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Abstract

The Graphics Processing Unit (GPU) is gaining popularity as a co-processor to the
Central Processing Unit (CPU), due to its ability to surpass the latter’s performance in
certain application fields. Nonetheless, harnessing the GPU’s capabilities is a non-trivial
exercise that requires good knowledge of parallel programming. Thus, providing ways
to extract such computational power has become an emerging research topic.

In this context, there have been several proposals in the field of GPGPU (General-
purpose Computation on Graphics Processing Unit) development. However, most of
these still offer a low-level abstraction of the GPU computing model, forcing the devel-
oper to adapt application computations in accordance with the SPMD model, as well as
to orchestrate the low-level details of the execution. On the other hand, the higher-level
approaches have limitations that prevent the full exploitation of GPUs when the purpose
goes beyond the simple offloading of a kernel.

To this extent, our proposal builds on the recent trend of applying the notion of al-
gorithmic patterns (skeletons) to GPU computing. We propose Marrow, a high-level al-
gorithmic skeleton framework that expands the set of skeletons currently available in
this field. Marrow’s skeletons orchestrate the execution of OpenCL computations and
introduce optimizations that overlap communication and computation, thus conjoining
programming simplicity with performance gains in many application scenarios. Addi-
tionally, these skeletons can be combined (nested) to create more complex applications.

We evaluated the proposed constructs by confronting them against the comparable
skeleton libraries for GPGPU, as well as against hand-tuned OpenCL programs. The
results are favourable, indicating that Marrow’s skeletons are both flexible and efficient
in the context of GPU computing.

Keywords: Algorithmic Patterns (Skeletons), GPU Computing, OpenCL
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Resumo

A Unidade de Processamento Gráfico (GPU) tem vindo a ganhar popularidade como
co-processador à Unidade de Processamento Central (CPU), devido à sua capacidade
de ultrapassar o último em termos de desempenho em certas classes de aplicação. No
entanto, aproveitar as capacidades do GPU não é uma tarefa trivial, requerendo bons
conhecimentos de programação paralela. Assim, fornecer maneiras de extrair tal poder
computacional tornou-se um tópico de investigação imergente.

Neste contexto, tem surgido várias propostas na área do desenvolvimento GPGPU
(Computações de uso geral em Unidades de Processamento Gráfico). Contudo, mui-
tas destas ainda oferecem um abstração de baixo-nível ao modelo de computação GPU,
obrigando a que os programadores tenham que adaptar as computações das aplicações
de acordo com o modelo SPMD, bem como em orquestrar os detalhes de baixo-nível ine-
rentes à execução. Por outro lado, as aproximações de alto-nível possuem limitações que
impedem o aproveitamento dos GPUs quando não se pretende só executar um kernel.

Neste sentido, a nossa proposta baseia-se na recente prática de aplicar a noção de pa-
drões algorítmicos (skeletons) à computação GPU. Propomos Marrow, uma biblioteca de
padrões algorítmicos, que expande o conjunto de skeletons atualmente disponíveis neste
campo. Os skeletons da Marrow orquestram a execução de computações OpenCL e intro-
duzem optimizações que sobrepõe comunicação com computação, agrupando simplici-
dade de programação com aumento de desempenho em várias aplicações. Além disso,
estes skeletons podem ser combinados (nested) de forma a criar aplicações mais complexas.

Nós avaliámos as construções propostas comparando-as com bibliotecas para GPGPU
semelhantes, bem como com programas OpenCL base. Os resultados são favoráveis,
indicando que os skeletons da Marrow são flexíveis e eficientes no contexto GPGPU.

Palavras-chave: Padrões Algorítmicos (Skeletons), Computação GPU, OpenCL

xi



xii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Challenges of GPGPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 A High-Level Skeleton Framework for GPU Computing . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 State Of The Art 7
2.1 GPU Architecture Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 General Purpose Programming on GPUs . . . . . . . . . . . . . . . . . . . 10

2.2.1 Brook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Compute Unified Device Architecture . . . . . . . . . . . . . . . . . 11
2.2.3 Open Computing Language . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 High Level GPGPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Programming Language Support . . . . . . . . . . . . . . . . . . . . 22

2.4 Algorithmic Patterns and GPGPU . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Overview of Patterns for Parallel Computing . . . . . . . . . . . . . 29
2.4.2 Skeletons Libraries for GPGPU . . . . . . . . . . . . . . . . . . . . . 35

2.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 The Marrow Skeleton Library 43
3.1 Execution Model and API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Overlap Between Communication and Computation . . . . . . . . . . . . . 47
3.4 Nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Skeletons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.2 MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xiii



xiv CONTENTS

3.5.3 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.4 Loop and For . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6.1 Programming Model Structure . . . . . . . . . . . . . . . . . . . . . 55
3.6.2 Comparison between Marrow’s and OpenCL’s models . . . . . . . 56
3.6.3 Programming examples . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Architecture and Implementation 67
4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Execution Model Specificities . . . . . . . . . . . . . . . . . . . . . . 70
4.2.2 Nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.3 Skeleton Implementation . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Additional Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Evaluation 81
5.1 Comparison with OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.2 Programming Model Evaluation . . . . . . . . . . . . . . . . . . . . 90

5.2 Comparison with SkePU and SkelCL . . . . . . . . . . . . . . . . . . . . . . 90
5.2.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.2 Programming Model Evaluation . . . . . . . . . . . . . . . . . . . . 100

6 Conclusion 105
6.1 Objectives and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



List of Figures

2.1 The architecture of the NVIDIA Fermi. Edited from figures in [Cor09] . . . 9

2.2 Linear memory segments and threads in a half warp, taken from [NVI09] 10

2.3 Coalesced access in which all threads but one access the corresponding
work in a segment, taken from [NVI09] . . . . . . . . . . . . . . . . . . . . 10

2.4 CUDA’s software stack, taken from [NVI] . . . . . . . . . . . . . . . . . . . 12

2.5 CUDA’s memory management, taken from [NVI] . . . . . . . . . . . . . . 13

2.6 An OpenCL 2-dimensional index space, taken from [Mun+09] . . . . . . . 16

2.7 Pallas layered hierarchy of patterns, taken from [KMMS10] . . . . . . . . . 31

3.1 Marrow’s execution model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 An overlapped execution order . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 The Stream skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 The MapReduce skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 The Pipeline skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 The Loop skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 The Marrow software stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Execution times for a set of applications . . . . . . . . . . . . . . . . . . . . 79

5.1 Gaussian Noise Marrow Speedup Values . . . . . . . . . . . . . . . . . . . 86

5.2 Pipeline Marrow Speedup Values . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Segmentation Marrow Speedup values . . . . . . . . . . . . . . . . . . . . . 88

5.4 Hysteresis Marrow Speedup Values . . . . . . . . . . . . . . . . . . . . . . 89

5.5 N-Body Marrow Speedup values . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Productivity comparison between distinct application versions . . . . . . 92

5.7 Saxpy SkePU Speedup Values . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 Saxpy SkelCL Speedup Values . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.9 Array Multiplication SkePU Speedup Values . . . . . . . . . . . . . . . . . 97

5.10 Array Multiplication SkelCL Speedup Values . . . . . . . . . . . . . . . . . 98

xv



xvi LIST OF FIGURES

5.11 Gaussian Noise SkelCL Speedup Values . . . . . . . . . . . . . . . . . . . . 99
5.12 Solarise SkePU Speedup Values . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.13 Solarise SkelCL Speedup Values . . . . . . . . . . . . . . . . . . . . . . . . . 102



List of Tables

2.1 Comparative table of the algorithmic skeleton frameworks, taken from [GVL10] 33

3.1 Association between argument data-type and memory address space . . . 47
3.2 Execution pattern of OpenCL and the proposed skeletons . . . . . . . . . . 57

5.1 OpenCL versions execution times in milliseconds . . . . . . . . . . . . . . 84
5.2 SkePU/SkelCL versions execution times in milliseconds . . . . . . . . . . 94

xvii



xviii LIST OF TABLES



Listings

2.1 OpenCL code that multiplies two square matrices . . . . . . . . . . . . . . 18
2.2 The kernel function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 SkePU macros, taken from [EK10] . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 SkePU map reduce example, taken from [EK10] . . . . . . . . . . . . . . . 37
2.5 SkelCL computation of the dot product of two vectors, taken from [SKG11] 39
3.1 Initialization of a basic composition tree . . . . . . . . . . . . . . . . . . . . 57
3.2 Declaring a Loop state class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3 Initialization of a Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Initialization of a MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Nesting exemplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6 Execution example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7 Execution example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1 ISkeleton class member function definition . . . . . . . . . . . . . . . . . . 71
4.2 IExecutable class member function definition . . . . . . . . . . . . . . . . . 72

xix



xx LISTINGS



1
Introduction

1.1 Motivation

The future of computing befalls upon parallelism. As transistors continuously get smaller,
following Moore’s Law [Moo65], today’s microprocessor development is mainly concen-
trated on the addition of execution cores, rather than on the increase of single-thread
performance through higher clock speeds. Examples of this trend are the latest CPUs
released by Intel, codename Sandy Bridge, that feature up to six physical cores1.

Another form of parallel processor is the graphics processing unit (GPU) that, despite
starting off as a solution to a very domain specific problem (computer graphics), has been
maturing into a powerful general processing unit. Recent GPUs surpass even the CPU
in parallel performance and throughput in some particular classes of applications, not
necessarily related to graphics processing. Hence, the use of GPUs as co-processors to
the CPU is, more and more, a popular computation strategy, that even motivated other
approaches aimed at introducing heterogeneity in the CPU’s architecture. For instance,
the Accelerated Processing Units (APUs) are processors that have both GPU and CPU
cores on the same dye. An example of such an architecture is AMD’s Fusion [Bro10]
processor.

Nevertheless, the GPUs were not always viewed as general purpose co-processors.
In the late 1980s all the graphical computations were simple 2D vectorial operations,
with great performance concerns in terms of screen drawing speed. Originally, these
computations were performed by the CPU, with poor performance results, due to the
inadequacy of the latter’s architecture. This inefficiency dictated that the evolution of

1Information taken from http://ark.intel.com/products/codename/29900/Sandy-Bridge
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1. INTRODUCTION 1.1. Motivation

computer architectures was directed to a path of offloading demanding and domain spe-
cific computations to a dedicated processor, giving birth to the GPU. Towards the end of
the twentieth century, as 3D accelerated applications gained popularity, due to the gam-
ing market, new graphics APIs with 3D support were proposed (e.g., OpenGL [NDW97],
and DirectX [BD98]). With time, the popularity of these APIs caused a relocation of an
increasing number of calculation steps to the GPU.

Nowadays, the use of the GPU has crossed the boundaries of graphical computa-
tions. Scientific researchers embraced the GPU as an important support beam on which
they build complex scientific models that require TeraFlops of computational power, an
area commonly referred to as High-Performance Computing (HPC). Besides scientific
computations, today the GPU is gaining popularity as a possible way of improving the
performance of many general-purpose applications, that run in everyone’s computers
(e.g., databases [BS10], anti-virus [Kas09], so on and so forth).

GPU architecture differs a lot from the usual CPU design, as it is designed to take ad-
vantage of applications that fit well in the data-parallel computing model (expatiated
below), where throughput is more important than latency. However, early attempts
to harness the computational power of these processors for non-graphic applications
meant mapping them to a graphics API, and structuring them in terms of the graphics
pipeline. In most cases these tasks were not at all trivial, driving away most inexpe-
rienced programmers. Such attempts were recognised by Mark Harris in 2002, subse-
quently coining this trend as general-purpose computation on graphics processing units
(GPGPU) [Har05].

As the GPU evolved into the general-purpose fully programmable processors of to-
day, there was an emergence of some general-purpose programming languages that were
more programmer friendly, and allowed for a greater control over the execution of the
graphics pipeline. The first popular GPGPU language was NVIDIA’s CUDA [NVI]. Be-
cause of its C-like syntax, it introduced a smaller learning curve to those who wished
to create applications that executed on GPUs. This made CUDA very popular among
scientific researchers because it allowed the use of NVIDIA graphics cards for comput-
ing scientific models, thus, increasing their efficiency by removing limitations imposed
by computational power. However, CUDA is not an industrial standard, and its code is
not portable to architectures that are equipped with chips not manufactured by NVIDIA.
Later on, as the need for such a standard in GPGPU programming architectures grew,
Khronos (a consortium of corporations - whose members feature Intel, AMD, NVIDIA,
Google, and many others - bent on creating open standard APIs) saw fit to create the first
standard language for GPGPU development. The result was OpenCL [Mun+09], today’s
standard for GPGPU APIs. It provides a broad set of programming APIs based on past
successes. Moreover, it defines core functionality, supported by all platforms, as well as
optional functionalities for high-function devices.

The previous GPGPU languages provide a programming model that abstracts the
underlying platform model (GPU). They divide the computation in two categories: host,

2



1. INTRODUCTION 1.2. The Challenges of GPGPU

and device. The host computations, usually processed by a primary unit such as the CPU,
orchestrate and issue device executions. In turn, the device runs kernel functions, which
are the parallel computations executed by one or more compute units (e.g., CPU cores,
cores on a stream multiprocessor). This model will be further elaborated in Chapter 2.
As it stands, the execution models of these GPGPU APIs gives support to the following
parallel computing models:

• Data-parallel – Where concurrency is expressed as instructions from a single pro-
gram applied to multiple independent partitions of a data structure.

• Task-parallel – Where computations are expressed in terms of multiple concurrent
tasks that have independent instruction locksteps.

1.2 The Challenges of GPGPU

GPGPU APIs were a major development in GPU computing, giving developers a simpler
way to use the resources available in GPUs. Nevertheless, using the previously men-
tioned GPGPU APIs is still a challenging exercise, since not only does the parallel part
of the application needs to be structured according to the SMPD model (as described in
Section 2.1), but also, the developer has to oversee many low-level programming con-
cerns. The latter range from memory/resource management, to performing data trans-
fers between host and device memories, or even synchronizing the host execution with
the auxiliary computing device. On the other hand, if the developer decides to use a
non-standard API, such as CUDA, he or she should be aware of the lack of portability
attached to such an API. The acknowledgement of these limitations led to the proposal
of several high-level GPGPU APIs (e.g., Aparapi [AMD11], Accelerator [TPO06], Rapid-
Mind [McC06]), covered in Section 2.3.

Even though these high-level frameworks provide a good level of abstraction relative
to the underline platform model (GPUs), they only offer basic building blocks with which
to build parallel applications, remaining still significantly close to the underline comput-
ing model (parallel computing), and/or not being able to extract the full potential of the
architecture. For instance, although Accelerator’s execution model is highly oriented to-
wards arrays, it does not support more complex operations than simple element-wise
arithmetic combinations (e.g., addition, subtraction, division) of arrays. Even worse,
some platforms (e.g., Aparapi) do not even guarantee that the code created by the de-
veloper will in fact be executed on a GPU, since this execution is only supported if a
transformation from source code to OpenCL code is feasible. These and other particular
issues are discussed in more detail in Chapter 2.

It would be advantageous to software developers to have a framework that would
provide them with guidelines, that would steer the design process towards good design
models. At the same time, the framework would take care of any concerns native to paral-
lel programming (e.g., synchronization, communication), and still be able to harness the

3



1. INTRODUCTION 1.3. A High-Level Skeleton Framework for GPU Computing

full potential of the architecture. These ideas are some of the main purposes of the recent
approach that centres on the application of algorithmic patterns [Col91] (also known as
skeletons) to the context of GPGPU development. Skeletons are essentially abstractions
of commonly used parallel patterns, like the MapReduce or the master-worker skeletons
(as described in Subsection 2.4). They are provided as algorithmic skeleton frameworks
(ASkFs), that contain recurring structures, and behaviours, associated to parallel pro-
gramming.

To the best of our knowledge, only three platforms that support this type of abstrac-
tion on GPUs have been released, namely SkelCL [SKG11], SkePU [EK10], and
Muesli [EK12]. Nonetheless, this work is still very preliminary and does not go much
beyond supporting the MapReduce skeleton and some variants, leaving out skeletons like
Pipeline, and Loops. These types of skeletons have been successfully implemented in other
areas (e.g., clusters [CL07], multi-core CPUs [LP10]), and are useful in GPUs since they
aggregate multiple computational steps within a persistent memory utilization scheme,
not requiring memory transfers between steps. On the other hand, the mechanisms that
these libraries provide for the developer to adapt a skeleton’s execution are somewhat
limiting – in SkePU developers use a macro language, in SkelCL executions are defined
and issued as strings, and in Muesli developers are limited to pre-defined data types. In
the end of Section 2.4 we give more detail about these and other issues.

When using any of the previous skeleton platforms, developers have no control over
how the communication is overlapped with the computations. This obviously simplifies
application development, although, if the developer intends to increase general perfor-
mance by controlling this overlap, it is not possible. For example, a developer may intend
to create an application that applies the same execution successively to multiple different
data-sets. Given that, the decoupling of the CPU’s and GPU’s address spaces implies
memory transfers, the best executional strategy would be to concurrently send new in-
put data-sets to the device, as it computes upon an older data-set. This would enable
the GPU to begin processing the next input immediately after finishing its previous ex-
ecution, consequently reducing its idle time. However, this is not a particularly easy
technique to apply and only Muesli supports this kind of optimization, although is is
not parametrizable. On the other hand, none the previous platforms supports nesting of
GPU skeletons.

1.3 A High-Level Skeleton Framework for GPU Computing

Our proposal builds on the idea of applying the notion of skeletons to the context of
GPGPU development. We intend to solve some of the previously mentioned issues by
developing an ASkF that is mainly focussed on orchestrating the execution of OpenCL
kernels, and offers a varied set of data- and task-parallel skeletons. By not delving into
the domain of the parallel computations (kernels) we were able to propose a framework
that has a rich set of constructs, that can still support the major functionalities offered

4



1. INTRODUCTION 1.4. Contributions

by the OpenCL language. The set of proposed skeletons include some that are already
present in the context of CPUs and clusters (e.g., Pipeline), and others there are com-
pletely new to this context (e.g., Stream), as far as we know. Also, only in the interests
of completeness, our ASkF supports common GPU skeletons, like the MapReduce. We
were primary interested in skeletons whose execution behaviour was not hampered by
the logical, and physical, division between the host and device address spaces. Skeletons
whose execution is based on persistent data schemes are attractive to us because they do
not require data-transfers when combining distinct execution instances. In this way, they
avoid the overheads associated to transfers between disjunct memory spaces. For exam-
ple, consider a N -staged Pipeline. If executed on the GPU, the results of stage i, where
0 < i < N , do not have to be transferred back to main memory in order to be available to
the subsequent stage (i + 1). There are other examples of such skeletons. The entire set
supported by our ASkF is presented in Chapter 3.

We deemed as very important to allow the combination, or nesting, of skeletons as it
enables developers to build complex executional structures, possibly containing very dis-
tinct behaviours, in a very simply and efficient manner. This technique is also beneficial
in terms of performance, in that it is compatible with a disjoint memory scheme. An ap-
plication may apply a successive collection of computations, in the form of skeletons, to
an input data-set, and only carry out memory transfers when: writing the input to device
memory, and reading the results to main memory. Furthermore, the nesting mechanisms
helps the skeleton design to remain simple. A skeleton may only provide a very specific
behaviour, since more complex structures are created by nesting multiple skeletons.

We also sought to allow the developer to seamlessly introduce performance gains by
having the skeletons overlap communication and computation. By doing so, the skele-
tons can make better use of the parallelism qualities of modern GPUs, and increase over-
all productivity. Having the skeletons transparently apply this execution strategy obvi-
ously facilitates the developer’s job. He or she can develop efficient applications without
having a large degree of knowledge in both, parallel programming, and the OpenCL
language features.

In essence, our approach is to design and implement a high-level skeleton framework
for the orchestration of GPU computations that encompasses the above concerns: perfor-
mance (by overlapping communication with computation) and modularity (by support-
ing nesting of skeletons).

1.4 Contributions

The main contribution is C++ ASkF, named Marrow, for the orchestration of OpenCL
kernels, that introduces new skeleton constructs within that scope. Marrow is supported
by a OpenCL runtime, that provides a standard execution model across multiple het-
erogeneous parallel architectures, despite our main focus being in GPUs. Additionally,
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Marrow’s constructs can be nested, which to the best of our knowledge is a functional-
ity not supported by any GPGPU ASkF. The nesting enables the development of intricate
parallel applications without having to manually connect distinct computational models,
and implicitly avoiding heavy memory transfers. These resulting applications transpar-
ently use overlap between communication and computation as a way to increase overall
performance. Overlap reduces the overhead introduced by constant memory transfers
and gives a virtual sense of persistence to the computations. Moreover, it enables us to
exploit concurrency between computations and memory data transfers, increasing the
application’s parallel factor.

Another key contribution is fact that Marrow has an OpenCL based implementation.
This highly increases the portability of the code produced when using Marrow, consid-
ering that if the underlying platform supports OpenCL, then it is very likely that it fully
supports Marrow. Naturally, there are other portability concerns derived from the use
of the C++ language, namely using a compiler that fully supports C++11. However, this
issue does not significantly impair our library’s portability.

Yet another contribution is the comparative evaluation that we performed. We com-
pared Marrow in terms of performance and programming model productivity, against
OpenCL, SkePU, and SkelCL. We left out Muesli, since the latter enables GPU executions
through CUDA, consequently distancing itself from our direct research focus.

1.5 Document Structure

The remainder of this document is structured as follows:

Chapter 2 Presents the state of the art associated to our research area. Naturally, our
research area is associated to GPGPU technologies at different levels (e.g., low-level,
high-level, algorithmic patterns), so the most relevant technologies at each level are
described. Additionally, an overview about GPU architecture is given.

Chapter 3 Expatiates on the developed C++ ASkF, Marrow. The chapter discusses all
of Marrow’s core features and functionalities, namely: the supported skeletons,
nesting mechanism, overlap between communication and computation, and others.

Chapter 4 Presents Marrow’s architecture, as well as its most relevant implementation
details.

Chapter 5 Validates the developed library, by presenting and discussing experimental
results that evaluate Marrow’s performance and programming model against tech-
nologies of lower and higher abstraction level.

Chapter 6 Summarises key aspects about the work carried out in this dissertation. Partic-
ularly, it reflects on the achievement of the proposed objectives; on the contribution
of Marrow to the current state of the art on GPU computing; and discusses possible
future research topics, within Marrow’s context.
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2
State Of The Art

To better understand the GPU’s potential for general-purpose computing, and what kind
of attempts have been made to exploit its capabilities, this chapter presents a description
of the most relevant GPGPU technologies in general GPU computing, and particularly
in regards to our proposal. This chapter begins by providing a brief overview about
the evolution of GPU architecture (Section 2.1), based on [OHLGSP08]. Then, GPGPU
technologies are presented, from lowest (Section 2.2) to highest (Section 2.3) level. Sub-
sequently, an alternative to the common methodologies of high-level GPGPU platforms
is presented, in the form of computational patterns (Section 2.4). Lastly, our final consid-
erations about the current state of the art, in regards to GPGPU development, are given
in (Section 2.5). Should be noted that only the platforms that have a direct impact in our
work, either by development support or by intellectual contribution, are provided with
programming examples.

2.1 GPU Architecture Evolution

It all begins at the graphics pipeline, the basis for the GPU’s architecture. It is where the
input, a list of geometric primitives, is shaded and mapped onto the screen. The steps in
the canonical pipeline are:

1. Vertex Operations – Each vertex from the input primitives is transformed from a 3D
position into a 2D screen coordinate (referred to as the shading process). Since vertices
can be computed independently, this stage is well suited for parallel hardware.

2. Primitive Assembly – The vertices are assembled into triangles, that is the funda-
mental primitive in current GPU architectures.
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3. Rasterization – This is the process of determining which screen-space pixel loca-
tions are covered by each triangle. Every triangle generates a primitive called a
fragment at each screen-space pixel location that it covers.

4. Fragment Operations – Determines the final color of each fragment by using the
color information from the vertices and/or textures. Even though the elements in
this step can be computed in parallel, this is typically the most computationally
demanding stage in the graphics pipeline.

5. Composition – Finally, fragments are assembled into a final image, with one color
per pixel.

First GPUs were composed of highly specialized function units, however, as they be-
came faster in rendering basic computer graphics, demand for more sophisticated tech-
niques grew. Most functionalities, supported by these early GPUs, were fixed functions.
That is to say, if a new technique was developed and was not supported by the graph-
ics API, the hardware had to be directly modified so that the API could be extended to
support such functionality. There was not much room for the API to grow on top of the
hardware because the latter had very specific and limiting functionalities, which greatly
limit the possibilities of software developers.

The overcoming of these limitations required a major architectural switch of GPUs.
Highly specialized function units were replaced by smaller and simpler processors, trans-
forming the GPU’s architecture into a SIMD architecture. A SIMD (Single Instruction
Multiple Data) architecture is composed of multiple processing elements capable of exe-
cuting the same operation on multiple data streams simultaneously, as defined by Flynn
in [Fly72]. The GPU’s hardware was composed of large amounts of processors for vertex
and pixel specific calculations, increasing the flexibility of the hardware and providing
the vendors with a scalable architecture.

Further refinements were made to the architecture over the years, like the unification
of the vertex and pixels specialized processors into a single less specialized type with
only one instruction set, capable of handling all the previous tasks. This increased the
complexity of the processors, but also made them more flexible. That refinement is to-
day denominated as the Unified Shader Model 4.0 [Bly06]. Also, modern GPUs provide
a SPMD (Single Program Multiple Data) computing model where multiple processing
elements execute the same program, having a synchronization lockstep at program level
instead of at instruction level, as happens in a SIMD model. This means that the execu-
tion path between processing elements may differ.

Modern GPUs feature a big parallel pipeline with a high data throughput, also hav-
ing programmable components as opposed to the original fixed function components. A
good example of a unified and massively parallel programmable unit is the architecture
of the NVIDIA Fermi, depicted in Figure 2.1. It features sixteen stream multiprocessors
of thirty-two cores each, summing up to five-hundred and twelve processing cores. Each
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Figure 2.1: The architecture of the NVIDIA Fermi. Edited from figures in [Cor09]

stream multiprocessor has its own 64 KB L1 cache, shared by its thread processors, as
well as a 16 KB register file. There is also a L2 cache that is shared by the stream multi-
processors.

Fully utilizing the potential of the modern GPU architecture is complex endeavour.
The differences from the usual parallel programming methodology (CPU) are such, that
there is a high probability of creating an inefficient GPU program, if the developer does
not pay close attention to specifications of the underlying hardware. Considering only
NVIDIA GPUs, and their terminology, one such difference is the fact that the small-
est executable unit of parallelism on a device, a warp, comprises 32 threads. Stating
that every modern NVIDIA GPU can support a minimum of 768 threads per multipro-
cessor [NVI09], a device that has 30 multiprocessors can have more than 30000 active
threads. This parallel capability can be easily wasted if the number of threads is not
sufficient to fill every available multiprocessor. Thus, executing a very small number of
threads may present more overheads than actual performance benefits.

Typically, hundreds of threads are queued up for work (in warps). These GPU threads
are extremely lightweight, in contrast with CPU threads. If a processor must wait on one
warp of threads, it simply begins executing work on another. Because register are allo-
cated to active threads, no swapping of registers and state occurs between GPU threads,
and resources stay allocated to a thread until it completes its executions. This efficient
warp swapping is usually beneficial, although very sensitive to the memory access pat-
terns of threads. If the accesses to principal GPU memory (global memory) by threads
within a warp are not coalesced, then general performance will be significantly reduced.

GPU global memory loads/stores by threads of a half warp (16 threads) are coalesced
by the device in as few as one transaction, when certain access requirements are met. To
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Figure 2.2: Linear memory segments and threads in a half warp, taken from [NVI09]

Figure 2.3: Coalesced access in which all threads but one access the corresponding work
in a segment, taken from [NVI09]

understand these memory access recommendations, global memory should be viewed in
terms of aligned segments of 16 and 32 words, as in Figure 2.2. It shows global memory
as of 64-byte aligned segments. Two rows of the same color depict a 128-byte aligned
segment. At the bottom of the figure is indicated a half warp of threads that accesses the
global memory.

A simple coalesced access pattern is represented in Figure 2.3. The k-th thread ac-
cesses the k-th word in a segment, though it is not necessary that every thread partici-
pates. This access pattern results in a single 64-byte transaction (highlighted by the red
rectangle). Even the unnecessary word is fetched from global memory. If just one of these
threads, for example the one that did not participate, accessed a data value that was not
stored in the first 16 words, then the half warp would required two full transactions be-
fore beginning its execution. Logically, increasing the number of transactions reduces
performance, since the warps are left waiting rather then executing.

2.2 General Purpose Programming on GPUs

As the computational power of GPUs (and CPUs) grew it was noticed that for certain do-
mains of computation, like data-parallel oriented applications, the use of GPUs outper-
formed even the most extremely optimized CPU versions of the algorithms. This reality
fostered the proposal of new APIs, which were not exclusively for graphics program-
ming: Instead, they allowed the development of more general-purpose applications. The
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most relevant GPGPU APIs are subsequently presented.

2.2.1 Brook

Brook [BFHSFHH04] is a language that was designed to provide programmers with na-
tive support for data-parallelism, while still being efficient enough to allow the devel-
opment of arithmetic intensive applications. Furthermore, it had portability concerns,
enabling programs to run in various heterogeneous architectures. To accomplish these
goals Brook provides various features, of whom the most important are: Streams, Ker-
nels and Reductions.

Streams are the basic building blocks of Brook. They define a collection of data which
can be operated in parallel. Each stream is composed of elements, whose domain falls in
the primitive types provided by the language, such as floats. A similarity can be traced
between streams and C arrays, although, access to a stream is restricted to a kernel.

Kernels are functions which are applied to every element of a stream. In order to
obtain a data-parallel application of the kernels to the streams, programmers are forced
to distinguish between the input data of a kernel, used as read-only, and the respective
output data, used as read-write.

Reductions are the inverse of a kernel, that is, they provide a mechanism for calcu-
lating a single value from a collection of records. Reductions accept a single stream and
output either a smaller stream of the same type, or a single element value. An exam-
ple of reduction is summing all the integer elements of a stream. Reductions are still
data-parallel.

Brook was the first effective approach to GPGPU development. However, due to the
release of other GPGPU APIs, namely CUDA, it was never really adopted in the industry,
being remitted as a case study for research activities.

2.2.2 Compute Unified Device Architecture

Compute Unified Device Architecture (CUDA) [NVI] was created by NVIDIA and re-
leased in 2007. It is a hardware and software architecture for issuing and managing
data-parallel oriented computations on the GPU, without the need of mapping them to a
graphics API.

Architecture overview

The CUDA software stack is composed of three layers, as shown in Figure 2.4. An im-
portant aspect of CUDA is that it provides general memory addressing, that is, from a
programming perspective the application can read and write data at any memory ad-
dress, equivalent to a CPU and system RAM.
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Figure 2.4: CUDA’s software stack, taken
from [NVI]

1. Two high-level mathematical li-
braries – CUFFT and CUBLAS.

2. API and its runtime – The API com-
prises an extension to the C program-
ming language.

3. Hardware driver – Being designed by
NVIDIA, CUDA relies on hardware
specific drivers, created for their own
graphics cards.

Programming Model

In CUDA, the GPU is viewed as a data-parallel co-processor, capable of executing a huge
number of threads in parallel. To get the desired effect, a function that operates on each
of the data independent partitions is compiled to the instruction set of the device. At
runtime the resulting program, a kernel, is downloaded to the device and mapped onto
one or more threads. Both the host (CPU) and the device (GPU) maintain their own
memory, allowing the programmer to issue data transfers between them as needed.

To organize the different threads running the same kernel in the device, CUDA joins
together batches of threads, as thread blocks, allowing them to cooperate and synchro-
nize by sharing data through fast shared memory. Each thread is assigned a thread iden-
tifier, which is the thread’s number within its block.

There is a limited maximum number of threads that a block can contain. Neverthe-
less, blocks of equal dimensionality and size that execute the same kernel can be grouped
together into what is known as a grid of blocks. This is done at the expense of thread
cooperation, because threads in different blocks inside a grid cannot communicate or
synchronize. Yet, this mechanism allows devices to run all the blocks of a grid sequen-
tially, in parallel, or even a combination of both, boasting the parallel factor of the device.
The block’s identifier is its number within the grid.

CUDA’s memory management coordinates the memory access per-thread, per-block
and per-grid, dividing the memory between grids, and structuring the memory spaces
as illustrated in Figure 2.5. In this memory coordination scheme, the host has full access
to the global, constant, and texture memories.
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Figure 2.5: CUDA’s memory management,
taken from [NVI]

• Registers – Read-write per-threads.

• Local memory – Read-write per-
threads.

• Shared memory – Read-write per-
block.

• Global memory – Read-write per-
grid.

• Constant memory – Read-only per-
grid.

• Texture memory – Read-only per-
grid.

2.2.3 Open Computing Language

As the GPUs evolved into programmable parallel processors, it became important to pro-
vide software developers the means to easily use these powerful processing platforms.
Furthermore, the need for software developers to take full advantage of heterogeneous
processing platforms (e.g., servers, desktop computers, hand-held devices) has grown.

This lead to the proposal of some platforms on which software developers could build
applications that used both CPUs and GPUs as main computational devices, giving de-
velopers a simple yet efficient way to control and use them. However, these platforms
were usually associated to a specific vendor or hardware and were not standard from an
industry perspective. As a result, they hampered the development of applications that
harnessed the computational power of these processors, from a single or multi-platform
source code base.

With these prospects in mind, a consortium of corporations, known as Khronos, joined
efforts to create an industrial open standard language for general-purpose parallel pro-
gramming, across multiple hardware platforms. The result is a language known as
OpenCL [Mun+09].

“OpenCL (Open Computing Language) is an open royalty-free standard
for general purpose parallel programming across CPUs, GPUs and other pro-
cessors, giving software developers portable and efficient access to the power
of these heterogeneous processing platforms.” [Mun+09]

Being launched in 2008, it supports a wide range of applications, from consumer soft-
ware, to HPC solutions. It is particularly suited to play a key role in emerging interactive
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graphics applications that combine graphics rendering pipelines with general parallel
compute algorithms.

Structurally, OpenCL is a cross-platform programming language, featuring an API
that enables the coordination of parallel computations across multiple heterogeneous
processing devices. However, it is more than just a language. It is a framework on which
software developers can build general-purpose programs that execute on GPUs without
the need to map their algorithms into a 3D graphics API such as OpenGL [NDW97] or
DirectX [BD98]. Its architectural details will be subsequently outlined.

Platform Model

OpenCL’s platform model if fairly straightforward. Nevertheless, first we must define a
common terminology that is going to be used throughout the rest of the thesis.

• Host – Formally, the host is the entity that uses the OpenCL API. Usually, it is a
processing unit such as a CPU.

• OpenCL device – An OpenCL device is a collection of compute units, that execute
commands issued by the host. Typically, these devices correspond to GPUs, multi-
core CPUs, or other forms of parallel architectures.

• Compute Units – A compute unit is composed of one or more processing elements.
In most modern GPUs, for example, a correspondence to a compute unit is a stream
multiprocessor, composed of a very large number of small processing units.

• Processing Elements – It is a virtual scalar processor. It is the basic computational
structure, on which the commands issued by the host are computed. For example,
it is and ALU (arithmetic logic unit) inside a stream multiprocessor, in a GPU.

OpenCL’s platform model consists of a host connected to one or more OpenCL de-
vices, which in turn are divided into one or more compute units. These compute units
are further divided into one or more processing elements.

An OpenCL application runs on a host according to its platform model. The applica-
tion submits commands from the host to the device, prompting the execution of compu-
tations on the processing elements. On the other hand, these processing elements execute
a single stream of instructions as SIMD units.

Execution Model

Firstly we must expand the terminology defined previously.

• Context – The environment within which the kernels execute. It includes, for ex-
ample, a set of devices, the memory objects accessible to those devices, and one or
more command-queues associated each device.
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• Command-queue – An object that holds commands that will be executed on a spe-
cific device, of a particular context. Commands to a command-queue are queued
in-order but may be executed in-order or out-of-order.

• Kernel – A kernel is a function declared in an OpenCL program. It is executed by
an OpenCL device.

• Work-item – It is an instance of a kernel, executed by one or more processing ele-
ments.

• Work-group – It is a collection of work-items that execute concurrently on the pro-
cessing elements of a single compute unit. All the work-items inside a work-group
execute the same kernel and share local memory.

• Program Objects – The program source and executable that implements a specific
kernel.

• Memory Objects – A set of objects visible to both the host and the OpenCL devices.

The execution of an OpenCL program is divided into two parts: kernels that execute
on OpenCL devices, and host program that executes on the host. This model is very close
to CUDA’s execution model, differing mostly in the terminology - CUDA has threads
instead of work-items, and thread blocks instead of work-groups.

When the host submits a kernel for the device to execute an index space is defined.
This index space is called NDRange and it is a N -dimensional index space, where N is
either one, two, or three. It is defined by an integer array of length N , that specifies the
length of each dimension. Each point of this index space is called a work-item, and each
work-item is assigned a global identifier that constitutes a N -dimensional tuple, whose
components range from zero to the number of elements in that dimension minus one,
that corresponds to its position within the index.

In order to provide a more coarse-grained decomposition of the index space, work-
items are joined together to form work-groups. To define the number of work-groups
in each dimension, an array of length N is created. Each work-group is then assigned
a unique global identifier with the same dimensionality as the work-items index space.
Additionally, work-items are assigned a local identifier in order to uniquely identify them
within a work-group. Again, we have similarities to CUDA’s execution model since a
NDRange index space is analogous to a grid of thread blocks.

To exemplify the manner in which a work-item can be identified within the index,
lets consider Figure 2.6. The host inputs the index space for the work-items (Gx, Gy) and
the number of work-items per work-group (Sx, Sy), in each dimensions. This defines a
global Gx by Gy index space where the number of work-items is Gx × Gy, and a work-
group Sx by Sy local index space where the number of work-items per work-group can
be given by Sx×Sy. Hence, the number of work-groups can be given by (Gx/Sx)×(Gy/Sy).
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A work-item global identifier (gx, gy) is obtained directly form its position within
the index space, or by combining its local identifier (sx, sy) and work-group identifier
(wx, yy) as: (gx, gy) = (wx × Sx + sx, wy × Sy + sy)

Figure 2.6: An OpenCL 2-dimensional index space, taken from [Mun+09]

The OpenCL execution model explicitly supports both data-parallel and task parallel
programming models. To do so, a host program must define a context for the execution
of the kernel and its resources (e.g., devices, command-queues, kernels, program objects,
memory objects). This context is manipulated by the host through the use of functions
from the OpenCL API. The host then places commands into a data structure called a
command-queue, which are then scheduled onto the respective device.

Memory Model

In OpenCL’s architecture the memory is divided into four distinct regions:

• Global Memory – This memory region allows read/write access to all the work-
items in the index space, as well as to the host.

• Constant Memory – This region allows read/write access to the host, but only read
access to the work-items.

• Local Memory – A memory region local to work-group, therefore it can be used to
allocate memory objects shared by all the work-items of that specific group. The
host has no access to it.

• Private Memory – A region of memory private to a work-item. Logically, variables
stored in one work-item’s private memory are not visible to another work-item.
The host has no access to it.
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This memory scheme is parallel to CUDA’s, except in the absence of texture memory.
The host’s memory is usually independent from the OpenCL device’s memory, however,
they often need to interact. This interaction occurs either by direct copy between mem-
ories, or by mapping and unmapping regions of a memory object. To map objects to
the device, the host’s program uses the OpenCL API to create memory objects in global
memory, and also to enqueue memory commands in order to operate on these objects.
In similar fashion, to copy data explicitly the host enqueues commands to transfer data
between memories.

When it comes to memory consistency, OpenCL uses a relaxed consistency model.
So, the state of memory visible to a work-item may not be consistent across a collection
of work-items at a given point. Only private memory has load/store consistency, the
local memory is only consistent across work-items in a single work-group at a work-
group barrier (a barrier is a standard synchronization mechanism in parallel computing).
This is also valid for global memory, but there are no guarantees of memory consistency
between work-items in different work-groups.

Programming Model

To better understand the fundamentals of the OpenCL language, a simple OpenCL pro-
gram, that illustrates its basic functionalities and properties, is depicted in Listing 2.1.
This example presents a program that multiplies two square matrices, A and B, and stores
the results in matrix C. Nonetheless, to simplify this exemplification, the code only con-
templates the essential parts related to OpenCL. Therefore, all the error checks, possible
optimizations, and auxiliary functions are left out.

Before the kernel is executed by the OpenCL device some aspects relative to the ex-
ecution environment must be configured, by following some common steps. First the
devices that are able to run the kernel must be obtained (line 19). The type of the desired
device can be selected, provided it exists in the given platform. A context must be created
and associated with the devices obtained previously (line 21). It is possible to choose and
use more than one device, although, in this example only one is used. Nonetheless, the
need to submit orders to the device still remains. This can be accomplished by creating a
command-queue, associated to the device and the context (line 22).

Now that the configuration of the platform is complete, the memory objects that the
kernel can access must be initialized, along with their respective access permissions (lines
23 to 28). In this example, the memory objects are initialized and, at the same time, filled
with the values from the matrices A and B.

Subsequently, the kernel function source (Listing 2.2) must be read, compiled, and
used to create a kernel object (lines 29 to 31). There are several ways to obtain the source,
so the procedure used in this example is not important. Now that kernel has been created
it must bet pointed to needed arguments, for example the matrices (lines 33 to 37).

A NDRange index space is defined in order for OpenCL to map the kernel onto the
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work-items. This initialization requires the number of dimensions, of work-items per
dimension, and optionally, of work-items per work-group (line 38). Then, the OpenCL
device is ordered to run the kernel (line 39).

Lastly, the results are read, and the resources are freed (lines 42 to 50). Note that this
example is not at all optimized, since our focus in this description is readability and ease
of understanding.

Listing 2.1: OpenCL code that multiplies two square matrices
1 int main(int argc, char** argv) {

2 int matrix_width = atoi(argv[1]);

3 int matrix_size = matrix_width*matrix_width;

4 int mem_size = sizeof(int)*matrix_size;

5 int *A = (int*) malloc(mem_size);

6 int *B = (int*) malloc(mem_size);

7 int *C = (int*) malloc(mem_size);

8 randomInit(A, matrix_size); randomInit(B, matrix_size);

9 cl_platform_id platform_id;

10 cl_device_id device_id;

11 cl_context clContext;

12 cl_command_queue clCommandQueue;

13 cl_program clProgram;

14 cl_kernel clKernel;

15 cl_int errcode;

16 cl_mem cl_A, cl_B, cl_C;

17 clGetPlatformIDs(1, &platform_id, NULL);

18 int is_gpu = atoi(argv[2]);

19 errcode = clGetDeviceIDs(platform_id, is_gpu ? CL_DEVICE_TYPE_GPU :

20 CL_DEVICE_TYPE_CPU, 1, &device_id, NULL);

21 clContext = clCreateContext(0, 1, &device_id, NULL, NULL, &errcode);

22 clCommandQueue = clCreateCommandQueue(clContext, device_id, 0, &errcode);

23 cl_C = clCreateBuffer(clContext, CL_MEM_READ_WRITE, mem_size,

24 NULL, &errcode);

25 cl_A = clCreateBuffer(clContext, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,

26 mem_size, A, &errcode);

27 cl_B = clCreateBuffer(clContext, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,

28 mem_size, B, &errcode);

29 clProgram = getKernelSource(argv[3],clContext);

30 errcode = clBuildProgram(clProgram, 0, NULL, NULL, NULL, NULL);

31 clKernel = clCreateKernel(clProgram,"matrixMul", &errcode);

32 int cl_matrix_width = matrix_width;

33 errcode = clSetKernelArg(clKernel, 0, sizeof(cl_mem), (void *)&cl_C);

34 errcode |= clSetKernelArg(clKernel, 1, sizeof(cl_mem), (void *)&cl_A);

35 errcode |= clSetKernelArg(clKernel, 2, sizeof(cl_mem), (void *)&cl_B);

36 errcode |= clSetKernelArg(clKernel, 3, sizeof(int),

37 (void *)&cl_matrix_width);

38 size_t globalWorkSize[2] = {matrix_width,matrix_width};

39 errcode = clEnqueueNDRangeKernel(clCommandQueue, clKernel, 2,

40 NULL, globalWorkSize, NULL, 0, NULL, NULL);

41 clFinish(clCommandQueue);
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42 errcode = clEnqueueReadBuffer(clCommandQueue, cl_C, CL_TRUE, 0,

43 mem_size, C, 0, NULL, NULL);

44 free(A);free(B);free(C);

45 clReleaseMemObject(cl_A); clReleaseMemObject(cl_B);

46 clReleaseMemObject(cl_C);

47 clReleaseContext(clContext);

48 clReleaseKernel(clKernel);

49 clReleaseProgram(clProgram);

50 clReleaseCommandQueue(clCommandQueue);

51 return 0;

52 }

Listing 2.2: The kernel function
1 __kernel void matrixMul(

2 __global int* C,__global int* A,__global int* B, int width){

3 int px = get_global_id(0);//x-dimension

4 int py = get_global_id(1);//y-dimension

5 int value = 0;

6 for (int i = 0; i < width; i++) {

7 int elementA = A[py * width + i];

8 int elementB = B[i * width + px];

9 value += elementA * elementB;

10 }

11 C[py * width + px] = value;

12 }

OpenCL features two domains of synchronization, not used in the example: work-
items in a single work-group, and commands enqueued to command-queue(s) in a single
context. Synchronization between work-items of a single work-group is done by using a
work-group barrier. Every work-item, in a work-group, must execute the barrier before
any are allowed to continue subsequent computations. Still, there is no mechanism for
synchronization between work-groups.

In regard to command queues there are two synchronization points: command-queue
barriers, and events. The first ensures that all previously queued commands have been
completed and any resulting memory updates are visible to subsequent commands. The
latter, are returned by every API function that enqueues commands. A next command
waiting on that event certainly views consistent memory objects.

2.3 High Level GPGPU

GPGPU APIs, like OpenCL and CUDA, are popular among software developers that in-
tend to make use of the GPU’s parallel computing qualities. Regardless, these APIs do
not provide a good abstraction from the underlying execution model since, for instance,
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they require an explicit management and interconnection of both host and device memo-
ries by the programmer, as well as other low-level responsibilities. It comes without sur-
prise that efforts were made towards equipping software developers with higher-level
GPGPU development tools, mostly driven towards an object-oriented paradigm. These
tools provides an additional abstraction layer to the underline platform, letting develop-
ers focus on the data-parallel structures and operations, rather than on how to translate
the computations to a lower level syntax.

Subsequently are presented the high-level GPGPU platforms and APIs most relevant
to our work.

2.3.1 Libraries

RapidMind

RapidMind [McC06] was a C++ platform, inspired in SH [MQP02], for expressing data-
parallel computations on GPUs. It was released in 2006, being the real first high-level
GPGPU API.

It provided three main C++ types: Value<N ,T>, Array<D,T> and Program. All the
three types are containers: the first two for data and the last for operations. Parallel
computations are invoked by applying either programs or parallel collective operations
(reductions) to arrays, which generate new arrays or scalar values, respectively.

The Value<N ,T> type is a N -tuple, holding N values of type T . T can be a basic
numerical type (e.g., single/double-precision floating point, signed/unsigned integers).

The Array<D,T> type is a data container like Value<N ,T>, although, it is multidimen-
sional and variable in size. Thus, D is the dimensionality (can take the value of one, two
or three), and the type T gives the type of the element, similarly to T of Value<N ,T>.

Lastly, the Program type stores a sequence of operations on specific structures. Its dec-
laration starts by the BEGIN macro and ends with the END macro, encapsulating variable
declaration, and operations. The variables declared inside a Program are declared either
as input or output parameters, using the IN<T> and OUT<T> template wrappers.

RapidMind was acquired by Intel in 2009, being used in the development of the Intel
ArBB platform [NSLMGTWDCW+11]. At the time of writing of this document, Intel’s
ArBB did not support GPU executions, however, according to Intel, efforts were being
made in that direction.

Aparapi

Aparapi [AMD11] is AMD’s solution for high-level GPGPU. It was presented in June
2011, as an API for expressing data-parallel workloads in Java, that may execute either
on OpenCL or on the Java Thread Pool. The developer creates an application where the
data-parallel executions are implemented inside an extension of a Kernel base class. Upon
the invocation of the Kernel’s execute method the runtime decides on which platform
should the the operations be executed.
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If its the first execution of the kernel, Aparapi tries to convert the Java Bytecode of
the kernel function into OpenCL. If the platform supports OpenCL, and the Bytecode is
convertible, the conversion is carried out and the kernel executes on an OpenCL device.
Otherwise, the kernel executes on a Java Thread Pool. This conversion is only done once,
since the consequent executions will skip this process and go immediately to execution
on the available back-end, either OpenCL or Java Thread Pool depending on the previous
conclusions.

The Aparapi source code is part of an open source project and it is currently only
capable of executing kernels on recent AMD GPUs. Therefore is is still bound to a specific
set of hardware devices.

Accelerator and PeakStream

Accelerator [TPO06] is a C++ library with a managed API wrapper, created by Microsoft
and currently in its second version, for implementing array-processing operations on
multi-threaded systems, such as multi-core processors or GPUs.

It features a parallel array (PA) namespace that offers various API functions, that
carry out operations (e.g., subtractions, divisions) in, and in between, arrays in parallel.
These parallel executions are transparent to the programmer, and carried out on a CPU
or a GPU. Nonetheless, the types of the arrays received as argument in the API functions
have to be associated to the Accelerator runtime (e.g., IntParallelArray, FloatParallelArray).

To select the hardware on which the operations are executed, an appropriate target
must first be created. For example, a DirectX 9 or a multi-core target. From this point on,
array operations can be submitted for evaluation. These are performed in the declared
order, and execute on the respective target.

In order to execute on a GPU, Accelerator automatically translates the structures and
operations issued by the programmer into GPU machine code, by using the DirectX 9
API. Hence, GPUs that do not support the DirectX 9 API are unable to execute Accelerator
workloads.

On the other hand, if the developer issues a multi-core target, Accelerator takes care
of thread creation and synchronization. The number of threads is automatically deter-
mined, depending on the available CPUs and workload size. One limitation is that only
CPUs that have an 64 bit instruction set are compatible to Accelerator.

PeakStream [Pap07] is somewhat similar to the Accelerator platform, as it also pro-
vided a C++ array-oriented data-parallelism abstraction. It uses C++ operator overload-
ing, instead of API functions, in order to execute operations between arrays. It was
bought by Google in 2007, and is currently only for internal usage.
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Critical Analysis

The semantics gap between these high-level APIs and the underlying GPU programming
model is considerable. Thus, they offer a decent abstraction when developing applica-
tions that are to be computed, either totally or partially, on the GPU. However, these
platforms are not free of issues. In fact, they have a varied set of limitations, in regards
to distinct concepts. These include, portability concerns, an over simplified execution
model, and others problems.

Aparapi’s approach has the advantage of providing a high degree of abstraction, al-
though the developer is oblivious of the code’s sustainability for GPU execution until it is
just-in-time compiled to OpenCL, at runtime. Its programming model does not provide
the same capabilities of OpenCL’s, since programmers are reduced to using unidimen-
sional arrays in kernel executions, besides normal singleton values (e.g., integers, floats).
In addition, at the time of writing, it only supported GPU executions in AMD chips, anal-
ogously to CUDA. Therefore, this is a convenient tool to leverage from the existence of a
GPU, when the required conditions are met, but not for actual GPGPU development.

More often than not, the scope of the application context is narrowed to a set of op-
erations known to be supported by the target programming model. For instance, Accel-
erator, is a good tool for applying a sequence of element-wise arithmetic operations to
a set of arrays, but is not powerful enough for general-purpose computing. On top of
that, it has problems related to portability, specifically, it may only execute on GPUs that
support, at minimum, DirectX 9.

2.3.2 Programming Language Support

GPGPU Programming Languages

Lime is a Java-compatible language, proposed in 2012, that exports a high-level GPU
programming model. It provides a high-level object-oriented paradigm, that offers task,
data, and pipeline parallelism. It extends Java with several constructs designed for pro-
gramming heterogeneous architectures with GPU accelerators.

Lime represents the main computation as a task graph data structure, in which values
flow between tasks over edges in the graph. To compose a task graph, the programmer
uses Lime-specific operators, such as the task operator, or the => (connect) operator. The
former creates a computational unit equivalent to a OpenCL kernel, while the latter rep-
resents the flow of data between tasks. Another operator is the finish, that initiates the
computations and forces completion.

A Lime task repeatedly applies a worker method, as long as the input data is presented
to the task through an input port, and enqueues its output (the result of a method appli-
cation) to an output stream. These methods are task agnostic, i.e. they may be invoked as
conventional static or instance methods, only becoming worker methods by applying the
task operator. Moreover, tasks are either isolated or non-isolated. An isolated task (a filter)
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has its own address space and may not access mutable global state. Consequently, the
worker method of an isolated task inputs immutable (value types) arguments, and must
return values.

A value type, represents a deeply immutable object (e.g., array, or a data structure)
declared using the value modifier on a type. As a result, a float bi-dimensional value
array (matrix) would be declared as float[ [] [N ]], where N > 0. This would instantiate a
matrix in which the outer dimension is unbounded, and the inner dimension is bounded
to size N .

The => operator is used to connect two tasks, when the output type of the upstream
task matches the input type of the downstream task. This is explicitly exposed in or-
der to enable the compiler, and runtime, to automatically optimize the I/O, as well as
synchronization, between tasks.

Lime offers a map and reduce model for fine-grained data parallelism. The map opera-
tor is represented by the @ token. It applies a worker function to each element of a value
type, and returns the respective output (depending on the input value type). In its turn,
the reduction is expressed using an operator, or method, followed by !. This indicates to
the compiler that the method should be treated as a combinator. Lime permits instance
or static methods to serve as reduction operators, as long as they apply the computations
to two arguments of the same type, and consequently produce a result of that type.

The Lime compiler performs several optimizations to the applications, such as in re-
gards to kernels, or even to data memory placement. However, it does not optimize how
the communication is overlapped with the computation.

X10 [CGSDKEPSS05] is an instantiation of the APGAS [SABCCGKPT10] program-
ming model on top of a base sequential language, with Java-style productivity. X10 was
developed by IBM in the last few years. The design of the APGAS model was aimed at
programming for clusters of multi-core nodes. X10’s instantiation of the previous model,
according to IBM, can be used to write efficient code for some heterogeneous parallel ar-
chitectures (e.g., multi-cores, SMPs, Cell-accelerated nodes). To achieve GPU execution
X10 has to support GPU programming idioms such as threads, blocks, barriers, constant
memory, etc [CBS11]. Is accomplishes these challenges with an extension to the X10-to-
C++ compiler, that recognizes such idioms and generates CUDA kernel code.

Before we can understand the mechanisms by which X10 allows the development of
GPU executable code we must introduce some key concepts of the APGAS model. Firstly,
APGAS is organized into four simple and independent concepts: locality, asynchrony,
conditional atomicity and order.

• Places – A place is an computational entity on which executions take place (e.g.,
x86 core, SMP, GPU). Places can be joined together and are reified, i.e. can be stored
in variables, passed into functions, etc. In this model, a unit of serial execution
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(thread) can be denominated as an activity, and an activity is only located in a spe-
cific place for its lifetime. Given a place p the statement at(p) S can be used to
request the execution of S at place p.

• Asynchrony – An activity may utilize the statement async S to launch a new activ-
ity to execute S. S may reference variables in the surrounding lexical environment.

• Conditional Atomicity – An activity may use the statement when (c) S, where c is
a boolean valued expression. The execution of this statement in a state s terminates
in a single step, and yields the state s′ if and only if the condition c is true in s, and
that the execution of S in s yields s′.

• Order – The statement finish S imposes partial order on the state changes provoked
by individual activities. After S is executed it waits for all activities spawned dur-
ing the execution of S to terminate. Thus, ensuring that subsequent activities see
the effect of the state changes that resulted from the execution of finish.

The async, finish and at statements can be nested arbitrarily, providing an increased
flexibility to the APGAS model.

Using APGAS’ constructs a programmer is able to create applications that use one or
more GPUs as their execution platform. Though APGAS offers a higher abstraction of the
GPU programming model than low-level GPGPU APIs, its execution model is not unlike
CUDA’s or OpenCL’s. Since X10 compiles CUDA code, we will use CUDA’s terminology
for the rest of the description. In that sense, it is natural that APGAS’ constructs are orga-
nized in such way that clearly separates memory domains. For example, global memory
is represented as heap memory for a place, since it outlives the execution of a kernel. Lo-
cal and private memories are finer-grain memory locations, associated to either a block,
or a thread, respectively. Given that the latter two do not outlive kernel execution, in AP-
GAS they are described as stack memory. This memory hierarchy is more easily unified
with the notion that an individual GPU is a single place, rather than viewed as several
interconnected places.

In X10, remote memory allocation is accomplished with the new construct, analogous
to Java. However, the GPU programming model did not allow memory allocation inside
a kernel until very late in the development process of X10, so this functionality was left
out. Rather, the host part of the application calls API functions (in similar fashion to
CUDA or OpenCL) to allocate desired memory spaces. An example of this mechanism
is the following primitive: CUDAUtilities.makeRemoteArray[T](p, sz, single_value);.
This creates an array of type T in GPU at place P , with its corresponding size and values.

To copy data to/from the GPU X10 provides an API that mirrors Java’s System.arrayCopy,
although being asynchronous, and allowing one of the arrays to be a remote reference.
The following example depicts the copying of data between arrays r and l, remote and
local respectively: finish Array.asyncCopy(r, r_off, l, l_off, len);.
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The APGAS model includes built-in synchronization constructs that impose execu-
tional order at a block level. These constructs are analogous to synchronization barriers
common in parallel computing, but naturally applied to GPU programming. These bar-
riers are useful when a kernel uses local shared memory for its blocks, letting threads
inside a block synchronize at will. In APGAS, the block level synchronization construct
is called clock. In turn, GPU kernel parameters are represented in APGAS as the captur-
ing of local variables within the at construct. Finally, when using pointers APGAS creates
an object graph on the GPU.

Compiler Directives

OpenACC [Ope11] is a directive specification for GPU programming, recently pro-
posed by a consortium that includes the Portland Group. It is, thus, with no surprise that
it grows from the work, on this same topic, previously developed on the PGI compiler.
The directives allow for the identification of blocks of code as potential GPU kernels. By
using the #pragma acc kernels ... !$acc end kernels directive the programmer can define
operations that are to be executed on the auxiliary accelerator, or GPU. This directive can
be extended with clauses to specify a particular execution behaviour, for instance the loop

clause naturally specifies a loop of operations.

The programmer can also define what data must be transferred to, and from, GPU
global, and local, memory. The #pragma acc data copy(...) prompts the program to
pre-emptively copy the desired data to device memory, before it is actually processed.
Moreover, the programmer can delimit data regions. These regions represent a persistent
memory zone, where the data is transferred to device memory as the execution enters
it, and is transferred back to host memory just before exiting the zone. This allows for a
systematic application of kernels, distinct or otherwise, without having to perform data
transfers between them. To declare such a persistent memory zone, the developer should
use the !$acc data ... !$acc end data directive.

Another interesting functionality is the reduction. The reduction clause specifies a
reduction operator and one or more scalar variables. For each variable, a private copy is
created for each parallel gang, or thread-group, and initialized for that operator. At the
end of the region, the values for each gang are combined using the reduction operator,
and the result combined with the value of the original variable. Also, the result is stored
in the original variable, and becomes available after the region.

Compiler and Runtime Systems Support for GPGPU

StreamIt [TKA02; UGT09] programming language, originally proposed in 2001, aims
to express streaming applications in a platform independent fashion by exposing task,
data, and pipeline parallelism in a natural way. This approach is advantageous since an
optimizing compiler for the target platform can exploit parallelism on the latter in the
most efficient manner, without significant effort by the programmer.
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In StreamIt, the most basic unit of computation is a Filter. Within a filter resides the
user-defined computational steps, in some way analogous to a coarse grained OpenCL
kernel. Each filter holds two communication channel, input and output, used to com-
municate with its neighbour filters. These channels are typed FIFO queues that support
three basic queue operations: pop, peak, and push. Additionally, each filter has produc-
tion and consumption rates associated to its channels.

Filters can be combined into a data communication low-level graph, denominated a
Stream construct. Individually these constructs do not provide an execution behaviour,
instead they organize filters into a sequential composition of executions, that is, an exe-
cution pipeline.

Beside Streams (pipelines) there are two other stream constructs: SplitJoin, and Feed-

backLoop. The former is used to specify independant parallel streams that diverge from
a common splitter and merge into a common joiner. The latter, provides a way to create
cycles in the stream graph. Accordingly, a StreamIt program is expressed as a hierarchi-
cal composition of the three previous simple stream structures, forming a data flow or
stream flow graph.

The compilation process in StreamIt is composed of a series of stages, namely: profiling
and execution configuration selection, software pipelined scheduling, and final code generation.
Usually the optimal execution configuration varies depending on the application and the
GPU itself. Therefore, to achieve a close to or optimal execution configuration for the
corresponding application, on the target platform, StreamIt profiles the source program
using several distinct configuration settings in regards to number of threads and number
of registers per thread. The profiling code is generated using NVIDIA’s NVCC compiler,
creating four versions of the profile executable per filter. In the end, the best execution
configuration, performance-wise, is chosen.

In the software pipelined scheduling the compiler generates constrains on the scheduling
and synchronization of filters, based on the application’s data flow or stream flow graph.
These constrains assert that the consumption and production of data between stream
constructs are accomplished correctly, and efficiently. Furthermore, given the particular
characteristics of GPU memory (e.g., latency, bandwidth), the set of constrains include
some that take into account the necessity for coalesced memory accesses. To obtain the
highest possible memory bandwidth StreamIt has its own buffer layout scheme.

After all the constrains are generated, they are necessarily solved by the compiler.
Subsequently, in the final code generation stage, CUDA runtime code is generated, and the
application becomes ready to execute on a CUDA device.

Java – Rootbeer [PSFW12] is a platform that offers GPU executions, via the Java lan-
guage. It presents itself as an alternative to Java bindings to GPGPU languages. Its ex-
ecution model is fairly straightforward. The developer simply writes Java code, leaving
all the details associated to the execution to the platform.
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The kernel functions are represented by a Kernel interface, not unlike Aparapi’s ap-
proach. The programmer must declare a class that implements the interface, and pro-
gram the void gpuMethod(); function. The latter is the main point of entry of the devel-
opers code on the GPU. The class’ private fields express the data that is to be transferred
from/to GPU memory. Rootbeer automatically finds all reachable fields and objects from
the gpuMethod and copies these to the GPU. Equivalently, on the GPU results are saved
to fields and Rootbeer copies them back to the CPU.

To transform a regular Java program to a GPU accelerated one, the developer runs
the command $java -jar Rootbeer.jar InputJar.jar OutputJar.jar, where InpurJar.jar and Out-

putJar.jar, are the original Java application jar and the GPU accelerated application jar,
respectively. The original Java Bytecode suffers several successive trasnformations, be-
fore the final jar is created. These processes are particular to Rootbeer’s implementation
and, therefore, will be omitted. Regardless, CUDA is used as part of the transformation
process.

Rootbeer supports all features of the Java language, with the exceptions of: dynamic
method invocation, reflection, and native methods. The main structures of a typical Java
program (e.g., objects, variables, methods) are serialized and appropriately expressed in
GPU memory. Rootbeer automatically manages the entire available GPU memory, in
order to not only optimize the executions, but also, allow dynamic memory allocation.
Consequently, it is possible to allocate new objects on the GPU, while executing a kernel.

Critical Analysis

Of the studied frameworks, StreamIt is the one with features closer to our goals. Its a
language that enables the creation of disciplined graphs of filters. All orchestration and
kernel code is generated by the compiler, and subjected to a subsequent profiling phase.
Nevertheless, is is not clear which are the restrictions imposed on filter implementation.
Comparing it to our goals, StreamIt has a narrower scope, given that it its a streaming
language that is limited by the algorithms that can be effectively implemented in such a
paradigm. In turn, Marrow is a library that can be used to offload computations to GPUs,
such as an image filter, or a matrix operation, regardless of the application’s remaining
purposes.

Lime provides constructs for the composition of task graphs, in a way similar to
StreamIt. Data transfers between the Lime runtime and the GPU devices are very ex-
pensive, due to the serialization step required to cross the Java-C frontier. This penalty
is only overcome by the JVM compatibility of the Lime byte code, since the remainder
features have been mostly explored in other languages.

Regarding X10, the programming model is very imperative, forcing the developer to
be also aware of the underlying execution model. In order to be suitable for GPU execu-
tion, a X10 asynchronous task must begin with two for loops: one for the distribution of
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the work per blocks, and a second for the distribution of the work within a block. More-
over, the enclosed code must fulfil several restrictions, some not very understandable,
such as the absence of method invocations.

In its turn, Rootbeer’s memory management technique reduces the serialization over-
head for a single kernel offload, found for instance in Lime. Yet, this is done at the ex-
pense of allocating all of the GPUs memory for each kernel execution. This approach
mines the efficient composition of GPU computations that builds on the persistence of
data across multiple kernel execution, for instance a pipelined kernel execution.

The compiler directives for GPUs solution, offered by OpenACC is an interesting
proposal. It enables the seamless offloading of data-parallel executions, or kernels, to a
GPGPU environment. Additionally, it enables fine tuning of kernel interoperability, via
defining persistent memory zones. Still, compiler directives are a solution to a very spe-
cific niche of computations. It enables the programmer to efficiently build data-parallel
schemes, but does not delve into the task-parallel domain.

2.4 Algorithmic Patterns and GPGPU

According to the Oxford Dictionary1 a pattern is:

“A regular and intelligible form or sequence discernible in the way in
which something happens or is done”

In turn, when it comes to computer science, patterns are usually associated to two
major schools: architectural patterns [BMRSS96] (or architectural styles [SG96]), and de-
sign patterns [Gam95]. The first define types of elements and relationships that together
form the backbone of a software system, abstracting the developers from low level de-
sign problems and easing the creation of complex applications. The latter are general and
focussed solutions to commonly recurring problems within a given context, contrary to
architectural patterns that have a larger design scope.

In computer science, many new challenges are just specializations or subsets of prob-
lems that have already been resolved, or can be tackled with the solutions of similar
problems. Bearing this in consideration, patterns are particularly useful because they
encapsulate a proven and tested solution to a recurring problem, facilitating the job of
current software developers.

Design patterns, in particular, are an important line of investigation of today’s re-
search, and one of the most important contribution to that work is [Gam95]. The author
identifies three classes of design patterns:

• Creational Patterns – These abstract the instantiation process, helping to make the
system independent of how its objects are created. For example, the Abstract Fac-
tory pattern that provides an interface for creating families of related or dependent
objects without specifying their concrete classes.

1http://oxforddictionaries.com
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• Structural Patterns – These are concerned with how classes and objects can be com-
posed to form larger structures. They use inheritance to compose interfaces and/or
implementations, resulting in a more flexible design. For example, the Proxy pat-
tern provides a surrogate, or placeholder, for another object, thus controlling exter-
nal accesses to the latter.

• Behavioural Patterns – These are concerned with algorithms and the attribution of
responsibilities among the objects. Additionally, these describe the flow of commu-
nication between objects. An example of this kind of pattern is the Iterator pattern,
that provides a way to access the elements of an aggregate object sequentially, with-
out exposing its underlying representation.

2.4.1 Overview of Patterns for Parallel Computing

Many other patterns have been identified by other authors. In the particular context of
parallel computing, patterns are used to facilitate the development of applications that
gain performance through the parallel execution of some or all of its components. They
are very relevant to the development of parallel applications since it is not always easy to
understand where the execution could be parallelized, and where to use synchronization
mechanisms. Even worse, debugging parallel applications is all but trivial, which can
cause some bugs, like race conditions, to pass without checking into the final application.
The more one can abstract developers from parallel programming details, the easier it
will be for them to create parallel applications.

It has been found that fully abstracting the developer from all the parallel program-
ming issues, like in compiler directives (e.g., OpenMP [DM98]) or languages (e.g., For-
tran90 [EPL94]) that generate parallel code from sequential one, is a very limiting and
complex solution. An alternative is to provide tools that guide the programmer through-
out the development process. Patterns are particularly useful in this context since they
abstract the development process from most parallel programming concerns, yet, still
providing a good level of flexibility to it.

In the context of patterns for parallel computing there are two main lines of investiga-
tion: parallel patterns and algorithmic patterns (skeletons). We are particularly interested
in the latter but provide a brief overview of an important parallel patterns technology.

Parallel Patterns

Parallel patterns are an approach proposed by the Par lab group [Ber] of the University
of Berkeley. They have been developing a pattern language called PALLAS [KMMS10]
(Parallel Applications, Libraries, Languages, Algorithms, and Systems) that identifies
and categorizes many design patterns, most of them parallel ones. These categories make
up a layered hierarchy of patterns, usable by the developers to systematically address
each portion of the design problem. However, developers are encouraged to bounce
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around between layers as they see fit, since a top-down or bottom-up analysis is not
always the most appropriate.

There are five categories of patterns identified in PALLAS, though the first two are
often merged:

1. Structural and Computational – The first describe the overall organization of the
application and how its computational elements interact. The latter describe the
class of computations that make up the application. Computational patterns are
responsible for defining what computations occur inside the components defined
by the structural patterns.

2. Algorithmic Strategy – These patterns define high-level strategies to exploit con-
currency in computations, for execution on parallel devices.

3. Implementation Strategy – These are the structures that support how the program
itself is organized and what are the common data structures specific to parallel
programming.

4. Parallel Execution – These are the approaches usually used to support the execu-
tion of a parallel algorithm.

These categories, as well as their corresponding patterns, are depicted in a hierar-
chy of patterns in Figure 2.7. Some of these patterns will be subsequently expatiated,
therefore in order to get a detailed description over all of them the reader is remitted
to [KMMS10].

Should be noted that PALLAS is a pattern language and not a programming language.
It is merely a formal way to describe a common taxonomy over the fundamentals of an
area of computer science, in this case parallel programming. This allows a common and
universal comprehension of particular aspects of the subject, defining terms and trains of
thought so as to have mutual understanding between fellow developers.

Skeletons

Algorithmic patterns, or skeletons, were introduced by Cole in [Col91] and are essen-
tially abstractions of commonly used parallel patterns of computation, communication
and interaction. The computational constructs manage the logic and control flow, while
communication and interaction mechanisms control data exchange between processes,
as well as their creation and synchronization. Skeletons provide a top-down design
throughout the program structure, therefore, structured parallel programs are expressed
by combining (nesting) parametrized skeletons, analogous to the way in which struc-
tured sequential programs are constructed.

Skeletons are usually made available to developers as an algorithmic skeleton frame-
work (ASkF), which offers a set skeletons with generic functionalities. These skeletons

30



2. STATE OF THE ART 2.4. Algorithmic Patterns and GPGPU

Figure 2.7: Pallas layered hierarchy of patterns, taken from [KMMS10]

can be parametrized by the programmer in order to achieve the desired parallel pro-
gram. ASkFs are analogous to common software libraries, so they are accessible through
well defined application programming interfaces, although they usually dictate certain
aspects of the resulting program (e.g., control flow, resource monitoring, portability).

This high-level parallel programming methodology is known as structured parallelism,
allowing an abstract description of a program that focuses on its algorithmic structure
rather than its detailed implementation. This approach greatly benefits the development
of complex parallel applications since the programmer has only to determine what com-
putations are to be executed, leaving the parallel programming details up to the ASkF.

In [GVL10], skeletons are categorized based on their functionality into: data-parallel,
task-parallel and resolution. Resolution skeletons delineate an algorithmic method to
undertake a given family of problems. Their structure may encompass different compu-
tation, communication, and control primitives. These categories include some popular
skeletons such as:

• Data-parallel

– Map – Specifies that a function or a sub-skeleton is simultaneously applied
to many independent data-sets, achieving data-parallelism. Hence, the Map
skeleton can be regarded as SIMD parallelism.

– Reduce – Is employed to compute prefix operations in a data-set, by traversing
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it from left to right and then applying a function to each pair of elements. Par-
tial results are aggregated as the reduction systematically decreases the data
length, until only one element is available. That element is the final result of
the Reduce skeleton.

• Task-parallel

– Master-worker – Provides the ability to issue the execution of independent
tasks across multiple computing nodes (workers). The master manages the
task poll, issuing new tasks and collecting their respective results. On the other
hand, workers take tasks from the task poll, execute them, send the results back
to the master, and then grab the next tasks. This process continues until no
other task is available.

– Pipeline – Enables staged computations, where parallelism is achieved by
computing different stages simultaneously on different inputs. The number
of stages in the Pipeline may vary and the execution of the first stage is always
sequential. From there on out, the execution is parallelized by feeding the out-
put from one stage as input to the next one, in an assembly-line like manner.

• Resolution

– Divide & Conquer (D&C) – A generalization of the Map skeleton, where the
function is recursively applied until a condition is met within an optimization
search space. Initially, a condition component is invoked on the input resulting
in one of two actions: either the data is passed onto a sub-skeleton, or the input
is split with the split component. Then, for each list element the same process
is applied recursively until no further recursion is needed. Finally the results
are combined at each level using a merge skeleton until the merge yields one
result, which corresponds to the final result of the D&C skeleton.

Due to the heterogeneity of today’s computational environments many ASkFs have
been proposed in order to permit the utilization of skeletons across many platforms. For
example, Calcium [CL07] is an ASkF designed specifically for clusters, while Skandium [LP10]
targets shared memory architectures. The list is quite extensive, so in Table 2.1 a summa-
rized view of some ASkFs is given.

Skandium

We use Skandium [LP10] to illustrate in more detail the functionalities provided by an
ASkF that executes on a high-level language, in this case Java. Skandium is a complete
reimplementation of Calcium, mainly inspired by Lithium [ADT03] and Muskel [DD06]
ASkFs. It is relevant to our work since it is a relatively recent ASkF with some impact in
scientific community, and whose code is available to everyone. Skandium differentiates
two concepts: skeleton patterns and muscle blocks. The first are obviously the skeletons
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Table 2.1: Comparative table of the algorithmic skeleton frameworks, taken from [GVL10]

available to the programmers, while the latter are sequential blocks of code that provide
the logic needed by a skeleton, in order to transform it into a specific application.

The muscles can be classified into one of four types, with the following nomenclature:

1. Execution – fe : P → R

2. Split – fs : P → {R}

3. Merge – fm : {P} → R

4. Condition – fc : P → boolean

P is a parameter type, R is a result type, and {X} represents a list of elements of type
X . Muscles are viewed as black boxes, invoked during the computation of a skeleton,
that may execute sequentially or in parallel, depending on the skeleton. In either case,
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the result of a muscle is passed as a parameter to other muscles until no further one is
needed, finally delivering the result to the user.

In order to avoid programming errors, and simplify the programming model, Skandium
skeletons have the following hypotheses:

• Single input/output – Skeletons can only receive/produce single inputs/outputs.
This hypotheses simplifies skeleton nesting and as a result low-level skeletons (e.g.,
reduce, split) are embedded directly into higher-level ones (e.g., map, D&C).

• Passive Skeletons – Each skeleton output is directly related to a previously received
input. Therefore, skeletons that can produce outputs without receiving inputs, hear-
beat skeletons, are not allowed.

Skandium supports the following skeletons: Seq, Farm (Master-worker), Pipe (Pipeline),
If, For, While, Map, Fork, and D&C. For further information about these skeletons the user
is remitted to [GVL10] and [LP10]. These skeletons allow nesting in the following manner,
where ∆ stands for a nested skeleton pattern:

∆ ::= seq(fe) | farm(∆) | pipe(∆1,∆2) | while(fc,∆) | if(fc,∆true,∆false)

| for(i,∆) |map(fs,∆, fm) | fork(fs,∆i, fm) | d&c(fc, fs,∆, fm)

• Seq – Terminates a recursive nesting of skeletons, since it wraps execution muscles
which are then nested into the skeleton program as terminal leaves of the skeleton
nesting tree.

• Farm – Receives a set of skeletons that are replicated for task parallelism.

• Pipe – Can have a variable or fixed number of stages, but it is worth noting that
fixed staged pipes can be nested inside other fixed staged pipes to create a pipe
with any number of stages.

• If – Receives two sub-skeletons along with a condition muscle. Depending on the
result of the condition, either one or the other sub-skeleton is executed.

• For – Receives a sub-skeleton and an integer i as parameters. The sub-skeleton is
executed i times and the result of one invocation is passed as arguments to the next
one, until the last iteration provides the final result.

• While – Is analogous to the For skeleton, but instead of iterating a fixed number of
times, a condition muscle decides whether the iteration stops or continues.

• Map – Receives a split muscle, a sub-skeleton, and a merge muscle. The input is
split with the split muscle, generating a list of elements. Then, the sub-skeleton
is applied to each list element in parallel. When the results are ready, they are
combined with a merge muscle and the final result is returned to the user.
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• Fork – Behaves like Map. However, a different sub-skeleton is applied to each data-
set.

• D&C – A generalization of the Map skeleton, where Maps are recursively applied
while a condition is met. Its execution is analogous to standard D&C skeleton, as
previously explained. In Skandium the condition, the split, and the merge compo-
nents are given by muscles.

2.4.2 Skeletons Libraries for GPGPU

One of the main goals behind skeletons is portability, so it comes as no surprise that
attempts of utilizing the data-parallel executional qualities of GPUs were made. It is par-
ticularly interesting when skeletons embrace GPGPU technologies such as CUDA and
OpenCL, since they provide a greater detachment between implementation and under-
line platform. In particular, SkelCL [SKG11] and SkePU [EK10] are ASkFs that support
to GPU execution through GPGPU APIs, and will be the next points of discussion. Ad-
ditionally, an overview about the ASkF Muesli [EK12] is given. The latter only supports
GPU execution via CUDA, therefore it is not as relevant to us as SkePU and SkelCL.

SkePU

SkePU is a C++ ASkF, released in 2010, that can be used to build parallel applications
that execute not only on the CPU, but also on the GPU. SkePU supports the following
five skeletons: Map, Reduce, MapReduce, MapOverlap, and MapArray. The latter two are
variants of the Map skeleton.

Skeleton execution in SkePU is accomplished by running in a back-end appropriate
to the execution environment, decided at compilation time by the programmer. On one
hand, it supports standard sequential CPU executions and multi-core CPU execution via
OpenMP. On the other hand, GPU executions can be attained by utilizing either CUDA
or OpenCL. These multi-platform execution models are seamlessly available to the pro-
grammer by simply changing the application’s compilations options. Skeleton code is
transformed into the appropriate type of machine code, based on the execution platform
chosen by the programmer.

SkePU generates executable code that depends upon user-defined functions. The def-
inition of these user-defined functions is based on macros that are expanded by SkePU
into C structs. These structs have member functions for CUDA and strings for OpenCL.
When using the CUDA runtime, device and host code are separated by compiling the
source code with NVIDIA’s NVCC compiler. In OpenCL’s case, device code is stored as
strings in the program so that it can be used as arguments to API functions, that compile
and upload it into OpenCL devices at runtime.

The macros define the behaviours of the skeletons and are used as arguments upon
skeleton instantiation, though, not all macros are compatible with all skeletons. The pro-
grammer can utilize the macros shown in Listing 2.3.
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Listing 2.3: SkePU macros, taken from [EK10]
1 UNARY_FUNC( name, type1, param1, func )

2 UNARY_FUNC_CONSTANT( name, type1, param1, const1, func )

3 BINARY_FUNC( name, type1, param1, param2, func )

4 BINARY_FUNC_CONSTANT( name, type1, param1, param2, const1, func )

5 TERNARY_FUNC( name, type1, param1, param2, param3, func )

6 TERNARY_FUNC_CONSTANT( name, type1, param1, param2, param3, const1, func )

7 /* Particular to the mapoverlap skeleton. */

8 OVERLAP_FUNC( name, type1, over, param1, func )

9 /* Particular to the maparray skeleton. */

10 ARRAY_FUNC( name, type1, param1, param2, func )

The data values that are used in the macros are contained in a special sort of structure
called vector, analogous to a C array. However, it implements particular memory man-
agement techniques in order to optimize data transfers between host and device memory.
If a computation changes a vector in the GPU memory, it is not directly transferred back
to the host memory. Instead, transfers are suspended until an element is accessed on the
host side, only then is any copying done. This process is known as lazy copying. Recently
a matrix data structure, analogous to a vector but two-dimensional, was added to SkePU.

SkePU’s skeleton have the following characteristics:

• Map – Receives up to three vectors, of length N , and returns a new vector, also of
length N , that corresponds to the applications of function f to the corresponding
elements of the input vectors.

• Reduction – A scalar result is computed by applying a commutative associative
binary operator ⊕ between each element in the input vector.

• MapReduce – A simple combination of the previous skeletons. It proceeds in the
same way as if one applied a Map to k vectors, k ≤ 3, and a subsequent reduction
to the resulting vector. As expected, this skeleton receives two macros upon its
instantiation, one for the Map operation and another for the Reduction.

• MapOverlap – In MapOverlap each element ri of the result vector is a function of
several adjacent elements of element i in the input vector. The number of these
values is controlled by the overlap parameter. This skeleton can only be instantiated
with the OVERLAP_FUNC macro.

• MapArray – It receives two input vectors, v1 and v2, and returns an output vector

where each one of its elements, ri, is a combination of the corresponding element
of the second vector, v2i , and any number of elements from the first vector, v1. This
skeleton can only be instantiated with the ARRAY_FUNC macro.

Listing 2.4 depicts a SkePU application that calculates the dot product of two vectors.
The program utilizes a MapReduce skeleton instantiated with two macros, a multiplica-
tion macro and a sum macro, representing the Map and Reduce operations, respectively
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(lines 1 to 4). The input data for the skeleton comprises two vectors of length 1000 each,
whose elements are initialized with the value 2 (lines 5 and 6). The input data is then
passed onto the skeleton and a scalar result is produced and printed (lines 7 and 8). The
skeleton applies the multiplication operation to the vectors, element-wise, generating a
vector with length 1000, with the value 4 in its every position. The reduction the adds up
every element in that vector, amounting to the value 4000 as the skeleton’s final result.

Listing 2.4: SkePU map reduce example, taken from [EK10]
1 BINARY_FUNC( plus, double, a, b, return a+b;)

2 BINARY_FUNC( mult, double, a, b, return a*b;)

3 int main(){

4 skepu::MapReduce<mult, plus> dotProduct(new mult, new plus);

5 skepu::Vector<double> v0 (1000, 2);

6 skepu::Vector<double> v1 (1000, 2);

7 double r = dotProduct(v0, v1);

8 std::cout<<"Resutl:"<<r;

9 return 0;

10 }

11 // Output Result: 4000

We refrained from using the OpenCL example that has been used throughout this
Chapter because of SkePU’s limitations. Despite being possible to implement a matrix
multiplication in SkePU, it is not accomplished in a simple way. This is mainly due to
the fact that SkePU gives the programmer no control over how each thread accesses the
input data, forcing each thread to work with a fixed position within the input data space.
Although the ARRAY_FUNC macro lets every thread access all elements of a single vector,
both arrays must be of the same type, and no additional input parameters are permitted.
This does not help to simplify the process of matrix multiplication.

One possible solution is the following. Consider A,B,C as two input and one out-
put square matrices, respectively, all of width N > 0. To produce a single row of val-
ues of C, Cri, one must combine row Ari of A with every column of B. This leads
to N2 threads, one for each element of C, so, thread Tij would need to access row Ari

and column Bcj to produce value Cij , where 0 < i, j ≤ N . This kind of mapping is
hard to achieve in SkePU since each thread cannot access values of any position within
a vector or matrix. As a result, in order to achieve the desired result, the input vector

that maps A would be A′ = [Ar11 , . . . , Ar1N , . . . , ArN1 , . . . , ArNN
], where Arij is j-th oc-

currence of row i. B′ would be equivalent but, as the threads need columns instead
of rows, B matrix would have to be transposed and then mapped as A′, resulting in
B′ = [Bc11 , . . . , BcN1 , . . . , Bc1N , . . . , BcNN

]. Logically, this approach would use a Map
skeleton.

SkePU has multi-GPU support so as to increase the performance of its parallel appli-
cations. It utilizes the different GPUs by dividing the input vectors equally among them,
and doing the calculations in parallel on them. By default it utilizes as many GPUs as it
can find, although this can be parametrized.
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SkelCL

SkelCL is a C++ ASkF for execution on OpenCL compatible platforms, proposed in 2011.
It currently supports four basic skeleton: map, reduce, zip, and scan. It holds some similar-
ities to SkePU like its skeleton memory management mechanisms, or its skeleton execu-
tion model.

SkelCL’s execution model determines that OpenCL code is generated from the ag-
gregation of user-defined functions and pre-implemented skeleton code, so as to be com-
piled by OpenCL API functions, and executed on OpenCL devices. Since OpenCL cannot
pass function pointers to OpenCL devices, user-defined functions are passed as strings
in SkelCL. And given that code generation is time-consuming, SkelCL only generates
the OpenCL code for a specific kernel once. Subsequent kernel executions utilize pre
converted code, stored in a local hard-drive.

The user-defined functions define the types of the input and output values for a ker-
nel, as well as the operations to perform on those values. Much like SkePU, SkelCL gives
the programmer very little control over what elements of the input data a thread can
access, which in turn limits the capabilities of SkelCL’s skeletons.

SkelCL’s skeletons are parametrized with a specific data structure called Vector, inter-
nally comprised of pointers to corresponding areas of host and device memories. Vectors

serve as input data for skeletons, and are generated by some skeletons as output data. A
Vector is capable of storing data items of any primitive C/C++ data type (e.g., int, float),
as well as user-defined data structures (structs). It has a specific memory management
technique analogous to SkePU’s vector, that is, a lazy copying behaviour.

Because SkelCL’s skeletons receive and produce Vectors, skeleton nesting can be ex-
plicitly simulated through argument nesting, as shown in Listing 2.5. Although, this
work-around does not scale well. SkelCL’s skeleton have the following characteristics:

• Map – Receives a Vector as input data and applies the user-defined function to its
every position in parallel. As a result, it generates an output Vector with the same
size as the input one.

• Reduce – Uses a binary operator to combine all elements of the input Vector and
returns a scalar result. SkelCL requires that the operator is an associative one (e.g.,
sum, subtraction), so that it can be applied to arbitrarily sized sub-ranges of the
input Vector in parallel. The final result is obtained by recursively combining the
intermediate results for the sub-ranges.

• Zip – Takes a customizing binary operator and applies it to corresponding elements
of two equally sized input Vectors of size N , resulting in a Vector of the same size.
Zip is parallelized in the same manner as Map.

• Scan – Applies a customizing binary operator ⊕ to the elements of an input Vector

of size N , returning a Vector of the same size, and whose values are determined
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in the following way: scan ⊕ v = [id, x0, x0 ⊕ x1, . . . , x0 ⊕ . . . ⊕ xN−2], where v =

[x0, . . . , xN−1] and id is the identity element of the operator ⊕.

In order to better understand the mechanics behind skeleton utilization in SkelCL an
example is outlined below. For the same reasons as in the case of SkePU, we will refrain
from using the OpenCL example that has been used throughout this Chapter. Instead,
Listing 2.5 illustrates a SkelCL program that computes the dot produce of two Vectors.

Listing 2.5: SkelCL computation of the dot product of two vectors, taken from [SKG11]
1 int main (int argc, char const* argv[]) {

2 SkelCL::init(); /* initialize SkelCL */

3 /* create skeletons */

4 SkelCL::Reduce<float> sum (

5 "float sum (float x,float y){return x+y;}");

6 SkelCL::Zip<float> mult(

7 "float mult(float x,float y){return x*y;}");

8 /* allocate and initialize host arrays */

9 float *a_ptr = new float[ARRAY_SIZE];

10 float *b_ptr = new float[ARRAY_SIZE];

11 fillArray(a_ptr, ARRAY_SIZE);

12 fillArray(b_ptr, ARRAY_SIZE);

13 /* create input vectors */

14 SkelCL::Vector<float> A(a_ptr, ARRAY_SIZE);

15 SkelCL::Vector<float> B(b_ptr, ARRAY_SIZE);

16 /* execute skeletons */

17 SkelCL::Scalar<float> C = sum( mult( A, B ) );

18 /* fetch result */

19 float c = C.getValue();

20 /* clean up */

21 delete[] a_ptr;

22 delete[] b_ptr;

23 }

To produce the desired result two skeletons are needed: a Reduce, and a Zip. Upon
their initialization, they receive a user-defined function as input (lines 4 to 7). The input
elements are stored inside two arrays, used as inputs for two Vectors that, in turn, repre-
sent the skeleton’s input data (lines 9 to 15). The next steps imitates skeleton nesting, by
parametrizing the Zip skeleton with the Vectors, and the Reduce skeleton with the result
of the Zip skeleton (line 17). Logically, the Vector generated by Zip is the input for Reduce.
By combining these two skeletons, the desired behaviour is achieved and a scalar result
is generated.

As SkePU, SkelCL supports multi-GPU executions. Both approaches are very similar.

Muesli

Muesli is a C++ template library, recently extended to support GPU executions, that offers
data- and task-parallel skeletons. It provides support to many- and multi-core parallel
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architectures by using MPI and OpenMP. In addition, CUDA is used to enable GPU exe-
cutions of data-parallel skeletons, such as Map, Zip, Fold, and Scan. The latter are offered
as member functions of distributed data structures, and used to manipulate elements
stored by those structures. On the other hand, task-parallel skeletons, such as: Farm,
Pipe, DivideAndConquer, and BranchAndBound, are used to construct process topologies.

Muesli’s distributed data structures provide support for unidimensional arrays, as
well as bi-dimensional matrices and sparse matrices. For the first two, the developer
can decide whether the skeleton instances are executed on CPUs or GPUs. However, the
sparse matrices are limited to the CPU. Parallelism is dived into inter-node and intra-
node parallelization, via MPI and OpenMP/CUDA, respectively. For inter-node paral-
lelization, each MPI created process only stores a part of the distributed data structure.
For the intra-node parallelization, either the OpenMP or CUDA threading model is used
to distribute the workload among all participant threads. Furthermore, distributed data
structures have global and local perspectives, or views. The local views refer to the block-
wise distribution of the structure, for instance of a matrix into sub-matrices. These are
internal representations of the whole structure, and are mostly transparent to the devel-
oper, unless he or she selects a skeleton that uses local indices. In turn, the global view (the
view by default) represents an integral structure. Every skeleton call affects the whole
structure, and developers mainly deal with indices of global range.

Muesli exports the concept of higher-order function. The latter are functions that
accept other functions as arguments, and/or return functions as results. Given that, in
Muesli’s programming model skeletons are functions that can take other functions as
input, they are denominated as high-level functions. The latter can be overloaded and
parametrized via the C++ template mechanism.

By using CUDA streams Muesli gives support to overlap between communication
and computation, although it is not user-parametrizable. Muesli also gives support to
multi-GPU executions.

Critical Analysis

The SkePU and SkelCL ASkFs are quite similar in respect to execution model, and func-
tionalities. The major difference between them are the mechanisms by which the de-
velopers declare the parallel computations. Consequently, it is not surprising that they
are afflicted by very similar issues. A direct comparison with Marrow shows that nei-
ther SkePU or SkelCL supports more than the MapReduce skeleton, and some variants,
leaving out task-parallel ones. Also, nesting of skeletons is left out. Logically, these char-
acteristics hamper flexibility, and modularity. Moreover, their skeletons do not introduce
overlap between communication and computation, which is advantageous in many ap-
plication scenarios. We also have considerations in terms of performance when matching
these libraries against Marrow, although we will remit such a comparison to Chapter 5.

The two libraries also impose upon themselves limitations that arise from attempting
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to abstract developers from the underlying OpenCL kernels. The mechanisms that they
offer to the developer, so that he or she can adapt the parallel computations, are very
limiting and unsophisticated. SkePU’s macro constructs impose severe constrains to ker-
nel implementation possibilities, considering that every kernel argument must have the
same data-type (e.g., integer, float, double), and the actual number of arguments is lim-
ited to a pre-defined number. This number ranges from one to four, depending on the
selected macro. In its turn, SkelCL declares and issues kernel computations as strings,
compiled at runtime to OpenCL code. Naturally, it would be preferable if the parallel
computations would be transformed and validated at compilation time. To make matter
worse, both the macro language and kernel strings limit the scope of a single execution
thread (work-item), in that it can only access the data that is directly associated to it, via
its global identifier. This direct one-to-one mapping removes a significant amount of de-
velopment possibilities, in particular to vicinity-like algorithms, and wastes some of the
GPU’s parallel potential.

Muesli is more complete than SkePU and SkelCL, since its kernels are more sophisti-
cated and have a wider range of implementation possibilities. Be that as it may, it only
offers GPU execution through data-parallel skeletons, similar to the ones of SkePU, and
SkelCL. Ergo, leaving the task-parallel skeletons for the CPU execution domain. Skele-
ton nesting is functionality that is available in Muesli, but only in between task-parallel
skeletons. Finally, by using CUDA streams, this library enables overlap between com-
munication and computation. Yet, this functionality is not parametrizable.

2.5 Final Remarks

After studying and analysing the current state of the art associated to our proposal’s
research field, we consider that there is space for contributions in the design and im-
plementation of tools, aimed at the development of intricate GPU applications. In the
particular case of skeletons, we think that their use can go beyond the currently sup-
ported constructs, offering newer, richer, and more modular mechanisms to efficiently
utilize the GPU’s capabilities, for both beginners and experienced programmers alike.

41



2. STATE OF THE ART 2.5. Final Remarks

42



3
The Marrow Skeleton Library

This chapter presents the fundamental concepts and functionalities provided by the pro-
posed C++ ASkF, Marrow. Firstly, we expatiate Marrow’s execution model and API (Sec-
tion 3.1). Subsequently, Marrow’s kernel context and utilization are detailed (Section 3.2),
followed by the fundamentals behind overlap between communication and computation
(Section 3.3). Afterwards, Marrow’s nesting mechanism is described (Section 3.4), both
logically and structurally. The skeletons that are supported by Marrow are then enu-
merated and defined (Section 3.5). Lastly, Marrow’s programming model is described
(Section 3.6), in addition to displaying programming examples for its major functionali-
ties.

3.1 Execution Model and API

Our main design goal was to provide a dynamic, efficient, and flexible way of using the
GPU for general purpose computing, for both beginners and experienced programmers
alike. Marrow proposes to accomplish these objectives by focussing on the orchestration
of the execution of OpenCL kernels, whilst additionally introducing optimizations to the
overall execution through a technique known as overlap between communication and
computation. The parallel computations (kernels) are left to the developer’s considera-
tion, being supplied to the skeletons at runtime. These kernels are used by the skeletons
to achieve a desirable parallel application scheme.

Considering that Marrow’s primary design purpose was to enable efficient GPU ex-
ecutions, we had to take into account the particularities of its architecture and optimize
our library accordingly. One prominent particularity is the considerable execution over-
head, when issuing GPU computations. While the latter computes, the main processing
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unit may be left idle, thus wasting valuable resources. In turn, the decoupling of ad-
dress spaces, between main and device memories, is also a detail that should be fully
managed by the skeletons. Preferably, the applications should only be aware of the prin-
cipal address space, and that a number of computations have been offloaded to external
computational devices. These design goals and restrictions come together to define an
execution model where:

• The orchestration of the execution is completely transparent to the developer, while
the parallel computations are defined and submitted as regular OpenCL kernels.

• The skeletons seamlessly introduce performance optimizations, that may be tweaked
by the developer.

• Skeleton computations are dissociated from application execution.

• The applications only manages the primary address space, that naturally includes
skeleton input/output memory spaces.

Delegating the orchestration to the skeletons adds an abstraction layer between the
developer and the underlying platform model (OpenCL), greatly reducing the host man-
aging efforts. Even though the parallel computations are still represented as OpenCL
kernels, the programmer does not have to manage the base, and low level, functional-
ities that arise from issuing executions with said kernels (e.g., error handling, memory
management/transfers, synchronizing with the device). This abstraction lets the devel-
oper concentrate on the parallel computations, rather than spending effort implementing
the respective orchestration. In its turn, the dissociation between application and device
computations is advantageous, given that it makes sense to free up the application to
perform additional computations (e.g., preparing the next input, evaluating the previous
results) while the device carries out an execution.

Marrow’s execution model is depicted in Figure 3.1. This model can be regarded as
a master/slave scheme, where the application offloads asynchronous execution requests
to the skeletons. An execution request comprises memory references from which the
skeleton obtains the input, and to where it writes the computed results. These execution
requests are always processed in a FIFO order, although not always sequentially (this idea
is further elaborated in Section 3.4). Nevertheless, when the application thread submits
an execution request to a skeleton (step 1 in the figure) the latter does not process it
immediately. Instead, this request is queued, a future object is created (step 2) and a
reference to it is returned to the application (step 3). The future allows the application
to, not only, query the state of the execution, but also, wait (block) until the results are
ready (step 4). When the skeleton becomes available to fulfil the request, the execution is
submitted to the device (step 5). Once the results are ready, they are read to the targeted
output memory (step 6), and the respective future is notified (7), an event that will wake
up any application thread waiting for the results (step 8).
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Figure 3.1: Marrow’s execution model

This computational scheme motivates a rather simple API. Issuing a skeleton exe-
cution is accomplished by using an asynchronous write operation. The latter requests an
OpenCL execution, and renders a future object. Additionally, this operation is parametriz-
able with C++ STL vectors for both input and output memory references. Naturally, the
latter must be valid, and pre-initialized, input/output address spaces. Moreover, these
memory references are accepted as C void* type. We selected untyped memory refer-
ences over a generic typification mechanism (e.g., C++ templates) because it proved to
be more suitable to a scenario where the kernel’s arguments may vary in number and in
type. On the other hand, the OpenCL language is very non-restrictive about the types
of data loaded onto device memory, provided they are supported by the language, and
each may be stored in a contiguous memory space. Therefore, Marrow supports any ar-
bitrary combination of kernel arguments, asserting that their data-types (as enumerated
in Section 3.2) are supported by the ASkF runtime.

Considering the current proliferation of parallel architectures, multi-threaded com-
puting is becoming standard. In this context thread-safety is an important feature. On
top of that, thread-safety allows for skeletons to be shared among multiple application-
threads, reducing the memory footprint, equally on host and device sides. Consequently,
Marrow’s API, notably the write operation, is thread-safe. This removes the necessity
of using synchronization mechanisms to perform access control, between application-
threads that issue executions on the same skeleton.

3.2 Kernels

As previously stated, Marrow’s programming model only abstracts the OpenCL kernel
execution orchestration, rather than the OpenCL kernels. However the latter are usu-
ally associated to fundamental information about the computations (e.g., the execution
resource requirements, kernel parametrization information). Some of this information is
very closely bounded to the runtime parametrization (e.g., thread work-load, memory re-
quirements), restraining any attempts at retrieving it solemnly with parsing techniques.
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This active information is used by the skeletons to adapt their execution to a scheme that
provides the correct computational behaviour.

Therefore, we deemed as beneficial to encapsulate (wrap) the kernel’s logic and do-
main in a single executional object, allowing skeletons to easily access this information
when orchestrating a kernel execution. The resulting object, named KernelWrapper, pro-
vides multi-level functionalities that classify it as an executional entity, instead of a simple
information placeholder. These functionalities are enumerated as follows:

Compilation – This functionality ensures that any kernel supplied by the developer
is valid according to the OpenCL specification. This assertion is checked via the
OpenCL kernel runtime compilation, raising appropriate errors if necessary.

Information supplier – The KernelWrapper allows skeletons to query kernel execution
related information through a standard interface. The obtainable information in-
cludes some fundamental aspects, such as: argument data-types and data-sizes,
memory space requirements (global/local), NDRange index size (global/local).

Execution – The wrapper enables external computational entities, such as skeletons, to
prompt kernel executions. Naturally, each KernelWrapper can only prompt execu-
tions within its own kernel domain, and when parametrized appropriately.

The instantiation of a KernelWrapper requires the definition of the kernel’s argument
information, separately for both input and output. This definition encompasses both
structural and contextual information. The former designates the argument-layout, the
required data-structures, and the data-types. The latter determines runtime specifica-
tions, such as required memory, work-load (work-items/groups), and kernel file path. In
particular, the supported kernel argument data-types are:

• Buffer – Unidimensional arrays of elementary C++ and OpenCL types, and/or of
C structs.

• Singleton – A single data element of a certain type, that may vary throughout mul-
tiple executions of a kernel. It is considerably faster to load onto device memory
than a single element buffer.

• Final – This type of data is homologous to the singleton, but it is constant through-
out multiple executions of a kernel.

• Local – OpenCL supports local memory as a way to increase the performance of
kernel executions. It is useful to, for example, avoid unnecessary read operations
generated when different work-items, within a work-group, access the same ad-
dress of global memory.

• Image2D – This type of data is somewhat analogous to a buffer object. However it
is naturally more appropriate when the application is working with images, since
the OpenCL kernel API is rich in functions pointed out to image processing.

46



3. THE MARROW SKELETON LIBRARY 3.3. Overlap Between Communication and Computation

When instantiating a KernelWrapper, OpenCL’s memory hierarchy dictates the uti-
lization possibilities for the previous data-types, in that each one is only associated to a
particular memory address space. This correlation somewhat constrains how the kernel’s
arguments may be organized, since the layout must be compatible with an OpenCL exe-
cution. Moreover, the OpenCL specification states that a kernel’s output arguments must
point to a region of global memory. Consequently, when using Marrow a programmer
may only define a Buffer, or Image2D, as outputs for a kernel, regardless of their quantity.
On the other hand, every data-type can be used as input, and combined arbitrarily. Ta-
ble 3.1 illustrates the pairing between every supported kernel argument data-type, and
the relevant memory address spaces of the OpenCL hierarchy. The Other Memory cat-
egory relates to additional address spaces present in OpenCL’s memory scheme (e.g.,
constant memory, compute unit registers).

Global Memory Local Memory Other Memory

Buffers X
Singleton X
Final X
Local X
Image2D X

Table 3.1: Association between argument data-type and memory address space

The KernelWrapper object is a passive object. That is, it never actively provides informa-
tion to another executional entity. A skeleton always acts as a questioner when requiring
the knowledge of a kernel’s executional information. For instance, consider a kernel k
that uses two buffer objects of type T , each holding 500 elements. Upon querying the
KernelWrapper, the skeleton learns that the execution requires two T buffer objects, each
occupying sizeof(T )×500 bytes of memory. This information allows the skeleton to man-
age its resources accordingly, and even to perform optimizations that yield performance
gains.

3.3 Overlap Between Communication and Computation

Modern GPUs are capable of performing simultaneous bi-directional data transfers be-
tween memories (host and device), while executing computations related to one or more
kernels. This ability allows developers to introduce another level of concurrency at the
computational level. Not only can the computations be executed in parallel, in accor-
dance the SIMD model, but the decoupling between memory spaces, when combined
with the GPU’s previously stated capabilities, induces developers to submit the opera-
tions in a such a fashion that reduces the GPU’s idle time. This technique is refereed to as
overlap between communication and computation. However, such an execution scheme
adds a serious amount of complexity to the host orchestration. For this reason, hiding
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this complexity inside a skeleton proves to be ideal.
Our approach identifies three classes of operations that may take advantage of this

overlap: transfers to device memory (writes), kernel executions, and transfers from de-
vice memory (reads). Usually these classes of operations are associated to a particular
kernel execution, meaning that operations associated to a specific data-set are indepen-
dent from the remainder. Therefore, our skeletons reach overlap by optimizing the in-
terweaving of operations associated to distinct data-sets in a manner that enables their
parallel execution, hence seamlessly increasing overall performance. Figure 3.2 depicts
an operation execution order where the operations, relative to three different data-sets,
are computed in an order that minimizes the device’s idle time. In this exemplification,
after writeW1 is completed the device proceeds to carry outW2, doing so in parallel with
the kernel execution K1. Subsequently, after K1 is completed, the device starts read R1,
while executing K2. This scheme continues for the successive operations.
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Figure 3.2: An overlapped execution order

Be that as it may, not all applications benefit from the overlap. For instance, memory
transfer bound applications usually tend to not benefit as much as computation heavy ap-
plications. The perfect scenario, i.e. that yields the highest performance increase, would
present itself when the three classes of operations, of a particular data-set execution, take
an approximate amount of time to complete, just as in the illustrative example. Further-
more, the performance increase provided by the overlap is accumulative, consequently it
is more significant when the skeleton is used to process a high number of data-sets before
being deallocated. These preliminary assessments are further elaborated, and supported
by experimental results, in Chapter 5.

The overlap mechanism is closely connected to the nesting mechanism, such that the
former uses the latter to introduce its functionality to every nested skeleton, as expatiated
in the subsequent section. This compatibility removes the requirement for all skeletons
to provide overlap as a base functionality, which simplifies the skeleton design process.
Therefore, only a very particular set of skeletons provides overlap, being its functionality
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widespread to the remainder via nesting. Overlap enabling skeletons are highlighted in
Section 3.5.

3.4 Nesting

Skeleton nesting is a design functionality for the development of intricate, often multi-
kernel, parallel applications. It is characterized by the ability to couple different skeletons
into a single multi-level construct, that encloses a diverse set of behaviours. Accordingly,
from the developer’s perspective, employing nesting to build a more sophisticated ap-
plication is analogous to developing a complex system by combining distinct software
modules. This added flexibility is also beneficial to the skeleton design process, in that
each skeleton is simpler, and only offers a few specific functionalities, not present in other
skeletons.

A nested skeleton application can be regarded as a composed acyclic graph (com-
position tree), on which every node shares a general computational domain. The tree’s
nodes can be categorized into three classes, based on the interactions with their ances-
tor/children, on the resources they manage, and on the types of operations they issue
to the device. These three categories are: root skeleton, inner skeleton, and leaf node.
At minimum, a composition tree has two levels, being comprised of one root with one
or more leafs. More complex trees have inner skeletons, which naturally increases the
height of the tree.

The root node is the primary element of the composition tree. It is responsibly for
processing the application’s execution requests, which implies submitting one or more
OpenCL executions. Therefore, the root must manage most of the resources necessary to
accomplish such execution, as well as performing data transfers between host and device
memory. Additionally, it prompts executions on its children, parametrizing them with a
specific set of context resources. For instance, the OpenCL structures that they must use
to issue executions, or memory objects that hold the input data and are targets for out-
put. The root must also ready the resulting data for the application, by setting it on the
desired memory cells and notifying the respective future object. Lastly, the effectiveness
of the overlap between communication and computation is directly proportional to the
position, on the composition tree, of the node that applies it. The higher it is, the more
sub-trees it affects. Hence, in order to maximize performance, overlap between commu-
nication and computation is always applied by the root node.

The inner nodes are skeletons whose role is to introduce a specific execution pat-
tern/behaviour to their sub-tree. These nodes might not need to allocate resources, since
they are encased in a computational context created by the root. This computational con-
text is also used by the inner node when issuing executions on its children.

Leaf nodes should not be referred to as skeletons because they do not introduce a spe-
cific execution behaviour, instead they export an executional object (kernel). As a result,
leaf nodes are represented by KernelWrapper objects, which, in turn, are used to finalize
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the construction of the composition tree. The KernelWrapper abstracts other executional
entities from the notion of kernel. By doing so, it helps to standardize the concept of a
Marrow executional entity, i.e., a composition tree node.

A skeleton whose executional pattern requires the manipulation of input/output data
on host memory is incompatible with the nesting mechanism, and thus can only be used
as a root node. In turn, to be used as an inner node (to support nesting), a skeleton must
be able to perform its execution on pre-initialized device memory, issued by its ancestor.
Furthermore, it should be able to share an execution environment with other nodes, even
if it adds state (e.g., memory objects, executional resources) to that environment. In any
case, a skeleton that supports nesting is also eligible to become the root of a composition
tree.

3.5 Skeletons

Marrow currently supports the following set of task- and data-parallel skeletons: Stream,
MapReduce, Pipeline, Loop, and For.

3.5.1 Stream

The Stream skeleton, depicted in Figure 3.3, defines a computational structure that con-
fers the impression of persistence to an OpenCL execution. This notion is achieved by
introducing parallelism between device executions associated to distinct data-sets, par-
ticularly, between the three classes of operations previously identified in Section 3.3. The
Stream is able to apply this parallelism even if the ensemble of input data is supplied
to the skeleton over time, in a discrete manner. As a result, the Stream introduces over-
lap between communication and computation in the skeleton execution. To simplify the
overall framework design, only the Stream natively provides this functionality. If this be-
haviour is desirable elsewhere, it is obtainable via nesting on a Stream, or its direct usage.
Even if other skeletons provide overlap as a stand-alone it is done by, in some way, using
a Stream.
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Figure 3.3: The Stream skeleton

As expected, this execution behaviour requires direct control over the input data. As
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a consequence, the Stream is only qualified as a root node, and thus, cannot be nested.
However, this is not a limitation, since it is desirable to provide overlap to as many nodes
as possible. Ergo, the Stream is most useful when it is the root of the composition tree.
By definition, this skeleton applies the same computation to every data-set, regardless
if the former is a kernel or a sub-skeleton. Consequently, the Stream is classifiable as a
data-parallel skeleton.

3.5.2 MapReduce

The proposed MapReduce skeleton, illustrated in Figure 3.4, applies the same computa-
tion to independent partitions of a given data-set, and, as such, is classifiable as a data-
parallel skeleton. Its execution pattern is separated into three stages:

1. split – This stage divides the input data into a user-defined number of partitions. It
is computed on the host side.

2. execute – This stage issues executions on each of the data partitions. Each of these
executions maps the kernel to a set of elements from the input data-set. It is exe-
cuted by the OpenCL device.

3. merge – This stage aggregates (reduces) the results of the executions. It is carried
out on the host side.

 

 

  

 

Output 
Input 

sp
li

t 

m
er

ge
 

In1 

In2 

In3 

InN 

…
 

Out1 

Out2 

Out3 

OutN 

Execute 

…
 

…
 

Execute 

Execute 

Execute 

Figure 3.4: The MapReduce skeleton

Considering that this construct is designed for GPU computing, its behaviour differs
from the general definition of a MapReduce skeleton, such as Skandium’s Map. In this
context, the overheads that originate from a GPU execution suggest that the latter should
only be used to process a large amount of data-elements. Ergo, an input data-set is split
into partitions, instead of singular data-elements, and an OpenCL execution is issued on
each one. On the other hand, GPUs are not particularly efficient when aggregating, or
reducing, all the elements of a data-set into a single scalar value. Instead, it is preferable
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to reduce part of the data on the GPU and return N number of elements, where N is
a power of two larger than a certain threshold, to be finally reduced on the CPU. This
threshold varies across GPUs, and its selection should result from an analysis identical
to the one presented in Chapter 2, in the end of Section 2.1. Nonetheless, this strategy
is compatible with the utilization of a GPU reduction. To this end, the developer should
implement a reduction kernel and used it when instantiating a MapReduce.

To adjust the behaviour of the MapReduce skeleton the developer must implement two
functions: split, and merge. The first receives the input data and divides it into partitions,
whilst the second receives the output of each execution and combines them into a single
value. Both functions work with memory references and do not require in-function data
transfers, which in turn increases their overall efficiency.

Splitting the input data into several partitions offers a great opportunity to use over-
lap between communications and computations, particularly between executions asso-
ciated to distinct partitions. As such, the MapReduce skeleton overlaps the operations
associated to each partition, increasing application performance. Should be noted that
this skeleton introduces overlap as a standalone, i.e. does not need to be nested with any
other skeleton. The reasons behind this will become clearer in the next chapter.

Concerning the nesting mechanism, the MapReduce is not nestable, since it directly
manipulates both the input and output data. This decision was made considering that
in our execution model it makes more sense, performance-wise, to divide the input in
the host-side and then to apply overlap, than to write everything to device memory and
subsequently sub-divide the resulting memory objects.

3.5.3 Pipeline

The proposed Pipeline skeleton, illustrated in Figure 3.5, is analogous to the one presented
in Section 2.4, of Chapter 2. It allows the developer to efficiently combine a series of data-
dependant serializable tasks, that can exploit the overlap between communications and
computations. Bearing into consideration that memory transfers between main and GPU
memories introduces a significant overhead, this behavioural scheme is ideal for GPU ex-
ecution since the intermediate data does not need to be transferred back to main memory
for it to become available to next stage. In turn, the application of distinct computations
to different data-sets classifies the Pipeline as task-parallel skeleton.
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Figure 3.5: The Pipeline skeleton
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This execution pattern is suitable for an execution that starts with pre-initialized de-
vice memory objects, and is fully compatible with a shared execution environment. Ac-
cordingly, this skeleton supports nesting. For the sake of simplicity, a single Pipeline fea-
tures only two stages. Similarly to Skandium, the construction of pipelines with arbitrary
number of stages must resort to nesting.

Overlap is very advantageous to a pipelined execution, since it enables overlap be-
tween memory transfers and kernel executions, as well as between stages, assuming that
the computing device supports multi-kernel executions. This characteristic boosts the
Pipeline’s parallelism factor, and naturally the application’s performance. However, the
Pipeline by itself does not provide overlap. Such behaviour can only be attained by nest-
ing a Pipeline in an overlap skeleton.

3.5.4 Loop and For

The Loop skeleton, depicted in Figure 3.6, presents a construct that applies an iterative
computation to a given data-set, while a certain condition is met. The Loop supports
two distinct computational strategies: one where its condition is affected by changes
that occur externally to the execution domain (like in a for loop), and another where the
condition is affected by partial results, computed by every iteration (like in a while loop).

When the Loop is parametrized with input data, for instance after the application in-
vokes write, it starts by checking the validity of the condition. If the latter is valid, the
computations (e.g., kernel, sub-skeleton) are applied to the input data. After the exe-
cution is completed the Loop progresses its state, using the appropriate computational
strategy. At this point, if the partial results affect the Loop’s state they are read to host
memory, allowing them to be processed. Therefore, the Loop’s condition is re-evaluated,
inducing the usual semantics of a while loop. If the condition is still valid, after the last
step, the process repeats itself. Otherwise, the Loop’s state is reset and the last partial
results are presented as the final results.

Therefore, in this scenario, the overlap between communications and computations
is very beneficial since the device may conciliate several Loop executions, each performed
on a independent input data-set. For example, the device might execute one kernel in-
stance while performing partial reads for another. Be that as it may, to apply overlap to
its computations the Loop must be nested in a skeleton that provides it, like a Stream.

To support overlap between communications and computations the Loop skeleton
must be able to provide an isolated loop state environment to each execution, letting the
latter evolve independently from each other. A loop state wraps the necessary informa-
tion about the manner in which the Loop executes: how to evaluate its condition, and how
to progress and reset its state. As a result, the Loop manages multiple state environments,
allowing the operations issued within an environment to be carried out independently,
and concurrently, with others.

In order to adapt the Loop’s computational behaviour to a specific application, the
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Figure 3.6: The Loop skeleton

developed must provide concrete implementations of the following functions, associated
to a loop state environment:

condition – Evaluates the condition that determines if the Loop should continue or ter-
minate. It returns true or false according to the need to reapply the computations
to the data.

step – Function executed after each iteration. It allows the advancement of the respective
state, using for that matter, or not, the partial results computed by the last iteration.
For instance, in case of a for loop this function simply decrements the number of
remaining iterations. In turn, in case of a while loop this function would change the
variables evaluated in condition in accordance with the partial results.

reset – Resets the state to its original values, allowing it to be re-utilized with other
data-sets.

The Loop must be able to create environments on demand, for it to enable overlapped
and independent loop executions. Therefore the programmer must implement a factory-
like functions called: createState. This function returns a reference to a pre-initialized
state environment. Given that the latter are resettable, the Loop needs only to create as
many as deemed necessary by parametrization values, issued by the application.

An iterative executional pattern, that always applies the same computations to every
data-set, is able to execute upon pre-initialized device memory objects, and to share an
execution environment with other nodes. Hence, the Loop supports the nesting mecha-
nism, and it is classifiable as a data-parallel skeleton.

In turn, the For skeleton is a specialization of the Loop skeleton that does not require
implementing any functions, simplifying the developer’s job. Logically, a For skeleton
applies the same computations a user-defined number of times to the input data.
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3.6 Programming Model

3.6.1 Programming Model Structure

Marrow’s programming model comprises three major stages: skeleton initialization,
prompting of skeleton executions, and skeleton deallocation. This model is familiar to
developers that have used an object-oriented programming language, as the skeletons
are utilized as regular objects that provide a particular functionality. Moreover, these
skeleton objects contain an implicit parallel computation scheme, that provides its own
synchronization mechanism. The latter is represented by the future object, yielded after
each successful skeleton execution prompt.

Skeleton initialization

The skeleton initialization stage defines the structures and behaviours that are succes-
sively used to issue OpenCL executions. This stage is the most complex and verbose
of all three, as it encompasses the skeleton instantiations, and the KernelWrapper decla-
rations. Instantiating a skeleton involves parametrizing it with other execution entities
(e.g., skeletons, KernelWrappers) via its constructor, which is the basis for Marrow’s nest-
ing mechanism. Nesting is a simple task of instantiating a skeleton with the appropriate
executional entities, in order to build the desirable composition tree. Moreover, a skeleton
that provides overlap can be parametrized with values that affect how many memory-
object sets are allocated.

In its turn, the KernelWrapper, used as a leaf in the composition tree, requires addi-
tional parameters when being instantiated. Firstly, the developer must define the OpenCL
work-load used by the kernel. A usual OpenCL work-load has up to three dimensions of
work-items, further divided into work-groups. The next step is to define the input and
output argument information. This information is specified by parametrizing the wrap-
per with a set of data-type objects exported by Marrow, that extend a IWorkData super
type. These objects include every data-type listed in Section 3.2, and contain relevant in-
formation such as: number of data-elements, basic type, and access permission. This data
is used to correctly allocate the memory objects on which the kernel instances compute.
The developer must guarantee that the order and type of the data-type objects (both input
and output), used to parametrize the KernelWrapper, match the syntactic representation
of the kernel arguments, in the kernel source. Lastly, the KernelWrapper requires a kernel
source file path, and a kernel function name, both passed as strings.

Marrow takes advantages of some functionalities available in C++11. For example,
the use of smart pointers when nesting skeletons. This mechanism ensures a safe uti-
lization of the inner nodes, and safeguards that the same instance is not mistakenly used
in multiple composition trees. Furthermore, skeleton constructors are only parametrized
with smart pointers, that reference other executional entities. As such, only the root node
can be allocated on the stack. Considering that prompting a skeleton execution is done
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through the root node this mechanism is acceptable, and facilitates the root’s internal
resource management routines.

Prompting of skeleton executions

This state specifies how the application issues execution requests. By calling the root’s
write function the application issues a single skeleton execution, that is parametrized with
input and output untyped memory references. This scheme is obviously affected by Mar-
row’s asynchronous execution model. After issuing an execution request, the application
is free to perform any desirable computations, which are performed in parallel with the
skeleton execution. This flexibility allows an application thread to submit, in succession,
multiple execution requests without blocking between them. This scheme can become
conceptually more complex by using a multi-threaded application, on which various
threads concurrently issue execution requests. In any case, synchronizing with the skele-
ton is always done by using a future, returned from soliciting an execution request.

Using untyped memory references as parameters has a singular advantage: it enables
the logical division of the input/output data by means of pointer arithmetic. Obviously
this is more efficient than memory copies, albeit somewhat more complex for beginners.
Given that Marrow does not perform memory copies other than to/from device memory,
the developer may introduce overlap to a singular data-set without in memory divisions.
This functionality is exemplified in Subsection 3.6.3. However, not performing host-side
memory copies means that Marrow does not store the input data prior to its transfer
to the device. Accordingly, it is up to the developer to ensure that the input is always
available throughout the hole respective skeleton execution, up to its completion.

Skeleton deallocation

The final stage is trivial. Since the root node manages every skeleton resources used to
build the composition tree, removing it implicitly deallocates every branch. This includes
inner skeletons, as well as KernelWrappers. Note that if the root skeleton object is allocated
on the stack instead of the heap, this step is unnecessary.

3.6.2 Comparison between Marrow’s and OpenCL’s models

Table 3.2 presents a comparison between the programming model of both, OpenCL and
Marrow. It is observable that the latter has a simpler, and of higher-level, model than the
former. As a result Marrow’s programming model is friendlier towards inexperienced
programmers since: there are few to none low-level programming concerns, it is less er-
ror prone, and the amount of code generated is smaller. Additionally, the asynchronous
API improves the flexibility of the resulting programs, without hampering the simplicity
of our execution model. Nonetheless, our model is still useful for advanced program-
mers that know how to use the OpenCL API to develop complex and efficient parallel
applications.
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OpenCL Marrow

1. Context plus command-queue
creation.

2. Compiling the kernel code and
creating the respective kernel.

3. Memory object allocation, for both
input and output data.

4. Input memory objects initializa-
tion, usually through write oper-
ations.

5. Prompting a kernel execution
with specific kernel arguments.

6. Waiting for the results, and subse-
quently reading them back to host
memory.

7. Deallocation of resources.

1. Skeleton creation. This creation
covers skeleton nesting and kernel
argument definition (stage 1).

2. Issuing execution requests. This
step requires that the input and
output memory addresses are
provided to the skeleton (stage 2).

(Optional) – At this point
other application computa-
tions not related to the skele-
ton execution.

3. Waiting on the future for the re-
sults to become available (stage 2).

4. Skeleton deallocation (stage 3).

Table 3.2: Execution pattern of OpenCL and the proposed skeletons

The previous simple OpenCL application pattern does not introduce overlap between
communication and computation. If it were to be introduced, the OpenCL application
would become considerably more complex, and delve into particular aspects associated
to C/C++ concurrency mechanisms. Yet, Marrow transparently supports this function-
ality. In Chapter 5 we present a more in-depth comparison between these two models,
namely in regards to productivity (number of lines of code).

3.6.3 Programming examples

Following we present some programming examples that illustrate how to use Marrow’s
core functionalities. The presentation follows the model’s stage sequence.

Skeleton/KernelWrapper Initialization

Listing 3.1 depicts a simplified code snippet that shows how to instantiate, and use, a Ker-
nelWrapper. This example applies a Gaussian Noise image filter to a bi-dimensional im-
age, of width imgWidth and height imgHeight (line 2). The work-load is specified via two
vectors (lines 9 to 16), each of size two (two dimensions). For this kernel, the NDRange
index and the image should have equal proportions. In fact, the local work-size param-
eter (which is optional) is only included to provide an utilization example. Regardless,
the global and local work-sizes must have the same number of dimensions.

Listing 3.1: Initialization of a basic composition tree
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1 unsigned int numberPixels; // Number of image pixels

2 unsinged int imgWidth, imgHeight; // Image width and height

3 std::string gaussNoiseKernelFile; // Gaussian Noise OpenCL kernel source file

4 unsigned int numMOS; // Number of used memory object sets for overlap

5 unsigned int blockSize; // Number of work-items per group, in each dimension

7 /****** STAGE 1: Skeleton Initialization ******/

8 // Number of work-items in each dimension

9 std::vector<unsigned int> globalWorkSize(2);

10 globalWorkSize[0] = imgWidth; // x-dimension

11 globalWorkSize[1] = imgHeight; // y-dimension

13 // Number of work-items in each dimension. This parameter is optional

14 std::vector<unsigned int> localWorkSize(2);

15 localWorkSize[0] = blockSize; // x-dimension

16 localWorkSize[1] = blockSize; // y-dimension

18 // Instantiate kernel input argument info

19 std::shared_ptr<IWorkData> bufferInfo(new BufferData<cl_uchar4>(numberPixels));

20 std::vector<std::shared_ptr<IWorkData>> gaussInputData(2);

21 gaussInputData[0] = bufferInfo;

22 gaussInputData[1] = std::shared_ptr<IWorkData> (new SingletonData<int>());

24 // Instantiate kernel output argument info

25 std::vector<std::shared_ptr<IWorkData>> gaussOutputData(1);

26 gaussOutputData[0] = bufferInfo;

28 // Instantiate KernelWrapper

29 std::unique_ptr<IExecutable> kernel (new KernelWrapper(gaussNoiseKernelFile, "

gaussian_transform", gaussInputData, gaussOutputData, globalWorkSize,

localWorkSize));

31 // Instantiate root skeleton with numMOS memory object-sets

32 Stream *s = new Stream(kernel, numMOS);

34 /****** STAGE 2: Prompting of Skeleton Executions ******/

35 // ... Shown in another listing

37 /****** STAGE 3: Skeleton Deallocation ******/

38 delete s;

The following step is to define the kernel argument information, for both input and
output parameters (lines 18 to 26). This Gaussian Noise kernel is parametrized with an
input image, and outputs another. Consequently, it uses two cl_uchar4 buffers, both of
size imgWidth× imgHeight (numberPixels). In this example, the images used as input have
a color depth of 255, in a RGBA color space. Hence, a single, four byte, cl_uchar4 can
store an individual pixel. In addition, the kernel uses a user-defined scalar value in its
computations, represented as the second input argument (line 22).
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Finally, the KernelWrapper is ready to be instantiated, and parametrized with the ap-
propriate values (line 29). Creating a skeleton, for instance a Stream, is a simple process
of using the appropriate executional entities as constructor arguments, in this case a Ker-
nelWrapper (line 32). To adjust the overlap provided by the Stream a parameter numMOS

is used. This tells the skeleton that at any given point it should be able to concurrently
dispatch a maximum of numMOS execution requests.

The second stage of Marrow’s programming model is exemplified later on, in this
Subsection. In turn, the third stage is fully represented in this example at line 38.

Loop Instantiation

Some skeletons are provided as abstract C++ objects, naturally requiring the implemen-
tation of their pure virtual members. An example of such an abstract skeleton is the Loop.
As expatiated in Section 3.5, a Loop skeleton must be able to create loop state objects on
demand. The latter adapt the skeleton’s logic to a particular execution scheme, in which
each state object is, implicitly at any given moment, at most connected to a single ongoing
execution request. Listings 3.2 and 3.3 show the code for an instantiation example. The
implemented Loop is intended to keep issuing OpenCL executions until the standard de-
viation of the resulting set of elements is lower than a given threshold. The used kernel is
not relevant, as the reader may consider that it consumes an input buffer and outputs an
equivalent one. The kernel operation, applied to the input data-elements, is elementary
and of little interest to this example.

Listing 3.2: Declaring a Loop state class
1 /** Mean loop state class **/

2 class DeviationLoopState: public ILoopState {

3 public:

4 DeviationLoopState(unsigned int numElements, float threshold):

5 numElements(numElements),

6 threshold(threshold),

7 cond(true)

8 {}

10 ~DeviationLoopState(){}

12 // @Abstract

13 bool condition(){

14 return cond;

15 }

17 // @Abstract - Calculate standard deviation

18 void step(std::vector<void*> &previousOut){

19 float deviation = 0;

20 float *values = (float*) previousOut[0];

21 // Calculates standard deviation on values array

22 deviation = calculateStdDeviation(values);
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23 // Affect loop continuity

24 if(deviation < threshold){

25 cond = false;

26 }

27 }

28 // @Abstract - Reseting the loop state for consequent skeleton execution

29 void reset(){

30 cond = true;

31 }

32 private:

33 unsigned int numElements; // Number of data elements in calculation

34 float threshold; // Standard deviation threshold

35 bool cond; // Continuity condition

36 // Sets cond as false if standard deviation is lesser than threshold

37 float calculateStdDeviation(float* values){/** ... **/}

38 };

To implement a loop state object, Listing 3.2, the developer must declare a C++ class
that extends the ILoopState interface (lines 1 to 38). The condition and reset functions are
trivial, and self-explanatory (respectively lines 13 to 15, and 29 to 31). On the other hand,
the step function calculates the standard deviation from the output buffer, taken from
the previousOut vector (line 20). It then decides whether it should continue, or stop, the
respective execution (lines 24 to 26).

Listing 3.3: Initialization of a Loop
1 float threshold; // Standard deviation threshold

2 unsigned int numElems; // Number of elements on the arrays

4 /** Mean Loop class **/

5 class DeviationLoop: public Loop {

6 public:

7 DeviationLoop(std::unique_ptr<IExecutable> &exec, unsigned int numElems,

float threshold):

8 Loop(exec, true),

9 numElems(numElems),

10 threshold(threshold)

11 {}

12 private:

13 unsigned int numElems;

14 float threshold;

16 // @Abstract - Create Loop States on demand

17 DeviationLoopState* createState(){

18 return new DeviationLoopState(numElems, threshold);

19 }

20 };

22 // KernelWrapper object instantiation

23 // ... parameter definition
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24 std::unique_ptr<IExecutable> kernel (/* ... Parametrized as previously */);

25 // Instantiate Loop object

26 DeviationLoop *ml = new DeviationLoop(kernel, numElems, threshold);

27 // Given that it is a nestable skeleton is must be explicitly initialized

28 ml->start();

To utilize a Loop, Listing 3.3, the programmer must implement a class that extends the
abstract Loop class (lines 4 to 20). The first aspect to consider is whether the partial results
are necessary to assert the execution’s continuity. If so, the Loop’s constructor should
be called with a true boolean value in its second argument (line 8). The simplest Loop
constructor considers the partial results necessary, by default. As expected, the standard
deviation loop naturally needs to process the partial results. The second aspect is the
implementation of the createState function. The example function simply allocates and
returns references to the user-defined DeviationLoopState objects (17 to 19). All that is
left to do is instantiating a DeviationLoop (line 26), using the appropriate KernelWrapper.
Should be noted that since this skeleton is nestable and is being used as a root, it has to
be initialized explicitly (line 28).

MapReduce Instantiation

Similarly to the Loop, using the MapReduce skeleton involves declaring a base derivative
class that extends the MapReduce abstract class. Listing 3.4 illustrates such an utilization
example. In it, the skeleton is used to apply a trivial arithmetic operation to an input
array, and to subsequently reduce the results into a single scalar value. Again, the kernel
is not, in itself, relevant to the example. Notwithstanding, there is no device reduction
being applied, only a host side one. The implementation process begins by the definition
of a class that extends MapReduce, namely MyMapReduce class (lines 6 to 48). It expounds
the two main functionalities: splitting the input, and merging the results.

Listing 3.4: Initialization of a MapReduce
1 unsigned int numberElems; // Total number of elements

2 unsigned int numMOS; // Number of buffer sets used for overlap

3 unsigned int numDivisions; // Number of partitions generated

5 /** MapReduce class **/

6 class MyMapReduce: public MapReduce {

7 public:

8 MyMapReduce(std::unique_ptr<IExecutable> &map, unsigned int dataSize,

unsigned int numDivisions,unsigned int numMOS):

9 MapReduce(map, numDivisions, numMOS),

10 dataSize(dataSize)

11 {}

13 MyMapReduce(std::unique_ptr<IExecutable> &map, unsigned int dataSize,

unsigned int numDivisions):

14 MapReduce(map, numDivisions),
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15 dataSize(dataSize)

16 {}

18 // @Abstract - Split the input data into partitions

19 void split(const std::vector<void*> &input, std::vector<std::vector<void*>> &

splited){

20 unsigned int numDiv = getNumDivisions(); // Number of divisions

21 unsigned int offset = dataSize / numDiv; // Number of elements per

partition

22 // Defining where the partitions start on the input array, for each

division i

23 for(unsigned int i = 0; i < numDiv; i++){

24 splited[i][0] = input[0] + (i * offset * sizeof(float));

25 }

26 }

28 // @Abstract - Reduce the output results, for each partition execution

29 void merge(const std::vector<std::vector<void*>> &results, std::vector<void*>

&output){

30 unsigned int numDiv = getNumDivisions(); // Number of divisions

31 unsigned int workSize = dataSize/numDiv; // Number of elements per

partition

32 float *outValue = (float*) output[0]; // Result placeholder

33 float aux = 0; // Auxiliar counter

34 for(unsigned int i = 0; i < numDiv; i++){

35 // Get partial result (the output array)

36 float* result = (float*) (results[i][0]);

37 // Reduce all values in the partial result

38 for(unsigned w = 0; w < workSize; w++){

39 aux += result[w];

40 }

41 }

42 // Save to output

43 *outValue = aux;

44 }

46 protected:

47 unsigned int dataSize; // Total number of elements

48 };

50 // KernelWrapper object instantiation

51 // Number of elements per partition

52 unsigned int workSize = numberElems/numDivisions;

53 // Input/output argument info

54 std::vector<std::shared_ptr<IWorkData>> inDataInfo(3);

55 inDataInfo[0] = std::shared_ptr<IWorkData> (new BufferData<float>(workSize));

56 vector<std::shared_ptr<IWorkData>> outDataInfo(1);

57 outDataInfo[0] = std::shared_ptr<IWorkData> (new BufferData<float>(workSize));

58 std::unique_ptr<IExecutable> kernel (new KernelWrapper(KERNELFILE,

KERNELFUNCNAME, inDataInfo, outDataInfo, workSize));
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59 // Instantiate a MyMapReduce base skeleton, with optional numMOS parameter

60 MapReduce *mr = new MyMapReduce(kernel, numberElems, numDivisions, numMOS);

Before implementing the split function, the developer must take into consideration
that the executions are applied to partitions of the original input data-set. Therefore, the
KernelWrapper’s data-type arguments should be parametrized in a manner that defines
a sub-workspace. That is, the work-load and memory spaces used in the computations
should define an execution that processes a data-partition, instead of a full data-set. For
instance, the parametrization done in the example sets the size of the argument buffer as
worksize = numberElems

numDivisions (line 52), that is to say, the size of a partition (lines 54 to 57). This
value also defines the unidimensional work-load. Note that, since the work-load is unidi-
mensional, it can be passed as an integer to the KernelWrapper (line 58). The split function
works well with pointers and does not require memory transfers. This function (lines 19
to 26) uses an input vector that contains the application-defined input data (input), plus
the partitions matrix as a place holder for the partitions. The latter are structured as fol-
lows: the first dimension represents each partition, while the second represents the input
arguments for each partition execution. In the example, the MyMapReduce divides the
input by setting the appropriate memory offset in the second dimension of partitions for
each partition, via pointer arithmetic (lines 23 to 25).

In turn, the merge function (lines 29 to 48) is inversely parametrized. It reduces the
data taken from the results matrix (lines 34 to 41) into one or more values. The latter are
consequently saved to memory, pointed out by references taken from the output vector
(lines 32 and 43). The memory references stored in output are provided by the application
when prompting skeleton executions. Again, this function works with pointer arithmetic
in order to avoid heavy memory copies.

Since the MapReduce skeleton provides overlap it may be parametrized alike a Stream,
in Listing 3.1. In contrast, the numDivisions parameter is mandatory (line 9), as it repre-
sents the number of partitions that the developer intends to employ.

Nesting

Listing 3.5 gives an example of Marrow’s skeleton nesting. The code snippet shows a
three-staged image filter pipeline construction, that introduces overlap to its computa-
tions. In detail, after the KernelWrappers are appropriately initialized (alike in Listing 3.1),
the Pipeline p1 is instantiated with the first two kernels - representing the first two stages.
Then, Pipeline p2 is created and parametrized with p1 along with the last KernelWrapper.
Ultimately, the Stream s is instantiated with p2. This scheme creates a composition three
represented by s1(p2(p1)), in which the kernels associated with the innermost skeleton
are computed first. As shown, Marrow’s skeletons do not distinguish KernelWrappers
from nestable skeletons, thus standardizing the nesting mechanism.

Listing 3.5: Nesting exemplification
1 // ... instantiate KernelWrappers
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2 // instantiate inner skeletons

3 unique_ptr<IExecutable> p1 (new Pipeline(gaussKernel, solariseKernel));

4 unique_ptr<IExecutable> p2 (new Pipeline(p1, mirrorKernel));

5 // instantiate root skeleton

6 Stream *s = new Stream(p2);

Prompting Skeleton Executions

After the composition tree is constructed the application may requisite skeleton execu-
tions on its root node. To demonstrate this functionality (stage 2) we point to Listing 3.6.
It displays a code snippet that builds upon the example presented in 3.1, using that par-
ticular composition tree, along with the same kernel. It goes without saying that the
kernel data-type arguments defined at initialization time are intimately correlated with
the consequent parametrization of an execution request. Not only do the arguments must
match, in type and size, but also they should be set by the same order as the kernel argu-
ments. In particular, the memory references assigned to the skeleton execution are sent
in two void* vectors (lines 6 to 13). These define the memory positions from which, and to
where, the skeletons perform data-transfers. Logically these should point to the correct
input/output data (lines 2 and 3).

Subsequently the application requests a skeleton execution (line 15), and receives the
corresponding future. From this point onward it can perform additional computations
(line 17), or wait for the execution’s completion (line 20). Note that the application is
responsible for managing the returned future objects, namely their deallocation (line 21).

Listing 3.6: Execution example
1 // ... Previous variables

2 unsigned int *inputImg, *outputImg // Image input and output buffers

3 unsigned int factor; // Internal kernel value

4 IFuture* future; // Future placeholder

6 /***** STAGE 2: Prompting of Skeleton Executions *****/

7 std::vector<void*> inputValues(2); // Input memory references placeholder

8 std::vector<void*> outputValues(1); // Output memory references placeholder

10 // Defining the input/output parameters

11 inputValues[0] = inputImg;

12 inputValues[1] = &factor;

13 outputValues[0] = outputImg;

14 // Prompting a execution request

15 future = s->write(inputValues, outputValues);

17 // ... Other application computations here

19 // Waiting for the results

20 future->wait();

21 delete future;
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Overlap to a Single Input Data-set

In the previous example the Stream skeleton is able to apply overlap between concur-
rent filter applications. That is, it may concurrently orchestrate numMOS instances of
the Gaussian Noise kernel, allowing the concurrent processing of numMOS input images.
Yet, if the kernel is applicable to a sub-set of the input data, for instance a slice of the
image, the application may apply a finer grained overlap (on a single data-set). This is
demonstrated in Listing 3.7, an example based on Listing 3.6.

Supporting such an execution scheme implies modifying the KernelWrapper instanti-
ation to match a sub data-set execution. This requires redefining the kernel work-load, in
addition to changing the sizes of the kernel argument data-types. To quantify these as-
sertions consider a 1024×1024 input image that is to be divided into four segments by its
height. Thus, rather than a imgWidth× imgHeight NDRange index space, the latter should
be delimited by imgWidth × deltaY (lines 6 to 10), where imgWidth = imgHeight = 1024

and deltaY = imgHeight
4 . In turn, the buffer memory objects must be re-dimensioned to

imgWidth × deltaY (line 15). The skeleton definition remains unaltered, as the nesting
mechanism is not affected.

When preparing the data-sets for skeleton processing, dividing the input data can be
accomplished by simply performing the appropriate pointer arithmetic calculations. In
the example, an offset is calculated prior to each segment execution request, and used to
determine the beginning of the segment on both input/output application buffers (lines
31 to 35). Logically, every execution request returns a future object. The next step de-
pends on the application’s internal logic. The application might carry out additional
computations, or wait for the completion of the skeleton executions (line 44). Remember
that the application must guarantee that the input/output memory references are valid
while the application request, to which they are associated, is not completed.

Listing 3.7: Execution example
1 // ... previous variables

2 unsigned int deltaY; // height of each segment

3 unsigned int numSegments; // Number of data segments

4 unsigned int factors[numSegments]; // internal kernel values

6 /****** STAGE 1: Skeleton Initialization (modified) ******/

7 // Number of work-items in each dimension

8 std::vector<unsigned int> globalWorkSize(2);

9 globalWorkSize[0] = imgWidth; // x-dimension

10 globalWorkSize[1] = deltaY; // y-dimension

11 // ... Local work size definition

13 // Instantiate kernel input argument info

14 std::shared_ptr<IWorkData> bufferInfo(new BufferData<cl_uchar4>(imgWidth*deltaY

));

15 std::vector<shared_ptr<IWorkData>> gaussInputData(2);

16 gaussInputData[0] = bufferInfo;
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17 gaussInputData[1] = std::shared_ptr<IWorkData> (new SingletonData<int>());

19 // Instantiate kernel output argument info

20 std::vector<std::shared_ptr<IWorkData>> gaussOutputData(1);

21 gaussOutputData[0] = bufferInfo;

22 // ... Instantiate KernelWrapper

24 /***** STAGE 2: Prompting of Skeleton Executions *****/

25 IFuture* futures[numSegments]; // Future placeholder

26 std::vector<void*> inputValues(2); // Input memory references placeholder

27 std::vector<void*> outputValues(1); // Output memory references placeholder

29 // Aplication of overlap to a single data-set

30 for(int y = 0, i = 0; i < numSegments; i++, y += deltaY){

31 int offset = sizeof(cl_uchar4)*imgWidth*y; // Start of each segment, per

iteration

32 // Setting input/output memory references

33 inputValues[0] = inputImg + offset;

34 inputValues[1] = &(factors[i]);

35 outputValues[0] = outputImg + offset;

36 // Prompting a execution request

37 futures[i] = s->write(inputValues, outputValues);

38 }

40 //.. Other application computations here

42 for(int i = 0; i < numSegments; i++){

43 // Waiting for the results

44 futures[i]->wait();

45 delete futures[i];

46 }
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4
Architecture and Implementation

In this chapter we present a detailed view of our proposal’s architecture, in addition to
explaining the implementation behind Marrow and its skeletons. We start by introduc-
ing Marrow’s software stack (Section 4.1). Afterwards, we elaborate on the implementa-
tion of Marrow’s functionalities (Section 4.2). Lastly, we explore another implementation
strategy that was attempted, but did not meet the expectations (Section4.3).

4.1 Architecture

Our library’s software stack, illustrated in Figure 4.1, is divided into four layers: User
Applications, Skeleton Library, Runtime, and OpenCL Enabled Device. The communication
between layers is always processed downwards, towards the computational device (fun-
damentally GPUs), and is achieved via well defined APIs. The ASkF was built on top
of the OpenCL language, used in both Skeleton Library and Runtime layers, yet at differ-
ent levels. That is, OpenCL functionalities used in the Runtime layer are not used in the
Skeleton Library, and vice versa.

Applications

This layer represents the C++ applications that use our skeleton constructs. These appli-
cations are completely oblivious to the underlying OpenCL runtime management, and
issue OpenCL computations through one or more skeletons, from the skeleton library
layer.
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Figure 4.1: The Marrow software stack

Skeleton Library

The skeleton library is the largest layer of Marrow’s software stack. It not only holds the
provided skeletons, but also, the objects that define and parametrize an executable object
(e.g., KernelWrappers, data-types). Taking as an example the Gaussian Noise kernel of
Listing 3.1, the KernelWrapper must inform the Stream that the kernel’s arguments are two
buffers of uchar4 elements (input/output), both of size sizeof(uchar4) × uiImageWidth ×
deltaY. This information is contained in IWorkData objects utilized to instantiate the Ker-
nelWrapper. Thus, the IWorkdata objects are shared among the nodes of the composition
tree, all the way up to the root. These kernel data-type objects are defined as follows:

• BufferData – Defines an argument as being a buffer memory object of type T and
size N , where N > 0. The programmer defines T using the C++ template mecha-
nism, and parametrizes the object with an integer that reflects the number of values
(N ) of type T that the buffer may hold.

• SingletonData – Defines an argument of type T as a single value that may vary
between executions, where T is defined via the C++ template mechanism. Upon
execution request, a memory reference to this value is passed to the root node,
along with the other input/output references.
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• FinalData – Equivalent to SingletonData. However, it is constant over every ex-
ecution and, as such, the corresponding data value is defined when the object is
instantiated.

• LocalData – This data-type behaves similarly to BufferData. However, instead of
defining a buffer memory object, this data-type prompts the KernelWrapper to pre-
allocate device local memory, for subsequent kernel executions.

• Image2DData – Defines a 2D image memory object of width W and height H , with
W,H > 0. The instantiation process requires the definition of both W and H , along
with the image channel data type and image channel order. At the time of writing,
the supported channel data type and order were, respectively, UNORM_INT8, and
RGBA. The latter are exported by IWorkData.

Runtime

The runtime layer is composed of behavioural modules that aggregate and export base
OpenCL functionalities, used recurrently in the upper layer. These base functionalities
can be grouped into three categories: resource allocation/management, kernel creation,
and error parsing/exceptions. The modules that offer these functionalities are conse-
quently expatiated.

The nesting mechanism requests that every node, of the composition tree, shares a
common computational environment. In turn, an OpenCL execution requires the defi-
nition of a context that holds most of the information associated to a kernel execution.
Consequently, every node must be able to access the same OpenCL context, and to add
information to its state. To address this issue, the runtime layer offers an object that rep-
resents an OpenCL context, named ExecutionPlatform. The latter is shared between every
node, and can be used to allocate OpenCL resources on demand (e.g., command-queues,
memory objects). Furthermore, it is able to query information about the device associated
to the context, useful to ascertain support to a particular functionality (e.g., device glob-
al/local memory sizes, max number of kernel dimensions, max number of work-item
per dimension). When the ExecutionPlatform is released, it frees all the OpenCL resources
that it had previously allocated upon request, thus acting as a resource manager. In this
way the node’s memory management is clearly simplified, at least regarding OpenCL
resources. Note that, there is only one ExecutionPlatform per composition tree, whose
allocation is responsibility of the root node.

Creating an OpenCL kernel requires performing a series of well defined constant
steps, that can be combined into one base functionality. Accordingly, the runtime layer
provides a KernelBuilder object that manages all the stages related to the kernel creation
process. The KernelBuilder is able to generate a kernel object from a specific set of runtime
values. This set includes: a kernel file path, a kernel function name, a context, and an
OpenCL device (associated to the context). The kernels are either built after compiling
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the source code, or built from pre-compiled binaries. At runtime, the binaries are created
after the kernel is compiled for the first time, or updated after the kernel is modified.
Moreover, they are named after the kernel file plus an added .bin extension, and stored
next to the original source. For example, kernel k.cl would render a binary file named
k.cl.bin. It comes as no surprise that building a kernel from binaries, instead of from
source, is much quicker, and as a result preferable when possible.

Error parsing in OpenCL is a tedious and verbose process, since the errors are re-
turned as integers that have to be compared with error values provided the OpenCL
API (e.g., CL_INVALID_COMMAND_QUEUE, CL_INVALID_CONTEXT). In an effort to nor-
malise error handling we have taken two measures. Firstly, we have identified fatal er-
rors that can be triggered by the programmer, and have associated them to an exception.
For instance, if the given kernel file does not exist, or the device does not have enough
memory to accommodate the execution an exception is thrown. Secondly, we have im-
plemented a class called OpenCLErrorParser that is able to parse integer errors to repre-
sentative strings, facilitating error identification. Together, these tools make for a strong
error handling system, not only internally but also for the developer.

OpenCL Enabled Device:

The lowest layer is naturally the execution platform that runs the parallel computations.
Although Marrow is compatible with any OpenCL enabled device, its rationale is centred
on the GPU architecture. However, since we use OpenCL the code produced by our ASkF
is portable to other OpenCL compatible parallel architectures, like multi-core CPUs. Note
that overlap between communication and computation is mostly advantageous to a GPU,
and may not be of great use in other parallel architectures.

4.2 Implementation

This section presents the implementation of the major functionalities provided by Mar-
row, in particular: the execution model, the nesting mechanism, and the skeletons.

4.2.1 Execution Model Specificities

The separation between application and skeleton computations is the most distinguish-
ing property of the Marrows’s execution model. Our approach to achieve an asynchronous
computational model was to use a master-worker scheme, where the application is the
master and each skeleton has at least one worker. Naturally, this model requires the use
of concurrent programming constructs (e.g., threads, mutexs, conditions). Our initial
approach was to use the C++11 threading facilities. However, when the implementa-
tion process began not all C++ compilers where fully compatible with C++11. As such,
we opted to use a popular non-standard C++ multi-platform library that offers its own
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threading facilities, named Boost C++ Libraries1. As a result, Marrow’s source code, plus
its resulting applications, are portable and platform-independent, requiring only that the
underlying platform supports both OpenCL and Boost C++. On the other hand, if need
be Boost’s threading facilities are completely interchangeable with, and equivalent to,
C++11’s, even sharing the same names between homologous constructs.

Our execution model is, logically, common to all the provided skeletons. Ergo, all
skeletons have to transparently provide an equivalent master-worker computational scheme.
To accomplish this requisite all skeletons extend an abstract class named ISkeleton. This
class offers functionalities that are common to every skeleton, yet leaves some core be-
haviours to be implemented by each of these. The class’ definition is illustrated in List-
ing 4.1.

Listing 4.1: ISkeleton class member function definition
1 class ISkeleton {

2 public:

3 /**
4 * Issues a skeleton execution that uses as input the references from

inputData, and writes the results to the references at outputData.

5 * This method is asynchronous.

6 * @param inputData - Vector containing the input data memory references.

7 * @param outputData - Vector containing the target memory for the results.

8 * @return A Future object associated to the execution. When the latter is

completed the Future is notified.

9 */

10 virtual IFuture* write(const std::vector<void*> &inputData, const std::vector

<void*> &outputData);

11 protected:

12 /**
13 * Used to adapt the execution behaviour to each skeleton. It is the main

function of the execution process since it prompts the hole skeleton

execution.

14 * It is where the writes/reads to/from device memory are performed, and

where sub-skeleton execution is requested.

15 * @param inputData - The execution request, that contains input/output

memory references, plus the Future object associated to the execution.

16 */

17 virtual void executeSkel(requestData &inputData) = 0;

18 /**
19 * Allows each skeleton to have its own OpenCL initialization process, to

allocate the necessary OpenCL resources.

20 */

21 virtual void initOpenCL() = 0;

22 /** OTHER PROTECTED FUNCTIONS **/

23 /** ... **/

24 };

1http://www.boost.org/
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To issue a skeleton execution, the master calls the write function with the appropriate
parametrization. This function places a skeleton execution request in a FIFO request-
queue (a C++ STL list). An execution request comprises memory references provided
by the master, along with a reference to a future (not to be confused with C++11 future).
Storing an execution request triggers pending workers, prompting one of them to process
the request. Before finishing, the write function returns a reference to the future object.

When a worker takes a request from the queue, it passes it to the executeSkel pure vir-
tual function. The latter is responsible for performing the computations according to the
skeletons involved in the execution, which may involve issuing write/read operations,
and also prompting sub-skeleton executions. Subsequently, when execution is completed
the worker tries to fetch another request. This cycle continues until the master destroys the
root node. Since all nodes of the composition three share the same computational en-
vironment, it is logical to consider that only one of them needs to manage the requests.
Naturally, such a responsibility befalls upon the root node.

In turn, the initOpenCL pure virtual function is used to create the computational en-
vironment used throughout the tree, as well as other OpenCL resources specific to the
root’s requirements. It is where, for instance, the ExecutionPlatform object and/or the re-
quired memory objects are allocated. Given that non-root nodes do not create their own
computational environment, this function is only called by the root node.

4.2.2 Nesting

Supporting a nesting mechanism for OpenCL based skeletons poses several challenges.
First of all, we had to define a method that would enable a skeleton to share its computa-
tional environment with others. Moreover, we had to determine what information about
the execution pattern of a nested skeleton is useful to the root node. Lastly, the solution
had to permit a nested skeleton to export its execution, such that it may be prompted by
its ancestor.

Our approach was to define a nesting interface class called IExecutable, depicted in
Listing 4.2. The class offers informative functions, used by other skeletons to query ex-
ecutional requirements, in addition to two executional functions, namely: initExecutable

- to initialize the node with the shared computational environment, and execute - exports
the node’s computations in a well defined manner.

Listing 4.2: IExecutable class member function definition
1 class IExecutable {

2 public:

3 /*###################### Executional Functions ############################*/

4 /**
5 * Initializes this executable according to its ancestor’s computational

environment.

6 * After this step the executable is fully functional.

7 * @param executionContext - Shared computational environment.
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8 * @param memCount - Number of memory object sets to be allocated.

9 */

10 virtual void initExecutable(std::shared_ptr<IPlatformContext>

executionContext, unsigned int memCount) = 0;

11 /**
12 * Method that exports the execution behaviour offered by the executable.

13 * It issues its execution to the received command-queue, using the pre-

inicialized input/output memory objects.

14 * It synchronizes its computations, with the received waitEvent, only

executing after the latter is deemed as completed.

15 * Lastly, if the executable performs read operations, they should be

targeted at the values stored in resultMem.

16 * This may remove unnecessary read operations, performed by the root.

17 * @param executionQueue - The used command-queue.

18 * @param inputData - The memory objects that hold the input data.

19 * @param singletonInputValues - Singleton values to be passed onto the

kernels.

20 * @param outputData - The memory objects where the results should be stored.

21 * @param waitEvent - Event used to synchronize the execution. The latter may

only start after the first is completed.

22 * @param resultMem - If the executable performs read operations, they should

be performed to these memory references.

23 * @return An event associated to this object’s execution.

24 */

25 virtual cl_event execute(cl_command_queue executionQueue, std::vector<cl_mem>

&inputData, std::vector<void*> &singletonInputValues, std::vector<cl_mem

> &outputData, cl_event waitEvent, std::vector<void*> &resultMem) = 0;

27 /*##################### Informative Functions #############################*/

28 /**
29 * @return True if the objects has been initialized, or false otherwise.

30 */

31 virtual bool isInitialized() = 0;

32 /**
33 * @return A vector of IWorkData objects associated to the input arguments.

34 */

35 virtual const std::vector<std::shared_ptr<IWorkData>> getInputDataInfo() = 0;

36 /**
37 * @return The number of input kernel arguments.

38 */

39 virtual unsigned int getNumInputEntries() = 0;

40 /**
41 * @return A vector of IWorkData objects associated to the output arguments.

42 */

43 virtual const std::vector<std::shared_ptr<IWorkData>> getOutputDataInfo() =

0;

44 /**
45 * @return The number of output kernel arguments.

46 */

47 virtual unsigned int getNumOutputEntries() = 0;
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48 /**
49 * @return The amount of global memory required to carry out the execution.

50 */

51 virtual unsigned long requiredGlobalMem() = 0;

52 /**
53 * @return The amount of local memory required to carry out the execution.

54 */

55 virtual unsigned long requiredLocalMem() = 0;

56 /**
57 * @return True if OpenCL read operations are performed during execution, or

false otherwise.

58 */

59 virtual bool readsData() = 0;

60 };

Since most executional requirements originate from the kernels, the KernelWrapper
objects are the nodes that offer most information. In particular, the information about the
kernel’s arguments, and the amount of device memory needed. By contrast, the inner-
skeletons simply relay the queries to their children, descending the tree until the leafs are
reached and the information is obtained. Naturally, the inner-skeletons effectively cache
this information for future use. The information taken from the leafs is used by the other
nodes, specially the root, to appropriately allocate the necessary resources.

Generally, the nested nodes are initialized by their ancestors, through the initExe-

cutable function, parametrized with the shared computational environment. After ini-
tialized, a node can be prompted by the ancestor to carry out its execution, via the exe-

cute function. Logically, the children require environmental parameters to perform said
execution, namely: a command-queue, pre-initialized device memory objects, and a syn-
chronization event value. These enable sub-nodes to carry out their computations in a
synchronized manner, whilst enclosed in a shared computational environment. In the
end, execute returns an execution-bound synchronization event.

4.2.3 Skeleton Implementation

Up to this point we have discussed the base skeleton implementation (ISkeleton class), in
addition to the fundamentals behind nestable skeletons (IExecutable class). To conclude
this section we will present particular implementation details, relative to each proposed
skeleton. It will help clarify how each skeleton achieves its executional pattern.

Stream: The Stream’s most important functionality is the ability to apply overlap be-
tween communications and computations amidst operations associated to distinct data-
sets. Nevertheless, supporting this functionality is far from trivial, requiring a heavy
host-side management of both input/output data and operation submission/synchro-
nization.
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First of all, each device execution works on a data-set stored as device memory ob-
jects, for input and/or output. Therefore, supporting multiple concurrent device exe-
cutions implies the simultaneous coexistence of multiple data-sets in device memory.
Hence, a skeleton must allocate a number of memory objects that enables it to issue op-
erations associated to distinct data-sets, in an concurrent and independent manner. This
strategy is designated as multiple buffering, or N -Buffering. For instance, lets consider a
Stream s, and kernel k that requires two buffers for its execution (one input and one out-
put). The configuration of s that uses k to concurrently process two data-sets at any given
moment, d1 and d2, requires the allocation of two sets of memory objects, b1, b2. Totalling
four memory objects, one input and one output per set. The skeleton starts by loading d1
into one of the memory object-sets, say b1, and subsequently prompts kernel execution
k1. As soon as k1 begins, the Stream is able to start loading d2 into the remaining mem-
ory object-set (b2). This behaviour is applicable not only between write operations and
kernel executions, but also with read operations, as previously depicted in Figure 3.2.
The actual number of memory object-sets that are pre-allocated is parametrized by the
developer when instantiating the Stream, as stated in Section 3.6.

Nevertheless, attaining overlap requires more than using a N -Buffering technique.
The operations have to be issued, via OpenCL command-queues, in a fashion that al-
lows the device to execute them in parallel. These command-queues offer two execution
modes: in order, and out of order. Ideally, out of order execution would be preferable
since it would allow a command-queue to schedule the operations according to the de-
vice’s availability, as opposed to the order in which the operations where issued. How-
ever, we have ascertained that not every OpenCL implementation supports out of order
command-queues. Consequently, our solution was to use as many in order command-
queues as memory objects-sets, associating each one to a single set. Thus, to achieve
overlap between independent device executions, a Stream uses a single set of memory
objects per execution while issuing operations to its associated command-queue. This
scheme can be scaled out as many times as needed, provided that the platform can sup-
ply the resources.

Albeit the previous orchestration is feasible in a single threaded execution, is it not
very flexible and complicates the implementation and design of every skeleton, notably
in regards to their synchronization. As such, we decided to use more than one worker per
each Stream, specifically as many workers as pre-allocated memory object-sets. In other
words we use a pool of workers, where each is associated to a memory object-set and its
particular command-queue. This not only isolates distinct device executions, but also
simplifies the skeleton design process, since a worker may perform blocking operations
without impacting other executions.

MapReduce: A standard MapReduce pattern applies a function f to every element of a
given data-set. This results in an output where each element is a function of its respective
input counterpart. Logically, this scheme has an one to one relation between the input
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and the output elements. Consequently, the sizes of the input data-sets must be equal
between themselves, and also to the output ones. Considering, as an example, a kernel
k that accepts two arrays (a1, a2) and returns another (a3). If the sizes of the arrays are
respectively N,M,P , then, so that k is a valid MapReduce kernel, N = M = P . This
pre-requisite is checked upon initialization by the MapReduce implementation, raising an
exception if it is not fulfilled.

The fundamentals behind our MapReduce implementation are somewhat simple. The
first step resorts to the split function to divide the input data into partitions, generating
N smaller data-sets, with N > 0. The skeleton then considers each partition as smaller
data-set and issues N device executions. After the latter have been completed, the out-
puts are transferred to the host, in order to be combined into a single result using the
merge function. The biggest particularity of our approach is that MapReduce issues de-
vice executions using internal skeletons. This means that MapReduce’s write function in
turn triggers N writes of a given skeleton instance.

To offer overlap between communication and computation the MapReduce uses an
appropriate internal skeleton, in this case a Stream. The latter is used as a stand-alone, or
with a Pipeline if the a reduction executional entity is supplied. This strategy greatly sim-
plifies the MapReduce’s implementation, as well as introducing overlap between device
executions associated to independent data-set partitions.

Pipeline: A pipelined execution has one major pre-requisite: the output of a non-final
stage must be compatible to the input of the next one. In turn, applying this notion to
OpenCL implies that the output memory objects from a kernel must be successfully ac-
cepted as input to next one, and that these are enough to guarantee an execution without
external feeding of data. This pre-requisite is checked at runtime by the Pipeline imple-
mentation, by comparing the IWorkdata output objects of the first stage with the input
ones of the second stage. If the stages are not data-compatible, an exception is thrown.

Assuming a couple of data-compatible stages, the Pipeline must manage the inter-
mediate data, that is, the data resulting of stage one that is used as input to stage two.
Given that this data naturally needs to be stored in device memory, the Pipeline adds the
appropriate memory objects to the computational environment. Accordingly, the first
stage processes the input data, and stores its result in the intermediate memory. Which
is then consumed by the second stage in order to yield the final result. This behaviour is
irrespective of the number of stages that compose the execution due to the nesting mech-
anism. Since each instance of Pipeline only manages two stages, regardless if the latter are
kernels or sub-skeletons, combining multiple Pipelines is simply scaling-out the problem,
and does not involve a very particular implementation.

To support overlap between communication and computation the Pipeline must allo-
cate the appropriate number of intermediate memory object-sets. Otherwise, if it were
to allocate just enough memory to support a single execution at any given moment, it
would cause a bottleneck in its section of the composition tree. The actual number of
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memory object-sets is defined by the its ancestor node, assuming that the Pipeline is not a
root node. For example, considering a composition tree with a Stream and a Pipeline, if the
programmer parametrizes the root to allocate two memory object-sets, the Pipeline also
receives this information and allocates two sets of memory objects for its intermediate
data.

Loop: The Loop’s implementation is based on the premiss that its output is equivalent to
its input (e.g., same data types, same number of elements). This is a valid assertion given
that the Loop is used to apply an iterative computation to a data-set, while a condition
is met. This implies that the output data is elementally equivalent to its input, and the
reapplication of the computation is viable.

Efficiently implementing this behaviour suggest utilizing the output of a particular it-
eration as input to the next without performing transfers within device memory, or even
to/from host memory. Consequently, we decided to make the Loop re-utilize the memory
objects used to store the output, as input to the following iteration. This intercalation is
performed before re-applying the computation, if necessary. Yet, this intercalation may
end up positioning the final results in the input memory objects. When this happens,
the Loop takes advantage of the fact that the memory objects are equivalent between
input/output, to simply swaps the two C++ STL vector placeholders, an operation of
constant complexity. Other tree nodes are oblivious to this change, and are not affected
by it. Remember, however, one of the condition evaluation strategies causes the Loop to
perform read operations at the end of each iteration.

The loop state environments are represented by an abstract class named ILoopState.
This base class lets the developer create its own state objects, used to define the Loop’s
isolated computational behaviour. Necessarily, the Loop uses a factory-like method, also
implemented by the programmer, to create the derived loop state objects. The latter
are allocated only once, when the Loop is initialized, and are reused multiple times by
distinct executions. Introducing overlap to this equation entails pre-allocating more than
one loop state per Loop, since this allows multiple concurrent and independent device
executions. Otherwise, if a single loop state was used, the Loop might cause a bottleneck
in its section of the composition three. The number of necessary loop states is determined
by the developer when he or she instantiates the root node, assuming the root supports
overlap.

For: This skeleton is a simple specialization of the Loop skeleton. We have implemented
a ForState, whose internal logic represents a regular for cycle. That is, it has a counter (i),
and a threshold (N ), both initialized by the developer. Its condition is simply:

return true if (i < N), otherwise return false
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Advancing the state is done by incrementing i, while resetting it is affecting i to its origi-
nal value. As one would expect, here the createState Loop function allocates and returns
ForState objects.

4.3 Additional Approaches

At the beginning of the implementation process we considered a different strategy for
supporting an asynchronous execution model. This strategy included a functionality
introduced in OpenCL version 1.1, the callback mechanism. Callbacks were intended to be
use as an alternative to a multi-worker environment, removing the need for performing
blocking OpenCL synchronization functions (e.g., clFinish(...), clWaitForEvents(...)). Even
though, conceptually, using callbacks somewhat complicated the implementation, their
use would reduce the amount of resources necessary when orchestrating multiple kernel
executions. Moreover, using a base OpenCL functionality instead of using a third party
library (e.g., Boost C++) to achieve the same results, improves Marrow’s portability.

However, as it turned out, after introducing callbacks in the implementation of some
skeletons, we have found that the callback mechanism had a fundamental flaw – per-
formance. Following the profiling of applications on top of distinct OpenCL implemen-
tation we reached divergent results, that influenced our implementation approach. As
was experimentally confirmed, on AMD’s and Intel’s OpenCL implementation the call-
back mechanism introduced negligible overheads. On the other hand, on our testing
platforms – two distinct NVIDIA GPUs – the OpenCL implementation had a serious
performance drawback. Regardless of the application being profiled, the time space be-
tween the point when the operation associated to the callback concluded and the actual
start of the callback operation, was an average constant of 18 milliseconds. Obviously
this largely hampers performance, particularity when processing smaller grain data-sets.
Figure 4.2 depicts the execution times, in milliseconds, of a set of test case-studies. The
latter, having an OpenCL and a Marrow callback version, were executed on three input
data sets of increasing computational grain. Furthermore, the Marrow executions use
a varying number of memory object-sets to apply overlap between communication and
computation. We refer the description of the actual case-studies, as well as the testing
methodology, to the next chapter.

The results show a very clear pattern, that is constant throughout the case-study set.
To simplify the explanation consider that the first case-study processes five input data-
sets before terminating, and the remaining process four. This slightly diverges from the
actual execution process, but it reduces the problem to the essentials, in order to better
understand what is happening. Also, regard that every OpenCL version execution takes
less then 100 milliseconds to process its input data-sets, independently of grain size. The
last factor is that every single skeleton execution (that processes a single data-set) issues
a callback, and therefore takes on average at least 18 milliseconds to deliver the results to
the application.
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Figure 4.2: Execution times for a set of applications

Undeniably, when the Marrow versions use a single memory object-set the execu-
tion times scale dramatically. This happens because the skeletons can only process the
input data-sets in a sequential order. This order of execution does not mitigate in any
way the overheads associated to callbacks, resulting in an execution that takes about
18 × (numberOfInputDataSets) milliseconds to complete. For instance, the last two
case-studies, that execute on four input data-sets, take about 80 (or 18 × 4) milliseconds
to complete. Using more than one memory object-sets enables the concurrent execution
of distinct data-sets, i.e. enables overlap. The latter lessens the overheads that result from
callbacks, though only when processing the larger data-sets do the skeletons outperform
the OpenCL versions. Interestingly, the overlapped executions always take a multiple of
20 milliseconds to complete the computations. This evidences that the callback overhead
is never fully mitigated, and the last callback always introduces performance penaliza-
tions.

We were not able to uncover the reasons behind the callback’s misbehaviour, that
clearly is OpenCL implementation-dependant. Hence we opted for a solution that proves
efficient irrespective of the underlying OpenCL implementation. This solution has al-
ready been expatiated in this chapter.
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5
Evaluation

This chapter presents the evaluation that was conducted to validate Marrow’s design
purposes. In particular, this validation aimed to assess Marrow’s behaviour when com-
pared against other technologies, of both lower and higher level. Towards this evalua-
tion we implemented various multi-version case-studies. Each one has a minimum of
two versions – one on top of Marrow and, at least, one more on top of a different library.
Furthermore, this evaluation was done according to two perspectives: performance, and
programming model. The performance evaluation compares the time intervals that dif-
ferent versions of the same case-study take to complete its execution. It was mainly fo-
cussed on quantifying the performance gains associated to overlap, relative to executions
that do not apply it. In turn, the programming model evaluation aims to determine the
productivity (lines of code) and complexity associated to Marrow’s programming model,
against other technologies.

Considering that the performance benefits attributed to the use of overlap may vary
depending on the number of memory object-sets used, the Marrow versions were exe-
cuted multiple times, on a varying number of sets per run. This variation took place while
every other computing OpenCL parameter (e.g., NDRange index, work-group size) re-
mained constant through every Marrow version run. On top of this, each case-study,
regardless of version, was computed with three different inputs, of increasing computa-
tional grain. All the runs were performed on two systems with the following specifica-
tions:

System One (S1):

• CPU – Quad-core Intel Xeon E5506 @2.13 GHz
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• Motherboard – ASUS P6T7 WS Super Computer LGA 1366 DDRIII 7PCIE16X

• Main Memory – 12 GB RAM DDR-3

• GPU – NVIDIA Tesla C2050

• GPU Driver Version – 295.41

• Operating System – Linux Ubuntu 10.04.4 LTS (kernel 2.6.32-41)

System Two (S2):

• CPU – Quad-core Intel Xeon E5506 @2.13 GHz

• Motherboard – ASUS P6T7 WS Super Computer LGA 1366 DDRIII 7PCIE16X

• Main Memory – 12 GB RAM DDR-3

• GPU – NVIDIA GeForce GTX 680

• GPU Driver Version – 295.41

• Operating System – Linux Ubuntu 10.04.4 LTS (kernel 2.6.32-41)

The evaluation is divided into two sections: against OpenCL (Section 5.1), and against
SkePU/SkelCL (Section 5.2).

5.1 Comparison with OpenCL

This section of the evaluation compares the OpenCL language against Marrow’s skeleton
constructs. Since our comparison is mainly interested in evaluating the performance
gains obtained from overlap, the OpenCL versions of the case-studies do not introduce
it. In addition, this approach enables us to confirm if Marrow’s programming model is
advantageous, by comparing Marrow versions to OpenCL versions of lower complexity,
i.e. that do not introduce overlap between communication and computation. We totalled
five case-studies for this comparison, namely: Gauss Noise filter, Image Filter Pipeline,
Segmentation, Hysteresis, and N-Body.

Case-Study 1 – Gaussian Noise Image Filter: The first case-study is the concretion of
the Gaussian Noise image filter as previously presented in Section 3.6, particularly in
Listings 3.1 and 3.6. The filter is applied to the images in accordance with the execution
pattern depicted in Listing 3.6, that is, by dividing the input image in slices and subse-
quently applying the filter to each slice. Yet, in the OpenCL version the slices are pro-
cessed sequentially, in contrast with the Marrow version of the case-study. As expected,
to apply overlap to this scheme a Stream skeleton is used in the Marrow version. The
kernel used in this case-study was taken, and adapted, from AMD’s OpenCL samples1.

1http://developer.amd.com/sdks/AMDAPPSDK/samples/Pages/default.aspx
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Case-Study 2 – Image Filter Pipeline: The second case-study is a pipelined applica-
tion of image filters, namely Gaussian Noise, Solarise, and Mirror. These filters were
selected due to fact that they produce the same results regardless of being applied to a
hole input image, or segments of an image divided by its height. Alike in the previous
case-study, this runtime strategy allows for an overlapped execution of a single data-set.
Consequently, both versions of this case-study perform equivalently to their respective
counterparts in the previous case-study, differing only by applying multiple filters in suc-
cession to each slice. Naturally, the Marrow application uses Pipelines nested in a Stream
(identically to Listing 3.5).

Case-Study 3 – Segmentation: The third case-study is a tomographic image enhanc-
ing technique, named Segmentation. A tomographic image is represented by a three-
dimensional space, where each element, a volumetric pixel (voxel), shows the amount
of radiation absorbed in its specific sample zone. The segmentation technique helps to
clearly define the frontiers, between the volumetric components. This is done by affecting
the color of each voxel from its original value, to either black, white, or gray, depending
on its intensity. However, the image is not processed as a whole. Instead, the compu-
tations are independently applied to non-superimposing segments of the input image,
specifically to segments of size equal to one-fifth of the input image. The OpenCL ver-
sion processes the segments sequentially. On the other hand, the Marrow version concur-
rently processes the image segments. To introduce overlap between segment executions
a Stream is used.

Case-Study 4 – Hysteresis: The third case-study applies a tomographic image process-
ing method, denominated as Hysteresis [CFMQRVV10]. The latter allows an iterative
elimination of gray voxel sets from a tomographic image, by determining if they should
be altered into white or black ones. This algorithm comprises three stages, where each
builds upon the results of its predecessor to refine the grey voxel elimination. Alike in
the previous case-study, the image is divided in segments, prior to applying the com-
putations. Additionally, these segments are stage related, and therefore may not match
between stages (e.g., start/end of segment, number of segments). In any case, at every
given stage the computations are iteratively applied to a single segment until the results
stabilize. Also, the application only advances to the next stage after the previous one
has completely processed the input image. The OpenCL version processes the segments
sequentially, as well as the stages. On the other hand, the Marrow version concurrently
processes the segments of a single stage. The skeletons used in this case-study are Loops
nested into Streams, one combination per stage. Note that, the mismatch between corre-
sponding stage related segments prevented us from using a pipelined execution in be-
tween stages. The hysteresis technique is usually applied to tomographic images that
have been previously processed with a segmentation.
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Case-study Input Size S1 – Exec Time (ms) S2 – Exec Time (ms)

10242 4.23 4.17

Gaussian Noise (pixels) 20482 13.86 13.26

40962 52.79 49.96

10242 4.52 4.43

Filter Pipeline (pixels) 20482 14.48 13.26

40962 55.82 49.96

1 402.98 399.50

Hysteresis (MB) 8 2952.98 2899.34

60 19742.80 19550.60

1 1.17 1.63

Segmentation (MB) 8 7.83 7.37

60 50.82 47.29

1024 39.98 14.98

N-Body (particles) 2048 79.25 28.77

4096 207.08 63.92

Table 5.1: OpenCL versions execution times in milliseconds

Case-Study 5 – N-Body: The fifth, and final, OpenCL case-study is an N-Body simu-
lation. The latter computes a fixed number of one hundred iterations. Contrary to the
previous case-studies, a N-Body input data-set can not be computed in segments due
to the nature of the algorithm. Dividing the input data would affect the calculation of
every particle in every iteration, ultimately leading to an erroneous result. As such, the
OpenCL and Marrow versions are equivalent, in the sense that they do not introduce
overlap to the computations. Consequently, only a For skeleton is used. This case-study
may be used solemnly to verify if the Marrow version introduces noticeable performance
overheads, as well as to validate the For skeleton. Should be noted that the N-Body kernel
was also taken, and adapted, from AMD’s OpenCL samples.

5.1.1 Performance Evaluation

The execution times of the OpenCL versions of the case-studies, on the targeted systems,
are presented in Table 5.1. These measurements, presented in milliseconds, are relative
to the time intervals required to accomplished the desired OpenCL execution, yet ex-
cluding the initialization and deallocation processes. All things considered, the latter
are only done once per application run. Therefore, these are not relevant for our perfor-
mance evaluation. In addition, excluding these processes enables us to perform a finer
grained measurement of the performance benefits that arise from an overlapped execu-
tion. Subsequently, the respective speedup values obtained from the Marrow versions of
the case-studies are presented in Figures 5.1, 5.2, 5.4, 5.3, and 5.5.

In general, every case-study benefited in terms of performance from overlap, albeit
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some more significantly than others. Moreover, the resulting speedups were greater in
the system S1, although the applications were parametrized exactly in the same way on
both systems. These results show that N -Buffering, used in the implementation of over-
lap between communication and computation, is a very parametrization and hardware
sensitive technique. For instance, in the Gaussian Noise and Filter Pipeline case-studies
the input images are always divided into four segments regardless of input size or sys-
tem. Thus, a four-byte per pixel input image generates memory segments (chunks) of
size: 1MB, 4MB, and 16MB, respectively. Clearly this is not the ideal parametrization to
optimize overlap between communication and computation in these case-studies on sys-
tem S2, given the specifications of that GPU. Also, S1’s GPU is a scientific processing unit,
while S2’s is aimed at video game graphics processing. Other studies on the subject of
N -Buffering and GPUs [SMV10] consolidate our findings, suggesting that this behaviour
is to be expected especially if the parametrization was not fine-tuned to a particular ap-
plication, on a particular hardware.

The first two case-studies (Figures 5.1 and 5.2) show a very similar behaviour. In
system S1 (Figures 5.1a and 5.2a) overlap introduces the highest speedup when using
two or three memory object-sets, depending on the input data grain, and starts to de-
crease as more sets are used. This behaviour is expected considering that, firstly, the
operation scheduling overhead increases with the number of command-queues used.
Moreover, independently of the number of used memory object-sets, executing the same
operations (e.g., writes, reads, kernel executions) on equivalent data-sets takes on av-
erage a constant amount of time to complete. Therefore, having a maximum speedup
with two/three memory object-sets simply implies that the underlying GPU is only ca-
pable of executing in parallel, at any given moment, operations associated to those many
data-sets, given their execution times and memory chunk sizes. In turn, in system S2

(Figures 5.1b and 5.2b) the highest speedup is obtained when using around four memory
object-sets. Evidently, in this parametrization scenario, S2’s GPU is better able to intro-
duce parallelism between distinct executions than S1’s, even if this added concurrency is
not directly translated into performance.

The speedup values obtained from the Marrow version of the Segmentation case-
study (Figure 5.3) practically fall in line with the speedups of the first two case-studies.
Once more, on system S1 (Figure 5.3a) the best results appear when using two or three
memory object-sets. Whereas, on system S2 (Figure 5.3b) the highest speedups present
themselves, in general, when using about four memory object-sets. The one megabyte
execution of Figure 5.3b is the only exception, by behaving better with just two memory
object-sets – another example of the unpredictability of overlap performance gains.

The Hysteresis’ case-study (Figure 5.4) execution pattern differs from that of previous
ones. Its computation flow dictates that after each loop iteration, which processes a single
segment, the Loop reads the results to host memory, and subsequently evaluates them to
access its continuity, a process of complexity O(N), where N is the size of a segment.
These two actions are computationally heavy and leave the GPU available to execute
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(a) Gaussian Noise speedup values, system S1
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(b) Gaussian Noise speedup values, system S2

Figure 5.1: Gaussian Noise Marrow Speedup Values
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(a) Filter Pipeline speedup values, system S1
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(b) Filter Pipeline speedup values, system S2

Figure 5.2: Pipeline Marrow Speedup Values
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(a) Segmentation speedup values, system S1
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(b) Segmentation speedup values, system S2

Figure 5.3: Segmentation Marrow Speedup values
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(a) Hysteresis speedup values, system S1
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(b) Hysteresis speedup values, system S2

Figure 5.4: Hysteresis Marrow Speedup Values
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upon other data-sets. As previously stated, the application issues a maximum of five
skeleton executions (one per segment) for each of the three stages. Consequently, we
assert the existence of a considerable amount of applicable parallelism between segment
executions. On top of that, the speedup is incremental given that each of the three stages
introduces it. Ergo, the speedup systematically increases as more memory object-sets are
used, maxing at the same number as of maximum segments per stage. This behaviour is
consistent on both systems (Figures 5.4a and 5.4b).

The N-Body case-study (Figure 5.5) was executed with only a single set of memory
objects, since it does not support an overlapped computation of a single input data-set.
Still, this application allows us to observe the overhead introduced by the skeleton con-
structs, against a hard-coded OpenCL execution. Both systems perform equivalently,
resulting in a 1.75% maximum overhead (system S2). This value is negligible and even
gets reduced as the input grain increases.

5.1.2 Programming Model Evaluation

It comes as no surprise that our programming model is simpler, and of higher-level than
OpenCL’s. Not only do the skeletons orchestrate the whole execution, but also introduce
transparent performance increments. To quantify these judgements, Figure 5.6 presents
the sizes (in number of lines of code) of three application versions: OpenCL, OpenCL
with overlap, and Marrow. These values do not include: blanc lines, main function, head-
ers, and error handling. To introduce overlap in an OpenCL application we estimated
a minimum increase in seventy lines of code, adding to the design complexity which
would surely grow substantially.

To be fair, Marrow’s programming model productivity should only be expected to
trump the overlapped OpenCL applications. Nevertheless, Marrow’s programming model
simplicity results in less code per application than even the basic OpenCL versions. The
only exception seems to be the Hysteresis case-study, requiring roughly more 40% of
code than the OpenCL version. This increase in program size comes as a result of two
factors: skeleton initialization, and Loop instantiation. First of all, initializing three Loops
nested into three Streams is somewhat verbose. Secondly, to use a Loop skeleton the devel-
oper must declare a class that derives it, and implement its inherited abstract functions
(as exemplified in Listing 3.3). Joining these two factors adds a considerable amount of
lines of code to the application, justifying the discrepancy between OpenCL and Marrow
Hysteresis versions.

5.2 Comparison with SkePU and SkelCL

To compare Marrow to other skeleton libraries we used SkePU (version 0.6) and SkelCL
as target libraries. When selecting case-studies for this comparison we sought to find ap-
plications that would, at the same time, benefit from overlap and be compatible with the
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(a) N-Body speedup values, system S1
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Figure 5.5: N-Body Marrow Speedup values
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Figure 5.6: Productivity comparison between distinct application versions

target libraries. However, we were constrained by the limitations of the chosen skeleton
libraries, significantly reducing our possible collection of case-studies. The resulting set
consists of four applications, namely: Saxpy, Array Multiplication, Gaussian Noise Filter
(only for SkelCL), and Solarise Filter.

Case-Study 1 – Saxpy: Saxpy is a common operation in computations with vector pro-
cessors. It is a combination of scalar multiplication and vector addition. The application
applies the Saxpy technique to two equally sized input arrays (a and b), plus a constant
scalar value (α): c[i] = αa[i] + b[i]. Subsequently, a host-side reduction is performed on
the output results. The SkePU and SkelCL versions apply the computations to the entire
input data via a Map skeleton, before reducing the results. On the contrary, the Mar-
row version divides the input data into M segments and uses N memory object-sets for
overlap, where M,N vary between one and four. This strategy allows us to investigate
two aspects: how do different block sizes (chunks) affect performance, and what impact
does overlap have on this application. Since our MapReduce skeleton provides a split and
merge functionality it is used to compute Saxpy, in the Marrow version.

Case-Study 2 – Array Multiplication: The second case-study is very similar to the first,
except it performs a per element multiplication of two vectors with the same size: c[i] =

a[i] × b[i], and does not reduce the results. All developed versions compute alike the
respective versions in the previous case-study, with the exception of Marrow’s skeleton
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selection. As it stands, this case-study uses a Stream skeleton.

Case-Study 3 – Gaussian Noise Image Filter: The third case-study is close to the Gas-
sian Noise filter example of Subsection 5.1. The major difference being that in the Marrow
version the number of divisions of the input image varies from one to four. In its turn the
SkelCL version processes the whole image at once, using for this purpose a Map skele-
ton. We were unable to implement a SkePU version given that the latter does not support
trigonometric operations in its user-defined functions.

Case-Study 4 – Solarise Image Filter: The last case-study is a reimplementation of the
preceding one, using a Solarise filter (used in the Image Filter Pipeline case-study). Every
remaining application detail does not vary from the Gaussian Noise case-study.

5.2.1 Performance Evaluation

Table 5.2 shows the execution times, in milliseconds, for the target library versions of the
case-studies, on both systems. It is not discernible at which point in the execution do
the target libraries create, and initialize, the required memory objects. Consequently, we
decided to include the library initialization process in the measurements, in order to make
these more fair. Comparing the results of both libraries, overall execution times favour
SkePU, apart from the Saxpy case-study. We concluded that this discrepancy is due to the
host reduction. If the latter is removed from the measurements the two versions of Saxpy
perform similarly. Lastly, the measurements for the Marrow versions were obtained from
executions on a varying number of input data segments, plus memory object-sets. This
approach was intended to further disclose the effect of N -Buffering on different chunks
sizes, when computed by distinct GPUs.

From a general standpoint, the results indicate that overlap does not prove to be ben-
eficial to all case-studies. This lack of all-encompassing performance gains can be at-
tributed to three main factors:

1. Initialization Overheads – Logically these dilute any obtainable speedup, specially
when executing upon smaller grained data-sets.

2. Case-study Nature – Not every application may benefit from overlap. For instance,
memory-transfer bound applications tend to benefit less than computational heavy
ones.

3. Memory Block (chunk) Size – Each GPU has its own ideal block size for a given
application. These chunks are closely associated to the GPU’s memory bandwidth
and throughput.

It is observable that the results vary somewhat significantly from system to system,
and between distinct parametrizations (e.g., chunk size, memory object-sets used). There-
fore we cannot assert the existence of an outright solution for every possible execution
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Case-study Input Size SkePU – Exec Time (ms) SkelCL – Exec Time (ms)

S1 S2 S1 S2

8 145.15 160.06 135.08 122.74

Saxpy (MB) 76 1455.31 1656.09 458.67 446.02

380 7227.38 8129.86 1877.52 1862.26

8 17.87 18.87 79.34 66.82

Array Multiplication (MB) 76 183.79 183.20 276.07 264.733

380 868.90 873.68 1155.64 1146.13

10242 N/A N/A 87.39 75.88

Gaussian Noise (pixels) 20482 N/A N/A 172.73 158.67

40962 N/A N/A 588.39 571.89

10242 9.52 10.74 68.50 57.36

Solarise (pixels) 20482 32.05 32.35 99.79 86.29

40962 159.14 160.04 289.26 274.64

Table 5.2: SkePU/SkelCL versions execution times in milliseconds

scenario. Quite the contrary, there is virtually limitless set of possible parametrization
schemes, considering the number GPUs that are compatible with OpenCL (and implic-
itly with SkePU, SkelCL, and Marrow). This idea completes the conclusions drawn from
the previous evaluation. In any event, we will subsequently expatiate the results obtained
from each of the case-studies, that were selected for this comparison. The speedup values
are presented in Figures 5.7 to 5.13

The Saxpy case-study (Figures 5.7 and 5.8) can be classified as a memory transfer-
bound application, since it uses two input buffers and computes a trivial algebra op-
eration. Accordingly, it is not a good candidate to benefit from overlap, as apparently
dividing the input data and using multiple memory object-sets does not lead to signif-
icant, if any, performance gains. Moreover, the best performance is almost always ob-
tained from a single segment execution. The special case is the execution on 76MB of
input data on system S2, that shows better results with two segments (33MB each), vis-
ible in Figures 5.7b and 5.8b. Nevertheless, even without benefiting from overlap, the
Marrow version is the most efficient one. System S2 (Figures 5.7b and 5.8b) yields the
best speedup when compared to both target skeleton libraries.

Given the similarities between the second (Figures 5.9 and 5.10) and the first case-
study, it comes as no surprise that its results are somewhat equivalent. Yet, the speedups
are noticeably affected by the number of memory object-sets used, specially in system S1

(Figures 5.9a and 5.9a). This, however, does not always imply the best performance. For
example, on system S1 (Figures 5.9a and 5.10a) the highest speedup is obtained with the
single segment executions. Additionally, Marrow performs better than SkelCL but only
bests SkePU when the input data grain increases. Furthermore, system S2 (Figures 5.9b
and 5.10b) surpassed S1 in speedup.
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(a) Saxpy SkePU speedup values, system S1
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(b) Saxpy SkePU speedup values, system S2

Figure 5.7: Saxpy SkePU Speedup Values
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(a) Saxpy SkelCL speedup values, system S1
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Figure 5.8: Saxpy SkelCL Speedup Values
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(a) Array Multiplication SkePU speedup values, system S1
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Figure 5.9: Array Multiplication SkePU Speedup Values
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(a) Array Multiplication SkelCL speedup values, system S1
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(b) Array Multiplication SkelCL speedup values, system S2

Figure 5.10: Array Multiplication SkelCL Speedup Values
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(a) Gaussian Noise SkelCL speedup values, system S1

 

0,00 

0,40 

0,80 

1,20 

1,60 

2,00 

2,40 

2,80 

3,20 

1
 S

eg
m

en
t 

2
 S

eg
m

en
ts

 

4
 S

eg
m

en
ts

 

1
 S

eg
m

en
t 

2
 S

eg
m

en
ts

 

4
 S

eg
m

en
ts

 

1
 S

eg
m

en
t 

2
 S

eg
m

en
ts

 

4
 S

eg
m

en
ts

 

1024² 2048² 4096² 

Gaussian Noise - Image size in pixels 

Sp
e

e
d

u
p

 r
e

la
ti

ve
 t

o
 S

ke
lC

L 
G

au
ss

ia
n

 N
o

is
e

 

1 MO Set 2 MO Sets 3 MO Sets 4 MO Sets 

(b) Gaussian SkelCL speedup values, system S2

Figure 5.11: Gaussian Noise SkelCL Speedup Values
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The Gaussian Noise case-study (Figure 5.11) presents results similar to the ones ob-
tained against its OpenCL version, in Section 5.1. In system S1 (Figure 5.11a), when the
input images are larger then 10242, computing four segments using two or three memory
object-sets is best, performance wise. In contrast, in system S2 the overlap performance
gains are less noticeable, arguing in favour of computing the input image as a whole, and
using just one memory object-set. Nonetheless, with or without overlap, the Marrow
version is more efficient than the SkelCL one.

The final case-study (Figures 5.12 and 5.13) behaves similarly to the previous one,
considering that it is a reimplementation with a different kernel. However, since applying
the Solarise filter is not as computationally heavy as applying the Gaussian Noise filter,
overlap between communication and computation should not lead to significant speedup
increases. This premiss holds true. Overlap is only clearly beneficial on images of larger
size, namely 40982. In terms of overall results, the Marrow version is more efficient than
SkelCL’s (Figures 5.13a and 5.13b), but only presents better results than SkePU’s with the
largest input (Figures 5.12a and 5.12b). As a side note, S2’s speedups are more significant
than S1’s.

Regarding the better results obtained when running the SkePU versions of the case-
studies, namely with smaller input grains. We were not able to disclose the reasons be-
hind this unusually good performance. However, we suspect the latter may come as a
result of our testing methodology. Every application run iteratively processes the same
input 100 < N < 0 times, so as to calculate an average of the time required to compute
one input. We suspect that this strategy positively affects SkePU, because the slowest
SkePU iteration of the average usually falls in line with the average iteration of both
Marrow, and SkelCL. Consequently SkePU’s performance behaviour may result from a
caching mechanism, that caches the results of the first iteration. This would also explain
why processing considerably larger input grains has proportionately worse performance,
since the size of the cache may not have been sufficient to store the results.

5.2.2 Programming Model Evaluation

Both SkePU’s and SkelCL’s programming models offer a more complete abstraction from
the underlying computing model than Marrow’s, also abstracting the programmer from
the kernel domain. However, this comes at the expense of flexibility and implementation
possibilities. These limitations, previously discussed in Chapter 2, effectively limited the
comparison evaluation, given the small amount of distinct behaviours that both libraries
support. In summary, Marrow supports a wider range of application uses than SkePU
and/or SkelCL, giving the programmer more control over how the actual executions are
performed.

In terms of productivity, Marrow is almost always surpassed by SkePU and SkelCL
because of its verbose initialization stage, that may require defining C++ classes to use
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(a) Solarise SkePU speedup values, system S1
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(b) Solarise SkePU speedup values, system S2

Figure 5.12: Solarise SkePU Speedup Values
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(a) Solarise SkelCL speedup values, system S1
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(b) Solarise SkelCL speedup values, system S2

Figure 5.13: Solarise SkelCL Speedup Values
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certain skeletons (e.g., Loop, MapReduce). Also, the process of prompting a skeleton exe-
cution on Marrow is more complex than in other libraries, given that Marrow’s execution
model is asynchronous. Be that as it may, Marrow’s programming model is more flex-
ible than others, on the account of the ability to nest skeletons, and the asynchronism
of its main API function (write). Ultimatly, Marrow has the most verbose, and flexible
programming model of the three libraries.
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6
Conclusion

This final chapter presents a summarized view of the developed work. Firstly, it starts by
highlighting some core aspects about our work (Section 6.1), such as: what is our thesis
(and its objectives), what came out of our work, how did we evaluate that work, an what
were the evaluation results. Lastly, it presents future research topics, to be included in
further development of this project (Section 6.2).

6.1 Objectives and Results

Our thesis identified some shortcomings in the constructors offered for the development
of complex GPU-based applications. The existing tools essentially focus on offloading
isolated computations (kernels), which require a complex orchestration when the appli-
cation scope goes beyond these limitations. To this extent, this dissertation addressed
the design and implementation of a C++ algorithmic skeleton framework, called Mar-
row, whose main goal is to permit the high-level orchestration of OpenCL kernels. For
this purpose, we wanted to broaden the set of skeletons available in the field, beyond the
usual MapReduce and variants, by introducing task-parallel ones, like the Pipeline. Our
skeletons offer a high-level programming model without compromising performance. In
fact, they introduce transparent performance gains by overlapping communication with
computation. This technique, implemented with aN -Buffering scheme, is not common in
GPGPU ASkFs. In fact, those that offer it do not provide mechanisms for parametrizing
it. Finally, Marrow addresses the lack of flexibility of other GPGPU ASkFs, by enabling
skeleton nesting. This feature, as far as we know, is not yet available in the GPU context.

Our work resulted in a functional prototype, a C++ ASkF that incorporates all of the

105



6. CONCLUSION 6.2. Future Work

previous objectives, namely: introducing new skeletons to the context of GPGPU, pro-
viding transparent performance gains via overlap, and enabling skeleton nesting. Con-
sequently, we were able to achieve all of the proposed design goals. Additionally, our
work resulted in an accepted paper [MPM12].

We divided the proposal’s evaluation into two sub-domains: performance and pro-
ductivity. The first was mainly interested in quantifying the performance benefits of an
overlapped execution, while the last compares our library’s programming model to other
GPGPU technologies. We developed an extensive collection of multi-version case-studies
for validating each and every proposed skeleton. Moreover, the case-studies served to
confirm the performance advantages of both nesting and overlap between communica-
tion and computation. The resulting applications were executed on two systems with
distinct GPUs. Lastly, we compared Marrow against technologies of lower and higher
abstraction level, particularly OpenCL and SkePU/SkelCL, respectively. This allows us
to better understand how Marrow fairs against its most direct competitors.

The accomplished evaluation attested the effectiveness of our proposals. Compared
to hand-tuned OpenCL applications that do not introduce overlap, the Stream skeleton
consistently boosted performance without compromising the simplicity of the Marrow
programming model. In addition, the remaining skeletons supply a set of high-level
constructs to develop complex OpenCL based applications with negligible performance
penalties. Compared to other ASkFs for GPU computing, Marrow takes a different ap-
proach. It focuses on the orchestration of OpenCL kernels rather than worrying about
both the orchestration and kernel programming. In this way, Marrow allows for a more
flexible and powerful framework, whose kernels are bound only by OpenCL’s restric-
tions, and whose skeleton set is richer and more modular (the nesting support is an ex-
ample of such modularity). Still, Marrow surpasses SkelCL, in terms of performance, and
scales better than SkePU.

A more thorough analysis of the executional behaviour of overlap between commu-
nication and computation indicates that its performance gains are not linearly equivalent
in every system. To be fully beneficial, overlap has to be correctly parametrized accord-
ing to a particular system and application. These results are interesting and open up new
future research topics, within this context. In turn, the complexity of Marrow’s program-
ming model, in particular when applying overlap to a single data-set, is an issue. It can,
however, be mitigated by auto-tuning techniques.

6.2 Future Work

Future work will focus on three major aspects: adding constructs that provide new be-
haviours, increasing Marrow’s performance, and simplifying the programming model.
There are other aspects that can be incorporated in Marrow, such as also providing an
abstraction to the parallel computations. Be that as it may, we consider the three previ-
ous aspects as the most relevant research topics, in a short to medium term.
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We plan on adding constructs that map recurring algorithmic behaviours in the con-
text of GPU computing. For instance, a common execution model is to have a computing
element (thread) apply a computation that not only uses its own data-elements, as input,
but also those of its neighbourhood. This vicinity-based execution is present in many
types of GPGPU-version algorithms, particularly in many image filter techniques (e.g.,
Gaussian Blur, Sobel Filter).

To increase performance, in a direct manner, we intend to provide multi-GPU sup-
port. Naturally, is not yet decided how we will accomplish such a functionally. We may
distribute the execution requests evenly by a group of GPUs. Or even, divide the compo-
sition three into sections (or branches), and spread the resulting sub-trees by the available
GPU accelerators.

The peculiarities, in regards to performance, of the N -Buffering strategy, made us re-
alize that it is useful to have the library automatically detect the best execution parametriza-
tion for the specific application-system combination. This technique is commonly known
as auto-tuning. The latter, can infer on the best values for a set of runtime variables. For
example, it can detect the recommended memory chunk sizes, the ideal number of mem-
ory object-sets (for overlap), or even if a multi-GPU scenario provides better performance
than a single-GPU one. Moreover, we can use auto-tuning to simplify our programming
model, specially its first and second stage. It can hide the complexity of dividing the
input data set into segments, and determine the best segment size.
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