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Summary

Driven by sustainable development targets, the energy transition is taking place in the elec­
trical distribution networks with increasing integration of renewable energy sources (RES),
especially solar photovoltaic (PV). However, the intermittency and randomness of RES in­
troduce operational difficulties to the distribution system operators (DSOs) in terms of volt­
age limit violations and transformer overloading. The PV inverters can curtail the power
generation, leading to the loss of energy yield of the PV owners. These adverse impacts
become significant barriers to further deployments of RES in the distribution networks, es­
pecially at the low­voltage (LV) level. Furthermore, the distribution network reinforcements
will require a substantial investment given the large scale of the networks. The investment
might not be cost­effective when the problems caused by RES occur not very often.

The recent adoption of advanced sensors, smart meters, and information and communica­
tion technology at the grid edges, i.e., interface points between the LV networks and the
end­user installations, principally paves the way to deploy the emerging monitoring and
control functionalities. Therefore, this thesis investigates the observability and controllabil­
ity of these grid­edge technologies to assist the LV distribution networks in accommodating
a higher share of RES.

The grid­edge monitoring, which uses the available measurement data from smart meters,
is explored in Chapter 3. A local energy community (LEC) concept is adopted to perform
the proposed monitoring functions, enabling a relief to DSOs regarding investment and
operation of the distribution transformer monitoring systems. A data­driven approach is
developed based on a critical set of smart meter data (including measurement of voltage
magnitudes) collected from LECs. The proposed approach adopts machine learning­based
regression models to determine relationships between the estimated transformer loading and
measured voltage magnitudes. To this end, a comprehensive framework is provided to im­
plement, validate and compare different machine learning algorithms. Simulation results
highlight that the proposed approach can effectively determine the transformer loading using
only a limited set of the smart meter measurements provided by the LECs while preserving
customers’ privacy rights.

In Chapter 4, a sequential control mechanism is formulated at the local control level to miti­
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gate the voltage rise problems resulting from the surplus power generation from PV systems.
The sequential integration of Q− V and P − V droop control into this mechanism allows
PV unit to operate in reactive power priority mode. This mode enables voltage regulation
to be first attempted through reactive power absorption (RPA). Then, active power curtail­
ment (APC) is triggered only if the voltage levels cannot be maintained below the threshold
value using RPA, which will reduce the curtailed energy of PV systems. However, the droop
parameters of such sequential control mechanism have significant technical and economic
impacts for the PV owners and the DSOs. Therefore, a Monte Carlo­based method is devel­
oped to comprehensively assess the cost­effectiveness of the sequential control mechanism
by using a series of economic and technical metrics.

Chapter 5 presents a centralised coordination paradigm for multiple local controllers of PV
inverters to cope with the voltage rise problems. Given the radial LV network structure,
applying the droop­based local control with the static, same parameter values in voltage rise
conditions causes the deficient employment of RPA capacity of PV inverters. This deficiency
refers to PV units connected closer to the transformer operating with limited or even no re­
active power absorption. Meanwhile, other PV units, e.g., connected toward the end of the
feeder, can still bear a high share of RPA. Therefore, an optimisation problem is formulated
together with the sensitivity matrix concept to regularly update the droop parameters of the
local controllers of various PV inverters during the voltage rise conditions. The objective is
to optimise RPA capacity for reducing APC. Finally, the centralised control algorithm is ex­
ecuted to solve the optimisation problem, which is successfully verified through simulations
on a typical Dutch LV network.

In Chapter 6, a distributed coordination control strategy is proposed that adapts sequential
droop control­based local control for PV inverters with advancement in the effective use of
RPA and a fair APC. The distributed control, i.e., requiring neither a central control nor
extensive communications, is developed to periodically adapt the parameters of both Q−V
and P − V droop control in the sequential control mechanism. To this end, the consensus
algorithm and sparse communication are adopted. This distributed control is superior to the
centralised one in terms of scalability and reliability when considering the widespread inte­
gration of PV systems in LV networks. Furthermore, the epsilon­decomposition technique
is employed to decouple the network into multiple control areas. Finally, the proposed con­
trol strategy is implemented to significantly reduce the amount of APC and simultaneously
obtain an effective contribution of RPA among all PV units toward voltage rise mitigation.

In short, the thesis demonstrates the importance of grid­edge monitoring and control strate­
gies that will help stimulate the integration of RES, such as PV systems in LV distribution
networks and support the networks in its operation. The developed grid­edge monitoring
and control strategy focuses on solving the transformer overloading and voltage rise prob­
lems by exploiting the RES controllability and digital transformation. The energy transition
in the distribution networks, hence, can be facilitated.



Samenvatting

In de elektriciteitsdistributienetten vindt de energietransitie plaats met toenemende inte­
gratie van duurzame energiebronnen (RES, renewable energy sources), vooral fotovoltaïsche
zonneënergie (solar PV, photovoltaics). De flucturerende en willekeurige opwekkingspa­
troon van RES levert voor de distributienetbeheerders (DSOs, distribution system operators)
operationele moeilijkheden op in termen van overschrijding van spanningslimieten en over­
belasting van transformatoren. Deze nadelige effecten worden belangrijke barrières voor de
verdere aansluiting van RES op de distributienetten, vooral op het laagspanningsniveau (LV,
low voltage). Bovendien vereisen de benodigde netverzwaringen een belangrijke investering,
die gezien de uitgebreidheid van de netten niet kosteneffectief is.

Recente toepassing van geavanceerde sensoren, slimme meters en informatie­ en communi­
catietechnologie aan de “grid edges”, dat wil zeggen de laagsspanningszijden van de netsta­
tions, maakt opkomende monitoring­ en regelfuncties mogelijk. Dit proefschrift onderzoekt
de observeer­ en regelbaarheid van deze “grid­edge”­technologieën bij het opnemen van een
hoger aandeel RES in de laagspanningsnetten.

De “grid­edge”­monitoring, die gebruik maakt van meetgegevens uit slimme meters, wordt
onderzocht in hoofdstuk 3. Een concept voor locale energiegemeenschappen (LEC, lo­
cal energy community) wordt gebruikt voor de voorgestelde monitoringfuncties, wat de
DSOs investeringen en bedrijfsvoering uitspaart voor transformator­monitorsystemen. De
ontwikkelde op data gebaseerde benadering maakt gebruik van een kritische set van slimme­
meterdata (inclusief meting van de spanning) verzameld van LECs. De voorgestelde be­
nadering gebruitk op machine­learning gebaseerde regressiemodellen om verbanden tussen
de geschatte transformatorbelasting en de gemeten spanningen te bepalen. Een alomvattend
kader wordt gegeven voor het implementeren, valideren en vergelijken van verschillende
machine­learnignalgoritmes. Simulatieresultaten tonen dat de voorgestelde benadering de
transformatorbelasting effectief kan bepalen, met slechts een beperkte set van de metingen
van de slimme meters van de LECs en met behoud van de privacy van de klanten.

In hoofdstuk 4 wordt een sequentieel regelmechanisme op het locale regelniveau gefor­
muleerd teneinde de spanningsopdrijvingsproblemen door het vermogensoverschot door de
PV­opwekking te verminderen. Door sequentiële integratie van blindvermogens­spanningsr­

vii



viii

egeling en vermogens­spanningsregeling kan de PV­eenheid in blindvermogens­prioriteit­
regelmodus werken. Deze regelmodus probeert spanningsregeling in eerste instantie te berei­
ken met blindvermogensabsorptie (RPA, reactive power absorption). In tweede instantie,
alleen als RPA de spanning niet onder de drempelwaarde kan brengen, wordt vermogens­
beperking (APC, active power curtailment) getriggerd. Een dergelijk sequentieel regelsys­
teem heeft een belangrijke technische en economische impact voor de eigenaren van PV­
systemen en DSOs. Daarom is een Monte­Carlomethode ontwikkeld om de kosteneffec­
tiviteit van het sequentiële regelmechanisme integraal te evalueren op een reeks economische
technische aspecten.

Hoofdstuk 5 introduceert een paradigma voor gecentraliseerde coördinatie van meedere lo­
cale regelaars van PV­omvormers om de problemen met spanningsopdrijving op te lossen.
Gegeven het radiale karakter van het laagspanningsnet leidt locale regeling met statische, on­
derling gelijke parameters onvoldoende gebruik van de RPA­capaciteit van de PV­omvormers:
PV­eenheden dicht bij de transformator zullen weinig of zelfs geen blindvermogen opne­
men, terwijl andere PV­eenheden aan het eind van een kabel een groot aandeel in RPA lev­
eren. Daarom wordt een optimalisatieprobleem met gevoeligheidsmatrix geformeerd waarbij
de spanningsregelparameters (statiek) van de verschillende PV­omvormers bij hoge span­
ning regelmatig geüpdate worden. Het doel is om de RPA­capaciteit te optimaliseren om
APC te beperken. Tenslotte wordt het centrale regelalgoritme uitgevoerd om het opti­
malisatieprobleem op te lossen, wat succesvol getest is met simulaties aan een Nederlands
laagspanningsnet.

In hoofdstuk 6 wordt een gedistribueerde coördinatieregelstrategie voorgesteld die sequen­
tiële locale regeling voor PV­omvormers aanpast met verbetering in het gebruik van RPA en
een beperkte hoeveelheid APC. De gedistribueerde regeling, dat wil zeggen zonder centrale
regeling en zonder uitgebreide communicatie, is ontwikkeld om de parameters van zowel
blindvermogens­spanningsregeling als vermogens­spanningsregeling periodiek aan te passen.
Hiertoe worden het consensusalgoritme en sparse communication gebruikt. Deze gedis­
tribueerde regeling is superieur aan de gecentraliseerde regeling in termen van schaalbaarheid
en betrouwbaarheid, gezien de wijdverbreide integratie van PV­systemen in laagspanningsnet­
ten. Verder is de epsilon­decompositietechnike gebruikt om het net in verschillende regel­
gebieden te verdelen. De voorgestelde regelstrategie wordt geïmplementeerd om de hoeveel­
heid APC belangrijk te verminderen en tegelijkertijd RPA van alle PV­eenheden te verkrijgen
om de spanning te beperken.

Kortgezegd toont dit proefschrift het belang aan van “grid­edge”­monitorings­ en ­regelstrate­
gieën die een hogere integratie van RES, zoals PV in laagspanningsnetten zullen bevorderen,
en die de bedrijfsvoering van distributienetten zullen ondersteunen. De ontwikkelde “grid­
edge”­monitorings­ en ­regelstrategieën richt zich op het oplossen van de congestie­ en span­
ningsproblemen door gebruikmaring van de regelbaarheid van RES en digitale tranformatie.
Aldus kan de energietransitie in de distributienetten worden gefaciliteerd.
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1
Introduction

1.1 RES integration in electricity distribution networks

In efforts to address climate change, the electricity power systems are undergoing the energy
transition with the goal of reducing carbon dioxide emission and smarter use of resources.
A main pillar for such transition is the integration of renewable energy sources (RES), such
as wind and solar photovoltaic (PV), in the electricity distribution networks (see Fig. 1.1).
Policies and support schemes have been issued to promote the RES integration. For in­
stance, at the world­wide level, the 26th United Nation climate change conference of the
parties (COP26) encourages countries in setting ambitious 2030 emissions reductions tar­
gets, e.g., by accelerating the coal­fired power plants phase­out and investing in RES [1].
At the continent level, the European Union (EU) set a target of 40% share of EU energy
consumption being generated by RES by 2030 [2]. At national level, the Netherlands pro­
poses to increase the EU 2030 target to 55% emission reduction [3]. The energy transition
towards more environment­friendly operation based on electrification is also occurring in
other energy sectors, such as the transport and heating/cooling [4]. Specifically, the former
opts for the adoption of electric vehicles (EVs) to substitute the fossil­fuel vehicles, while the
latter aims to replace gas­fired heaters by heat pumps (HPs).

The integration of RES at the customers’ premises reduces the network power losses while

1
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Figure 1.1: Percentage of wind and solar PV in total electricity generation [5].

increasing the end­users’ control over their electricity consumption and enabling them to be
actively involved in the electricity market [6]. Furthermore, RES in combination with energy
storage systems (ESS) are capable of reshaping the energy generation, providing support for
the network operation.

Despite all of these improvements, massive integration of RES in low­voltage (LV) and
medium­voltage (MV) distribution networks cause several challenges for network operation
and planning. The challenges have arisen from the nature of RES associated with the uncer­
tainty and variability. For instance, the surplus power due to rapid expansion of wind and
solar PV can lead to voltage rise and/or congestion problem. In several countries, the RES
generation curtailment have already been implemented to ensure the system operation (see
Fig. 1.2). A more detailed description of the challenges is given in Chapter 2. Addressing
these adverse impacts involves changes in the network planning and operation, e.g., rein­
forcements of network components and operation of power quality supporting equipment,
to increasingly accommodate RES while maintaining the overall quality of supply. These so­
lutions, however, require a significantly high financial investment given the large scale of the
networks. The investment, however, might not be cost­effective when the problems caused
by RES occur not very often.

1.2 Motivation

As mentioned previously, the proliferation of RES systems in LV distribution networks has
resulted in the burden on the network operation and the deterioration in power quality.
Such adverse influences will spread out as RES are still foreseen to be increasingly integrated
in the network. Additionally, the fact of limited online monitoring and real­time control
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Figure 1.2: Percentage of wind and solar PV generation curtailment [5].

in LV distribution networks can worsen the adverse influences of RES. Suitable solutions to
cope with these problems, thus, become necessary.

One of the traditional solutions is to reinforce the existing network infrastructure, that would
enhance the overall hosting capacity of the network. This traditional solution, however, typ­
ically comes at great investment cost for DSOs. Furthermore, DSOs will need a substantial
investment in developing an adequate monitoring and control in LV distribution networks
for the network operation. Due to the large investment, these reinforcements and develop­
ments can be delayed and fail to support the network performance. It is, hence, desired to
have the alternative solutions for the network monitoring and control, which involves not
only DSOs but also RES systems.

The growing presence of RES with its built­in controllability in LV distribution networks
offer great solutions to enhance the network operation. Thanks to the advanced power elec­
tronic interfaces used, RES have the control possibilities that can be exploited to aid the
network operation. On the other hand, the growing integration of RES in the network
enables its contributions towards managing the operation constraints to be more effective.
Controlling RES, thus, has been widely proposed by the researchers to not only overcome
the network operation issues but also allow more RES intergration.

Moreover, the rapid digital transformation in LV distribution networks can facilitate the
control of RES, as well as the monitoring of the network. The digital transformation at­
tributes to the installations of advanced sensors and smart meters (SM), and the applications
of Internet­of­Things (IoT) with two­way communication. Such recent development at the
grid edge aids in collecting the network operational data; therefore increase the observability
of the networks. The digital transformation, additionally, promotes the exchange of infor­
mation among the network components, which then assist the network control.
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Hence, the combination of the digital transformation and the inherent controllability of
RES, if properly designed, is expected to provide the promising solutions to enhance the
performance of LV distribution networks with high RES penetration.

1.3 Research objective and questions

1.3.1Objective

The main objective of this thesis is to devise appropriate grid­edge monitoring and con­
trol strategies, that can help to enhance the performance of LV distribution networks. The
devised strategies should be able to to deal with current issues in the power distribution
networks due to the increasing penetration of RES. Moreover, such strategies also should
be capable of exploiting the RES controllability in combination with communication and
information availability in the LV distribution networks to provide the network support.

1.3.2 Research questions

To achieve the aforementioned objective, the following research questions are formulated
and will be addressed in the subsequent chapters.

• Q1: What are key enabling technologies for grid­edge monitoring and control and
how can they enhance the performance of the future LV distribution networks?

• Q2: How can the increasing availability of residential smart meter data be used for
the monitoring of the distribution transformer loading?

• Q3: How can the residential PV control functions be properly designed to overcome
voltage rise problems in LV distribution networks while reducing PV generation cur­
tailment?

• Q4: What are the long­term effects of the local voltage control by the residential
PV systems on LV distribution networks and the PV owners and how can the DSO
quantify such effects?

• Q5: How can the available reactive power capacity be optimally coordinated among
residential PV systems to solve voltage rise problems?

• Q6: How can the distributed control strategy be formulated to coordinate PV systems
for voltage rise mitigation with more effective contribution and fair treatment of PV
systems, without the need for a central controller?
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1.4 Research approach and thesis outline

1.4.1 Research approach and scope

An appropriate approach is devised to achieve the research objective of formulating the effec­
tive grid­edge monitoring and control strategies. The challenges of the increasing integration
of RES in LV distribution networks are explored first. Reviewing the monitoring and control
in LV distribution networks is subsequently conducted, focusing on its role in the network
operation support and the possible architectures, as well as the enabling functionalities re­
lated to distribution network monitoring and control.

Next, with the purpose of improving the congestion monitoring in the LV distribution net­
work, the grid­edge monitoring approach is investigated leveraging the increasing availabil­
ity of residential smart meter data. In this regard, the application of the machine learning
techniques to estimate the distribution transformer loading is studied. To implement this
data­driven approach, the role of the local energy communities (LECs) is also discussed. The
efficiency of the proposed grid­edge monitoring approach is evaluated through simulations
on the unbalanced European LV distribution network.

Then, the suitable grid­edge control strategies for supporting LV distribution network in
voltage violation management are formulated. Since the voltage violation is a local problem,
the voltage control methods need to be developed considering the widespread integration
RES in distribution networks, as well as RES controllability. The local voltage control is
implemented by every RES utilising the locally available information; thus no cost of invest­
ment and network modifications for DSOs. The local voltage control method is assessed on
their long­term technical and economical impact on the network and RES owners by run­
ning simulations on European LV distribution network. On the other hand, as the overall
optimal operation of the networks and the proper utilisation of RES capacity are desired,
formulating the coordinated control methods for multiple RES is essential. For this, the
hierarchical control framework, i.e., with multiple control layers operating in different time
intervals, are applied considering the sheer scale of LV networks. Accordingly, centralised
and distributed control strategies are separately investigated for mitigating the voltage viola­
tion problems. The centralised control strategy is considered to coordinate the local voltage
control of RES with optimally dispatching the RES power output. Solving such optimisation
problem is performed by a centralised controller using the linear programming technique.
Besides, the distributed control strategy coordinates the local voltage control of RES, aiming
for the fairness of RES active power curtailment and the efficient uses of its reactive power
capacity. To this end, the consensus algorithm and a sparse communication network are
used, while the central controller is needless. The feasibility of the proposed centralised and
distributed control strategies is verified through simulations on the typical LV distribution
networks, respectively.
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The above description indicates that exploring the controllability of residential­scale RES
systems and exploiting the availability of residential customer consumption data fall within
the scope of this research. It is assumed that the adequate communication infrastructure is
available in the LV distribution networks to facilitate the grid­edge monitoring and control.
The main focus of the research reported in this thesis is on evaluating the proposed strategies
more in the operation phase. The development requirement and cost for the communication
infrastructure is, hence, left out of the scope of this work.

1.4.2Thesis outline

The rest of the thesis is organized in the following chapters, where the research questions
(i.e., Q1 to Q6) described in the previous section are addressed. The thesis outline and the
correlation between the chapters and the research questions are visualised in Fig. 1.3.
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• Chapter 2 describes an overview of grid­edge monitoring and control in LV distri­
bution networks. First, the challenges resulted from the energy transition in LV dis­
tribution networks is presented. The context of grid­edge monitoring and control
is then elaborated, including the role of these approaches in supporting distribution
network operation. Next, technological aspects of grid­edge monitoring and control,
including modelling, architecture, and strategies, are discussed.

• Chapter 3 discusses the application of a data­driven approach for congestion moni­
toring of MV/LV transformers. It is proposed that this approach be implemented by
the local energy communities, considering their ability to access the residential SMs.
In this regard, data from these residential SMs in terms of voltage magnitudes is used
as an input variable. Next, the relationships between residential SM data and the
transformer loading are analysed. The machine learning­based regression models are
subsequently adopted to estimate the transformer loading. To this end, a method­
ological framework to implement, validate and compare different machine learning
algorithms is presented. This framework covers the essential stages for training data
generation, exploratory data analysis, feature selection, model selection and algorithm
selection.

• Chapter 4 investigates the impact of local control methods for voltage rise problems
on LV distribution networks and the PV owners. This local voltage control is per­
formed by the residential­scale PV systems operating with the sequential droop con­
trol (SDC) mechanism and using local measurement. The SDC mechanism is com­
prised of reactive power absorption and active power curtailment schemes (based on
the Q − V and P − V droop control, respectively), to regulate the PV generation
for tackling voltage rise issues. A conditional multivariate Copula method is adopted
to generate a large set of time series input data. A Monte Carlo­based stochastic
approach and various impact metrics are subsequently used, that helps to achieve a
comprehensive assessment of the long­term technical and economical impact.

• Chapter 5 studies a coordinated voltage violation management in LV distribution
networks with high PV penetration. This coordinated management approach is for­
mulated by integrating the local voltage control of PV systems and the centralised
control algorithm following a hierarchical control architecture. The sequential Q−V
and P − V droop control (SDC) scheme is utilised in each PV inverter to address
voltage rise problems. A centralised controller is assumed to manage the coordina­
tion of the local voltage control of PV systems. The concept of Jacobian matrix is
adopted to estimate the linearised relationship between changes in powers injection
at bus with changes in bus voltage. Given the computed Jacobian matrix, the cen­
tralised controller solves the optimisation problem of PV power output by using the
linear programming technique. To this end, new control parameters for the local volt­
age control is calculated and then dispatched to PV inverters, enabling an increasing
utilisation of its reactive power capacity and reduction in its active power curtailment.
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• Chapter 6 presents a distributed coordination control strategy for mitigating voltage
rise problems in LV distribution networks. First, the ε­decomposition technique is
employed to decouple the network into multiple control areas with the strong cou­
pling nature of PV systems, where the proposed control strategy can be effectively
implemented. Next, in each control area, the hierarchical control architecture is de­
signed to incorporate the local voltage control and the distributed control of PV sys­
tems for voltage regulation support. The local voltage control makes use of the SDC
mechanism discussed in Chapter 4. The distributed control is developed using the
consensus algorithm and a sparse communication network with a low bandwidth re­
quirement, while no need for a centralised controller. Based on a consensus among
PV inverters within each control area, the distributed control periodically tunes and
adapts the parameters of both Q − V and P − V droop control scheme of PV in­
verters. This distributed coordination control inherits the autonomous feature of the
droop control for coping with voltage rise issues while helps achieving the fair active
power curtailment and the efficient employment of reactive power absorption of PV
systems. In addition, a sensitivity analysis of different control parameters as well as
different ε values is conducted to further evaluate the performance of the proposed
control strategy.

• Chapter 7 concludes the thesis by summarizing the main findings, highlighting the
general contributions and formulating recommendations for future research.



2
Overview of grid­edge monitoring and

control

This chapter introduces a comprehensive overview of grid­edge monitoring and control for LV
distribution networks. First, relevant aspects of the energy transition in LV distribution networks
are presented, followed by the challenges originating from this recent development. Thereafter, the
context of grid­edge monitoring and control is elaborated, including the role of the approach in
supporting the distribution network operation. Technological aspects of grid­edge monitoring and
control, including modelling, architecture, and strategies, are also discussed 1.

2.1 Introduction

2.1.1Grid­edge monitoring and control concept

The penetration of RES is rapidly growing in both transmission and distribution power sys­
tems and posing several operational challenges. The monitoring of the system performance
becomes a greater importance for transmission networks [9], as well as distribution networks;

1This chapter is based on [7] and [8]
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Figure 2.1: The concept of the grid­edge monitoring and control.

thus, the controlling actions can be properly executed. Distribution networks are evolving
from the traditional, passive system into smart, active system, resulting from the rapid digital
transformation at the grid edges, i.e., interface points between the LV networks and the end­
user installations. The digital transformation arises from the adoption of advanced sensors,
SM as well as the emerging development of IoT with two­way communication. For this, the
key drivers are the technological development, i.e., data integrity, cyber­physical systems, ar­
tificial intelligence (machine learning), and digital twins for a secured, flexible, and efficient
grid operation with cost reduction [10]. The digital transformation at the grid edges enables
the LV distribution network to have digital structure, facilitating self­monitoring and self­
healing capabilities [6]. Moreover, actively exploiting the advanced ICT can enhance the
controllability of RES and the network [11]. The digital transformation at the grid edge,
thus, would facilitate the optimal coordination of the customer­owned RES [10] and for
improving the efficiency of the power system operation [12]. As a result, the adoption of the
digital transformation along with the inherent controllability of RES, if properly managed,
is expected to maximise the cost­effectiveness of incorporating RES into the grid while main­
taining system reliability. In this respect, managing the network requires a new paradigm of
RES control strategies, whose overview is presented in this chapter. For this paradigm, it is
crucial to leverage ICT, data­driven and machine learning­based methods given the increas­
ing availability of the data measurement. In this context, a so­called grid­edge control refers
to the control of RES at the grid edges, which uses various data resources from the digital
transformation. Fig. 2.1 illustrates the concept of grid­edge monitoring and control.

This chapter provides an overview of the grid­edge monitoring and control of RES in LV
distribution networks. As a part of this overview, the challenges of operating LV distri­
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bution networks due to the increasing RES integration are presented. Next, the grid­edge
monitoring is discussed, followed by the modelling and simulation of the grid­edge control.
Then, a thorough discussion of the structures, layers and strategies for the grid­edge control
is provided. The last section shows particular use­cases for the grid­edge control.

2.1.2Challenges from high RES penetration

With the inherent intermittency and randomness, the rapid proliferation of RES, especially
PV systems, in LV distribution networks causes several challenges for grid operation and
planning as shown in Fig. 2.2. In this section, such challenges is discussed to provide a
sound foundation for determining proper control solutions.

Supply­demand balancing

PV technologies have uncertain characteristics by nature, such as intermittency, randomness
and variability [13]. As the primary renewable energy cannot be stored, PV power output is
discontinuously usable to supply the electricity demand. Moreover, fluctuation of PV power
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outputs with fast and frequent fashion adds more stress on network and market operation.
To ensure a reliable electricity supply, the adjustments of power generation dispatches must
be carried out quickly and more frequently. In this regard, the system flexibility to efficiently
operating the entire system needs to increase.

At the system level, the flexibility can be arranged by an adequate level of reserved power from
generation­side resources. Because of the operational constraints, e.g., minimum permissible
power and standby duration time, are fundamental for power plants, this flexibility provision
capacity level can be difficult to be achieved.

Thanks to the large­scale deployment of RES, the demand­side flexibility can be considered
as an alternative resource to contribute to the system balancing task, especially at the local
and regional level [14]. The potential can be even enlarged by leveraging a synergy from
coupling sectors, including electrification in the transportation and building sectors, i.e.,
EVs and HPs, respectively.

Power quality

With the increasing share of RES in a particular geographical area, the generated power
can vary fast and considerably in magnitude. This can be due to sudden changes in solar
irradiance (i.e., cloud passing) [15], subsequently provoking voltage magnitude fluctuation.
In some cases, the voltage fluctuation can be significant that interfere with the operation
of voltage regulation equipment, such as load tap changer of distribution transformers, line
voltage regulators and capacitor banks [16].

A large scale of PV systems eventually causes voltage magnitude to rise along the distribution
feeders, resulting from significant reverse power flows into the upstream networks when the
load is low. Many European DSOs have reported the frequent occurrence of voltage rise
problems due to the implementation of RES in their LV networks [17]. This undesired volt­
age rise potentially damages the customers’ electrical appliances. Furthermore, the voltage
rise can lead to the generator tripping activated by internal protection. This subsequently
induces the loss of the owners’ revenue as they are not able to sell the surplus power gener­
ation. The level and widespread of voltage rise depend on the PV penetration level in the
grid.

Besides, uneven distribution of single­phase PV systems and unbalance PV power generation
can lead to voltage unbalance. Voltage unbalance is quantified by a percentage term, called
Voltage Unbalance Factor (VUF), in which the 10­min average value should be within 2%
for 95% of the time. Voltage unbalance increases at the end of the feeder. High level of volt­
age unbalance causes all induction motor type and distribution transformer to be overheated
and derated. Subsequently, the lifetime of the equipment will be reduced.

PV inverters with high­frequency switching techniques are the major sources of high­frequency
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currents injection into distribution networks [18], subsequently, creating high­frequency
voltage and Total Harmonic Distortion (THD) [19]. These supraharmonics potentially be­
come contributing factors for increased heating in the equipment and conductors, and then
power loss increase in distribution networks [19]. Widespread adoption of RES at the grid
edges with power electronic interfaces results in a growing level of supraharmonics in power
systems [20].

Network congestion

One of the operational difficulties created from the rapid proliferation of RES is the issue of
congestion or thermal overloading of the network assets, e.g., lines, cables, and transform­
ers [21]. The reverse power flowing through the distribution transformer from RES located
in its secondary side can exceed the rated power. The network congestion likely occurs in the
urban power networks with high population density [22]. As reported in [23], nearly 90%
of distribution transformers in the Netherlands will become more prone to the overloading
in 2040 due to the new generation technologies (such as PVs), as well as new load types (such
as electrified HPs and EVs). The congestion issues can become a significant barrier to fur­
ther deployments of RES in LV networks. In practice, the limits on penetration level or peak
power generation have been imposed on the PV integration in LV networks [15]. These ap­
proaches are, obviously, not desirable and should be replaced by alternative solutions, which
are discussed in the next sections.

Changes in regulatory framework

The integration of RES, as well as EVs and HPs, is radically altering the performance of
the power distribution systems because these systems were not originally designed to accom­
modate such technologies. To facilitate this alteration while still effectively managing the
network performance, DSOs must adjust the planning and operational procedures for dis­
tribution networks. Additionally, the active, decentralised features of the future power dis­
tribution systems resulted from RES integration are not originally considered in the design
of the business model of DSOs. Currently, DSOs are operating, maintaining and upgrad­
ing the distribution systems mostly in the passive fashion with fix remuneration specified
annually by the regulators [4]. Hence, DSOs’ business model also needs to be modified to
actively manage the grid [4].

Besides, RES can support the grid operation as their production profiles can be controlled
directly or indirectly by the owner/network operators. This support, subsequently, can be
utilised to handle the local issues, e.g., congestion/voltage violation. Using the support from
RES, however, is currently limited due to the wide geographical distribution of RES [4].
Therefore, to effectively mobilise the support of RES, a new role in the form of the aggrega­
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tors is essential to be introduced [4]. These aggregators should be empowered to have direct
or indirect control over the RES, then offering a supporting tool for DSOs to address techni­
cal problems. To enable the introduction of the aggregator,a radical change in the regulatory
frameworks is required.

It is worth to mention that other issues are emerging due to increasing integration of RES,
such as low initial and frequency stability as indicated in [6, 19, 24–27]. However, these
issues are more concerned in the tranmission networks. The deployment of ICT at the grid
edges imposes the challenges from the viewpoint of control and performance of the power
systems by introducing cybersecurity and privacy threats [6, 11].

2.2 Grid­edge monitoring

To address the operational difficulties for LV distribution networks resulting from the in­
creasing integration of RES, a proper monitoring of the network performance is critical.
However, several burdens hinder the DSOs from adequately monitoring and managing the
operational difficulties in their networks. The DSOs have to install the measurement systems
and develop an extensive communication infrastructure between their systems and custorm­
ers’ premises. Additionally, building the data management systems is required to handle
the gathered data [28]. These developments are deemed costly and not easily implemented,
given the sheer scale of LV networks.

A recent implementation of the LECs, along with an increasing availability of residential
SMs, can offer a solution to the monitoring and management in LV networks. The LECs
intend to actively participate in RES projects in their regions [29]. If the LECs can read
SM data of the end­users and control the RES, the controllability and energy efficiency of
the local networks can be improved [30]. Trading energy within the LECs is also possible;
thus, use of locally generated and shared energy from RES can be stimulated [31]. However,
while the LECs can access customers’ SMs, they generally do not have the information on
the network topology. Therefore, if cooperating actively with the DSOs, the LECs can pro­
vide essential operational supports to the utility grids [30]. In contrast, if the collection and
management of all customers’ SM data, as well as later the control of custormers’ RES, are
performed by the DSOs, this can impose additional burden to their works, especially when
considering the high volume of SMs and the wide geographical distribution of RES [4]. All
these in turn can negatively affect the monitoring and management of the network opera­
tion. In this regard, using data­driven approaches (i.e., using the residential SM data and
implemented by the LECs) is considered promising while supporting the network operation
and preserving customers’ rights.

While recognising added­values of SM data from residential houses for LV network moni­
toring, most previous works focused on the physics­based approaches that limit their appli­
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cability in the diversified, complex LV networks [32–39]. For instance, the dedicated mon­
itoring systems are still required at the substation secondary side. Besides, the aggregated
SM readings from LV end­users are required to implement the state estimation methods
for LV systems [35]. The distribution system state estimation enables the DSOs to moni­
tor their grid variables, i.e., voltages, currents, and power, allowing the network congestion
monitoring. However, the volume of SM data aggregation grows exponentially given the
increasing number of the customers, which likely creates difficulties in collecting and pro­
cessing the data [40]. Therefore, selection of representative meters is desired for the particular
monitoring applications in LV networks. Furthermore, active and reactive power data from
residential SMs are used in some studies. Since the consumption data contains highly private
information about the households, their privacy and security are subjected to violation [41].
The privacy concerns cause the customers in certain countries to raise the objections to use
of SM readings.

Among the machine learning techniques for power systems, regression models are com­
monly used because of its easy­to­implement and ­interpret features [41]. Regression models
mathematically formulate the correlation between one output variable and one or multiple
input variables, afterwards allowing to estimate the output variable from the input vari­
ables. Regression models are widely employed for load forecasting [41–43], RES generation
forecasting [44,45], power system state estimation [46,47], and network operation support­
ing [48, 49].

2.3 Modelling and simulations of grid­edge control

Proper development of the grid­edge control has necessitated the modelling and simulations
of RES (focusing on PVs), which are firstly listed in Fig. 2.3 and subsequently presented in
detail in this section.

2.3.1 From physics­based to data­driven models

The physics­based models, also regarded as white­box, include the physics of the object to be
modelled, providing reliable and accurate modelling tools [50]. However, adequate knowl­
edge of the system characteristics is required and then needs to be modelled in a detailed
manner. The model execution, consequently, shows the computational burden and is time­
consuming. Typically, the physics­based models are applied for component levels up to
device levels [50]. For instance, the examples at device­level details, e.g., inverter modelling,
are introduced in [51], and for component levels in [52].

Data­driven models represent the statistical relationship between input and output data of
a given system without presenting the underlying physics. Data­driven models can use sta­
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Figure 2.3: Types of modelling and simulations of the grid­edge control.

tistical and machine learning approaches. Thus, data­driven model execution is less compu­
tationally demanding compared to physical­based models [50]. Considering the increasing
availability of data measurement, data­driven models are being employed more frequently,
especially for system­level modelling. For instance, applying data­driven models at the sys­
tem levels is presented in [53], and at device­level details in [50]. However, the accuracy of
the data­driven models is strictly related to the amount of training data available [54].

2.3.2 From numerical to real­time simulation

A simulation platform to enable the grid­edge control solutions can be implemented using
either numerical simulation or real­time (RT) simulation approaches. The first approach,
i.e., non­RT, is widely used in the early stage, e.g., design, due to ease of implementation,
low cost and safety reasons, using simulation software. Several common simulation software
includes MATLAB/Simulink, PSCAD, GAMS, and HOMER [55]. Subsequently, the sec­
ond approach is used in the next stages, e.g., validation, to further test the proposed works
beyond the numerical simulation for solutions before real deployment. In this platform,
the RT simulator machine takes the central role as its powerful simulation capability en­
ables the modelled network to operate closely to realistic manner [56]. RT simulators can
be of great help for designers and researches to better understand the main problems and to
identify the more appropriate solutions. The commonly used RT simulators include RTDS
and Opal­RT. Some laboratory­based setup and test­beds for RT simulation platforms have
been developed in various countries, e.g., Austria, Germany, France, and the UK, as dis­
cussed in [56, 57]. However, it is worth noting that these simulators may not be accurate
enough because the models on which they are based are not always capable of replicating the
realistic behaviour of the physical system [58]. As a consequence, the solutions identified by
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these simulators may be inefficient when applied to the actual system.

2.4 Grid­edge control architecture, layers and strategies

This section describes different architecture, layers and strategies for the grid­edge control.
Possible grid­edge control solutions are also presented.

2.4.1Control architecture

Based on the communication network, the grid­edge con­trol strategies can be categorised
into centralised, distributed, and decentralised control, as shown in Fig. 2.4.

Centralised control

This control method (illustrated in Fig. 2.4 (a)) is considered as a conventional approach,
constituted of a central controller and bi­directional communication links between this unit
to every single component of the networks. Theoretically, the central controller needs to re­
ceive and process the messages exchanged from all units, causing a large number of message
exchanges within the grid. All control decisions are made by the central controller. This con­
trol architecture makes the system development expensive [57] while weakening the system
reliability due to a single­point­of­failure of the central controller or the malfunction of any
communication links [59]. Scalability is another shortcoming of the centralised control, re­
sulted from the additional complexity to the communication network and required setting
update of the central controller. With the high integration of RES, centralised control is
potentially impractical [60]. Instead, the adoption of centralised control is appropriate for a

(a) (b) (c)

Figure 2.4: Classification of grid­edge control strategies based on their communication network:
(a) Centralised control, (b) Decentralised control, (c) Distributed control. The green circles
represent RES, while the orange circle represent a central controller. The dashed blue lines
represent two­way communication links.
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small­scale grid that includes a small number of nodes and does not require frequent system
expansion [61]. Using the Energy Management System (EMS) is a promising solution to
the implementation of centralised control.

Decentralised control

The decentralised control (shown in Fig. 2.4 (b)) dismisses the duties of a central controller
nor one­to­all communication system; thus, allowing simplicity and relatively low cost of
implementation, and obtaining higher reliability. As no extensive communication infras­
tructure is required, the required investment decreases as compared to the centralised con­
trol. The control decisions are made individually at each RES by its local controller using
the local information [62]. This method makes ICT performance robust against the fail­
ures. However, RES lack the awareness of system­wide performance as well as other units’
status [63]. Moreover, these methods usually apply the same control settings for all RES,
which have different types and operating conditions [64]. This approach can lead to unco­
operative operation of RES, subsequently unexpected problems [64].

Distributed control

In the distributed control (illustrated in Fig. 2.4 (c)), a central controller is excluded, but
communication is needed, which is in the form of sparse communication links between
some adjacent RES with low bandwidth. This kind of communication allows developing
the distributed control with lower cost compared with the centralised control. By using the
sparse communication, all RES take the responsibilities for the network optimisation and
stability via coordinating each other. In case of a new RES installed, only the configuration
for the communication links between this unit and the neighbouring ones is required [16].
Distributed control is suitable for a system that has a large number of nodes, high complexity
of system structure, and more frequent expansion of the system [61].

2.4.2Hierarchical control

Because distribution networks compose different power generation systems based on differ­
ent technologies and power ratings, it is necessary to implement a hierarchical control to
maximise the controllability, reliability, efficiency while minimising the operation cost [65].
The hierarchical control, thus, can assist the robust operation of the networks. Determi­
nation of optimum operation for the grid takes into account various factors, for example,
rated and available capacity of generation systems, distribution of loads and generation sys­
tems, electrical market prices, generation costs. In that sense, neither fully centralised nor
fully decentralised control can accomplish the proper control of the system. A compromise
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between fully centralised and decentralised control can be obtained employing a hierarchi­
cal control [62]. The hierarchical control can be formulated by three main layers: primary,
secondary, and tertiary control. These control layers are different in their: time frame and
response speed when they are operating, and the supporting infrastructure requirement [62].

Primary control

Primary control is the first level of hierarchical control. It is implemented by local controllers,
which is embedded in each component, such as RES, ESS and loads. This control layer
is capable of acting fast (on the order of milliseconds) in a pre­determined way without
needs for communication with neighbouring units [66], contributing to the enhancement
of network stability [67]. The functions of the primary control are islanding detection,
output control of individual RES and power­sharing among RES [59, 62]. This control
layer, consequently, enables the inverters to autonomously operate at each unit, resulting in
the improvement of power stability.

Secondary control

Secondary control is upstream control layer of the primary control that is responsible for
the reliable, secure and economical operation of the grid [62]. This control layer pro­
vides the reference parameters for the primary control, e.g., output power or voltage at the
POC [59, 68, 69]. Therefore, the secondary control eliminates the steady­state error caused
by primary control [62, 70]. For example, secondary control restores grid frequency, and
voltage amplitude within the accepted range, e.g., by ±0.1 Hz in Nordel (North of Europe)
or ±0.2 Hz in UCTE (Continental Europe) [71], as well as voltage unbalance and harmonic
compensation. Besides, it is in charge of synchronisation and power exchange with the main
grid [14]. The response speed of the secondary control is slower than the primary due to
some limitations, such as availability and capacity of primary sources.

The approach to design secondary control can be classified as centralised, decentralised, and
distributed control architecture [72] as discussed in Sec. 2.4.1. The centralised one is suitable
for the network operating in an islanded mode in which supply­demand balance is a critical
issue [62]. The decentralised and distributed ones are suitable for the network operating in
a grid­connected mode in which multiple objectives exist. Communication network plays
a crucial role as secondary control gathers information from a primary control within each
RES and in return, dispatches control signal to the primary control [59].
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Tertiary control

Tertiary control is the top control layer which optimises the power flow in the grid once
the grid already operates at its rated frequency and acceptable voltage range [70]. Awareness
of operation conditions of neighbouring and upstream distribution networks is essential
to execute the optimisation functions, in which ICT is a key enabling technology. This
optimisation considers the relationship between the demand and the energy supply balance,
and the marginal generation cost of each generation unit. The tertiary control regulates the
power flows between the main grid and the controlled grid. Additionally, such control level
also takes charge of restoring the secondary control reserve and supporting the secondary
control is necessary [69]. Tertiary control works in the time frame of several minutes, issuing
the control command to secondary controls within a grid [62].

2.4.3Grid­edge control strategies

To enable potential from the grid­edge control, it is important to consider the coexistence of
the control structures from distribution networks down to available local control functions
of individual RES. This synergy from all control layers can be realised from either corrective
or predictive control approach, which will be discussed in the followings.

Corrective control

Corrective controls refer to control actions to mitigate or reduce the potential impacts of
the undesirable operational situations when they occur, aiming to maintain the system with
normal operation. Within the context of distribution networks, the undesirable operational
situations include voltage limit violation, power quality issues, congestion and faults in the
network. Implementation of corrective controls can be based on rule­based methods, model
predictive control (MPC) and statistical/machine learning techniques. Examples of cor­
rective controls for RES consists of control of power outputs of PVs and EVs for voltage
regulation [73, 74]; reduce in HPs’ power consumption for congestion management [22];
fault­tolerant control of wind generators to achieve ride though capability [75].

Preventative control

Preventative controls are designed to carry out before corrective controls, i.e., when the threat
events have not occurred. The purpose of preventative controls is to prevent the likelihood of
such threat events or non­conformities in the system, then avoiding their potential impacts.
To this end, preventative controls typically adopt the forecast/prediction techniques and risk
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analysis for a specific time horizon in the future. MPC can also be used to realise the preven­
tative control algorithm. Examples of the applications in LV networks with the high inte­
gration of EVs using preventative controls include optimal operational planning/scheduling
of EVs [76]; power ramp­rate control of PV systems using forecasting methods [77]; and
MPC­based control of ESS to reduce the fluctuating power outputs of PV systems [78].

2.5 Particular use­cases for grid­edge control

In this section, the review of some particular use­cases for the grid­edge control, focusing on
PVs are described as they are the main pillars of the grid­edge control.

2.5.1 Autonomous control

Autonomous control for RES, also called local control, provides voltage and frequency con­
trol of the regional LV network in the islanded operation mode, and the support services for
the regional LV network in the grid­connected mode (e.g., voltage regulation support) [79].
Furthermore, this control supports the elimination of voltage and frequency deviation dur­
ing the transition from the grid­connected oper­ation mode to the islanded operation mode
and vice versa [79]. The control actions are implemented at the electronic inverters interfac­
ing the sources with the grid and involves the local measurement of frequency and voltage
only, no information exchange with surrounding sources needed.

Active power control

Controlling active power injection from RES is perceived as the most effective solution to
address their negative effects on the grid operation due to the fluctuating power production.
This means that RES must be capable of controlling its active power output upon the request,
e.g., to respond to voltage rise problems, instead of sorely maximising the energy harvesting.
The active power control of RES can be categorised into two main groups: power reduction
control (PRC) and power ramp­rate control (PRRC). In the PRC, the actual power output
of RES is reduced from the instantaneous available power to a specified level, which can
be fixed or variable during the operation period [80]. In the PRRC, the rate of change
of RES power output is limited to a certain value during the fluctuation of the primary
renewable resources (e.g., passing clouds) [80]. This control decreases the power fluctuation
of RES, subsequently stimulating the reduction in the network voltage fluctuation. Possible
approaches to fulfil these active power control functionalities can be based on ESS, control of
PV inverters, and local controllable loads [81]. Meanwhile, provision of the power reference
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values and supervision of the active power control for RES can be made by using the droop
control, or auto­adaptive control, or data­driven methods.

• Control of ESS: In [82–87], ESS is combined with the PV system in distribution
networks to realise the PRC for mitigating the voltage fluctuation problems due to
high penetration of PVs. Furthermore, during the unavailability of power generated
from PVs (e.g., during the nights), the ESS can inject active power into the grid,
contributing to the voltage support and congestion management during peak load
periods. Authors in [88, 89] proposed the integration of ESS into PV systems to im­
plement the PRRC for the PV power fluctuation reduction. The combination of ESS
and RES offers a promising solution to effectively control RES power because of its
high flexibility. Meanwhile, maximising the energy harvesting of RES will be imper­
vious. However, the cost associated with the installation, operation and maintenance
of that system is the main concern. Authors in [74] proposed the use of EV batteries
as ESS to deliver the PRC for residential PV units.

• Control of PV inverters: Without ESS, active power control of PVs can be carried out
to address the technical issues arisen by their significant development. In [73,74], the
maximum power point tracking (MPPT) algorithm embedded in the power converter
of PV systems is modified to realise the PRC supporting the voltage rise alleviation.
Authors in [77] introduced the modification of MPPT in PV inverters to provide the
PRRC without energy storage. Controlling PV power converters requires no addi­
tional hardware component, making it cost­effective to regulate PV power. The main
drawback of this method is the loss of energy yield due to the power curtailment, and
the impossibility of injecting extra power to the network [81].

• P − f and P −V droop control: P − f droop control, also known as conventional
droop control, mimics the behaviour of synchronous generators, which reduces the
frequency when active power increases [25, 66]. This behaviour can be stimulated by
the following formula:

(f − f∗) = −KPf (P − P ∗) (2.1)

where f and P correspond to the measured output frequency and active power of
the DG system, respectively, and f∗ and P ∗ correspond to the reference values for
frequency and active power of the DG system, respectively. The coefficients KPf

denotes the active droop slope. Thus, (f − f∗) represents the frequency deviation
from its reference value and (P −P ∗) represents the variation of output active power
delivered by the DG system to proportionally compensate such deviation. Fig. 2.5 (a)
illustrates the P − f droop control. Such P − f droop control is suitable for the
inductive grid, such as high voltage and medium voltage network.
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Figure 2.5: Active power control based on (a) ­ P − f droop control and (b) ­ P − V droop
control.

The P − V droop control, on the other hand, is widely used to provide the power
reference values and supervise the PRC of RES in LV networks as presented in [22,
66, 71, 80, 90–94]. The control principle can be represented as,

(V − V ∗) = −KPV (P − P ∗) (2.2)

where V and V ∗ correspond to the measured output voltage magnitude and its refer­
ence value of the DG system, respectively. The coefficients KPV denotes the active
droop slope. Therefore, (V − V ∗) represents the voltage magnitude deviation from
its reference value. Characteristics of P − V droop control are shown in Fig. 2.5 (b).

Reactive power control

With high penetration of RES, there is growing interest in using these technologies as dis­
tributed reactive power resources for voltage/VAr support. It is technical viable since the
RES use the advanced power electronic interfaces, where active and reactive power exchange
to the grid can be adjusted separately. Hence, the reactive power support can be provided
from ESS and PV systems. Controlling the reactive power of PV inverters for VAr support
has been proposed in [95–97]. Approaches to coordinate ESS and reactive power control
of PV systems are proposed in [87, 98]. There are various strategies to generate the reactive
power output references, including fixed power factor (FPF), varying power factor in terms
of active power generation (VPF(P )), and reactive power responding to the voltage level
(Q­V droop control) [99].
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• Fixed power factor (FPF): This method regulates the reactive power output of the
RES system (Q) as a fixed proportion of active power outputs (P ) as described by:

Q = tan[arcos(PF)]P (2.3)

where PF is the power factor, i.e., PF = cosφ, which is predefined as a fixed parameter.
As shown in Fig. 2.6 (a), given predefined PF the operating points for Q stays along
the red diagonal line and rely upon only P of the RES system in a linear manner.
In [98,100], PV inverters operate with FPF to provide reactive power support, while
ESS stores active power generation from PV systems during voltage rise conditions.
This combination aims to avoid active power curtailment of PV systems.
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Figure 2.6: (a) ­ FPF method for reactive power control of a RES system: the orange curve
represents the apparent power S, P rated and P denotes the rated and injected active power, re­
spectively, and Q denotes maximum reactive power. (b) ­ VPF(P ) method for reactive power
control of a RES system: PFLIM Capacitive and Inductive represent PF limit values in ca­
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of the dead­band interval.



2.5: Particular use­cases for grid­edge control 25

Although this method is simple and reliable, it has a major drawback. In case of a low
level of P of the inverter, the probability of voltage rises and low voltage at POC of
the inverters is low. Consequently, the reactive power output of the inverters is not
desired because it leads to additional losses in the network. Applying the FPF method
in such condition, therefore, will be not beneficial [99]. This negative consequence
can be avoided by applying the VPF(P ) method as discussed below.

• Varying power factor (VPF(P )): In the VPF(P ) method, the PF is varying according
to the value of P of the RES system. Consequently, the reactive power output Q can
be defined using the modified equation below:

Q = tan[arcos(PFt)]P (2.4)

where PFt is the power factor set point in correspondence with P at time instant t.
Fig. 2.6 (b) presents the VPF(P ) method. When P is still in the dead­band interval,
the inverter operates with unity power factor (PF = 1.0) and no reactive power injec­
tion or absorption is required. The capacitive part is used when voltage drop problems
occur, which requires reactive power generation. In contrast, the inductive part is used
when over voltage rise problems occur, which requests reactive power absorption.

• Q−V Droop control: Compared to the FPF and VPF(P ) method, theQ−V droop
control method provides more flexibility when controlling reactive power for support­
ing the voltage regulation [95]. The Q− V droop control directly utilises the voltage
measurements for regulating reactive power output of the inverter as demonstrated in
Fig. 12. Reactive power capacity of the inverters is restricted by the apparent power
rating of the inverter and P generating at a given irradiance. Also, reactive power
capacity will be further defined if the requirement of the minimum allowed PF is
applied. To illustrate this, the operating region for reactive power in the Q−V droop
control method is shown in Fig. 2.7 for two cases of operation region without and
with the minimum allowed PF requirements.

In [74, 77, 81, 85, 101, 102], PV inverters operate with the Q − V droop control
to reduce voltage rise problems due to surplus PV power generation. Nevertheless,
reactive power control by itself can be inefficient to solve the voltage rise problems
due to the high R/X ratios in LV distribution networks, and the limited reactive power
capacity of the PV inverters [103]. Thus, the combination of reactive and active power
control is applied as discussed in [72, 94, 100, 104,105].

Data­driven approaches

The digital transformation at the grid edge provokes the development of data­driven/machine
learning approaches using real data measurements to support the network operation. The
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Figure 2.7: Operation regions of RES power outputs demonstrated by the dash­line regions for
two control strategies: (a) ­ without minimum allowed PF requirement and (b) ­ with the
minimum allowed PF requirement.

authors in [64] introduces a machine learning approaches based on support vector machines
to optimise the local control design of DGs, loads and ESS. The optimised local control
performs reactive power control, active power curtailment without the needs for communi­
cations. In [77], data measured by the sensors in a PV system is used to forecast the output
power, which is then used as an input for the PRRC of PV systems to reduce voltage fluc­
tuation due to could passing. A data­driven method presented in [106] adopts non­linear
control techniques to determine the reference values for real­time reactive power outputs of
inverter­based DGs. The machine learning methods proposed in [107, 108] employ multi­
learning regression to calculate the optimal reactive power outputs of DGs. In [109], a
voltage control approach at the grid edges is proposed using an artificial neuron network
(ANN) for RES inverters.

2.5.2Coordinated control

Since RES are increasingly connected to distribution networks, the coordinated control is
important to effectively exploit these resources for the system operation support. The coor­
dinated control can be considered as an upper layer of autonomous control with the use of
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the ICT infrastructure and coordinated control algorithms.

Optimisation method

The optimisation method tunes the autonomous control of RES by periodically providing
the set points of active and reactive power of RES for the optimal uses. For this method,
the operational information of all RES unit must be collected. The non­linear optimisation
is discussed in [95] to solve multi­objective functions of minimising network losses, volt­
age level deviation, and transformer tap changing. Linear programming is used in [86]
to optimise the power threshold levels, which trigger the ESS charging to enable PRC of
PV systems during their peak generation. In [110], cost­optimal control is proposed to
maximize PV self­consumption by operating HPs. In [95] centralised optimisation approach
is employed to optimally coordinate reactive and active power of PV systems for voltage rise
mitigation with reduced active power curtailment. Similarly, the centralised optimisation
method is used in [22] to coordinate HPs for congestion management in LV networks.
Authors in [104] formulated the optimal tuning of autonomous control, including active and
reactive power, of PV units as a convex optimisation problem solved by a central controller.
In [111], the optimisation of PV systems and EVs is also formulated as a convex optimisation
problem but solved in a distributed manner.

Consensus method

Consensus algorithms have been widely used as a basis for distributed control. In this con­
cept, each RES system communicates and shares its local information as the variable of
interest with adjacent ones using a distributed procedure [55]. The objective function of
the consensus algorithm is to converge all RES to a common agreement after an iterative
process. The variable of interest can be regarded as a quantity that is agreed by all RES sys­
tems. The coordinated charging/discharging control of EVs for voltage regulation based on
the consensus method is presented in [74]. In [111], the consensus method is employed
to coordinate the active and reactive power output of renewable­based DGs and EVs. The
method in [112] utilises consensus­based distributed control to obtain fair generation cur­
tailment of PV systems. In [113], consensus protocols is used in combination with fuzzy
logic to tackle voltage regulation problems.

Agent­based method

Another method to coordinate various RES for their control and management in distribu­
tion networks is to use the MAS approach [63]. In the networks, RES can be represented
by individual agents, that has a certain level of autonomy and communication capability.
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Authors in [22] developed a MAS­based control strategy to coordinate the process of a uni­
fied approach for managing thermal and voltage violation problems. Compared with the
centralised scheme, the proposed MAS approach requires decreased communication and
computational power due to the lower amount of exchanged information. In [114, 115],
peer­to­peer control in LV networks based on MAS technique have been proposed. The
control architecture is distributed and contains three control layers (i.e., primary, secondary
and tertiary). MAS market­based control for charging fleets of EVs is proposed in [116]
with transformer congestion and voltage violation issues being considered.

MPC­based method

As described in previous sections, the MPC­based method can be utilised to implement
the corrective and preventative control. MPC method is a discrete­time control scheme,
in which at each time step, the future control sequence is determined for a finite time­
horizon. In [51], MPC­based techniques are used to realise the basic control functionalities
of PV power converters, such as MPPT, current and voltage control. MPC­based control of
ESS to reduce the PV power fluctuation of PVs is discussed in [78]. The authors in [117]
adopted MPC approach to define optimal set points for active and reactive power of DGs
and transformer load tap changer for voltage regulation. In [118], MPC is used to schedule
HPs aiming to reduce its operation cost by preheating the houses during peak hours with
low TOU electricity price or high PV power outputs.

2.6 Discussion

2.6.1 Advanced functionalities of RES

With more installation in distribution networks, RES are increasingly expected to provide
more support with the network control and operation using advanced functionalities. The
expected functionalities include virtual inertia [27], Volt/VAr support, frequency regulation,
harmonic compensation, and dynamic grid support (fault­ride­through capability) [119].
To realise these functionalities, the existing network operating standards for RES systems is
suggested to be re­investigated and appropriately adjusted.

2.6.2Distribution network monitoring improvement

The presence of RES increases the complexity of distribution network control and perfor­
mance. Therefore, it is important to properly control these resources as well as the network
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to ensure the reliability of the power supply. On the other hand, the digital transformation
at the grid edge brings opportunities to increase the observability of the grids by using data
measurement. These two aspects highlight the needs to im­prove the network monitoring
leveraged by the digital trans­formation at the grid edges.

2.6.3Cybersecurity consideration

The digital transformation at the grid edges expands ICT system and increases the informa­
tion exchange, which imposes the challenges from the viewpoint of control and performance
of the power systems by introducing cybersecurity and privacy threats. The cyber­attacks can
be carried out by a living person, or malicious software, or the systems’ resources [11], induc­
ing the interruption of the communication services and then the electricity provision and also
harm to end­users privacy. Hence, it is suggested to investigate the impact of cyber­attack
on the operation of RES and the networks.

2.6.4 Regulatory/Framework consideration

It is increasingly important to not only promote RES integration in the grid but also effec­
tively exploit their controllability to support grid performance. Apart from technical aspects,
attention is required for reconsidering the existing regulatory/framework about the DSOs’
business model as well as new roles in the form of the aggregators [4]. The local flexibility
market, moreover, is suggested to be implemented to enable the efficient procurement of
flexibility available from RES [4].

2.6.5Uses of Data­driven/Machine learning approaches

The increasing availability of data from the digital transformation at the grid edges has mo­
tivated the application of data­driven/machine learning approaches. These applications can
be associated with network planning, monitoring, controlling and operation. Besides, the
data­driven/machine learning approaches can be used as tools for data governance. With
the widespread digital transformation at the grid edges, it is expected that data measurement
in distribution networks will be growing spectacularly. This calls for new processes of man­
aging and exploiting the data effectively. Furthermore, as data­driven/machine learning ap­
proaches can be applied without the system modelling, the applications of these approaches
can be replicated in a better and easier way compared to the conventional control methods,
such as master­slave or cloud­edge structure.
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2.7 Summary

A comprehensive overview of the grid­edge control, i.e., the control of RES leveraged by the
digital transformation at the grid edges, is presented in this chapter. Despite of many ben­
efits, the increasing integration of RES with its intermittent and unpredictable nature and
uses of power electronic interface creates challenges in maintaining the network power qual­
ity and stability. Hence, a new paradigm of RES control and operation strategy is required
to effectively manage the LV distribution networks. This new paradigm calls for data­driven
methods to capture uncertainty and complexity of RES while the coexistence between the
grid and RES control strategies are important to be adopted. If properly implemented, this
new paradigm can effectively leverage the inherent controllability of RES and the availability
of the digital transformation at the grid edges.
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Transformer loading monitoring

In this chapter, a data­driven approach to enable self­management capability of the local energy
communities (LECs) via transformer congestion monitoring in LV distribution networks is pro­
posed. The proposed approach adopts the machine learning­based regression models and uses the
data from residential smart meters. A thorough analysis is conducted to discover the relationships
between the transformer loading and residential smart meter readings. A comprehensive frame­
work is provided to implement, validate and compare different machine learning algorithms for
the transformer loading estimation from the LECs’ perspective. The efficiency of the proposed ap­
proach is investigated through simulations in the unbalanced IEEE European LV test network.
Simulation results highlight that the proposed approach can effectively determine the transformer
loading using only a limited set of smart meter measurements provided by the LECs while pre­
serving customers’ privacy rights.1

3.1 Introduction

With the inherent intermittency and randomness, the rapid proliferation of RES, especially
PV systems, in LV distribution networks creates operational difficulties to the DSOs [122].

1This chapter is based on [120] and [121].
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One of these difficulties is the issue of congestion or thermal overloading of the network
assets, e.g., lines, cables, and transformers [21], which likely occurs in the urban power
networks with high population density [22]. The congestion issues can become a significant
barrier to further deployments of RES in LV networks. Hence, the proper monitoring of
such congestion is critical for the DSOs to manage new load connections and network asset
upgrading [28]. The DSOs and the end­users should be aware of the congestion to make
informed decisions on controlling their equipment to resolve the problems, ensuring safe
operation of the network. This chapter focuses on the congestion of the MV/LV distribution
transformers.

As discussed in Chapter 2, several issues hinder the DSOs from adequately monitoring and
managing the congestion in their LV networks. An alternative approach is to cooperate
actively with the LECs, where end­user’s SM data can be gathered and RES can be remotely
controlled. Within the LECs, locally­produced RES energy can be traded [31]; therefore not
only energy efficiency but also the controllability the local networks can be enhanced [30].

While using SM data for LV network monitoring, most of the existing works adopted the
physics­based approaches that have restriction itself to be applicable in the diversified, com­
plex LV networks. In this chapter, a data­driven approach is discussed that will be imple­
mented by the LECs to monitor the transformer congestion in LV distribution networks.
Use of the data­driven approach by the LECs is considered promising to support the network
operation while preserving customers’ rights. The proposed approach involves adopting the
machine learning­based regression models and using data measured from residential SMs.
The problems of transformer congestion monitoring is elaborated first. The procedure of
pre­processing data is subsequently discussed along with the procedure of training and eval­
uating various learning algorithms for estimating transformer loading. The simulation results
of the proposed approach are discussed and relevant conclusions are finally drawn.

3.2 Problem definition

3.2.1 Transformer congestion monitoring

Transformer congestion occur when the loading of the transformer exceeds the thermal ca­
pacity due to high power consumption or reverse power flows from residential RES units [22].
The loading of the transformer is defined as the instantaneous apparent power of the trans­
former, Strans, which can be calculated from the voltage levels at the LV bus, Vs and the
total current flowing in the bus, Is using Eq. (3.1),

Strans = VsIs (3.1)
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Despite the ability of the transformer to withstand loads beyond a specified limit, prolonged
overloading impairs the insulation of transformer windings [123], subsequently degrading
the transformer lifetime. The congestion monitoring, therefore, is essential for a coordinated
control to be activated to restrict residential consumption or curtail RES generation. In this
work, a procedure to monitor the congestion due to reverse power flows is introduced. For
this procedure, the transformers loading Strans is estimated, then enabling the monitoring
of the transformer congestion or thermal overloading.

3.2.2 Residential smart meter data

Beyond the consumption measurement for billing, SMs can record voltage, current, and
power quality information [124]. The information can be recorded at preset time intervals
(typically 15, 30 or 60 minutes) and with high accuracy. These advanced features allow resi­
dential SMs to be already employed for management and planning in distribution networks,
such as detecting energy theft, forecasting load, and verifying network topology. A detailed
analysis of SM application in distribution networks can be found in [41, 125]. For deter­
mining the transformer loading discussed in this work, the voltage magnitude measured by
residential SMs is used as an input variable. For the sake of simplicity, residential SMs will
be termed as SMs in the rest of this chapter.

3.2.3Data­driven monitoring framework

A framework is introduced in this study to realise the data­driven approach for the trans­
former congestion monitoring, which can be schematically presented in Fig. 3.1. This frame­
work includes two main building blocks as follows:
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Figure 3.1: Methodological framework.
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• Model preparation: a comprehensive procedure for transformer loading estimation is
executed involving data pre­processing, and ML model fitting and evaluation. Main
outputs of the procedure are a reduced set of SMs identified as input data sources and
the best­performing ML algorithm for the regression model. Individual steps in the
procedure are elaborated in Sec. 3.3 and Sec. 3.4.

• Model deployment: data from the selected SMs is collected and fit into the tuned,
trained model given by the model preparation stage to estimate the transformer load­
ing. The transformer congestion, subsequently, can be identified. The model perfor­
mance is tested with the results being discussed in Sec. 3.5.

3.3 Data pre­processing procedure

This section explains the procedure adopted to pre­process data in the framework depicted
in Fig. 3.1. Implementing the procedure for a specific test case is also described.

3.3.1 Training data generation

An equitable training dataset plays a decisive role in obtaining promising results when uti­
lizing any data­driven technique. In this chapter, to prepare the reasonable training dataset,
stochastic samples are generated by solving a substantial number of power flows and logging
the corresponding results. For a given LV network and PV penetration levels, the variations
in household load consumption and PV production need to be considered.

Simulation approach

A simulation approach to generate stochastic training dataset is developed using Python and
OpenDSS [126]. In the following, the main stages are briefly described.

• Firstly, forN households, a set of profilesP , with size |P| of one year and a time reso­
lution of 15 minutes (i.e., |P| = 35040), of load consumption and PV generation are
built following the modelling approach presented in the next sections. Consequently,
the obtained profiles are randomly distributed to the houses in the test network. For
simplicity, it is assumed that PV units have same phase connection as the houses.

• Secondly, one­year time­series power flows with size |P| = 35040 are solved iteratively.
A data sample (X , Y ) is recorded at each execution. For this, X is a set of input
variables, which is regarded as the SM data, including voltage magnitudes, and net
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active and reactive power measured at the POC of all houses, i.e., Vi, Pnet
i , and Qnet

i

with ∀i ∈ N , respectively. Meanwhile, Y is the output variable, i.e., the transformer
loading, Strans.

• Thirdly, the obtained dataset is split into two parts: 80% of the dataset is used to
simulate the historical data for model preparation, and the remaining dataset simulates
future data for model deployment. These sets are then stored for later processing steps.

Test network description

The test network is based on the IEEE European LV distribution network [127]. This three­
phase, radial LV network is energized from a 250 kVA, 11/0.4 kV distribution transformer
with the secondary side voltage level settings of 1.03 p.u. The remaining features are retained
as the origin in the IEEE European LV distribution network. A geographical single­line
diagram of the IEEE European LV test network is displayed in Fig. 3.2. The test network
serves as an unbalanced grid supplying 55 residential users with single­phase connections,
of which 21 users on phase A (i.e., NA = 21), 19 users on phase B, and 15 users on phase
C. Every household is assumed to own a PV system. The rated capacities of PV systems in
the test network are randomly chosen between 4.06 and 6.27 kWp [126], which is derived
from the information on the real residential PV installations in the Netherlands. The test
network is assumed to have a LEC, that can access the residential SM data and control RES
at the customer premises. For the demonstration purpose, an overview of household load
characteristics and installed PV capacities for phase A is shown in Table 3.1. Furthermore,
in this study it is assumed that the topology of the test network remains constant. The
properties of load and PV systems for phase B and C are described in Appendix A.

Table 3.1: Summary of household load characteristics and PV installations in phase A

House Node Peak load Installed PV
No. No. (kW) capacity (kWp)
H1 34 3.9 6.1
H3 70 3.1 4.7
H4 73 2.9 4.3
H5 74 2.8 4.7
H9 225 4.1 4.9
H14 289 3.6 4.1
H20 349 3.5 4.7
H21 387 3.0 5.0
H22 388 4.2 5.2
H25 502 4.8 5.0
H29 562 3.4 6.2

House Node Peak load Installed PV
No. No. (kW) capacity (kWp)
H30 563 3.6 4.1
H31 611 2.5 4.5
H34 629 3.4 4.5
H46 817 4.0 4.6
H48 860 2.7 5.5
H49 861 3.5 5.5
H51 896 2.8 4.3
H52 898 3.6 4.9
H54 900 4.1 5.0
H55 906 2.7 5.1
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Figure 3.2: Single­line diagram of the IEEE European LV test network. The numerical value
denotes the number of the node where the load is connected [127].

Load consumption and PV generation profiles

The household load consumption used in the training data generation is modelled based on
real one­year 15­min historical SM measurements in terms of active power from residential
consumers in the Netherlands. To consider reactive power consumption, all loads have a
power factor, that is assumed to be 0.97 (inductive).

The synthetic PV generation profiles are built on a PV model, which utilises meteorolog­
ical data and specified PV installations to calculate the active power output (PPV ) as in
Eq. (3.2) [128],

PPV =
Itr
Ir

P0[1 + γ(Tc − Tr)] (3.2)

where PPV is the active power output (kW), Itr is the irradiance incident transmitted to
the PV module (W/m2), Ir is the reference irradiance at test condition, i.e., 1000 W/m2,
P0 is the rated power of PV unit (kW), γ is the temperature coefficient provided by the PV
panel manufacturers (%/◦C), Tc is the actual cell temperature (◦C), and Tr is the reference
temperature at test condition, i.e., 25◦C.

In this work, the value of γ is selected to be 0.35 %/◦C corresponding to a premium type
of PV module [128]. Moreover, a set of real historical meteorological data of Itr and Tc

with a 15­min resolution, provided by the Royal Netherlands Meteorological Institute, is
adopted [129]. Because of short geographical distances between the houses within the test
network, the exposure to irradiance and ambient temperature is assumed to be similar for all
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PV systems. However, to justify the modest variations of the meteorological data and other
uncertainties, the computed active power output for individual PV units is multiplied by a
random sample drawn from a uniform distribution between 0.95 and 1.05 [130].

The proposed process for training data generation has been implemented in Python pro­
gramming language and OpenDSS software. Simulations using a computer (3.4 GHz Intel
CPU and 28 GB RAM) were executed in around 27 minutes in total to solve a large number
of power flows and process the input and ouput data.

Having the generated training data, the remaining steps in the methodological framework
are implemented using Python. It should be noted that because the test network is an unbal­
anced three­phase LV grid with all single­phase connected loads, the data­driven monitoring
is developed for each phase of the transformer. For clarity, only the monitoring for phase
A of the transformer is presented for illustration in the rest of the chapter. The proposed
method, nevertheless, can be readily applied to the other phases.

3.3.2 Exploratory data analysis

After obtaining the input data, Exploratory Data Analysis (EDA) is of a crucial implementa­
tion in the deployment of any data­driven technique. EDA is a process of initial investigation
of the data from various angles to discover interesting features [131]. The discovered features
are related to existing patterns, relationships among input variables, relationships between
input and output variables, and anomalies [132]. Such gained insights from the data assist
in check of initial assumptions and preliminary choosing of applicable models [132].

In this work, EDA process is performed on the training data achieved from Sec. 3.3.1 util­
ising two methods: summary statistic and graphical visualisation. Fig. 3.3, Fig. B.1, and
Fig. B.2 show pair plots computed for the transformer loading on phase A (SA

trans) and volt­
age magnitudes at the POC of all houses connected to the same phase (Vi with ∀i ∈ NA)
in the dataset. A pair plot is comprised of histogram plots along the diagonal, Pearson cor­
relation coefficients below the diagonal, and scatter plots above it [42], which constitute a
matrix of relationship between each variable. The resulting Pearson correlation coefficients
illustrate the extent of linear dependence either between SA

trans and Vi with ∀i ∈ NA or
among Vi with ∀i ∈ NA, which are calculated utilising Eq. (3.3),

R(v, u) =
E[(v − µv)(u− µu)]

σvσu
(3.3)

where R denotes the Pearson correlation coefficient between two variables v and u, and E
represents the expectation with standard deviations σv and σu, and means µv and µu. As
can be seen from the subplots below the diagonal in Fig. 3.3 and Appendix B, the resulting
coefficients R between SA

trans and Vi with ∀i ∈ NA are with significant positive values
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Figure 3.3: A pair plot for the transformer phase A loading (SA
trans) and voltage magnitudes

(V ) at the POC of the houses H3, H1, H31, H29, and H48 connecting to the same phase.
This pair plot consists of histogram plots along the diagonal, Pearson correlation coefficients
below the diagonal, and scatter plots above it.

above 0.9, indicating strong correlation between them. It means that increasing voltage
magnitudes correlate with higher transformer loading. The voltage levels, therefore, can
serve as explanatory variables for calculating transformer loading (i.e., response variable).

The relationship between SA
trans and Vi with ∀i ∈ NA can also be validated by the com­

puted scatter plots in Fig. 3.3 and Appendix B. In these figures, pairs of numerical data are
plotted to visualise the relationship of the variables. Interestingly, the scatter plots indicate
clear V­shaped patterns, highlighting a potential for applying regression models to compute
power flow through the transformer from the nodal voltage magnitudes. Thus, the statistic
and graphical analysis prove that combining voltage measurements from SMs within a par­
ticular LEC and regression models provides a possible solution to the transformer loading
estimation.
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Figure 3.4: A pair plot for the transformer phase A loading (SA
trans) and net active power (Pnet)

of houses H3, H1, H31, H29, and H48 connecting to the same phase. This pair plot consists
of histogram plots along the diagonal, Pearson correlation coefficients below the diagonal, and
scatter plots above it.
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Figure 3.5: A pair plot for the transformer phase A loading (SA
trans) and net reactive power

(Qnet) of houses H3, H1, H31, H29, and H48 connecting to the same phase. This pair
plot consists of histogram plots along the diagonal, Pearson correlation coefficients below the
diagonal, and scatter plots above it.
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Because net power measurements are also available from household SMs, EDA is imple­
mented for the training data of SA

trans and net active power measured at the houses con­
nected to phase A (Pnet

i with ∀i ∈ NA) as demonstrated in Fig. 3.4 and Appendix B.
Similarly, EDA is implemented for the training data of SA

trans and net reactive power mea­
sured at the houses connected to phase A (Qnet

i with ∀i ∈ NA) as illustrated in Fig. 3.5 and
Appendix B. A common issue from these figures is that the scatter plots have data points
spreading out widely and more outliers, while the shape of the patterns is less clear com­
pared to these scatter plots between SA

trans and Vi with ∀i ∈ NA in Fig. 3.3 and Appendix
B. On the other hand, the pair plots for SA

trans and Qnet
i with ∀i ∈ NA shows very low

correlation coefficients between these variables, i.e., with the absolute values ranging from
0.0 to 0.05. Although the correlation coefficients between SA

trans and Pnet
i with ∀i ∈ NA

have high values, i.e., with the absolute values ranging from 0.83 to 0.94, using active power
measurements from SMs to estimate transformer loading will violate the privacy right of
customers. Hence, active and reactive power data from SMs are deemed unsuitable input
candidates for the data­driven monitoring of transformer loading.

3.3.3 Feature selection

Since the dataset contains a high number of features (variables), feature selection (variable
elimination) is of importance to select a subset of relevant features directly from the original
set [133]. Reason for this is that some features are irrelevant, redundant, or noisy for model
construction, which likely degrades the performance of the model [134]. Additionally, high­
dimensional data results in more computational burden and increased execution time for
model training; thus, reducing computational efficiency [135]. Feature selection aims to
reduce the dimensionality of the data, subsequently decreasing computational requirements,
accelerating the learning process, and enhancing the model performance [134,135].

Feature selection methods can be categorised as supervised, semi­supervised and unsuper­
vised according to the label information [133]. Solving regression problems generally in­
volves applying supervised feature selection, that measures the importance of an individual
feature via its correlation with the regression output [91]. On the other hand, methods of
feature selection can be broadly classified into 3 groups: filter, wrapper and embedded ac­
cording to searching strategy [133]. Owing to having the merits of both filter and wrapper
methods, the embedded method is preferable to realise feature selection [91]. The embed­
ded method employs the inherent structure of a learning algorithm to incorporate feature
selection into the learning process [91]. Among available models for embedded method­
based feature selection, regularisation models, e.g., Least Absolute Shrinkage and Selection
Operator (LASSO), are most widely utilised [91].

In this chapter, the LASSO approach is adopted to perform supervised feature selection on
the training dataset. This adoption allows preventing bias in comparing ML algorithms used
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Figure 3.6: Feature importance and selection with the LASSO approach. Hi with ∀i ∈ NA

denotes the house number as listed in Table 3.1. The vertical red dashed line represents the
importance threshold with ω = 2.5.

for the regression problem (as discussed in the next steps) as the LASSO model is not in the
algorithm list. The supervised feature selection based on LASSO is conducted separately
in a task before the training process. Thus, the same subset of features will be selected for
every algorithm fitting, consequently facilitating the fair comparison of the algorithms. The
importance values of a single feature (i.e., Vi with ∀i ∈ NA) to the regression output
(i.e., SA

trans) calculated on the training dataset by using LASSO is illustrated in Fig. 3.6.
It is observed that the houses are ranked in order of importance with their values varying
largely. Several houses have small or even zero importance values, while others have high
values. This is derived from the working principle of LASSO that minimises the fitting
errors whilst shrinking the magnitude of feature coefficients [91]. An importance threshold
ω is then required to define the relevant features with their importance values greater than
the threshold. Therefore, with ω = 2.5, the voltage levels at the POC of 5 houses, including
H3, H1, H31, H29, and H48, are selected from a total of 21 houses on phase A to be the
explanatory variables of the regression model. Choosing this value of ω for feature selection
has no loss of generality because the main focus of this study is to compare the relative
performance of various ML algorithms. The feature selection based on LASSO is conducted
separately in a task before the training process; thus, the same subset of features will be
selected for every algorithm fitting. Using the same feature subset (i.e., same inputs) for the
algorithms, along with tuning its hyperparameters and comparing the generalisation and
stability of its performance (as discussed in the next section), facilitate the fair comparison
of the algorithms. In addition, selecting the feature based on this ω value is adequate to
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exemplify the model fitting and validation procedure. Hence, the dataset corresponding
to the selected features can be formed from the training set for constructing the regression
model in a later stage.

3.4 Model fitting and evaluation

Given the provided input data, this section focuses on the procedure of training and eval­
uating several ML algorithms for calculating transformer loading, as depicted in Fig. 3.1.
It is important to note that properly evaluating and comparing different ML algorithms
necessitates addressing two matters. Firstly, tuning the hyperparameters of the algorithm
should be performed before the evaluation stages as its values will highly impact the algo­
rithm performance. Secondly, the comparison of various algorithms should be based on
generalisation [28] and the stability of their estimated performance [136]. In this section,
these two essential concerns are thoroughly considered using Nested Cross­Validation, aim­
ing to facilitate the fair comparison between the studied ML algorithms. Specifically, the
hyperparameter tuning task is presented in Sec. 3.4.2, and the algorithm comparing task is
elaborated in Sec. 3.4.3.

3.4.1ML algorithm list preparation

As there are several different ML algorithms for the regression problem, this section aims to
prepare a list of various ML algorithms selected to compare their performance for transformer
loading estimation. There are 4 ML algorithms added in the list as follows,

• Ridge Regression (RR): This regression model can be formulated in matrix form
as [137],

β̂(α) = (XTX+ αI)−1XTY (3.4)

where β̂(α) is the ridge regression estimator, α is the penalty parameter, X and Y are
explanatory and response variables, respectively, and I is the identity matrix.

• Support Vector Regression (SVR): SVR attempts to find the coefficients that minimise
the function given by [138],

ε

N∑
i=1

(λi + λ∗
i )−

N∑
i=1

(λ∗
i − λi)yi+

1

2

N∑
i=1

N∑
j=1

(λ∗
i − λi)(λ

∗
j − λj)κ(xi, xj) (3.5)
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subject to
N∑
i=1

(λ∗
i − λi) = 0 ∀λ∗

i , λi ∈ [0, C] (3.6)

while, the function approximation for SVR is written as,

f̂(x) =

N∑
i=1

(λ∗
i − λi)κ(xi, x) (3.7)

where ε denotes the epsilon parameter, i.e., the tollerance for error, N denotes the
size of data, λi, λ∗

i , λj , λ∗
j denote the Lagrange multipliers with non­negative values,

κ(., .) denotes the kernel coefficient, C denotes the regularisation strength, and x and
y denote explanatory and response variables, respectively.

• Random Forest Regression (RFR): As a tree­based ensemble algorithm, the function
approximation of RFR (i.e., a collection of Tr randomised regression trees) for a
training sample DN = (X, Y) can be formulated as [139],

f̂Tr,N (x,Θ1, · · · ,ΘTr) =
1

Tr

Tr∑
i=1

f̂N (x,Θi) (3.8)

where Tr is the number of randomised regression trees in the forest, N is the size
of data, Θ1, · · · ,ΘTr are random variables (i.e., independent of the sample DN ),
f̂N (x,Θi) denotes the predicted value of point x for a single i­th tree (i.e., constructed
using the bootstrapped samples [140]), and X and Y are explanatory and response
variables, respectively.

• eXtreme Gradient Boosting Regression (XGBR). XGBR is an ensemble tree algorithm
with the aim of minimising the objective function given as [141],

N∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (3.9)

where N is the size of data, ŷ(t−1)
i denotes the prediction output at the (t − 1)­th

(i.e., previous) iteration of the i­th instance, yi denotes the observation, ft denotes the
independent tree structure at the t­th iteration, l denotes the loss function measuring
the difference between yi, ŷ

(t−1)
i , and ft, and Ω(ft) denotes the penalty term for the

model complexity. The term Ω(f) can be calculated as,

Ω(f) = γL+
1

2
α||ω2|| (3.10)
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where L is the number of leaves in the tree, ω is the score of leaves, and γ and α are
regularisation coefficients [142].

The motivation behind the preliminary use of these 4 algorithms is the capability to handle
the non­linear regression problem and continuous variables, i.e., by using SVR [43] and
RFR [143]. Besides, the algorithm capability for analysing data suffering from the mul­
ticollinearity problem, which refers to the linear relationship among explanatory variables,
is considered, i.e., by using RFR [143] and RR [144]. This is derived from the fact that
non­linearity and multicollinearity exist in the obtained training data, as can be seen in
Fig. 3.3, Fig. B.1, and Fig. B.2. Additionally, the algorithm having state­of­the­art advan­
tages in ML research and recently being increasingly used in power engineering is included,
i.e., XGBR [48]. Simulation set­up of the listed ML algorithms for the next steps is im­
plemented using Scikit­learn package in Python [145]. For this, the principles of the ML
algorithms represented by Eq. (3.4) ­ Eq. (3.10) are considered. Simulation set­up of the
listed ML algorithms is discussed in the next section.

3.4.2Model evaluation and selection

Model evaluation aims to estimate how well the performance of the specified model gener­
alises to unseen data, so­called the generalisation error [136]. To this end, it is required that
model fitting and evaluation are executed on the independent datasets, i.e., training and val­
idation data. Otherwise, the performance estimation can be biased due to overfitting [136].

Model selection refers to a process for tuning the hyperparameters of a specific ML algorithm
to the best settings corresponding to the best­performing model [146]. A ML algorithm is
generally designed with several hyperparameters; those are tuning parameters with adjustable
values and have the decisive effects on the performance of the algorithm [136]. Given a spe­
cific ML approach, applying different hyperparameters will lead to different models. Thus,
it is desired to select the model with the best estimation accuracy by tweaking the optimal
hyperparameters [136].

To perform model evaluation and selection (as well as the algorithm evaluation and selec­
tion), Nested Cross­Validation (CV) is well­suited as it demonstrates several advantages [136].
This advanced method is a nesting of two k­fold CV loops: the inner and the outer, which
form a k× k set­up. The k­fold CV of the outer loop splits the entire historical dataset into
k random, non­overlapping subsets: one subset serves as the testing data for the algorithm
selection and the remaining (k − 1) subsets are merged to form the training data used in
the inner loop [147]. The inner loop based on the k­fold CV implements model evaluation
and selection by crossing over the training and validation steps in an iteration manner, i.e.,
over the original training data derived from the outer loop k times. For model evaluation
purpose, the k­fold CV of the inner loop further splits the provided training data into k ran­
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dom, independent subsets. The k subsets are then interchangeably used so that one subset
serves as the validation data and the remaining (k − 1) subsets are merged and serve as the
training data [147]. This split prevents the leaking of test data during the training process,
thus avoiding overfitting and reducing the bias of models’ performance estimates [146]. For
model selection purpose, the inner loop runs a specific ML algorithm with each fixed hy­
perparameter configuration over the training data k times in a loop. Each iteration of the
loop uses a distinct subset of training and validation data; therefore, when that loop finishes,
each hyperparameter configuration is associated with k different models and k different per­
formance estimates [136]. Afterwards, the multiple resulting estimates of every model are
averaged to produce the ultimate generalisation error, ranked against each other to select the
best model, i.e., with the lowest error. This loop is essential because the algorithm cannot
learn the hyperparameter settings by itself during the fitting process, meaning these settings
need to be specified a priori and then evaluated separately [136]. More details of Nested CV
method can be found in [136,146].

Table 3.2: Pre­defined hyperparameters of the compared ML algorithms

ML algorithms Hyperparameters Bounded domain
RR Maximum number of iterations Uniform distribution over [1000, 10000]

(ITmax) i.e., an integer
Regularization strength (α), i.e., a float Log­uniform distribution over [10−5, 100]

SVR Kernel coefficient (κ), i.e., a float Log­uniform distribution over [1, 200]
Regularization strength (C), i.e., a float Log­uniform distribution over [10−5, 100]
Epsilon parameter (ε), i.e., a float Log­uniform distribution over [10−5, 100]
Maximum number of iterations Uniform distribution over [1000, 10000]
(ITmax), i.e., an integer

RFR Number of trees in the forest (Tr), Uniform distribution over [100, 1000]
i.e., an integer
Maximum depth of the tree (Dmax), Uniform distribution over [10, 500]
i.e., an integer
Minimum number of samples required Uniform distribution over [1, 20]
to split an internal node (Smin),
i.e., an integer
Minimum number of samples required Uniform distribution over [1, 20]
to be at a leaf node (Lmin),
i.e., an integer

XGBR Subsample ratio of columns when Uniform distribution over [0, 1]
constructing each tree (η), i.e., a float
Regularization strength (α), i.e., a float Log­uniform distribution over [10−5, 100]
Parameter to shrink the contribution of Uniform distribution over [0, 1]
each tree (P ), i.e., a float
Maximum depth of the individual Uniform distribution over [100, 1000]
regression estimators (Dmax),
i.e., an integer
Number of gradient boosted trees (Tr), Uniform distribution over [100, 1000]
i.e., an integer
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This study involves adopting Nested CV with a 10×10 set­up for the model evaluation and
selection for the ML algorithm list (prepared in Sec. 3.4.1). The k­fold CV outer loop with k
= 10 partitions the whole dataset into 10 parts utilised for the inner loop. For an algorithm, a
range of settings is initially specified as the bounded domain of hyperparameters. Then, from
that domain, a set H, with size |H| = 15, of the combinations of hyperparameter settings
are randomly sampled using randomised search technique [136]. To facilitate the random
sampling, the hyperparameters settings are defined as the uniform distributions of values
as shown in Table 3.2. Afterwards, the k­fold CV inner loop with k = 10 in the initiated
Nested CV is applied for each combination of hyperparameter values h ∈ |H|. The goal is
to find the hyperparameter combination achieving the lowest generalisation error among all
the investigated combinations in |H|. For this, a set S with |S| = 10 of various subsets of
training and validation data is generated. In total, 6000 simulations are required for a list of
4 ML algorithms. A performance metric used for the model evaluation and selection is Root
Mean Square Error (RMSE), which quantifies the average magnitude of the error between
the real values (y) and the computed values (ŷ), as calculated by [148],

RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2 (3.11)

where y and ŷ denote the real and computed values, respectively, T denotes the total number
of steps of the time­series validation data, t denotes the time­step in T . The best hyperpa­
rameters are chosen with the lowest RMSE. The process can be schematically presented, as
shown in Fig. 3.7. For the demonstration purpose, the numerical results in terms of the op­
timal hyperparameter configurations associated with the averaged RMSE as a generalisation
error for SVR algorithm are summarised in Table 3.3. It is worth mentioning that since
the inner loop operates over 10 distinct subsets of the simulated historical data, which are
formed due to the outer loop, 10 combinations of best hyperparameters along with their es­
timated performance are also achieved. It is observed that the hyperparameters are properly
customised with varying levels of settings among the subsets. With the optimal hyperpa­
rameters from the inner loop, the algorithm will be trained and evaluated in the outer loop,
presented in the next section.

3.4.3ML algorithm selection

The ML algorithm selection involves finding the algorithm having the lowest generalisation
error and the best stability capability among all the compared algorithms. The generalisation
error represents the performance estimates of the algorithm in new, unseen data, i.e., not
in the training set. Meanwhile, the stability capability quantifies how well the algorithm
performs on multiple, different test datasets [136]. The k­fold CV enables both estimating
of the generalisation performance and testing of the stability of the algorithm. The rationale
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Define a ML algorithm with
a set H of hyperparameter settings

For h from 1 to |H|

For s from 1 to |S|

Train model

Estimate model performance

Average as the generalisation error
for model evaluation

Select the best-performing model
associated with optimal hyperparaters

Run k-fold CV to generate a set S of
training and validation subset, i.e., |S| = k

Figure 3.7: Methodology of model evaluation and selection for a ML algorithm based on the
k­fold CV inner loop of Nested CV.

Table 3.3: Summarised results for model evaluation and selection of SVR

Data subset Optimal hyperparameters Mean RMSE
κ C ε ITmax

1 6.44 30.57 1.71 9122 3.04
2 15.7 1.16 4.44 3440 3.66
3 6.92 6.26 1.7x10−4 6959 3.77
4 54.5 0.096 0.74 7879 3.2
5 5.26 38.08 0.37 3976 3.72
6 65.8 0.28 0.66 3599 2.92
7 95.4 2.02 5.86 2571 2.84
8 79.6 84.6 4.05 9608 1.95
9 38.1 63.9 0.84 8015 2.48
10 7.07 1.32 3.3x10−4 5547 4.87
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is that this method retains the independent test dataset for the performance estimate, and it
iterates the performance testing k times in different datasets. These features make the k­fold
CV a common approach to complete the algorithm selection [136].

Owing to the k­fold CV in the outer loop, Nested CV is applicable to the ML algorithm
selection. Accordingly, Nested CV with a 10×10 set­up established in Sec. 3.4.2 is employed
in this section. Specifically, in every iteration k of the outer loops, every algorithm fits
the model along with its optimal hyperparameters determined from the inner loop on the
training data and then evaluates the model performance on the withholding test data. For
this regards, the performance metrics are based on RMSE using Eq. (3.11). Similar to the
inner loop, 10 resulting generalisation errors of each algorithm, subsequently, are averaged
as the ultimate generalisation error for comparing the algorithms.

The RMSE results across each fold of the outer loop for individual ML algorithm are dis­
played in the box plot, as shown in Fig. 3.8. The numerical values of RMSE and the com­
putational time are listed in Table 3.4. In this table RMSE results are the mean values from
the CV outer loop. The computational time is measured for the entire procedure of model
evaluation and selection, and ML algorithm selection using Nested CVs. As can be observed
from both the figure and the table that, RFR and XGBR clearly outperform SVR and RR
as the first two algorithms have lower mean RMSE values from around 3.5 to 4.5 times
than that of the last two algorithms. Moreover, it can be seen from the figure that, the error
spreading of RFR and XGBR, significantly decreases compared to SVR and RR. Between
RFR and XGBR, the RMSE results are relatively comparable as both these models are based
on the ensemble tree algorithm. In view of the computational time, SVR has the longest
time, followed by RFR and XGBR, and RR is the fastest algorithm. This is due to the fact
that SVR model is built by solving a quadratic programming problem and selecting the best
support vectors from the dataset, which typically lead to computationally expensive [149].
RFR consists of a large number of regression trees, in which each tree is grown by drawing
a set of bootstrapped samples. This makes the training of RFR relatively time­consuming,
nevertheless faster than SVR as a result of growing in parallel the trees [140]. XGBR has
significant lower computational time than RFR because XGBR adopts an improved tree
learning algorithm (for managing sparse data) and quantile sketch scheme (for considering
weights) [141]. With only solving the linear equations and sorting, RR requires the lowest
simulation time [150], but at the expense of significantly reduced accuracy. Hence, these
findings suggest that RFR and XGBR algorithms are worth to further study on the defined
regression problem.



50 Chapter 3: Transformer loading monitoring

RFR XGBR SVR RR
ML algorithms

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

RM
SE

 o
f R

FR
 a
nd

 X
GB

R

0

1

2

3

4

5

6

7

RM
SE

 o
f S

VR
 a
nd

 R
R

Figure 3.8: Spread of RMSE results across each fold of the CV outer loop for ML algorithms.

Table 3.4: Summary of RMSE results and computational time for individual ML algorithm

ML algorithms Mean RMSE Computational time (mm:ss)
RFR 1.095 34:48
XGBR 1.085 11:42
SVR 3.373 55:40
RR 4.762 00:14

3.5 Model deployment

Given the selected ML algorithms from the previous section, this section focuses on the
procedure of deploying the algorithms to estimate the transformer loading, as depicted in
Fig. 3.1. Evaluating the algorithm performance is also analysed. It is worth to mention that
the algorithm evaluation completed in Sec. 3.4.3 involves the small sets of test data, and only
RMSE served as the performance metric. Therefore, it is desired to carry out further tests
on a larger dataset and several performance metrics for the selected algorithms.
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Table 3.5: Summarised results for model set­up of RFR and XGBR

ML algorithms Hyperparameters Optimal values Mean RMSE

RFR

Tr 955

0.96Dmax 357
Smin 12
Lmin 2

XGBR

η 0.73

0.97
α 1.75
P 0.8
Dmax 158
Tr 574

3.5.1Model set­up

The model set­up stage prepares the input data for ML algorithms and implements the model
evaluation and selection. Firstly, the input data preparation requires gathering the voltage
measurements of the selected household SMs as specified in Sec. 3.3.2 and Sec. 3.3.3 from
the operational network data. In this study, the operational data during the model deploy­
ment is simulated by using 20% of the stochastic training dataset withheld from the data
generation in Sec. 3.3.1. As a result, a set of 7008 time­series voltage measurements with 15
minute time resolution at the POC of 5 houses, including H3, H1, H31, H29, and H48,
are obtained. Secondly, implementing the model evaluation and selection adopts the k­fold
CV with k = 10, that is similar to the inner loops of Nested CV as explained in Sec. 3.4.2, to
optimise the model hyperparameters. To this end, the randomised search technique is also
utilised to randomly sample a setH, with size |H| = 15, of the hyperparameter combinations
from the pre­defined ranges listed in Table 3.2.

A difference from Sec. 3.4.2, however, is that the model selection process in this section
excludes the k­fold CV outer loop with k = 10 of Nested CV. It means that the model
hyperparameters are tuned based on the entire set of the simulated historical data at once
instead of being iterated several times in various folds. A total of 300 simulations, thus,
are required for two ML algorithms of RFR and XGBR. The results of optimal hyperpa­
rameters, along with the estimated model performance based on RMSE, are summarised in
Table 3.5. With these optimal hyperparameters, RFR and XGBR models are trained on the
entire historical data for the later performance estimates.

3.5.2Model performance analysis

After being trained with the optimised hyperparameters, RFR and XGBR algorithms use the
gathered input data of household voltage measurements to calculate the transformer loading.
Aiming to analyse the model performance, 3 performance metrics are computed. First, by
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using RMSE as determined by Eq. (3.3), the quantitative insights into the generalisation
performance of the model are yield [148]. Secondly, Pearson correlation coefficients R,
as defined by Eq. (3.11), is used to gain the insights into the degree of linear dependence
between the real value and the estimated value. Thirdly, the Kolmogorov­Smirnov (KS)
statistical test is performed to provide insights into the statistical significance of the model
results [151]. The KS statistical test is adopted in this study because it sufficiently operates
with non­normally distributed data. Meanwhile, the non­normally distributed data of Vi

with ∀i ∈ NA is shown in the histogram plots in Fig. 3.3, Fig. B.1, and Fig. B.2. In the KS
statistical test, theK statistic indicates how close the proximity of the compared distributions
of data will be. Hence, lower K statistic will be expected for higher estimation accuracy.
Moreover, for a comparison of RFR and XGBR models to non ML models, the ordinary
least squares linear regression (LR) model is applied as a bench­marking for transformer
loading calculation using the same input data and performance metrics.

The results of the performance metrics are listed in Table 3.6. As can be seen, the ML mod­
els (i.e, RFR and XGBR) significantly outperform the non­ML model (i.e., LR). The ML
models have the coefficients R and RMSE around 5.2 and 7.8 times, respectively, higher
than the non­ML model, while the K statistic from KS test around 3.4 times lower. Owing
to the features of the tree­based ensemble algorithm, RFR and XGBR are comparable in the
estimation accuracy as their differences in the calculated 3 performance metrics are insignif­
icant. These results shows the efficacy of the regression­based methods for estimating the
transformer loading.

Furthermore, the Probability Density Function (PDF) based on Kernel Density Estimate is
adopted to visualise the performance of regression models based on RFR, XGBR, and LR
algorithms on the transformer loading calculation. A comparison of PDF of the database
of transformer loading measurements (i.e., true values) and the values calculated by RFR,
XGBR, and LR models is shown in Fig. 3.9. Meanwhile, a comparison of PDF of the errors
between the measured and calculated values is demonstrated in Fig. 3.10.

It is observed from Fig. 3.9 that the RFR and XGBR profiles have similar patterns and
statistical properties (i.e., the peak of the tail of Kernel Density Estimate) with the true data.
In contrast, LR profiles show a large difference with the true data. As can be noticed from
Fig. 3.10, RFR and XGBR profiles have comparable statistical properties, e.g., the peak at
0 kVA and the short tails between approximately ­9 kVA and 5 kVA. All these indicate that

Table 3.6: Summary of model performance

ML algorithms RMSE CoefficientsRRR KKK statistic from KS test
RFR 0.8782 0.9828 0.0499
XGBR 0.8767 0.9829 0.0515
LR 6.8771 0.1884 0.1752
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Figure 3.9: PDF of the absolute values of transformer loading.
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Figure 3.10: PDF of the errors between the measurements and the estimations by the models.

regression modes based on RFR and XGBR appear equally effective in accurately estimating
the transformer loading when using the voltage measurements from SMs. The main driver
of these similarities is that RFR and XGBR are both originated from the ensemble tree
algorithm.

Aiming to compare these two models further, in addition to the computation time dur­
ing the model fitting and evaluation, the computation time during the deployment phase is
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Table 3.7: Measurements of simulation time (mm:ss)

ML algorithms Model preparation Model deployment Total
RFR 34:48 03:08 37:56
XGBR 11:42 00:57 12:39

measured and displayed in Table 3.7. In this phase, the computation time is for re­tuning
the model parameters and re­evaluating the model performance (as explained in Sec. 3.5.1)
This table points out that the XGBR­based regression model runs considerably faster than
the RFR one as the former takes only one­third of the latter’s simulation time. Hence, con­
sidering the high effectiveness and lower execution time, it is evident that XGBR algorithm
provides the best solution to the regression problem of transformer loading calculation.

3.6 Summary

Data­driven approaches are being employed more frequently to support the power system
operation, resulted from the increasing availability of data measurements. The data­driven
approach for the LV distribution transformer monitoring has been investigated in this chap­
ter. The approach adopts the machine learning­based regression models and uses the data
from residential smart meters in terms of voltage magnitudes, for the transformer loading
estimation. A thorough analysis is conducted to discover the relationships between the trans­
former loading and residential smart meter readings. A comprehensive framework is pro­
vided to implement, validate and compare 4 different machine learning algorithms for the
transformer loading estimation from the LECs’ perspective. The compared algorithms in­
clude Ridge Regression (RR), Support Vector Regression (SVR), Random Forest Regression
(RFR), and eXtreme Gradient Boosting Regression (XGBR). The presented procedure cov­
ers all the essential stages in deploying a data­driven technique, consisting of training data
generation, exploratory data analysis, feature selection, model selection and algorithm se­
lection. With this respect, state­of­the­art advances in machine learning research have been
integrated, such as XGBR algorithm and Nested CV technique.

The obtained simulation results indicate that combining the machine learning­based regres­
sion model with voltage magnitude measurements from residential smart meters can effec­
tively estimate the transformer loading, i.e., with the Pearson correlation coefficient R and
RMSE calculated for the real values and the estimated values of around 0.98 and 0.87, re­
spectively, by using only a reduced set of smart meter data (5 out of 21 smart meters used).
Simultaneously, the proposed approach can preserve customers’ privacy rights. Among 4
learning algorithm examined, XGBR appears the best method as it achieves adequate ac­
curacy on estimating the transformer loading but spends significantly less time for the ex­
ecution, (e.g., in total, a one­third of the execution time of RFR). Hence, the introduced
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approach provides an innovative alternative to implementing transformer congestion mon­
itoring in LV distribution networks. The approach can eliminate the need for sensors and
communications dedicated to transformer congestion management due to the uses of avail­
able residential smart meters. Furthermore, the approach enables the congestion monitoring
capability of the LECs. Thus, the LECs can control their consumption or generation profiles
to solve congestion problems, enhancing their self­management in the regional network for
the safe operation. However, applying the proposed approach heavily hinges on the accessi­
bility of residential smart meters to the LECs since their readings will be required as historical
and real­time operational data for the regression model preparation and deployment. In this
respect, modifications of the existing regulatory framework about the LECs’ business model
need to be implemented.

Although successful, the data­driven approach comes with their own limitations. Applying
the proposed approach hinges on the existence of the LECs and their ability to access the
residential SMs. The LECs will use the SM readings as historical and real­time operational
data for the regression model preparation and deployment. In this respect, modifications of
the existing regulatory framework about the LECs’ business model and the accessibility to the
residential SMs will be required. In addition, the proposed approach is not adaptive with grid
topology changes or increasing PV installation, which is inherent in the grid operation and
evolution. These changes will induce variations in the correlation between the transformer
power and nodal voltage levels, which needs to be re­captured by the regression model.
Periodically assessing the regression model performance and afterwards re­training the model
are essential. To facilitate these activities, the laboratory experiments can be performed for
the proposed approach before the field applications.

In this research, a typical LV distribution network with a radial configuration is considered.
For LV distribution networks with mesh topology, the application of the proposed approach
can face challenges. The relationships between the transformer power and the nodal voltage
magnitude can be complicated for regression models. Thus, further research is required to
consider the mesh networks more efficiently.
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4
Local control for voltage regulation

The sequential droop control (SDC) for reactive and active power outputs by the PV inverters is
being widely considered to allow high PV penetration and to alleviate voltage rise problems in
LV distribution networks. In this chapter, a comprehensive impact assessment, both long­term
technical and economical aspects of PV units operating with the SDC mechanisms, are discussed
by employing a Monte Carlo­based stochastic approach. A large set of simulations with various
threshold values of the SDC mechanism are performed for different PV penetration levels and a
large number of scenarios. For these simulations, a test network based on the well­known IEEE
European LV distribution network is used. The obtained results point out that the technical and
economical impact of the PV inverter control on the network and the PV owners relies on how
fast the SDC mechanism regulate reactive power absorption (RPA) and active power curtailment
(APC) in response to voltage rise in different PV penetration levels. The case with more reactive
power absorption (by setting a lower threshold level) enlarges reactive and active power exchange
in the network, then increasing the transformer loading and the system power losses. On the other
hand, a smaller PV energy curtailment is attributed to such case with a lower level of voltage
threshold, corresponding to a higher export of PV energy and then more PV owners’ revenue from
selling the surplus PV energy.

57
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4.1 Introduction

The growing penetration of residential­scale PV systems in LV distribution networks presents
a series of operational and power quality challenges. Besides the congestion issues (as dis­
cussed in Chapter 3), voltage limit violations have been also observed by several distribution
system operators (DSOs), such as in Italy, Spain, Ireland, and Germany [29]. If voltage level
exceeds the maximum limit, i.e., 1.1 p.u., the customers’ electrical appliances can suffer dam­
ages and PV systems will be switched off due to their internal protection [152], which causes
the loss of energy yields of PV systems. It is, thus, essential to properly address voltage rise
issues. To address voltage rise problems, a number of solutions can be found in the litera­
ture, including network reinforcement, capacitor bank installations, transformer tap changer
adjustment, electrical energy storage­based methods, and PV inverter control [99, 153].

Among the above­mentioned solutions, controlling the PV inverters for reactive power ab­
sorption (RPA) and active power curtailment (APC) is emerging as a promising one. By
using the droop control mechanism, these PV control functions can be locally performed by
the PV inverters using local measurement; meaning that neither communications among PV
units nor control signals from DSOs are needed. Additionally, as these approaches employ
the controllability of the existing PV inverters, this can be implemented with an affordable
cost and limited grid modifications for DSOs. Performing these PV control functions in a
sequence, i.e., RPA prior to APC, are deemed effective in mitigating voltage rise problems
while reducing the curtailed active power of PV systems, resulting from the absorbed reactive
power by these systems. In this respect, operating the PV inverters with the droop control
mechanism has both the technical and economical impact on LV distribution networks as
well as the PV owners.

However, the assessment of these impacts of PV systems operating with the sequential droop­
based RPA and APC schemes to solve voltage rise problems on LV distribution networks and
the PV owners are limited. The existing works mostly focus on the technical impact for a
short­time period without considering the uncertainty from PV power generation as well as
the customers’ power consumption. A recent work in [126] presents a Monte Carlo stochas­
tic assessment for both technical and economical impact of PV droop control functions for
voltage rise mitigation. All these works, however, consider only one value of the droop
control parameter, so­called threshold level. This threshold level plays a decisive role in the
performance of the PV droop control mechanisms, which is important to undertake a more
comprehensive assessment of operating PV systems with different threshold levels.

In this chapter, a procedure of assessing the impact of PV droop control with different thresh­
old levels on LV distribution networks and the PV owners for voltage rise alleviation are
presented. This comprehensive impact assessment aims for both long­term technical and
economical aspects by employing a Monte Carlo­based stochastic approach and several im­
pact metrics. To realise this stochastic approach, a conditional Copula method in [154] is
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adopted to generate a large set of time series data of PV power generation and the customers’
power consumption. The proposed assessment procedure applies for the sequential droop
control for the RPA and APC schemes of the PV inverters. Additionally, various threshold
values for the droop control mechanisms are pre­defined. The operation of the PV inverters
with various droop control parameters can be, thus, assessed efficiently. First, the prob­
lems of voltage rise is analysed, followed by the droop control schemes. Next, the stochastic
impact assessment is presented. Then, the modelling and simulation set up are described.
Finally, the simulation results and discussion are given and concluding remarks are drawn.

4.2 Voltage rise issues

Due to the increasing level of PV integration in LV distribution networks, voltage rise has
become a more frequent issue. Voltage difference (∆V ) between the sending and receiving
end voltage of a typical LV distribution line section with an impedance of (R+ jX) can be
expressed as,

∆V =
(P tr − jQtr

V *
R

)
(R+ jX) (4.1)

where V *
R denotes the conjugate of the receiving end voltage, P tr and Qtr denote the active

and reactive power transferred through the line, respectively.

Further consider the receiving end bus supplies local power consumption of PL and QL of
loads, and receives local power generation of PG and QG from PV systems. By ignoring the
imaginary part, Eq. (4.1) can be rewritten as,

|∆V | ≈ (|PL| − |PG|)R+ (|QL| − |QG|)X∣∣V *
R

∣∣ (4.2)

where P tr = |PL| − |PG| and Qtr = |QL| − |QG|.

It can be inferred from Eq. (4.2) that when a high level of PG coincides with a low PL,
|∆V | is negative, indicating that voltage level rises towards the end of the line. In practice,
if the voltage level measured at the POC exceeds 1.1 p.u., PV systems are disconnected
from the network and are reconnected after some delay [155]. If the solar irradiance varies
insignificantly, the PV systems continue switching off and on with the network. To solve
voltage rise issue, the reverse power flow needs to be limited by reducing PG and QG from
PV systems.

An important notice from Eq. (4.2) is that for a typical LV network with high R/X ratio,
changes in active power strongly impact the voltage magnitude variation. However, the reac­
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tive power control of the PV inverters is, therefore, still beneficial for voltage control. If the
PV inverters can operate with power factor (PF) of ±0.9, it can absorb reactive power with
an amount of approximately 50% of the rated active power for grid ancillary services [156],
which reduces the curtailment of active power injection. Some of the commercial PV in­
verters are capable of providing such reactive power absorption as discussed in [122]. In
this chapter, the reactive power control strategy is further studied to mitigate voltage rise
problems in LV distribution networks.

4.3 Droop control for voltage regulation

4.3.1 Active power curtailment (APC)

APC scheme can bases on P − V droop control or voltage/active power sensitivity [22].
Among these, the P − V droop control is most widely utilized [157]. This method applies
control rules based on the network state, e.g., voltage magnitude, to regulate the amount of
generated active power by the PV inverters. The voltage magnitude at the point of connec­
tion (POC) of the inverter, subsequently, is reduced.

(a) P − V droop control

P net
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PMPP
i

VV V tP
i VV

(b) Q− V droop control
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Figure 4.1: Droop characteristics for local voltage control of PV systems. (a)P−V droop control,
(b) Q− V droop control.

In this chapter, the P − V droop control, as shown in Fig. 4.1 (a), has been integrated to
realise the APC scheme. During normal operations, i.e., no voltage violations, the active
power output of the PV inverter i1 (P net

i ) is set to the maximum power point, PMPP
i . If

voltage level at the connection point, Vi of the inverter reaches the threshold level for active
power curtailment (V tP

i ), the PV inverter starts APC mode using P−V droop control with
P net
i being reduced following a linear function of Vi as expressed in Eq. (4.3).

1In this study, it is assumed that the PV system i is connected to the node i of the distribution network.
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P net
i =


PMPP
i , if V < Vi ≤ V tP

i

PMPP
i − PMPP

i

(Vi − V tP
i )

(V − V tP
i )

, if V tP
i < Vi < V

0, if Vi ≥ V

(4.3)

where [V V ] = [0.9 1.1], as specified in the European Standard EN 50160.

4.3.2 Reactive power absorption (RPA)

RPA scheme applies control rules based on the network state, e.g., voltage magnitude or
power quality indices, to regulate the amount of absorbed reactive power by the inverters,
aiming to reduce the voltage magnitude at the POC of the inverter. The RPA scheme can be
implemented using cosϕ(P ), cosϕ(P, V ), or Q− V droop control, of which Q− V droop
control is widely used [97]. The Q− V droop control has been integrated in this work.

Without voltage violations, the reactive power output of the PV inverter (Qnet
i ) is set to zero.

If the voltage level at the POC (Vi) exceeds the threshold level for reactive power absorption
(V aQ

i ), RPA is activated according to the Q− V droop control mechanism. As can be seen
in Eq. (4.4), Qnet

i is set following a linear function of Vi.

Qnet
i =


Qi

(V gQ
i − Vi)

(V gQ
i − V )

, if V ≤ Vi < V gQ
i

0, if V gQ
i ≤ Vi ≤ V aQ

i

−Qi

(Vi − V aQ
i )

(V − V aQ
i )

, if V aQ
i < Vi ≤ V

(4.4)

where Qi is the maximum reactive power output and V gQ
i is the threshold level for reactive

power injection.

4.3.3 Proposed sequential droop control

Applying the APC scheme directly leads to losses of PV owners’ revenue due to generation
reductions. Meanwhile, the RPA scheme by itself is unable to sufficiently solve voltage rise
problems due to the high R/X ratios in LV distribution networks, and the limited reac­
tive power capacity of the PV inverters [153]. A combination of RPA and APC has been
reported in [158, 159] to be more promising for voltage rise mitigation. This type of com­
bined method helps to mitigate voltage rise problems with a decreased amount of curtailed
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Figure 4.2: (a) The SDC mechanism applied for PV unit i consisting of Q − V droop control
(dark blue curve) and P − V droop control (red curve). (b) The operation region (shaded
triangle) of the PV inverter i determined by the apparent power Si (orange curve), rated
active power P rated

i , maximum reactive power Qi, and PF requirement (cosφ = PF).

active power. In this chapter, the combination of the RPA and APC schemes has been con­
sidered to form the sequential droop control (SDC), as illustrated in Fig. 4.2 (a).

The proposed SDC allows the PV inverters to operate in reactive power priority mode, im­
plying that voltage regulation is first attempted through the RPA scheme (i.e., based on the
Q − V droop control, as discussed in Sec. 4.3.2) with a modification. If Vi exceeds V aQ

i ,
i.e., at point (1), the RPA scheme is activated. The APC scheme (i.e., based on the P − V
droop control, as discussed in Sec. 4.3.1) is triggered only if the voltage levels can not be
maintained below the threshold value using the RPA scheme. If Vi reaches V tP

i , i.e., at
point (2), Qnet

i is set to −Qi, i.e., maximum amount, with the aim at reducing the curtailed
active power for voltage rise mitigation. Concurrently, the PV inverter starts APC mode
using P − V droop control. The APC scheme uses the linear function shown in Eq. (4.3),
while the modified RPA scheme can be mathematically presented as:

Qnet
i =



Qi

(V gQ
i − Vi)

(V gQ
i − V )

, if V ≤ Vi < V gQ
i

0, if V gQ
i ≤ Vi ≤ V aQ

i

−Qi

(Vi − V aQ
i )

(V tP
i − V aQ

i )
, if V aQ

i < Vi ≤ V tP
i

−Qi, if V tP
i < Vi ≤ V

(4.5)

Note that, the maximum reactive power output Qi varies with P net
i and it is calculated in
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compliance with the European Standard EN 50438, which stipulates that all distributed
generation units connected to LV distribution networks must operate with PF ranging from
0.9 lagging to 0.9 leading [160]. Fig. 4.2 (b) shows the operation region of a PV inverter,
which is within the shaded triangle, along with the apparent power S, rated active power
P rated
i , maximum reactive power Qi specified by the PF requirement (cosφ = PF). The

above­mentioned constraints of Qi has been integrated into the proposed SDC in this work
as expressed below,

Qi1 =
√
(Si)2 − (P net

i )2 (4.6)

Qi2 = (tan[arccos(PF)])P net
i (4.7)

Qi = min(Qi1, Qi2) (4.8)

4.4 Stochastic impact assessment

4.4.1 Assessment procedure

A procedure for the stochastic impact assessment is comprised of several main stages, which
are briefly described below.

• A set of one­year data profiles P with a time resolution of 15 minutes (i.e., size |P|
= 35040) of PV generation and load consumption are firstly prepared for a set of
N households in the different scenarios. Sec. 4.5 describes this preparation in more
details.

• Next, with given a PV penetration level ranging from 0% to 100%, the households
equipped with PV systems are randomly selected. Consequently, the prepared data
profiles (including PV generation and load consumption) is randomly distributed to
the houses in the test network. For a sake of simplicity, it is assumed that PV units
have same phase connection as the houses.

• Then, one­year time­series power flows are solved in an iterative manner, per PV pen­
etration level as well as the data scenario. A data sample is recorded at each execution,
containing voltage magnitudes, net active and reactive power measured at the POC
of the PV units, and powers flowing in the network. These sets are then stored for
later processing steps.
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4.4.2Metrics for impact assessment

Metrics presented in this section are used for assessing the impacts of the PV inverter control­
ling functions on LV distribution networks and the PV owners. These metrics are adopted
from [126].

Impacts on LV Distribution Networks

Metrics for quantifying the technical impacts on LV distribution networks are comprised of
the following indexes.

• Maximum voltage deviation index (MVDI): This index (in percentage) quantifies how
far the network voltage deviates from the nominal value, V nom, which is given by
Eq. (4.9). For a network with N nodes, MVDI is calculated at each time step t, in
which the maximum voltage level in the network, i.e., max {V t

i } with ∀i ∈ N , needs
to be obtained.

MVDIt =
(max{V t

i } − V nom)

V nom
· 100 [%] (4.9)

• Transformer loading index (TLI): This index (in percentage) is determined in timely
basis as a ratio of maximum apparent power at time t, St

trans, to the transformer rated
power, SR

trans. This is an important metric because the PV inverters operating with
the SDC mechanism affects both active and reactive power exchange in the network.

• System power losses: Since the SDC mechanism in the PV inverters performs both RPA
and APC schemes to support voltage regulation, the assessment of the system power
losses is essential (as similar to TLI). Thus, the total active power losses of the network
(in kW) is calculated at each time step t.

Impacts on the PV Owners

The impacts on the PV owners are technically and economically quantified utilising the
indexes below.

• Curtailed energy index (CEI): As given by Eq. (4.10), this index is determined as a
ratio (in percentage) of the total curtailed energy generation of PV systems with droop
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control (i.e., sequential RPA and APC scheme) in the network over the total energy
generation from PV systems without droop control.

CEI =

T∑
t=1

N∑
i=1

∆P t
i∆t

T∑
t=1

N∑
i=1

P
′t
i ∆t

· 100 [%] (4.10)

where ∆P t
i is the curtailed active power of PV unit i at time t due to droop control

activated, P
′t
i is PV active power generation without droop control, and T is the total

number of time steps.

• Exported energy index (EEI): Similar to CEI, the EEI is specified as a ratio (in percent­
age) of the total exported energy generation from the PV inverters with droop control
in the network over the total exported PV energy generation without droop control,
as expressed in Eq. (4.11).

EEI =

T∑
t=1

N∑
i=1

PE,t
i ∆t

T∑
t=1

N∑
i=1

P
′E,t
i ∆t

· 100 [%] (4.11)

where PE,t
i denotes the exported active power of the PV inverter i (PV generation

minus load consumption) at time t with droop control applied, and P
′E,t
i denotes

the exported PV active power without droop control. It is worth noting that the CEI
represents purely the changes in the amount of PV energy generation when droop
control is implemented in comparison with the case without droop control.

• System Annual Billing (SAB): This index represents the total annual billing (in e) for
all the PV owners in the network. For each individual PV system, the annual billing
is calculated using Eq. (4.12).∑

t∈T |PN,t>0

PN,tρe∆t+
∑

t∈T |PN,t<0

PN,tρf∆t, (4.12)

where PN,t is the net active power (load consumption minus PV generation) of the
PV owner at time step t, while ρe and ρf are the energy consumption and the feed­in
tariff, respectively. Since the SAB includes the energy price and tariffs, it indicates a
higher accuracy than the EEI with regard to the effects of the different control strate­
gies on the PV owners [161].
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4.5 Simulation setup

A modified well­known IEEE European LV distribution network is used as the test net­
work [162]. In this network there are 55 households, which are all assumed to have three­
phase connections. The test network is supplied by a substation consisting of a 250 kVA,
11/0.4 kV transformer with a ∆− Yn connection and the secondary side voltage level set­
tings assumed to be 1.03 p.u. The remaining characteristics of the test network are retained
as the origin in the IEEE European LV distribution network.

The residential PV systems and household load consumption for this study represent a real
case in the Netherlands. The installed PV capacities are randomly chosen between 4.06
and 6.27 kWp [126]. For PV generation modelling, the solar irradiation profiles adopted
from [126] are used, which are built following a random sampling procedure based on
a Gaussian Mixture Model and the real meteorological measurements from by the Royal
Netherlands Meteorological Institute (KNMI), is adopted [129]. For household power con­
sumption modelling, the daily load profiles adopted from [126] are utilised, which are gen­
erated using a probabilistic method based on conditional Copula model and the real smart
meter readings from Dutch end­users. These methods allow preserving the statistical corre­
lation among the time steps and properly taking into account the the seasonality fluctuations
during the year. To carry out the stochastic assessment, all the obtained data contains a set
of different scenarios, in which each scenario is one­year time­series data with a resolution
of 15 minutes (i.e., with size |P| = 35040 per scenario).

The proposed stochastic assessment approach is simulated in Python programming language
and OpenDSS software. Aiming for a comprehensive assessment, the simulations involve
examining various cases with different threshold levels of the SDC mechanism (V tP

i and
V aQ
i ) for PV systems as tabulated in Table 4.1. These simulation cases are categorised into

3 groups with each group having the same value of V tP
i and the varying values of V aQ

i . In
addition, the simulation case without voltage control is also performed to gain the insights
into the network voltage profiles.

Because of considerable computation time required to execute one­year time­series power
flows, 20 scenarios (i.e., each scenario is one­year time­series data with size |P| = 35040) are
implemented for each PV penetration level. To complete all the simulations, 5 computers
have been utilised for 7 days.

4.6 Numerical results

The outputs of all the scenarios considered in the stochastic assessment process is averaged
to generate the final results of all the simulation cases. For the case without voltage control,



4.6: Numerical results 67

Table 4.1: Simulation cases for the impact assessment

Group Cases Threshold levels of SDC mechanism
V aQ
i (p.u.) V tP

i (p.u.)
Group A Case 1 1.03 1.06

Case 2 1.04 1.06
Case 3 1.05 1.06

Group B Case 4 1.04 1.07
Case 5 1.05 1.07
Case 6 1.06 1.07

Group C Case 7 1.05 1.08
Case 8 1.06 1.08
Case 9 1.07 1.08

the voltage levels at all the POCs of the PV systems in the network are visualised in Fig. 4.3
using Probability Density Function (PDF) and Empirical Cumulative Distribution Function
(ECDF). It is observed that the voltage levels increase with the growing PV penetration and
reach the violation limit 1.1 p.u. (so called overvoltage) with the PV penetration level above
70%. This indicates that the PV penetration level between 60% and 70% is the maximum
level that the network can host without voltage violation caused (also known as PV hosting
capacity).
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Figure 4.3: PDF and ECDF of the voltage levels in the network without any control mechanism.

Since the simulation results is in the form of one­year time­series data, the second quartile
(Q2) i2 is, subsequently, considered to analyse the results. The simulation results are divided
into 3 groups according to the threshold level variations, including Group A, B and C with

2Note that, Q2 is 50th percentile of the data set, i.e., 50% of the data is below this point.
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its diverse settings as defined in Sec. 4.5. As can be seen from Fig. 4.3, the voltage level of
1.06 p.u. appears in most of the PV penetration levels (i.e., 20% and above). Hence, to
provide an extensive discussion on different PV penetration cases, the simulation results for
the cases in Group A (with V tP

i of 1.06 p.u. and V aQ
i from 1.03 to 1.05 p.u.) are discussed

in details in following subsections. For the cases in Group B and C, the simulation results
are given in Appendix C.

4.6.1 Impacts on LV distribution networks

The maximum voltage deviation at the POCs of the PV units with Group A SDC mechanism
is illustrated in Fig. 4.4 using the MVDI as defined in Sec. 4.4.2. All 3 control cases are
effective to prevent the overvoltage problem as no the MVDI above 10% is recorded. This
promising effectiveness can also be observed in Fig. 4.5. Among those 3 cases (with the same
V tP
i value), Case 1 (with the lowest V aQ

i value) results in the smallest MVDI while Case
3 (with the highest V aQ

i value) results in the largest MVDI in all the PV penetration level.
Such voltage regulation impact of those 3 cases are derived from the control they take of the
PV power output, which is further elaborated below.
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Figure 4.4: Maximum voltage deviation index at the POCs of the PV units with Group A cases.

Fig. 4.6 displays the resultant transformer loading index (TLI as defined in Sec. 4.4.2) for 3
control cases in Group A per PV penetration level. The TLI with the PV penetration levels
ranging from 10% to 20% is lower than that in case of no PV installed as the total PV gener­
ation can partly supply the total load consumption in the network. For this PV penetration
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Figure 4.5: PDF and ECDF of the voltage levels in the network with Group A cases.

range, the impact of the 3 control cases on the transformer loading is almost the same. From
the PV penetration level above 30%, the difference between the 3 control cases is more ob­
servable with Case 1 causing the greatest loading and Case 3 causing the lowest loading of
the transformer. A smaller value of V aQ

i leads to a larger amount of reactive power absorbed
by the PV inverters to support voltage rise mitigation, enabling a smaller amount of active
power curtailed from the PV units (which can also be seen in next subsection). This enlarge
the reactive and active power exchange in the network, then causing a faster transformer
loading increase. In contrast, a higher value of V aQ

i results in a slower transformer loading
increase. It can be seen that the transformer capacity is capable of operating the network
hosting up to 100% PV penetration level with the RPA scheme operating with a PF of 0.9.
However, if a lower PF is applied for the PV units, the overloading of the transformer can
occur, which must be considered by the DSOs to properly select the transformer capacity
and the threshold levels of the SDC mechanism for PV units.

The resultant system power losses (in kW) for Group A cases per PV penetration level is
shown in Fig. 4.7. As the system power losses are correlated with the TLI, a similar conclu­
sion for the TLI can be drawn for the system power losses. In general, the SDC mechanism
with a lower V aQ

i level provokes the increased system power losses, resulted from the higher
reactive power absorbed by the PV systems.

4.6.2 Impacts on the PV owners

The impact of the SDC mechanism with different threshold settings on the PV owners is
evaluated in the technical aspect (i.e., using the CEI and the EEI metrics) and in the eco­
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Figure 4.6: Transformer loading index with Group A cases.

0 10 20 30 40 50 60 70 80 90 100

Penetration Levels [%]

0

1

2

3

4

5

6

S
ys

te
m

P
ow

er
L

os
se

s
[k

W
]

Case 1

Case 2

Case 3

Figure 4.7: System power losses with Group A cases.

nomic aspect (i.e., using the SAB metric) as defined in Sec. 4.4.2.

The amount of total curtailed energy of the PV units is shown in Fig. 4.8 as percentage
using the CEI. The resultant CEI increases for the growing PV penetration levels due to
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Figure 4.8: Curtailed energy index with Group A cases.

more severe voltage rise issues (as shown in Fig. 4.3 and Fig. 4.4). This points out a strong
correlation between the voltage and PV generation curtailment. Consequently, the exported
energy from the PV units decreases as depicted in Fig. 4.9 using the EEI.

As can be seen from Fig. 4.8, for the PV penetration levels of 50% and below, the CEI in
3 control cases (Group A) have similar values. The CEI values gradually, besides, increase
from around 0.08% (Q2) for 20% PV penetration level to around 1.06% (Q2) for 50%
level. Such similar impact of 3 control cases on PV energy for the PV penetration levels
of 50% and below can be recognised from Fig. 4.9. Also, there exists a gradual change in
the EEI (i.e., reducing from 99.8% (Q2) for 20% PV penetration level to around 98.7%
(Q2) for 50% level) as a consequence of the gradual change in the CEI. These outcomes
reveal that, for the PV penetration levels of 50% and below, the SDC mechanisms with 3
different sets of threshold levels do not have significant impact on the PV generated energy.
Additionally, the difference in the performances of these 3 control cases is negligible. These
characteristics are derived from the slow voltage rise for the PV penetration level growing to
50%. From the PV penetration level of 60% and above, 3 control cases are more different
in its impact on PV energy generation. Case 1 and Case 2 have an equivalent impact as the
EEI and CEI curves follow the same pattern with a relatively close proximity. Compared to
these cases, Case 3 is different dramatically as shown in Fig. 4.8 and Fig. 4.9.

Both the CEI and EEI results in 3 control cases shows more rapid changes for the PV pene­
tration levels above 70% (corresponding to the PV hosting capacity as discussed earlier) than
the ones for the lower PV penetration levels. These are caused by the fact that the voltage
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Figure 4.9: Exported energy index with Group A cases.

rise conditions in the last 4 levels of PV penetration is higher than that in the first 6 levels
(as demonstrated in Fig. 4.3 and Fig. 4.4).

Furthermore, the notable difference between 3 control cases arises when the PV penetration
level equals to 70% and above. The amount of curtailed energy in Case 1 is lowest, followed
by Case 2, and that in Case 3 is highest. For instance, for 100% PV penetration level,
the CEI is estimated in 6.01% (Q2) with Case 1, 6.83% (Q2) with Case 2, and 10.92%
(Q2) with Case 3. Subsequently, Case 1 enables the highest exported energy while Case 3
represents the lowest, i.e., the maximum EEI being estimated in 92.86% (Q2) and 87.22%
(Q2), respectively, also for the level of 100% PV penetration. These outcomes demonstrate
the benefit of employing a faster RPA scheme (by setting a lower V aQ

i values, e.g., in Case
1), when compared with a slower RPA scheme (by setting a higher V aQ

i values, e.g., in Case
3), to reduce the PV generation curtailment. By doing this, the adverse impact of the SDC
mechanism on the PV owners can be limited.

The benefit of the faster RPA scheme can also be seen in Q2 results of the SAB (in e) as
listed in Table 4.2. Following Eq. (4.12), the positive SAB values correspond to the energy
fees owned to the DSO, i.e., paid by the PV owners, and vice versa, the negative SAB values
correspond to the energy revenue to the PV owners, i.e., paid by the DSO. Similar to the
CEI and the EEI results, the major impact of the SDC mechanism is observed at the PV
penetration level of 70% and above. For instance, at 70% PV penetration level, the SAB in
Case 1 is 1.4% and 4.3% lower than that in Case 2 and Case 3, respectively. This means
that the total energy fees paid by the PV owners to the DSO decreases from Case 1 to Case
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Table 4.2: Q2 results of the system annual billing with Group A cases

PV penetration levels (%) System Annual Billing (SAB) (e)
Case 1 Case 2 Case 3

Pen: 0 30966.8 30966.8 30966.8
Pen: 10 27134.6 27134.6 27134.6
Pen: 20 23863.0 23862.7 23864.1
Pen: 30 19851.6 19848.1 19854.9
Pen: 40 16485.6 16479.3 16469.5
Pen: 50 12478.9 12482.0 12478.9
Pen: 60 9056.4 9077.2 9102.1
Pen: 70 5388.4 5464.5 5629.4
Pen: 80 2196.8 2315.0 2387.9
Pen: 90 ­471.4 ­352.4 ­432.99
Pen: 100 ­3900.3 ­3705.2 ­3493.9

3. At 100% PV penetration level, the SAB in Case 1 is 5.3% and 11.7% higher than that
in Case 2 and Case 3, respectively, which means that the total energy revenue of the PV
owners increase. These outcomes, therefore, clearly demonstrate the beneficial effect of the
SDC mechanism with increased reactive power absorption on the PV owners’ economic
operation.

However, these promising results for the PV onwers come at the expense of the increase in
the transformer loading and the system power losses for DSOs as elaborated in Sec. 4.6.1.
On the other hand, the impact on each individual PV owner is unobserved yet as the above
assessment is performed for the network as a whole. A more comparative analysis between
the technical and economic impact, as well as the impact assessment on the individual PV
units are required.

4.7 Summary

The use of the droop­based control for RPA and APC by the PV inverters is being considered
to support the voltage rise alleviation in LV distribution networks. However, the long­term
impact assessment of these PV control functions, including the technical and economical
aspect, on LV distribution networks as well as the PV owners, are relatively limited.

This chapter discusses a procedure of comprehensively assessing the technical and economical
impact of PV SDC mechanisms, consisting of RPA and APC scheme, on LV distribution
networks and the PV owners for voltage rise alleviation. A Monte Carlo­based stochastic
approach and several impact metrics (both technically and economically) are adopted, along
with the latest conditional Copula method used for generating a large set of time series input
data. The impact metrics for the network includes the MVDI, the TLI, and the system
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power losses. The impact metrics for the PV owners are the CEI, EEI, and the SAB. Then,
9 simulation cases of the SDC mechanism with various threshold values are built, in which,
each case for 11 PV penetration levels (ranging from 0% to 100% ) in 20 scenarios (one­year
time­series data with size |P| = 35040 per scenario). These simulations are performed in a
test network based on the IEEE European LV distribution network.

The obtained results points out that the technical and economical impact of the PV inverter
control on the network and the PV owners relies on how fast the SDC mechanism regulate
RPA and APC in response to voltage rise in different PV penetration levels. With the PV
penetration level below 30%, the impact of the simulation cases on the TLI are equivalent.
With the higher PV penetratio levels, their impacts on TLI are more recognisable, in which
the case with more reactive power absorption causes the increase in TLI to be faster due to
an enlarged exchange of reactive and active power in the network. Such power exchange
enlargement also corresponds with an increased system power losses. Overall, all the control
cases are effective to solve voltage rise issues as the MVDI are efficiently maintained below
the limit.

On the other hand, the control cases have insignificant impact on the PV generated energy
and have negligible difference in their performance, for the PV penetration levels of 60%
and below, derived from the slow voltage rise. The difference between the control cases are
more noticeable when the PV penetration level exceeds 70%. Smaller values of CEI are
found in the case where a lower level of V aQ

i is set. This corresponds to higher values of
EEI, which turn to a lower value of SAB (meaning more PV owners’ revenue from selling
the surplus PV energy). These outcomes show the efficacy of coordinating more reactive
power absorption before active power curtailment to solve voltage rise issues, allowing an
decrease in the adverse impact on the PV owners.

As noted, the advantages in using more reactive power absorption for the PV owners is made
at the expense of a higher transformer loading and the system power losses, which are major
concerns of DSOs. Besides, the influence of the SDC mechanism on individual PV owner
is not assessed. At this stage, the procedure of stochastic impact assessment discussed in this
study can provide DSOs with more insights. Further research can be conducted to develop a
more comparative analysis between the technical and economic impact, as well as the impact
assessment on the individual PV units.



5
Centralised control for voltage regulation

The centralised control has been studied widely to coordinate residential­scale photovoltaic (PV)
inverters as well as other power network components to achieve the optimal operation of the system.
This chapter presents the centralised control to coordinate PV inverters for voltage rise mitigation.
The local control and centralised control algorithms are used and integrated following a hierar­
chical control architecture. The local control algorithm adopts the sequentialQ−V and P −V
droop control scheme discussed in Chapter 4. This droop­based local control is embedded in each
inverter for continuously monitoring and addressing voltage rise problems. Meanwhile, the cen­
tralised control algorithm is executed by a central controller aiming to optimally regulate PV
power outputs by using the linear programming technique. The feasibility of the proposed control
approach is successfully verified through simulations on a typical Dutch LV network. 1

5.1 Introduction

The integration of residential­scale PV units is accelerating in LV distribution networks,
which poses technical challenges regarding power quality and reliability [164]. One of the
foremost issues is the voltage rise, which become a major limiting factor for further PV

1This chapter is based on [163].
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deployment [165]. Therefore, adequately solving the voltage rise problems and avoiding
lost of PV energy production are both essential.

As mentioned in Chapter 4, among the available methods, using PV inverter to control PV
power outputs, including active and reactive power, is widely considered as the most effective
one. For this local control, the sequentialP−V andQ−V droop control mechanism shows
promising perspective for voltage rise mitigation. This droop­based local control leverages
the reactive power absorption capability of the inverter to support the votlage regulation.
Subsequently, the active power control of the inverter will be used if voltage rise issues still
occur; thus, allowing to reduce the curtailed amount of PV active power. Main shortcomings
of the droop­based local control, however, is the deficient employment of reactive power
absorption of the inverter. This issue refers to the situation when the capacities of some
inverters are not being employed to support voltage regulation, while some other inverters
have to curtail the active power generation. Further discussion on this is presented in the
next section.

The centralised control has been widely studied to coordinate PV inverters as well as other
power network components to obtain the optimal operation of the system. In this chapter,
the development of the centralised control to coordinate PV inverters for voltage rise miti­
gation is presented. This proposed control approach is based on the hierarchical control to
integrates the local control and centralised control algorithms. The local control algorithm
adopts the sequential Q− V and P − V droop control scheme, as discussed in Chapter 4,
which is performed at every inverter to continuously monitor and address voltage rise prob­
lems. The centralised control algorithm is performed only by a central controller with the
aim to optimally manage the PV power outputs by using an optimisation technique. The co­
ordination between the centralised and local control is obtained when the former updates the
latter with new control parameter values. First, the proposed control approach is described
in details. Thereafter, the simulation set up for a typical Dutch LV distribution network is
elaborated. The simulation results are then shown and discussed thoroughly, followed by
the conclusion being drawn.

5.2 Centralised coordination control

The centralised control is formulated with the aim of effectively coordinating the reactive
power absorption and reducing active power curtailment of residential PV systems for volt­
age rise mitigation. For this, a hierarchical control framework (described in Chapter 2) is
employed, as schematically presented in Fig. 5.1. The proposed control strategy is composed
of local control and centralised control algorithms given the communications are available.
The local control algorithms are performed at each of PV inverters to solve voltage level vi­
olations by introducing the set points of PV power outputs (P net, Qnet). The centralised
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Figure 5.1: Schematic representation of a LV distribution network with the proposed control
strategy, consisting of local control (LC) and centralised control (CC). The orange dotted lines
represent the control signals, while the blue dashed lines represent the information exchange.

control algorithm steers all PV systems by periodically updating the local control algorithms
with new parameter settings (V tP , V aQ), based on the operational data sent from all the
inverters.

5.2.1 Local control algorithm

A local control algorithm is integrated into every PV inverter, aiming to continuously mon­
itor and alleviate violations of voltage limits at the POCs. To this end, the SDC mechanism,
as explained in Chapter 4, is adopted to regulate the power injection of the PV systems at
the POCs. In the SDC mechanism, Q − V droop control to realise the RPA scheme is
modified that has a higher slope to reach its maximum rate at the voltage value that triggers
the APC scheme. The APC scheme based on P − V droop control is only activated when
RPA scheme reaches the reactive power capacity and voltage at the connection point, Vi of
PV system i2 exceeds the threshold voltage level of V tP

i . The injected active power, P net
i and

absorbed reactive power, Qnet
i are regulated following linear functions depicted by Eq. (4.3),

and Eq. (4.5), respectively. The method disconnects the PV unit when the voltage at the
connection point exceeds the maximum allowable limit, which is typically set at 1.1 p.u. in
the distribution network.

2In this study, it is assumed that the PV system i is connected to the bus i of the distribution network.
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Deficient employment of PV reactive power capability

Applying the SDC mechanism with the same, static threshold values in voltage rise condi­
tions causes the deficient employment of reactive power capability of PV inverters. Fig. 5.2
shows the SDC mechanism applied to two PV units in a radial LV feeder: PV a at the begin­
ning and PV b at the end. These two units are assumed to have the same installed capacity
and expose to the same solar irradiation. Because of the radial characteristic, voltage level
Va of PV a is lower than voltage level Vb of PV b. Consequently, the inverter b absorbs
increased amount of reactive power, while the inverter a has no absorption. This can be
regarded as an improper utilisation of PV reactive power capability to the voltage regulation,
which necessities developing a coordination control for enhancing the contribution of PV
systems during voltage rise conditions.

P net, Qnet

PMPP

Q

−Q

0 V V gQ V aQ V tP V

V

PV a

Va

PV b

Vb

Qnet
b

Figure 5.2: SDC mechanism applied for two PV inverters in different locations of a radial LV
feeder.

5.2.2Centralised control algorithm

The deficient employment of of PV reactive power capability can be solved by using the
centralised control. Unlike the local control, the centralised control is performed only by a
single device, so­called a central controller (as described in Chapter 2), in discrete time steps.
In this chapter, the centralised control algorithm is developed with a view of coordinating
the reactive and active power control of PV inverters while dealing with the voltage rise. Cur­
tailments of active power outputs of PV systems are undesirable due to the loss of PV energy
harvest. Absorption of reactive power from the network by PV inverters, on the other hand,
can lower the voltage levels at the POCs, then lowering the curtailed volume of PV active
power. Thus, the overall objective of the centralised control can be formulated as maximiz­
ing active power injection and reactive power absorption by PV inverters while maintaining
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the voltage levels at all the POCs within the allowable range. This can be expressed by an
optimisation problem as follows,

min

N∑
i∈N,i=1

(
(PMPP

i − P ∗
i ) + (Qi −Q∗

i )
)

(5.1)

where P ∗
i and Q∗

i are the decision variables, which refers to active and reactive power out­
puts, respectively, of the PV unit i,

subject to,
0 ≤ P ∗

i ≤ PMPP
i (5.2)

0 ≤ Q∗
i ≤ Qi (5.3)

V ≤ Vi ≤ V (5.4)

The function in Eq. (5.1) is a linear optimisation problem; subsequently, this problem can be
solved by Linear Programming technique. Moreover, Eq. (5.2) ­ (5.4) depicts the constraints,
i.e., all inequality, of the defined optimisation problem. The constraints in Eq. (5.2) and
Eq. (5.3) dictate that PV power outputs can not exceed the system capacity. On the other
hand, the constraint described by Eq. (5.4) maintains the voltage levels at all the POCs within
the allowable range. To solve the optimisation problem, the reformulation of the constraint
of Vi to be the form of P ∗

i and Q∗
i is vital. This reformulation necessitates finding the

correlation between Vi, and P ∗
i and Q∗

i .

Correlation between bus voltage and power injection

The variation in the bus voltage correlates in principle with the power injection behaviour
at each of buses, in which the correlation can be determined using the concept of Jacobian
matrix. The Jacobian matrix J represents the linearised relationship between changes in
active and reactive powers injection at bus (i.e., ∆P and ∆Q) with changes in bus voltage
magnitude and angle (i.e., ∆V and ∆δ), as expressed in Eq. (5.5) [166],[

∆P
∆Q

]
=

[
JPδ JPV

JQδ JQV

] [
∆δδδ
∆V

]
(5.5)

where ∆P = [∆P1, ...,∆Pi, ...,∆PN ]T , ∆Q = [∆Q1, ...,∆Qi, ...,∆QN ]T , ∆V =
[∆V1, ...,∆Vi, ...,∆VN ]T , ∆δδδ= [∆δ1, ...,∆δi, ...,∆δN ]T are the vectors of ∆P , ∆Q,
∆V , and ∆δ, respectively, and N denotes the set of buses in the network. The Jacobian
matrix J can be obtained by solving the nonlinear load flow using Newton­Raphson algo­
rithm [166].
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Based on Eq. (5.5), the effect of each of ∆P and ∆Q on ∆V can be separately defined, by
assuming that the remaining one approximates zero, as shown in Eq. (5.6) and Eq. (5.7),
respectively.

∆VP =
[
JPV − JPδJ

−1
QδJQV

]−1
.∆P = SV P .∆P (5.6)

∆VQ =
[
JQV − JQδJ

−1
PδJPV

]−1
.∆Q = SV Q.∆Q (5.7)

where SV P is denoted as the voltage/active power sensitivity matrix and SV Q as the volt­
age/reactive power sensitivity matrix. As a results, ∆V due to both ∆P and ∆Q is given
by,

∆V = SV P .∆P+ SV Q.∆Q (5.8)

The sensitivity matrix SV P and SV Q are similar in size of N×N, in which its element, e.g.,
SV P
ij or SV Q

ij , quantifies the linear relation between voltage magnitude change at bus i and
power injection change at bus j, ∀i, j ∈ N . The change in voltage magnitude at bus i,
therefore, can be calculated by,

∆Vi =

N∑
j∈N,j=1

(SV P
ij ×∆Pj + SV Q

ij ×∆Qj) ∀i ∈ N (5.9)

Gathering information on P , Q, V , and δ at all buses is requested for calculation of the
sensitivity matrix SV P and SV Q. This information gathering heavily depends on the ICT
infrastructure and the monitoring capability in the network. For application of the proposal
central control, it is assumed that the considered network in this chapter is equipped with
strong ICT infrastructure and monitoring systems, e.g, by using smart meters, as well as
bi­directional communication links.

It is worth to note that power injection at a bus is given by,

P = P PV − P Load (5.10)

Q = QPV −QLoad (5.11)

where P PV and QPV denote power generation from PV unit, P Load and QLoad denote power
consumption of loads at the same bus. Since demand response solutions are excluded from
the proposed approach and P Load is assumed to be retained within the time interval of the
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optimisation process, power injection change at a bus can be simplified as,

∆P = P ∗ − P PV (5.12)

∆Q = Q∗ −QPV (5.13)

Hence, Eq. (5.5) ­ (5.13) enable the reformulation of the constraint of Vi in Eq. (5.4) to be
the form of P ∗

i and Q∗
i . This, subsequently, allows the constraint in Eq. (5.4) to be properly

considered while solving the optimisation function in Eq. (5.1).

5.2.3 Integration of local control and centralised control

As discussed earlier, the local control and centralised control algorithms are executed in dif­
ferent time steps by different controllers (e.g., the PV inverters and the central controller).
Thus, a complete integration of these two control algorithms is essential to actualising the
proposed coordination approach. As illustrated in Fig. 5.3, the local control is integrated
with the centralised control, which is activated in each ∆t time interval. For the sake of
explanation, the integration of these two control mechanisms is classified into 4 stages, as
visualised in Fig. 5.4.

t−Δt t t+Δt

Local control (LC)

CCCCCC

Figure 5.3: Integration of local control (LC) and centralised control (CC) (adjusted from [167]).

Stage 1 ­ Verification of PV active power curtailment due to voltage rise

For each time step∆t, the centralised control collects measurements (Vi, P PV
i ,QPV

i ∀i ∈ N )
from all PV units in the network. If voltage rise occurs (i.e., Vi exceeds V tP

i ), that leads to
active power curtailment for any PV inverters, the following stages will be executed.
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Figure 5.4: Methodology for integrating local control and centralised control. APC depicts active
power curtailment of PV inverters. N­R denotes Newton­Raphson algorithm. LP represents
Linear Programming technique.

Stage 2 ­ Computation of the voltage/power sensitivity matrix

In addition to PV operational data, the centralised control also receives measured data (P Load,
QLoad, V , δ) from all loads, as discussed in Sec. 5.2.2. Applying these data to Eq. (5.5) ­ (5.7)
along with the method as described in Sec. 5.2.2 yields the voltage/active power sensitivity
matrix SV P and the voltage/reactive power sensitivity matrix SV Q.
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Stage 3 ­ Solving the optimisation problem of PV power outputs

By using all received data and the computed voltage/power sensitivity matrix from the early
stages, in this stage the centralised control aims to solve the optimisation problem expressed
by Eq. (5.1) ­ (5.4). To this end, the functions in Eq. (5.8) ­ (5.13) and the Linear Pro­
gramming technique are adopted, as discussed in Sec. 5.2.2. When the problem­solving is
complete, the optimal values of PV active and reactive power, P ∗ and Q∗ are determined
for all the inverters. As the centralised control algorithm is executed every ∆t time interval,
the determined P ∗

i and Q∗
i ∀i ∈ N will be retained for the corresponding time interval.

Stage 4 ­ Calculation of new local control parameters

Based on the optimal power P ∗
i and Q∗

i ∀i ∈ N obtained from Stage 3, new droop control
parameters (i.e., (V tP

i , V aQ
i ∀i ∈ N ) for each related PV unit can thus be calculated by the

centralised control as shown in Eq. (5.14) and Eq. (5.15).

V tP∗
i =

PMPP
i .Vi + (P ∗

i − PMPP).V

P ∗
i

∀i ∈ N (5.14)

V aQ∗
i =

Q∗
i .V −Qi.Vi

Q∗
i −Qi

∀i ∈ N (5.15)

These two equations are derived by modifying the droop control functions, which are earlier
presented in Eq. (4.3) and Eq. (4.5). The local control in the inverters are subsequently
updated with the new values of V tP

i and V aQ
i . Similar to P ∗

i and Q∗
i , the new local control

parameters also remain constant until next time steps. The whole procedure from Stage 1 to
Stage 4 will repeats after every ∆t time period.

5.3 Simulation setup

5.3.1Case study

A simulation case study based on a residential Dutch LV network adopted from [22] is used
to evaluate the efficacy of the proposed approach. As illustrated in Fig. 5.5, the test network
consists of a MV/LV distribution transformer and 20 households with PV systems. The main
properties of the transformer are shown in Table 5.1. All the power lines in the test network
are underground cables with relatively high R/X ratio compared to the overhead lines. The
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R,X characteristics of the underground cables are summarized in Table 5.2, which are based
on [168].

Table 5.1: Properties of the MV/LV transformer used in the test network

Properties Values
Transformer rating 100 kVA, 11/0.4 kV
Winding connection D1Yg
Transformer full­load loss 1.4 kW
Transformer no­load loss 0.19 kW

Table 5.2: R,X characteristics of the power cables of the test network

Cable types R (Ω/km)(Ω/km)(Ω/km) X (Ω/km)(Ω/km)(Ω/km) R/X
150mm2 Al 0.228 0.0844 2.70
95mm2 Al 0.353 0.0868 4.07
50mm2 Al 0.706 0.0924 7.64
16mm2 Al 2.10 0.106 19.81
10mm2 Cu 1.837 0.088 20.88
6mm2 Cu 3.061 0.1 30.61
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Figure 5.5: The test network based on a Dutch LV distribution network. The arrows and solid
circles represent loads and PV units, respectively, along with their index. The numerical values
along the power cable sections denote the cable length in meters, while the uppercase letters
denote the cable types.
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Each household is assumed to connect to the test network via a three­phase connection and
be equipped with either of four types of uncontrollable residential loads and PV installed
capacity. The main properties of these four types are tabulated in Table 5.3. The household
load profiles are modelled using average normalized profiles of 400 residential customers in
the Netherlands, which are derived from smart meters with 15­minute resolutions [22]. The
meteorological data of the solar irradiation and the ambient temperature, which is obtained
from the KNMI [129], is adopted to simulate PV power generation. Using the meteorolog­
ical data, the amount of active power generated by PV systems has been modeled according
to Eq. (3.2). Fig. 5.6 displays the solar irradiation and ambient temperature profiles used
in the simulation. As the test network covers a small geographical area, all PV systems are
assumed to expose to the same meteorological data profiles. Allowable power factor (PF)
values of PV systems are considered to be ±0.9 according to the Standard EN 50438 [160].
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Figure 5.6: Solar irradiation and ambient temperature profiles used in the simulation.

Table 5.3: Properties of household loads and PV systems

Properties Type 1 Type 2 Type 3 Type 4
Load demand range (kW) 0.54­2.37 0.94­3.67 0.64­2.7 0.68­2.53
PF of load demand (­) 0.98 0.98 0.98 0.98
Installed PV capacity (kWp) 5.62 6.37 6.75 7.12
Allowable PF of PV systems (­) ± 0.9 ± 0.9 ± 0.9 ± 0.9

5.3.2 Simulation platform

The simulation case study is developed using Matlab/Simulink. In this environment, an
advanced model with hierarchical control is required. The simulated model musts be ca­
pable of implementing the SDC­based local voltage control, i.e., with 1­second resolution,
and the centralised coordination control, i.e., with 15­minute resolution, according to the
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integration framework as discussed in Sec. 5.2. The proposed optimisation problem for the
centralised coordination control is solved using the MATLAB optimisation toolbox. The
simulation is performed over two consecutive summer days and includes 3 control methods
as follows,

• Method 1: This method utilises the P − V droop control­based APC scheme (dis­
cussed in Chapter 4) for the local control at PV inverters and the centralised coor­
dination control (mentioned in Sec. 5.2.1) for regulating PV systems in response to
voltage rise issues. For this, the coordination control regularly updates the threshold
value of the P − V droop control.

• Method 2: This method purely employs the local voltage control based on the SDC
mechanism (discussed in Sec. 5.2.1) to solve the voltage rise problems. The centralised
coordination control is not considered, meaning that the threshold values of the SDC
mechanism are fixed over simulation time.

• Method 3: This is the proposed approach, which integrates both the SDC­based local
voltage control and the centralised coordination control for voltage rise mitigation.
The threshold values for both Q − V and P − V droop control scheme, i.e., of the
SDC mechanism, are periodically modified by the coordination control.

For the sake of comparison between the control approaches, the threshold value for P − V
droop control, i.e., V tP

i = 1.06 p.u., are set identically to all PV inverters in Method 1 and
3 as the default setting, and in Method 2 as the fixed setting. Similarly, the threshold value
for Q − V droop control, i.e., V aQ

i = 1.05 p.u., is set uniformly to every PV inverters in
Method 3 as a default setting, and in Method 2 as the fixed setting. In this study, the default
settings refer to the values assigned to the droop control parameters when the PV systems are
not operational (e.g., during the night time) or no voltage rise is observed in the network.

5.4 Numerical results

5.4.1 Voltage control

Voltage levels measured at the POCs of all the houses in the test network during the sim­
ulated two days without any control algorithm are depicted in Fig. 5.7. Due to the radial
topology, voltage levels in the network increase along the feeders. High voltage magnitudes
are observed at the household POCs located to the end of the feeders, such as House index
6, 12 and 20. Meanwhile, the houses located closer to the transformer have lower voltage.
The voltage control methods, listed in Sec. 5.3.1, are then applied for the test network.
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Figure 5.7: Measured voltage levels at the POCs of all the houses during the simulated two days
without any control algorithms. Each index represents the corresponding individual house.

Fig. 5.8 displays the PDF and ECDF of voltage magnitudes in the network for 3 control
methods over the simulated two days. This figure indicates that the voltage levels consider­
ably increase (i.e., nearly 1.1 p.u.) without control and decrease for 3 methods. It is observed
from the ECDF plot that the significant difference between Method 1 and each of the two
methods, i.e., Method 2 and 3, occurs when the voltage magnitudes exceed the threshold of
1.05 p.u. This is due to the use of Q− V droop control scheme, i.e., V aQ

i = 1.05 p.u., for
both Method 2 and 3, which combines with P − V droop control scheme and results in a
slower voltage rise. Owing to P −V droop control scheme, Method 1 induces faster voltage
rise than Method 2 and 3, although the centralised coordination control is employed. On
the other hand, the PDF plot reveals that Method 2 appears to be slightly more conservative
than Method 3. In Method 2, the probability density of the voltage levels equal to 1.06 is
23.03; while in Method 3 those quantities correspond to 19.48. Moreover, the maximum
voltage in Method 2 is lowered than that in Method 3. This is derived from the adoption of
the SDC mechanism with fixed settings for the local voltage control in Method 2.

Main results for 3 control methods, including maximum network voltage, total produced
energy of PV systems, and total energy losses in the network, are listed in Table. 5.4. It is
evident that Method 3 effectively limits the voltage rise and enables the highest amount of
total energy generated from PV systems. This benefit of Method 3 comes from the com­
bination of the SDC­based local voltage control and the centralised coordination control
with optimisation objective of minimum PV power curtailment. In contrast, Method 1 has
the lowest PV production value, although the maximum voltage is maintained below the
allowable upper limit of 1.1 p.u. This is due to the fact that the voltage rise mitigation in­
volves only curtailing active power of PV units, i.e., by activating P −V droop control. The
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Figure 5.8: PDF and ECDF of the voltage levels for different control methods.

reactive power capacities of PV units, which can support the voltage rise mitigation, are left
unused for Method 1. Nevertheless, the decreased active power production and unused reac­
tive power absorption of PV systems reduces the power flows in the network, which in turns
decreases the energy losses. Among 3 methods, Method 3 has the largest amount of total
energy losses for the simulated two days (i.e., 80.46 kWh, representing 29.4% higher than
Method 1). Unlike Method 1, Method 3 provokes the increased power flows in the network,
caused by the limited active power curtailment and maximized reactive power absorption of
PV units. For Method 2, the reactive power capacities of PV inverters are dispatched (i.e.,
by the SDC­based local control) but not maximized due to a lack of the the centralised coor­
dination control. The total energy loss in the network for Method 2, consequently, is higher
than that for Method 1 and smaller than that for Method 3. Since the voltage rise issues
are effectively mitigated with all 3 control methods, evaluating other performance metrics is
important to compare the methods further, which will be discussed in the next section.
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Table 5.4: Results summary for all control methods

Properties Method 1 Method 2 Method 3
Maximum network voltage level (p.u.) 1.0787 1.0708 1.0777
Total energy generated from PV systems (kWh) 2148.8 2155.0 2179.3
Total energy losses in the network (kWh) 62.15 75.33 80.46

5.4.2Control of PV generation

In this section, the control of PV generation with 3 control methods is evaluated for further
comparison of these methods. To this end, the curtailed energy generation of every PV
inverters with different control methods are calculated as a percentage of the generated PV
energy (kWh) in the case with no control. As depicted in Fig. 5.9, Method 3 (i.e., the
proposed approach) outperforms all other ones as Method 3 leads to the smallest amount of
total curtailed PV energy of 0.86%, decreasing by 56.3% and 61.8% compared to Method 1
and 2, respectively. This achievement demonstrates the effectiveness of combining the local
control (based on SDC mechanism) and the centralised coordination control (based on the
optimisation) to effectively reduce the PV generation curtailment when properly solving the
voltage rise problems. Applying only either of each control approach as in Method 1 and
Method 2 induces the increased amount of PV generation curtailments.
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Figure 5.9: Percentage of curtailed energy of PV systems.

To verify the performance of Method 3 in terms of coordinating PV inverters, Fig. 5.10
shows the adaptation of the P −V droop control parameters (V tP ) of PV inverter at House
no. 1 and 6, which are located in the same feeder. As discussed in Sec. 5.2, such adaptation
of the local control is steered by the centralised coordination control as the former is regularly
updated with new set­points from the latter. As can be seen from Fig. 5.10, V tP

6 increases,
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Figure 5.10: (a) Full view and (b) Zoomed­in view for the profiles of the measured voltage (Vi)
and the adaptation of the droop control parameters (V tP

i ) of PV unit no. 1 and 6 when
operating with Method 3. The dashed­line rectangular in Fig. (a) indicates the region of the
zoomed­in view shown in Fig. (b).

while V tP
1 decreases during voltage rise conditions (i.e., above 1.06 p.u.). Subsequently, PV

inverter no. 6 (i.e., located at the end of the feeder), curtail lower amount of PV generation
when compared to the control scheme with the static V tP

i , i.e., in Method 2 (as shown in
Fig. 5.9). Simultaneously, PV inverter no. 1 located at the beginning of the same feeder
(where voltage rise above 1.06 p.u. does not exist) starts absorbing reactive power (i.e.,
when V aQ

i < Vi ≤ V tP
i ) and reaches the maximum reactive power output (i.e., when

Vi > V tP
i ) faster than that with the static V aQ

i , i.e., in Method 2. The adaptation of
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the droop control parameters allows to maximize utilisation of PV inverter reactive power
capacity and decrease their active power curtailment for voltage rise alleviation. Hence, these
results prove the adequate performance of the proposed coordination control to adapt the
droop control parameters.

However, similar to Method 1 and 2, the proposed control strategy in Method 3 causes
the unfair curtailment among the PV units as the ones connecting to the end of the feeder
(e.g., PV unit no. 6, 12, and 20) curtail noticeably more active power than the others. An
improvement for the centralised coordination control or an alternative approach is required
to achieve a fair curtailment.

5.4.3 Summary

The centralised control has been studied widely to coordinate PV inverters as well as other
power network components to achieve the optimal operation of the system. In this chap­
ter, the development of the centralised control to coordinate PV inverters for voltage rise
mitigation has been discussed. For this proposed control approach, the local control and
centralised control algorithms are used and integrated following the hierarchical control ar­
chitecture. The local control algorithm adopts the sequential Q − V and P − V droop
control scheme discussed in Chapter 4. This droop­based local control is embedded in each
inverter for continuously monitoring and addressing voltage rise problems. Meanwhile, the
centralised control algorithm is executed by a central controller aiming to optimally steer
the local control performance in terms of PV power outputs. To this end, the centralised
control is equipped with the linear programming technique, that can solve the optimisation
problems of PV power outputs.

A simulation case study considering a residential Dutch LV network with a real data set for
household consumption and PV generation from the Netherlands has been conducted to
evaluate the efficacy of the proposed approach. Two other control approaches have been
also involved in the case study for the approach comparison. Simulation results show the
effectiveness of the proposed control approach to mitigates the voltage rise problems and
considerably decrease the total curtailed energy from PV systems, i.e., by 56.3% and 61.8%
compared to the method including P − V droop control and the centralised control, and
the sequential droop control, respectively. This achievement derives from the combination
of the local control (based on SDC mechanism) and the centralised coordination control
(based on the optimisation). However, the benefits of the proposed method comes at the
expense of increased total energy loss in the network and the unfair power curtailment among
the PV systems. An improvement for the centralised coordination control or an alternative
approach is recommended to achieve a fair PV power curtailment for voltage rise mitigation.

The proposed control approach uses extensive communications between the centralised con­
troller and individual PV units without communication delay. However, communication
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delays are inevitable, negatively impacting the real­time coordination control performance.
Therefore, investigating such impact of communication delays on the proposed control per­
formance can be a recommendation for future research.



6
Distributed control for voltage regulation

In this chapter, a distributed coordination control strategy is proposed that adapts sequential (Q−
V and P − V ) droop control for PV inverters to mitigate voltage rise problems in PV­rich LV
distribution networks. The consensus algorithm is used to realise the distributed control, while the
ε­decomposition technique is adopted to identify multiple control areas with the strong coupling
nature of PV systems in order to facilitate the coordination of sequential droop control of PV
inverters. The droop control parameters are tuned and adapted, based on a consensus among PV
inverters within each control area. This proposed control strategy inherits the autonomous feature
of the droop control for coping with voltage rise issues while avoiding curtailing a significant
amount of PV production. The proposed control strategy is evaluated through simulations on a
real European LV distribution network with high PV penetration. The simulation results highlight
that the proposed control strategy can effectively mitigate voltage rise problems while significantly
reducing the amount of curtailed PV generation and ensuring the effective contribution among
all the PV systems towards voltage rise mitigation. 1

1This chapter is based on [169,170].
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6.1 Introduction

Voltage rise in LV distribution networks is one of the foremost issues associated with the
high integration of residential­scale PV systems in LV networks [164]. Voltage rise prob­
lems occur along the distribution feeders due to the reverse power flows when the power
generation of the feeder is higher than its power demand. Lack of proper solutions to this
problem can result in loss of energy yields of PV systems [152] as well as causes damages to
the electrical appliances. This problem can become a major limiting factor for further PV
deployment [165]. As discussed earlier, controlling PV systems is of importance to address
the voltage rise problems. With this respect, coordination control of PV systems can assist a
proper utilisation of PV inverter capacity, i.e., in terms of active and reactive power outputs,
for voltage rise alleviation.

While the centralised coordination control can effectively alleviate voltage rise problems with
minimised PV power curtailment, as shown in Chapter 5, such centralised approach heav­
ily depends upon extensive high­bandwidth communication networks along with a large
number of interconnected devices making the system vulnerable to a single­point­of­failure
and costly to be deployed [171]. In contrast, distributed control uses a sparse communica­
tion network with a significantly low bandwidth requirement, enabling this type of control
architecture to be less costly and less complex. Considering the widespread integration of
residential­scale PV units, distributed control is potentially practical to replace the centralised
control.

In this chapter, a distributed coordination control strategy is proposed for PV inverters in
combination with the ε­decomposition technique to alleviate voltage rise problems in PV­
rich LV distribution networks. The proposed strategy makes use of a distributed coordination
scheme based on the consensus algorithm to adapt the sequential (Q−V and P −V ) droop
control of PV inverters, as discussed in Chapter 4. Additionally, the ε­decomposition tech­
nique is utilised to decompose the network into multiple control areas. The proposed strategy
is, thus, implemented for PV units located in the same control area. The control objectives
are to reduce the amount of curtailed generation and guarantee the effective contribution of
all PV systems, while alleviating voltage rise problems. Compared to the centralised coor­
dination control studied in Chapter 5, this chapter aims to obtain a reduced amount of re­
quired PV power reduction compared to the cases with the conventional, i.e, uncoordinated,
droop control schemes and the adaptive active power droop control method for adequately
solving the voltage rise problems, instead of obtaining an optimal minimum power curtail­
ment. The variation in the impact of PV generation on voltage regulation is analysed first.
Next, the proposed control strategy is presented along with the ε­decomposition technique.
The related modelling and simulation on a real European LV distribution network with high
PV penetration are then described. Finally, results and discussion presenting the efficacy of
the proposed control strategy are given and concluding remarks are drawn.
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6.2 Impact of PV generation on voltage regulation

The variation in the impact of active and reactive power injection from PV inverters on
phasor bus voltages and voltage angle varies depending on the bus location, which can be
observed by applying the concept of voltage sensitivity matrix. The voltage sensitivity matrix
S is derived by reversing the system Jacobian matrix J, which is resulted from solving the
nonlinear load flow using Newton­Raphson algorithm [166]. The matrix S is given by,[

∆δδδ
∆V

]
=

[
SδP SδQ
SV P SV Q

] [
∆P
∆Q

]
(6.1)

where S = J−1 and δ, V , P , and Q denote voltage angle, phasor bus voltage, active power
and reactive power injection, respectively. ∆P, ∆Q, ∆V, and ∆δδδ depict the changes of
δ, V , P , and Q, respectively. The matrix S changes with the power flow in the network
and calculating S requires to gather information about δ, V , P , and Q at all buses. This,
therefore, makes the calculation of S in an on­line manner highly demanding.

Owing to the radial feature, the critical voltage rise in the LV networks due to the surplus PV
power generation predominantly occurs at the bus located at the end of the feeder. Accord­
ing to [172], in a radial LV feeder the voltage sensitivity at the critical bus to active power and
reactive power injection from PV systems both increase as the distance to the transformer
increases along the feeder. Then, controlling active power and reactive power injection from
PV systems connected to the buses with the higher impact sensitivity becomes more effec­
tive on voltage rise mitigation. It is, therefore, necessary to group PV systems with strong
coupling nature, e.g., voltage sensitivity, for solving the voltage violation problems.

6.3 Proposed control strategy

The proposed control strategy aims to mitigate voltage rise along the feeder while signifi­
cantly reducing the amount of curtailed PV generation. To this end, the ε­decomposition
technique is utilized to decompose the network into multiple control areas containing groups
of PV systems. The distributed coordination control strategy is then applied in the decom­
posed control areas to alleviate voltage rise issues.

Fig. 6.1 presents the block diagram of the proposed control strategy, which is embedded
in each PV inverter, consisting of two layers: a local control and a coordination control
layer. The former is based on the SDC mechanism, and the latter is based on a consensus­
based distributed control (CBDC) mechanism. The local control layer is responsible for
continuously monitoring and mitigating voltage rise conditions at the POC by regulating
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Figure 6.1: Block diagram of a LV distribution network with the proposed control strategy,
composed of two control levels: a local control, implemented using SDC; and a coordination
control, implemented using CBDC. The orange dotted and blue dashed lines represent the
control signals and information exchange, respectively.

active and reactive power of PV units. The coordination control layer, which operates with a
lower response speed than the local control layer, is responsible for adequately coordinating
PV systems for the voltage level violations by periodically adapting the local control layer.
As can be seen in Fig. 6.1, the output power set points of the PV inverters (P net, Qnet) are
determined by the local control layer, which regulates the APC and RPA scheme of PV units
in response to the voltage rise at the POC. Furthermore, theP−V andQ−V droop control
parameters, i.e., the threshold levels (V tP and V aQ), are periodically set by the coordination
control layer. The operation of this coordination control layer, therefore, can be regarded as a
correction process to the local control layer in order to obtain the fair generation curtailment.
To complete this process, the coordination control layer first exchanges the PV active power
injection ratios (β) between neighboring PV inverters, then reaches the common agreement
of β in an iterative manner. The proposed control strategy is discussed next in more detail.

6.3.1 ε­Decomposition technique

In order to determine various control areas for the proposed control strategy, the decom­
position of the network is done such that, the decomposed network consists of a series of
sub­networks. Consider the fact that the voltage rise is a local problem, grouping these buses
into sub­networks, monitoring and solving the sub­networks independently appear promis­
ing [173]. Each sub­network bounds the coverage range of the communication network in
this area. Given this boundary, the coordination mechanism can be executed among PV
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systems located in the same control area.

The ε­decomposition technique is identified by the graph theory. In this technique, a value
of ε is pre­defined with 0 < ε < 1, which is regarded as a threshold of the interconnection
strength among sub­areas. Let us assume a graph G = (V, ξ) with the set of vertices V (i.e.,
PV units) and the set of edges ξ (i.e., communication links between PV units). If there exists
an edge between neighboring sub­graphs that is smaller than the threshold value of ε, such
edge is specified as a weak connection of the graph [173]. This link, accordingly, will be
disconnected from the graph and a series of sub­graphs will be identified. By mapping this
decomposed graph to the original network, the decomposition of a network is attained with
mutual coupling among sub­network not greater than a given ε value [174]. A different series
of decomposed sub­systems can be generated by varying ε value as it decides the sub­system
size [173].

More specifically, our study involves using n × n admittance matrix, Y for the implemen­
tation of the ε­decomposition method. The basic principle is to associate a graph G with
the matrix Y, identify the edges (Vi,Vj) ⊂ ξ with magnitude smaller than or equal to a
prescribed positive value of ε. Decomposed matrix Y of original matrix Y is achievable if a
permutation matrix P exists such that Eq. (6.2) is satisfied.

Y = PTYP (6.2)

where Y is assumed as an M ×M block matrix with Mp ×Mq blocks Ypq = (ypqij ) given
by Eq. (6.3). P can be identified equivalently to dividing the graph G associated with Y into
M sub­graphs in the manner that the coupling magnitude of these sub­graphs in G less than
ε [173].

|ypqij | ≤ ε ∀p, q ∈ N, p ̸= q, i ∈ Np, j ∈ Nq (6.3)

Y can be conventionally represented as

Y = Y0 + ε1Y1 + ε2Y2 + · · ·+ εmYm (6.4)

where Y0 is a block diagonal matrix and Y1, · · · ,Ym are decomposed matrices with all el­
ements less than or equal to ε, and m is a series a prescribed positive value, ε satisfying
ε1 > ε2 > · · · > εm. A comprehensive description of the ε­decomposition approach can
be founded in [173].
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6.3.2 Local control layer

In the local control layer, the SDC mechanism, as discussed in Chapter 4 (Sec. 4.3.3), is
implemented integratingQ−V and P−V droop control. It is worth mentioning that solar
irradiance and PV module temperature are constantly changing in time, then the maximum
power is also varying. Thus, to function P − V droop control in PV inverter i, the inverter
needs to be capable of effectively estimating PMPP

i while operating at a curtailed active
power output. Several maximum power point estimation (MPPE) methods for PV active
power control have been proposed in [155, 175–177]. In fact, in [155], the PV inverter
periodically switches to the MPPT mode performed by the inside MPPT algorithm for a
certain time window, then recapturing the actual maximum power. However, the droop
control function remains regularly deactivated and activated, making the power outputs
largely fluctuated and then voltage rise problems not fully solved. An interesting alternative
introduced in [175] utilizes irradiance and temperature measurements to extrapolate the
datasheet information to actual PV module parameters, then fits a linear regression model
to determine the polynomial function coefficients for MPPE. In [176, 177], a least­squares
curve fitting model is built based on a dataset of voltage and current measured at the dc side
to realize MPPE. These two latter MPPE methods allow the PV inverters to continuously
estimate the maximum power and simultaneously function the active power curtailment.
Since the sequential droop control parameters will be periodically modified in a real­time
manner by the consensus­based distributed control as described in the next section, the
MPPE approaches in [175–177] appear to be promising ones. Nevertheless, none of these
approaches is incorporated in this chapter as it is assumed that the maximum power set­
points are already provided by a MPPE method.

However, as discussed in Chapter 5, the main drawback of the sequential droop control is
the improper use of reactive power capability as well as the unequal generation curtailment
of PV systems during voltage rise conditions. In the radial LV feeders, PV units connected
to the end of the feeder absorb significantly more reactive power and curtail more active
power compared to other PV units. Hence, a coordinated mechanism for enhancing the
contribution of PV systems to support voltage rise alleviation needs to be developed.

6.3.3Coordination control layer

The improper utilization of PV inverter capability for voltage rise alleviation can be solved
by the coordination control level, which is based on a CBDC mechanism. Consensus al­
gorithms have been widely used as a basis for distributed control. Following this, each PV
inverter communicates and shares its local information as the variable of interest with neigh­
bours following a distributed procedure [74]. The goal of the consensus algorithm is to
converge all PV inverters to a common agreement following an iterative manner. The vari­
able of interest can be regarded as a quantity that is agreed by all PV inverters. The consensus
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algorithm considers a graph G = (V, ξ) which represents the communication topology of
the PV units. The set of buses V = {1, ..., n} describes the set of PV inverters, whereas
the set of edges ξ ⊂ V × V describes the set of communication links between PV inverters.
Define for the PV inverter i a variable of interest xi and define Ni = {j ∈ V : (i, j) ∈ ξ}
as the set of adjacent PV inverters that communicate with it. Considering the discrete nature
of information exchange, the first­order consensus algorithm can be adopted. The discovery
law of a variable of interest xi is then expressed as [74]

xi[k + 1] = xi[k] +
∑
j∈Ni

dij(xj [k]− xi[k]) ∀i ∈ V (6.5)

where k is the iteration counter and dij is the information weight factor between the unit i
and the neighbor unit j.

From a system point of view, the discovery law in Eq. (6.5) can be expressed in a matrix­
vector form as

X[k + 1] = DX[k] (6.6)

where X[k] = [x1[k], ..., xi[k], ..., xn[k]]
T and X[k + 1] are the vectors of the discovered

variables of interest at k and k+1 iterations, respectively, and D is an information weighted
matrix. As discussed in [91], if the values of D’s elements are non­negative and the sums of
D’s rows and columns are all ones, the convergence of all PV inverters to a consensus will be
reached at the average value of the variables of interest which can be expressed as

lim
k→∞

X[k] = lim
k→∞

DkX[0] =
I · IT

n
X[0] (6.7)

where X[0] is the initial value of X and I = [1, 1, ..., 1]T . Notice from Eq. (6.7) that the
convergence speed of the variable discovery procedure is a function of D [74]. Among
various methods to define dij , the Metropolis method introduced in [178] is adopted in
this work, given by

dij =


1/[max(ni, nj)], if i ̸= j ∀j ∈ Ni

1−
∑

j∈Ni
(1/[max(ni, nj)]), if i = j

0. Otherwise
(6.8)

where ni and nj represent the number of PV inverters that communicate with the PV in­
verter i and j, respectively. To enable the consensus algorithm to properly operate, a sparse
communication network is then established. In this communication network, each PV unit
exchanges its local measured data only to adjacent buses. Hence, neither a central controller
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nor the extensive high­bandwidth communication network is required.

In the proposed CBDC mechanism, the PV active power injection ratio (β) is defined as the
variable of interest, i.e., x in Eq. (6.5) . Following this, β of each PV system is shared with
the adjacent ones, given by

βi[k] = P net
i [k]/PMPP

i [k] ∀i ∈ V (6.9)

where PMPP
i depicts the maximum power of the PV inverter determined by the local con­

trol as explained in Sec. 6.3.2.

Replacing xi in Eq. (6.5) by βi, all PV units will converge to the same power injection ratio
illustrated by

β1 = β2 = · · · = βn (6.10)

As the consensus can only be reached when k → ∞, this calls for an introduction of a
stopping criterion by comparing the error at k+1 iteration with the consensus convergence
tolerance (τ ) as [74]

∑
i∈V

|βi[k + 1]− βi[k]| < τ ∀i ∈ V (6.11)

Having the updated value of βi at k + 1 iteration, the coordination control level calculates
the droop control parameter, i.e., V tP

i [k+1], and then updates the sequential droop control
at the local control level with such new value. To complete this modification, the following
rule is proposed.

V tP
i [k + 1] =

Vi[k + 1]− (1− βi[k + 1])V

βi[k + 1]
(6.12)

That adaptation of the droop control parameters, subsequently, enables the local control
to command the PV inverters to fully employ the reactive power absorbing capability and
properly share the curtailed active power if needed with other PV inverters. It is important
to highlight that the coordinated mechanism is performed by PV inverters bounded on
the coverage range of the corresponding communication topology. If the communication
topology is built for a specific group of PV inverters, only the PV inverters within this group
will follow the coordination. In this sense, the proposed control strategy can be implemented
in various control areas in parallel.
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6.4 Modelling and simulation

6.4.1 LV distribution network

A real European LV distribution network is used as the test network to investigate the effec­
tiveness of the proposed approach. As depicted in Fig. 6.2, this network is energized from a
125 kVA, 11/0.4 kV distribution transformer and supplies electricity to 39 households, of
which 28 are assumed to be equipped with PV units. The network comprises underground
power cables with R, X values being listed in Table 6.1. The cable properties are provided
in [168].

Table 6.1: R, X values for the power cables of the test network

Cable types R (Ω/km)(Ω/km)(Ω/km) X (Ω/km)(Ω/km)(Ω/km) R/X
240mm2 Al 0.14 0.0818 1.71
150mm2 Al 0.228 0.0844 2.70
95mm2 Al 0.353 0.0868 4.07
50mm2 Al 0.706 0.0924 7.64
35mm2 Al 0.956 0.0982 9.74

6.4.2 Load profiles and PV system data

4 load profiles of residential households and 4 types of PV capacity are utilized. Table 6.2
exhibits the main properties of load profiles and PV systems. The household loads in the
test network are all uncontrollable and derived from 15­minute measurements of real smart
meters, as discussed in Chapter 5. The household load demands are in the ranges of 0.54
­ 3.67 kW with a PF of 0.98. The installed PV capacities are of residential­scale, ranging
between 5.25 and 6.65 kWp. The total installed PV capacity is 168.3 kWp, depicting a
penetration level of about 150%, calculated as a ratio of total installed PV capacity to the
maximum network load [179]. The input data for the PV systems, comprising the solar
irradiation data and the ambient temperature data, are derived from real measurements.
Due to the small geographical area of the test network, identical input data is used for all
PV systems. For the compliance with the Standard EN 50438 [160], all PV inverters are
assumed to operate within a PF of ±0.9.

6.4.3 Simulation platform

The simulation is performed in Matlab/Simulink with a time steps of 1 second and executed
over two consecutive summer days. Since the proposed approach uses only changes in voltage
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Figure 6.2: The test network based on a real European LV distribution network. The arrows and
solid circles represent loads and PV units, respectively, along with their index. The numerical
values along the power cable sections denote the cable length in meters, while the uppercase
letters denote the cable types.

Table 6.2: Properties of load profiles and PV systems

Properties Type 1 Type 2 Type 3 Type 4
Load demand range (kW) 0.54­2.37 0.94­3.67 0.64­2.7 0.68­2.53
PF of load demand (­) 0.98 0.98 0.98 0.98
Installed PV capacity (kWp) 5.25 5.95 6.3 6.65
Allowable PF of PV systems (­) ± 0.9 ± 0.9 ± 0.9 ± 0.9



6.5: Numerical results 103

magnitude as the trigger, the simulations were executed in the phasor mode. The proposed
control strategy is tested and compared with two other control methods as follows,

• Method 1: PV inverters are only embedded with the static SDC scheme (introduced
in Sec. 6.3.2) with all the threshold values being constant over simulation time and
uniform among PV inverters. Neither the coordination control nor the network de­
composition is applied.

• Method 2: PV inverters employ the static Q−V droop control and adaptive P −V
droop control. The threshold value forQ−V droop control scheme remains constant
over simulation time, while the threshold value for P − V droop control scheme is
updated by the coordination control layer (mentioned in Sec. 6.3.3). This method is
adopted from our previous work presented in [169], where the network decomposi­
tion is not applied. This means that the coordination control is implemented for all
PV inverters located in the same feeder, e.g., PV units from no. 8 to 23 will converge
to a consensus of the power utilization ratio, while PV units from no. 27 to 39 will
converge to the other consensus.

• Method 3: PV inverters are embedded with the proposed control strategy by which
the threshold values for bothQ−V and P −V droop control scheme are periodically
modified. Reconsidering the aims of lowering the curtailed PV power generation
during voltage rise conditions, this method is carried out along with the network
decomposition.

In all 3 methods, the local control of PV inverters employs the SDC scheme to tackle voltage
rise issues. For the coordination control layer, a convergence tolerance τ = 10−3 is applied
as a stopping criterion for the consensus algorithm. Constant time duration of 15 seconds
is used as the time interval at which the coordination mechanism updates the P − V droop
control parameter.

6.5 Numerical results

6.5.1Control area determination

Following the ε­decomposition technique described in Sec. 6.3.1, Fig. 6.3 depicts the de­
termined 7 control areas for the test network with a chosen ε value of 0.21. With no loss
of generality, this value of ε is chosen to exemplify the decomposition procedure. To this
end, Y matrix of the network is first computed and then normalized before partitioned with
given ε value into multiple decomposed matrices. The network was decomposed into sub­
networks, in which each of them determines one of the control areas presented in Fig. 6.3.
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It is needed to be noted that, since the ε­decomposition technique bases on the admittance
matrix Y of the network, recalculating the decomposition of the network is required when
there is any change of the network configuration. In this work, it is assumed that the test
network configuration remains constant.
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Figure 6.3: Decomposition of the test network for ε = 0.21 and determination of control areas
as shaded regions. The solid circles represent PV units along with their index.

Once the network decomposition is completed, the corresponding sparse communication
network, which is required for operating the coordination control layer, is established as
shown in Fig. 6.4. As can be seen, the coverage range is within each determined control
area, meaning that each PV unit only communicates with the other units located in the
same area. The information weight factors (dij) for the established sparse communication
network are calculated using Eq. (6.8). Development of the communication infrastructure
is considered more in the planning phase for the distribution network by the network op­
erators, which involves long­term planning decisions. In this work, it is assumed that the
communication infrastructure is already installed in the test distribution network and the
main focus is on evaluating the proposed control strategy more in the operation phase. The
planning requirement and cost for the communication infrastructure is, hence, considered
beyond of the scope of this study.
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Figure 6.4: A sparse communication network for the decomposed test network with ε = 0.21
presented as a graph. The numerical circles represent PV units. The blue two­end arrow dashed
lines represent the bi­directional communication links between PV units, while the numerical
values along with the communication links denote the information weight factors (dij).

6.5.2 Voltage rise mitigation

Fig. 6.5 displays the resulting voltage magnitudes at the POCs of all PV systems in the
network without any control mechanism over two consecutive summer days. This figure
shows that voltage rise. e.g., above 1.07 p.u. only appears in the feeder no. 3 and 5, where
the PV units from no. 8 to 23 and the PV units from no. 27 to 33 are located, respectively.
For the sake of comparison, the threshold value V tP

i = 1.07 p.u. is used uniformly for the
static P − V droop control in Method 1, and applied as a default setting for the adaptive
P − V droop control in Method 2 and 3. Meanwhile, the threshold value V aQ

i = 1.06 p.u.
is applied uniformly for the staticQ−V droop control in both Method 1 and 2, and utilized
as a default setting for the adaptive Q− V droop control in Method 3. If no voltage rise is
detected or if the PV units are not in operation (e.g., at night), Method 2 will automatically
reset V tP

i to the default value, while Method 3 resets both V aQ
i and V tP

i .

The decomposed test network along with the sparse communication network resulting from
Sec. 6.5.1 are utilized to execute the simulation with Method 3. Recall that the simula­
tion with Method 1 and 2 is performed without the network decomposition procedure. To
evaluate the performance of the proposed control strategy, this study adopted an ECDF to
visualize the maximum voltage levels occurring in the test network, as illustrated in Fig. 6.6.
Without control, the voltage magnitude significantly rises (i.e., above 1.09 p.u.). Visibly,
the curves of all 3 methods move far to the left, indicating that the network voltage repre­
sents considerably lower magnitudes as compared to the case with no control. Additionally,
it is observed that there is a slight difference in the ECDF curves between each of 3 con­
trol methods, meaning that the voltage profile of PV systems in 3 methods are comparable;
therefore, all 3 methods effectively mitigate the voltage rise issues. This effective support is
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Figure 6.5: Voltage magnitude at the POCs of PV systems in the network without any control
mechanism.

derived from employing the SDC scheme in the local controllers of the PV inverters, where
both reactive and active power control are sequentially utilized.

Table 6.3 summarizes several performance metrics for 3 control methods. It is evident that
Method 3 outperforms Method 1 and 2 in terms of the total curtailed PV energy. More
specifically, Method 3 leads to a relatively similar value of the maximum voltage magnitude
with the diminished percentage of curtailed energy (i.e., 0.234%) compared to Method 1 and
2 (i.e., 0.363% and 0.982% respectively), corresponding with the reduction of 35.6% and
76.2% compared to Method 1 and 2, respectively. This superiority of Method 3 is derived
from the increased reactive power absorption by PV systems compared with Method 1 and
2, which is demonstrated in the next section. This growth in PV reactive power absorption
along with a higher PV active power production (i.e., because of lower PV active power
curtailment) causes Method 3 to have the slight rises of 1.63% and 3.88% in the network
energy losses compared to Method 1 and 2, respectively. In 3 methods, Method 2 has the
smallest value of energy losses, resulted from the lowest energy flow in the network. This
is due to the smallest quantity of the energy supplied (kWh) of PV inverters in Method
2, meanwhile, its load energy consumption is in the same volume as Method 1 and 3. It
can be noted that the performance metrics analyzed in this section correspond with the
predefined threshold values V aQ

i and V tP
i . The sensitivity analysis of different threshold

values is discussed in Sec. 6.5.4.

Another advanced feature of Method 3 is to significantly reduce the amount of curtailed
active power of the PV units located at the end of the feeders (e.g., PV unit no. 23). To
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Figure 6.6: Maximum voltage level measured in the network for different control methods using
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Table 6.3: Summarized results for 3 control methods

Properties Method 1 Method 2 Method 3
Maximum network voltage level (p.u.) 1.0743 1.0735 1.0740
Total energy supplied from PV systems (kWh) 2850.8 2833.1 2854.5
Total curtailed energy of PV systems (%) 0.363 0.982 0.234
Total energy losses in the network (kWh) 68.02 66.55 69.13

demonstrate this, Fig. 6.7 plots the calculated active power curtailment and reactive power
absorption along with the measured voltage profiles of PV unit no. 23. At the POC of
that PV system, the voltage rise above V tP

i = 1.07 p.u. predominantly occur (as displayed
in Fig. 6.5). In cases of voltage rise, Method 1 results in the highest amount of curtailed
active power compared to Method 2 and 3 (with a maximum value of approximately 0.53
kW and 0.71 kW in the first and second day, respectively). Owing to the static Q − V
droop control scheme and the consensus­based coordination control mechanism, Method
2 helps to prevent voltage rise situations with a smaller volume of active power reduction
(with the maximum value being around 38.5% and 38.7% lower than Method 1). The total
amount of curtailed energy of the PV system in Method 2 is 1.7343 kWh (around 40.7%
lower than that in Method 1). Finally, the proposed control strategy in Method 3 provides
the comparable outcomes of voltage magnitude with the lowest amount of curtailed active
power. In this method, the total curtailed PV energy is just nearly 0.69 kWh (approximately
76.5% and 60.3% smaller than that in Method 1 and 2, respectively). Note from Fig. 6.7
that, the absorbed reactive power by the PV unit in Method 3 is higher than that in Method
2. This is because the curtailed active power in Method 3 is less than that in Method 2,
leading toP net

i of PV inverters in Method 3 to become greater than Method 3. Accordingly, a
greaterQi is available forQ−V droop control, as defined in Eq. (4.8). Hence, these findings
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show the effectiveness of the proposed control strategy to alleviate voltage rise problems as
well as significantly decrease the volume of active power curtailment of the PV inverters.
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Figure 6.7: Curtailed active power (P), absorbed reactive power (Q) and voltage profiles for
different control methods over two consecutive days of PV index no. 23.

6.5.3 PV system contribution to voltage rise mitigation

To verify the contribution of the power control of various PV systems towards alleviating
voltage rise issues, the amount of curtailed energy per PV inverters in the feeder no. 3 and
5 for different control methods as a percentage of the energy (kWh) in the case with no
control are calculated, as presented in Fig. 6.8. Recall that voltage rise above the threshold
setting, i.e., 1.07 p.u., only appears in the feeder no. 3 and 5, as discussed in Sec. 6.5.2. The
reduction of active power required for voltage rise alleviation, as a result, is purely done on
such feeders.

As can be seen, Fig. 6.8 illustrates that the effective contribution of PV generation curtail­
ment to prevent voltage rise is obtained in Method 3 and also Method 2, in which the
coordination control layer was applied. In Method 2, all PV inverters in the same feeder
reduce their generation with a relatively equal percentage at the expense of a high volume
of the total curtailed energy. In Method 3, although the share of energy reduction is not
equal among PV inverters in the same decomposed control areas (i.e., decomposition of the
network with ε = 0.21 as demonstrated in Fig. 6.3), the total curtail energy is remarkably
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Figure 6.8: Curtailed energy of the PV inverters for different control methods during voltage rise
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i.e., Sum, represents the total amount. The shaded, rounded rectangles covering the PV index
represent the groups of PV inverters within the corresponding control areas in Method 3 with
ε = 0.21.

reduced. The reason for the unequal reduction of curtailed energy in Method 3 is that the
number of PV systems in several decomposed control areas is still large, e.g., 12 PV systems
in the control area for PV inverters from no. 10 to 23. Then all PV inverters could not fully
converge to a consensus of the power utilization ratio (β). However, a smaller number of PV
units enables the convergence to the consensus as shown in the following section. In con­
trast, being embedded only with the static SDC scheme, Method 1 caused large deviations
of the curtailment among PV units. Noticeably, Method 3 has outstanding performance as
compared to Method 1 and 2 because the percentages of total curtailed energy in Method 3
are substantially lower.

As depicted by the absorbed reactive power profile of PV unit no. 10 in Fig. 6.9, the effi­
cient use of reactive power absorption is obtained in Method 3. Although PV unit no. 10
is located closer to the transformer, where voltage rise conditions occur with lower levels (as
can be observed in Fig. 6.5), reactive power absorption through the droop control is largely
obtained. This is due to the use of the adaptive Q − V droop control scheme, which is
regulated by the coordination control mechanism for the control area of PV unit no. 10 as
illustrated in Fig. 6.3. On the other hand, in Method 1 and 2, the location of PV unit no. 10
causes the static Q − V droop control scheme to regulate reactive power absorption with
considerably lower quantities compared to Method 3. Accordingly, the proposed coordi­
nation strategy proved to command PV inverters to not only more effectively contribute to
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voltage rise mitigation, but also lower their generation reduction.

Since voltage rise mitigation involves activating the local droop control schemes of multiple
PV systems at the same time, fluctuation of PV power output can arise due to interaction
between the local controllers. This power fluctuation can result in voltage oscillation in the
network [165]. To damp the voltage oscillation, there are several techniques available in
the literature, such as applying a low­pass filter represented by a continuous­time transfer
function with a time constant for PV power output [165] and limiting the rate of changes
of PV power outputs [180]. For this study, the investigation of the voltage oscillation due
to the interaction between PV droop controls is left for future researches.

6.5.4 Sensitivity analysis of different threshold values

As mentioned in Sec. 6.5.2, the threshold value settings for the local control play an im­
portant role in the performance of the control models. For further comparison of 3 control
methods, the impact on the methods’ performance metrics for different threshold values is
analyzed in this section. The simulations are conducted using the configuration explained
in Sec. 6.4 and Sec. 6.5.1 for two pairs of different threshold values for the droop control
schemes. Key simulation results for 3 control methods are summarized in Table 6.4. It is
observed in the first pair of threshold values V aQ

i = 1.07 p.u. and V tP
i = 1.08 p.u. that,

Method 3 (i.e., the proposed control strategy) effectively solve voltage rise issues and results
in the decrease in the curtailed PV energy rate compared to Method 1 and 2, respectively.
Regarding system energy losses, 3 control methods are insignificantly different. With the
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second pair of threshold values V aQ
i = 1.08 p.u. and V tP

i = 1.09 p.u., the performance
of 3 methods are equivalent. Since the voltage levels (i.e., 1.0873 p.u.) are all lower than
V tP
i setting (i.e., 1.09 p.u.), PV active power curtailing mechanism in 3 methods remain

inactivated.

Table 6.4: Comparison of different control methods with different threshold values

Properties V aQ
i = 1.07 p.u., V tP

i = 1.08 p.u.V aQ
i = 1.07 p.u., V tP

i = 1.08 p.u.V aQ
i = 1.07 p.u., V tP

i = 1.08 p.u. V aQ
i = 1.08 p.u., V tP

i = 1.09 p.u.V aQ
i = 1.08 p.u., V tP

i = 1.09 p.u.V aQ
i = 1.08 p.u., V tP

i = 1.09 p.u.
Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

Maximum network 1.0809 1.0807 1.08 1.0873 1.0873 1.0873
voltage level (p.u.)
Total energy supplied 2860.8 2860 2861 2861.2 2861.2 2861.2
from PV systems (kWh)
Total curtailed energy 0.014 0.042 0.007 0 0 0
of PV systems (%)
Total energy losses 63.39 63.33 63.46 61.12 61.12 61.12
in the network (kWh)

As can be seen from Table 6.3 and Table 6.4, when voltage rise conditions activate the
P − V droop control scheme, Method 3, i.e., the proposed control strategy, induces the
smallest quantity of PV active power reduction compared to Method 1 and 2, as well as
adequately limits the voltage rise at the connection points. It is also important to highlight
that, increasing threshold values for the droop control schemes allow the decrease in the
active power curtailment, and power losses in the network as the differences between the
network voltage levels and threshold values become smaller.

6.5.5 Performance evaluation in different control areas

The performance of Method 3 is further evaluated using the network decomposition for
various ε values. The values of ε were chosen to decompose the network into a different
number of control areas. The percentages of curtailed energy of the PV inverters during
voltage rise conditions in Method 3 with various ε values are displayed in Fig. 6.10. The
notable changes in the curtailed energy of individual PV units and also the total amount
occur when different values of ε are used. Nevertheless, the adequate contribution of PV
power control towards voltage rise prevention is achieved as the percentages of curtailed
energy are relatively comparable in each case of decomposition.

Notice also from Fig. 6.10 that, with ε from 0.37 to 0.84, the same curtailed energy rate is
achieved for PV inverters within the same control areas. In case of ε = 0.44, for instance,
the control area for PV no. 19 and 21 has the curtailed energy percentage of 1.4%, while
in the control area for PV no. 22 and 23 the percentage is 3.3%. This also illustrates that
the introduction of the equal PV energy curtailment rate in each control area provokes the
unequal PV energy curtailment rates between different control areas. The reason behind the
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fair reduction rates achieved with ε from 0.37 to 0.84 is that the number of PV systems in
the control areas is decreased, e.g., a maximum total of 4 PV inverters within a control area
for the case of ε = 0.37 as compared to a maximum total of 12 PV inverters for the case of
ε = 0.21. This smaller number of PV inverters allows the consensus of the power utilization
ratio (β) among them to be properly converged. To illustrate this, Fig. 6.11 shows the
iteration number of the consensus of β for a group of PV no. 22 and 23 in case of ε = 0.37.
The number of iteration is executed by the consensus algorithm to converge β22 and β23

of PV no. 22 and 23, respectively, to a common agreement, as considered by Eq. (6.11).
For some duration, the iteration numbers reach high values due to the rapid changes in PV
power generation as well as load consumption, which in turn induce the rapid changes in
the voltage levels and then the power utilization ratio (β) of PV systems. By contrast, the
iteration number values are small when the voltage levels vary with low rate.

Furthermore, another number of performance metrics for Method 3 implemented with var­
ious ε values are summarized in Table 6.5. This table points out that a larger ε value leads
to a growing number of control areas and a declining number of the bi­directional commu­
nication links between PV units as more weakly coupling terms between the network buses
are identified. With increasing values of ε from 0.21 to 0.37, the percentage of total cur­
tailed energy of PV systems increases. A reason for this is that the partitioned sub­networks,
which each of them forms the control areas for PV systems, become gradually decreased in
size. The coverage range of the proposed control strategy within individual control areas,
subsequently, is for a small group of PV units. The decreasing number of PV units in the
control area enables the iteration number for the consensus procedure to decrease, meaning
that the consensus procedure converges with shorter time. The control areas, where voltage
rise issues appear, receive less contribution from PV reactive power absorption to prevent
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voltage rise problems. Meanwhile, in the neighbouring control areas without voltage rise
issues, the available PV reactive power absorption remains unused. Such decrease in the PV
systems’ active power generation and reactive power absorption provokes the decline of the
energy losses in the network.

Table 6.5: Summarized results of applying Method 3 with various ε values

Properties εεε = 0.21 εεε = 0.32 εεε = 0.34 εεε = 0.37 εεε = 0.44 εεε = 0.84
Number of control areas 7 9 10 12 16 22
Number of bi­directional 26 24 23 22 14 12
communication links
Total number of consensus 2253 1653 1243 798 469 468
iterations
Maximum network voltage 1.0740 1.0739 1.0741 1.0741 1.0743 1.0743
level (p.u.)
Total energy supplied from 2854.50 2853.00 2850.90 2849.50 2850.46 2850.54
PV systems (kWh)
Total curtailed energy of 0.234 0.287 0.360 0.409 0.375 0.373
PV systems (%)
Total energy losses in the 69.13 68.60 68.26 67.95 67.99 68.00
network (kWh)

As also indicated from Table 6.5 that when ε starts increasing from 0.44 to 0.84, the resulting
curtailed energy rates of PV inverters decline. Nevertheless, the variation of PV systems’
curtailed energy is insignificant, causing the network energy losses to be remarkably similar.
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The rationale behind is that the size of the established control areas becomes small with a
few PV units, e.g., a maximum total of 3 PV inverters for the case of ε = 0.44. The available
PV reactive power absorption to support voltage rise mitigation, accordingly, is decreasingly
exploited. Thus, the outcomes of adapting the SDC schemes of such PV inverters using the
proposed control strategy (i.e., Method 3) are roughly similar to that of using the static SDC
schemes, (i.e., Method 1), as shown in Table 6.3.

Recognizing that, when considering the number of bi­directional communication links (BCL)
and total consensus iteration (CI), identifying ε value can be based on the maximum per­
centage decrease in two successive values. Based on this criterion, ε = 0.44 is the fitting
value for the proposed control strategy applied in the given test network, as can be seen from
Fig. 6.12. This value of ε = 0.44 also corresponds to a small amount of the total energy losses
in the network, as illustrated in Table 6.5. However, when considering the total curtailed en­
ergy of PV systems (%), the fitting value for ε is the value corresponding to the lowest rate,
that is ε = 0.21. Hence, the long­term techno­economic analysis is required to select the
optimal value for the epsilon decomposition. As the epsilon decomposition will define the
size of the communication infrastructure and the curtailed PV energy rate, the long­term
techno­economic involves balancing the investment in the communication infrastructure
with the decrease in the losses of PV owners’ revenue by reducing their curtailed power.
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6.6 Summary

The distributed control scheme has been investigated in a number of studies to coordi­
nate PV inverters for the LV network operation support. This chapter has introduced a
completely distributed coordination control strategy for PV inverters combined with the ε­
decomposition technique to alleviate voltage rise problems in PV­rich LV distribution net­
works. The ε­decomposition technique is employed to decouple the network into multiple
control areas, where the proposed control strategy can be effectively implemented. The pro­
posed control strategy utilises a hierarchical control architecture, which includes the sequen­
tial Q− V and P − V droop control scheme discussed in Chapter 4 as the local control of
PV inverters. A consensus­based distributed control mechanism is used to implement the
coordination control among PV inverters, in charge of periodically tuning and adapting the
parameters of both Q− V and P − V droop control scheme within each control area.

The efficacy of the proposed control strategy is evaluated through simulations on a real Eu­
ropean LV distribution network, considering a high PV penetration level of about 150%.
The proposed control strategy is tested and compared with two other control methods. The
obtained results prove that the proposed control strategy adequately prevents voltage rise
problems while significantly reducing the total PV generation curtailment by approximately
35.6% and 76.2% when compared with the static sequential droop control and the static
Q− V droop control and adaptive P − V droop control, respectively. Simultaneously, the
effective contribution of all PV systems towards voltage rise mitigation, i.e., by the efficient
use of reactive power absorption, is guaranteed. However, the proposed control strategy
does not provide the fair curtailment of PV generations in some cases of small ε values.
Thus, further evaluation of the proposed control strategy has been performed with multiple
ε values. Larger ε values result in the fairness of PV generation curtailment, a decline in
system energy losses, and faster convergence for the consensus­based distributed control in
the control areas, but in some cases increased volume of total curtailed energy of the PV
systems. Selecting the optimal ε value should be based on the long­term techno­economic
analysis, which thoroughly assesses the investment in the communication infrastructure and
the impact of reduced PV power curtailment on PV owners’ revenue.

The proposed control strategy can provide DSOs with better control in voltage rise miti­
gation with more effective contribution and fair treatment of PV systems. The proposed
control strategy can also assist the PV owners in decreasing their revenue losses by reducing
their curtailed power.

In this research, the consensus procedure among PV inverters is simulated using fast commu­
nications without delays and no interaction between PV droop controllers. Future research
can be conducted to investigate the potential impact of communication delays and failure on
the consensus­based coordination control and the voltage oscillation due to the interaction
of multiple local droop controllers.
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7
Conclusions

This final chapter presents the conclusions from the research conducted in this thesis. First, the key
findings and insights from the studies in relation to the research questions are summarised. Next,
the scientific contributions of the thesis are discussed. Finally, several recommendations for future
research are provided.

7.1 Research summary

In recent years, distribution networks have been undergoing a transition to active systems.
This transition has been derived from the expanding integration of RES and the rapid digi­
tal transformation at the grid edges, i.e., interface points between the LV networks and the
end­user installations. The transition to the active systems with the RES integration poses
challenges for the network operation and the power quality. These challenges can involve, for
instance, managing the transformer congestion or thermal overloading and voltage rise prob­
lems. However, a conventional method to tackle these challenges by performing network
reinforcement typically involves high investment costs, consequently having low economic
viability. Therefore, an alternative solution is expected to effectively use the network assets,
such as by controlling the RES inverters in LV distribution networks (so­called grid­edge
control). Besides, the proper monitoring of the network operation is critical for the DSOs

117
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to ensure stable and reliable operation and manage new connections, especially with the
increasing share of RES with its intermittent and unpredictable nature.

The main objective of the research described in this thesis has been to develop a suitable grid­
edge monitoring and control strategy that will help in stimulating the integration of RES
in LV distribution networks and support the network operation. The developed grid­edge
monitoring and control strategy focuses on solving the congestion and voltage rise problems
by exploiting the RES controllability and digital transformation in the LV distribution net­
works. Several research questions were formulated and addressed in the previous chapters
to achieve the above objective. Brief summaries of the key findings and insights from the
studies with the research questions are given in the following sections.

7.1.1Grid­edge monitoring and control

Chapter 2 provides a comprehensive overview of grid­edge monitoring and control for LV
distribution networks. The increasing proliferation of RES creates challenges for the network
operation and planning. These challenges have arisen from the nature of RES associated with
the uncertainty, variability, and no inertia and the regulation related to the system operation.
Main challenges can include but not limited to system­demand balancing, power quality,
network congestion, stability issues and changes in the regulatory framework. Conventional
approaches, e.g., network reinforcement, are normally not financially viable. Thus, the RES
control strategy at the grid edges, i.e., the secondary side of LV distribution transformers (so­
called grid­edge control), can be a promising alternative to support LV distribution network
operation. This new paradigm calls for data­driven methods to capture the uncertainty and
complexity natures of RES. Meanwhile, the coexistence between the grid and RES control
strategy must be adopted.

On the other hand, the rapid digital transformation at the grid edges provides opportunities
to improve network performance. This digital transformation, which arises from the uses of
smart meters (SM), the Internet­of­Things and ICT, can increase the network monitoring
for the operation support. Furthermore, an appropriate combination of the digital transfor­
mation with the RES control can effectively use the inherent controllability of RES and the
availability of the digital transformation at the grid edges. This new paradigm, subsequently,
can facilitate the efficient coordination of RES at the grid edges. Therefore, the increasing
integration of RES into LV distribution networks becomes feasible while the system stability
and reliability can be maintained appropriately.

The first research question (Q1) is addressed in this chapter. First, the challenges from the
energy transition in LV distribution networks are presented. Thereafter, the context of grid­
edge monitoring and control is elaborated, including the role of these approaches in support­
ing the distribution network operation. Finally, technological aspects of grid­edge monitor­
ing and control, including modellings, architectures, and strategies, are also discussed.
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7.1.2 Transformer loading monitoring

Chapter 3 responds to the second research question (Q2) by investigating the relationships
between the data from residential SM in terms of voltage magnitudes and the LV distribution
transformer loading. A data­driven approach is developed to estimate the transformer load­
ing by adopting the machine learning­based regression models and leveraging the residential
SM readings. As the SM readings are vital for this data­driven approach, it is proposed that
this approach will be implemented by the LECs as they can access the end­user’s SMs. To
facilitate the implementation of the data­driven approach, a comprehensive framework with
all the essential stages is provided, consisting of training data generation, exploratory data
analysis, feature selection, model selection and algorithm selection. Following this compre­
hensive framework, different machine learning algorithms will be implemented, validated
and compared.

Simulations were performed in the unbalanced IEEE European LV network with 55 houses
to test the proposed approach. A thoroughly conducted analysis of the relationships between
the transformer loading and the nodal voltage magnitude data from residential SMs reveals
clear V­shaped patterns between these two variables. Subsequently, with the voltage magni­
tude data from only a reduced set of residential SMs within a particular LEC being utilised,
the machine learning­based regression model effectively estimates the transformer loading,
i.e., with the Pearson correlation coefficient R and RMSE calculated for the real values and
the estimated values of around 0.98 and 0.87, respectively. This data­driven approach, si­
multaneously, can preserve customers’ privacy rights as only the voltage readings (not power
consumption) are used. Hence, the proposed approach can provide an alternative to im­
plementing transformer congestion monitoring in LV distribution networks. Moreover, the
self­management capability of the LECs in the regional network can be enhanced.

7.1.3 Local control for voltage regulation

Chapter 4 answers the third and fourth research questions (Q3, Q4). It presents a procedure
for comprehensively assessing the technical and economical impact of the residential­scale
PV systems operating with local voltage control on the LV distribution networks and the
PV system owners. The local voltage control, which is installed in the PV inverters, utilises
locally available information to regulate the PV power outputs when the voltage at the POC
violates the threshold values of the local voltage level. To realise this control function, the
SDC mechanism is presented, which consists of RPA and APC scheme. For the impact
assessments, a Monte Carlo­based stochastic approach is adopted along with the conditional
Copula method to generate a large set of time series input data. Several impact metrics are
used to assess the network and the PV owners, both technically and economically.

A simulation case study on the IEEE European LV test network is carried out with various
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permutations of the threshold settings for the SDC­based local voltage control, PV penetra­
tion levels, and one­year time­series data scenarios. The simulation results indicate that the
SDC­based local voltage control effectively solves the voltage rise problems by regulating the
power outputs of PV systems in a sequence with the RPA scheme before the APC scheme.
The technical and economical impact of the PV inverter control on the network and the
PV owners relies on how fast the SDC mechanism responds to voltage rise conditions in
different PV penetration levels. Overall, the faster the RPA scheme reacts (by setting a lower
threshold level), the network can be more adversely affected while less adversely affected by
the PV owners.

7.1.4Centralised control for voltage regulation

Chapter 5 responds to the fifth research question (Q5) by discussing a coordination con­
trol of reactive power outputs from residential­scale PV systems in real­time operation for
voltage rise mitigation in LV distribution networks. A centralised control strategy is devel­
oped by employing the hierarchical control architecture to integrate local and centralised
control algorithms. The local control algorithm, i.e., embedded in each PV inverter, contin­
uously monitors and tackles voltage rise issues by adopting the SDC mechanism discussed
in Chapter 4. The centralised control algorithm, i.e., executed in a central controller, aims
to optimally steer the performance of the local control algorithm in PV inverters. The per­
formance steering is performed in discrete time steps by solving the optimisation problem
of PV power outputs and calculating new threshold settings for the SDC mechanism­based
local control. The threshold settings are regularly transmitted to each PV unit to support
the voltage violation regulation. Solving the optimisation problem of PV power outputs
involves applying the linear programming technique while calculating the new local control
parameters utilising the concept of the Jacobian matrix.

Simulations were performed on a typical Dutch LV distribution network with a real data
set for household consumption and PV generation from the Netherlands. The proposed
control strategy is shown to be adequate to alleviate the voltage rise issues while significantly
reducing the curtailed amount of PV energy. The centralised control algorithm correctly
solves the optimisation problems of PV power outputs, and then efficiently coordinates the
local control algorithms in all relevant PV units by periodically providing the threshold set­
tings for the SDC mechanisms. This centralised control strategy, however, causes unfair
power curtailment among the PV systems since the voltage problems appear mainly towards
the end of the LV feeders. An alternative approach should be considered to achieve a fair
curtailment of PV power.
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7.1.5Distributed control for voltage regulation

Chapter 6 addresses the final research question (Q6). The variation in the impact of PV
power generation on voltage regulation in LV distribution networks is analysed. A dis­
tributed coordination control strategy for residential­scale PV systems is proposed, in com­
bination with the ε­decomposition technique to support the voltage rise mitigation. The
objective is to mitigate voltage rise conditions in LV distribution networks with a more ef­
fective contribution and fair power curtailment of PV units. To achieve this objective, a
coordination control among PV units is implemented in a hierarchical control architecture
comprising a continuous local voltage control and a distributed control applied in discrete
time steps. The ε­decomposition technique decouples the network into multiple control ar­
eas with the strong coupling nature of PV systems, aiming to facilitate coordination control
among PV inverters. The local voltage control is based on the SDC mechanism discussed in
Chapter 4. The distributed control is developed without a centralised controller that adopts
the consensus algorithm to coordinate PV systems. The distributed control periodically
tunes and adapts the local control parameters (i.e., threshold levels of the SDC mechanism)
for every PV inverter within each control area.

A simulation case study on a real European LV distribution network with high PV pen­
etration demonstrates that the proposed control strategy adequately prevents voltage rise
problems while substantially decreasing the total PV generation curtailment by up to 76.2%
compared with non­coordination control approaches. Simultaneously, the effective contri­
bution of all PV systems towards voltage rise mitigation, i.e., by an efficient use of reactive
power absorption, is achieved. Furthermore, applying the ε­decomposition technique with
large ε values results in the fairness of PV generation curtailment, a decline in system en­
ergy losses, and faster convergence for the consensus­based distributed control in the control
areas.

7.2 Contributions

The main contributions of this thesis are summarised in the following sections.

• A thorough analysis of voltage rise mitigation support by residential PV systems
An essential contribution of this thesis is to obtain a thorough analysis of voltage
rise mitigation support by residential­scale PV systems. Due to the widespread and
increasing integration of residential­scale PV units, leveraging the controllability of
the existing PV inverters for RPA and APC is emerging as a promising one to support
voltage rise mitigation. In this regard, an analysis of the short­term (i.e., real­time)
operation and long­term operation of PV units equipped with these control functions,
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if thoroughly implemented, can be the foundation for a wide range of applications in
future distribution networks.

• A data­driven method for congestion monitoring of distribution transformers
A regression­based method is introduced in combination with a limited series of resi­
dential SM data for transformer loading estimation. In this regard, a thorough analysis
based on summary statistics and graphical visualisation are implemented to discover
the relationships between the transformer loading and voltage magnitudes measured
at the POC of the houses. Furthermore, a comprehensive comparison with various
ML algorithms is also conducted to select the best­performing regression model.

• A comprehensive procedure for transformer congestion monitoring
A comprehensive procedure is proposed to implement, validate and compare different
machine learning algorithms for the transformer loading estimation from the LECs’
perspective. This procedure covers all the essential stages in deploying a data­driven
technique, consisting of training data generation, exploratory data analysis, feature
selection, model selection and algorithm selection. With this respect, some state­of­
the­art advances in machine learning research have been integrated, such as XGBR
algorithm and Nested CV technique. This procedure can enable self­management
capability of the LECs via transformer congestion monitoring in LV distribution net­
works.

• Long­term technical and economic impact assessment of local voltage control
A comprehensive procedure is proposed to implement, validate and compare different
machine learning algorithms for the transformer loading estimation from the LECs’
perspective. This procedure covers all the essential stages in deploying a data­driven
technique, consisting of training data generation, exploratory data analysis, feature
selection, model selection and algorithm selection. With this respect, some state­
of­the­art advances in machine learning research have been integrated, such as the
eXtreme Gradient Boosting Regression algorithm and Nested CV technique. Fur­
thermore, this procedure can enable the self­management capability of the LECs via
transformer congestion monitoring in LV distribution networks.

• Centralised coordination control for voltage rise mitigation
Aiming to gain a more efficient contribution of PV reactive power capability for volt­
age rise mitigation, the centralised coordination control is built to coordinate PV units
in real­time operation. The deficient employment of PV reactive power capability oc­
curs when only local voltage control is used by PV inverters that purely take the locally
available information for the control decision. Therefore, the centralised coordination
control is formulated to maximise reactive power absorption by PV inverters to main­
tain the voltage levels at all the POCs within the allowable range while reducing the
curtailment of active power injection from PV units. As a result, coordinating local
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voltage control by a centralised controller in discrete time steps is successfully executed
in real­time operation.

• Distributed coordination control for voltage rise mitigation
A distributed coordination control scheme is proposed that adapts the SDC param­
eters of the PV inverters to reduce the amount of curtailed generation and guarantee
the effective contribution of all PV systems while alleviating voltage rise problems. In
addition, an ε­decomposition technique is used to decompose the network into mul­
tiple control areas, where the proposed control is implemented for PV units located in
the same control area. The distributed control uses a sparse communication network
with a significantly low bandwidth requirement, enabling this control architecture to
be less costly and less complex. Furthermore, considering the widespread integration
of residential­scale PV units, the distributed control is highly suitable for the LV distri­
bution network. Hence, this proposed control strategy can provide DSOs with better
control in voltage rise problems with more effective contribution and fair treatment
of PV systems. Besides, it can assist the PV owners in reducing their revenue losses by
decreasing their PV curtailed power.

7.3 Recommendations

Conducting the work presented in this thesis poses some interesting open questions that can
be considered to extend the research. Therefore, several recommendations for future research
directions are described below in this section.

7.3.1Grid­edge monitoring in LV distribution networks

• Regulatory framework modifications
The data­driven approach to estimating the distribution transformer loading heavily
hinges on the existence of the LECs and their ability to access the residential SMs.
The LECs will use the SM readings as historical and real­time operational data for the
regression model preparation and deployment. In this respect, modifications of the
existing regulatory framework regarding the LECs’ business model and the accessibil­
ity to the residential SMs will be required.

• Intelligent adaptability with network topology and PV penetration level
The transformer loading estimating approach is currently developed for the LV distri­
bution network with a fixed topology and a specific PV penetration level. Accordingly,
this existing approach is not adaptive to grid topology changes or increasing PV in­
stallation, inherent in the grid operation and evolution. These changes will induce
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variations in the correlation between the transformer power and nodal voltage lev­
els, which needs to be re­captured by the regression model. Therefore, periodically
assessing the regression model performance and afterwards re­training the model is
essential. A more intelligent data­driven approach that can automatically adapt to
variations in the network topology and PV penetration levels could be considered.

• Transformer loading estimation in distribution networks with mesh topology
A typical LV distribution network with a radial configuration is considered for the
transformer loading estimating approach. However, for LV distribution networks
with mesh topology, the application of the proposed approach can face challenges.
For example, the relationship between the transformer power and the nodal voltage
magnitude can deviate from the V­shaped pattern. Thus, this relationship can be more
complicated for regression models, and the accuracy of estimated transformer loading
can be degraded. Thus, further research is required to consider the mesh networks
more efficiently.

7.3.2Grid­edge control in LV distribution networks

• More comparative analysis for local voltage control
Using the SDC­based local voltage control method, the advantages of using more
reactive power absorption for the PV owners are made at the expense of a higher
transformer loading and the system power losses, which are significant concerns of
DSOs. Therefore, a more comparative analysis of the technical and economic impact
is expected to identify the parameters for local voltage control that harmonise the im­
pact on the PV owners and DSOs. On the other hand, the impact on each PV owner
is unobserved, yet because the obtained assessment is performed for the network as a
whole. Further research for the impact assessment on the individual PV units, thus,
can be conducted.

• Interaction of PV inverters operating with local droop control
The SDC schemes of multiple residential­scale PV systems located closely in the same
LV feeder can activate simultaneously when the voltage at the POC violates the thresh­
old values of the local voltage level. Fluctuation of PV power outputs, subsequently,
can occur due to the interaction between those local droop controllers. This power
fluctuation can result in voltage oscillation in the network. The investigation of such
voltage oscillation can be a topic for future research. Several techniques available in
the literature, such as applying a low­pass filter and limiting the rate of changes in PV
power outputs, can be considered.

• Effect of communication delay on real­time coordination control
The centralised and distributed control approach presented in this thesis assumes fast
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communications between the network components. However, communication de­
lays are inevitable and can considerably affect real­time coordination control. Future
research can investigate the potential effect of communication delays on both cen­
tralised and distributed­based coordination control. The research can be carried out
in the laboratory environment and in field experiments.
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A
Load characteristics and PV capacity data

As discussed in Chapter 3, the test network based on the IEEE European LV distribution
network is unbalanced grid consisting of a 250 kVA, 11/0.4 kV distribution transformer and
55 houses with single­phase connections: 21 houses on phase A, 19 houses phase B, and 15
houses on phase C [127]. The household load characteristics and installed PV capacities for
phase A is given in Chapter 3. In this appendix, the properties of load and PV systems for
phase B and C are listed in Table A.1, and Table A.2, respectively.

Table A.1: Summary of household load characteristics and PV installations in phase B

House Node Peak load Installed PV
No. No. (kW) capacity (kWp)
H2 47 3.6 5.8
H6 83 3.3 4.7
H7 178 2.9 6.0
H10 248 3.0 4.5
H11 249 2.8 4.2
H13 276 3.5 4.3
H15 314 3.3 4.3
H23 406 3.3 6.2
H26 522 3.8 4.4
H35 639 4.2 5.8

House Node Peak load Installed PV
No. No. (kW) capacity (kWp)
H36 676 3.1 5.6
H37 682 3.2 5.2
H38 688 3.4 4.4
H40 702 3.6 5.9
H41 755 3.8 5.7
H44 785 3.5 5.9
H45 813 2.8 4.5
H50 886 3.2 5.6
H53 899 2.9 4.8

127



128 Chapter A: Load characteristics and PV capacity data

Table A.2: Summary of household load characteristics and PV installations in phase C

House Node Peak load Installed PV
No. No. (kW) capacity (kWp)
H8 208 4.6 4.7
H12 264 3.6 5.1
H16 320 3.5 5.7
H17 327 3.9 5.6
H18 337 3.2 4.4
H19 342 2.5 5.6
H24 458 3.9 4.1
H27 539 3.1 4.7

House Node Peak load Installed PV
No. No. (kW) capacity (kWp)
H28 556 2.8 5.7
H32 614 3.5 6.2
H33 619 4.4 6.1
H39 701 2.8 5.3
H42 778 4.1 4.1
H43 780 3.6 4.1
H47 835 3.9 6.0

Every household is assumed to own a PV system. The rated capacities of PV systems in the
test network are randomly chosen between 4.06 and 6.27 kWp [126], which is derived from
the information on the real residential PV installations in the Netherlands.



B
Results of exploratory data analysis

Exploratory Data Analysis (EDA) implementation is crucial for the deployment of any data­
driven technique. EDA is used to examine the data from various angles to discover interesting
features, such as patterns, relationships among input variables, relationships between input
and output variables, and anomalies [131, 132].

In Chapter 3, EDA is implemented for the transformer phase A loading (SA
trans), voltage

magnitudes (V ) at the POC, net active power (Pnet) and net reactive power (Qnet) of
houses connecting to the same phase, using two methods: summary statistic and graphical
visualisation. Parts of the EDA results are included in Chapter 3 and the remaining EDA
results are shown in this appendix.

Fig. B.1, and Fig. B.2 show pair plots computed for SA
trans and V at the POC of the houses

on the same phase. It is noted that the explanation of the pair plots is given the Chapter
3. These two figures show a strong correlation between SA

trans and V with clear V­shaped
patterns. Thus, applying regression models is possible to compute power flow through the
transformer from the nodal voltage magnitudes.

Fig. B.3, and Fig. B.4 show pair plots for SA
trans and Pnet of the houses on the same phase,

while Fig. B.5, and Fig. B.6 show pair plots for SA
trans and Qnet. The first two figures illus­

trate high correlation coefficients between SA
trans and Pnet. The next two figures indicate

very low correlation coefficients between SA
trans and Qnet. In all four figures, the scatter

129
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Figure B.1: A pair plot for the transformer phase A loading (SA
trans) and voltage magnitudes (V )

at the POC of the houses H25, H14, H51, H34, H52, H22, H21, andH54 connecting to the
same phase. This pair plot consists of histogram plots along the diagonal, Pearson correlation
coefficients below the diagonal, and scatter plots above it.

plots show the relationship between SA
trans and Pnet, and SA

trans and Qnet with less clear
patterns than the relationship between SA

trans and V (Fig. B.1, and Fig. B.2). Hence, ac­
tive and reactive power data from SMs are considered as unsuitable input candidates for the
data­driven monitoring of transformer loading.
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Figure B.2: A pair plot for the transformer phase A loading (SA
trans) and voltage magnitudes

(V ) at the POC of the houses H5, H30, H4, H9, H49, H20, H55, and H46 connecting to
the same phase. This pair plot consists of histogram plots along the diagonal, Pearson correlation
coefficients below the diagonal, and scatter plots above it.



132 Chapter B: Results of exploratory data analysis

Figure B.3: A pair plot for the transformer phase A loading (SA
trans) and net active power (Pnet)

of houses H25, H14, H51, H34, H52, H22, H21, and H54 connecting to the same phase.
This pair plot consists of histogram plots along the diagonal, Pearson correlation coefficients
below the diagonal, and scatter plots above it.
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Figure B.4: A pair plot for the transformer phase A loading (SA
trans) and net active power (Pnet)

of houses H5, H30, H4, H9, H49, H20, H55, and H46 connecting to the same phase. This
pair plot consists of histogram plots along the diagonal, Pearson correlation coefficients below
the diagonal, and scatter plots above it.
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Figure B.5: A pair plot for the transformer phase A loading (SA
trans) and net reactive power

(Qnet) of houses H25, H14, H51, H34, H52, H22, H21, and H54 connecting to the
same phase. This pair plot consists of histogram plots along the diagonal, Pearson correlation
coefficients below the diagonal, and scatter plots above it.
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Figure B.6: A pair plot for the transformer phase A loading (SA
trans) and net reactive power

(Qnet) of houses H5, H30, H4, H9, H49, H20, H55, andH46 connecting to the same phase.
This pair plot consists of histogram plots along the diagonal, Pearson correlation coefficients
below the diagonal, and scatter plots above it.
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C
Additional results of the assessment of PV

local voltage control

As discussed in Chapter 4, a Monte Carlo­based stochastic approach is used to assess the
impact of PV systems operating with the sequential droop control (SDC) mechanism on
both LV distribution networks and PV owners. The threshold levels (V tP

i and V aQ
i ) of the

SDC mechanism play an important role in the performance of this mechanism. In total 9
simulation cases categorised into 3 groups with different threshold levels (see Table 4.1) have
been performed. The simulation results for the cases in Group A are discussed in Chapter 4.
The simulation results for the cases in Group B and Group C are given in this appendix.

Table C.1: Group B and Group C simulation cases for the impact assessment

Group Cases Threshold levels of SDC mechanism
V aQ
i (p.u.) V tP

i (p.u.)
Group B Case 4 1.04 1.07

Case 5 1.05 1.07
Case 6 1.06 1.07

Group C Case 7 1.05 1.08
Case 8 1.06 1.08
Case 9 1.07 1.08
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Figure C.1: Maximum voltage deviation index at the POCs of the PV units with Group B cases.
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Figure C.2: PDF and ECDF of the voltage levels in the network with Group B cases.
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Figure C.3: Transformer loading index with Group B cases.
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Figure C.4: System power losses with Group B cases.
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Figure C.5: Curtailed energy index with Group B cases.
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Figure C.6: Exported energy index with Group B cases.



141

0 10 20 30 40 50 60 70 80 90 100

Penetration Levels [%]

0

2

4

6

8

10

M
ax

im
u

m
V

ol
ta

ge
D

ev
ia

ti
on

In
d

ex
(M

V
D

I)
[%

] Case 7

Case 8

Case 9

Figure C.7: Maximum voltage deviation index at the POCs of the PV units with Group C cases.
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Figure C.8: PDF and ECDF of the voltage levels in the network with Group C cases.
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Figure C.9: Transformer loading index with Group C cases.
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Figure C.10: System power losses with Group C cases.
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Figure C.11: Curtailed energy index with Group C cases.
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Figure C.12: Exported energy index with Group C cases.
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