496 research outputs found

    SkelCL - A Portable Skeleton Library for High-Level GPU Programming

    Get PDF
    While CUDA and OpenCL made general-purpose programming for Graphics Processing Units (GPU) popular, using these programming approaches remains complex and error-prone because they lack high-level abstractions. The especially challenging systems with multiple GPU are not addressed at all by these low-level programming models. We propose SkelCL – a library providing so-called algorithmic skeletons that capture recurring patterns of parallel computation and communication, together with an abstract vector data type and constructs for specifying data distribution. We demonstrate that SkelCL greatly simplifies programming GPU systems. We report the competitive performance results of SkelCL using both a simple Mandelbrot set computation and an industrial-strength medical imaging application. Because the library is implemented using OpenCL, it is portable across GPU hardware of different vendors

    Towards High-Level Programming of Multi-GPU Systems Using the SkelCL Library

    Get PDF
    Application programming for GPUs (Graphics Processing Units) is complex and error-prone, because the popular approaches — CUDA and OpenCL — are intrinsically low-level and offer no special support for systems consisting of multiple GPUs. The SkelCL library presented in this paper is built on top of the OpenCL standard and offers preimplemented recurring computation and communication patterns (skeletons) which greatly simplify programming for multiGPU systems. The library also provides an abstract vector data type and a high-level data (re)distribution mechanism to shield the programmer from the low-level data transfers between the system’s main memory and multiple GPUs. In this paper, we focus on the specific support in SkelCL for systems with multiple GPUs and use a real-world application study from the area of medical imaging to demonstrate the reduced programming effort and competitive performance of SkelCL as compared to OpenCL and CUDA. Besides, we illustrate how SkelCL adapts to large-scale, distributed heterogeneous systems in order to simplify their programming

    Contract-Based General-Purpose GPU Programming

    Get PDF
    Using GPUs as general-purpose processors has revolutionized parallel computing by offering, for a large and growing set of algorithms, massive data-parallelization on desktop machines. An obstacle to widespread adoption, however, is the difficulty of programming them and the low-level control of the hardware required to achieve good performance. This paper suggests a programming library, SafeGPU, that aims at striking a balance between programmer productivity and performance, by making GPU data-parallel operations accessible from within a classical object-oriented programming language. The solution is integrated with the design-by-contract approach, which increases confidence in functional program correctness by embedding executable program specifications into the program text. We show that our library leads to modular and maintainable code that is accessible to GPGPU non-experts, while providing performance that is comparable with hand-written CUDA code. Furthermore, runtime contract checking turns out to be feasible, as the contracts can be executed on the GPU

    Multi-GPU support on the marrow algorithmic skeleton framework

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaWith the proliferation of general purpose GPUs, workload parallelization and datatransfer optimization became an increasing concern. The natural evolution from using a single GPU, is multiplying the amount of available processors, presenting new challenges, as tuning the workload decompositions and load balancing, when dealing with heterogeneous systems. Higher-level programming is a very important asset in a multi-GPU environment, due to the complexity inherent to the currently used GPGPU APIs (OpenCL and CUDA), because of their low-level and code overhead. This can be obtained by introducing an abstraction layer, which has the advantage of enabling implicit optimizations and orchestrations such as transparent load balancing mechanism and reduced explicit code overhead. Algorithmic Skeletons, previously used in cluster environments, have recently been adapted to the GPGPU context. Skeletons abstract most sources of code overhead, by defining computation patterns of commonly used algorithms. The Marrow algorithmic skeleton library is one of these, taking advantage of the abstractions to automate the orchestration needed for an efficient GPU execution. This thesis proposes the extension of Marrow to leverage the use of algorithmic skeletons in the modular and efficient programming of multiple heterogeneous GPUs, within a single machine. We were able to achieve a good balance between simplicity of the programming model and performance, obtaining good scalability when using multiple GPUs, with an efficient load distribution, although at the price of some overhead when using a single-GPU.projects PTDC/EIA-EIA/102579/2008 and PTDC/EIA-EIA/111518/200

    Multi-Target Vectorization with MTPS C++ Generic Library

    No full text
    International audienceThis article introduces a C++ template library dedicated at vectorizing algorithms for different target architectures: Multi-Target Parallel Skeleton (MTPS). Skeletons describing the data structures and algorithms are provided and allow MTPS to generate a code with optimized memory access patterns for the choosen architecture. MTPS currently supports x86-64 multicore CPUs and CUDA enabled GPUs. On these architectures, performances close to hardware limits are observed

    Algorithmic skeleton framework for the orchestration of GPU computations

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaThe Graphics Processing Unit (GPU) is gaining popularity as a co-processor to the Central Processing Unit (CPU), due to its ability to surpass the latter’s performance in certain application fields. Nonetheless, harnessing the GPU’s capabilities is a non-trivial exercise that requires good knowledge of parallel programming. Thus, providing ways to extract such computational power has become an emerging research topic. In this context, there have been several proposals in the field of GPGPU (Generalpurpose Computation on Graphics Processing Unit) development. However, most of these still offer a low-level abstraction of the GPU computing model, forcing the developer to adapt application computations in accordance with the SPMD model, as well as to orchestrate the low-level details of the execution. On the other hand, the higher-level approaches have limitations that prevent the full exploitation of GPUs when the purpose goes beyond the simple offloading of a kernel. To this extent, our proposal builds on the recent trend of applying the notion of algorithmic patterns (skeletons) to GPU computing. We propose Marrow, a high-level algorithmic skeleton framework that expands the set of skeletons currently available in this field. Marrow’s skeletons orchestrate the execution of OpenCL computations and introduce optimizations that overlap communication and computation, thus conjoining programming simplicity with performance gains in many application scenarios. Additionally, these skeletons can be combined (nested) to create more complex applications. We evaluated the proposed constructs by confronting them against the comparable skeleton libraries for GPGPU, as well as against hand-tuned OpenCL programs. The results are favourable, indicating that Marrow’s skeletons are both flexible and efficient in the context of GPU computing.FCT-MCTES - financing the equipmen

    Heterogeneous computing with an algorithmic skeleton framework

    Get PDF
    The Graphics Processing Unit (GPU) is present in almost every modern day personal computer. Despite its specific purpose design, they have been increasingly used for general computations with very good results. Hence, there is a growing effort from the community to seamlessly integrate this kind of devices in everyday computing. However, to fully exploit the potential of a system comprising GPUs and CPUs, these devices should be presented to the programmer as a single platform. The efficient combination of the power of CPU and GPU devices is highly dependent on each device’s characteristics, resulting in platform specific applications that cannot be ported to different systems. Also, the most efficient work balance among devices is highly dependable on the computations to be performed and respective data sizes. In this work, we propose a solution for heterogeneous environments based on the abstraction level provided by algorithmic skeletons. Our goal is to take full advantage of the power of all CPU and GPU devices present in a system, without the need for different kernel implementations nor explicit work-distribution.To that end, we extended Marrow, an algorithmic skeleton framework for multi-GPUs, to support CPU computations and efficiently balance the work-load between devices. Our approach is based on an offline training execution that identifies the ideal work balance and platform configurations for a given application and input data size. The evaluation of this work shows that the combination of CPU and GPU devices can significantly boost the performance of our benchmarks in the tested environments, when compared to GPU-only executions

    Toward optimised skeletons for heterogeneous parallel architecture with performance cost model

    Get PDF
    High performance architectures are increasingly heterogeneous with shared and distributed memory components, and accelerators like GPUs. Programming such architectures is complicated and performance portability is a major issue as the architectures evolve. This thesis explores the potential for algorithmic skeletons integrating a dynamically parametrised static cost model, to deliver portable performance for mostly regular data parallel programs on heterogeneous archi- tectures. The rst contribution of this thesis is to address the challenges of program- ming heterogeneous architectures by providing two skeleton-based programming libraries: i.e. HWSkel for heterogeneous multicore clusters and GPU-HWSkel that enables GPUs to be exploited as general purpose multi-processor devices. Both libraries provide heterogeneous data parallel algorithmic skeletons including hMap, hMapAll, hReduce, hMapReduce, and hMapReduceAll. The second contribution is the development of cost models for workload dis- tribution. First, we construct an architectural cost model (CM1) to optimise overall processing time for HWSkel heterogeneous skeletons on a heterogeneous system composed of networks of arbitrary numbers of nodes, each with an ar- bitrary number of cores sharing arbitrary amounts of memory. The cost model characterises the components of the architecture by the number of cores, clock speed, and crucially the size of the L2 cache. Second, we extend the HWSkel cost model (CM1) to account for GPU performance. The extended cost model (CM2) is used in the GPU-HWSkel library to automatically nd a good distribution for both a single heterogeneous multicore/GPU node, and clusters of heteroge- neous multicore/GPU nodes. Experiments are carried out on three heterogeneous multicore clusters, four heterogeneous multicore/GPU clusters, and three single heterogeneous multicore/GPU nodes. The results of experimental evaluations for four data parallel benchmarks, i.e. sumEuler, Image matching, Fibonacci, and Matrix Multiplication, show that our combined heterogeneous skeletons and cost models can make good use of resources in heterogeneous systems. Moreover using cores together with a GPU in the same host can deliver good performance either on a single node or on multiple node architectures

    Automatic Optimization of Python Skeletal Parallel Programs

    Get PDF
    International audienceSkeletal parallelism is a model of parallelism where parallel constructs are provided to the programmer as usual patterns of parallel algorithms. High-level skeleton libraries often offer a global view of programs instead of the common Single Program Multiple Data view in parallel programming. A program is written as a sequential program but operates on parallel data structures. Most of the time, skeletons on a parallel data structure have counterparts on a sequential data structure. For example, the map function that applies a given function to all the elements of a sequential collection (e.g., a list) has a map skeleton counterpart that applies a sequential function to all the elements of a distributed collection. Two of the challenges a programmer faces when using a skeleton library that provides a wide variety of skeletons are: which are the skeletons to use, and how to compose them? These design decisions may have a large impact on the performance of the parallel programs. However, skeletons, especially when they do not mutate the data structure they operate on, but are rather implemented as pure functions , possess algebraic properties that allow to transform compositions of skeletons into more efficient compositions of skeletons. In this paper, we present such an automatic transformation framework for the Python skeleton library PySke and evaluate it on several example applications
    • …
    corecore