31 research outputs found

    Deep Time Growing Neural Network vs Convolutional Neural Network for Intelligent Phonocardiography

    Get PDF
    This paper explores the capabilities of a sophisticated deep learning method, named Deep Time Growing Neural Network (DTGNN), and compares its possibilities against a generally well-known method, Convolutional Neural network (CNN). The comparison is performed by using time series of the heart sound signal, so-called Phonocardiography (PCG). The classification objective is to discriminate between healthy and patients with cardiac diseases by applying a deep machine learning method to PCGs. This approach which is called intelligent phonocardiography has received interest from the researchers toward the development of a smart stethoscope for decentralized diagnosis of heart disease. It is found that DTGNN associates further flexibility to the approach which enables the classifier to learn subtle contents of PCG, and meanwhile better copes with the complexities intrinsically that exist in the medical applications such as the imbalance training. The structural risk of the two methods is compared using the A-Test method.publishedVersio

    Parralel Recurrent Convolutional Neural Network for Abnormal Heart Sound Classification

    Get PDF
    This paper presents the results of a study performed on Parallel Convolutional Neural Network (PCNN) toward detecting heart abnormalities from the heart sound signals. The PCNN preserves dynamic contents of the signal in a parallel combination of the recurrent neural network and a Convolutional Neural Network (CNN). The performance of the PCNN is evaluated and compared to the one obtained from a Serial form of the Convolutional Neural Network (SCNN) as well as two other baseline studies: a Long- and Short-Term Memory (LSTM) neural network and a Conventional CNN (CCNN). We employed a well-known public dataset of heart sound signals: the Physionet heart sound. The accuracy of the PCNN, was estimated to be 87.2% which outperforms the rest of the three methods: the SCNN, the LSTM, and the CCNN by 12%, 7%, and 0.5%, respectively. The resulting method can be easily implemented in an Internet of Things platform to be employed as a decision support system for screening heart abnormalities.publishedVersio

    Recurrent vs Non-Recurrent Convolutional Neural Networks for Heart Sound Classification

    Get PDF
    Convolutional Neural Network (CNN) has been widely proposed for different tasks of heart sound analysis. This paper presents the results of a novel study on the performance of a conventional CNN in comparison to the different architectures of recurrent neural networks combined with CNN for the classification task of abnormal-normal heart sounds. The study considers various combinations of parallel and cascaded integration of CNN with Gated Recurrent Network (GRN) as well as Long- Short Term Memory (LSTM) and explores the accuracy and sensitivity of each integration independently, using the Physionet dataset of heart sound recordings. The accuracy of the parallel architecture of LSTM-CNN reached 98.0% outperforming all the combined architectures, with a sensitivity of 87.2%. The conventional CNN offered sensitivity/accuracy of 95.9%/97.3% with far less complexity. Results show that a conventional CNN can appropriately perform and solely employed for the classification of heart sound signals.publishedVersio

    Diagnostic accuracy of machine learning models to identify congenital heart disease: A meta-analysis

    Get PDF
    Background: With the dearth of trained care providers to diagnose congenital heart disease (CHD) and a surge in machine learning (ML) models, this review aims to estimate the diagnostic accuracy of such models for detecting CHD. Methods: A comprehensive literature search in the PubMed, CINAHL, Wiley Cochrane Library, and Web of Science databases was performed. Studies that reported the diagnostic ability of ML for the detection of CHD compared to the reference standard were included. Risk of bias assessment was performed using Quality Assessment for Diagnostic Accuracy Studies-2 tool. The sensitivity and specificity results from the studies were used to generate the hierarchical Summary ROC (HSROC) curve. Results: We included 16 studies (1217 participants) that used ML algorithm to diagnose CHD. Neural networks were used in seven studies with overall sensitivity of 90.9% (95% CI 85.2-94.5%) and specificity was 92.7% (95% CI 86.4-96.2%). Other ML models included ensemble methods, deep learning and clustering techniques but did not have sufficient number of studies for a meta-analysis. Majority (n=11, 69%) of studies had a high risk of patient selection bias, unclear bias on index test (n=9, 56%) and flow and timing (n=12, 75%) while low risk of bias was reported for the reference standard (n=10, 62%). Conclusion: ML models such as neural networks have the potential to diagnose CHD accurately without the need for trained personnel. The heterogeneity of the diagnostic modalities used to train these models and the heterogeneity of the CHD diagnoses included between the studies is a major limitation

    An intelligent Medical Cyber-Physical System to support heart valve disease screening and diagnosis

    Get PDF
    Cardiovascular diseases are currently the major causes of death globally. Among the strategies to prevent cardiovascular issues, the automated classification of heart sound abnormalities is an efficient way to detect early signs of cardiac conditions leading to heart failure or other, even asymptomatic, complications, quite effective for timely interventions. Despite the significant improvements in this field, there are still limitations due to the lack of solutions, available data-sets and poor (mainly binary - normal vs abnormal) classification models and algorithms. This paper presents a Medical Cyber-Physical System (MCPS) for the automatic classification of heart valve diseases onsite, in a timely manner. The proposed MCPS, indeed, can be deployed into personal and mobile devices, addressing the limitations of existing solutions for patients, healthcare practitioners, and researchers, through an efficient and easy accessible tool. It combines different neural network models trained on a new Italian dataset of 132 adult patients covering 9 heart sound categories (1 normal and 8 abnormal), also validated against two main open-access (Physionet/CinC Challenge 2016 and Korean) datasets. The overall MCPS performance (time, processing and energy resource utilization) and the high accuracy of the models (up to 98%) demonstrated the feasibility of the proposed solution, even with few data. The dataset supporting the findings of this paper is available upon request to the authors

    DigiScope Collector - Unobtrosive collection and annotating of auscultations in real hospital environments

    Get PDF
    Mestrado em Informática MédicaMaster Programme in Medical Informatic

    Redes Neuronais Pré-Treinadas na Classificação Automática de Sons Cardíacos

    Get PDF
    As doenças cardiovasculares são uma das principais causas de morte e hospitalização, tanto em países desenvolvidos como em desenvolvimento. O seu diagnóstico requer intervenção profissional e equipamento específico, sendo normalmente dispendioso. O desenvolvimento de algoritmos capazes de segmentar e classificar sinais dos batimentos cardíacos beneficia esta área, uma vez que muitas doenças cardiovasculares se manifestam como irregularidades nos mesmos. Estes algoritmos servirão de apoio ao diagnóstico para os profissionais de saúde e oferecem a possibilidade de serem incorporados em dispositivos próprios para uso doméstico reduzindo a necessidade de consumo de recursos hospitalares ou de centros privados de saúde. No entanto, até ao momento, não existem implementações, clínicas ou não, destes métodos. Nos últimos anos, vários algoritmos de classificação baseados em diferentes técnicas surgiram e bases de dados vastas e de livre acesso foram disponibilizadas procurando estabelecer um ponto de comparação da eficácia dos mesmos. A presente dissertação explora a eficácia da utilização de redes neuronais pré-treinadas na classificação dos sinais disponibilizados no PhysioNet/CinC Challenge 2016, uma das maiores bases de dados de fonocardiogramas já reunida. A melhor rede gerada obteve uma precisão de classificação de 80.85%, uma sensibilidade de 79.77% e uma especificidade de 81.94%, estando em linha com resultados obtidos por métodos diferentes e recorrendo a menos pré-processamento do sinal.Cardiovascular diseases are the leading cause of hospitalization and death, in both developed and developing countries. Its diagnosis requires expert intervention as well as specialized equipment, being costly. The development of algorithms capable of segmenting and classifying signals from the heartbeat benefits this field since many cardiovascular diseases manifest themselves through irregular heartbeats. These algorithms will serve as a clinical decision support system for health professionals and offer the opportunity of creating domestic devices, reducing the need for hospital and private centres resource consumption. However, at the moment, there is no clinical or otherwise implementation of such technology. In the last years, many classification algorithms working on different techniques have emerged and vast open source databases have been made available looking to establish a comparison between those methods. This dissertation aims to test the efficiency of pre-trained neural networks in the classification of signals retrieved from the PhysioNet/CinC Challenge 2016, one of the largest collection of PCG ever assembled. Our best network achieved an accuracy of 80.85%, a recall of 79.77% and a specificity of 81.94%, being competitive with other methods and requiring less signal processing

    Innovative Medical Devices for Telemedicine Applications

    Get PDF

    Development of a Novel Dataset and Tools for Non-Invasive Fetal Electrocardiography Research

    Get PDF
    This PhD thesis presents the development of a novel open multi-modal dataset for advanced studies on fetal cardiological assessment, along with a set of signal processing tools for its exploitation. The Non-Invasive Fetal Electrocardiography (ECG) Analysis (NInFEA) dataset features multi-channel electrophysiological recordings characterized by high sampling frequency and digital resolution, maternal respiration signal, synchronized fetal trans-abdominal pulsed-wave Doppler (PWD) recordings and clinical annotations provided by expert clinicians at the time of the signal collection. To the best of our knowledge, there are no similar dataset available. The signal processing tools targeted both the PWD and the non-invasive fetal ECG, exploiting the recorded dataset. About the former, the study focuses on the processing aimed at the preparation of the signal for the automatic measurement of relevant morphological features, already adopted in the clinical practice for cardiac assessment. To this aim, a relevant step is the automatic identification of the complete and measurable cardiac cycles in the PWD videos: a rigorous methodology was deployed for the analysis of the different processing steps involved in the automatic delineation of the PWD envelope, then implementing different approaches for the supervised classification of the cardiac cycles, discriminating between complete and measurable vs. malformed or incomplete ones. Finally, preliminary measurement algorithms were also developed in order to extract clinically relevant parameters from the PWD. About the fetal ECG, this thesis concentrated on the systematic analysis of the adaptive filters performance for non-invasive fetal ECG extraction processing, identified as the reference tool throughout the thesis. Then, two studies are reported: one on the wavelet-based denoising of the extracted fetal ECG and another one on the fetal ECG quality assessment from the analysis of the raw abdominal recordings. Overall, the thesis represents an important milestone in the field, by promoting the open-data approach and introducing automated analysis tools that could be easily integrated in future medical devices

    Synthesis of normal and abnormal heart sounds using Generative Adversarial Networks

    Get PDF
    En esta tesis doctoral se presentan diferentes métodos propuestos para el análisis y síntesis de sonidos cardíacos normales y anormales, logrando los siguientes aportes al estado del arte: i) Se implementó un algoritmo basado en la transformada wavelet empírica (EWT) y la energía promedio normalizada de Shannon (NASE) para mejorar la etapa de segmentación automática de los sonidos cardíacos; ii) Se implementaron diferentes técnicas de extracción de características para las señales cardíacas utilizando los coeficientes cepstrales de frecuencia Mel (MFCC), los coeficientes de predicción lineal (LPC) y los valores de potencia. Además, se probaron varios modelos de Machine Learning para la clasificación automática de sonidos cardíacos normales y anormales; iii) Se diseñó un modelo basado en Redes Adversarias Generativas (GAN) para generar sonidos cardíacos sintéticos normales. Además, se implementa un algoritmo de eliminación de ruido utilizando EWT, lo que permite una disminución en la cantidad de épocas y el costo computacional que requiere el modelo GAN; iv) Finalmente, se propone un modelo basado en la arquitectura GAN, que consiste en refinar señales cardíacas sintéticas obtenidas por un modelo matemático con características de señales cardíacas reales. Este modelo se ha denominado FeaturesGAN y no requiere una gran base de datos para generar diferentes tipos de sonidos cardíacos. Cada uno de estos aportes fueron validados con diferentes métodos objetivos y comparados con trabajos publicados en el estado del arte, obteniendo resultados favorables.DoctoradoDoctor en Ingeniería Eléctrica y Electrónic
    corecore