Computer Methods and Programs in Biomedicine, 127 (2016) 248-257. 

[83] W. Sun, T.-L. Tseng, J. Zhang, W. Qian, Computerized breast cancer analysis system using 

three stage semi-supervised learning method, Computer Methods and Programs in Biomedicine, 135 

(2016) 77-88. 

[84] W. Sun, T.-L. Tseng, J. Zhang, W. Qian, Enhancing deep convolutional neural network scheme 

for breast cancer diagnosis with unlabeled data, Computerized Medical Imaging and Graphics, 57 

(2017) 4-9. 

[85] C.-M. Lo, Y.-C. Lai, Y.-H. Chou, R.-F. Chang, Quantitative breast lesion classification based 

on multichannel distributions in shear-wave imaging, Computer Methods and Programs in 

Biomedicine, 122 (2015) 354-361. 

[86] A. Gubern-Mérida, R. Martí, J. Melendez, J.L. Hauth, R.M. Mann, N. Karssemeijer, B. Platel, 

Automated localization of breast cancer in DCE-MRI, Medical Image Analysis, 20 (2015) 265-274. 

[87] Ł. Jeleń, A. Krzyżak, T. Fevens, M. Jeleń, Influence of feature set reduction on breast cancer 

malignancy classification of fine needle aspiration biopsies, Computers in Biology and Medicine, 

79 (2016) 80-91. 

[88] Q. Huang, F. Yang, L. Liu, X. Li, Automatic segmentation of breast lesions for interaction in 

ultrasonic computer-aided diagnosis, Information Sciences, 314 (2015) 293-310. 

[89] C.-M. Lo, S.-W. Chan, Y.-W. Yang, Y.-C. Chang, C.-S. Huang, Y.-S. Jou, R.-F. Chang, 

Feasibility Testing: Three-dimensional Tumor Mapping in Different Orientations of Automated 

Breast Ultrasound, Ultrasound in Medicine & Biology, 42 (2016) 1201-1210. 

[90] M. Kowal, Computer-Aided Diagnosis for Breast Tumor Classification Using Microscopic 

Images of Fine Needle Biopsy, Springer Berlin Heidelberg, Berlin, Heidelberg, (2014), 213-224. 

[91] S.S. Venkatesh, B.J. Levenback, L.R. Sultan, G. Bouzghar, C.M. Sehgal, Going beyond a First 

Reader: A Machine Learning Methodology for Optimizing Cost and Performance in Breast 

Ultrasound Diagnosis, Ultrasound in Medicine and Biology, 41 (2015) 3148-3162. 

[92] W. Sun, B. Zheng, F. Lure, T. Wu, J. Zhang, B.Y. Wang, E.C. Saltzstein, W. Qian, Prediction 

of near-term risk of developing breast cancer using computerized features from bilateral 

mammograms, Computerized Medical Imaging and Graphics, 38 (2014) 348-357. 

[93] Z. Wang, G. Yu, Y. Kang, Y. Zhao, Q. Qu, Breast tumor detection in digital mammography 

based on extreme learning machine, Neurocomputing, 128 (2014) 175-184. 

[94] A. Chmielewski, P. Dufort, A.M. Scaranelo, A Computerized System to Assess Axillary Lymph 

Node Malignancy from Sonographic Images, Ultrasound in Medicine & Biology, 41 (2015) 2690-

2699. 

[95] N. Vállez, G. Bueno, O. Déniz, J. Dorado, J.A. Seoane, A. Pazos, C. Pastor, Breast density 

classification to reduce false positives in CADe systems, Computer Methods and Programs in 

Biomedicine, 113 (2014) 569-584. 



 

73 

 

[96] C.-M. Lo, W.K. Moon, C.-S. Huang, J.-H. Chen, M.-C. Yang, R.-F. Chang, Intensity-Invariant 

Texture Analysis for Classification of BI-RADS Category 3 Breast Masses, Ultrasound in Medicine 

& Biology, 41 (2015) 2039-2048. 

[97] H.-S. Tseng, H.-K. Wu, S.-T. Chen, S.-J. Kuo, Y.-L. Huang, D.-R. Chen, Speckle reduction 

imaging of breast ultrasound does not improve the diagnostic performance of morphology-based 

CAD System, Journal of Clinical Ultrasound, 40 (2012) 1-6. 

[98] S. Liu, H. Cheng, Y. Liu, J. Huang, Y. Zhang, X. Tang, An effective computer aided diagnosis 

system using B-Mode and color Doppler flow imaging for breast cancer,  2013 Visual 

Communications and Image Processing (VCIP), 2013, pp. 1-4. 

[99] X. Liu, J. Shi, S. Zhou, M. Lu, An iterated Laplacian based semi-supervised dimensionality 

reduction for classification of breast cancer on ultrasound images,  2014 36th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society, 2014, pp. 4679-4682. 

[100] C.M. Lin, Y.L. Hou, T.Y. Chen, K.H. Chen, Breast Nodules Computer-Aided Diagnostic 

System Design Using Fuzzy Cerebellar Model Neural Networks, IEEE Transactions on Fuzzy 

Systems, 22 (2014) 693-699. 

[101] H.A. Nugroho, N. Faisal, I. Soesanti, L. Choridah, Identification of malignant masses on 

digital mammogram images based on texture feature and correlation based feature selection,  2014 

6th International Conference on Information Technology and Electrical Engineering (ICITEE), 

2014, pp. 1-6. 

[102] J. Wang, Y. Yang, R.M. Nishikawa, Reduction of false positive detection in clustered 

microcalcifications,  2013 IEEE International Conference on Image Processing, 2013, pp. 1433-

1437. 

[103] C. Gallego-Ortiz, A.L. Martel, Improving the Accuracy of Computer-aided Diagnosis for 

Breast MR Imaging by Differentiating between Mass and Nonmass Lesions, Radiology, 278 (2016) 

679-688. 

[104] C. Yao, Y. Yang, H. Chen, T. Jing, X. Hao, H. Bi, Adaptive kernel learning for detection of 

clustered microcalcifications in mammograms,  2012 IEEE Southwest Symposium on Image 

Analysis and Interpretation, 2012, pp. 5-8. 

[105] J.-J. Mordang, A. Gubern-Mérida, G. den Heeten, N. Karssemeijer, Reducing false positives 

of microcalcification detection systems by removal of breast arterial calcifications, Medical Physics, 

43 (2016) 1676-1687. 

[106] W.A. Weiss, M. Medved, G.S. Karczmar, M.L. Giger, Residual analysis of the water 

resonance signal in breast lesions imaged with high spectral and spatial resolution (HiSS) MRI: A 

pilot study, Medical Physics, 41 (2014) 012303. 

[107] T. Maxine, Q. Wei, P. Jiantao, L. Hong, Z. Bin, A new approach to develop computer-aided 

detection schemes of digital mammograms, Physics in Medicine & Biology, 60 (2015) 4413. 

[108] M.d.M. Fernández-Carrobles, G.B. García, O. Déniz-Suárez, J. Salido, M. García-Rojo, L. 

González-López, A CAD System for the Acquisition and Classification of Breast TMA in 

Pathology, J Studies in health technology and informatics, 210 (2015) 756-760. 



 

74 

 

[109] H. Rezaeilouyeh, A. Mollahosseini, M.H. Mahoor, Microscopic medical image classification 

framework via deep learning and shearlet transform, SPIE, 2016, pp. 12. 

[110] M.I. Daoud, T.M. Bdair, M. Al-Najar, R. Alazrai, A Fusion-Based Approach for Breast 

Ultrasound Image Classification Using Multiple-ROI Texture and Morphological Analyses, 

Computational and Mathematical Methods in Medicine, 2016 (2016) 12. 

[111] S.C. Agner, M.A. Rosen, S. Englander, J.E. Tomaszewski, M.D. Feldman, P. Zhang, C. Mies, 

M.D. Schnall, A. Madabhushi, Computerized Image Analysis for Identifying Triple-Negative Breast 

Cancers and Differentiating Them from Other Molecular Subtypes of Breast Cancer on Dynamic 

Contrast-enhanced MR Images: A Feasibility Study, Radiology, 272 (2014) 91-99. 

[112] É.O. Rodrigues, A. Conci, T.B. Borchartt, A.C. Paiva, A.C. Silva, T. MacHenry, Comparing 

results of thermographic images based diagnosis for breast diseases,  IWSSIP 2014 Proceedings, 

2014, pp. 39-42. 

[113] G. Schaefer, T. Nakashima, Strategies for addressing class imbalance in ensemble 

classification of thermography breast cancer features,  2015 IEEE Congress on Evolutionary 

Computation (CEC), 2015, pp. 2362-2367. 

[114] F. Soares, F. Janela, M. Pereira, J. Seabra, M.M. Freire, Classification of Breast Masses on 

Contrast-Enhanced Magnetic Resonance Images Through Log Detrended Fluctuation Cumulant-

Based Multifractal Analysis, IEEE Systems Journal, 8 (2014) 929-938. 

[115] F.A. Spanhol, L.S. Oliveira, C. Petitjean, L. Heutte, A Dataset for Breast Cancer 

Histopathological Image Classification, IEEE Transactions on Biomedical Engineering, 63 (2016) 

1455-1462. 

[116] Y. Chen, Q. Huang, An approach based on biclustering and neural network for classification 

of lesions in breast ultrasound,  2016 International Conference on Advanced Robotics and 

Mechatronics (ICARM), 2016, pp. 597-601. 

[117] S. Suzuki, X. Zhang, N. Homma, K. Ichiji, N. Sugita, Y. Kawasumi, T. Ishibashi, M. 

Yoshizawa, Mass detection using deep convolutional neural network for mammographic computer-

aided diagnosis,  2016 55th Annual Conference of the Society of Instrument and Control Engineers 

of Japan (SICE), 2016, pp. 1382-1386. 

[118] A. Tashk, M.S. Helfroush, H. Danyali, M. Akbarzadeh-Jahromi, A CAD mitosis detection 

system from breast cancer histology images based on fused features,  2014 22nd Iranian Conference 

on Electrical Engineering (ICEE), 2014, pp. 1925-1927. 

[119] N.G.B. Ayed, A.D. Masmoudi, D. Sellami, R. Abid, New developments in the diagnostic 

procedures to reduce prospective biopsies breast,  2015 International Conference on Advances in 

Biomedical Engineering (ICABME), 2015, pp. 205-208. 

[120] J.D. Calderón-Contreras, M.I. Chacón-Murguía, A.J. Villalobos-Montiel, L. Ortega-Máynez, 

A fuzzy computer aided diagnosis system using breast thermography,  2015 IEEE 12th International 

Symposium on Biomedical Imaging (ISBI), 2015, pp. 105-108. 

[121] P.B. Ribeiro, L.A. Passos, L.A.d. Silva, K.A.P.d. Costa, J.P. Papa, R.A.F. Romero, 

Unsupervised Breast Masses Classification through Optimum-Path Forest,  2015 IEEE 28th 

International Symposium on Computer-Based Medical Systems, 2015, pp. 238-243. 



 

75 

 

[122] A.E. Hassanien, T.-h. Kim, Breast cancer MRI diagnosis approach using support vector 

machine and pulse coupled neural networks, Journal of Applied Logic, 10 (2012) 277-284. 

[123] M. Tan, B. Zheng, P. Ramalingam, D. Gur, Prediction of Near-term Breast Cancer Risk Based 

on Bilateral Mammographic Feature Asymmetry, Academic Radiology, 20 (2013) 1542-1550. 

[124] J. Milenković, K. Hertl, A. Košir, J. Žibert, J.F. Tasič, Characterization of spatiotemporal 

changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions, 

Artificial Intelligence in Medicine, 58 (2013) 101-114. 

[125] Q. Yang, L. Li, J. Zhang, G. Shao, B. Zheng, A new quantitative image analysis method for 

improving breast cancer diagnosis using DCE-MRI examinations, Medical Physics, 42 (2015) 103-

109. 

[126] D.-R. Chen, C.-L. Chien, Y.-F. Kuo, Computer-Aided Assessment of Tumor Grade for Breast 

Cancer in Ultrasound Images, Computational and Mathematical Methods in Medicine, 2015 (2015) 

6. 

[127] N. Bhooshan, M. Giger, M. Medved, H. Li, A. Wood, Y. Yuan, L. Lan, A. Marquez, G. 

Karczmar, G. Newstead, Potential of computer-aided diagnosis of high spectral and spatial 

resolution (HiSS) MRI in the classification of breast lesions, Journal of Magnetic Resonance 

Imaging, 39 (2014) 59-67. 

[128] H.-c. Cho, L. Hadjiiski, B. Sahiner, H.-P. Chan, M. Helvie, C. Paramagul, A.V. Nees, A 

similarity study of content-based image retrieval system for breast cancer using decision tree, 

Medical Physics, 40 (2013) 012901. 

[129] K. Ganesan, R.U. Acharya, C.K. Chua, L.C. Min, B. Mathew, A.K. Thomas, Decision support 

system for breast cancer detection using mammograms, Proceedings of the Institution of Mechanical 

Engineers, Part H: Journal of Engineering in Medicine, 227 (2013) 721-732. 

[130] R.M. Rangayyan, S. Banik, J.E.L. Desautels, Detection of architectural distortion in prior 

mammograms using measures of angular dispersion,  2012 IEEE International Symposium on 

Medical Measurements and Applications Proceedings, 2012, pp. 1-4. 

[131] C. Loukas, S. Kostopoulos, A. Tanoglidi, D. Glotsos, C. Sfikas, D. Cavouras, Breast Cancer 

Characterization Based on Image Classification of Tissue Sections Visualized under Low 

Magnification, Computational and Mathematical Methods in Medicine, 2013 (2013) 7. 

[132] M.A. Al-antari, M.A. Al-masni, M.-T. Choi, S.-M. Han, T.-S. Kim, A fully integrated 

computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, 

segmentation, and classification, International Journal of Medical Informatics, 117 (2018) 44-54. 

[133] P. Sajda, C. Spence, L. Parra, A multi-scale probabilistic network model for detection, 

synthesis and compression in mammographic image analysis, Medical Image Analysis, 7 (2003) 

187-204. 

[134] T. Berber, A. Alpkocak, P. Balci, O. Dicle, Breast mass contour segmentation algorithm in 

digital mammograms, Computer Methods and Programs in Biomedicine, 110 (2013) 150-159. 

[135] A. Lauria, GPCALMA: Implementation in Italian hospitals of a computer aided detection 

system for breast lesions by mammography examination, Physica Medica, 25 (2009) 58-72. 



 

76 

 

[136] R. O'Regan, T. Ades, Quick Facts Breast Cancer: What You Need to Know-Now, American 

Cancer Society, Incorporated2013. 

[137] C.o.B.C.a.t. Environment, Breast Cancer and the Environment: A Life Course Approach, 

National Academies Press, Washington, D.C., 2012. 

[138] L. Jacobs, C. Finlayson, S.C. Yang, Early Diagnosis and Treatment of Cancer Series: Breast 

Cancer - E-Book: Expert Consult - Online and Print, Elsevier Health Sciences2010. 

[139] Cancer Facts & Figures 2018, American Cancer Society. Online: 

https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-

figures-2018.html 

[140] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2016, CA: A Cancer Journal for 

Clinicians, 66 (2016) 7-30. 

[141] Breast cancer statistics, Cancer Research UK. online: 

https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-

type/breast-cancer 

[142] J. Mendelsohn, K.K. Hunt, G.L. Robb, E.A. Strom, N.T. Ueno, Breast Cancer, Springer New 

York2007. 

[143] P.D.P. Pharoah, N.E. Day, S. Duffy, D.F. Easton, B.A.J. Ponder, Family history and the risk 

of breast cancer: A systematic review and meta-analysis, International Journal of Cancer, 71 (1997) 

800-809. 

[144] C.G.o.H.F.i.B. Cancer, Familial breast cancer: collaborative reanalysis of individual data from 

52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without 

the disease, The Lancet, 358 (2001) 1389-1399. 

[145] M. Michell, Breast Cancer, Cambridge University Press, Cambridge, 2010. 

[146] Y. Miki, J. Swensen, D. Shattuck-Eidens, P. Futreal, K. Harshman, S. Tavtigian, Q. Liu, C. 

Cochran, L. Bennett, W. Ding, a. et, A strong candidate for the breast and ovarian cancer 

susceptibility gene BRCA1, Science, 266 (1994) 66-71. 

[147] R. Wooster, G. Bignell, J. Lancaster, S. Swift, S. Seal, J. Mangion, N. Collins, S. Gregory, C. 

Gumbs, G. Micklem, R. Barfoot, R. Hamoudi, S. Patel, C. Rices, P. Biggs, Y. Hashim, A. Smith, F. 

Connor, A. Arason, J. Gudmundsson, D. Ficenec, D. Kelsell, D. Ford, P. Tonin, D. Timothy Bishop, 

N.K. Spurr, B.A.J. Ponder, R. Eeles, J. Peto, P. Devilee, C. Cornelisse, H. Lynch, S. Narod, G. 

Lenoir, V. Egilsson, R. Bjork Barkadottir, D.F. Easton, D.R. Bentley, P.A. Futreal, A. Ashworth, 

M.R. Stratton, Identification of the breast cancer susceptibility gene BRCA2, Nature, 378 (1995) 

789-792. 

[148] A.B. Hollingsworth, S.E. Singletary, M. Morrow, D.S. Francescatti, J.A. O'Shaughnessy, A.-

R. Hartman, B. Haddad, F.R. Schnabel, V.G. Vogel, Current comprehensive assessment and 

management of women at increased risk for breast cancer, The American Journal of Surgery, 187 

(2004) 349-362. 

[149] P.A. van den Brandt, D. Spiegelman, S.-S. Yaun, H.-O. Adami, L. Beeson, A.R. Folsom, G. 

Fraser, R.A. Goldbohm, S. Graham, L. Kushi, J.R. Marshall, A.B. Miller, T. Rohan, S.A. Smith-

Warner, F.E. Speizer, W.C. Willett, A. Wolk, D.J. Hunter, Pooled Analysis of Prospective Cohort 

https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2018.html
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2018.html
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer


 

77 

 

Studies on Height, Weight, and Breast Cancer Risk, American Journal of Epidemiology, 152 (2000) 

514-527. 

[150] J. Kruk, Lifetime physical activity and the risk of breast cancer: A case&#x2013;control study, 

Cancer Detection and Prevention, 31 (2007) 18-28. 

[151] C.M. Friedenreich, Review of anthropometric factors and breast cancer risk, European Journal 

of Cancer Prevention, 10 (2001) 15-32. 

[152] P.L. Horn-Ross, A.J. Canchola, D.W. West, S.L. Stewart, L. Bernstein, D. Deapen, R. Pinder, 

R.K. Ross, H. Anton-Culver, D. Peel, A. Ziogas, P. Reynolds, W. Wright, Patterns of Alcohol 

Consumption and Breast Cancer Risk in the California Teachers Study Cohort, Cancer 

Epidemiology Biomarkers &amp; Prevention, 13 (2004) 405-411. 

[153] W.C. Willett, Diet and breast cancer, Journal of Internal Medicine, 249 (2001) 395-411. 

[154] H.P. Lee, J. Lee, L. Gourley, S.W. Duffy, N.E. Day, J. Estève, Dietary effects on breast-cancer 

risk in Singapore, The Lancet, 337 (1991) 1197-1200. 

[155] L.J. Vatten, K. Solvoll, E.B. Løken, Frequency of meat and fish intake and risk of breast 

cancer in a prospective study of 14,500 norwegian women, International Journal of Cancer, 46 

(1990) 12-15. 

[156] D.L. Preston, A. Mattsson, E. Holmberg, R. Shore, N.G. Hildreth, J.D.B. Jr., Radiation Effects 

on Breast Cancer Risk: A Pooled Analysis of Eight Cohorts, Radiation Research, 158 (2002) 220-

235. 

[157] T.E.H.B.C.C. Group, Endogenous Sex Hormones and Breast Cancer in Postmenopausal 

Women: Reanalysis of Nine Prospective Studies, JNCI: Journal of the National Cancer Institute, 94 

(2002) 606-616. 

[158] J. Chang-Claude, N. Eby, M. Kiechle, G. Bastert, H. Becher, Breastfeeding and breast cancer 

risk by age 50 among women in Germany, Cancer Causes & Control, 11 (2000) 687-695. 

[159] B.M. Geller, B.C. Yankaskas, D.S.M. Buist, E. White, J.A. Tice, K. Kerlikowske, L. Titus-

Ernstoff, P.M. Vacek, P.A. Carney, R. Ballard-Barbash, R. Rosenberg, W.E. Barlow, Prospective 

Breast Cancer Risk Prediction Model for Women Undergoing Screening Mammography, JNCI: 

Journal of the National Cancer Institute, 98 (2006) 1204-1214. 

[160] R.J. Santen, N.F. Boyd, R.T. Chlebowski, S. Cummings, J. Cuzick, M. Dowsett, D. Easton, 

J.F. Forbes, T. Key, S.E. Hankinson, A. Howell, J. Ingle, Critical assessment of new risk factors for 

breast cancer: considerations for development of an improved risk prediction model, 14 (2007) 169. 

[161] J.-L. Gonzalez-Hernandez, A.N. Recinella, S.G. Kandlikar, D. Dabydeen, L. Medeiros, P. 

Phatak, Technology, application and potential of dynamic breast thermography for the detection of 

breast cancer, International Journal of Heat and Mass Transfer, 131 (2019) 558-573. 

[162] H. Blumen, K. Fitch, V. Polkus, Comparison of Treatment Costs for Breast Cancer, by Tumor 

Stage and Type of Service, American health & drug benefits, 9 (2016) 23-32. 

[163] Screening for breast cancer,  Cancer information, Canadian Cancer Society 2019. 

[164] M.B. Barton, R. Harris, S.W. Fletcher, Does This Patient Have Breast Cancer?The Screening 

Clinical Breast Examination: Should It Be Done? How?, JAMA, 282 (1999) 1270-1280. 



 

78 

 

[165] E.D. Pisano, C. Gatsonis, E. Hendrick, M. Yaffe, J.K. Baum, S. Acharyya, E.F. Conant, L.L. 

Fajardo, L. Bassett, C. D'Orsi, R. Jong, M. Rebner, Diagnostic Performance of Digital versus Film 

Mammography for Breast-Cancer Screening, New England Journal of Medicine, 353 (2005) 1773-

1783. 

[166] N.I.R. Yassin, S. Omran, E.M.F. El Houby, H. Allam, Machine learning techniques for breast 

cancer computer aided diagnosis using different image modalities: A systematic review, Computer 

Methods and Programs in Biomedicine, 156 (2018) 25-45. 

[167] Z. Li, X. Zhang, H. Müller, S. Zhang, Large-scale retrieval for medical image analytics: A 

comprehensive review, Medical Image Analysis, 43 (2018) 66-84. 

[168] H.D. Cheng, X.J. Shi, R. Min, L.M. Hu, X.P. Cai, H.N. Du, Approaches for automated 

detection and classification of masses in mammograms, Pattern Recognition, 39 (2006) 646-668. 

[169] A. Oliver, J. Freixenet, J. Martí, E. Pérez, J. Pont, E.R.E. Denton, R. Zwiggelaar, A review of 

automatic mass detection and segmentation in mammographic images, Medical Image Analysis, 14 

(2010) 87-110. 

[170] RSNA, Mammography, Radiological Society of North America, Inc. (RSNA), USA, 2017. 

[171] S.M. Friedewald, E.A. Rafferty, S.L. Rose, et al., Breast cancer screening using tomosynthesis 

in combination with digital mammography, JAMA, 311 (2014) 2499-2507. 

[172] P.E. Freer, Mammographic Breast Density: Impact on Breast Cancer Risk and Implications 

for Screening, RadioGraphics, 35 (2015) 302-315. 

[173] W.A. Berg, J.D. Blume, J.B. Cormack, et al., Combined screening with ultrasound and 

mammography vs mammography alone in women at elevated risk of breast cancer, JAMA, 299 

(2008) 2151-2163. 

[174] ACR, ACR Practice Parameter for the Performance of a Breast Ultrasound Examination, 

American College of Radiology, USA, 2017. 

[175] J.A. Baker, M.S. Soo, Breast US: Assessment of Technical Quality and Image Interpretation, 

Radiology, 223 (2002) 229-238. 

[176] P.K. Shah, I.A. Kafer, G.M. Grimaldi, Incidental hepatic lesions detected on breast MRI: Rate 

of malignancy and implications for utilization, Clinical Imaging, 51 (2018) 93-97. 

[177] D. Lepori, Inflammatory breast disease: The radiologist's role, Diagnostic and Interventional 

Imaging, 96 (2015) 1045-1064. 

[178] E.A. van Bodegraven, J.C. van Raaij, M. Van Goethem, W.A.A. Tjalma, Guidelines and 

recommendations for MRI in breast cancer follow-up: A review, European Journal of Obstetrics & 

Gynecology and Reproductive Biology, 218 (2017) 5-11. 

[179] P. Mehnati, M. Tirtash, Comparative Efficacy of Four Imaging Instruments for Breast Cancer 

Screening, Asian Pacific Journal of Cancer Prevention, 16 (2015) 6177-6186. 

[180] E.M. Quinn, A.P. Coveney, H.P. Redmond, Use of Magnetic Resonance Imaging in Detection 

of Breast Cancer Recurrence: A Systematic Review, Annals of Surgical Oncology, 19 (2012) 3035-

3041. 



 

79 

 

[181] E. Morris, C. Comstock, C. Lee, e. al., ACR BI-RADS® Magnetic Resonance Imaging,  ACR 

BI-RADS® Atlas, Breast Imaging Reporting and Data System, American College of Radiology, 

Reston, VA, 2013. 

[182] A.C. Bourgeois, L.A. Warren, T.T. Chang, S. Embry, K. Hudson, Y.C. Bradley, Role of 

Positron Emission Tomography/Computed Tomography in Breast Cancer, Radiologic Clinics of 

North America, 51 (2013) 781-798. 

[183] C. Riegger, J. Herrmann, J. Nagarajah, J. Hecktor, S. Kuemmel, F. Otterbach, S. Hahn, A. 

Bockisch, T. Lauenstein, G. Antoch, T.A. Heusner, Whole-body FDG PET/CT is more accurate 

than conventional imaging for staging primary breast cancer patients, European Journal of Nuclear 

Medicine and Molecular Imaging, 39 (2012) 852-863. 

[184] B. Keam, S.-A. Im, Y. Koh, S.-W. Han, D.-Y. Oh, N. Cho, J.H. Kim, W. Han, K.W. Kang, 

W.K. Moon, T.-Y. Kim, I.A. Park, D.-Y. Noh, J.-K. Chung, Y.-J. Bang, Predictive value of FDG 

PET/CT for pathologic axillary node involvement after neoadjuvant chemotherapy, Breast Cancer, 

20 (2013) 167-173. 

[185] D.S. Lind, R. Minter, B. Steinbach, P. Abbitt, L. Lanier, L. Haigh, J.N. Vauthey, M. Russin, 

R. Hackett, E.M. Copeland, Stereotactic Core Biopsy Reduces the Reexcision Rate and the Cost of 

Mammographically Detected Cancer, Journal of Surgical Research, 78 (1998) 23-26. 

[186] o.b.o.t.E.G. Committee, o.b.o.t.E.G. Committee, o.b.o.t.E.G. Committee, o.b.o.t.E.G. 

Committee, o.b.o.t.E.G. Committee, o.b.o.t.E.G. Committee, o.b.o.t.E.G. Committee, o.b.o.t.E.G. 

Committee, E. Senkus, S. Kyriakides, S. Ohno, F. Penault-Llorca, P. Poortmans, E. Rutgers, S. 

Zackrisson, F. Cardoso, Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, 

treatment and follow-up†, Annals of Oncology, 26 (2015) v8-v30. 

[187] E.M. Kesson, G.M. Allardice, W.D. George, H.J.G. Burns, D.S. Morrison, Effects of 

multidisciplinary team working on breast cancer survival: retrospective, comparative, interventional 

cohort study of 13 722 women, BMJ : British Medical Journal, 344 (2012) e2718. 

[188] K.V. Ramani, H. Ramani, S.S. Alurkar, Breast Cancer: Medical Treatment, Side Effects, and 

Complementary Therapies, Momentum Press2017. 

[189] B. Fisher, S. Anderson, J. Bryant, R.G. Margolese, M. Deutsch, E.R. Fisher, J.-H. Jeong, N. 

Wolmark, Twenty-Year Follow-up of a Randomized Trial Comparing Total Mastectomy, 

Lumpectomy, and Lumpectomy plus Irradiation for the Treatment of Invasive Breast Cancer, New 

England Journal of Medicine, 347 (2002) 1233-1241. 

[190] M. Blichert-Toft, C. Rose, J.A. Andersen, M. Overgaard, C.K. Axelsson, K.W. Andersen, 

H.T. Mouridsen, Danish randomized trial comparing breast conservation therapy with mastectomy: 

six years of life-table analysis. Danish Breast Cancer Cooperative Group, J Natl Cancer Inst Monogr, 

DOI (1992) 19-25. 

[191] M.M. Poggi, D.N. Danforth, L.C. Sciuto, S.L. Smith, S.M. Steinberg, D.J. Liewehr, C. 

Menard, M.E. Lippman, A.S. Lichter, R.M. Altemus, Eighteen-year results in the treatment of early 

breast carcinoma with mastectomy versus breast conservation therapy, Cancer, 98 (2003) 697-702. 

[192] L.A. Stevens, M.H. McGrath, R.G. Druss, S.J. Kister, F.E. Gump, K.A. Forde, The 

psychological impact of immediate breast reconstruction for women with early breast cancer, Plast 

Reconstr Surg, 73 (1984) 619-628. 



 

80 

 

[193] Y. Brandberg, M. Malm, L. Blomqvist, A Prospective and Randomized Study, “SVEA,” 

Comparing Effects of Three Methods for Delayed Breast Reconstruction on Quality of Life, Patient-

Defined Problem Areas of Life, and Cosmetic Result, Plast Reconstr Surg, 105 (2000) 66-74. 

[194] J.A. Sparano, M. Wang, S. Martino, V. Jones, E.A. Perez, T. Saphner, A.C. Wolff, G.W. 

Sledge, W.C. Wood, N.E. Davidson, Weekly Paclitaxel in the Adjuvant Treatment of Breast Cancer, 

New England Journal of Medicine, 358 (2008) 1663-1671. 

[195] M.L. Citron, D.A. Berry, C. Cirrincione, C. Hudis, E.P. Winer, W.J. Gradishar, N.E. 

Davidson, S. Martino, R. Livingston, J.N. Ingle, E.A. Perez, J. Carpenter, D. Hurd, J.F. Holland, 

B.L. Smith, C.I. Sartor, E.H. Leung, J. Abrams, R.L. Schilsky, H.B. Muss, L. Norton, Randomized 

Trial of Dose-Dense Versus Conventionally Scheduled and Sequential Versus Concurrent 

Combination Chemotherapy as Postoperative Adjuvant Treatment of Node-Positive Primary Breast 

Cancer: First Report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741, Journal 

of Clinical Oncology, 21 (2003) 1431-1439. 

[196] J.A. Sparano, F. Zhao, S. Martino, J.A. Ligibel, E.A. Perez, T. Saphner, A.C. Wolff, G.W.S. 

Jr, W.C. Wood, N.E. Davidson, Long-Term Follow-Up of the E1199 Phase III Trial Evaluating the 

Role of Taxane and Schedule in Operable Breast Cancer, Journal of Clinical Oncology, 33 (2015) 

2353-2360. 

[197] T.-A. Moo, R. Sanford, C. Dang, M. Morrow, Overview of Breast Cancer Therapy, PET 

Clinics, 13 (2018) 339-354. 

[198] S.M. Tolaney, W.T. Barry, C.T. Dang, D.A. Yardley, B. Moy, P.K. Marcom, K.S. Albain, 

H.S. Rugo, M. Ellis, I. Shapira, A.C. Wolff, L.A. Carey, B.A. Overmoyer, A.H. Partridge, H. Guo, 

C.A. Hudis, I.E. Krop, H.J. Burstein, E.P. Winer, Adjuvant Paclitaxel and Trastuzumab for Node-

Negative, HER2-Positive Breast Cancer, New England Journal of Medicine, 372 (2015) 134-141. 

[199] A. Schneeweiss, G. Ross, J. Ratnayake, V. McNally, J. Cortés, S. Chia, T. Hickish, V. Harvey, 

A. Eniu, R. Hegg, C. Tausch, J.H. Seo, Y.-F. Tsai, Pertuzumab plus trastuzumab in combination 

with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens 

in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study 

(TRYPHAENA), Annals of Oncology, 24 (2013) 2278-2284. 

[200] G. Early Breast Cancer Trialists' Collaborative, Relevance of breast cancer hormone receptors 

and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised 

trials, The Lancet, 378 (2011) 771-784. 

[201] Side Effects of Cancer Treatment, National Cancer Institute at the National Institutes of 

Health. 

[202] J.L. Khatcheressian, A.C. Wolff, T.J. Smith, E. Grunfeld, H.B. Muss, V.G. Vogel, F. Halberg, 

M.R. Somerfield, N.E. Davidson, American Society of Clinical Oncology 2006 Update of the Breast 

Cancer Follow-Up and Management Guidelines in the Adjuvant Setting, Journal of Clinical 

Oncology, 24 (2006) 5091-5097. 

[203] M. May, A Better Lens on Disease, Scientific American, 302 (2010) 74-77. 

[204] K. Doi, Current status and future potential of computer-aided diagnosis in medical imaging, 

The British Journal of Radiology, 78 (2005) s3-s19. 



 

81 

 

[205] A. Kohli, S. Jha, Why CAD Failed in Mammography, Journal of the American College of 

Radiology, 15 (2018) 535-537. 

[206] Y. Jiang, R.M. Nishikawa, D.E. Wolverton, C.E. Metz, M.L. Giger, R.A. Schmidt, C.J. 

Vyborny, K. Doi, Malignant and benign clustered microcalcifications: automated feature analysis 

and classification, Radiology, 198 (1996) 671-678. 

[207] T. Netsch, H. Peitgen, Scale-space signatures for the detection of clustered microcalcifications 

in digital mammograms, IEEE Transactions on Medical Imaging, 18 (1999) 774-786. 

[208] W.J.H. Veldkamp, N. Karssemeijer, Normalization of local contrast in mammograms, IEEE 

Transactions on Medical Imaging, 19 (2000) 731-738. 

[209] N. KARSSEMEIJER, ADAPTIVE NOISE EQUALIZATION AND RECOGNITION OF 

MICROCALCIFICATION CLUSTERS IN MAMMOGRAMS, International Journal of Pattern 

Recognition and Artificial Intelligence, 07 (1993) 1357-1376. 

[210] J. Sharma, J.K. Rai, R.P. Tewari, Identification of pre-processing technique for enhancement 

of mammogram images,  2014 International Conference on Medical Imaging, m-Health and 

Emerging Communication Systems (MedCom), 2014, pp. 115-119. 

[211] K.J. McLoughlin, P.J. Bones, N. Karssemeijer, Noise equalization for detection of 

microcalcification clusters in direct digital mammogram images, IEEE Transactions on Medical 

Imaging, 23 (2004) 313-320. 

[212] W. Qian, L. Li, L.P. Clarke, Image feature extraction for mass detection in digital 

mammography: Influence of wavelet analysis, Medical Physics, 26 (1999) 402-408. 

[213] W. Qian, D. Song, M. Lei, R. Sankar, E. Eikman, Computer-Aided Mass Detection Based on 

Ipsilateral Multiview Mammograms, Academic Radiology, 14 (2007) 530-538. 

[214] Kshema, M.J. George, D.A.S. Dhas, Preprocessing filters for mammogram images: A review,  

2017 Conference on Emerging Devices and Smart Systems (ICEDSS), 2017, pp. 1-7. 

[215] A. Rampun, P.J. Morrow, B.W. Scotney, J. Winder, Fully automated breast boundary and 

pectoral muscle segmentation in mammograms, Artificial Intelligence in Medicine, 79 (2017) 28-

41. 

[216] M. Mustra, M. Grgic, Robust automatic breast and pectoral muscle segmentation from scanned 

mammograms, Signal Processing, 93 (2013) 2817-2827. 

[217] N. Al-Najdawi, M. Biltawi, S. Tedmori, Mammogram image visual enhancement, mass 

segmentation and classification, Applied Soft Computing, 35 (2015) 175-185. 

[218] M. Hmida, K. Hamrouni, B. Solaiman, S. Boussetta, Mammographic mass segmentation using 

fuzzy contours, Computer Methods and Programs in Biomedicine, 164 (2018) 131-142. 

[219] S.-C. Yang, A robust approach for subject segmentation of medical Images: Illustration with 

mammograms and breast magnetic resonance images, Computers & Electrical Engineering, 62 

(2017) 151-165. 

[220] W.-Y. Hsu, Improved watershed transform for tumor segmentation: Application to 

mammogram image compression, Expert Systems with Applications, 39 (2012) 3950-3955. 



 

82 

 

[221] R. Chandrasekhar, Y. Attikiouzel, A simple method for automatically locating the nipple on 

mammograms, IEEE Transactions on Medical Imaging, 16 (1997) 483-494. 

[222] M.G. Linguraru, K. Marias, R. English, M. Brady, A biologically inspired algorithm for 

microcalcification cluster detection, Medical Image Analysis, 10 (2006) 850-862. 

[223] Q. Guan, J. Zhang, S. Chen, A. Todd-Pokropek, Automatic Segmentation of Micro-

calcification Based on SIFT in Mammograms,  2008 International Conference on BioMedical 

Engineering and Informatics, 2008, pp. 13-17. 

[224] G. Kom, A. Tiedeu, M. Kom, Automated detection of masses in mammograms by local 

adaptive thresholding, Computers in Biology and Medicine, 37 (2007) 37-48. 

[225] A. Mencattini, G. Rabottino, M. Salmeri, R. Lojacono, E. Colini, Breast Mass Segmentation 

in Mammographic Images by an Effective Region Growing Algorithm, Springer Berlin Heidelberg, 

Berlin, Heidelberg, 2008, pp. 948-957. 

[226] T. Ojala, J. Näppi, O. Nevalainen, Accurate segmentation of the breast region from digitized 

mammograms, Computerized Medical Imaging and Graphics, 25 (2001) 47-59. 

[227] D. Raba, A. Oliver, J. Martí, M. Peracaula, J. Espunya, Breast Segmentation with Pectoral 

Muscle Suppression on Digital Mammograms, Springer Berlin Heidelberg, Berlin, Heidelberg, 

2005, pp. 471-478. 

[228] M.B.K. Shahedi, R. Amirfattahi, F.T. Azar, S. Sadri, Accurate Breast Region Detection in 

Digital Mammograms Using a Local Adaptive Thresholding Method,  Eighth International 

Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS '07), 2007, pp. 26-26. 

[229] S. Wang, J. Wang, H. Chen, B. Zhang, SVM-Based Tumor Classification with Gene 

Expression Data, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 864-870. 

[230] M.A. Wirth, A. Stapinski, Segmentation of the breast region in mammograms using snakes,  

First Canadian Conference on Computer and Robot Vision, 2004. Proceedings., 2004, pp. 385-392. 

[231] X. Sun, W. Qian, D. Song, Ipsilateral-mammogram computer-aided detection of breast cancer, 

Computerized Medical Imaging and Graphics, 28 (2004) 151-158. 

[232] S. Xu, L. Zhou, R. Ma, H. Song, Z. He, Phosphine-Mediated Stereoselective Reductive 

Cyclopropanation of α-Substituted Allenoates with Aromatic Aldehydes, Organic Letters, 12 (2010) 

544-547. 

[233] B. Zheng, Y.-H. Chang, D. Gur, Computerized detection of masses in digitized mammograms 

using single-image segmentation and a multilayer topographic feature analysis, Academic 

Radiology, 2 (1995) 959-966. 

[234] G. Nagarajan, R.I. Minu, B. Muthukumar, V. Vedanarayanan, S.D. Sundarsingh, Hybrid 

Genetic Algorithm for Medical Image Feature Extraction and Selection, Procedia Computer 

Science, 85 (2016) 455-462. 

[235] M.M. Pawar, S.N. Talbar, Genetic Fuzzy System (GFS) based wavelet co-occurrence feature 

selection in mammogram classification for breast cancer diagnosis, Perspectives in Science, 8 (2016) 

247-250. 



 

83 

 

[236] M.A. Berbar, Hybrid methods for feature extraction for breast masses classification, Egyptian 

Informatics Journal, 19 (2018) 63-73. 

[237] S. Ergin, O. Kilinc, A new feature extraction framework based on wavelets for breast cancer 

diagnosis, Computers in Biology and Medicine, 51 (2014) 171-182. 

[238] B. Zheng, S.W. Yoon, S.S. Lam, Breast cancer diagnosis based on feature extraction using a 

hybrid of K-means and support vector machine algorithms, Expert Systems with Applications, 41 

(2014) 1476-1482. 

[239] N. Gedik, A new feature extraction method based on multi-resolution representations of 

mammograms, Applied Soft Computing, 44 (2016) 128-133. 

[240] S. Kamyab, M. Eftekhari, Feature selection using multimodal optimization techniques, 

Neurocomputing, 171 (2016) 586-597. 

[241] J. Dheeba, N. Albert Singh, S. Tamil Selvi, Computer-aided detection of breast cancer on 

mammograms: A swarm intelligence optimized wavelet neural network approach, Journal of 

Biomedical Informatics, 49 (2014) 45-52. 

[242] S. Beura, B. Majhi, R. Dash, Mammogram classification using two dimensional discrete 

wavelet transform and gray-level co-occurrence matrix for detection of breast cancer, 

Neurocomputing, 154 (2015) 1-14. 

[243] M. Meselhy Eltoukhy, I. Faye, B. Belhaouari Samir, A statistical based feature extraction 

method for breast cancer diagnosis in digital mammogram using multiresolution representation, 

Computers in Biology and Medicine, 42 (2012) 123-128. 

[244] S. Pölsterl, S. Conjeti, N. Navab, A. Katouzian, Survival analysis for high-dimensional, 

heterogeneous medical data: Exploring feature extraction as an alternative to feature selection, 

Artificial Intelligence in Medicine, 72 (2016) 1-11. 

[245] B.Z. Dadaneh, H.Y. Markid, A. Zakerolhosseini, Unsupervised probabilistic feature selection 

using ant colony optimization, Expert Systems with Applications, 53 (2016) 27-42. 

[246] W.H. Wolberg, W.N. Street, D.M. Heisey, O.L. Mangasarian, Computer-derived nuclear 

features distinguish malignant from benign breast cytology, Human Pathology, 26 (1995) 792-796. 

[247] R. Setiono, Extracting rules from pruned neural networks for breast cancer diagnosis, Artificial 

Intelligence in Medicine, 8 (1996) 37-51. 

[248] R. Setiono, H. Liu, Neural-network feature selector, IEEE Transactions on Neural Networks, 

8 (1997) 654-662. 

[249] R. Setiono, H. Liu, Symbolic representation of neural networks, Computer, 29 (1996) 71-77. 

[250] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers1993. 

[251] R. Setiono, Generating concise and accurate classification rules for breast cancer diagnosis, 

Artificial Intelligence in Medicine, 18 (2000) 205-219. 

[252] I. Taha, J. Ghosh, Evaluation and ordering of rules extracted from feedforward networks,  

International Conference on Neural Networks, IEEE Houston, TX, 1997. 



 

84 

 

[253] D. West, V. West, Model selection for a medical diagnostic decision support system: a breast 

cancer detection case, Artificial Intelligence in Medicine, 20 (2000) 183-204. 

[254] B. Guijarro-Berdiñas, O. Fontenla-Romero, B. Pérez-Sánchez, P. Fraguela, A Linear Learning 

Method for Multilayer Perceptrons Using Least-Squares, in: H. Yin, P. Tino, E. Corchado, W. 

Byrne, X. Yao (Eds.) Intelligent Data Engineering and Automated Learning - IDEAL 2007: 8th 

International Conference, Birmingham, UK, December 16-19, 2007. Proceedings, Springer Berlin 

Heidelberg, Berlin, Heidelberg, 2007, pp. 365-374. 

[255] A.T. Azar, S.A. El-Said, Probabilistic neural network for breast cancer classification, Neural 

Computing and Applications, 23 (2013) 1737-1751. 

[256] A. Marcano-Cedeño, J. Quintanilla-Domínguez, D. Andina, WBCD breast cancer database 

classification applying artificial metaplasticity neural network, Expert Systems with Applications, 

38 (2011) 9573-9579. 

[257] F. Paulin, A. Santhakumaran, Classification of Breast cancer by comparing Back propagation 

training algorithms, International Journal on Computer Science and Engineering, 3 (2011) 327-332. 

[258] L. Abdel-Ilah, H. Šahinbegović, Using machine learning tool in classification of breast cancer, 

in: A. Badnjevic (Ed.) CMBEBIH 2017: Proceedings of the International Conference on Medical 

and Biological Engineering 2017, Springer Singapore, Singapore, 2017, pp. 3-8. 

[259] B. Šter, A. Dobnikar, Neural networks in medical diagnosis: Comparison with other methods, 

1996. 

[260] R.R. Janghel, A. Shukla, R. Tiwari, R. Kala, Intelligent Decision Support System for Breast 

Cancer, in: Y. Tan, Y. Shi, K.C. Tan (Eds.) Advances in Swarm Intelligence: First International 

Conference, ICSI 2010, Beijing, China, June 12-15, 2010, Proceedings, Part II, Springer Berlin 

Heidelberg, Berlin, Heidelberg, 2010, pp. 351-358. 

[261] D. Goodman, L. Boggess, A. Watkins, Artificial immune system classification of multiple-

class problems,  Proceedings of the Artificial Neural Networks in Engineering, ASME, St. Louis, 

Missouri, 2002, pp. 179-183. 

[262] H.H. Örkcü, H. Bal, Comparing performances of backpropagation and genetic algorithms in 

the data classification, Expert Systems with Applications, 38 (2011) 3703-3709. 

[263] C.P.S. Punitha, T. Santhanam, A Combination of Genetic Algorithm and ART Neural 

Network for Breast Cancer Diagnosis, Asian Journal of Information Technology, 6 (2007) 112-117. 

[264] X. Yi, P. Wu, J. Li, L. Liu, Breast Cancer Diagnosis Using WNN Based on GA, in: K. Li, L. 

Jia, X. Sun, M. Fei, G.W. Irwin (Eds.) Life System Modeling and Intelligent Computing: 

International Conference on Life System Modeling and Simulation, LSMS 2010, and International 

Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2010, Wuxi, 

China, September 17-20, 2010. Proceedings, Part III, Springer Berlin Heidelberg, Berlin, 

Heidelberg, 2010, pp. 367-374. 

[265] F. Ahmad, N.A. Mat Isa, Z. Hussain, S.N. Sulaiman, A genetic algorithm-based multi-

objective optimization of an artificial neural network classifier for breast cancer diagnosis, Neural 

Computing and Applications, 23 (2013) 1427-1435. 



 

85 

 

[266] M.R. Senapati, P.K. Dash, Intelligent system based on local linear wavelet neural network and 

recursive least square approach for breast cancer classification, Artificial Intelligence Review, 39 

(2013) 151-163. 

[267] D.-M. Liou, W.-P. Chang, Applying Data Mining for the Analysis of Breast Cancer Data, in: 

C. Fernández-Llatas, J.M. García-Gómez (Eds.) Data Mining in Clinical Medicine, Springer New 

York, New York, NY, 2015, pp. 175-189. 

[268] F. Ahmad, N.A. Mat Isa, Z. Hussain, M.K. Osman, S.N. Sulaiman, A GA-based feature 

selection and parameter optimization of an ANN in diagnosing breast cancer, Pattern Analysis and 

Applications, 18 (2015) 861-870. 

[269] M.-L. Huang, Y.-H. Hung, W.-Y. Chen, Neural Network Classifier with Entropy Based 

Feature Selection on Breast Cancer Diagnosis, Journal of Medical Systems, 34 (2010) 865-873. 

[270] H. Malmir, F. Farokhi, R. Sabbaghi-Nadooshan, Optimization of data mining with 

evolutionary algorithms for cloud computing application,  3th International eConference on 

Computer and Knowledge Engineering (ICCKE), IEEE, Mashhad, Iran, 2013, pp. 343–347. 

[271] N. Leema, H.K. Nehemiah, A. Kannan, Neural network classifier optimization using 

Differential Evolution with Global Information and Back Propagation algorithm for clinical 

datasets, Applied Soft Computing, 49 (2016) 834-844. 

[272] M.R. Senapati, G. Panda, P.K. Dash, Hybrid approach using KPSO and RLS for RBFNN 

design for breast cancer detection, Neural Computing and Applications, 24 (2014) 745-753. 

[273] H.A. Abbass, An evolutionary artificial neural networks approach for breast cancer diagnosis, 

Artificial Intelligence in Medicine, 25 (2002) 265-281. 

[274] B. Verma, S.Z. Hassan, Hybrid ensemble approach for classification, Applied Intelligence, 34 

(2011) 258-278. 

[275] H. Koyuncu, R. Ceylan, Artificial neural network based on rotation forest for biomedical 

pattern classification,  2013 36th International Conference on Telecommunications and Signal 

Processing (TSP), IEEE, Rome, Italy, 2013, pp. 581-585. 

[276] M.S. Uzer, O. Inan, N. Yılmaz, A hybrid breast cancer detection system via neural network 

and feature selection based on SBS, SFS and PCA, Neural Computing and Applications, 23 (2013) 

719-728. 

[277] A. Bhardwaj, A. Tiwari, Breast cancer diagnosis using Genetically Optimized Neural Network 

model, Expert Systems with Applications, 42 (2015) 4611-4620. 

[278] K.B. Nahato, K.N. Harichandran, K. Arputharaj, Knowledge Mining from Clinical Datasets 

Using Rough Sets and Backpropagation Neural Network, Computational and Mathematical 

Methods in Medicine, 15 (2015) 1-13. 

[279] J. Fombellida, S. Torres-Alegre, J.A. Piñuela-Izquierdo, D. Andina, Artificial Metaplasticity 

for Deep Learning: Application to WBCD Breast Cancer Database Classification, in: J.M. Ferrández 

Vicente, J.R. Álvarez-Sánchez, F. de la Paz López, F.J. Toledo-Moreo, H. Adeli (Eds.) Bioinspired 

Computation in Artificial Systems: International Work-Conference on the Interplay Between 

Natural and Artificial Computation, IWINAC 2015, Elche, Spain, June 1-5, 2015, Proceedings, Part 

II, Springer International Publishing, Cham, 2015, pp. 399-408. 



 

86 

 

[280] H.-J. Tsai, H.-C. Lu, T.-H. Wu, C.-S. Lee, A Comparison of Hybrid Neural Network Based 

Breast Cancer Diagnosis Systems, in: F. Fui-Hoon Nah, C.-H. Tan (Eds.) HCI in Business: Second 

International Conference, HCIB 2015, Held as Part of HCI International 2015, Los Angeles, CA, 

USA, August 2-7, 2015, Proceedings, Springer International Publishing, Cham, 2015, pp. 633-639. 

[281] F. Gorunescu, S. Belciug, Boosting backpropagation algorithm by stimulus-sampling: 

Application in computer-aided medical diagnosis, Journal of Biomedical Informatics, 63 (2016) 74-

81. 

[282] A.M. Abdel-Zaher, A.M. Eldeib, Breast cancer classification using deep belief networks, 

Expert Systems with Applications, 46 (2016) 139-144. 

[283] A.O. Ibrahim, S.M. Shamsuddin, A.Y. Saleh, Local Search Based Enhanced Multi-objective 

Genetic Algorithm of Training Backpropagation Neural Network for Breast Cancer Diagnosis, in: 

F. Saeed, N. Gazem, S. Patnaik, A.S. Saed Balaid, F. Mohammed (Eds.) Recent Trends in 

Information and Communication Technology: Proceedings of the 2nd International Conference of 

Reliable Information and Communication Technology (IRICT 2017), Springer International 

Publishing, Cham, 2018, pp. 587-594. 

[284] W. Korani, M. Mouhoub, Breast Cancer Diagnostic Tool Using Deep Feedforward Neural 

Network and Mother Tree Optimization, Springer International Publishing, Cham, 2020, pp. 229-

240. 

[285] M.A. Rahman, R.C. Muniyandi, An Enhancement in Cancer Classification Accuracy Using a 

Two-Step Feature Selection Method Based on Artificial Neural Networks with 15 Neurons, 

Symmetry, 12 (2020) 271-292. 

[286] K. Bennett, J. Blue, A support vector machine approach to decision trees,  IEEE World 

Congress on Computational Intelligence, IEEE, Anchorage, AK, 1998. 

[287] K. Polat, S. Güneş, Breast cancer diagnosis using least square support vector machine, Digital 

Signal Processing, 17 (2007) 694-701. 

[288] T.S. Subashini, V. Ramalingam, S. Palanivel, Breast mass classification based on cytological 

patterns using RBFNN and SVM, Expert Systems with Applications, 36 (2009) 5284-5290. 

[289] M.F. Akay, Support vector machines combined with feature selection for breast cancer 

diagnosis, Expert Systems with Applications, 36 (2009) 3240-3247. 

[290] P. Jaganathan, N. Rajkumar, R. Nagalakshmi, A Kernel Based Feature Selection Method Used 

in the Diagnosis of Wisconsin Breast Cancer Dataset, in: A. Abraham, J. Lloret Mauri, J.F. Buford, 

J. Suzuki, S.M. Thampi (Eds.) Advances in Computing and Communications: First International 

Conference, ACC 2011, Kochi, India, July 22-24, 2011. Proceedings, Part I, Springer Berlin 

Heidelberg, Berlin, Heidelberg, 2011, pp. 683-690. 

[291] H.-L. Chen, B. Yang, J. Liu, D.-Y. Liu, A support vector machine classifier with rough set-

based feature selection for breast cancer diagnosis, Expert Systems with Applications, 38 (2011) 

9014-9022. 

[292] R. Stoean, C. Stoean, Modeling medical decision making by support vector machines, 

explaining by rules of evolutionary algorithms with feature selection, Expert Systems with 

Applications, 40 (2013) 2677-2686. 



 

87 

 

[293] S.V.G. Reddy, K.T. Reddy, V.V. Kumari, K.V. Varma, An SVM Based Approach to Breast 

Cancer Classification using RBF and Polynomial Kernel Functions with Varying Arguments, 

International Journal of Computer Science and Information Technologies, 5 (2014) 5901-5904. 

[294] E.D. Übeyli, Implementing automated diagnostic systems for breast cancer detection, Expert 

Systems with Applications, 33 (2007) 1054-1062. 

[295] P.D. Shahare, R.N. Giri, Comparative Analysis of Artificial Neural Network and Support 

Vector Machine Classification for Breast Cancer Detection, International Research Journal of 

Engineering and Technology (2(2015) 2114-2119. 

[296] H.-L. Chen, B. Yang, G. Wang, S.-J. Wang, J. Liu, D.-Y. Liu, Support Vector Machine Based 

Diagnostic System for Breast Cancer Using Swarm Intelligence, Journal of Medical Systems, 36 

(2012) 2505-2519. 

[297] T. Ibrikci, D. Ustun, I.E. Kaya, Diagnosis of Several Diseases by Using Combined Kernels 

with Support Vector Machine, Journal of Medical Systems, 36 (2012) 1831-1840. 

[298] B. Zheng, S.W. Yoon, S.S. Lam, Breast cancer diagnosis based on feature extraction using a 

hybrid of K-means and support vector machine algorithms, Expert Systems with Applications, 41 

(2014) 1476-1482. 

[299] L. Vig, Comparative Analysis of Different Classifiers for the Wisconsin Breast Cancer 

Dataset, Open Access Library Journal, 1 (2014) 1-7. 

[300] S. Bashir, U. Qamar, F.H. Khan, Heterogeneous classifiers fusion for dynamic breast cancer 

diagnosis using weighted vote based ensemble, Quality & Quantity, 49 (2015) 2061-2076. 

[301] E. Aličković, A. Subasi, Breast cancer diagnosis using GA feature selection and Rotation 

Forest, Neural Computing and Applications, 28 (2017) 753-763. 

[302] M. Polato, F. Aiolli, Boolean kernels for rule based interpretation of support vector machines, 

Neurocomputing, 342 (2019) 113-124. 

[303] S. Mao, J.-W. Chen, L. Jiao, S. Gou, R. Wang, Maximizing diversity by transformed ensemble 

learning, Applied Soft Computing, 82 (2019) 105580. 

[304] M. Abdar, V. Makarenkov, CWV-BANN-SVM ensemble learning classifier for an accurate 

diagnosis of breast cancer, Measurement, 146 (2019) 557-570. 

[305] H.J. Hamilton, N. Shan, N. Cercone, RIAC: A Rule Induction Algorithm Based on 

Approximate Classification; Technical Report CS-96-06, University of Regina, Regina, 

Saskatchewan, 1996. 

[306] C.A. Peña-Reyes, M. Sipper, Evolving Fuzzy Rules for Breast Cancer Diagnosis,  Proceedings 

of 1998 International Symposium on Nonlinear Theory and Applications (NOLTA’98), Presses 

Polytechniques et Universitaires Romandes, Lausanne, 1998, pp. 369-372. 

[307] C.A. Peña-Reyes, M. Sipper, A fuzzy-genetic approach to breast cancer diagnosis, Artificial 

Intelligence in Medicine, 17 (1999) 131-155. 

[308] H. Mallinson, P. Bentley, Evolving Fuzzy Rules for Pattern Classification, in: M. 

Mohammadian (Ed.) Computational Integration for Modelling, Control and Automation, IOS Press, 

Amsterdam, The Netherlands, 1999, pp. 184-191. 



 

88 

 

[309] D. Nauck, R. Kruse, Obtaining interpretable fuzzy classification rules from medical data, 

Artificial Intelligence in Medicine, 16 (1999) 149-169. 

[310] H.M. Lee, C.M. Chen, J.M. Chen, Y.L. Jou, An efficient fuzzy classifier with feature selection 

based on fuzzy entropy, IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, 

31 (2001) 426-432. 

[311] W. Duch, R. Adamczak, K. Gra¸bczewski, A New Methodology of Extraction, Optimization 

and Application of Crisp and Fuzzy Logical Rules, IEEE Transactions on Neural Networks, 12 

(2001) 277-306. 

[312] J. Abonyi, F. Szeifert, Supervised fuzzy clustering for the identification of fuzzy classifiers, 

Pattern Recognition Letters, 24 (2003) 2195-2207. 

[313] K. Rasmani, Q. Shen, Proceeding of the 2004 UK workshop on computational intelligence, 

UK, 2004, pp. 181-188. 

[314] A. Chatterjee, A. Rakshit, Influential rule search scheme (IRSS) – a new fuzzy pattern 

classifier, IEEE Transactions on Knowledge and Data Engineering, 16 (2004) 881-893. 

[315] H. Song, S. Lee, D. Kim, G. Park, New Methodology of Computer Aided Diagnostic System 

on Breast Cancer, in: J. Wang, X.-F. Liao, Z. Yi (Eds.) Advances in Neural Networks – ISNN 2005: 

Second International Symposium on Neural Networks, Chongqing, China, May 30 - June 1, 2005, 

Proceedings, Part III, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 780-789. 

[316] J.-W. Wang, C.-H. Cheng, Fuzzy Clustering-Based on Aggregate Attribute Method, in: M. 

Ali, R. Dapoigny (Eds.) Advances in Applied Artificial Intelligence: 19th International Conference 

on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2006, 

Annecy, France, June 27-30, 2006. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 

2006, pp. 478-487. 

[317] T.-C. Chen, T.-C. Hsu, A GAs based approach for mining breast cancer pattern, Expert 

Systems with Applications, 30 (2006) 674-681. 

[318] S. Şahan, K. Polat, H. Kodaz, S. Güneş, A new hybrid method based on fuzzy-artificial 

immune system and k-nn algorithm for breast cancer diagnosis, Computers in Biology and 

Medicine, 37 (2007) 415-423. 

[319] S.-L. Hsieh, S.-H. Hsieh, P.-H. Cheng, C.-H. Chen, K.-P. Hsu, I.-S. Lee, Z. Wang, F. Lai, 

Design Ensemble Machine Learning Model for Breast Cancer Diagnosis, Journal of Medical 

Systems, 36 (2012) 2841-2847. 

[320] S. Lekkas, L. Mikhailov, Breast cancer diagnosis based on evolvable fuzzy classifiers and 

feature selection, in: T. Allen, R. Ellis, M. Petridis (Eds.) Applications and Innovations in Intelligent 

Systems XVI: Proceedings of AI-2008, the Twenty-eighth SGAI International Conference on 

Innovative Techniques and Applications of Artificial Intelligence, Springer London, London, 2009, 

pp. 185-195. 

[321] M. Karabatak, M.C. Ince, An expert system for detection of breast cancer based on association 

rules and neural network, Expert Systems with Applications, 36 (2009) 3465-3469. 

[322] P. Luukka, Classification based on fuzzy robust PCA algorithms and similarity classifier, 

Expert Systems with Applications, 36 (2009) 7463-7468. 



 

89 

 

[323] M.R. Hassan, M.M. Hossain, R.K. Begg, K. Ramamohanarao, Y. Morsi, Breast-cancer 

identification using HMM-fuzzy approach, Computers in Biology and Medicine, 40 (2010) 240-

251. 

[324] P. Luukka, Feature selection using fuzzy entropy measures with similarity classifier, Expert 

Systems with Applications, 38 (2011) 4600-4607. 

[325] S. Ramathilagam, Y.-M. Huang, Extended Gaussian kernel version of fuzzy c-means in the 

problem of data analyzing, Expert Systems with Applications, 38 (2011) 3793-3805. 

[326] M. Vannucci, V. Colla, Novel classification method for sensitive problems and uneven 

datasets based on neural networks and fuzzy logic, Applied Soft Computing, 11 (2011) 2383-2390. 

[327] S. Naghibi, M. Teshnehlab, M.A. Shoorehdeli, Breast Cancer Classification Based on 

Advanced Multi Dimensional Fuzzy Neural Network, Journal of Medical Systems, 36 (2012) 2713-

2720. 

[328] P. Jaganathan, R. Kuppuchamy, A threshold fuzzy entropy based feature selection for medical 

database classification, Computers in Biology and Medicine, 43 (2013) 2222-2229. 

[329] Y.-Z. Hsieh, M.-C. Su, P.-C. Wang, A PSO-based rule extractor for medical diagnosis, Journal 

of Biomedical Informatics, 49 (2014) 53-60. 

[330] A. Onan, A fuzzy-rough nearest neighbor classifier combined with consistency-based subset 

evaluation and instance selection for automated diagnosis of breast cancer, Expert Systems with 

Applications, 42 (2015) 6844-6852. 

[331] A.T. Azar, S.A. El-Said, Superior neuro-fuzzy classification systems, Neural Computing and 

Applications, 23 (2013) 55-72. 

[332] M. Seera, C.P. Lim, A hybrid intelligent system for medical data classification, Expert 

Systems with Applications, 41 (2014) 2239-2249. 

[333] M. Panda, A. Abraham, Hybrid evolutionary algorithms for classification data mining, Neural 

Computing and Applications, 26 (2015) 507-523. 

[334] T. Nguyen, A. Khosravi, D. Creighton, S. Nahavandi, Classification of healthcare data using 

genetic fuzzy logic system and wavelets, Expert Systems with Applications, 42 (2015) 2184-2197. 

[335] T. Nguyen, A. Khosravi, D. Creighton, S. Nahavandi, Medical data classification using 

interval type-2 fuzzy logic system and wavelets, Applied Soft Computing, 30 (2015) 812-822. 

[336] K. Hassani, K. Jafarian, An Intelligent Method for Breast Cancer Diagnosis Based on Fuzzy 

ART and Metaheuristic Optimization, in: E. Kyriacou, S. Christofides, C.S. Pattichis (Eds.) XIV 

Mediterranean Conference on Medical and Biological Engineering and Computing 2016: 

MEDICON 2016, March 31st-April 2nd 2016, Paphos, Cyprus, Springer International Publishing, 

Cham, 2016, pp. 200-204. 

[337] K. Satishkumar, T. Sita Mahalakshmi, V. Katneni, Computational Intelligence Approach for 

Prediction of Breast Cancer using Particle Swarm Optimization: A Comparative Study of the Results 

with Reduced Set of Attributes, in: P.V. Lakshmi, W. Zhou, P. Satheesh (Eds.) Computational 

Intelligence Techniques in Health Care, Springer Singapore, Singapore, 2016, pp. 31-44. 



 

90 

 

[338] M. Pota, M. Esposito, G. De Pietro, Designing rule-based fuzzy systems for classification in 

medicine, Knowledge-Based Systems, 124 (2017) 105-132. 

[339] M.R. Saybani, T.Y. Wah, S.R. Aghabozorgi, S. Shamshirband, M.L. Mat Kiah, V.E. Balas, 

Diagnosing breast cancer with an improved artificial immune recognition system, Soft Computing, 

20 (2016) 4069-4084. 

[340] F. Pourpanah, Y. Shi, C.P. Lim, Q. Hao, C.J. Tan, Feature selection based on brain storm 

optimization for data classification, Applied Soft Computing, 80 (2019) 761-775. 

[341] E. Hancer, Fuzzy kernel feature selection with multi-objective differential evolution 

algorithm, Connection Science, 31 (2019) 323-341. 

[342] J.R. Quinlan, Improved Use of Continuous Attributes in C4.5, Journal of Artificial Intelligence 

Research, 4 (1996) 77-90. 

[343] A.A. Albrecht, G. Lappas, S.A. Vinterbo, C.K. Wong, L. Ohno-Machado, Two applications 

of the LSA machine,  Proceedings of the 9th international conference on neural information 

processing, IEEE, Singapore, 2002. 

[344] M.G. Smith, L. Bull, Feature Construction and Selection Using Genetic Programming and a 

Genetic Algorithm, in: C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, E. Costa (Eds.) Genetic 

Programming: 6th European Conference, EuroGP 2003 Essex, UK, April 14–16, 2003 Proceedings, 

Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 229-237. 

[345] S.C. Bagui, S. Bagui, K. Pal, N.R. Pal, Breast cancer detection using rank nearest neighbor 

classification rules, Pattern Recognition, 36 (2003) 25-34. 

[346] E.R. Hruschka, E.R. Hruschka, N.F.F. Ebecken, Feature Selection by Bayesian Networks, in: 

A.Y. Tawfik, S.D. Goodwin (Eds.) Advances in Artificial Intelligence: 17th Conference of the 

Canadian Society for Computational Studies of Intelligence, Canadian AI 2004, London, Ontario, 

Canada, May 17-19, 2004. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 

370-379. 

[347] E.R. Hruschka, E.R. Hruschka, N.F.F. Ebecken, Bayesian networks for imputation in 

classification problems, Journal of Intelligent Information Systems, 29 (2007) 231-252. 

[348] H. Hoffmann, Kernel PCA for novelty detection, Pattern Recognition, 40 (2007) 863-874. 

[349] K. Polat, S. Sahan, H. Kodaz, S. Günes, A New Classification Method for Breast Cancer 

Diagnosis: Feature Selection Artificial Immune Recognition System (FS-AIRS), in: L. Wang, K. 

Chen, Y.S. Ong (Eds.) Advances in Natural Computation: First International Conference, ICNC 

2005, Changsha, China, August 27-29, 2005, Proceedings, Part II, Springer Berlin Heidelberg, 

Berlin, Heidelberg, 2005, pp. 830-838. 

[350] C.-H. Cheng, J.-W. Wang, M.-C. Wu, OWA-weighted based clustering method for 

classification problem, Expert Systems with Applications, 36 (2009) 4988-4995. 

[351] E.A. Mohammed, C.T. Naugler, B.H. Far, Breast tumor classification using a new OWA 

operator, Expert Systems with Applications, 61 (2016) 302-313. 

[352] M.A. Setiawan, R. Raghuraj, S. Lakshminarayanan, Variable Interaction Structure Based 

Machine Learning Technique for Cancer Tumor Classification, in: C.T. Lim, J.C.H. Goh (Eds.) 13th 



 

91 

 

International Conference on Biomedical Engineering: ICBME 2008 3–6 December 2008 Singapore, 

Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 1915-1917. 

[353] D. Lavanya, D.K.U. Rani, Analysis of feature selection with classification: Breast cancer 

datasets, Indian Journal of Computer Science and Engineering, 2 (2011) 756-763. 

[354] B. Malar, R. Nadarajan, Evolutionary isotonic separation for classification: theory and 

experiments, Knowledge and Information Systems, 37 (2013) 531-553. 

[355] C.-H. Chen, A hybrid intelligent model of analyzing clinical breast cancer data using 

clustering techniques with feature selection, Applied Soft Computing, 20 (2014) 4-14. 

[356] A.H. El-Baz, Hybrid intelligent system-based rough set and ensemble classifier for breast 

cancer diagnosis, Neural Computing and Applications, 26 (2015) 437-446. 

[357] A. Onan, On the Performance of Ensemble Learning for Automated Diagnosis of Breast 

Cancer, in: R. Silhavy, R. Senkerik, Z.K. Oplatkova, Z. Prokopova, P. Silhavy (Eds.) Artificial 

Intelligence Perspectives and Applications: Proceedings of the 4th Computer Science On-line 

Conference 2015 (CSOC2015), Vol 1: Artificial Intelligence Perspectives and Applications, 

Springer International Publishing, Cham, 2015, pp. 119-129. 

[358] M. Karabatak, A new classifier for breast cancer detection based on Naïve Bayesian, 

Measurement, 72 (2015) 32-36. 

[359] G. Gatuha, T. Jiang, Evaluating Diagnostic Performance of Machine Learning Algorithms on 

Breast Cancer, in: X. He, X. Gao, Y. Zhang, Z.-H. Zhou, Z.-Y. Liu, B. Fu, F. Hu, Z. Zhang (Eds.) 

Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques: 5th 

International Conference, IScIDE 2015, Suzhou, China, June 14-16, 2015, Revised Selected Papers, 

Part II, Springer International Publishing, Cham, 2015, pp. 258-266. 

[360] G.D. Rashmi, A. Lekha, N. Bawane, Analysis of Efficiency of Classification and Prediction 

Algorithms (kNN) for Breast Cancer Dataset, in: S.C. Satapathy, J.K. Mandal, S.K. Udgata, V. 

Bhateja (Eds.) Information Systems Design and Intelligent Applications: Proceedings of Third 

International Conference INDIA 2016, Volume 2, Springer India, New Delhi, 2016, pp. 187-197. 

[361] N. Modi, K. Ghanchi, A Comparative Analysis of Feature Selection Methods and Associated 

Machine Learning Algorithms on Wisconsin Breast Cancer Dataset (WBCD), in: S.C. Satapathy, 

A. Joshi, N. Modi, N. Pathak (Eds.) Proceedings of International Conference on ICT for Sustainable 

Development: ICT4SD 2015 Volume 1, Springer Singapore, Singapore, 2016, pp. 215-224. 

[362] R. Sheikhpour, M.A. Sarram, R. Sheikhpour, Particle swarm optimization for bandwidth 

determination and feature selection of kernel density estimation based classifiers in diagnosis of 

breast cancer, Applied Soft Computing, 40 (2016) 113-131. 

[363] A.T. Azar, H.H. Inbarani, K. Renuga Devi, Improved dominance rough set-based 

classification system, Neural Computing and Applications, 28 (2017) 2231-2246. 

[364] G.I. Sayed, A. Darwish, A.E. Hassanien, J.-S. Pan, Breast Cancer Diagnosis Approach Based 

on Meta-Heuristic Optimization Algorithm Inspired by the Bubble-Net Hunting Strategy of Whales, 

in: J.-S. Pan, J.C.-W. Lin, C.-H. Wang, X.H. Jiang (Eds.) Genetic and Evolutionary Computing: 

Proceedings of the Tenth International Conference on Genetic and Evolutionary Computing, 

November 7-9, 2016 Fuzhou City, Fujian Province, China, Springer International Publishing, Cham, 

2017, pp. 306-313. 



 

92 

 

[365] L. Dora, S. Agrawal, R. Panda, A. Abraham, Optimal breast cancer classification using Gauss–

Newton representation based algorithm, Expert Systems with Applications, 85 (2017) 134-145. 

[366] H. Lu, H. Wang, S.W. Yoon, A dynamic gradient boosting machine using genetic optimizer 

for practical breast cancer prognosis, Expert Systems with Applications, 116 (2019) 340-350. 

[367] R. Hu, K. Ratner, E. Ratner, Y. Miche, K.-M. Björk, A. Lendasse, ELM-SOM+: A continuous 

mapping for visualization, Neurocomputing, 365 (2019) 147-156. 

[368] A.-A.A. Mohamed, S.A. Hassan, A.M. Hemeida, S. Alkhalaf, M.M.M. Mahmoud, A.M. Baha 

Eldin, Parasitism – Predation algorithm (PPA): A novel approach for feature selection, Ain Shams 

Engineering Journal, DOI https://doi.org/10.1016/j.asej.2019.10.004(2019). 

[369] R. Alroobaea, S. Rubaiee, S. Bourouis, N. Bouguila, A. Alsufyani, Bayesian inference 

framework for bounded generalized Gaussian-based mixture model and its application to biomedical 

images classification, International Journal of Imaging Systems and Technology, 30 (2020) 18-30. 

[370] Z. Mushtaq, A. Yaqub, S. Sani, A. Khalid, Effective K-nearest neighbor classifications for 

Wisconsin breast cancer data sets, Journal of the Chinese Institute of Engineers, 43 (2020) 80-92. 

[371] D. Devarriya, C. Gulati, V. Mansharamani, A. Sakalle, A. Bhardwaj, Unbalanced breast 

cancer data classification using novel fitness functions in genetic programming, Expert Systems 

with Applications, 140 (2020) 112866. 

[372] E. Hancer, A new multi-objective differential evolution approach for simultaneous clustering 

and feature selection, Engineering Applications of Artificial Intelligence, 87 (2020) 103307. 

[373] S.K. Nayak, P.K. Rout, A.K. Jagadev, T. Swarnkar, Elitism based Multi-Objective Differential 

Evolution for feature selection: A filter approach with an efficient redundancy measure, Journal of 

King Saud University - Computer and Information Sciences, 32 (2020) 174-187. 

[374] O. Aydemir, A New Performance Evaluation Metric for Classifiers: Polygon Area Metric, 

Journal of Classification, DOI 10.1007/s00357-020-09362-5(2020). 

[375] M. Habib, I. Aljarah, H. Faris, S. Mirjalili, Multi-objective Particle Swarm Optimization: 

Theory, Literature Review, and Application in Feature Selection for Medical Diagnosis, in: S. 

Mirjalili, H. Faris, I. Aljarah (Eds.) Evolutionary Machine Learning Techniques: Algorithms and 

Applications, Springer Singapore, Singapore, 2020, pp. 175-201. 

[376] T.B. Borchartt, A. Conci, R.C.F. Lima, R. Resmini, A. Sanchez, Breast thermography from 

an image processing viewpoint: A survey, Signal Processing, 93 (2013) 2785-2803. 

[377] C. Colin, V. Prince, P.J. Valette, Can mammographic assessments lead to consider density as 

a risk factor for breast cancer?, European Journal of Radiology, 82 (2013) 404-411. 

[378] Y. Xu, Y. Wang, J. Yuan, Q. Cheng, X. Wang, P.L. Carson, Medical breast ultrasound image 

segmentation by machine learning, Ultrasonics, 91 (2019) 1-9. 

[379] M. Elter, A. Horsch, CADx of mammographic masses and clustered microcalcifications: A 

review, Medical Physics, 36 (2009) 2052-2068. 

 

https://doi.org/10.1016/j.asej.2019.10.004(2019


 

93 

 

3 APPLICATION OF DECISION TREE-BASED ENSEMBLE 

LEARNING IN THE CLASSIFICATION OF BREAST CANCER 

 

Mohammad M. Ghiasi *, Sohrab Zendehboudi * 

Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada 

* Corresponding authors: mm.ghiasi@gmail.com (M.M. Ghiasi) & szendehboudi@mun.ca  (S. Zendehboudi) 

 

 

PREFACE  

This manuscript is submitted to … for possible publication. 

 

Main author: Mohammad M. Ghiasi 

Contribution: writing the original draft; classification modeling; error analysis; revision of the 

original draft based on the comments of co-author  

 

Co-author: Dr. Sohrab Zendehboudi 

Contribution: supervision; providing comments on the original draft; review and editing 

 

 

 

 

 

 

 

 

mailto:mm.ghiasi@gmail.com
mailto:szendehboudi@mun.ca


 

94 

 

ABSTRACT  

As a common screening and diagnostic tool, Fine Needle Aspiration Biopsy (FNAB) of the 

suspicious breast lumps can be used to distinguish between malignant and benign breast cytology. 

In this study, we first review published works on the classification of breast cancer where the 

machine learning and data mining algorithms have been applied by using the Wisconsin Breast 

Cancer Database (WBCD). This work then introduces effective new tools, based on Random Forest 

(RF) and Extremely Randomized Trees or Extra Trees (ET) algorithms, for classification of the 

breast cancer. The RF and ET strategies use the decision trees as proper classifiers to attain the 

ultimate classification. The RF and ET approaches include four main stages; namely input 

identification, determination of optimal number of trees, voting analysis, and final decision. The 

models implemented in this research consider important factors such as uniformity of cell size, bland 

chromatin, mitoses, and clump thickness as the input parameters. According to the statistical 

analysis, the proposed methods are able to accurately classify the type of breast cancer. The error 

analysis results reveal that the designed RF and ET models offer the most reliable outcomes and the 

highest diagnostic performance, compared to previous tools/models in the literature for the WBCD 

classification. The highest and lowest relative importance are attributed to uniformity of cell size 

and mitoses among the factors. It is expected that RF and ET algorithms play an important role in 

medicine and health systems for the purposes of screening and diagnosis in the near future.    

 

KEYWORDS: Breast Cancer; Wisconsin Breast Cancer Database; Classification; Ensemble 

Learning; Random Forest/Extra Trees 

 

3.1 INTRODUCTION 

3.1.1 Breast cancer overview  

It is believed that the most common recognized type of cancer among women is breast cancer. 

Although breast cancer can occur in men, it is very rare. According to the research work [1], one out 

of every eight U.S. women might be affected by breast cancer during her lifetime. Another report 

claims that the breast cancer comprises 25% of all predicted cancer cases in Canadian women in 

2017 [2].  
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Different sections of the breast such as ducts and glands might be the start point of breast cancers. 

If the cancer cells are able to enter the lymph system or bloodstream, the breast cancer will spread 

to other parts of the body [3]. Adenomas, fibromas (fibroids), a soft fibroma of the eyelid, 

hemangiomas, and lipomas are examples of the benign tumors [4].  It is worth noting that benign 

breast lumps (or non-cancerous breast tumors) are not in the category of cancers. Indeed, 

development of malignant tumors including carcinoma, sarcoma, and blastoma in the breast tissues 

is responsible for breast cancer occurrence. In addition to the benign and malignant tumors, some 

tumors such as actinic keratosis, dysplasia of the cervix, and leukoplakia can be classified as 

premalignant tumors [4].  

Although considerable improvements on breast cancer investigations have been made in recent 

years, the main causes of breast cancer still remain obscured in the majority of cases [5].  Factors 

such as increasing age, obesity, a family history, estrogen exposure, alcohol consumption, and 

inheritance of susceptibility genes are normally associated with the development of breast cancer 

[5-11]. The above factors represent the indicators of risk that can be helpful when differentiating 

between women with different levels of risk. Therefore, the parameters are called “risk factors” [12].  

Early diagnosis of breast cancer using appropriate approaches may lead to a decrease in mortality 

rates of women [13, 14]. Although malignancy or benignity of the breast mass can be detected 

through surgical biopsy, this method is a costly and time-consuming operation. Moreover, the 

surgical biopsy has a negative influence on the psychology of the patient [15, 16].  For proper 

treatment of patients suffering from breast cancer, resident experts need to work as a team on the 

important corresponding aspects such as oncology, radiology, and surgery. Surgical treatment, 

systemic therapy, radiation therapy, and minimally invasive therapies might be applied, depending 

on the patient health conditions and type of cancer. More information can be found elsewhere [5].  

At-risk women (starting at age 40) can be screened for breast cancer using mammography, which is 

the most employed approach in clinics and hospitals [5]. However, this method is not always 
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accessible in poor, and underdeveloped/developing countries [17].  To screen the high-risk patients, 

in addition to mammography, the magnetic resonance imaging (MRI) method can be implemented 

[18]. A common technique, which is also used as a diagnostic and screening approach for 

investigation and diagnosis of the breast cancer, is Fine Needle Aspiration Biopsy (FNAB) [17, 19, 

20].  FNAB is a quick and simple procedure that is relatively less traumatic, compared to the surgical 

biopsy. Specimens of FNA are commonly obtained through utilizing 20- to 25-gauge needles [21].  

The Wisconsin Breast Cancer Database (WBCD) reports breast cancer-related measurements, 

according to the FNAB data. A FNAB is prepared through aspiration of a small drop of a viscous 

fluid from the breast mass using a needle [22].  Each dataset contains nine cytological characteristics 

of malignant or benign breast fine needle aspirates. Indeed, this database provides comprehensive 

data that can be employed for the distinction between the benign and malignant breast masses.  

 

3.1.2 Study objectives    

In the past few years, researchers developed several predictive models capable of classifying breast 

cancer types. For example, in 2018, Fondón et al. [23] employed Support Vector Machine (SVM) 

for breast cancer classification. In another study, Naive Bayes classification was used to classify the 

breast cancer data as malignant or benign [24]. Recently, Zhu et al. [25] investigated the performance 

of deep learning for distinguishing between molecular subtypes of breast cancer. The main goal of 

this study is to evaluate the performance of two ensemble methods, namely Random Forest (RF) 

and Extra Trees (ET), in the classification of WBCD. To the best of the authors’ knowledge, this is 

the first work that presents simple visualized models based on the ET methodology in conjunction 

with the Classification and Regression Tree (CART) method to classify the WBCD.  

To achieve the study goal, the remainder of the current work is organized into four sections. The 

related works on the WBCD classification using the machine learning and data mining approaches 

are reviewed in Section 3.2. Next, the RF and ET classification theory as well as the model 
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development procedure are briefly explained in Section 3.3. Using the WBCD and applying RF/ET 

methods, the research results and systematic discussion are then presented in Sections 3.4 and 3.5. 

The last section, Section 3.6, concludes the research investigation.   

 

3.2 PREVIOUS WORKS  

There are several studies in the open source literature that focus on classification of breast cancer 

which rely on the WBCD database through employing various mathematical methods, statistical 

models/algorithms, machine learning, and data mining approaches. In the context of development 

of intelligent/smart classification models for breast cancer classification, the main implemented 

approaches are Artificial Neural Networks (ANNs) [26-33], Fuzzy Logic (FL) [34-38], and SVMs 

[39-44]. Other methods, including linear programming [45], Learning Vector Quantization (LVQ) 

[46], decision trees [47] and K-nearest neighbor [48], are also investigated in the literature.  

Application of feed-forward ANN with Back-Propagation (BP) in breast cancer classification was 

evaluated by Paulin, Santhakumaran [49]. They used different variations of the BP including batch 

training, Batch Gradient Descent (BGD), batch gradient descent with momentum, conjugate 

gradient, Quasi-Newton (QN), Levenberg-Marquardt (LM), and resilient BP to adjust the weights. 

The only criterion used in the work to evaluate the classification performance of the models was 

accuracy. Other parameters such as relative precision and recall were not calculated for the BP-

based models. Among the studied training algorithms, the LM provided the best results [38]. 

In 2016, Abdel-Zaher, Eldeib [50] suggested a breast cancer classifier through employing a two-

phase framework. The first phase includes an ANN in conjunction with the conjugate gradient back-

propagation algorithm or LM. This pre-training phase is then followed by an unsupervised phase. 

This method is known as a Deep Belief Network Neural Network (DBN-NN). In addition to the 

DBN-NN, the researchers provided two other models based on the Randomly Initialized Weight BP 

Neural Network (RIW-BPNN). Their results revealed that the DBN-NN approach presents a greater 
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accuracy than the RIW-BPNN method. Although the DBN-NN method is capable of classifying the 

WBCD with satisfactory accuracy, it requires considerable effort to build a classification model 

using commercial technology [39]. This is considered as the main limitation for this technique.  

Recently, Pota, Esposito, De Pietro [51] developed several rule-based fuzzy systems. Their work 

presented a procedure based on applying the naïve Bayes hypothesis to fuzzy systems. The 

employed optimization algorithms to find the fuzzy sets position, rule weights, and rule consequents 

are likelihood fuzzy analysis and neural networks. Although FL systems generally provide accurate 

results, the designing process is thorny and needs several implementation stages [40].  

Ibrikci, Ustun, Kaya [52] investigated the WBCD by utilizing two classification models. These 

approaches are presented based on the conventional SVM and the combined kernel SVM (k-SVM) 

algorithms. Comparing the two developed models revealed that the k-SVM algorithm outperforms 

the standard version of SVM in terms of accuracy and reliability. In another study [53], the least 

squares version of SVM (LS-SVM) was used for classifying the WBCD. The main advantage of the 

SVM-based classification model over most of the FLs and neural networks is its simplicity and 

process speed [42].  

Although the classification strategies employed in the literature offer reliable outcomes in the realm 

of breast cancer studies, this important health matter needs more precise and user-friendly tools. In 

a published study [54], the RF method is used as the weak learner. Then, ensembles of bagging, 

AdaBoost, dagging, multi boost, random subspace, and decorate were employed to develop a breast 

cancer classification model. However, in this study, RF is utilized as an ensemble model and the 

weak learner is the classification and regression tree (CART) model. In another study [55], the 

researchers developed two RF-based models employing 10 and 100 decision trees as weak learners. 

However, there is no information available regarding the structure of the created RF models. 

Furthermore, the accuracy of their predictive model is not satisfactory. Tripoliti et al. [56] proposed 

a model for the classification of WBCD which is based on RF with multiple estimators. 42 decision 
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trees were used in the best obtained forest. Ahmad and Yusoff [57] also implemented RF classifier 

for WBCD classification. A recent published study by Murugan et al. discusses about the application 

of RF in classification of WBCD [58]. In 2019, Hosni et al. [59] reviewed the published works on 

the application of different ensemble methods in the breast cancer research area. According to their 

study, the WBCD is the most frequently used database by researchers to perform experiments and 

modeling related to the breast cancer.  

 

3.3 CLASSIFICATION PROCEDURE 

3.3.1 WBCD  

The WBCD was used to develop RF and ET classification models capable of classifying breast 

cancer into the benign or malignant case. The WBCD was originally presented by Dr. William H. 

Wolberg at the University of Wisconsin Hospitals in Madison [45]. Table 3.1 gives further 

information regarding the dataset employed for the RF and ET modeling.   

 

Table 3.1: Information about the refined WBCD. 

Feature  Range Average 

Uniformity of Cell Size 1-10 4.442 

Uniformity of Cell Shape 1-10 3.151 

Bare Nuclei 1-10 3.215 

Single Epithelial Cell Size 1-10 2.830 

Bland Chromatin 1-10 3.234 

Normal Nucleoli 1-10 3.545 

Clump Thickness 1-10 3.445 

Marginal Adhesion 1-10 2.870 

Mitoses 1-10 1.603 
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This database contains 699 records where 241 (34.5%) are categorized as “malignant” and 458 

(65.5%) are classified as “benign”.  Excluding the ID number, the WBCD has nine independent 

attributes. Each characteristic is graded with a value ranging from 1 to 10; 1 denotes a typical benign 

and 10 represents a typical malignant. There are some patters in the databank of WBC with missing 

values (16 data series). These incomplete datasets are removed from the databank before the 

modeling process in this research work. The remaining data points contain 239 malignant and 444 

benign cases.  

 

3.3.2 Methodology 

Ensembles are the methods that utilize several weak learners and aggregate the outcomes of them to 

develop a robust model. In this section, two ensemble methodologies, namely RF and ET, are briefly 

described. 

RF method. Originally, the RF model was developed by Breiman and Cutler [60]. As an ensemble 

methodology, RF employs a number of decision trees as weak classifiers or regressors. During the 

learning phase, randomness can be introduced to attain certain relationships between the trees grown 

on the same training set. Each node of the tree has access to only one randomly chosen subset of 

features, while training a decision tree in the RF approach.  

Commonly, the RF employs the CART algorithm, introduced by Breiman, Friedman, Stone, Olshen 

[61], as a weak classifier to develop a strategy for classification tasks. In the CART method, the 

input space is separated into several rectangular or cuboid regions that are non-overlapping [62-64]. 

To train each CART, different sub-datasets of the training points are chosen with replacement. After 

construction of CARTs through using bootstrap samples, the remaining data, i.e. the data which are 

not utilized in the CART construction, are used to determine the model’s error and feature 

importance. For each CART, about 35% of the data series are left out of the bootstrap samples. 

These data are called Out-Of-Bag (OOB) cases.   
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Using RF, a random instance of p  features is drawn at each CART split. The original work suggests 

that pp = , where p is the total number of features. Considering a training set including D with n 

samples, the RF algorithm is as follows: 

 

RF General Algorithm 

1: generate m bootstrap samples D1, D2, …, Dm 

2: for each i in [1, m] do 

3: grow a tree predictor 
*ˆ

if  using the CART method, that: 

4: at each split pp   random variables are selected. 

    each CART is fully grown and not pruned. 

5: end for 

6: classification of a parameter like x using ensemble of the CARTs:  

                the most voted class 

  

With the aim of computing the importance of each feature of the investigated database, Gini 

measurements or permutations can be used in the RF method. This study applies the Gini 

importance. Consider that there is a total number of n samples at node  . Through defining 

nnp kk /=  as the kn  samples’ fraction from  1,0=k  category out of all the samples at node 

, the following expression calculates the Gini impurity [65]:  

2

0

2

11)( ppi −−=                                   (3.1) 

where )(i  stands for the Gini impurity. Consequently, Equation (2) defines the decrease of )(i  

that follows from splitting and sending the instances to sub-nodes 
1  and 

2  by a threshold t  on 

feature   as follows [65]:  

)()()()( 21  ipipii rl −−=              (3.2) 
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where nnp ll /=  and nnp kk /=  introduce the sample fractions. 

Over all features existing at the node, a thorough search is performed. Conducting this stage, the 

pair   t,  responsible for a maximal i  is obtained. Then, a decrease in )(i  as a result of the 

optimal split ),( Ti   is recorded and accumulated for all nodes in all CARTs, individually for 

all features; T refers to the tree.  Finally, the Gini importance, )(GI , is determined by the 

following expression: 

( )=
T

G TiI


  ,)(                         (3.3) 

ET method. As an ensemble of randomized trees, the ET technique increases the randomization of 

the RF algorithm [66].  Similar to RF, the ET technique is computationally effective and is capable 

of dealing with high dimensional input vectors. However, considering the training time, ET 

overcomes the RF method. This is owing to a simpler procedure of ET to choose the thresholds. 

Furthermore, as compared to the RF, increased randomization of the ET reduces the variance [66]. 

Unlike RF, each tree in the ET is trained using the total training data points (in an autonomous way). 

Within the phase of ET learning, CARTs are created (in a supervised manner) from the introduced 

databank of p-dimensional samples and the corresponding targets.  

The following expression represents the score measure in ET classification [66]: 

( )
( )

( ) ( )SHSH

SI
SsScore

CS

S

C

C
+

=
2

,                                              (3.4) 

in which, S and s are the sample and split, respectively; the split entropy and classification entropy 

are indicated by ( )SH S  and ( )SHC , respectively; and ( )SI
S

C  indicates the mutual information of 

the classification and the split outcome. In regression, the relative variance reduction can be 

employed [66]. 
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As mentioned earlier, unlike RF, the randomness of ET comes from the random splits of all data 

points. Indeed, in the ET method, nodes are split using random subsets of features. The following 

pseudo-code shows the procedure to pick a random split in the ET [66]. 

 

Pseudo-code to pick a random split (S,a) 

1: Input: an attribute a and a training set S 

2: Output: a split 

3:  Categorical attribute a (denoted by A) 

4:  Compute the subset of A of values of a that available in S (AS);  

5:  Randomly draw an appropriate non-empty subset A1 of AS and a subset A2 of A/AS; and 

6:  Return the split [ 21 AAa  ]. 

  

2.3.3 Model Development   

Prior to utilizing the refined WBCD to implement the RF and ET methodologies, the collected data 

points are randomly divided into two sub-groups including training and testing sub-datasets. 

Commonly, 75-90% of the entire database are used in the training phase while employing 

connectionist predictive tools. In this study, 85% of the entire dataset are allocated for the training 

state. The remaining data points, 15%, are utilized to evaluate the capability of the developed RF 

and ET models in classifying the unseen data. Simple schematic of the procedure for RF/ET model 

development to classify the WBCD is presented in Fig. 3.1. 

It should be mentioned that instead of allocating a part of total data points for a validation phase, 

10-fold cross validation procedure is employed for training the models. Using the cross-validation 

method results in having more samples, as training data points, to develop a more reliable model. 

This study leads to development of the RF/ET classification models with the best obtainable results 

for categorization of the WBCD. As the next stage, after data pre-processing, the number of CARTs 
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in the RF and ET methodologies is altered from two to ten. The input parameters to develop the 

models are explained below.   

 

 

Fig. 3.1: A simple procedure for RF/ET model development to classify the WBCD  

 

The cells grouping in the breast are described with the clump thickness. While malignant cells are 

generally categorized in multiple layers, benign cells are often grouped in monolayers. Despite the 

benign cells, the malignant cells are equally distributed. In the WBCD, the variations in shape and 

size of the cells are described by the uniformity of shape/size. The parameter namely “single 

epithelial cell size” is strongly connected to the previous parameters. Epithelial cells with 

considerable enlargement might be an indication of malignancy. Unlike the malignant cells, there is 

a tendency for benign cells to stick together. To illustrate this property, the marginal adhesion is 

used. Nuclei lacking cytoplasm is demonstrated by bare nuclei. Cells that exhibit this phenomenon 

are most likely malignant. The nucleus texture is taken into account using the bland chromatin. 

Indeed, coarse texture is a sign of malignancy. On the other hand, the texture uniformity is a sign of 

benign. WBCD uses the normal nucleoli to describe the small structures existing in the nucleus. The 
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nucleoli, which is normally very small, starts to be prominent in the malignant cells. The cell division 

is defined as mitosis. The number of mitotic divisions can help cancer specialists to determine the 

malignancy [40-43, 50].    

It should be noted that the test trials for effective construction of a RF/ET model for classification 

of the breast cancer into two sub-classes are performed on PyCharm Community Edition 3.1.3 using 

a PC with an Intel® Core™ i7-Q740 @ 1.73-2.93 GHz CPU and 8.00 GB RAM. 

 

3.4 RESULTS  

To assess the performance of the developed RF/EF classification models for WBCD, the magnitudes 

of three important statistical parameters including Classification Accuracy (ACC), precision or 

Positive Predicted Value (PPV), and recall or True Positive Rate (TPR) are obtained. 

Based on the error analysis results, it was found that all the developed RF and ET models, except 

for the RF model with three CARTs and the ET model with two CARTs, are able to precisely (and 

reliably) classify the breast cancer type for all the data utilized in this research work. In other words, 

the obtained values of ACC, PPV, and TPR for the developed RF and ET models with three (just 

for the ET model), four, five, six, seven, eight, nine, and ten CARTs in the model structure are equal 

to 1.0000, implying a significant performance of the RF and ET methods. Figs. 3.2 and 3.3 show 

the constructed CARTs during the development of the RF model with four CARTs and the ET model 

with three CARTs, respectively.  
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(a) 

 

(b) 
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(c) 

  

 

(d) 

 

Fig. 3.2: Created trees in the structure of the proposed RF model with four trees: (a) CART#1, (b) 

CART#2, (c) CART#3, and (d) CART#4. 



 

108 

 

 

(a) 

 

(b) 
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(c) 

Fig. 3.3: Created trees in the structure of the developed ET model with three trees: (a) CART#1, 

(b) CART#2, and (c) CART#3 

 

 

The decision trees created for other RF and ET models are provided in Appendix A.  Fig. 3.4 

schematically demonstrates the RF model proposed with four CARTs for the classification of breast 

cancer types, according to the WBCD independent parameters. Similarly, a simple graphical 

representation of the created ET model with three CARTs is illustrated in Fig. 3.5. 

 

 

Fig. 3.4: Schematic of the proposed RF model for breast cancer classification. 
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Fig. 3.5: A simple graphical representation of the proposed ET model for breast cancer 

classification 

 

 

3.5 DISCUSSIONS  

This study applies the RF and ET algorithms, as proper learning machines, to categorize the type of 

breast cancer. The developed RF/ET models provide a simple and efficient graphical methodology 

for the classification purpose.  The WBCD presents the real data that includes the most vital factors 

(as input data) for the model development and then final decision on the correct type of the breast 

cancer.   

Since the RF models constructed with four to ten CARTs and ET models having three to nine CARTs 

are able to attain the highest achievable accuracy (i.e. 100% ), it is clear that no classification tool 

in the literature can offer such a robustness and precision. Supporting this statement, the accuracy 

of some available classification models in the open source literature and the accuracy of the RF and 

ET models proposed with three and four CARTs are listed in Table 3.2. As can be seen from Table 

3.2, the classifier developed on the basis of the Naïve Bayes method [55] offers the lowest accuracy 

(65.27%) amongst all the studied literature models.  
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Table 3.2: Classification performance of the presented RF and ET models in comparison with the 

accuracies of the literature models. 

Model  Performance 

Accuracy Sensitivity Specificity  

BGD-NN [49] 83.27 * * 

QN-NN [49] 98.42 * * 

LM-NN [49] 99.28 * * 

DBN-NN (conjugate gradient BP) [50] 99.59 100 99.39 

DBN-NN (LM) [50] 99.68 100 99.47 

RIW-BPNN (conjugate gradient BP) [50] 98.86 100 98.22 

RIW-BPNN (LM) [50] 99.03 99.13 98.97 

FL [51] 97.80 99.00 97.00 

SVM [31]  96.49 100 86.70 

k-SVM [31]   98.25 99.40 94.40 

LS-SVM [53] 97.08 97.87 97.77 

Dagging-RF [54] 96.49 * * 

AdaBoost-RF [54] 96.78 * * 

Multi Boosting-RF [54] 96.49 * * 

Decorate-RF [54] 96.49 * * 

Random Space-RF [54] 96.93 * * 

SVM [55] 78.45 72.00 81.00 

RF (100 trees) [55] 95.64 97.00 94.00 

RF (10 trees) [55] 90.13 92.00 89.00 

Naïve Bayes [55]  65.27 57.00 72.00 

PSO-KDE [68] 97.88 94.84 99.49 

GA-KDE [68] 96.67 91.16 99.61 

PCA-KNN [69] 82.30 * * 

PCA-SVM [69] 86.70 * * 

EM-PCA-CART-FL [69] 93.20 * * 

RF (this study, 4 CARTs) 100 100 100 

ET (this study, 3 CARTs) 100 100 100 

 

 

In addition to the robustness of the implemented RF/ET classification model, it is user-friendly and 

simple to understand in terms of utilization and mathematical formulation. Indeed, a 

physician/medical doctor can easily utilize the illustrative RF/ET model to investigate the type of 

breast cancer in patients without tools such as computers and access to the Internet Explorer. 
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The importance of the parameters included in the WBCD, namely clump thickness, uniformity of 

cell size, uniformity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland 

chromatin, normal nucleoli, and mitoses, in the development of the RF classification models is 

graphically depicted in Fig. 3.6.  

As discussed earlier, the Gini measurements were used to calculate the feature/parameter relative 

importance. As can be seen from Fig. 3.7, each factor exhibits different importance levels while 

applying the RF models. However, for all the developed RF models with the number of CARTs 

varying from four to ten, the mitoses factor shows the lowest importance. In addition, the uniformity 

of cell size is the most important/influential variable in the construction of the RF models with five, 

six, nine, and ten CARTs. In the case of the RF models with four and eight CARTs, the most 

important parameter is the uniformity of cell shape. On the other hand, the bare nuclei is considered 

as the most influencing factor in the RF model with seven CARTs. Fig. 3.7 depicts the same graph 

for the ET models. Similar to the development of the RF models, the mitoses has the lowest impact 

in the creation of the ET models. On the other hand, the uniformity of the cell shape is found to be 

the most influential parameter for the ET methodology.   

Table 3.3 tabulates the average values (in percentage) of the relative importance of each independent 

parameter which is incorporated in the development of the RF models with four to ten CARTs.  
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Fig. 3.6: Feature importance plot for the developed RF models. 
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Fig. 3.7: Relative importance of the features involved in the developed ET models. 

 

  

The results presented in Table 3.3 are in a very good agreement with the feature importance obtained 

by the information gain technique performed on the WBCD in another study [67]. In the context of 

relative performance, the main difference between the results achieved from the current study and 
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the outcomes in the literature [67] is that it is concluded in our study that the single epithelial cell 

size has a higher impact on the RF model development, compared to the bland chromatin, which is 

different from the results of a study conducted by Hsieh et al. [65]. Similar information for the 

developed ET models is given in Table 3.4. 

 

Table 3.3: Feature importance in average for the developed RF models with four to ten CARTs. 

Feature  Rank Importance 

Uniformity of Cell Size 1 0.307901 

Uniformity of Cell Shape 2 0.226715 

Bare Nuclei 3 0.175527 

Single Epithelial Cell Size 4 0.086836 

Bland Chromatin 5 0.066213 

Normal Nucleoli 6 0.049252 

Clump Thickness 7 0.048068 

Marginal Adhesion 8 0.030445 

Mitoses 9 0.009043 

 

Table 3.4: Feature importance in average for the proposed ET approaches with three to nine 

CARTs. 

Feature  Rank Importance 

Uniformity of Cell Shape 1 0.246 

Normal Nucleoli 2 0.235 

Bare Nuclei 3 0.177 

Marginal Adhesion  4 0.159 

Bland Chromatin 5 0.074 

Uniformity of Cell Size 6 0.051 

Single Epithelial Cell Size 7 0.028 

Clump Thickness 8 0.021 

Mitoses 9 0.008 
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The developed RF and ET models are not capable of describing the relationships in the WBCD. This 

is due to the fact that the RF and ET methodologies are predictive modeling tools. Hence, utilization 

of descriptive modeling tools is recommended for future studies to detect the relationships in the 

breast cancer data. Another limitation of the ET and RF algorithms is that there is no universal rule 

to find the optimum number of trees for a classification or regression task. As a result, defining the 

number of weak learners is commonly conducted through trial and error procedure.  It appears that 

development of a proper optimization strategy in this classification case is interesting to be studied 

by researchers. 

This research offers physician/doctors effective and simple visualization tools for classification of 

breast cancer so that high accuracy and reliability are attained without utilization of mathematical 

formulas and complicated strategies. Since the developed models based on the RF/ET algorithms 

are data-driven models, the models can be updated, depending on the availability of more data 

points. Furthermore, the RF and ET methodologies can pave the way for investigation of more new 

features that might help in classification of cancer and other diseases/health issues. Indeed, the 

relative importance of each new feature, which can be obtained using these algorithms, brings new 

insight into understanding of the corresponding influence in the breast cancer case.  

 

3.6 CONCLUSIONS  

Development of classification models for medical diagnosis is of great interest amongst the 

researchers, particularly in the medicine area. This is mainly owing to the fact that classifying the 

medical datasets paves the way to design a more efficient medical diagnostic decision support 

system. It was revealed that the deterministic models existing in the literature such as ANNs, SVMs, 

K-NNs, fuzzy-based, and hybrid approaches offer acceptable outcomes; however, greater precision 

in the medicine might considerably affect the diagnosis time, cure/therapy duration, and diagnosis 

and therapy costs. In addition, a majority of the available tools suffer from higher complexity, lack 
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of optimal structure, and overfitting. Hence, the objective of the current study was to employ RF 

and ET to classify the breast cancer type based on the WBCD with the highest achievable precision. 

To attain the objective, several RF/ET classification models in conjunction with CARTs in the model 

structure were examined. It was found that the developed RF models with four to ten CARTs and 

ET models with three to nine CARTs have high potential to forecast the WBCD type with 100% 

accuracy in all cases. The RF/ET models with the proposed CART structures are simple to 

understand and appreciably efficient to categorize the WBCD so that no model can rival this 

classification strategy in terms of robustness, reliability, implementation speed, and precision. 

Hence, it is recommended to evaluate the performance of these approaches for studying the future 

databases on the breast cancer. 
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ABSTRACT  

The human papillomaviruses (HPVs) can be responsible for various types of benign tumors called 

warts. Although warts can grow on all parts of the human body, common warts and plantar warts 

(as the most prevalent warts) grow principally on the hands and feet soles, respectively. Different 

treatment approaches such as cryotherapy and immunotherapy can be used to conquer the disease. 

However, the best healing method should be selected based on the patient circumstances. This study 

employs the classification and regression tree (CART) algorithm to develop accurate predictive 

models capable of analyzing the response of patients having common and/or plantar warts to the 

cryotherapy and/or immunotherapy methods. To develop a CART classifier for the cryotherapy 

method, independent parameters including the age and gender of patient, number of warts, type of 

wart, surface area of warts and the time elapsed before treatment are used. In the case of 

immunotherapy, in addition to the above-mentioned variables, the induration diameter of the initial 

test is also considered. The error analysis reveals that the implemented CART models provide the 

highest achievable accuracy for the application of interest. Moreover, the proposed decision tree-

based models are simple to use and more reliable, in contrast to the literature models that are mainly 

originated from the fuzzy rule-based method. Hence, the models introduced in this study can assist 

both patients and physicians in saving cost/time and improving the quality of healing operation.   

 

KEYWORDS: Warts; Cryotherapy; Immunotherapy; Classification; Decision tree; Error analysis 

 

4.1 INTRODUCTION 

As a broad category of deoxyribonucleic acid (DNA) viruses, human papillomaviruses (HPVs) can 

induce diseases such as cervical, anal, vulvar, and vaginal cancers. Until now, at least 150 various 

HPVs have been discovered in human DNA [1]. Although the HPV vaccine was introduced in 2006 

as the primary prevention of HPV-related diseases, the rates of HPV vaccination are still low [2]. In 

addition, HPVs are responsible for benign proliferations, called warts, on the body skin [3]. It is 

believed that the cutaneous warts are mainly caused by some alpha-PV types (HPV2, HPV3, 

HPV10, HPV27, and HPV57), gamma-PV types (HPV4, HPV60, and HPV65), and mu-PV types 

(HPV1 and  HPV63) [4-12]. A number of research studies found that the racial factor has a 
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significant impact on the rate of warts, since its rate is lower in African-Americans than in 

Caucasians [13-15]. In an annual family practice, 6% of school children and 2% of general people 

were known to have warts [16]. 

There are different types of warts including flat wart, plantar wart, common wart, filiform wart, 

mosaic wart, subungual wart, butcher’s wart, endophytic wart, and myrmecia wart. The plantar and 

common warts are predominant among them [17]. Generally, the plantar warts are initiated on the 

foot/toes bottom and the common warts are found on the feet and hands. 70% of the cutaneous warts 

are known to be common warts. About 65% of untreated common warts will disappear within two 

years [18]. The spontaneous disappearance rate of plantar warts without treatment is between 65% 

and 78% [19]. Depending on the sensitivity of the patient and the anatomic location of plantar warts, 

they can be either painful or non-painful [20]. The medical reports show that patients, who have 

never had a wart, have a lower risk to be affected by warts, compared to those who have had plantar 

or common warts previously [21-24]. 

To overcome warts, there are several treatment approaches: destructive methods, immunotherapy, 

antimitotic drugs, and other available methodologies (e.g., duct tape, garlic extract, sinecatechins, 

and local hyperthermia). Surgical excision, cryotherapy, laser therapy, electro-surgery, and curettage 

are categorized as destructive methods. It should be mentioned that the topical chemotherapy 

including bichloroacetic or trichloroacetic, salicylic acid, podophyline, cantharidin, and 5-

flurouracil is also considered as a conventional destructive treatment method [18]. Based on a study 

conducted by Kassis et al. [25], it was concluded that  continuous ultrasound has no healing effect 

while struggling with wart disease. In the immunotherapy, the humoral and/or cellular immune 

responses are elicited by using drugs such as imiquimod, zinc sulfate, diphenylcyclopropenone, and 

cimetidine [26]. However, none of them are well-tolerated and high efficient [27]. Indeed, the 

therapeutic approaches can eliminate the symptoms and signs of warts. This is due to the fact that 

HPVs have no cure [20]. It was found that plantar warts and common warts are different in 

responding to the treatment [28]. Hence, it was believed that the cure for warts needs to be 
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individualized [18]. According to the previous studies, the success rate of the known methods 

applied for common wart treatment varies from 32% to 93% [29, 30].  

Cryotherapy is one of the most utilized treatment methods for warts. Although cryotherapy is 

painful, and it has side effect, however, it is inexpensive and easy to employ. In this method, the 

liquid nitrogen is directly applied to warts for 10 to 20 seconds [26]. The mechanism of the 

cryotherapy technique is still unknown. However, it seems that the freezing operation results in local 

irritation and consequently, an immune response is stimulated [26]. To achieve satisfactory results, 

the procedure should be repeated every 2 to 3 weeks. According to a study by  Bourke et al. [31], 

the healing rate of the cryotherapy, repeated every three weeks, for warts on hands was between 

30% and 70% after three months. Other studies showed that warts treated with cryotherapy and/or 

salicylic acid have a 60% to 80% success rate [32-34]. This destructive approach causes blistering 

as it causes damage to the skin and it is painful. Moreover, there are risks of hyperpigmentation, 

hypopigmentation, and scarring with the cryotherapy [26].  

As another wart treatment method, immunotherapy does not suffer from most disadvantages 

associated with the cryotherapy [17]. In this approach, a skin test antigen is injected into a lesion 

with the aim of inducing a T-cell-mediated, immunological response.  In contrast to other available 

strategies for wart treatment, immunotherapy has the potential to result in a generalized immune 

response to the virus [35]. The key mechanism of this method is linked to a delayed-type (or type 

IV) hypersensitivity reaction [21]. For the first time, Lewis [36] reported the use of immunotherapy 

with dinitrochlorobenzene (DNCB) for common warts in 1973. Due to the mutagenic nature of 

DNCB, it is not utilized in the clinical setting anymore [36]. The non-mutagenic substance, known 

as diphencyprone (DCP), can be used for immunotherapy. Buckley et al. [37] investigated the warts 

treated with solutions of DCP over eight years.  

For the purpose of improving the diagnosis in the medical science, implementation of machine 

learning and data mining approaches can be beneficial in terms of prediction accuracy and time (and 
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cost) aspect. Several studies reported in the literature introduce the application of predictive 

methods/algorithms for diagnosis and treatment selection of skin-related diseases. For example, 

Parikh and Shah [38] employed the support vector machine method combined with the polynomial, 

radial basis function, linear, t-student, and inverse multi-quadratic kernels for classification of skin 

diseases including fungal infection, bacterial infection, scabies, and eczema. The datasets employed 

in their study have been obtained from an Indian hospital. An accuracy of about 95% was attained 

in their study.  In another research investigation, El Bachir Menai and Altayash [39] used decision 

tree-based method for diagnosis of erythemato-squamous disease in dermatology. Their proposed 

approach led to a 95% precision. In addition, there are a number of research works in the open 

sources that have implemented connectionist tools to investigate treatment of the melanoma (a 

category of skin cancers) in terms of classification and diagnosis ways [40-45]. 

Khozeimeh et al. [17] proposed a fuzzy rule-based methodology to study the effectiveness of 

cryotherapy and immunotherapy methods for treatment of common and/or plantar warts. Using the 

databases provided by Khozeimeh et al. [17], Akben [46] applied the ID3 algorithm to develop 

classification models for wart treatment selection. The developed ID3 models were then employed 

to create the fuzzy informative images. In another study, Khatri et al. [47] utilized the J48 algorithm 

in combination with the genetic programming for the same application of interest where they used 

the same databases as well.  Guo et al. [48] employed a deep convolution neural network 

discriminator for differentiating between the seborrheic keratosis and flat warts.  Guimarães et al. 

[49] utilized the fuzzy neural network method to improve the prediction capability of the expert 

system for the immunotherapy approach. For two commonly employed cryogens; namely nitrous 

oxide probes and liquid nitrogen spray, Mercer and Tyson [50] performed a mathematical modeling 

approach to find a relationship between the tissue freezing zone and freezing time. 

Decision trees (DTs), as a type of supervised machine learning and data mining approaches, are 

capable of conducting the regression and/or classification problems. There are several forms of DTs 

including classification and regression tree (CART), ID3, C5, and C4.5 to develop a DT-based 
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model. In 2017, CART methodology was employed to forecast the carbon dioxide solubility in ionic 

liquids [51]. In another study [52], a CART-based model was presented to model the equilibrium 

carbon dioxide loading capacity of sodium Glycinate. In the context of classification problem, DT 

classification was implemented for predicting the soil drainage classes in Denmark [53]. 

To the best of our knowledge, there no research studies in the literature that use CART-based 

methods for selection of the best approach for wart removal.  The primary objective of the present 

work is to introduce simple-to-employ and accurate decision tree (DT)-based models that can be 

used by physicians to select the best treatment method for common and/or plantar warts. To attain 

this goal, the CART algorithm is utilized for the development of efficient classifiers.  Dividing the 

desired database iteratively, CART leads to a homogenous classification of the target/dependent 

parameter. One of the main advantages of the strategy proposed in this study over other algorithms 

is that the designed CART-based models can be visualized through an understandable manner. 

Indeed, there is no need for medical experts to obtain mathematical and computational information 

regarding the classification methodology. Hence, the visualized tree-based models can be effectively 

used by medical experts/doctors for the prediction purposes.   

The remainder of the current research study consists of four main sections: Section 4.2 briefly 

describes the CART algorithm and the theory behind it. In Section 4.3, the classifier development 

procedure is explained. Then, the results achieved in this work are presented and discussed in 

Section 4.4.  Finally, the conclusions are drawn in Section 4.5.   

 

4.2 DECISION TREE LEARNING 

Similar to other machine learning and intelligence approaches such as artificial neural networks, 

support vector machines, and adaptive neuro-fuzzy inference system, the decision trees (DTs) 

technique is able to solve regression and classification problems. Highlighting one important 

characteristic of DTs, the DT learning is known to be computationally inexpensive. Furthermore, no 
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assumptions are needed concerning the predictors’ parameters distribution. The DTs approach is 

also robust in handling the missing data points [54-56].  

As a decision support method, the DTs method employs a tree-like model that can be visualized. 

Fig. 4.1 demonstrates a simple decision tree. The depicted tree is designed for a hypothetical analysis 

that has ( )2,1 XXX =  as a vector of two independent variables. As can be observed from Fig. 4.1, 

the target (dependent parameter) can be estimated through four internal nodes and five leaves. In 

this approach, Ti and Li are the threshold values of the leaf. According to the decision tree presented 

in Fig. 4.1, the tree development is performed from the top to the down. At the beginning, the 

magnitude of X1 is compared to a threshold value. If the value of X1 is higher than the value of T1, 

the right branch, i.e. NO, is selected for the remaining steps to obtain the final result. Otherwise, the 

left branch should be chosen.  

 

 

Fig. 4.1: A typical decision tree (adapted from Ref. [62]). 
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There are a number of algorithms suggested in the literature to develop decision tree-based 

regressors or classifiers. A few of the well-known algorithms include iterative Dichotomiser 3 (ID3) 

[55], C4.5 (developed as a successor of the ID3 learning algorithm) [57], fuzzy ID3 [58], and CART 

[59]. In the regression and classification applications, DTs technique offers distinct advantages. For 

example, the DTs model is easy to interpret and also to visualize. Indeed, compared to black-box 

models such as artificial neural networks, DTs models can be demonstrated in a graphical form. 

However, there are some disadvantages associated with DTs. One of the main drawbacks of DTs is 

their limitation for estimating continuous values in the context of regression analysis. Furthermore, 

for both classification and regression tasks, the structure of the created tree might be complicated 

due to the presence of many branches. The structure of DTs is highly dependent on the data 

introduced for modeling. In other words, variations in the dataset will change the structure of the 

tree. Hence, DTs methods might be variable and unstable.   

Over the years, the classical CART algorithm has remained as a commonly utilized decision tree. 

This is mainly due to the nature of this effective methodology [51, 60]. Indeed, the CART model is 

fast to create, and it applies to both the quantitative and qualitative data.  In this study, the CART 

method is used to develop tree-based classifiers for the application of interest. To develop a CART 

model, the recursive binary splitting is used. For regression problems, the squared residentials 

minimization algorithm is preferred to be employed for the splitting. In the case of classification 

analysis, splitting rules such as Twoing and Gini may be applied.  In this research, the Gini splitting 

rule is utilized. To determine the importance of each feature in the collected databases, the strategy 

of Gini permutations/measurements is also applied. Consider that the kn  samples’ fraction from 

 1,0=k  category out of all the samples at the node   is expressed as follows: 

nnp kk /=                                                  (4.1) 
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In Equation (1), p refers to the probability of having a specific data class in a branch of the DT (node 

 ). The following equation presents the mathematical expression for the Gini impurity, )(i :  

2
1)( −=

k

kpi                                             (4.2) 

If the node has only one single class, the equation output becomes zero that is the best value for the 

impurity. For a two-class problem (class 0 and class 1), )(i  is calculated as follows [61]: 

2

0

2

11)( ppi −−=                                   (4.3) 

As the samples are separated and sent to sub-nodes 
1  and 

2 , the Gini impurity changes. To define 

the reduction amount of )(i , as a result of separating and sending the samples to sub-nodes 
1  

and 
2  by a threshold t  on feature  , the following expression can be used [61]:  

)()()()( 21  ipipii rl −−=              (4.4) 

Depending on the applied setting (when creating a tree), the ideal strategy is to make enough 

branches until each branch has a Gini impurity of zero.  

Conducting a proper/systematic search over all the available features at the node, the pair   t,  that 

leads to a maximal i  is obtained. After this stage, the algorithm records and accumulates a 

decrease in )(i  for all the nodes (individually for all features). If we have a random forest of 

CARTs instead of a single CART, the Gini importance is calculated using the following expression 

[61]: 

( )=
T

G TiI


  ,)(                         (4.5) 
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in which, )(GI  resembles the Gini importance and T denotes the number of trees in the model. The 

Gini importance indicates how often a specific feature   is employed for a split, and how important 

its general discriminative value is for the classification analysis of the objective function. 

 

4.3 MODEL DEVELOPMENT  

4.3.1 Databases  

To develop classifiers to study the applicability of the immunotherapy and cryotherapy (as wart 

treatment approaches), two different databases reported in the literature [17] are employed. The 

databanks have been gathered in Ghaem Hospital’s dermatology clinic (Mashhad, Iran), in the time 

period of January 2013 to February 2015, from the patients affected by common and/or plantar 

warts. It is believed that these two categories of warts are the most widespread warts. The detailed 

procedure to obtain the information on the types and treatment ways of warts for the model 

development can be found elsewhere [17].  

Using one of the databases, six vital parameters including the age and gender of the patient, number 

of warts, type of warts, surface area of warts, and the time elapsed before treatment are recorded to 

demonstrate the patient response to the cryotherapy method. The second database has seven 

variables to investigate the responses of the patients to the immunotherapy treatment.  Both 

databases have six variables in common. However, the induration diameter of initial test is also 

considered as a key parameter for the immunotherapy approach. Eqs. (4.6) and (4.7) mathematically 

represent the independent variables to study the responses of patients to the cryotherapy and 

immunotherapy methods, respectively. 

( )areatypewartsnumberwartstimeSexAgefRESPONSE ycryotherap ,,,,, −−=                          (4.6) 

( )diameterindurationareatypewartsnumberwartstimeSexAgefRESPONSE apyimmunother −−−= ,,,,,,  (4.7) 
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More information/data such as ranges of the independent parameters existing in the databases are 

given in Tables 4.1 and 4.2.    

 

Table 4.1: Information of patients treated with the immunotherapy strategy. 

Independent parameter Value/type 

Gender 49 woman and 41 man 

Age (year) 15-56 

Time elapsed before treatment (month) 0-12 

Number of warts 1-19 

Types of warts 47 common, 22 plantar, and 21 both the common 

and plantar 

Surface area of the warts in mm2 6-900 

Induration diameter of initial test (mm) 5-70 

 

Table 4.2: Information/data of patients treated with the cryotherapy method. 

Independent parameter Value/type 

Gender 43 woman and 47 man 

Age (year) 15-67 

Time elapsed before treatment (month) 0-12 

Number of warts 1-12 

Types of warts 54 common, 9 plantar, and 27 both the common and 

plantar 

Surface area of the warts in mm2 4-750 

 

4.3.2 General step 

To construct the robust classifiers based on the CART algorithm for selecting the appropriate wart 

treatment method, each collected database is randomly divided into two distinct categories; namely 

training dataset and testing dataset. Since there is no universal rule for allocations of data points to 

training and testing phases, the trial and error procedure can be utilized for this task. Normally, 80-
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90% of the data points are used for the model training. Using 90% of the wart dataset, it is found 

that the CART model can provide satisfactory results.   

In our study, the training dataset consists of 90% of the used databank. The remaining 10% of the 

data points are labelled as the test samples. This is due to the fact that the random separation of data 

results in a more reliable (and generalized) model. Indeed, the classifier model can be created by 

employing the data points allocated for the training phase of the CART model proposed in this study. 

Once the model was built, it can be assessed in terms of accuracy using the unseen data points, i.e. 

the testing dataset.  

 

4.3.3 Classifier development  

This study utilizes the CART algorithm to introduce rigorous classifiers for the proper selection of 

the wart treatment approach. The model development procedure is graphically represented in Fig. 

4.2. To build a tree-based model on the foundation of the CART method, two influencing parameters 

including the number of features and the maximum depth of the tree need to be defined. The 

maximum depth of the CART refers to the maximum length among the existing paths that joins a 

root of the tree to a leaf.  

The number of independent variables determines the number of features. The databank for the 

cryotherapy method consists of six independent parameters.  In the case of immunotherapy method, 

there are seven independent parameters in the corresponding database. Since there is no universal 

rule to obtain the optimal CART maximum depth, a trial and error procedure is used. To start the 

procedure, the initial CART depth is supposed to be three. Eventually, it is found that the optimum 

values of the CART maximum depth are 10 and 8 for the immunotherapy and cryotherapy cases, 

respectively. Fig. 4.3 demonstrates the developed CART classifier to investigate the effectiveness 

of the immunotherapy technique for wart treatment. The CART model proposed for the cryotherapy 

method is depicted in Fig. 4.4.  
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Fig. 4.2: Schematic of the procedure for model development to select the appropriate wart 

treatment method. 

 

 

Fig. 4.3:  The developed CART approach to study the effectiveness of the immunotherapy 

technique for wart treatment. 
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Fig. 4.4:  The introduced CART model to examine the effectiveness of the cryotherapy method for 

wart treatment. 

 

The digraphs of the CART models created for wart treatment through employing the cryotherapy 

and immunotherapy methods are provided in Appendix B.   

 

4.4 RESULTS AND DISCUSSION   

4.4.1 Accuracy assessment  

In the case of classification problems, the accuracy only indicates the correct classification. This 

parameter considers equal costs for misclassification. Considering the unequal costs of decisions, 

the confusion matrix can be utilized to determine the specificity, sensitivity, and accuracy. 

Furthermore, statistical parameters such as mean squared error (MSE) and absolute average 

deviation (AAD) are normally used when the values of continuous variables are predicted. Most 

classification problems are binary variable (correct/false and yes/no.). As shown in Figs. 4.3 and 
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4.4, the proposed CART classifiers provide easy-to-use and rigorous graphical models to evaluate 

the success of cryotherapy and immunotherapy in treating the common and/or plantar warts.  

Assessing the capability of the proposed classifiers, some appropriate statistical parameters such as 

classification accuracy (ACC), sensitivity or true positive rate (TPR), and specificity or true negative 

rate (TNR) are utilized. The corresponding formulas for ACC, TPR, and TNV (in percentage) are 

listed below through Eqs. (4.8) to (4.10), respectively.   

100
+++

+
=

tnfnfptp

tptn
ACC                    (4.8) 

100
+

=
fntp

tp
TPR                                          (4.9) 

100
+

=
fptn

tn
TNR                                        (4.10)                                

where fp, fn, tn, and tp stand for the false positive, false negative, true negative, and true positive, 

respectively. 

The statistical analysis reveals that the outcomes obtained from the presented CART models are in 

excellent agreement with the existing real data. Indeed, both the CART models developed for the 

cryotherapy and immunotherapy methods are able to forecast the patient response to the treatment 

without any error. In other words, the values of ACC, TPR, and TNV for the proposed CART models 

are equal to 100% for both the training and testing phases. 

 

4.4.2 Comparison with other available techniques 

In 2017, Khozeimeh et al. [17] employed a fuzzy rule-based framework to select the proper method 

for wart treatment. Recently, Akben [46] and Khatri et al. [47] utilized DT-based algorithms for the 

development of classification models with a capability for selecting the best approach for wart 
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treatment. Furthermore, Khatri et al. [47] evaluated the classification capability of several methods 

including support vector machine (SVM), k-nearest neighbors (KNN), random forest (RF), naïve 

Bayes (NB), logistic regression (LR), linear discriminant (LD), bagged trees (BaT), and boosted 

trees (BoT). It should be mentioned that all the previous studies discussed in the current research 

work have used the same databanks to introduce the classification strategies. To evaluate the 

robustness of the model proposed in this study for selecting the most effective wart treatment 

technique, the previous research investigations that employed the same databases, but different 

predictive approaches, are chosen for the comparison purposes.  

For the immunotherapy technique, Table 4.3 summarizes a comparison between the proposed 

CART model and the available models (in the literature) in terms of sensitivity (TPR) and specificity 

(TNV) as well as the accuracy. As it is evident from Table 4.3, the decision tree-based models 

outperform the previous models introduced for the immunotherapy case. In addition, the BoT and 

LD models exhibit the weakest results with an accuracy rate of 78.9% for the immunotherapy 

scenario.  

Fig. 4.5 illustrates a graphical method to compare the accuracies of our new CART models and the 

models available in the open sources.  

Correspondingly, Table 4.4 compares the classification performance of the introduced CART model 

for the cryotherapy case to that of the above-mentioned literature models. Similar to the 

immunotherapy case, the results tabulated in Table 4.4 exhibit the superiority of the suggested 

CART model over the previous models for the cryotherapy treatment methodology.  
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Table 4.3: Comparison between the performance of the proposed CART model and the literature 

models for immunotherapy case based on statistical analysis. 

Model Assessment parameter 

ACC TPR TNR 

CART (this work) 100 100 100 

Fuzzy rule-based [17]  83.3 87.0 71.0 

J48 [47] 82.2 82.2 56.7 

GA-J48 [47] 96.7 96.7 91.4 

ID3 [46] 90.0 97.2 63.2 

SVM [46] 87.8 * * 

KNN [46] 87.8 * * 

LR [46] 83.3 * * 

LD [46] 78.9 * * 

NB [46] 87.8 * * 

RF [46] 80.0 * * 

BaT [46] 80.0 * * 

BoT [46] 78.9 * * 
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Fig. 4.5: Graphical comparison of the proposed CART model with the literature models for the 

immunotherapy method.  
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Table 4.4:  Values of statistical parameters for the proposed CART model and the literature 

models for cryotherapy case based on comparison between predictions and real data.  

Model Assessment parameter 

ACC TPR TNR 

CART (this work) 100 100 100 

Fuzzy rule-based [17]  80.0 82.0 77.0 

J48 [47] 93.3 93.3 93.9 

GA-J48 [47] 98.9 98.9 87.0 

ID3 [46] 94.4 89.6 100 

SVM [46] 90.0 * * 

KNN [46] 88.9 * * 

LR [46] 86.7 * * 

LD [46] 87.8 * * 

NB [46] 85.6 * * 

RF [46] 92.2 * * 

BaT [46] 92.2 * * 

BoT [46] 82.2 * * 

 

 

For the cryotherapy case, the fuzzy rule-based strategy [17] achieved 80% accuracy, which is the 

lowest amongst the available literature models. The performance of the literature models as well as 

our CART model in terms of precision is graphically presented in Fig. 4.6. 

Comparing the results of the proposed CART models with the outcomes of the models suggested by 

Khozeimeh et al. [17], Akben [46], and Khatri et al. [47] reveals the supremacy of the decision tree-

based techniques over the literature models for selection of the best approach for wart treatment.  

Beside the accuracy, the CART models provide a simple-to-use framework to select the proper 

treatment method without any calculator or computer assistance, while the fuzzy rule-based models 

appear to be appreciably sophisticated where the computational procedure might be complicated. 

As a result, the predictive models proposed in this study is more reliable and applicable than other 

literature models for medical experts. In other words, since there is no need to have knowledge and 
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theoretical background about mathematical expressions or machine learning fundamentals, the 

proposed tree-based models can be simply utilized by medical experts/doctors before implementing 

a treatment procedure. Generally, employing this type of classification techniques in the health and 

medical sectors leads to higher success rates in diagnosis and treatment of various diseases so that 

they decrease the associated expenses and time required for the corresponding medical operations.    
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Fig. 4.6: Comparison of performance of the proposed CART model with that of the previous 

models for the cryotherapy scenario.   

 

4.4.3 Feature importance  

The importance of each independent parameter involved in the development of the CART classifiers 

for the immunotherapy dataset is depicted in Fig. 4.7.  
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Fig. 4.7: Relative significance of the features involved in the CART model for immunotherapy 

approach. 

 

As seen in Fig. 4.7, the most important feature, to realize whether the immunotherapy is a proper 

treatment method or not, is the time elapsed before performing the treatment. This feature has 22.7% 

importance in the construction of the CART model. The outcome of the study conducted by 

Khozeimeh et al. [17] is in agreement with this research finding as Khozeimeh et al. [17] concluded 

that the time elapsed before accomplishing the immunotherapy has the highest effectiveness. Also, 

gender of the patient, with just 2% influence on the CART structure development has the least 

significance among the contributing factors. Although the literature [17] claimed that the gender of 

patient has a low effectiveness in immunotherapy case, the lowest impact is associated with the 

number of warts based on our research study. Other features including the induration diameter of 

initial test, age of the patient, number of warts, type of warts, and the surface area of the warts have 

almost the same significance in the decision tree creation process. 
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Fig. 4.8 describes the relative importance of the features employed to develop the CART model for 

assessment of the effectiveness of the cryotherapy method. Similar to the immunotherapy case, the 

most important variable in the CART development process is the time elapsed before starting a 

treatment. It is worth noting that this parameter is more important than other features of the database 

all together such that it has a 55.77% significance in the CART model development for the 

cryotherapy method. However, the lowest importance for this database belongs to the gender of the 

patient. The results obtained by Khozeimeh et al. [17] showed that the gender has the minimum 

importance when the patient is treated by the cryotherapy, which is the same as the finding of the 

current study.  However, based on the methodology employed by Khozeimeh et al. [17], the highest 

relative rank was given to the age of patients, which is in contradiction with the outcome of the 

present study.   
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Fig. 4.8: Feature importance plot of the CART model suggested for cryotherapy method. 
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4.5 CONCLUSIONS 

In the current, CART methodology is employed to develop robust classifiers to choose the proper 

treatment approach (cryotherapy or immunotherapy) for common and/or plantar warts. The 

performance of the developed tree-based classifiers is compared to that of the methodologies 

available in the literature in terms of reliability and prediction accuracy. Outcomes of the introduced 

CART models reveal an excellent performance for both cryotherapy and immunotherapy approaches 

so that the ACC, TPR, and TNR are found to be 100%.  On the other hand, the literature models for 

the cryotherapy case lead to ACC, TPR, and TNR ranging from 80.0% to 98.9%, 82.0% to 98.9%, 

and 77.0% to 100%, respectively.  For the immunotherapy case, the magnitudes of ACC, TPR, and 

TNR are between 78.9%-96.7%, 82.2%-97.2%, and 56.7-91.4%, correspondingly. Furthermore, the 

proposed models appear in a graphical form and can be easily employed in an understandable 

manner. Hence, it can be concluded that no model can rival the proposed CART models in terms of 

both accuracy and simplicity of implementation. By obtaining further information from various 

groups of patients, it is possible to present more efficient (and generalized) decision tree-based 

models that can be more practical for different cases. It is recommended to incorporate effective 

hybrid and ensemble methodologies (e.g., genetic algorithm and particle swarm optimization) into 

the CART algorithm for future studies. Implementation of hybrid/ensemble methods might further 

simplify (and improve) the structure of the tree-based models developed for wart treatment.   
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ABSTRACT  

Background and Objective: As the most common cardiovascular defect, coronary artery disease 

(CAD), also called ischemic heart disease, is one of the substantial causes of death globally. Several 

diagnosis approaches such as baseline electrocardiography, echocardiography, magnetic resonance 

imaging, and coronary angiography are suggested for screening the suspected patients that may 

suffer from CAD. However, applying such methods may have health side effects and/or expensive 

costs.  

Methods: As an alternative to the available diagnosis tools/methods, this research involves a 

decision tree learning algorithm called classification and regression tree (CART) for a simple and 

reliable diagnosis of CAD. Several CART models are developed based on the recently CAD dataset 

published in the literature.  

Results: Utilizing all the features of the dataset (55 independent parameters), it was found that only 

40 independent parameters influence the CAD diagnosis and consequently development of the 

predictive model. Based on the feature importance obtained from the first CART model, three new 

CART models are then developed using 18, 10, and 5 selected features. Except for the five-feature 

CART model, the outcomes of developed CART models demonstrate the maximum achievable 

accuracy, sensitivity, and specificity for CAD diagnosis (100%), while comparing the predictions 

with the reported targets. The error analysis reveals that the literature models including sequential 

minimal optimization (SMO), bagging SMO, Naïve Bayes (NB), artificial neural network (ANN), 

C4.5, J48, Bagging, and ANN in conjunction with the genetic algorithm (GA) do not outperform the 

CART methodology in classifying patients as normal or CAD.  

Conclusions: Hence, the robustness of the tree-based algorithm in accurate and fast predictions is 

confirmed, implying the proposed classification technique can be successfully utilized to develop a 

coherent decision-making system for the CAD diagnosis. 

 

KEYWORDS: coronary artery disease; classification; decision tree; error analysis; Classification 

and Regression Tree 

 

5.1 INTRODUCTION 

Coronary artery disease (CAD) appears to be the most common cardiovascular defect; heart disease 

is a leading cause of global deaths. A study showed that CAD is responsible for the death of one-

third of women, regardless of the ethnicity or race [1]. According to the World Health Organization 

(WHO) [2], CAD is the world’s biggest killer amongst the top ten death causes including CAD, 

stroke, chronic obstructive pulmonary disease, lower respiratory infections, Alzheimer disease and 
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other dementias, diabetes mellitus, road injury, diarrhoeal diseases, tuberculosis and trachea, 

bronchus, and lung cancers. Although the heart disease management has drastically changed in 

recent decades [3, 4], individuals with stable CAD are still prone to a significant adverse 

cardiovascular incident [5-7]. According to a study [8], more than 6% of the adult population in the 

United States are suffering from CAD. Furthermore, it has been estimated that the clinical CAD will 

be the issue of approximately one-third of middle-aged women and half of the middle-aged men 

across the United States [8].   

Atherosclerosis, a condition in which plaque builds up inside the arteries supply oxygen-rich blood 

to the heart, characterizes CAD. The plaque formed over the years is responsible for narrowing the 

coronary artery lumen and, consequently, limiting the blood flow through the artery. The chest pains 

in the form of pressure sensation or squeezing can be a symptom of CAD. However, several patients 

with CAD show no symptoms of the disease [9]. To screen the patients, guideline recommendations 

are employed; the proposed tips are currently documented by the American Association of Clinical 

Endocrinologists (AACE), American College of Cardiology/American Heart Association 

(ACC/AHA), and US Preventive Services Task Force (USPSTF) [10-12]. 

The 2004 INTERHEART study [13] defined nine modifiable risk factors that are correlated with 

CAD. These factors include smoking, hypertension, abdominal obesity, diabetes, stress and 

depression, regular alcohol consumption, daily consumption of vegetables and fruits, dyslipidemia, 

and regular physical activity. The majority of the risk factors are similar in women and men. 

However, compared to men, women are found to have a stronger risk factor profile at younger ages. 

Men, on the other hand, tend to have better health conditions at older ages [14]. Indeed, at first CAD 

manifestation, women are approximately ten years older than men [15]. However, smoking, diabetes 

or premature menopause throw this advantage away [14]. The race is known to be another risk factor 

for CAD. For example, some studies revealed that CAD rate among Asian Indians is higher than 

that of other ethnics [14, 16]. Family history is also associated with the risk of CAD. Based on a 
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research investigation [17], CAD family history in a sister has 12-fold higher risk versus 3-fold for 

a parent and 6-fold for a brother.  

For patients with known or suspected CAD, conventional invasive coronary angiography is found 

to be the gold standard for diagnosis purposes [18]. However, this approach is time consuming, 

invasive, and expensive. Its invasiveness nature may cause a degree of discomfort for some patients, 

since this method usually needs a short stay at the hospital [19]. Moreover, this modality has a small 

but considerable complication rate [20]. Electron-beam computed tomography (EBCT) has paved 

the way for morphological evaluation of cardiac structures. This is owing to the high temporal 

resolution of EBCT and the use of prospective electro-cardiographic triggering as well.  However, 

due to the inferior spatial resolution of the EBCT approach, it was not considered as a proper strategy 

for identifying the presence of coronary stenosis [19]. The introduction of computed tomography 

(CT) angiography led to substantial improvements in the detection of CAD as well as the assessment 

of the heart function in different conditions [21-23].  

There are some prevention ways to deal with CAD. These approaches can be divided into two 

categories, namely primary prevention and secondary prevention. Indeed, primary prevention can 

be defined as the treatments or modification of risk factors that are proven to avert the first or initial 

coronary event [24]. A common example of this prevention category is using lipid-lowering agents 

to avoid the occurrence of the first myocardial infraction [25]. On the other hand, the treatment 

modalities that are initiated after the first event for the prevention of subsequent outcomes are known 

as secondary prevention strategies. For example, utilization of beta-blockers after myocardial 

infarction, for new events reduction, belongs to this classification [26].     

Studies showed that physical activity reduces the CAD risk. The role of physical activity in both 

primary and secondary prevention is studied in the literature. For example, in the case of primary 

prevention, the protective function of working out was declared in the United States for a large 

cohort of longshoremen [24]. For the secondary prevention, the Clinical Practice Guidelines for 
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Cardiac Rehabilitation [27] indicated that the improvement extent is dependent on different factors, 

including duration, intensity and frequency of activity, and the training time interval. The concerns 

regarding regular aerobic exercise are addressed in some research investigations. It was revealed 

that regular moderate-intensity exercise decreases the cardiac mortality risk, and even with vigorous 

exercise, the sudden death incidence is low [28, 29]. However, the risk of myocardial infarction 

increases with a high-intensity and vigorous exercise [24].  

In addition to the traditional and routine screening approaches to detect CAD, some predictive 

models have been developed based on different machine learning (ML) and data mining 

methodologies. This study is intended to employ the decision tree learning algorithm, particularly 

the CART, for the diagnosis of CAD.  To the best of our knowledge, this is the first work on the 

application of CART to study the Z-Alizadeh Sani CAD dataset for diagnosis/classification 

purposes. Furthermore, we compare the outcomes of our new models with the results of the 

previously used models, developed based on various methodologies such as ANN and support vector 

machine (SVM). Furthermore, we develop several CART models based on different inputs; the 

inputs are not selected randomly. Indeed, we introduce a new CART model through employing all 

the inputs existing in the Z-Alizadeh Sani CAD dataset. Based on the Gini index, we then define the 

relative importance of each independent parameter for the development of the CART model. Finally, 

we obtain two more CART-based models using the independent parameters, which are detected 

(recognized) as important parameters. Further highlighting the novelty of this research, the 

contributions of the work is as follows: a) Utilization of the CART strategy for CAD diagnosis using 

Z-Alizadeh Sani CAD dataset for the first time, b) Selection of vital input parameters and 

determination of relative importance of inputs, c) Design of the optimal CART model in terms of 

structure/topology and parameters values, d) Proper data mining for training and testing phases, e)  

Systematic statistical analysis for performance evaluation of various classification tools, and f) 

Higher accuracy and simpler (and more understandable) outcomes of the CART approach, compared 

to the previous techniques applied to the dataset. 
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In fact, the CART results would help physicians and health scientists to better understand the 

relationships between different parameters and CAD. 

According to the literature, several connectionist and predictive/deterministic methods are currently 

being used in various science, health, and engineering disciplines for different purposes, particularly 

when a large amount of data is available. In all cases, selection and application of proper techniques, 

data mining/management, choosing vital important input data, tuning the parameters of deterministic 

or classification models based on the selected methods, finding the relative importance of input 

parameters, results and statistical analysis, and making proper decisions are among the novelties of 

research works. 

After the introduction section, a review of the published works in the literature on the classification 

of CAD using various ML and data mining approaches is provided. Section 5.3 presents an overview 

of the CART methodology for the classification task. Modeling procedure for the application of 

interest is addressed in detail in Section 5.4. Section 5.5 includes the findings as well as a discussion 

about the modeling results. Finally, the main conclusions are highlighted. 

 

5.2 RELEVANT STUDIES 

In 2017,  Xu et al. [30] employed the multivariate logistic regression to detect the correlation 

between CAD and defined risk factors such as smoking status, angina, age, sex, hypertension, 

diabetes, serum creatinine, and dyslipidemia. The developed model was then used to differentiate 

non-CAD from CAD in the test sample. The data required for modeling purpose were gathered by 

studying 8297 patients, ranging between 19 to 90 years old, in the north and south of China between 

2008 and 2014. After excluding the patients with incomplete data, 4678 male patients and 2682 

female patients, both symptomatic and asymptomatic cases, were selected/utilized.  

The following expression represents the model developed by Xu et al. [30] for CAD prediction:   
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where p is the probability of CAD and ( )xf  refers to the discriminant vector. Eq. (5.2) is used to 

calculate the value of ( )xf as follows: 

( ) 
=

+=
n

i
ii xAxf

1
0                                             (5.2) 

in which, i  and ix  denote the regression constants and risk factors, respectively; and 0A  is the 

intercept. 

The above-mentioned model presented a specificity of 0.709 and a sensitivity of 0.658, which is 

fairly acceptable, but not accurate enough. Although this model is simple to use based on the original 

work described by the researchers, it is a simplified model that does not consider other vital risk 

factors including family history and body mass index.  

Davari Dolatabadi et al. [31] implemented the support vector machine (SVM) algorithm to present 

an automatic CAD diagnosis model. In their study, they employed the signal extracted from 

electrocardiogram (ECG) as well as heart rate variability (HRV). The used data points were obtained 

from the recording of 86 lengthy ECG of 80 individuals, in which 46 cases were men aged between 

44 and 85, and 29 cases were women aged between 23 and 87 years. Finally, they only selected 23 

cases, who suffered from CAD, from this databank. For the normal group, they used 23 normal 

individuals that were obtained from 24-hour Holter monitor recordings of 30 healthy men and 24 

healthy women (aged from 29 to 76). With the aim of reducing the features’ dimension, the authors 

applied a method called principal component analysis (PCA). The proposed SVM classifier was able 

to offer a sensitivity, specificity, and accuracy of 98.43%, 100%, and 99.2%, respectively.  

Utilizing a simulated dataset of heart disease containing 1000 patient records, Ilayaraja and 

Meyyappan [32] applied a data mining algorithm for prediction of the heart diseases risk via 
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Frequent Itemsets. Chest pain, swelling of the ankles and feet, swelling in legs, shortness of breath, 

fatigue, fever, fluttering in the chest, swelling in the abdomen, changes in the heart rhythm, racing 

heartbeat, slow heartbeat, dry or persistent cough, lightheadedness, fainting or near fainting, skin 

rashes or unusual spots, breathlessness with exertion or at the rest, irregular heartbeats (rapid, 

pounding or fluttering), pain in the neck, jaw, throat, upper abdomen or back pain, numbness and 

weakness or coldness in the legs or arms (if the blood vessels are narrowed) are the attributes of the 

used dataset.  

Tan et al. [33] implemented the convolutional neural network (CNN) with long short-term memory 

(LSTM) model for the CAD diagnosis through employing ECG signals. The presented stacked 

CNN-LSTM model is fully automatic. The CNN method was also utilized by Acharya et al. [34] for 

automated detection of CAD by applying different durations of ECG segments. In another research 

investigation, Giri et al. [35] used heart rate signals to develop a methodology for the automatic 

detection of CAD and normal conditions. They employed several approaches such as PCA, SVM, 

independent component analysis (ICA), linear discriminant analysis (LDA), Gaussian mixture 

model (GMM), k-nearest neighbor (KNN), and probabilistic neural network (PNN). Acharya et al. 

[36] employed CWT-based contourlet and shearlet transforms of ECG signals for the detection of 

CAD, congestive heart failure (CHA), and myocardial infarction. Higher-order statistics and spectra 

(HOS) and flexible analytic wavelet transform (FAWT) methods were also investigated in other 

studies [37, 38]. 

In a research study conducted by Sood et al. [39], the heart rate signals were processed using the 

empirical mode decomposition (EMD) technique. To classify CAD and normal subjects, the 

researchers extracted several features. In addition to EMD, Acharya et al. [40] employed various 

methods including Poincare plots, recurrence quantification analysis (RQA) parameters, Shannon 

entropy, approximate entropy, sample Entropy, higher-order spectra methods, detrended fluctuation 

analysis (DFA), cumulants, and correlation dimension for the application of interest.  
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For the prediction of CAD, Forssen et al. [41] employed metabolomic data along with several 

approaches namely PCA regression, L1 regression, and random forest. The required data for 

modeling were collected from the Clinical Cohorts based on the Coronary Disease Collaboration 

study in some UK hospitals. Using a nuclear magnetic resonance (NMR) technique, they quantified 

256 metabolites for each individual. The dataset was randomly divided into two subsets: training 

(75%) and testing (25%). The presented models provided sensitivities between 88.2% and 98.4%. 

However, the obtained values for specificity were between 2.6% and 33.9%.  

There are some publications in the literature on the application of various machine learning and data 

mining strategies in the development of predictive models with the aid of a publicly available 

database known as UCI Cleveland dataset [42] for CAD diagnosis. The Cleveland dataset contains 

303 cases of patient data points, in which 6 of them are incomplete. Hence, these data were omitted 

from the dataset before the modeling process. Each set of data points has 13 independent attributes 

including age, gender, chest pain type, serum cholesterol, resting blood pressure, fasting blood sugar, 

resting electrocardiographic results, exercise-induced angina, maximum achieved heart rate, ST 

depression induced by exercise relative to rest, the heart status, number of major vessels, and the 

slope of the peak exercise ST segment. The dependent parameter is the diagnosis of heart disease 

that is either normal or sick (three different types). For example,  Purushottam et al. [43] compared 

the performance of several methods such as SVM, C4.5, multi-layer perceptron (MLP) ANN, and 

radial basis function (RBF) ANN in classifying the Cleveland dataset.  

Nguyen et al. [44] proposed the interval type-2 fuzzy logic system (IT2FLS) and wavelet 

transformation (WT) for Cleveland dataset classification. They compared the results of the proposed 

model with the outputs of other models including SVM, probabilistic neural network (PNN), 

adaptive neuro-fuzzy inference system (ANFIS), and fuzzy ARTMAP. Based on the performance 

metrics, the IT2FLS in conjunction with wavelets provided the best predictions with accuracy, 

sensitivity, and specificity of around 80%, 84%, and 77%, respectively.    
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In another work, Uyar et al. [45] employed the Cleveland dataset for developing a diagnosis model. 

The approach introduced by Uyar et al. [45] is based on recurrent fuzzy neural networks (RFNNs). 

The authors employed GA for training the RFNN. 85% of the data points were used for the training 

phase and the remaining 15% was allocated for the testing phase. The presented GA-RFNN model 

led to a sensitivity, specificity, and accuracy of 97.74%, 95.73%, and 96.63%, respectively. Other 

works in this research area can be found elsewhere [46-50]. 

In 2013, a new dataset for heart disease, known as called Z-Alizadeh Sani dataset, was published 

[51]. Alizadehsani et al. [51] utilized several methods namely ANN, SMO, NB, and bagging 

algorithms to analyze the Z-Alizadeh Sani dataset. In addition to the above-mentioned algorithms, 

they also used feature creation and feature selection methods to assess the results. It was found that 

the performances of the classification algorithms are better when both the feature creation and 

feature selection techniques are used.  

In another study by Alizadehsani et al. [52], Z-Alizadeh Sani dataset was divided into the train (90%) 

and test (10%) datasets. Then, the information gain and SVM were used for feature analysis and 

feature selection. For the classification purpose, the researchers employed the SVM methodology in 

combination with several kernel functions including RBF, sigmoid, linear, and polynomial.  

Utilizing the ANN and GA modeling techniques, Arabasadi et al. [53] classified the Z-Alizadeh Sani 

dataset in 2017. The attained magnitudes of sensitivity, specificity, and accuracy for the GA-ANN 

were 97%, 92% and 93.85%, respectively. On the other hand, the ANN model classified the dataset 

with 84.62% accuracy, 86% sensitivity, and 83% specificity. Hence, the classification capability of 

the presented hybrid model of GA-ANN is considerably higher than the developed ANN model. 

Performance of cost-sensitive techniques along with the Naïve Bayes, SVM, SMO, C4.5, and KNN 

strategies in CAD classification was also evaluated in a research study by Alizadehsani et al. [54]. 

To achieve more accurate outputs in the context of CAD classification, Alizadehsani et al. [55] 
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proposed a machine learning-based model to detect left circumflex, left anterior descending, and 

right coronary artery.  

Acharya et al. [56] compared the performance of discrete wavelet transform (DWT), empirical mode 

decomposition (EMD), and discrete cosine transform (DCT) in the detection of CAD and  

myocardial infarction. Alkeshoush et al. [57] evaluated the potential of the PSO algorithm in the 

diagnosis of heart disease. The diagnostic performance of cardiac phase-space tomography analysis 

was examined by Stuckey et al. [58]. In another study, Steele et al. [59] found that ML methods in 

electronic health records are better than conventional survival methods for forecasting patient 

mortality in CAD. Recently, Johnson et al. [60] employed ML approaches for the scoring of CAD 

characteristics on coronary CT angiograms. In 2019, Alizadehsani et al. [61] conducted a review of 

ML-based studies for CAD prediction. 

 

5.3 CART METHODOLOGY  

Among the available learning algorithms for decision trees such as Iterative Dichotomiser 3 (ID3) 

[62], C4.5 [63], successor of the ID3 learning algorithm, fuzzy ID3 [64] and CART [65], the CART 

strategy is known to be one of the most successful techniques [65, 66] that can be utilized for both 

classification tasks and regression analysis [67, 68]. CART is a nonparametric ML method. This 

feature enables the CART method to freely learn any form of the mapping function from the 

employed training data samples [69]. To detect complicated interdependencies between a series of 

parameters, CART is capable of using the same parameters more than once in several parts of the 

model [70]. As a result, this algorithm is flexible and powerful. As the CART method is 

nonparametric, it does not depend on (or belong to) a specific type of distribution. However, it needs 

more training datasets, compared to the parametric methods including Naïve Bayes and linear 

discriminant analysis. It is worth mentioning that outliers in the input parameters do not considerably 
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affect the CART performance. On the other hand, imbalanced classes may result in under-fitted 

trees.   

This method develops binary trees. Indeed, splitting in CART is performed based on single features. 

Thus, the CART method is a univariate decision tree. Fig. 5.1 shows a simple binary tree. It is 

supposed that ( )2,1 XXX =  is the vector of the independent variables. In the respective order, the 

values of the threshold and leaf are indicated by Ti and Li. As can be seen from Fig. 5.1, the CART 

algorithm is a top-down decision tree. The top-down development continues until the stopping 

criterion (or criteria) is met. For both the regression and classification problems, one of the 

advantages of the tree-based models is that they can be employed in graphical forms, which do not 

require calculations. However, it may be not accurate enough for variables that are continuous [71]. 

There are different splitting criteria for decision trees; namely: impurity-based criteria, information 

gain, Gini index, likelihood ratio chi-squared statistics, DKM criterion, normalized impurity-based 

criteria, gain ratio, distance measure, binary criteria, Twoing criterion, orthogonal criterion, 

Kolmogorov-Smirnov criterion, and AUC splitting criteria. In this work, the Gini index [72] was 

employed.  

 

Fig. 5.1: A typical decision tree (adapted from Ref. [78]). 
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5.4 MODELING PROCEDURE  

5.4.1 CAD dataset 

To develop a tree-based classifier for CAD diagnosis, the dataset reported by Alizadeh et al. [51], 

known as the Z-Alizadeh Sani dataset, is employed. The collected databank comprises of the 

information of 303 patients. This databank has 55 independent parameters and classifies a person 

into a normal or CAD class. The criterion for classifying a person as a patient who has CAD is 

her/his diameter narrowing status. If the diameter narrowing is lower than 50%, the patient is 

classified as normal, and otherwise, as CAD affected [73]. 

The independent parameters include age, weight, length, gender, body mass index (BMI), diabetes 

mellitus (DM), hyper tension (HTN), current smoker, ex-smoker, family history (FH), obesity, 

chronic renal failure (CRF), cerebrovascular accident (CVA), airway disease, thyroid disease, 

congestive heart failure (CHF), dyslipidemia (DLP), blood pressure (BP), pulse rate (PR), edema, 

weak peripheral pulse (WPP), lung rates, systolic murmur, diastolic murmur, typical chain pain, 

dyspnea, function class, atypical, nonanginal CP, low thyroid angina, bundle branch block (BBB), 

Q wave, ST elevation, ST depression, T inversion, left ventricular hypertrophy (LVH), poor R wave 

progression, fasting blood sugar (FBS), creatine (Cr), triglyceride (TG), low density lipoprotein 

(LDL), high density lipoprotein (HDL), blood urea nitrogen (BUN), erythrocyte sedimentation rate 

(ESR), hemoglobin (HB), potassium (K), exertional CP, sodium (Na), white blood cell (WBC), 

lymphocyte, neutrophil, platelet (PLT), ejection function (EF), regional wall motion abnormality 

(region with RWMA), and valvular heart disease (VHD). 

Table 5.1 gives the ranges of the independent parameters that have quantifying values. DM, HTN, 

ex-smoker, smoker, obesity, FH, CVA, CRF, thyroid disease, airway disease, DLP, CHF, edema, 

weak peripheral pulse, systolic murmur, lung rales, diastolic murmur, typical chest pain, dyspnea, 

atypical, low threshold angina, exertional CP, nonanginal CP, Q wave, poor R progression, ST 

depression, ST elevation, T inversion, and LVH are “yes” or “no” parameters. Before introducing 
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the dataset to the CART algorithm, “yes” and “no” are substituted with one and zero, respectively. 

Function class is defined by 1, 2, 3 or 4, and region with RWMA is defined by 0, 1, 2, 3 or 4. VHD 

status is normal (0), mild (1), moderate (2), or severe (3). Finally, female and male are indicated by 

0 and 1, respectively.   

 

Table 5.1: Ranges of features of Z-Alizadeh Sani dataset [51]. 

Parameter  Range  

FBS, mg/dl 62-400 

TG, mg/dl 37-1050 

Cr, mg/dl 0.5-2.2 

HDL, mg/dl 15-111 

LDL, mg/dl 18-232 

BUN, mg/dl 6-52 

HB, g/dl 8.9-17.6 

ESR, mm/h 1-90 

K, mEq/lit 3.0-6.6 

Na, mEq/lit 128-156 

Lymph, % 7-60 

WBC, cells/ml 3700-18000 

Neutrophil, % 32-89 

EF, % 15-60 

PLT, 1000/ml 25-742 

BMI, kg/m2 18-41 

PR, ppm 50-110 

BP, mmHg 90-190 

Weight, kg 48-120 

Age, yr  30-86 
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5.4.3 CART development   

In order to develop a CART model for the classification of the Z-Alizadeh Sani dataset into two sub-

classes, including CAD and normal, the PyCharm Community Edition 3.1.3 is used. The modeling 

is performed on a PC with an Intel® Core™ i7-Q740 @ 1.73-2.93 GHz CPU and 8.00 GB RAM. 

To construct a CART model capable of classifying the patients into normal and CAD, two 

parameters should be determined/adjusted: the number of features and the maximum depth of the 

CART.  

The number of features is equal to the number of independent parameters in the collected CAD 

dataset. Hence, there are 55 features. To adjust the maximum depth of the CART (e.g., defined as 

the maximum length among the existing paths that joins a root of the tree to a leaf), there are no 

universal rules. In this study, the trial and error procedure is employed to find the optimum maximum 

depth of the tree. As the starting point, the maximum depth is assumed to be three. Based on the 

error analysis results, it is found that the CART model offers the best results with an optimum 

maximum depth of 19. The CART classifier proposed for the diagnosis of CAD is depicted in Fig. 

5.2.  

 

Fig. 5.2: Graphical representation of the CART model (using all features) introduced for CAD 

diagnosis. 
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5.4.4 Assessment criteria  

This section aims to provide proper criteria for evaluating the performance of the proposed graphical 

classifier, based on the CART algorithm, in the diagnosis of CAD. The accuracy is one of the main 

model assessment parameters that defines the proportion of correct classifications. The following 

expression presents the accuracy in percent (ACC%) [74]: 

100% 
+++

+
=

tnfnfptp

tptn
ACC                   (5.3) 

In Equation (3), fp, fn, tn, and tp introduce the false positive, false negative, true negative, and true 

positive, respectively.  

True negative value (TNV) can be defined as the percentage of healthy people that the classification 

model correctly identifies them as not having CAD. TNV% is defined by Eq. (5.4) as follows [74]: 

100% 
+
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fptn
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TNV                                       (5.4)                                

True positive rate (TPR) measures the proportion of correct CAD predictions to all cases that have 

CAD. The definition of the TPR (in percent) is given below [74]:  

100% 
+

=
fntp

tp
TPR                                          (5.5) 

 

5.5 RESULTS AND DISCUSSIONS  

This section includes the main findings/results of this study and corresponding discussions on the 

relative performance of the input parameters and model performance (compared to the previous 

approaches). Table 5.2 shows the contingency table, also known as the confusion matrix, for the Z-

Alizadeh Sani databank. According to Table 5.2, the accuracy considers the same costs for 
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misclassified samples. Hence, in addition to the accuracy, TNV and TPR can be employed to 

perform a comprehensive assessment of the classification models.  

 

Table 5.2: Contingency table of the developed CART models based on the Z-Alizadeh Sani 

databank. 

  CART outcomes 

  Normal CAD  

Targets 

Normal 
tn  

(correct rejections) 

fp  

(Normal is predicted as CAD) 

CAD  
fn  

(CAD is predicted as Normal)  

tp  

(correct considerations) 

 

 

It follows that the importance of TPR is higher than TNV, while evaluating the effectiveness of the 

models developed for the CAD diagnosis. It reveals that correct identification of patients having 

CAD is more important than identifying healthy people. 

The values of the parameters selected as assessment criteria (e.g., ACC%, TNV%, and TPR%) are 

found to be 100%, concluding that the presented CART model is capable of predicting people having 

CAD as well as identifying healthy people without any error.  

 

5.5.1 Feature importance  

The importance of each feature in the creation of the decision tree-based model (using all the features 

existing in the Z-Alizah Sani dataset) for CAD diagnosis is graphically demonstrated in Fig. 5.3. 

Based on Fig. 5.3, atypical alone has more than 16.5% importance in the development of the CART 

model when using all the features of the Z-Alizadeh Sani dataset.  In addition, some features 

including neutrophil, poor R wave progression, Q wave, low thyroid angina, dyspnea, systolic 

murmur, WPP, edema, CHF, thyroid disease, airway disease, CVA, CRF, and EX-smoker have no 
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impact on the development of the CART model. In other words, the aforesaid features have 0% 

importance in the tree creation.     
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Fig. 5.3: The relative importance of all features involved in the CART model developed for CAD 

diagnosis/classification. 
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The independent parameters of the Z-Alizadeh Sani dataset can be categorized into four classes 

namely symptom and examination, demographic, electrocardiogram (ECG), and laboratory and 

echo features [51]. Table 5.3 summarizes the importance of each feature of the aforementioned 

categories of the dataset for the CART-based CAD diagnosis. According to Table 5.3, ECG features, 

with a 5.18% effect on the creation of the tree, have the lowest importance, compared to other 

groups. On the other hand, the most important class that influences the structure of the CART 

classifier is the symptom and examination. The remaining feature classes have approximately equal 

importance in the predictive model.  

 

Table 5.3: Importance of each feature in the development of the CART model (using all the 

features) for CAD diagnosis. 

Feature Category Feature Name Importance (%) 

Demographic 

Age 9.63 

DM 3.40 

BMI 3.02 

Length 2.52 

Weight 2.46 

DLP 2.08 

Obesity 2.02 

FH 1.43 

Sex 1.16 

HTN 0.15 

Current Smoker 0.13 

EX-Smoker 0.00 

CRF 0.00 

CVA 0.00 

Airway disease 0.00 

Thyroid Disease 0.00 

CHF 0.00 

Total 28.00 

ECG 

LVH 1.81 

BBB 1.09 

T inversion 1.08 

St Elevation 0.71 

St Depression 0.49 

Q Wave 0.00 

Poor R Progression 0.00 

Total 5.18 
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Table 5.3: Continued. 

Feature Category Feature Name Importance (%) 

Laboratory and echo   

VHD 4.25 

ESR 3.66 

K 2.98 

Region RWMA 2.96 

PLT 2.52 

EF-TTE 2.30 

BUN 1.94 

FBS 1.19 

LDL 0.99 

WBC 0.99 

HB 0.92 

TG 0.90 

Lymph 0.71 

HDL 0.59 

CR 0.55 

Na 0.30 

Neutrophil 0.00 

Total  27.75 

Symptom and 

examination  

Atypical 16.60 

Typical Chest Pain 8.96 

Diastolic Murmur 4.44 

Lung rales 2.39 

BP 2.30 

Nonanginal 1.98 

PR 1.60 

Function Class 0.80 

Exertional CP 0.00 

Edema 0.00 

Weak Peripheral Pulse 0.00 

Systolic Murmur 0.00 

Dyspnea 0.00 

Low thyroid angina  0.00 

Total  39.07 

 

 

5.5.2 Reclassification  

Based on the importance of the features of the Z-Alizadeh Sani dataset in the development of the 

CART model (see Table 5.3), this section describes the simple and clear approaches to develop 
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CART models for CAD diagnosis using selected features. To do so, all features with obtained 

importance of less than 2% are removed from the dataset, which is logical (and common) in the 

CART strategy. The remaining features (18 features) are then employed for the creation of a tree-

based predictive model. The resulted CART model using 18 selected features classifies the targets 

with the highest achievable accuracy, TNV, and TPR (100%). The visualized version of the 

proposed CART model with 18 features is presented in Fig. 5.4.  

 

 

Fig. 5.4: Schematic of a created tree to represent the proposed CART model with 18 features for 

CAD diagnosis. 

 

To introduce another CART model, the first 10 features that have the highest importance in the 

developed CART model (referring to Fig 5.2) are selected. Similar to the approach used for 

developing the CART models with all features (see Fig. 5.2) and 18 features (see Fig. 5.4), the 

CART classifier with 10 features shows an accuracy, TNV, and TPR of 100%. The created tree-

based model with10 selected features is illustrated in Fig. 5.5.  
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Fig. 5.5: Graphical representation of the developed CART model for diagnosis of CAD while 

using 10 features.  

 

The importance degree of each selected feature in the development of the CART models using 18 

and 10 selected features is listed in Tables 5.4 and 5.5, respectively.  

Examining the performance of CART methodology in classifying the targets with a limited number 

of inputs, the next model is developed through including only 5 features namely age, diastolic 

murmur, typical chest pain, atypical, and VHD. These features are found to be the most influential 

parameters in the development of the CART model with all the Z-Alizadeh Sani dataset’s features. 

Fig. 5.6 shows the CART model introduced by 5 selected features.  It should be noted that the same 

dataset splitting procedure is utilized for the development of CART models with 18, 10, and 5 

selected features; 90% of the new dataset is dedicated to the training phase, and the remainder of the 

dataset (10%) is used for model testing.   
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Table 5.4: Significance of each feature in the development of the CART model (using 18 features) 

for CAD diagnosis.  

Feature Category Feature Name Importance (%) 

Demographic 

Age 8.95 

DM 4.72 

BMI 7.82 

Length 5.49 

Weight 9.25 

DLP 0.78 

Obesity 0.52 

Total 37.53 

Laboratory and echo   

VHD 3.66 

ESR 5.62 

K 3.19 

Region RWMA 5.81 

PLT 4.72 

EF-TTE 3.95 

Total  26.95 

Symptom and examination  

Atypical 1.62 

Typical Chest Pain 27.31 

Diastolic Murmur 0.91 

Lung Rales 0.29 

BP 5.39 

Total  35.52 

 

 

 

Table 5.5: Importance of each feature in the development of the CART approach with10 features 

for CAD diagnosis.  

Feature Category Feature Name Importance (%) 

Demographic 

Age 11.25 

DM 6.13 

BMI 21.96 

Total 39.34 

Laboratory and echo   

VHD 5.01 

ESR 10.97 

K 8.15 

Region RWMA 9.39 

Total  33.52 
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Table 5.5: Continued. 

Feature Category Feature Name Importance (%) 

Symptom and examination  

Atypical 4.64 

Typical Chest Pain 21.57 

Diastolic Murmur 0.93 

Total  27.14 

 

 

 

Fig. 5.6: Graphical representation of the CART model with 5 features for CAD diagnosis. 

 

As can be observed from Fig. 5.2 and 5.4-5.6, the optimum maximum depths of the trees for the 

created CARTs with all the features, 18 features, 10 features, and 5 features are 19, 17, 17 and 16, 

respectively. Hence, it is crucial to employ a comprehensive database for the development of a 

CART classifier for CAD diagnosis.  

Feature importance values for the five-feature CART model are tabulated in Table 5.6. According 

to the results, the age and typical chest pain have the highest significance among all features of the 

Z-Alizadeh Sani dataset. Indeed, these two CAD risk factors exhibit the most contributions to the 

development of the tree-based model structure.   

Table 5.7 presents the contingency table of the developed CART model with 5 selected features. 

The contingency table reveals that the highest accuracy cannot be obtained using age, diastolic 
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murmur, typical chest pain, atypical, and VHD as the independent parameters for the CART 

methodology, while classifying the Z-Alizadeh Sani dataset.  

 

Table 5.6: Importance of each feature in the development of the CART structure (using 5 features) 

for CAD diagnosis.  

Feature Category Feature Name Importance (%) 

Demographic Age 51.72 

Laboratory and echo   VHD 3.92 

Symptom and examination  

Atypical 16.85 

Typical Chest Pain 22.59 

Diastolic Murmur 4.92 

Total  44.36 
 

 

Table 5.7: Contingency table of the developed CART model with 5 features on the basis of the Z-

Alizadeh Sani databank. 

  CART outcomes 

  Normal CAD  

Targets 

Normal 67 20 

CAD  3  213 

 

 

5.5.3 CART versus literature models  

The proposed CART models with all, 18, and 10 features lead to the highest achievable reliability 

(and accuracy) based on the Z-Alizadeh Sani dataset. The classification performance of the 

developed CART model with 5 features in the CAD diagnosis is compared to that of the previous 

models, as seen in Table 5.8.  



 

173 

 

Table 5.8: Error analysis results for the developed CART model (using 5 features) and the 

literature models while conducting CAD diagnosis.  

Algorithm 
Parameter 

ACC% TNV% TPR% 

Bagging SMO [51] 93.40 87.36 95.83 

Naïve Bayes [51] 75.51 95.40 67.59 

SMO [51] 94.08 88.51 96.30 

ANN [51] 88.11 80.46 91.20 

ANN [53] 84.62 83.00 86.00 

ANN-GA [53] 93.85 92.00 97.00 

N2GC-nuSVM [79] 93.08 * * 

SMO [75] 92.09 79.31 97.22 

SVM [75] 89.11 83.91 91.20 

C4.5 [75] 83.85 55.17 95.37 

Naïve Bayes [75] 80.15 94.25 74.54 

KNN (k=1) [75] 74.61 28.74 93.06 

KNN (k=2) [75] 74.94 17.24 98.15 

KNN (k=10) [75] 72.62 4.60 100 

Naïve Bayes (average) [76] 60.61 47.56 73.02 

C.45 (average) [76] 68.76 67.59 65.80 

KNN(average) [76] 60.05 56.62 57.85 

Naïve Bayes [80] 87.22 76.50 91.50 

SMO [80] 86.95 79.00 90.11 

Ensemble [80] 88.52 82.05 91.12 

C4.5 (average) [81] 68.30 60.14 71.04 

Bagging (average) [81] 69.64 61.32 71.38 

J48+MFA (average) [82] 91.09 * 91.10 

BF tree+MFA (average) [82] 87.70 * 87.70 

REP tree+MFA (average) [82] 84.28 * 84.27 

NB tree+MFA (average) [82] 93.77 * 93.77 

CART (5 features) 92.41 77.01 98.61 

 

Considering TPR, the KNN (k=10) model [75] gives better results, compared to other approaches 

(see Table 5.8). The NB/SMO model is the best model in terms of TNV extent (accuracy). Although 

the CART model created with 5 features generates acceptable results, some literature models exhibit 

greater accuracy and reliability.  However, the CART models with all, 18, and 10 features offer 

100% accuracy, TNV, and TPR; this accuracy level is not achieved in the previously reported 

models. Appendix C presents the digraphs of all the developed CART models.   
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The outcomes of the literature models developed based on algorithms such as Bagging, SMO, 

Bagging SMO, NB, C4.5, J48, SVM, ANN, and ANN linked with the GA are compared to the 

predictions of the developed CART models with all, 18 and 10 features in Fig. 5.7 where the Z-

Alizadeh Sani dataset is used.   
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(C)  

Fig. 5.7: Comparison of the performance of the developed CART systems with all, 18, and 10 

features and the literature models in terms of (A) accuracy, (B) TNV, and (C) TPR. 

 

It is concluded from Fig. 5.7(A) that the SMO and Bagging SMO models, presented by Alizadehsani 

et al. [51], as well as the ANN-GA model, suggested by Arabasadi et al. [53], lead to the highest 

accurate results, compared to other literature models. Based on Fig. 5.7(B) and 5.7(C), the values 

of the TPR% and TNV% for the ANN-GA model [53] are greater than those for the SMO and 

Bagging SMO models. Therefore, it can be concluded that the ANN-GA [53] is the best literature 

model. On the other hand, the lowest accuracy and TPR are attained while employing the KNN 

(average) model, as noticed in Table 5.8 [76]. It also reveals that the lowest TNV is associated with 

the KNN model with k=10 [75]. 
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5.5.4 Future work  

One of the main advantages of the strategy proposed in this study over other algorithms is that the 

designed CART-based models can be visualized in an understandable manner. Indeed, there is no 

need for medical experts to obtain mathematical and computational information regarding the 

classification methodology. However, comparing the developed CART models with different sets 

of Z-Alizadeh Sani dataset’s features reveals that the structure of the CART classifier is highly 

sensitive to the employed data points and independent parameters for modeling. The ML approaches 

are commonly sensitive to the introduced datasets. To obtain satisfactory outcomes, the employed 

dataset typically needs to be extensive, inclusive, and unbiased. For future studies, it is thus 

suggested to collect more data from diverse resources for CAD diagnosis/classification. 

Furthermore, the quality of the datasets for CAD diagnosis can be improved by considering more 

independent parameters.   

According to No Free Lunch Theorem for ML [77], there is no universal model that provides the 

best results for every problem. Hence, for every analysis, regression or classification, the most 

common strategy is to implement several ML methods and evaluate their performance and reliability 

based on statistical parameters. A model developed for a particular objective may be assessed in 

terms of accuracy and/or complexity. Depending on the nature and importance of the problem, the 

best model can be selected. As the number and size of datasets for CAD are growing, it is 

recommended to implement different ML or connectionist tools and find a model that produced the 

best outcomes for new datasets.  

  

5.6 CONCLUSIONS  

Several tree-based classifiers are developed on the basis of the CART algorithm where a recently 

collected clinical data namely the Z-Alizadeh Sani dataset is utilized for CAD diagnosis. To ensure 
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that the developed models based on the CART algorithm are reliable, both testing strategies with 

10-fold cross validation and with a test sub-dataset are included in the validation process.  

Employing ACC%, TPR%, and PPV% as the model assessment criteria, the classification 

performance of the presented CART models and previous predictive models is evaluated. The 

findings of the present study reveal that the CART method is capable of classifying individuals as 

normal or CAD. The CART models developed by considering all, 18, and 10 risk factors of the 

employed CAD dataset attain the highest precision (and reliability) and no literature model can rival 

it. The classification results of the CART approach with 5 selected features shows that using only 5 

parameters in model development leads to some errors, though the error percentage is still low 

compared to a majority of the models available in the open sources.   

The outcome of this study supports the idea that the CART method is able to present a simple-to-

use, reliable, and accurate approach for CAD diagnosis. Hence, the simplicity and robustness of the 

CART technique when applying to the CAD dataset make this modeling tool as a potential 

component of a proper healing framework. Furthermore, healthcare professions and postgraduate 

students can benefit from it. Since the CART classification modeling is highly sensitive to the quality 

and quantity of the introduced data, a more extensive database for CAD with a greater number of 

independent parameters might be required for further practical implications of CART tools in 

hospitals and health centers.      

 

NOMENCLATURES  

A0 Intercept 

AACE American Association of Clinical Endocrinologists 

ACC Accuracy  

ACC/AHA American College of Cardiology/American Heart Association 

ANFIS Adaptive neuro-fuzzy inference system 

ANN Artificial Neural Network 

BBB Bundle branch block 
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i  Regression constants  

BMI Body mass index 

BP Blood pressure  

BUN Blood urea nitrogen 

CAD Coronary artery disease  

CART Classification and Regression Tree 

CHF Congestive heart failure 

Cr Creatine 

CRF Chronic renal failure 

CVA Cerebrovascular accident 

DLP Dyslipidemia 

DM Diabetes mellitus 

EBCT Electron-beam computed tomography  

ECG Electrocardiogram 

EF Ejection function 

ESR Erythrocyte sedimentation rate 

f(x) The discriminant vector 

FBS Fasting blood sugar 

FH Family history 

fn False negative 

fp False positive 

GA Genetic algorithm  

HB Hemoglobin  

HDL High density lipoprotein  

HRV Heart Rate Variability  

HTN Hyper tension 

ID3 Iterative Dichotomiser 3  

IT2FLS Interval type-2 fuzzy logic system  

K Potassium 

LDL Low density lipoprotein 

Li Value of the leaf 

LVH Left ventricular hypertrophy 

ML Machine learning 

MLP Multi-layer perceptron  

Na Sodium 

NB Naïve Bayes 

NMR Nuclear magnetic resonance  

p Probability of CAD  

PCA Principal component analysis  

PLT Platelet  

PR Pulse rate 

RBF Radial basis function  

region with RWMA Regional wall motion abnormality 

RFNN Recurrent fuzzy neural network 

SMO Sequential Minimal Optimization 

SVM Support Vector Machine  
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TG Triglyceride 

Ti  Value of the threshold 

tn True negative 

TNV True Negative Value 

tp True positive 

TPR True Positive Rate  

USPSTF US Preventive Services Task Force  

VHD Valvular heart disease 

WBC White blood cell 

WHO World Health Organization  

WPP Weak peripheral pulse 

WT Wavelet transformation 

xi Risk factors 

X vector of the independent variables 

Y Output of the decision tree 
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6 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 CHAPTER 2 

6.1.1 Summary  

Further to the laboratory examinations for BC studies, machine learning and data mining approaches 

could be implemented for the development of computer-aided BC diagnosis systems. There are 

several datasets for BC studies. The WBCD is known to be the most employed one for classification 

modeling using different machine learning and data mining techniques. The primary objective of 

this review study was identifying published works on the application of smart algorithms for the 

WBCD classification. To this end, papers published between 1995 and 2020 were reviewed. 

Moreover, available classification models in the literature were analysed according to some 

statistical parameters. 

 

6.1.2 Conclusions  

As some papers just reported the accuracy of the proposed models, this parameter selected as the 

main variable for comparisons. This was the major limitation of our study. Based on the error 

analysis results, it was found that hybrid models are generally effective in classifying the WBCD 

into malignant or benign cases. Indeed, the majority of the reviewed hybrid methods have flexible 

capability of nonlinear modeling. Furthermore, it was found that employing feature extraction 

techniques boosted the overall performance of some classifiers.  

However, as some approaches, like ANNs, are known to be black boxes, the resulting model might 

not be clear and could not be easily understood by non-experts like physicians.  
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6.1.3 Recommendations 

In this study, we just investigated the developed models for the WBCD. As it was mentioned in 

Chapter 2, there are more datasets like MIAS, IRMA and DDSM. It is recommended that all 

published papers on the classification modeling using these datasets also be reviewed. Evaluation of 

the effect of feature extraction techniques on classification performance is also recommended. As 

mentioned earlier, hybrid models provided excellent outcomes for the WBCD classification. It is 

recommended to assess the sustainability of different hybrid models on different datasets. Another 

recommendation is to develop an extensive database with a sufficient number of features for BC 

investigations. In the case of small datasets like the WBCD, the speed of the employed techniques 

might not be significant. However, slow performance caused by massive computations is a problem 

to be solved when big databases are employed. Therefore, researchers are encouraged to evaluate 

the models in terms of computation speed as well.  

 

 

6.2 CHAPTER 3 

6.2.1 Summary  

Classifying the medical datasets using such approaches as ANNs, SVMs and KNNs paves the way 

to design a more efficient medical diagnostic decision support system. Chapter 3 aimed at employing 

the RF and ET algorithms to classify the breast cancer type based on the WBCD. To attain the 

objective, the CART technique was used as a weak learner in conjunction with several RF/ET 

classification models. It was found that the developed RF models with four to ten CARTs and ET 

models with three to nine CARTs have high potential to forecast the WBCD type with 100% 

accuracy in all cases. 

6.2.2 Conclusions  

The development of classification models for BC diagnosis is of great interest to the researchers. It 

was revealed that the deterministic models and hybrid approaches existing in the literature offer 
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acceptable outcomes; however, greater precision in the medicine might considerably affect the 

diagnosis time, cure/therapy duration, and diagnosis and therapy costs. In addition, a majority of the 

available tools suffer from higher complexity, lack of optimal structure, and overfitting. The 

presented RF/ET models are simple to understand and appreciably efficient to categorize the WBCD 

so that no model can rival this classification strategy in terms of robustness, reliability, 

implementation speed, and precision.  

 

6.2.3 Recommendations 

The presented ensemble models based on the RF and ET methodologies in conjunction with the 

CART method provided excellent outcomes for the WBCD. However, as machine learning and data 

mining approaches, like the RF and ET ensemble techniques, are highly sensitive to the employed 

datasets, it is recommended to evaluate the performance of these approaches for studying other 

available databases on breast cancer. 

Another recommendation would be incorporating optimization algorithms like genetic algorithm 

and particle swarm optimization algorithm into the investigated ensemble methodologies for future 

studies. Implementation of hybrid ensemble methods might further simplify and improve the 

structure of the weak learners of the ensembles. 

 

6.3 CHAPTER 4 

6.3.1 Summary  

This research employed the CART algorithm to present accurate predictive models capable of 

analyzing the response of patients having common and/or plantar warts to the cryotherapy and/or 

immunotherapy methods. To develop a CART classifier for the cryotherapy method, input 

parameters including the age and gender of patient, number of warts, type of wart, surface area of 

warts and the time elapsed before treatment are used. In the case of immunotherapy, in addition to 
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the above-mentioned variables, the induration diameter of the initial test is also considered. To the 

best of our knowledge, this was the first study on the application of CART-based methods for 

selection of the best approach for wart removal. 

 

6.3.2 Conclusions  

The presented models provide simple-to-employ and accurate tools that can be used by physicians 

to select the best treatment method for common and/or plantar warts. The performance of the 

developed classifiers is compared to that of the methods available in the literature in terms of 

reliability and prediction accuracy. For both cryotherapy and immunotherapy approaches, the 

outcomes of the proposed CART models offered excellent performance. ACC, TPR, and TNR of 

the presented models are found to be 100%.  

On the other hand, the literature models for the cryotherapy case lead to ACC, TPR, and TNR 

ranging from 80.0% to 98.9%, 82.0% to 98.9%, and 77.0% to 100%, respectively.  For the 

immunotherapy case, the magnitudes of ACC, TPR, and TNR are between 78.9%-96.7%, 82.2%-

97.2%, and 56.7-91.4%, correspondingly. Furthermore, the proposed models appear in a graphical 

form and can be easily employed in an understandable manner. Hence, it can be concluded that no 

model can rival the proposed CART models in terms of both accuracy and simplicity of 

implementation.  

 

6.3.3 Recommendations  

The current datasets for the application of interest can be expanded by obtaining further information 

from various groups of patients. Consequently, we are able to present more efficient (and 

generalized) decision tree-based models that can be more practical for different cases. Another 

recommendation is to incorporate capable hybrid and ensemble methodologies (e.g., genetic 

algorithm and particle swarm optimization) into the CART algorithm for future studies. 
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Implementation of hybrid/ensemble methods might further simplify (and improve) the structure of 

the tree-based models developed for wart treatment.   

 

6.4 CHAPTER 5 

6.4.1 Summary  

Based on the Z-Alizadeh Sani dataset for CAD diagnosis, several classifiers were developed using 

the CART algorithm. Employing some statistical parameters as the model assessment criteria, the 

classification performance of the proposed CART models, as well as the literature models, is 

assessed. The findings of this chapter revealed that the CART algorithm is capable of classifying 

individuals as normal or CAD. The CART models built by considering all, 18, and 10 risk factors 

of the used CAD dataset attain the highest precision (and reliability), and no literature model can 

rival it. The classification results of the CART model with five selected features indicated that using 

only five parameters in the development process leads to some errors. However, the error percentage 

is still low compared to a majority of the models available in the open sources.   

 

6.4.2 Conclusions  

The outcome of Chapter 5 supports the idea that the CART method is capable of presenting an easy-

to-use, reliable and accurate tool for CAD diagnosis. Hence, the simplicity and robustness of the 

CART technique when applying to the CAD dataset make this modeling tool as a potential 

component of a proper healing framework. Furthermore, as the CART model is easy to understand, 

healthcare professions and postgraduate students can benefit from it.  

6.4.3 Recommendations  

Most machine learning and data mining approaches, including the CART classification algorithm, 

are highly sensitive to the quality and quantity of the introduced data. Hence, a more extensive 
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database for CAD with a higher number of independent parameters might be required for further 

practical implications of CART tools in hospitals and health centers.      

 

APPENDICES  

 

APPENDIX A 

Digraphs of the created trees for the RF classification models with 5 to 10 CARTs as well as the ET 

classification models for breast cancer with 4 to 9 CARTs are provided in an additional file.   

 

APPENDIX B 

The digraphs of the CART models proposed in this study for wart treatment are provided as an 

additional file.  

 

APPENDIX C 

This appendix provides digraphs of the CART models created for coronary artery disease. 


