168 research outputs found

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Active integration of electric vehicles in the distribution network - theory, modelling and practice

    Get PDF

    Energy Management of Distributed Generation Systems

    Get PDF
    The book contains 10 chapters, and it is divided into four sections. The first section includes three chapters, providing an overview of Energy Management of Distributed Systems. It outlines typical concepts, such as Demand-Side Management, Demand Response, Distributed, and Hierarchical Control for Smart Micro-Grids. The second section contains three chapters and presents different control algorithms, software architectures, and simulation tools dedicated to Energy Management Systems. In the third section, the importance and the role of energy storage technology in a Distribution System, describing and comparing different types of energy storage systems, is shown. The fourth section shows how to identify and address potential threats for a Home Energy Management System. Finally, the fifth section discusses about Economical Optimization of Operational Cost for Micro-Grids, pointing out the effect of renewable energy sources, active loads, and energy storage systems on economic operation

    Advanced Control and Optimization for Future Grid with Energy Storage Devices

    Get PDF
    In the future grid environment, more sustainable resources will be increasing steadily. Their inherent unpredictable and intermittent characteristics will inevitably cause adverse impacts on the system static, dynamic and economic performance simultaneously. In this context, energy storage (ES) devices have been receiving growing attention because of their significant falling prices. Therefore, how to utilize these ES to help alleviate the problem of renewable energy (RE) sources integration has become more and more attractive. In my thesis, I will try to resolve some of the related problems from several perspectives. First of all, a comprehensive Future Australian transmission network simulation platform is constructed in the software DIgSILENT. Then in-depth research has been done on the aspect of frequency controller design. Based on mathematical reasoning, an advanced robust H∞ Load Frequency Controller (LFC) is developed, which can be used to assist the power system to maintain a stable frequency when accommodating more renewables. Afterwards, I develop a power system sensitivity analysis based-Enhanced Optimal Distributed Consensus Algorithm (EODCA). In the following study, a Modified Consensus Alternating Direction Method of Multipliers (MC-ADMM) is proposed, with this approach it can be verified that the convergence speed is notably accelerated even for complex large dimensional systems. Overall, in the Master thesis, I successfully provide several novel and practical solutions, algorithms and methodologies in regards to tackling both the frequency, voltage and the power flow issues in a future grid with the assistance of energy storage devices. The scientific control and optimal dispatch of these facilities could provide us with a promising approach to mitigate the potential threats that the intermittent renewables posed on the power system in the following decades

    Risk Assessment – with Apllication for Bridges and Wind Turbines

    Get PDF

    Network and System Management for the Security Monitoring of Microgrids using IEC 62351-7

    Get PDF
    Interest in adding renewable energy sources to the power grid has risen substantially in recent years. As a response to this growing interest, the deployment of microgrids capable of integrating renewable energy has become more widespread. Microgrids are independent power systems that deliver power from different kinds of Distributed Energy Resources (DERs) to local energy consumers more efficiently than the conventional power grid. The microgrid leverages advanced information and communication technologies for vital protection, monitoring, and control operations as well as for energy management. With the use of information technology comes the need to protect the microgrid information layer from cyberattacks that can impact critical microgrid power operations. In this research, a security monitoring system to detect cyberattacks against the microgrid, in near-real time, is designed and implemented. To achieve this, the system applies Network and System Management (NSM) for microgrid security monitoring, as specified by the IEC 62351-7 security standard for power systems. The specific contributions of this research are (i) an investigation on the suitability of NSM for microgrid security monitoring; (ii) the design and implementation of an NSM platform; (iii) the design and implementation of a security analytics framework for NSM based on deep learning models; (iv) the elaboration of a comprehensive microgrid simulation model deployed on a Hardware in the Loop (HIL) co-simulation framework; and (v) an experimental evaluation on the effectiveness and scalability of the NSM security monitoring platform for detection against microgrid attack scenarios, with a methodology being used to systematically generate the scenarios. The experimental results validate the usefulness of NSM in detecting attacks against the microgrid

    Integrating Autonomous Load Controllers in Power Systems

    Get PDF
    Elektriske energisystemer undergår radikale forandringer, fordi et presserende behov for at nedsætte drivhusgasudledningen forudsætter en mere effektiv udnyttelse af energiressourcerne og en overgang til mere vedvarende energi. Nye vedvarende energikilder som vind og sol har et stort potentiale, men er karakteriseret ved en fluktuerende produktion, som kun delvist er forudsigelig. Styring af forbrug er allerede brugt i begrænset omfang for at forbedre leveringssikkerhed og effektiviteten af energisystemet. I energisystemer med en høj andel fluktuerende vedvarende energikilder kan intelligent styring af forbruget spille en stor rolle i balanceringen af systemet. Det store antal og den geografiske spredning af forbruget gør koordinering af forbrugets respons en udfordring. Nye kommunikationsteknologier har reduceret omkostningerne til at forbinde apparater og lover et ”Internet of Things" (”Tingenes internet") i fremtiden, hvor apparater er fuldt forbundet til en globalt datanetværk. Strenge realtids- og pålidelighedskrav til elsystemet har motiveret forskning i nye styrings arkitekturer velegnet til sådan et stort og komplekst system. Denne afhandling har fokus på et mellemstadie i evolutionen fra dagens passive belastninger mod et ”Internet of Things". Mere præcist udgøres dette mellemstadie af autonome apparater med sensorer, aktautorer, og software til at kontrollere lokale processer, men uden et digital kommunikationsinterface. Dearkitekturer der er undersøgt i denne afhandling er ret nye, så fokus ligger på gennemførlighed og system modelleringer. Tidligere forskning har foreslået brug af frekvensfølsomme autonome belastninger til at levere primær frekvensreserve. Denne forudgående forskning har fokuseret på effekten af autonome belastninger på et højt abstraktionsniveau i store energisystemer. Analyser på dette høj niveau analyser ignorerer en væsentlig forskel mellem konventionel frekvensereserve og frekvensfølsom belastning, nemlig effekten af reduceret belastningsmangfoldighed på frekvensresponsen. For at adressere denne mangel udførte man tidsdomænemodeller af frekvensfølsomme belastninger for at tage højde for den variation i frekvens responsen, som stammer fra variationen i belastningerne. Eksperimenter og analyser har afsløret potentielle ulemper ved høj andel af frekvensfølsom belastning: tidsafhængigheder i processer, som begrænser frekvensresponsen og overskridelse af spændingskrav i elforsyningsnettet. For at håndtere disse ulemper er to strategier fremlagt, som hver for sig tilføjer værdifulde tjenester udover at de forhindrer de førnævnte problemer. Den første strategi for at håndtere tidsafhængigheder er at drive et synkront netområde på ikke-nominelle frekvenser i diskrete domæner. Det begrænser uønsket skift af tilstand i de frekvensfølsomme belastninger og fungerer som direkte kontrol af den pågældende belastning. Store synkrone maskiner kan kun langsomt ændre frekvensens setpunkt, hvilket begrænser takten, hvorved kontrol kommandoer kan blive sendt. Derimod har energikilder, der er forbundet igennem effektelektronik, mulighed for at ændre frekvenssetpunkt meget hurtigt og kan skabe en strøm af kommandoer som kan tolkes med eksisterende kommunikations protokoller. Den anden strategi er at forene en spændingsfølsom styring med en frekvensfølsom styring, og på den måde direkte undgå uønskede spændinger. Denne spændingsfølsomme styring kan også blive brugt alene, uden den frekvensfølsomme del, for at stabilisere spænding og reducere behovet for netforstærkninger alle steder hvor lavere spænding falder sammen med højere forbrug. En frekvensfølsom styring er udviklet, implementeret, og testet under realistiske forhold. Resultaterne viste en stor potentiel ressource, i nogen tilfælde større end gennemsnittet af effektforbruget. Nøjagtigheden af belastningsmodeller var verificeret ved hjælp af måledata. En spændingsfølsom styring var udviklet, implementeret og testet under laboratorieforhold, og dens opførsel var simuleret i repræsentative energisystemer. Problemerne forårsaget af udbredt anvendelse af frekvensfølsomme belastninger var simuleret, og afværgelsesstrategier anvendt. For at underbygge gennemførligheden af det fremlagte frekvensbaserede belastningskontrolsystem er analyser af eksisterende energisystemer blevet gennemført med henvisninger til tekniske standarder, specifikationer og endeligt data indsamlet fra systemer i drift. Resultaterne viser, at frekvens- og spændingsfølsomme autonome belastninger er leveringsdygtige alternativer til konventionel frekvens- og spændingsregulerende teknikker. Når de bruges sammen, komplementerer de hinanden. I systemer, hvor operatøren har mulighed for at regulere frekvensen centralt, kan de direkte kontrollere de ellers autonome frekvensfølsomme apparater. Derudover, i systemer, hvor frekvens reguleringsressourcer tillader hurtigt skift af frekvenssetpunkt, for eksempel micro-grids, kan energikilder blive brugt som sender i et lavhastigheds-envejs- kommunikationssystem.Electric energy systems stand on the brink of radical change as the urgent need to reduce greenhouse gas emissions pushes more efficient utilization of energy resources and the adoption of renewable energy sources. New renewable sources such as wind and solar have a large potential, but they are characterized by variable generation that is only partly predictable. Managing loads is already used in limited circumstances to improve security and efficiency of the power system. In power systems with a large penetration of variable generation, load management has large role to play in adapting consumption to the fluctuating production. The large number and geographic dispersion of loads make coordinating their behavior challenging. New telecommunication technology has reduced the cost of linking devices, promising a future "Internet of Things" where loads are fully networked. Strict real-time constraints and reliability constraints in power systems are motivating research into new control architectures suitable for such a large and complex system. The focus of this thesis is on an intermediate stage of evolution between today's largely passive loads and a future "Internet of Things". Specifically, this intermediate stage is autonomous devices with sensors, actuators, and software to control local processes but without digital communications interfaces. The architectures explored in this thesis are newly emergent, so the focus is on feasibility and system modeling. Earlier research has proposed using autonomous load controllers to provide primary frequency reserves. This previous research has mainly focused on the effect of autonomous loads at a high level of abstraction, in large-scale power systems. High-level analysis ignores a significant difference between conventional frequency reserves and frequency-sensitive loads, namely the effects of reduced load diversity on the frequency response. To address this shortfall, time-domain models of the frequency-sensitive loads were constructed that include the variation of frequency response resulting from changes in load diversity. Experiments and analysis have revealed potential drawbacks of high penetrations of autonomous frequency-sensitive loads: time constraints on the underlying processes which reduce the frequency response, and violations of voltage constraints in the distribution systems arising from synchronized loads. Addressing these drawbacks, two mitigation strategies are proposed, each of which add valuable services in addition to preventing the above mentioned problems. The first strategy to address time constraints is to operate a synchronous power system at off-nominal frequencies in discrete domains, thus limiting unintended state changes of frequency-sensitive loads. The effect of operating in discrete frequency domains is to dispatch frequency-sensitive loads. Large synchronous machines can only change their frequency setpoint slowly, greatly limiting the rate of change of dispatch symbols. However, energy sources interfaced with power electronics can change their frequency setpoint very rapidly, creating a stream of symbols that can be decoded with conventional telecommunication protocols. The second strategy is to merge a voltage-sensitive control loop into the frequency-sensitive controller to directly avoid violations of voltage constraints. This voltage-sensitive controller can also operate alone, without the frequency-sensitive controller, to provide voltage regulation service and increase load diversity in any distribution network where lower voltage level corresponds to higher load.The frequency-sensitive load controller has been designed, implemented, and tested in real-life settings. Its performance demonstrated a large potential resource, in some cases greater than the average power consumption. The accuracy of load models was validated by comparison with field data. A voltage-sensitive controller was designed, implemented in an embedded system, and tested in laboratory settings. The voltage-sensitive controller was also implemented in a software simulation environment and tested in representative distribution systems. The problems anticipated by large-scale deployment of frequency-sensitive loads were simulated, and mitigation strategies were applied. To support the feasibility of the proposed frequency dispatch system, analysis of existing power systems was conducted using existing technical norms, specifications, and data collected from operating power systems. The results shows that frequency-sensitive and voltage-sensitive autonomous load are viable alternatives to conventional frequency and voltage control devices. When used in combination, they complement each other. In systems where the operator has centrally dispatchable resources to regulate frequency, these resources can be used to dispatch otherwise autonomous frequency-sensitive loads. Moreover, where centrally dispatchable frequency regulation resources can rapidly change operating points, such as in a micro-grid, the energy sources can be used as transmitters for a ultra-low-bandwidth uni-directional power line communication system
    corecore