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Abstract

The Graphics Processing Unit (GPU) is present in almost every modern day personal
computer. Despite its specific purpose design, they have been increasingly used for gen-
eral computations with very good results. Hence, there is a growing effort from the com-
munity to seamlessly integrate this kind of devices in everyday computing. However, to
fully exploit the potential of a system comprising GPUs and CPUs, these devices should
be presented to the programmer as a single platform.

The efficient combination of the power of CPU and GPU devices is highly dependent
on each device’s characteristics, resulting in platform specific applications that cannot
be ported to different systems. Also, the most efficient work balance among devices is
highly dependable on the computations to be performed and respective data sizes.

In this work, we propose a solution for heterogeneous environments based on the
abstraction level provided by algorithmic skeletons. Our goal is to take full advantage of
the power of all CPU and GPU devices present in a system, without the need for different
kernel implementations nor explicit work-distribution.To that end, we extended Marrow,
an algorithmic skeleton framework for multi-GPUs, to support CPU computations and
efficiently balance the work-load between devices. Our approach is based on an offline
training execution that identifies the ideal work balance and platform configurations for
a given application and input data size.

The evaluation of this work shows that the combination of CPU and GPU devices can
significantly boost the performance of our benchmarks in the tested environments, when
compared to GPU-only executions.

Keywords: Algorithmic Skeletons, OpenCL, GPGPU, Heterogeneous Computing.
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Resumo

O GPU (Graphics Processing Unit) está presente em praticamente todos os compu-
tadores actuais. Apesar da sua finalidade específica, este processador tem sido alvo de
crescente uso em computação de carácter mais geral, com resultados bastante promisso-
res. Como tal, tem havido um crescente esforço para integrar este dispositivo na progra-
mação mais geral. No entanto, para que o potencial de sistemas constituidos por CPUs
e GPUs possa ser explorado ao máximo, estes dispositivos devem ser apresentados ao
programador como uma plataforma única.

Uma combinação eficiente do poder de CPUs e GPUs depende muito das caracterís-
ticas de cada um destes dispositivos, resultando em aplicações específicas para uma pla-
taforma que não manterão a mesma eficiência quando portadas para sistemas diferentes.
Além disso, o balanceamento de carga entre estes dois dispositivos depende também das
computações executadas assim como dos respectivos tamanhos dos dados.

Neste trabalho, propomos uma solução para ambientes heterogéneos baseada no ní-
vel de abstracção fornecido pelos Algorithmic Skeletons. O nosso objectivo é tirar partido
do poder de todos os CPUs e GPUs presentes num sistema sem que haja a necessidade
de definir diferentes kernels ou dividir a carga explicitamente. Deste modo, estendemos
o Marrow, uma framework de Algorithmic Skeletons para multi-GPUs, para suportar com-
putações OpenCL no CPU e balancear a carga do trabalho entre os dispositivos de forma
eficiente. A nossa abordagem é baseada num treino offline, que identifica o balancea-
mento de carga e a configuração da plataforma ideais para uma dada aplicação.

A avaliação deste trabalho mostra que a combinação do CPU e do GPU foi capaz de
melhorar significativamente os resultados dos nossos testes nos ambientes de execução
em que foram corridos, quando comparados com execuções apenas nos GPUs.

Palavras-chave: Padrões Algorítmicos, GPGPU, OpenCL, Computação Heterogénea.
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1
Introduction

1.1 Motivation

The Graphic Processing Unit (GPU) is a common component found in virtually every
modern computer. Over the past years, this kind of processors experienced a great evo-
lution, mainly driven by the gaming industry, reaching a point where they can deliver
high levels of performance, unachievable with modern Central Processing Units (CPUs),
when executing graphics-related computations. These performance levels grow from the
particular characteristics of GPU hardware, formed by many streaming processors, with
clock frequencies generally lower. By being a common component found in today’s per-
sonal computer’s system, and because of its purpose specific architecture, the cost of this
processors are often labeled as low-priced, considering the performance levels they can
output [1]. Also, due to their lower clock frequencies, they are also energy-efficient solu-
tions, all characteristics that make this units desirable to use in fields other than graphics
processing.

Using the GPU in general purpose computations (GPGPU), although desirable, raises
several challenges related to its parallel and graphics targeted architecture. Nonetheless,
the potential of this hardware has driven a lot of research with the goal of providing a
friendlier way to program this kind of processors, by implicitly taking care of intrica-
cies related to memory management and work parallelization (for example [2, 3, 4, 5]),
leading to a more general acceptance and recognition of GPGPU.

The emergence of higher level programming tools to deal with GPUs, obfuscate some
of the low level details exposed by the base GPGPU programming frameworks, OpenCL
and CUDA. As such, this processor became available to a wider range of programmers.
However, GPU programming still requires much more effort from the programmer than

1



1. INTRODUCTION 1.2. Problem

the tools available for its CPU counterpart. Firstly, most of the current proposals only
focus on providing a higher level interface for the GPU, leaving it to the programmer
to identify which computations should be offloaded to the GPU and which ones should
stay on the CPU. This will have an heavy impact on the system’s overall performance as
it will be dependent on the programmer’s ability to identify and efficiently schedule com-
putations on both processors, considering the intricacies of each of them. The offloading
of an execution to the GPU must take into account the overhead introduced by the data
transfers between the memory of both devices. On the other hand, when considering
multi-core CPU computations, the memory is shared between different threads but there
is still a need to partition the work among those threads, while avoiding race conditions.

Given the increasing utilization of the GPU in general purpose computing, our moti-
vation grows from the belief that there is a need for tools that allow the programmer to
address this heterogeneous system as a whole, delegating the work scheduling and effi-
ciency concerns to the compiler/runtime system, providing a friendlier and generalized
way to fully harness the available computing power of the underlying computational
infrastructure.

1.2 Problem

Programming GPUs, even with the support of high-level programming platforms, is still
a more complex task than addressing sequential or even multi-core CPU processors. This
complexity increases when there is a need to address both CPUs and GPUs, due to their
different execution models. For this reason, it is desirable for these processors to be pre-
sented to the programmer as a part of a single computing platform. In our opinion,
CPU/GPU heterogeneity should be handled at system level, being it by the language’s
compiler, a dedicated run-time system or, even, by the operating system. However, to
accomplish such grounds, some challenges have to be surpassed.

The CPU and the GPU have different associated execution models due to their differ-
ent architectures. For them to be presented as a single platform, there is a need to find a
suitable model to address both this processors. This problem is only partially addressed
by most of the current proposals, as their focus is on the GPU programmability. Some
solutions support both GPUs and multi-core CPUs, but these must be used in mutual
exclusion, or the device scheduling and work distribution is left to the programmer.

There is, however, a new trend of platforms that aim to address the system’s under-
lying heterogeneity internally, providing the user with a unified programming platform.
Some of these solutions simply pick the best performing device to execute a computation,
without achieving device cooperation. On the other hand, the solutions that do achieve
device cooperation, they either require different implementations of the parallelizable
computation for the various devices, or they are too purpose specific and cannot be used
in a wider range of applications.

2



1. INTRODUCTION 1.3. Proposal

We believe that there is still work to be done, targeting implicitly schedule of differ-
ent computations into the different processors in an efficient way, and without requiring
extra work from the programmer to prepare the application to be executed on multiple
devices.

In this work, we aim to exploit the abstraction power of the Algorithmic Skeletons
to address this challenges. Skeletons, by definition, hide the implementation details of
commonly found algorithmic patterns, providing a parameterizable interface to the pro-
grammer. Furthermore, since the skeletons encompass all the computation, they can
convey, to the runtime system, all the information the latter requires to make the right
decisions regarding work-load partitioning and work scheduling.

1.3 Proposal

Our proposal grows from Marrow[6, 7], an Algorithmic Skeleton Framework (ASkF) for
the orchestration of complex OpenCL-based GPGPU computations. Among its most no-
torious features, there are the skeleton nesting and the task-parallel skeletons, features
not found in other GPU ASkF. Also, it implements a set of optimizations for performance
improvement, including communication and computation overlapping.

The main goal of this thesis is to extend the Marrow framework so that it may take
advantage of both the multiple CPU and the multiple GPU devices present in a single
node architecture. Our motivation is to fully exploit the computational power available,
in an efficient way, while maintaining the current level of abstraction provided by the
supported skeletons.

In order to achieve this goal, we have to start by introducing the support for CPU
computations in Marrow and subsequently guarantee the cooperation and work-load
between CPU and GPU devices without the programmers’ intervention. The current
version of Marrow already supports multi-GPU devices, being that the division of the
work is performed when the skeleton tree is created, restricting the data dimensions to
the values defined upon creation. We propose to lift this restriction by creating a more
dynamic solution where the system can adapt itself to the dimension of the inputted data
and also to the current system’s work-load.

Like in the current version of Marrow, in the solution we propose, the work partition-
ing will be achieved prior to the execution offload, avoiding the need for work transfers
during runtime. However, the current work distribution method is based on perfor-
mance values acquired prior to the applications execution that are used to calculate a
performance ratio between devices. This approach is not suitable for work distribution
among CPU and GPU devices, due to the huge differences in their architecture and ex-
ecution model. Therefore, we propose a solution based on an offline training where dif-
ferent work distribution configurations are tested, to find the ideal work-balance for each
different application.

3



1. INTRODUCTION 1.4. Contributions

To address the possible work-load fluctuations of the CPU device, we aim to imple-
ment a lightweight monitoring of the running executions, comparing the performance of
CPU and GPU devices and adjusting the work-balance when a significant performance
gap is detected. Finally, we intend to explore the OpenCL device fission functionality to
leverage locality in CPUs.

Our goal is to take advantage of the abstraction level provided by Algorithmic Skele-
tons to provide support for programming in heterogeneous systems, composed by mul-
tiple CPUs and GPUs, an approach that, as far as we know, is not addressed by the state
of the art.

1.4 Contributions

The main contributions of this work are:

• The introduction of support for multiple OpenCL device types in Marrow;

• Backend for CPU OpenCL executions;

• A framework that combines offline application training with online performance
monitoring with specific algorithms for both stages.

• An evaluation of the performance gains of this implementation when compared
to GPU-only executions, as well as an evaluation of the execution of Marrow in a
CPU-only environment.

The work also makes two secondary contributions which are:

• Dynamic adjustment of work distribution in successive executions of a given Mar-
row computation. This implied modifications on the execution model and on the
frameworks API;

• An evaluation of the OpenCL device fission functionality.

1.5 Document Organization

The remainder of The remainder of this document is organized as follows:

• In Chapter 2, we analyze the current state of the art with a focus on GPU offloading
frameworks, skeleton frameworks and automatic backend selection solutions;

• Chapter 3 describes the Marrow framework, in its multi-GPU version, which was
the state of this framework prior to our work;

• In Chapter 4 we describe the modifications we implemented over Marrow in order
to meet our goals.

4



1. INTRODUCTION 1.5. Document Organization

• The evaluation of our work is presented in Chapter 5, focusing on the performance
gains achieved by using both CPU and GPU devices, when compared to GPU-only
executions;

• Finally, in Chapter 6, we revisit the our goals and introduce some ideas on how the
Marrow framework could be further extended.

5
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2
State of the Art

Algorithmic skeletons have been a recurrent solution for abstracting parallelization intri-
cacies in homogeneous and heterogeneous environments. The abstraction layer provided
by skeletons has proved to be useful under different system configurations, from single
node computers to clusters and grids. In this chapter, we analyze the existing work re-
garding skeleton frameworks (and similar solutions, like language templates), with a
focus on tools directed to GPU and/or CPU parallel programming.

Before describing the existing tools related to our work, we start by introducing the
concept of algorithmic skeletons and describing the skeletons more commonly found in
the existing frameworks. We also introduce the concept of heterogeneous computing
and characterize the most common approaches to this paradigm. Given our focus on
both CPU and GPU programming, we also include some tools that target multi-core CPU
computing through algorithmic skeletons.

2.1 Algorithmic Skeletons

The concept of algorithmic skeletons was proposed by Murray Cole, in 1989 [8]. The al-
gorithmic skeletons model tries to identify commonly used patterns in parallel program-
ming, namely concerning computation, communication and interaction [9], to provide a
higher level of abstraction. Software developers need only to choose the skeleton that
better fits the problem at hand. This greater level of abstraction enhances portability
since the particularities of each architecture will be internally handled by the skeletons.
This allows for each skeleton to be extensively optimized for each different architecture,
resulting in levels of performance hard to achieve without this level of abstraction. More-
over, by abstracting the programmer of the parallel programming concerns, this model

7



2. STATE OF THE ART 2.1. Algorithmic Skeletons

also prevents typical programming errors derived from its extra complexity, resulting in
a more efficient way to develop software.

Algorithmic skeletons were firstly thought as a solution for cluster computing. The
distributed nature and hardware diversity of cluster computing demanded programmers
to be aware of the underlying hardware’s characteristics. This resulted in hardware-
specific programs, with hard portability and probably poor performance in different
systems, with distinct hardware specifications, since they were only optimized for the
system they were developed to. Also, determining which part of a program could and
should be parallelized was not always a trivial task and could also be dependent on the
underlying hardware’s idiosyncrasies, resulting in a solution that may not be optimal for
that particular system. Moreover, the behavior of a system comprising several parts that
work in parallel is harder to predict than the behavior of a system that works sequen-
tially. As soon as general purpose computers began to incorporate parallel hardware, the
concept was adopted to single machine computations, not only for multi-core CPUs, but
also for GPUs.

Skeletons can be divided in three main categories: Data-parallel, Task-parallel and
Resolution skeletons. Data-parallel skeletons handle problems with large data structures,
dealing with challenges such as splitting the data among all running threads and merg-
ing the results after a routine is applied. Examples are Map, Reduce and Zip. Task-parallel
skeletons deal with problems related to task interaction, like communication and syn-
chronization. Examples are the Pipeline, Farm (also know as Master-Slave), For and While.
Finally we have the Resolution skeletons, which define algorithms to solve a family of
problems. Two examples are the Divide & Conquer and the Branch & Bound. We now
describe the most popular skeletons included in these categories.

• Data-parallel

– Map - Applies a function or a sub-skeleton to all elements of a set of data.
This skeleton can be conceived as a Single Instruction, Multiple Data (SIMD)
skeleton as parallel threads running the same instructions can be applied con-
currently over different data elements.

– Reduce - Scans a data-set from left to right applying a function to each pair
of elements, resulting in a single element being produced. The concurrency
potential will depend on the associativity property of the function applied.
This skeleton is also called Fold by some frameworks.

– Scan - This skeleton has a behavior similar to Reduce, the difference laying
in the resulting type. Instead of a single element, Scan returns a data-set of
the same size as the input, where each element is the result of applying the
reduction function to all the elements in the input set with lower or equal
indexes. This intermediate results are important to a subset of algorithms and
that is why some frameworks support this skeleton.

8



2. STATE OF THE ART 2.1. Algorithmic Skeletons

– Zip - This skeleton receives two data-sets and an operator as input, and out-
puts the resulting set of applying the operator over the input elements with
the same position.

– Fork - This skeletons works similar to map but a different function is applied
to each element of the data-set, making it into a Multiple Instruction, Multiple
Data skeleton.

• Task-Parallel

– Farm - Also known as Master-Slave, consists in the creation of independent
tasks, achieving parallelism through scheduling different tasks to distinct re-
source, so they can be simultaneously computed.

– Pipeline - This skeletons consists in the notion of staged computations where
the output of one stage is the input on the next one. Since each stage is depen-
dent on the termination of the previous stage, parallelism can only be achieved
through executing different stages simultaneously on different inputs.

– For - Executes a sub-skeleton or a function for a specified number of times.
Parallelism can only be achieved if the result of one iteration is independent
of the result of the previous one.

– While - Behaves like For but instead of iterating a fixed number of times, the
cycle termination is decided by a condition.

• Resolution Skeletons

– Divide & Conquer (D&C) - This skeleton can be viewed as a generalization
of the Map skeleton. It works by recursively splitting the problem into sub-
problems and calculating partial solutions in parallel, merging the results in
the upper levels of the recursion, ultimately reaching the global solution.

– Branch & Bound (B&B) - B&B algorithms are applied on NP-hard problems
where reaching the optimal solution is only possible with algorithms with ex-
ponential complexity because it requires all the possible solutions to be tested.
Instead of looking for the ultimate optimal solution, B&B skeletons try to reach
the best solution by recursively test several possible solutions until a bound is
met. It works by finding an initial possible solution, calculate its optimality
value (known as fitness) and generate alternative possible solutions based on
that one. The same process will be recursively applied to every possible solu-
tion, but only the solutions with the best fitness value will be further explored.
The algorithm will terminate when a determined bound is met. That bound
can be either time-based, cycle-based or when a solution with a fitness value
over some pre-established limit is met.

9



2. STATE OF THE ART 2.2. Heterogeneous Computing

2.2 Heterogeneous Computing

Heterogeneous computing systems are not a new concept. For a long time, purpose-
specific processors have been used to assist the CPU in some particular operations. The
most notorious example of a purpose-specific processor is the GPU, a processing unit in
charge of graphics processing in almost every nowadays computer. This kind of pro-
cessors are very optimized for graphics related operations, outputting high performance
levels, generally not achievable by the general-purpose processor when performing this
type of tasks. GPUs were firstly design as fixed function pipelines [10], meaning that
a pre-determined set of functions were specified in the hardware, and implementing a
new function was only possible through hardware modifications. Nonetheless, the sci-
entific simulation community identified an untapped computation source that could be
leveraged in their highly resource demanding computations. The downside of these pro-
cessors was that, being design with specific intents, it was really hard or even impossible
for programmers to implement operations that differed from the processors original pur-
pose. However, this new interest, conjoined with the evolution of GPU hardware, poten-
tiated this kind of processors to become increasingly more programmable, allowing them
to be applicable on a wider range of fields, ultimately leading to the rise of the GPGPU
(General-Purpose Computing on GPU) concept. GPGPU is the designation of using the
GPU for computations involving non-graphical tasks.

Despite being programmable, the existing APIs for GPUs (like OpenGL), were tar-
geted to graphics processing and all the operations had to be addressed as graphical
problems, meaning it was still really hard to program and take full advantage of this
processors, when addressing problems other than graphical ones. This lead to an effort
to reach more generic APIs. Brooks [11] was the first attempt, and although it was not
adopted by the industry, it was an important proof of concept to show the potential of
GPUs in different grounds. Consequently, it was not long until the industry itself recog-
nized that potential and in 2006, NVIDIA, one of the main GPU manufacturers, unveiled
CUDA [12], the first actual solution to GPGPU.

After NVIDIA released CUDA, other manufacturers wanted to join the race. Being
created by NVIDIA, CUDA was only supported by NVIDIA graphical cards and the
community craved for the specification of an open standard for GPGPU. Such necessity
spawned the OpenCL [13] proposal, a standard specified by the Khronos Group and
today is implemented by a large list of manufacturers, including NVIDIA, Intel, AMD
and Apple.

The existence of an open standard further paved the path for the continuous growth
of GPGPU field, but some challenges are yet to overcome, namely the increasing of the
abstraction level. CUDA and OpenCL are too close to the hardware and the program-
mers still need to have some insight about the GPUs architecture to take full advan-
tage of the parallelism they offer. This difficulty, together with the necessity to support
other programming languages other than C or C++ (the languages supported by CUDA
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and OpenCL), let to numerous independent efforts to bring GPGPU programming to an
higher abstraction level. Our focus is on tools that allow orchestration of GPU and CPU
computing, instead of just making GPU computations available to the programmer.

2.2.1 On the programming of Heterogeneous Systems

The popularization of the GPGPU led to the proliferation of GPU programming frame-
works. On one hand, pre-existing parallel programming frameworks have been extended
to benefit from the power of this processors. On the other, this device propelled the rise
of new solutions developed from scratch with the GPU programming in mind. GPGPU
has been tackled from different angles. Regarding the programming support, the most
popular approaches are the directive-based frameworks, programming languages and
high-level libraries.

Directive-based frameworks are tools that convert source code written in the host
programming language (like C or Fortran) into code of another language (like CUDA or
OpenCL). These, tools, also known as source-to-source compilers, aim to have a minimal
impact on the sequential version of the code, requiring little to no modifications to the
source, other than the directive annotations (also known as pragmas) on the parts of
the code that can be parallelized. Therefore, despite providing a unified programming
model, it still relies on the programmer to identify the parallelizable parts of the program
and to specify how the compiler must interpret such code. Also, additional options can
be specified, in order to increase the program’s performance. Two examples of such
compilers are hiCUDA [14](C-to-CUDA) and Bones [15] (C-to-CUDA and C-to-OpenCL).

Another way to provide GPU support in a higher level is through native language
level support. Some programming languages directed to cluster computing, like X10
[16, 17] and Chapel [18, 19], have been adapted to keep up with the GPGPU trend, others,
like Lime [20], have been design from scratch with GPU programming in mind.

GPU support can also be provided through high-level libraries that hide certain
lower level aspects of GPU programming, like device communication and computa-
tion offloading. A common way to provide abstraction over the GPU parallelization
is through algorithmic skeletons, or templates (like SkePU [3] and SkelCL [2]), identi-
fying common parallelization patterns and providing a generalized implementation of
such patterns, leaving it to the programmer to just parameterize them according to the
specificities of the application.

In the context of our work we are more interested in classifying these frameworks
according to their support for heterogeneous computing. Accordingly, we will divide
them into three categories, which will drive the structure of remainder of this section:

• GPU offloading tools: These are the tools that focus solely on offloading computa-
tions to one or more GPU devices, without support for other backends;

• Multi-backend with single or explicit offloading: In this category we include
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frameworks that provide support for both GPUs and multi-core CPUs (and pos-
sibly other backends), but each computation is explicitly offloaded by the program-
mer, or when only one backend is active at a time, the remaining working as a
fallback in case the primary backend cannot execute the computation;

• Automatic Backend Selection: This category contains the tools that not only pro-
vide support for multiple backends (GPUs, CPUs and possibly other devices), but
also provide mechanisms to implicitly distribute work-load among such devices.

2.2.2 GPU offloading tools

SkelCL [2] is a C++ skeleton framework that provides support for multi-GPU execu-
tions through OpenCL. SkelCL provides implicit data exchange through an abstract vec-
tor data type and lazy copying to minimize communication overhead between devices.
Every skeleton in SkelCL receives a vector as input and produces a vector as output. To
generate an OpenCL kernel, every skeleton receives a function as a string parameter that
will be merged with the skeleton’s own source to form the OpenCL code. The kernel
is compiled during runtime, but since it can be a time-consuming task, after compiled,
the compiled kernel is stored on disk for future utilizations. To pass more arguments
to the kernel function than the number defined by each skeleton, every skeleton can re-
ceive an additional argument, an object of the type Arguments. All the additional ar-
guments must be packed inside this object and passed to the skeleton. When multiple
GPUs are present, a vector can be distributed through all the available devices, either
by completely copying them to every device, or evenly splitting the vector into different
parts, to perform executions over the array simultaneously by all the the devices. SkelCL
provides skeleton-specific distribution so the vector can be divided implicitly, although,
the programmer can take control and explicitly set the Vector’s distribution. Also, data
exchanges between multiple devices is automatically performed by the library. The skele-
tons supported are Map, Zip, Reduce and Scan, without nesting capabilities.

Marrow [6, 7] is a C++ skeleton framework focused on orchestration and execution of
OpenCL kernels on multiple heterogeneous GPU devices, as well as introducing opti-
mizations to the overall execution. Besides the typical data-parallel skeletons, like Map
and Reduce, provided by most of the skeleton frameworks, it also provides support for
some task-parallel skeletons like Pipeline and Loop (While and For). Another advantage
over other libraries, is that Marrow offers support for skeleton nesting, allowing for more
complex algorithmic structures to be specified. The parallel computations are defined
and submitted as native OpenCL kernels, although, low-level functionalities like error-
handling and memory management are abstracted from the programmer. This skeletons
are encapsulated in an object called KernelWrapper allowing skeletons to easily access
them when orchestrating an execution.

The Marrow framework takes advantage of the modern GPU’s capacity to perform
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simultaneous bi-directional data transfers between host and device, while executing com-
putations and applies a technique called overlap between communication and computa-
tion. This technique reduces GPU’s idle time by optimizing the scheduling and issuing
of operations with memory transfers between the host and the device.

The execution model in Marrow can be viewed as a Master-Slave pattern, where a
task is submitted for execution and the application is allowed to continue to perform ad-
ditional computations. When an execution is requested, it is queued and an associated
future object is created and referenced to the application. This object allows the applica-
tion to query the state of the execution as well as waiting for the execution to finish.

OpenACC [21] is an open standard for parallel programming, resultant of the effort of
a group of vendors to improve code portability between different implementations. This
standard defines directives similar to those found in OpenMP, an already well-accepted
standard for parallel programming with multi-core CPUs. There are several compilers
implementations of OpenACC, both commercial (PGI [22] and CAPS [23]) and open-
source (accULL[24]), but since they all obey to the same specification, the same code can
be compiled with the different compilers with no need for code modifications.

X10 [16, 17] and Chapel [18, 19] are two programming languages that use the APGAS
(Asynchronous Partitioned Global Address space) [25] model, an extension of the PGAS
model. The PGAS model tries to create a level of abstraction over the global address
space of a distributed system, making any data (local or remote) directly accessible by
any process regardless of its location, without never completely suppressing the notion
of local and remote data. By being aware of the data location, it is possible to reduce the
performance problems associated with the GAS solutions, where the programmer was
completely abstracted from the data locality. The APGAS, as the X10 team as defined it,
introduces two new concepts: places and asyncs. A place is the abstraction of an entity on
which computations are executed. A place can be mapped to an x86 core, a multi-core
processor or even a GPU. Places are not required to be single-threaded and a place can be
defined hierarchically, allowing for the exploitation of the hierarchical design of an archi-
tecture. A place can be stored in a variable and passed to functions as an argument. This
model allows for explicitly requesting an execution to take place on a determined place.
The APGAS model goes even further and allows for that execution to be asynchronous,
through the async statement.

X10 is a programming language developed by IBM as a solution for clusters of multi-
core CPUs and has later been extended to support GPUs. In X10, a GPU is represented
by a subplace of the hosting place. The memory allocation on the GPU is done in a way
similar to CUDA or OpenCL. For memory transfers between the GPU and the host, X10
provides an API that mirrors Java’s System.arrayCopy (Array.asyncCopy), but it
allows one of the arrays to be a remote reference and the copy is made asynchronously.
The native X10 synchronization mechanism, clocks, is also usable inside a GPU to provide
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a barrier mechanism to synchronize shared memory access. In practice, the programming
of the computation offloaded to the GPU is not very distant from the abstraction level of
CUDA or OpenCL. The programmer must explicitly express which asynchronous activ-
ities must be executed on GPUs. Also, in such cases, the execution of said activities is
specified inside two nested loops, iterating over each block and then over each thread of
the GPU, requiring the programmer to be aware of the adjacent execution model.

Chapel is a programming language developed by Cray that aims to provide a higher
level of parallel programming while allowing the programmer to drop to a lower-level
specification allowing for specific algorithm tunes to be performed. Unlike X10, the GPU
is not represented as a subplace of the host, it is however, an integrated parted of the
host’s locale (a place in Chapel). When allocating memory in Chapel, the dmapped key-
word is used, followed by the keyword to specify the domain where the memory is to be
mapped. Allocating a variable on the GPU memory is achieved by using the GPUDist as
the domain keyword. Data parallelism is achieved through the forall loop declaration. If a
forall loop is applied over a variable mapped to the GPU, the compiler will automatically
generate a CUDA kernel with the body of that loop and that will execute that computa-
tion on the GPU. The memory transmissions between the host and the GPU is implicit
by default but can be set to explicit when the memory is mapped by using the GPU-
ExplicitDist keyword. Chapel also offers explicit access to specialized memory spaces
of the GPU, like shared memory, constant cache memory and texture cache, by simply
mapping the memory with respective keywords. Besides the forall operator, Chapel also
offers support for the higher level operators reduction and scan, allowing those operators
to also be defined by the programmers. Although GPU computing in Chapel is much
more abstract than in X10, the programmer still has to decide what must the executed in
each processing unit.

Lime [20] is a programming language for hybrid computation, comprising architec-
tures involving multi-core CPUs, GPUs and also FPGAs. It is a language inspired in
the Java programming language and attempts to achieve maximum compatibility with
Java, in a way that code compilable with the Java compiler can also be compiled with the
Lime compiler. The reverse can also happen if the Lime code does not make use of Lime
exclusive features that do not exist in Java.

Lime allows for the creation of workflows that can be described as a direct graph
of computations where each edge represent a task and the output of each task is the
input of the next task in the graph. That being said, the two most important operators
in Lime are the connect operator (=>) and the task operator (task). Each task represents
a computational unit, equivalent to an OpenCL kernel, while each connector denotes the
flow of the data between two tasks. In Lime, a task can be either isolated or non-isolated.
An isolated task (also called filter) is a task that can only access its own address space
and has no access to the global state. The job of each task is to apply a method (called
worker method) as long as there is still input to be processed, and enqueue the result into
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an output stream. Also, by explicitly declaring the communication between tasks (using
the connect operator), it is possible for the compiler to optimize and synchronize the
communication between tasks automatically, without the programmers intervention.

Lime also has support for the map-reduce model. The map function is represented
by the @ token and applies a function to each element of an aggregate data structure,
returning another aggregate data structure. On the other end, by using the token ! after
an operator or method, the Lime compiler will treat it as a combinator to execute a reduc-
tion, as long as the method applies the computations to two arguments of the same type
and returns a result of that type.

The Lime compiler implicitly determines a partitioning of the program between the
CPU and the GPU. For a task to be electable to be offloaded to the GPU, it must not
be the first nor the last task in the stream and it must be an isolated task, guaranteeing
that it does not perform globally side-effecting operations. The compiler also searches
for map and reduce operations within each filter to identify kernel-level data-parallelism
opportunities. For a map function to be compiled for the GPU, it has to be static and local,
and the arguments must be value types, guaranteeing that the function is side-effect free.

2.2.3 Multi-backend with single or explicit offloading

Muesli [26] is a skeleton library that started with a focus on multi-node clusters and
has been continuously adapted to support multi-core processors and more recently, GPU
processors, combining MPI, OpenMP and CUDA. Although it supports both multi-core
CPUs and GPUs, Muesli does not support the combination of CUDA with OpenMP. Also,
the platform does not choose where the execution will take place, meaning that it has
to be specified in the code whether the execution will take place in the CPU or in the
GPU. Like most of the skeleton libraries, Muesli takes care of memory transfers implic-
itly, through lazy-copy mechanisms to reduce the communication overhead. Kernels are
defined in a CUDA-like way, without no higher level abstraction. Muesli implements
both Data (Map, Zip, Fold and Scan) and Task-parallel skeletons (Farm, Pipe, D&C and
B&B), although, GPU offloading is only available for Data-parallel skeletons. The same
goes for skeleton nesting, as the library supports skeleton nesting but since you cannot
nest skeletons inside data-parallel skeletons, it can be concluded that skeleton nesting is
not supported for GPU computations.

Thrust [27] is a C++ template library of parallel algorithms and data structures for
CUDA. In Thrust, memory management is explicitly declared, although, it is greatly sim-
plified by vector containers. When specifying a vector container, either a host_vector
or a device_vector, the memory will be automatically allocated in the specific device.
Also, deallocation and dynamic resize will be taken care by the library. Memory transfers
can easily be specified by using the = operator or the copy function. Kernel launching is
abstracted by Thrust’s interface as the programmer only has to call the template function.
Thrust already provides most of the built-in arithmetic and comparison operators to be
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used in the template calls, but it is also possible for the programmer to declare his own.
Thrust also provides an OpenMP and a TBB backend that can be specified during com-
pilation, without any modifications to the code, although, two different backends cannot
coexist.

Bolt [4] is also a C++ template library, developed by AMD on top of OpenCL. Bolt
is in many ways similar to Thrust. Device and host memory is also explicitly declared
through a vector container (std::vector or device_vector), providing a simpler
way to manage memory than in OpenCL declarations. Unlike Thrust, however, if the
data is allocated in the CPU memory space and the computation will take place in the
GPU, the data will be automatically copied to the GPU memory. Besides OpenCL, Bolt
functions can also be executed with a TBB backend or in a serial way in the CPU, al-
though, and like Thrust, it provides no support for different backends to coexist. By
default, Bolt functions will try to run computations on the GPU with OpenCL, if it fails it
will fall back to TBB and then to serial execution.

Aparapi [28] is the result of an effort aimed towards providing GPU computations us-
ing the Java programming language, by converting Java bytecode into OpenCL. It also
aims to maintain the Java’s principle of “Write Once Run Anywhere”, meaning that if a
GPU is not available, does not support OpenCL or, for some reason, the OpenCL code
cannot be generated, the computation will be carried out by a Java thread pool. This
characteristic makes Aparapi an interesting platform since code suitable for the execu-
tion on GPUs can also be executed on CPUs. Although, the sections of the program that
are meant to be run on the GPU have to be explicitly declared meaning that the platform
has no mechanism to implicitly schedule the working load to the different processors.
Also, Aparapi offers no abstraction level over the kernel code. The code is written in
Java, but the abstraction level is the same of an OpenCL kernel, as the programmers are
aware that they are writting the code with the partial vision of each thread.

Bones [15] is a source-to-source compiler in which the compilation is achieved through
algorithmic skeletons. In Bones, algorithms are classified into different classes and when
the programmer is declaring a pragma to signal parallelizable code, it defines the class
in which the algorithm falls into. This will allow the compiler to merge the programmer
defined code with the generic code of the skeleton for that class. The resulting code
already takes care of memory allocation and data transmission between devices. Bones
has no support for multiple GPUs nor skeleton nesting. Supported backends are CUDA
and OpenCL (both for GPU and CPU), although, not all the skeletons supported by the
CUDA backend are supported by the OpenCL one.

A Flexible Shared Library Profiler for Early Estimation of Performance Gains in Het-
erogeneous Systems [29] is a work that addresses heterogeneous architectures through
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a shared library interposing technique, that replaces shared library calls, by calls to a
wrapper library that will choose among alternative implementations of the shared li-
brary, based on a performance prediction model. Given that the wrapper library and
the alternative implementations have the same ABI (Application Binary Interface) of the
original library, one of the advantages of this technique is that it does not require any
modifications to the original application, nor to the original library.

The framework starts by analyzing the application’s executable file in order to iden-
tify the shared library calls. It then generates a wrapper library that calls the original
shared library functions and traces all the calls to each function while collecting profiling
data. The next step is to execute the application with the wrapper library preloaded, for a
significant number of operating conditions, so the profiling information can be collected.
This profiling information is then combined with the performance models for each of
the alternative implementations, allowing for a performance prediction during runtime,
depending on the operating conditions like the input work size.

The downsides of this model are the need for the existence of different shared library
implementations, and the fact that only one implementation is selected to execute, not
taking advantage of possible performance gains by distributing the work-load between
different implementations (that execute on different devices).

2.2.4 Automatic Backend Selection

SkePU [3] is a skeleton library that was originaly built with multi-core CPUs and multi-
GPUs in mind. Like Muesli, memory transfers are achieved through lazy-copying mecha-
nisms and memory locality is abstracted through a vector interface. The library supports
both OpenCL and CUDA backends, for GPU executions, as well as an OpenMP back-
end for multi-core executions. All backends have the same interface, meaning that the
programmer does not have to be aware of where the execution will take place while pro-
gramming. Kernels are also not explicitly declared, instead, the programmer only defines
the function to be applied by the skeleton via a small set of predefined C macros.

This framework has recently evolved to integrate automatic backend selection
support[30]. Although there is no cooperation between the different devices, as only
one implementation is selected to perform an execution, the control of which backend to
offload an execution is no longer left upon the user. Instead, the platform implicitly deter-
mines the best performing device, based on the received data size and the performance
information gathered during an offline training.

SkePU’s offline training is based upon the premise that if an implementation is the
best performing for a data size i and for a data size j, then, all data sizes between i

and j will also perform best with said implementation. The training algorithm starts by
evaluating the best performance for the lower and the upper bound data sizes (default or
user-specified). This information is stored on the root node of a tree. The remaining of the
tree is then constructed by recursively dividing each dimension’s subspace, until equal
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winners of a subspace are found, considering the respective leaf node, a closed node. The
training terminates when all the leafs of the tree are closed, or upon reaching a maximum
tree depth or training timeout, specified by the user.

In parallel to the training project, there’s a parallel project aiming to integrate SkePU
with StarPU [31]. StarPU is itself a heterogeneous computing library that pays close at-
tention to the efficient scheduling of tasks through the several available CPUs and GPUs,
which combined with SkePU, gives the programmer the abstraction level of the skele-
tons as well as a dynamic scheduling of the tasks, resulting in lighter burden over the
programmer and more efficient final results. However, there is still no work-load distri-
butions among different devices, meaning that device concurrency is only possible with
the submission of multiple tasks. SkePU only has support for data-parallel skeletons like
Map, Reduce and some variants of those two and does not support skeleton nesting.

StreamIt [32, 33] is a programming language that was developed as a response to the
crescent increase of parallel streaming applications. It attempts to provide the program-
mers with a more natural way to define a stream, while it performs stream-specific op-
timizations, achieving levels of performance close to optimized code written in a lower-
level language. The basic unit of computation in StreamIt is the filter, which represents a
computation that is executed over a stream of data. Each filter holds two types of com-
munication channels, the input by which the data is received, and the output, where the
results of the computations are sent to. A stream can be represented by a hierarchically
organized graph and the constructs can be of three types: pipelines, split-joins or feedback
loops. The pipeline is the most basic construct where each filter is connected to the next
one. In a split-join construct, the flow of the data is divided into independent substreams
by the splitter and later is rejoined by the joiner. A splitter can either apply each element to
every of its substreams, to allow for different filters to be applied over the same data but
it, can also apply each element to only one substream, allowing for weight distribution.
A feedback loop allows for the existence of cycles in the stream flow graph.

StreamIt is another example of a language that has evolved to support GPU computa-
tions, although in this case, only the compiler was modified to be GPU aware. The stream
application can be represented as directed acyclic graph (given that in this version, some
advanced features like feedback loops are not supported). The platform processes the
stream graph through a coarsening and a uncoarsening phase, grouping nodes (filters)
into partitions, taking into account performance and communication time estimations,
while also taking advantage of the on-chip GPU shared memory, in the most efficient
way.

After the partitions are created, they are distributed among the present GPUs, with
the exception of the partitions that maintain an internal state, that are pre-mapped to
the CPU. Besides this exceptions, the CPU is used to control the GPU’s execution (one
dedicated thread per GPU device). The framework internally manages communications
between partitions inside each GPU device, as well as inter-GPU communication.
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Adaptive Runtime Selection for GPU [34] is a work addressing online performance
prediction, based on an offline profiling stage. This solution consists in converting C
source code, identified by pragmas, to CUDA code, through a source-to-source polyhe-
dral compiler. During this code conversion, various optimizations are performed, like
identifying data reusability, to take advantage of the GPU’s shared memory. When the
CUDA code is compiled, various versions of the code are generated, differing in some
parameters, like tile and block sizes.

The next step is to perform an offline profiling stage. This profiling stage is divided
into two stages. During the first stage, data communication between the host and the
GPUs is evaluated, building a table that matches message sizes with the expected com-
munication times. The second stage consists in the simulation of the different generated
versions of the CUDA kernel, under different execution contexts.

Finally, at runtime, the framework estimates the total execution time of each ker-
nel implementation, considering the execution and communication information gathered
during the offline profiling stage. The version with the best predicted global execution
time is selected to run. Simultaneously, the same computation is prompt at the CPU as
well. When one of the executions finishes, it signals the other one to interrupt its ex-
ecution. Although this solution performs concurrent executions in the CPU and GPU
devices, there is still no cooperation between the devices, as the results of one of the
executions will be discarded.

Accelerating MapReduce on a Coupled CPU-GPU Architecture [35] is a work that
addresses the execution of MapReduce computations in nodes comprising CPUs with
integrated GPU. This work proposes two approaches for using both these devices in a
cooperative way: one where both the Map and the Reduce stages are executed by both
processors (Map-dividing Scheme), and another, where each of those stages is executed
in a different device (Pipelining Scheme). Both these devices rely upon a dynamic work
distribution approach and implement continuous reduction.

In the Map-dividing Scheme, the scheduler is responsible for dispatching the input data
to each worker. In a GPU, a worker corresponds to a workgroup. In the CPU, each core
is a worker, except for the first one that is responsible for the dynamic schedule, based
on the master-worker model. Inside each worker, the input data is divided among the
working threads to execute the map function. Each worker has also a reduction object,
responsible for the partial reduction of the output of each of its belonging thread. When
the end message is received by the workers, one reduction object per device will perform
a reduction of the reduction objects of its workers. In the end, these intermediate results
are combined to produce the final result.

The Pipelining Scheme is based on a producer-consumer model. In this case, the map
device performs the map function over the input data, in the same fashion as it happens
in the Map-dividing Scheme, but instead of local reduction objects, the output of the map
function is placed on a circular buffer (one for each worker), placed in the zero copy
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buffers, as they are accessed by both devices. The reduction device is also composed by
multiple workers, that perform a partial reduction function. When the scheduler identi-
fies an idle reduce worker, it will assign it a full key-value block from one of the circular
buffers. At the end, a global reduction object will reduce the results of all the partial
reduction objects.

There is also a static load balancing approach for this scheme. This approach elimi-
nates the need for a scheduler and therefore, all the CPU cores will work as workers. The
input is evenly distributed among the map workers and the output is stored on the cir-
cular buffers (also one for each worker). Since there is no scheduler, the key-value blocks
present in the circular buffers are evenly distributed among the reduction workers.

Transparent application acceleration by intelligent scheduling of shared library calls
on heterogeneous systems [36] continues the work presented in [29], described previ-
ously. In this work, the authors extend the previously proposed framework, so, when
not limited by the data/control dependencies, the system automatically distributes the
work-load among different devices (through different library implementations).

Unlike their previous work, this works follows a dynamic performance model con-
struction during runtime, instead of during an offline profiling. The task scheduling
follows one of two policies: the Best Performance Selection policy, when the working data
cannot be divided among different devices; and the Load Balancing policy, when work
partitioning is possible.

In the Best Performance Selection policy, when the best performing implementation is
not known for the given work size, the performance model is constructed by executing
the application using all the implementations (simultaneously). The following execu-
tions will only be executed by the fastest implementation. Every time the application is
executed, the performance model is updated so it may adapt to eventual alterations in
the running environment, such as a system’s load variation.

The Load Balance policy follows a load balancing approach that tries to balance the
work-load in a way that all executing devices finish their execution at the same time.
This process is also dynamic and based on a Functional Performance Model principle.
For the first iteration, since there is no performance information, the work-load is evenly
distributed among the devices. In the following iterations, the FPM of each device is
updated and a new load distribution is calculated, gradually getting closer to the ideal
work distribution.

Transparent CPU-GPU Collaboration for Data-Parallel Kernels on Heterogeneous Sys-
tems [37] is a solution for transparent orchestration of CPU and GPU OpenCL compu-
tations. They address device heterogeneity by executing a different number of work-
groups in each device to achieve work-load balance. The work partitioning is performed
by a dynamic compiler composed by three modules: the kernel transformer, the buffer man-
ager and the partitioner.
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The kernel transformer is responsible for converting the original kernel, preparing it
to work only over a subset of work-groups. After this step, the buffer manager analyses
the memory access patterns of each work-group. If the memory accesses can be deter-
mined statically, only the necessary data is transferred to each device. Otherwise, the
input is replicated through all the devices and the output will be merged. The partitioner
is responsible for deciding the number of work-groups to execute in each device, based
on profiling information. That profiling information is gathered in a single time basis,
by launching executions with s different number of work-groups to each device, while
gathering performance results.

2.3 Skeletons and Template-based Frameworks for Multi-core
Computing

In this section, we will visit some multi-core framework solutions that use algorithmic
patterns.

Skandium [38] is a Java algorithmic skeletons framework (ASkF). It stands as a re-
implementation of Calcium [39], a Java ASkF for cluster environments, but targeting
multi-core computers instead. Skandium provides support for both Data (Map and Fork)
and Task-parallel skeletons (Farm, Pipeline, for and while) as well as the resolution skele-
ton D&C. Skandium also allows for skeleton nesting. Besides skeletons, there is another
important concept called muscle blocks. Muscle blocks are sequential blocks of code that
provide the logical needed to transform a general skeleton into a specific application.
Muscle blocks can be viewed as black boxes that are invoked by the skeletons and de-
pending on the skeleton they can be executed either sequentially or in parallel.

In Skandium, all the communications between devices are implicit, however, it does
not provide any higher level shared-memory protection mechanism, meaning that the
programmer has to be aware that the muscle blocks may execute concurrently, and take
the right measures to avoid race conditions, guaranteeing the correct results. This may
have an impact on performance, since a part of the program has to be serialized and it is
up to the programmer to identify the critical section.

Skandium offers a dynamic scheduling, based on a producer/consumer scheme. The
initial task is inserted into a task queue. Multiple threads will consume and compute
tasks from the ready queue. A task can generate sub-tasks that will be inserted into the
task queue, and can be kept in a waiting state until all its generated subtasks have fin-
ished executing, allowing for other tasks to be executed. When the task exits its waiting
state, it is re-introduced into the task queue to be scheduled to continue its computations.

Intel Threading Building Blocks [40] (TBB) is a C++ template library developed by
Intel for parallel programming on multi-core processors. Although it does not label itself
as a skeleton framework, its pattern-based abstraction approach has evident similarities
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GPU CPU GPU/CPU
SkelCL Bolt Thrust Marrow Skandium TBB Muesli SkePU

Map X X X X X 7 X X
Reduce X X X X 7 X X X

Zip X 7 7 7 7 7 X 7

Scan X X X 7 7 X X 7

Fork 7 7 7 7 X 7 7 7

Pipeline 7 7 7 X X X CPU 7

Farm 7 7 7 7 X 7 CPU 7

For 7 7 7 X X X 7 7

While 7 7 7 X X X 7 7

D&C 7 7 7 7 X 7 CPU 7

B&B 7 7 7 7 7 7 CPU 7

Sort 7 X X 7 7 X 7 7

Table 2.1: Skeleton support by analyzed frameworks

with skeleton programming. TBB offers both implicit and explicit parallelism. Explicit
parallelism is based on the notion of a task, a sequential blocks of code that can be exe-
cuted in parallel with other tasks. A task may spawn additional tasks, allowing the cre-
ation of complex task hierarchies with specified task dependencies. For more common
types of parallelism, TBB provides a set of templates (For, Reduce, Skan, While and Sort)
that offer the same pattern-based abstraction as skeletons. These templates are implicitly
converted into tasks.

All tasks are executed through a dynamic scheduler based on local task queues and
task stealing, a scheduling strategy popularized by Cilk[41]. Each working thread has
its own task queue, avoiding race conditions to a global task queue, maximizing concur-
rency. The problem with local task queues is that the work distribution between threads
may be unbalanced, reaching a point in the execution when some threads become idle,
waiting for other working threads to finish computations, not fully exploiting the par-
allelism. To work around this weakness, TBB implements a task stealing mechanism.
When a working thread has no more tasks in its task queue, it selects a random working
thread and tries to steal a task from it. Although this mechanism will keep more threads
busy, ultimately improving performance, the random nature of the victim thread selec-
tions may not select the best victim to steal from, and since each steal will introduce an
overhead on the execution, it would be desirable to steal a task from the busiest thread,
reducing the overall number of steals.

2.4 Summary

Table 2.1 summarizes the skeletons implemented by the skeleton frameworks analyzed
in this chapter.

Some of the GPU skeleton frameworks, like skeletons, are based on OpenCL, which
means that they are able to execute on CPUs as well. However, given its GPU focus, there
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is no reason to do it from a performance point-of-view, as all the framework was design
with only OpenCL GPU executions.

Concluding, the current state of the art around the abstraction of a system composed
by CPUs and GPUs as a whole is still very preliminarily. In the context of CPU and
GPU skeleton frameworks, we did not find any proposal with the characteristics of the
solution we are proposing.
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3
The Marrow Algorithmic Skeleton

Framework

The work presented in this document aims to extend Marrow [6, 7], to offer support for
CPU OpenCL computations along with the current support for multiple heterogeneous
GPUs. As introduced in Section 2.2.2, Marrow is a C++ algorithmic skeleton framework
that stands out for its focus on kernel orchestration and communication, rather than just
focusing on the partitioning and distribution of data, like most of the current skeleton
frameworks for GPU programming. This chapter presents the latest version of the frame-
work that includes support for multiple heterogeneous GPUs.

Marrow’s architecture is divided into four layers: User Applications, Skeleton Library,
Runtime and OpenCL Enabled Devices, as shown in Figure 3.1. The flow of the communi-
cation goes downwards, meaning that each layer only has vision of itself and the layer
immediately bellow. The upmost layer is the User Application layer and it represents the
C++ applications that make use of Marrow’s skeletal API. The downmost layer symbol-
izes the OpenCL enabled devices where the kernel computations are to be run, in this
case, GPU devices. A more comprehensive description of the remaining two follows.

3.1 Skeleton Library

The skeleton Library encloses all the components of the Marrow framework that are ac-
cessible to the programmer. It includes the implementation of each skeleton offered by
the platform, the Kernel Data-types and the Vector and KernelWrapper classes. The
Kernel Data-Types enable the specification of a kernel regarding its type, size, whether
or not it is partitionable (for data partitioning purposes) and the minimum size for a
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ExecutionPlatform

KernelBuilder Scheduler

Task Launcher

User Applications

Auto-Tuner

MapReduce

PartitionInfo

Task

Map

Loop Pipeline

KernelWrapper

Kernel Data-Types

Exceptions

VectorFor

Skeleton Library

Runtime

OpenCL Devices

Containers

Figure 3.1: Marrow’s System Architecture (taken from [7])

partition (indivisible size). The currently supported data-types are:

BufferData represents a contiguous memory region;

FinalData a constant single-element data defined on its creation and valid for all the
executions;

SingletonData a single-element data but the value is defined for each execution;

LocalData represents a memory region allocated in the GPU memory.

The KernelWrapper object is an enclosure for an OpenCL kernel to be executed.
The Vector represents a contiguous memory region and wraps any data buffer to
be submitted to a skeleton, concealing any intrinsic memory management, namely
data-partitioning, memory allocation and data-transmission between the host and the
OpenCL devices.

3.1.1 Skeleton Nesting

When Marrow was introduced in Section 2.2.2, we highlighted the feature that allows the
creation of structured computational trees (exemplified in Figure 3.2) by nesting skeletons
inside each other, defining a complex behavior comprising the behavior of all the nested
skeletons. The nodes of this trees can be divided into three categories: root nodes, inner
nodes and leaf nodes.

In Marrow, a computational tree is composed by: exactly one root node, at least
one leaf node and any amount of inner nodes. Any of the skeletons supported by the
framework can become the root node of the computational tree but only the Pipeline,
Loop and For skeletons are eligible to be inner nodes (the explanation follows in the
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Pipeline

Loop Kernel

Kernel

Figure 3.2: Example of a computational tree (adapted from [42])

Section 3.1.3). Since the skeletons only define an algorithmic behavior but they do
not own any computational logic by themselves, the leaf nodes must be instances of a
KernelWrapper object as they encapsulate the computational logic of the OpenCL ker-
nels. The library regulates this restrictions through two interfaces: the ISkeleton and
the IExecutable. The ISkeleton interface is implemented by all the components el-
igible to be a root node (all the skeletons). All the nestable nodes (inner and leaf nodes)
must implement the IExecutable interface.

3.1.2 Multi-GPU support

In Marrow, the support for multiple heterogeneous GPU devices is achieved through a
transparent decomposition of the application’s data-set, based on the performance values
of each individual device. This values are collected during the installation time and are
used to calculate a performance ratio among the GPU devices present in the system.

Given that the input and output data sizes are specified during the creation of the
computational tree and that those sizes do not change between skeleton submissions,
the data is statically partitioned also during the initialization process and it stays valid
for all the upcoming executions. Due to the data dependencies existent in some ap-
plications, Marrow allows the programmer to specify an indivisible size for each par-
titionable data type, hinting the framework to create partitions with a size multiple
of that value. Other applications may require full access to a data-set. In this case,
the full data-set must be copied to every device but each device will work over a dif-
ferent partition of that data. Listings 3.1 show the constructor of the BufferData

type. By default, the indivisibleSize is 1 and the partitioningMode is set to
iWorkData::Partitionable, however, the programmer can override this values, for
example, set the partitioningMode to iWorkData::Copy to force a copy of the full
data-set to every GPU device.

Marrow takes advantage of multiple GPUs through a data-parallel work distribution,
meaning that the computational tree is replicated to every GPU device and it is fully
executed over the assigned subsets of the input data, like depicted in Figure 3.3. This
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Listing 3.1: BufferData constructor
1 BufferData(unsigned int numberOfElements,
2 IWorkData::partitionMode partitioningMode,
3 unsigned int indivisibleSize);

Figure 3.3: Computational tree replication (taken from [42])

allows the framework to take advantage of the data locality inside each device, reducing
the data communication between the host and the GPU devices to the initial input upload
and the final output download. Since the work-load is balanced based on the relative
performance of each GPU, an efficient work-load balance is achieved prior to the tree’s
execution, eliminating the need for work-load transfers during runtime.

3.1.3 Supported Skeletons

Marrow currently supports the Map, MapReduce, Pipeline, Loop and For skeletons.

GPU #1

Map

Input Output

ExecuteUpload Download

GPU #N

ExecuteUpload Download

...

Figure 3.4: Map skeleton execution (taken from [42])

Map (Figure 3.4) is a data-parallel skeleton that applies the same computation over a
given data-set. This skeleton does not introduce a new behavior to the computational
tree but it plays an important role in a computational tree as it allows the framework to
apply the work distributions among devices and overlapping partitions. Therefore this
skeleton is useful to prompt the execution of a single kernel.
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MapReduce

Input Output
Reduce

GPU #1

ExecuteUpload Download

GPU #N

ExecuteUpload Download

...

Figure 3.5: MapReduce skeleton execution (taken from [42])

MapReduce (Figure 3.5) is similar to the Map skeleton but it executes an additional com-
putation over the output of the map resulting data, outputting a smaller data-set, usually
a single data element. Since most of the reduction functions are hardly parallelizable and
therefore inefficient to be executed on a GPU device, the MapReduce skeleton can be
initialized in two ways: The programmer can either specify a C++ function that will be
executed on the CPU after the Map execution has finished, or he can provide a reduction
OpenCL kernel and the MapReduce skeleton will be initialized as a Pipeline.

Pipeline

Input Output

Stage #1Upload DownloadStage #2

GPU #1

Stage #1Upload DownloadStage #2

GPU #N

...

Figure 3.6: Pipeline skeleton execution (taken from [42])

Pipeline (Figure 3.6) allows the programmer to specify a series of data-dependent
stages where the output of one stage will be the input of the next one. In Marrow, the
parallelism is achieved by issuing the execution of all the stages in all the present GPU
devices, but over different partitions of the data (like detailed in Section 3.1.2). By doing
so, there is no need for data communication between stages and the data communica-
tion between the host and the device is reduced to (a) the upload of the input of the first
stage and (b) the download of the output of the last stage. Although this skeleton only
supports two stages, by making use of the nesting mechanism, Pipeline skeletons can be
nested inside each others to achieve the desired amount of stages.

Loop (and For) skeleton applies iterative computations over an input data-set. Due to
the nature of a loop cycle, the condition that evaluates if the cycle should continue or
break may be dependent on the full resulting data-set of one iteration. Since Marrow
splits the global data-set among the various present devices to be independently pro-
cessed, in cases where the computation requires access to the full data-set to evaluate
that condition, a synchronization step has to be introduced between iterations. Since this
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Figure 3.7: Loop skeleton with parallel step computation (taken from [42])

Loop

Input
Output

Upload DownloadExecute

<True>

GPU #1

Upload DownloadExecute

Step

<True>

GPU #N

...

<False>

Condition

<False>

Figure 3.8: Loop skeleton with synchronized step computation (taken from [42])

step is certain to introduce an overhead in the computation (mainly because of the re-
quired communication), this skeleton can be instantiated in two ways: with a parallel step
computation (showed in figure 3.7) or with a globally synchronized step computation (figure
3.8) when full synchronization cannot be avoided.

3.1.4 Programming example

In this section we present a programming example (in Listing 3.2) of a three stage image
filter pipeline (one of the benchmarks we used for this work’s evaluation) to illustrate the
steps a programmer would take to instantiate a computational tree (from line 2 to line 34)
and submit an execution request (from line 37 to line 47).

Lines 2 to 4 define the size of each dimension of the globalWorkSize. Since these
kernels operate over two pixels of the same line of the input image, the first dimension
of the globalWorkSize is set to half the width of that image. From line 8 to line 19 the
input and output data-types for the first kernel are configured and the KernelWrapper
object is created. The other two KernelWrapper objects are configured in the same
fashion, from line 21 to line 30. In lines 32 to 34, the computational tree is initialized by
nesting a Pipeline skeleton inside another. Since the p2 pipeline is the root node of the
tree, the number of GPUs and the number of overlapping partitions (numBuffers) are
specified to overlap the default values.

The execution request stage starts with the creation of a Vector object for each input
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and output data-type (line 37 to line 44). The execution is then submitted to the skeleton
tree (line 46) and a Future object is returned. This object will be used to inform the
application when the execution has finished.

3.2 Runtime System

The Runtime System of Marrow contains the modules that aggregate and export OpenCL
functionalities that are used recurrently by the upper layer. The ExecutionPlatform
is responsible for an OpenCL environment, shared by all the nodes in the execution tree.
Since only GPU OpenCL devices are considered in this version, there is only one type
of ExecutionPlatform, the one responsible for all the devices. KernelBuilder is
responsible for managing all the stages associated with kernel compilation for all the
present GPU devices. OpenCLErrorParser works as an interpreter for OpenCL er-
ror codes, transforming them into more representative C++ exceptions, thus providing a
stronger error handling system, both internally and to the developer. A Task object is a
container for all the information regarding a single submission to a computational tree.
A PartitionedInfo object contains the partitioning information of a single argument
of a kernel execution. The Autotuner, Scheduler and TaskLauncher, along with the
ExecutionPlatform, constitute the persistent components of the platform, meaning
they stay the same for all the computational tree’s inside one application, allowing for a
global scheduling of the available resources. Autotuner is the component that gener-
ates the partitioned information for all the arguments of a kernel during the creation of
the skeleton tree. The Scheduler is responsible for receiving task submissions and en-
queue them to the queue of each GPU device so the TaskLauncher can consume them
and prompt the execution on the respective device.

3.2.1 Execution Model

Marrow’s execution model can be divided into two stages, the Skeleton Initialization, per-
formed only once when the computational tree is initialized, and the Skeleton Execution
Request, performed every time an execution is submitted to the computational tree.

Skeleton Initialization is the stage when the computational tree configures itself to be
ready to receive execution submissions. When the programmer initializes the compu-
tational tree, including the KernelWrapper, the data-types definitions (with respective
data-sizes) and the skeletons, he may also specify the number of GPUs, as well as the
number of overlap decompositions to be used (otherwise the framework will use all the
GPU devices available and set the overlap decompositions to its default value). That in-
formation will serve as the configuration for all the submitted execution requests. Figure
3.9 describes the steps taken during this stage. When a Skeleton is initialized (step 1),
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Listing 3.2: Image Pipeline implementation in multi-GPU Marrow
1 // Stage 1: Computation tree configuration
2 std::vector<unsigned int> globalWorkSize(2);
3 globalWorkSize[0] = uiImageWidth/2;
4 globalWorkSize[1] = uiImageHeight;
5

6 std::vector<std::shared_ptr<IWorkData>> inputData(2);
7

8 inputData[0] = std::shared_ptr<IWorkData> (new BufferData<cl_uchar4>(
9 uiImageWidth * uiImageHeight, IWorkData::Partitionable, uiImageWidth));

10

11 inputData[1] = std::shared_ptr<IWorkData> (new FinalData<int>(factor));
12 std::vector<std::shared_ptr<IWorkData>> outputDataInfo (1);
13

14 outDataInfo [0] = std::shared_ptr<IWorkData> (new BufferData<cl_uchar4>(
15 uiImageWidth * uiImageHeight, IWorkData::Partitionable, uiImageWidth));
16

17 std::unique_ptr<IExecutable> gaussKernel (new KernelWrapper(
18 gaussNoiseKernelFile, "gaussian_transform", inputData, outputData,
19 globalWorkSize));
20

21 inputData[1] = std::shared_ptr<IWorkData> (new FinalData<int>(threshold));
22

23 std::unique_ptr<IExecutable> solariseKernel (new KernelWrapper(
24 solariseKernelFile, "solarise_transform", inputData, outputData,
25 globalWorkSize));
26

27 inputData.resize(1);
28 std::unique_ptr<IExecutable> mirrorKernel (new KernelWrapper(
29 mirrorKernelFile, "mirror_transform", inputData, outputData,
30 globalWorkSize));
31

32 std::unique_ptr<IExecutable> p1 (new Pipeline(gaussKernel, solariseKernel));
33 std::unique_ptr<IExecutable> p2 (
34 new Pipeline(p1, mirrorKernel, numDevices, numBuffers));
35

36 // Stage 2: Execution request
37 std::vector<std::shared_ptr<Vector>> inputData(1);
38 std::vector<std::shared_ptr<Vector>> outputData(1);
39

40 inputData[0] = new Vector(
41 input, sizeof(cl_uchar4), uiImageWidth*uiImageHeight);
42

43 outputData[0] = new Vector(
44 output, sizeof(cl_uchar4), uiImageWidth*uiImageHeight);
45

46 IFuture *future = p2->write(inputData, outputData);
47 future->wait();
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Figure 3.9: Skeleton Initialization (taken from [7])

it requests the Scheduler component for the partition information for all the kernels in-
cluded in the computational tree (step 2). The Scheduler will use the AutoTuner com-
ponent to calculate the partition information (step 3), based on the skeleton configuration
arguments mentioned before, as well as GPU performance information (step 4), obtained
previously for the underlying architecture where the program is running, allowing for a
better work balance when heterogeneous GPU devices are present. Finally, the scheduler
configures all the KernelWrapper objects with the partitioned information obtained
(step 5). Since this process is only executed one time, the data decomposition will always
follow the same pattern in all the upcoming execution requests. Such approach limits the
tree’s applicability, as all the execution requests must respect the data-sizes specified in
this stage.

Skeleton Execution Request (depicted in Figure 3.10) is the stage when the computa-
tional tree receives an execution requests, prompts its executions to the GPU devices and
returns the results back to the hosting application. This stage is triggered by the arrival
of an execution request on the root node of the computational tree (step 1). The skeleton
will create a Future object associated with that submission (step 2) and return it to the
application (step 3) so it can be notified as soon as the execution finishes and the results
are ready. The task is then submitted to the scheduler (step 4) that will enqueue multiple
task submissions to each GPU device’s task queue (step 5) (one for each overlap parti-
tion), associating a different portion of the data-set to each submitted task, according to
the partitioning process performed in the initialization stage. The TaskLauncher is the
component responsible to prompt the executions to the devices. To achieve the desired
parallelism, the TaskLauncher is running one thread for each overlapping partition
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Figure 3.10: Skeleton Execution Request (taken from [7])

(number of devices X number of overlapping partitions) that will wait for tasks to be en-
queued in their device’s task queue. When a task is enqueued by the Scheduler, a free
thread will dequeue it (step 6) and prompt the execution of the assigned partition on the
assigned GPU (step 7), i.e, upload the input data to the GPU, prompting the execution
of the computational tree and downloading the output data (step 8). By having multiple
threads for each device, multiple executions will be prompt simultaneously to the same
device, originating the desired overlapping effect. The TaskLauncher keeps track of all
the subtasks in execution and when all the subtasks of a task have finished executing,
it notifies the associated Future object (step 9) which, in its turn, notifies the hosting
thread (step 10).
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4
Integrating the CPU in the Marrow

Execution Model

The main goal of this work is to extend the Marrow framework [6, 7] from multi-GPU
to provide support for a heterogeneous environments, composed by multi-CPUs and
multi-GPUs, in a way that the optimal work-balance computation would be achieved
without the programmer’s involvement. This chapter highlights the modifications and
improvements to the Marrow framework in order to accomplish our goals.

4.1 General Overview

In the previous version of Marrow, described in Chapter 3, the static distribution of the
work-load already took into account the differences in performance among heteroge-
neous GPU devices. However, that distribution was accomplished with the assumption
that GPU’s architectures are similar enough that their performance can be compared sim-
ply by comparing performance measurements of each device, reaching a performance
ratio between devices that would fit all applications. Although this method allows the
framework to achieve pretty accurate work distribution among GPU devices, it falls short
when the CPU enters the scene. The architectures of CPU and GPU devices are too dis-
tinct from each other to assume such preposition. Also, the use given by the operating
system to each device is quite distinct. The GPU is a dedicated device that executes
one task without interruptions, while the CPU is usually time-shared among multiple
threads, meaning that the performance of a task is influenced by the system’s overall
work-load.

The huge design differences between CPU and GPU devices make it hard to find a
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theoretical method to balance the work-load that would fit every application. Therefore,
our approach was to devise a method that partitions the application’s work-load based
on the performance of each device, for that specific application, in a way that it stays
transparent to the application itself. Recent work addressing CPU and GPU environ-
ments (analyzed in Section 2.2.4) approach this issue by performing a training session
before actually executing the computation. Some of these solutions perform training ex-
ecutions with different input data sizes to determine, at execution time, to which device
a computation should be prompted, based on the submitted input size and the collected
information of the training. Our goal differs from cited works as our aim is to find the
proper balance between devices and not which device performs better with a given in-
put. Nonetheless, we also built upon a training approach, in order to find the desired
efficient work balance between devices.

As detailed in Section 3.2.1, the scheduling in Marrow was static, meaning that the
skeleton tree was partitioned upon creation. Executions with data-sets of different sizes
required the tree’s recreation. To fully exploit the underlying hardware, we altered the
framework to allow for the work-load to be partitioned at execution request time instead.
This modification not only lifts the restrictions on the size of the data-sets submitted
upon a skeleton, as it avoids application errors due to size incompatibility of the config-
ured data-types and the submitted Vector objects. Also, by delaying the partitioning to
execution request time, the platform can now reconfigure itself before executing each re-
quest, which allows the framework to test different work distributions during a training
session, and to accept input with different sizes without the need for an explicit compu-
tational tree recreation.

The work-load distribution process comprises two stages:

1. A computationally heavy, offline training process that tests different work distri-
butions under different platform configurations, to find the configuration/work-
balance combination that shows the best performance;

2. A lightweight online monitoring process that evaluates the performance of each
device after each execution, detecting performance discrepancies and rebalancing
the work-load for subsequent executions.

The training process (that is described in detail in Section 4.5.1), consists essentially
in evaluating the performance of different work-load configurations and picking the one
that performs better. This process, as a whole, may be computationally heavy, as such,
it is supposed to be executed only once per application (during the first execution), be-
ing the cost justified and amortized by the efficient execution of the upcoming requests.
Moreover, by having this “off the record” step before the actual execution starts, the
framework can also test different values for parameters that were previously stated by
the programmer. An example is the specification of the number of overlap partitions,
whose ideal value depends of several factors, such as the amount of data to send, bus
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contention, the weight of the computation, making the ideal values for this parameters,
hard to predict without empirical knowledge.

As previously stated, a particularity of the CPU devices is that their performances
will depend on the current load of the system. Consequently, if the load of a CPU device
increases (or decreases) over time, the configuration found during the training process
may not be the best for the current conditions. With that context in mind, we prepared
the framework to constantly monitor its executions and detect excessive performance
divergences between the devices. When these divergences are met, the platform tries to
rebalance the load in a lightweight fashion. If it fails to find its balance after a number of
attempts, the platform will compute a lighter version of the offline training to reestablish
the balance under the current system’s conditions.

When lifting the restriction over the input data sizes, we opened the door for appli-
cations to submit input data with different sizes over the same computational tree. If
the amount of different data sizes is known to the framework user, he can choose to per-
form a training with each of those input sizes. All the trained data sizes are saved by
the platform for future use. However, training a large number of input sizes can be un-
practical, due to the amount of different work sizes (that can be unknown) or due to the
excessive time consumed to perform different training executions. In this sense, when a
skeleton receives a submission with an input size different from any data size previously
received, the work distribution will be derived from the input size’s partitioning infor-
mation from previous iterations. This new work distribution information is also stored
by the platform for future use, continuously populating the Knowledge base of the applica-
tion. A derived work distribution may not have the same performance as a trained one,
but they’re performance is increased after some rebalance iterations.

4.2 Skeleton Library

The Skeleton Library layer (as presented in Chapter 3), suffered some modifications, mo-
tivated by the added dynamism we intended to implement in this version of Marrow.
Since the platform is no longer restricted by the input data sizes specified during the
computational tree’s configuration, the Kernel Data-Types interfaces were simplified, so
they no longer accept data size arguments. The indivisible size of a data-type may or may
not be dependent on the respective data size, therefore, this value is still allowed in the
data-types definition, but it can be overridden by the respective Vector object during
the execution request. The interface of Vector objects has also been modified, in order
to receive the size of each dimension of the respective data, so the global_work_size
of each kernel can be inferred later, at runtime. Several of the configurations previously
stipulated in the construction of the computational trees are now specified in a config-
uration file, examples are the number of GPUs to use and the number of overlapping
partitions. Listing 4.1 shows the differences in the constructor of the BufferData data-
type. Note that in this version, the indivisibleSize parameter is still acceptable, but
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Listing 4.1: BufferData constructor alterations
1 //Multi-GPU BufferData constructor
2 BufferData(unsigned int numberOfElements, IWorkData::dataMode accessMode,
3 IWorkData::partitionMode partitioningMode, unsigned int indivisibleSize);
4

5 //New BufferData constructor
6 BufferData(IWorkData::dataMode accessMode,
7 IWorkData::partitionMode partitioningMode, unsigned int indivisibleSize);

Listing 4.2: Vector constructor alterations
1 //Multi-GPU Vector constructor
2 Vector(void* data, size_t elemSize, unsigned int nElements);
3

4 //New Vector constructor
5 Vector(unsigned int indivisibleSize, void* data, size_t elemSize,
6 unsigned int dim1Size, unsigned int dim2Size, unsigned int dim3Size);

as we can see in Listings 4.2, the Vector constructor can also receive this parameters,
overriding the values defined at in the BufferData constructor (if they are specified).
Note also, in the latter listing, that the new Vector constructor requires the individual
size of each dimension instead of the total number of elements.

Other than the common modifications to all the skeletons, the Loop skeleton required
some additional effort. Like explained in Section 3.1.3, the Loop may sometimes require
a global synchronization step between iterations. With the dynamic behavior of the plat-
form, some work-load distributions may create empty partitions (with a size of zero),
due to the indivisible size restrictions, or to the fact that some applications may perform
better that way. In these cases, the thread responsible for those partitions will not prompt
an OpenCL execution. Therefore, during the synchronization step, the synchronizing
thread must be able to determine which threads are actually executing and which are
idle, to avoid deadlocks.

The skeleton’s execution handler (common to all skeletons and implemented in the
Skeleton abstract class, omitted in Figure 3.1 for simplicity) was modified to handle
the execution requests depending on the current state of the platform: handling the re-
quest as a training execution if the training is active, or, prompting a device work-load
rebalance before starting the execution, if the work-load was rebalanced in the previous
execution (by the dynamic load balance). Also, upon receiving the execution request, this
module will prompt the Scheduler to compute the work partitions of each device if the
size of the input data differs from the previous request’s input size. Due to the introduc-
tion of different execution platforms, all skeletons had to be adapted so they are aware of
which execution platforms to prompt each partition, when an execution is requested.

Similarly to the skeletons interface, also the KernelWrapper interface had to
suffer some changes due to the added dynamism. In the previous version, the
OpenCL global_work_size array was defined as a constructor parameter of the
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Listing 4.3: KernelWrapper constructor alterations
1 //Multi-GPU KernelWrapper constructor
2 KernelWrapper(const std::string kernelFile, const std::string kernelFunc,
3 const std::vector<std::shared_ptr<IWorkData>> &inputEntries,
4 const std::vector<std::shared_ptr<IWorkData>> &outputEntries,
5 const std::vector<unsigned int> &globalWorkSize),
6 const std::vector<unsigned int> &localWorkSize);
7

8 //New KernelWrapper constructor
9 KernelWrapper(const std::string kernelFile, const std::string kernelFunc,
10 const std::vector<std::shared_ptr<IWorkData>> &inputEntries,
11 const std::vector<std::shared_ptr<IWorkData>> &outputEntries,
12 const std::vector<unsigned int> &threadWorkSize,
13 const std::vector<unsigned int> &localWorkSize);

KernelWrapper. Now, given that the programmer no longer has to commit itself with
data-sizes at the tree’s construction time, this information is no longer required. How-
ever, in order to be later computed from the size of the vectors given as input to an exe-
cution request, we require a parameter called threadWorkSize, which is a vector that
specifies the number of elements computed per dimension, by each thread. This parame-
ter can be omitted if the kernel operates upon a single element and if no localWorkSize
is specified. The information provided by the threadWorkSize vector is used to in-
fer the global_work_size at a later time, based on the dimensions of the submitted
Vector objects. The modifications to the KernelWrapper constructor are displayed in
Listings 4.3

The added dynamism also demanded the KernelWrapper to be able to allocate and
deallocate OpenCL devices memory in runtime, to cope with different work-load dis-
tributions. Also, different CPU/GPU configurations may require the KernelWrapper
to reconfigure itself to address different platform configurations, like creating/freeing
OpenCL resources to deal with the different number of partitions.

Moreover, like previously stated, some threads do not prompt OpenCL executions
when they have no data to operate upon. The information of which threads are executing
an OpenCL computation and which are idle is stored in the KernelWrapper. This is
especially important for the aforementioned loop with global synchronization. Other
than storing this information, the KernelWrapper also assists the Loop skeleton in the
global synchronization process.

Finally, the KernelWrapper and its auxiliary module, the KernelBuilder, had to
be adapted so they compile the OpenCL kernels for the CPU devices as well.

4.2.1 Programming example

In this section, we revisit the same programming example presented in Section 3.1.4 for
the multi-GPU version of Marrow, highlighting the differences of the new interface. A
programming example using the new interface is shown in Listing 4.4. The most notable
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Listing 4.4: Image Pipeline implementation in Marrow
1 // Stage 1: Computation tree configuration
2

3 std::vector<std::shared_ptr<IWorkData>> inputData(2);
4 inputData[0] = std::shared_ptr<IWorkData> (
5 new BufferData<cl_uchar4>(IWorkData::PARTITIONABLE));
6 inputData[1] = std::shared_ptr<IWorkData> (new FinalData<int>(factor));
7

8 std::vector<unsigned int> threadWorkSizes(2);
9 threadWorkSizes[0] = 2;

10 threadWorkSizes[1] = 1;
11

12 std::vector<std::shared_ptr<IWorkData>> outputDataInfo (1);
13 outDataInfo [0] = std::shared_ptr<IWorkData> (
14 new BufferData<cl_uchar4>(IWorkData::PARTITIONABLE);
15

16 std::unique_ptr<IExecutable> gaussKernel (
17 new KernelWrapper(gaussNoiseKernelFile, "gaussian_transform",
18 inputData, outputData, threadWorkSizes));
19

20 inputData[1] = std::shared_ptr<IWorkData> (new FinalData<int>(threshold));
21 std::unique_ptr<IExecutable> solariseKernel (new KernelWrapper(
22 solariseKernelFile, "solarise_transform", inputData, outputData,
23 threadWorkSizes));
24

25 inputData.resize(1);
26 std::unique_ptr<IExecutable> mirrorKernel (new KernelWrapper(
27 mirrorKernelFile, "mirror_transform", inputData, outputData,
28 threadWorkSizes));
29

30 std::unique_ptr<IExecutable> p1 (new Pipeline(gaussKernel, solariseKernel));
31 std::unique_ptr<IExecutable> p2 (new Pipeline(p1, mirrorKernel));
32

33 // Stage 2: Execution request
34

35 std::vector<std::shared_ptr<Vector>> inputData(1);
36 std::vector<std::shared_ptr<Vector>> outputData(1);
37 unsigned int indivisibleSize = uiImageWidth;
38 inputData[0] = new Vector(
39 indivisibleSize, input, sizeof(cl_uchar4), uiImageWidth, uiImageHeight);
40 outputData[0] = new Vector(
41 indivisibleSize, output, sizeof(cl_uchar4), uiImageWidth, uiImageHeight);
42

43 IFuture *future = p2->write(inputData, outputData);
44 future->wait();
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difference is the absence of any reference to the size of the input data during the config-
uration of the computational tree (lines 3 to 31). In the definition of the BufferData

objects (lines 4-5 and 13-14), only the partitioning option is defined, although, in this
case, this option could have been omitted, since the data is considered partitionable by
default. The indivisible size is also not specified here, since, for this application, it is
dependent on the input size. The globalWorkSize is also undifined for now, instead, the
threadWorkSizes array is configured (lines 8 to 10), defining the number of elements
per dimension that each thread works upon. In this example case, each kernels operates
upon two pixels of the same line (first dimension) for a single execution. Also, with the
introduction of the configuration file, the platform configuration options, like the num-
ber of GPUs and the number of overlapping partitions is not defined in the skeleton
constructor anymore (lines 17-18, 21-23 and 26-28).

In the execution request, the most visible difference lie in the Vector definitions
(lines 38-41). For this application, the indivisible size is defined here, since it matches
the width of the image. Also, unlike the multi-GPU version, the size of each dimension
now has to be specified as different arguments rather than as the full size of the input
buffer, so the global_work_size is properly calculated.

4.3 Runtime System

The Runtime layer was the layer that suffered the larger number of modifications, at an
architectural level, with the introduction of new modules, but also at a behavioral level,
with the modification of the behavior of some of the already existing modules. Figure
4.1 shows the new architecture of this layer. Two new modules have been introduced,
the Configuration and the WorkDistributionBase. The ExecutionPlatform is
now an abstract class (omitted in the figure for simplicity), with the common behavior of
all the execution platforms. For this work, we introduced two execution platform speci-
fications: the GPUExecutionPlatform and the CPUExecutionPlatform, to address
GPU and CPU devices, respectively.

KernelBuilder Scheduler

Auto-Tuner

GPUExecutionPlatform CPUExecutionPlatform

TaskLauncherConfiguration

PartitionInfo

Task

Containers

WorkDistributionBase

Exceptions
RuntimeWLayer

Figure 4.1: Marrow’s new Runtime Layer

The Configuration is a new module introduced due to the increased number of
configurable arguments in this version: like whether or not to execute the training ses-
sion, the number of training iterations, among others. This new module is responsible
for reading all this configurations from a file, configured by the user (an example of a
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Listing 4.5: Configuration File example
1 # number of GPUs to use
2 # (0 to use all)
3 num_of_gpus = 1
4

5 # Use CPU
6 # (1 = true, 0 = false)
7 use_cpu = 1
8

9 # Number of training executions to perform
10 training_iterations = 10
11

12 # Number of executions performed by each device
13 # to compute average execution time
14 training_reiterations = 5
15

16 # Activate dynamic load balance
17 # (1 = true, 0 = false)
18 dynamic_balance = 1
19

20 # Performance ratio to activate rebalance
21 # (must be between 0 and 1)
22 balancing_ratio = 0.6
23

24 # Select the training mode to execute:
25 # 0 = default
26 # 1 = 50/50 split
27 # 2 = GPU steal
28 training_mode = 1
29

30 # Activate the training for the first execution
31 # (1 = true, 0 = false)
32 training_first = 1

configuration file is shown in Listing 4.5), and provide the remaining modules with this
information, when requested. Also, parameters that were previously passed as skeleton
arguments, like the number of GPUs to use and the number of overlapping partitions, are
now configured in this file, allowing for a more configuration independent application
programming. Furthermore, since the remaining modules are now subject to reconfigu-
ration (unlike the previous version where some modules were static), this new module
is now the only static part of the framework and it is responsible for keeping the current
state of the framework between platform reconfigurations.

The CPUExecutionPlatform and the GPUExecutionPlatform are two imple-
mentations of the ExecutionPlatform, which has been refactored into an abstract
module that factorizes the behaviors common to all execution platforms. Previous ver-
sions of Marrow were only focused on a single device type, the GPU, which were all
managed in the same way. The introduction of the CPU as a new device, required a dis-
tinct treatment from the GPU’s, so they can each be managed in a more device specific,
and therefore, efficient way. The main differences between these modules reside in the
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fact that in the CPU environment, we will not take advantage of the overlapping func-
tionality since we are working with local memory. On the other hand, in OpenCL, a CPU
device can be divided into distinct sub-devices, a functionality called Device Fission [43],
giving the framework more control over the work distribution among a device, as each
sub-device can be addressed independently. This functionality allows a CPU device to
be partitioned in different ways:

• Equally Given the number of computational units per sub-device, the device is
partitioned into as many sub-devices as possible;

• By Counts Allows for the specification of the number of computational units per
sub-device to be created, resulting in a heterogeneous set of sub-devices;

• By Affinity Domain Creates the sub-devices based on memory affinity. OpenCL
supports affinity fission by NUMA node and L1 to L4 caches, although, some de-
vices only provide support for a sub-set of this set.

In this work, we only considered fission by affinity domain, since we are not interested
in creating heterogeneous sets of sub-devices and dividing the device equally can yield a
large number of combinations, depending on the total amount of computational units of
the device. However, since only the ExecutionPlatform is aware of the fission level,
the fission method can be easily replaced.

The execution platform modules are also responsible for creating the OpenCL con-
texts for each device. To fully exploit asynchronous OpenCL submissions, one different
context is created for each GPU overlap level [42] and for each CPU sub-device resultant
of the device fission. Finally, to maintain future extensibility and adaptability, it is the
responsibility of the each execution platform to offer an iterator over its possible config-
urations.

The Scheduler module was restructured to coordinate the reinitialization of the
Auto-tuner, TaskLauncher and of all the KernelWrapper’s when a platform re-
configuration is needed. This module is also responsible for the management of the task
queue of each device, one for each level of overlap (as in the previous version) and one
for each CPU device (recall that each sub-device resultant of the OpenCL fission is treated
as a normal CPU device).

The TaskLauncher is responsible for launching the OpenCL executions and data
communications between the host and the devices. In Marrow, the OpenCL execution
of each partition is controlled by dedicated threads, the task launching threads. The
modifications to this module include the initialization of the CPU devices’ task launching
threads (one for each device), along with the GPU devices’ threads (one for each level
of overlap). Also, the existence of different execution platforms require each thread to
be aware upon which platform to prompt its executions. This is achieved by passing
that information to the executing threads. Given that the new dynamic behavior of the
framework requires a later allocation of the device’s memory, it is now the responsibility
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of each thread to, when necessary, prompt the allocation on the associated device, of the
memory required to store the assigned the data partition.

The task launching threads are also responsible for measuring the duration of each
OpenCL execution and hand those values to the Auto-tuner (through the Scheduler),
to be globally compared. To minimize the effect of possible performance discrepancies,
during a training iteration, each thread submits the same execution multiple times (the
amount of submissions is specified in the configuration file) and the submitted duration
value is the average of the duration of all those executions.

The Auto-tuner is in charge of computing the partitions of each device. Given that,
in this version of Marrow, the partitioning may change between iterations, this module
received the extra responsibility of calculating those partitions, based on the execution
time measurements received from each task launching thread during the training pro-
cess. Moreover, during normal executions, this module is also responsible for comparing
the execution durations of each partial execution, and determine, whether or not to rebal-
ance the partitions or even when to reverts to a partial execution of the training process.

Finally, the WorkDistributionBase is a new module, introduced to deal with dif-
ferent work-distributions for different work sizes, in a modular way. This module is
responsible for storing the partitioning information of the training executions, making
such information available for every upcoming execution request upon data-sets of the
same size. Also, when there is no information regarding a specific inputed data size,
the WorkDistributionBase derives the partitioning information from the work dis-
tribution information of previous executions. This process is further detailed in Section
4.5.2.

4.4 Execution Model

The execution model of the Marrow framework was subject to a considerable amount
of modifications in this new version, mainly due to the necessity of adding dynamism
to some of its modules (that previously implemented static behaviors). This added dy-
namism allows these modules to reconfigure themselves at runtime, based on the current
state of the system, and the computation’s input data size. As previously stated in Section
4.1, the work partitioning process is no longer performed at skeleton initialization time,
but rather when the execution request is submitted. Accordingly, the framework’s new
execution model can be regarded as a three stage process: Skeleton Creation, Skeleton Work
Partitioning and Skeleton Request Execution. The execution model is slightly conditioned
by the training process. We will detail this impact in Section 4.5.1.

ion stage, is the stage responsible for the creation of the KernelWrapper and
Skeleton objects. From the application’s point-of-view, this stage replaces the old
Skeleton Initialization stage, however, in this new version, the Skeleton initialization
is postponed until the tree’s first execution. Figure 4.2 shows the steps taken inside this
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stage: First, the application creates the KernelWrapper objects (step 1) and compiles
the OpenCL kernel for all the present devices through the associated execution platform
(step 2). Then, with the KernelWrapper objects initialized, the application creates the
Skeleton objects that stay uninitialized until they receive the first execution request.

create (1)
Application KernelWrapper

GPU Execution

Platform

CPU Execution

Platform

compile kernel (2)

Skeleton

create (3)

Figure 4.2: Skeleton Creation stage

Skeleton Work Partitioning stage is responsible for the work partitioning before the
actual execution requests can be performed. This stage is only executed before the first
execution request and whenever there is a modification in the dimensions of input (and
output) arguments, as the dimension of each partition has to be readjusted. Figure 4.3 il-
lustrates the steps taken during this stage, starting with the application execution request
over the Skeleton (step1). Then, the Skeleton will initialize (or reinitialize) itself with
the argument’s data dimensions (step 2), associating them with the Kernel Data-Types
specified in the previous stage (passed as arguments to the KernelWrapper construc-
tor) and setting this dimension information in every kernel nested in the computational
tree (step 3). Afterwards, the Skeleton requests the Scheduler to create the partition
sizes over the new data-set dimensions (step 5). The Scheduler, in turn, will resort to
the Auto-Tuner module to compute those partitions, based on the performance infor-
mation of each present GPU (step 6) and of the results of the training session (step 7), kept
by the WorkDistributionBase module. Lastly, the Scheduler stores the calculated
partition sizes to the respective kernels (step 8), finalizing this stage, as the platform is
now able to perform the requested execution.

Skeleton Request Execution stage, depicted in Figure 4.4, follows from the Skeleton
Work Partitioning stage, or directly from the execution request, when the former stage
is not required (step 1). As in the previous version of Marrow, the Skeleton creates
a Future object (step 2) and return its reference to the application (step 3). Then, it
submits the task to the Scheduler (step 4) that uses the partition information, previ-
ously stored in each KernelWrapper, to split the work-data among the GPU and CPU
devices’ queues. Concurrently, the TaskLancher consumes from each of these queues
(step 6) and prompts the execution of the computational tree, over the correspondent
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Figure 4.3: Skeleton Work Partitionging stage

data partition (step 7), by directing the execution of each device to the respective execu-
tion platform (step 8). When all the partitioned tasks have finished, the TaskLauncher
notifies the Future object (step 9) which in its turn, notifies the requesting application
(step 10).

4.5 Work-load Distribution

The main focus of this work is to distribute the work-load of an application among the
CPU and GPU devices present in a system. As previously stated, finding an efficient dis-
tribution among heterogeneous devices is not a trivial task, and the difficulty increases
when architectural differences between processors are more perceivable, like with CPUs
and GPUs. This version of Marrow is specially focused on applications with a recurrent
submission of different data-sets (with possibly different data sizes) over the same com-
putational tree. Our solution is based on the offline training of an application, with one or
more different data sizes, and an online partitioning derivation for data sizes not trained
offline. All the trained and derived work distribution information is store in a Knowledge
Base and updated every time a distribution is rebalanced.

Figure 4.5 illustrates the decision process taken by Marrow upon receiving an execu-
tion request. In the first execution, if the Knowledge Base is empty, a training is executed
for that given input size, regardless of the training flag status. The resultant partitioning
is stored in the Knowledge Base. Subsequent iterations are only trained if the training
flag is active (specified in the configuration file). In the following execution requests, if
the data size remains the same, the request is immediately prompt for execution, unless
a work distribution is needed. In this case, a quick partition recalculation is performed
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Figure 4.4: Skeleton Request Execution stage

before prompting the execution.
When the submitted work data has a size different than the size of the previous it-

eration’s data, Marrow checks the Knowledge Base to see if it stores the partitioning
information for the submitted input size. If it does, the partitioning is loaded and the
execution is prompt. Otherwise, Marrow checks the stats of the training flag. If the flag is
active, a full training is executed and the resultant partitioning is added to the Knowledge
Base. Else, the work partitioning is derived from the Knowledge Base. In this scenario,
there is a chance that the derived work distribution is not the ideal for this data size,
but in this case, after some unbalanced iterations, the rebalancing will be triggered, the
balance will be found and the Knowledge Base updated.

4.5.1 Training

When we introduced our goal of incorporating CPU OpenCL computations in a multi-
GPU framework, we identified the architectural and execution model differences be-
tween CPU and GPU devices, as the main obstacle to a static balanced work partitioning.
This drove us to look for a more empirical method to reach a balanced work distribution
among those devices. Our solution is based on performing a set of offline training exe-
cutions, during the application’s first execution, where different work distributions for a
given data-set are tested and the one that presents a best overall performance is selected
for all the subsequent executions. Since it is unbearable to exhaustively train every single
possible work distribution combination, we designed two distinct training modes that
builds on the performance results of the previous iterations to pick the next distribution
to test.

In generic lines, both training modes group the devices into two groups: the GPU
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Figure 4.5: Work distribution decision process

devices and the CPU devices. During the training, Marrow tries to find the best work
balance between these groups by testing out different work distributions across them.
Inside each group, the partitioning between devices is done in a static way: each GPU’s
partition size is calculated based on the performance values acquired prior to the exe-
cution (identical to the multi-GPU version), and the CPU’s group partition is divided
equally among all the CPU cores, as all cores are homogeneous among themselves. The
next sections detail the training process mechanism and present the algorithms for the
two implemented training modes.
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4.5.1.1 Training Execution Model

Section 4.4 describes the execution model of a normal execution request on Marrow. To
prepare the framework for a specific application to run at its best performance, under a
specific system, the application needs to perform a one-time-only heavy execution with
a slightly different execution model. In this training execution, one of the implemented
training modes is performed under different combinations of configurations of both the
execution platforms. Algorithm 1 explains how the process is accomplished.

The process starts when the computational tree receives an execution request and the
isTraining flag is set to true. Then, each of the execution platforms provide an iterator
over all its possible configurations (lines 3 and 5). One of the training algorithms is then
executed for every configuration combination, in this case, fission/overlap combinations
(lines 9 to 14). The training algorithm is defined by the user via the configuration file.
For each configuration, the execution platforms needs to reconfigure itself (lines 4 and
6) and the training is reset so the partitioning ratios are set to their start values (line 7).
These starting values depend on the training algorithm used. After this process, Marrow
is ready for a new training cycle. Afterwards, for a given number of iterations (also spec-
ified in the configuration file), a new task is created and submitted to the Scheduler

(lines 11 and 12). Each submission will perform one iteration of the selected training
algorithm. Internally, given that the isTraining flag is active, the platform executes the
submitted task in training mode. When in training mode, each executing thread prompts
the same execution multiple times (the amount of executions is specified in the config-
uration file) to the associated device. The duration of each execution is measured and
the average duration is used by the Auto-tuner to compare all the threads durations
and compute the partitions for the next training iteration. Performing the same execution
multiple times allows for a more reliable evaluation, attenuating possible discrepancies.
Since the device groups’ ratios are modified at each training iteration, the partitioning
needs to be recomputed before submitting another task to the Scheduler (line 10). Af-
ter all this training iterations, the current work distribution is expected to be the best
performing one. However, to make sure that the best tested distribution is chosen, the
platform internally saves the ratios that showed the best global performance and loads
them at the end of the training cycle (line 15).

To make sure that we compare the different configurations’ performances in an en-
vironment closer to the expected in a normal execution, after the training cycle, the
platform temporarily deactivates the training and submits a few normal executions (this
number can also be configured by the user) with the training mode disabled, while mea-
suring the time they take to execute (lines 20 to 27). The average duration of those ex-
ecutions will be used later to compare the performance of the different configuration
combinations (line 35).

After all the combinations of fission and overlap configurations have been tested, the
one that performed better is picked (line 35), the platforms reconfigure themselves for
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Algorithm 1 Training execution
Require: isTraining = true

1: devicesRatios← ∅
2: performances← ∅
3: for all fission ∈ CPUExecutionPlatform.configurations() do
4: CPUExecutionPlatform.reconfigure(fission)
5: for all overlap ∈ GPUExecutionPlatform.configurations() do
6: GPUExecutionPlatform.reconfigure(overlap)
7: scheduler.resetTraining()
8: {Compute best CPU/GPU ratio for the current fission/overlap configuration}
9: for numberTrainingIterations do

10: scheduler.computePartitions()
11: task ← new Task
12: scheduler.submit(task)
13: wait for Task to finish;
14: end for
15: scheduler.setBestTrainingRatios()
16: scheduler.computePartitions()
17: isTraining ← false
18: totalT ime← 0
19: {Compute the execution time for the best CPU/GPU ratio for the current fis-

sion/overlap configuration}
20: for numberPerformanceIterations do
21: start← currentTime
22: task ← new Task
23: scheduler.submit(task)
24: wait for Task to finish;
25: end← currentTime
26: totalT ime← totalT ime+ (end− start)
27: end for
28: performances[overlap][fission]← totalT ime/numberPerformanceIterations
29: devicesRatios[overlap][fission]← scheduler.getCurrentRatios()
30: isTraining ← true
31: end for
32: end for
33: isTraining ← false
34: {Reconfigure the framework according to the best overall fission/overlap configura-

tion}
35: (bestOverlap, bestF ission)← pickBest(performances)
36: CPUExecutionPlatform.reconfigure(bestF ission)
37: GPUExecutionPlatform.reconfigure(bestOverlap)
38: scheduler.setDevicesRatios(devicesRatios[bestOverlap][bestF ission])
39: scheduler.computePartitions()
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that configuration (lines 36 and 37), the associated partitioning ratios are restored (line
38), and the work distribution is recalculated (line 39). From this instant, Marrow is
ready to execute the upcoming requests with the best configuration and the best work
distribution found for the current application.

4.5.1.2 Training Modes

In this version of Marrow, we introduced two distinct training modes:

• The 50/50 split mode, that is based on direct comparison between the different de-
vice’s execution performance;

• The CPU assisted GPU execution mode, based on incremental transfers of work-load
from the GPU to the CPU and global performance comparison.

In this section we detail each of these modes.

50/50 split mode The 50/50 split training mode is built under the assumption that, if a
device group’s performance is lower than the performance of its counterpart, the work-
load should be readjusted by moving some of the work from the worst performing group
to the best performing one. With this premise, in any given training iteration, the frame-
work evaluates the performance of both device groups individually. In the subsequent
iteration, the group that performed better (had a lower execution time) will receive a por-
tion of work from the group that performed worse, and both performances are reevalu-
ated. It this sense, both performances are expected to come closer to each other after each
training iteration, reaching a balanced work partitioning after a few iterations.

To perform this training, the framework will keep track of the amount of work that
can be transferred between the groups (the transferable partition) and the amount that
is bound to each group (the minimum amount of work that the training has identified
that will be performed by that group). Before the first training iteration, all the work is
considered to be transferable and no work size is bound to any group. At each iteration,
the transferable partition is divided evenly between the two device groups. To determine
to which group it must be bound, a training round is executed and the the haft of the
transferable partition sent to the device group that performed better becomes bound to
that group. The remaining transferable partition becomes the transferable partition for
the next training iteration. In this sense, the transferable partition can be regarded as the
portion of the work data that is still under training. Because it is divided by 2 at each
iteration, the size of the transferable partition after n iterations follows the function:

transferableSize =
globalSize

2n
(4.1)

and since,
lim
x→∞

transferableSize = 0 (4.2)
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the impact of each training iteration in the resultant work distribution is likely to decrease
with each iteration.

Figure 4.6: 50/50 split training example

Figure 4.6 exemplifies how this method works. Initially, since the transferable parti-
tion encompasses all the working data, that data will be divided evenly between the two
device groups. After the first iteration, since the GPU group outperformed the CPU’s,
the GPU’s partition is bound to that group as the remaining partition will be used as the
transferable partition for the next execution. In the second iteration, the same process is
executed: the transferable partition is divided equally between the two groups, resulting
in a work distribution with 1/4 of the work data to the CPU group and the remaining 3/4

to the GPU group. The same process is repeated for the number of iterations specified by
the user in the configuration file, as the transferable partition size will tend to zero.

During the evaluation process, we noted that in some particular cases, some devices
did not perform better when the size of their partitions was reduced. This can happen
if the programmer does not specify a localWorkSize for a given kernel, which will make
the OpenCL implementation pick one in runtime. Given that the localWorkSize values
must be a divisor of the globalWorkSize, if the Auto-tuner does not have a localWorkSize
restriction, the biggest divisor of the size of a created partition can be a very low value,
and it may have a negative impact on the device’s performance. As an extra measure
to prevent this training mode to output a low performing work distribution, Marrow
keeps track of the best performing training iteration so far, and after the last training
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iteration finishes executing, if its performance is worse than the best performance found,
the cooresponding work distribution is pick instead.

Figure 4.7: CPU assisted GPU execution training example

CPU assisted GPU execution mode The 50/50 split training mode was designed with
the assumption that by approximating the execution times of both device groups, the best
performance possible (theoretically) would be attained. Even though we got the expected
results in most of our benchmarks (evaluation in Chapter 5), this may not always be the
case. Also, there are some circumstances under which the execution time of each device
group is not measured correctly. One of this situations is when the computational tree
has a Loop skeleton with a globally synchronized step computation (introduced in Sec-
tion 3.1.3). In this particular case, all the task launching threads that control the OpenCL
executions need to wait for each other to finish, so that the step condition can be com-
puted. Therefore, and since the performance of each device is calculated based on the
time it takes to execute the full computational tree, the faster devices’ performances will
be highly adulterated by the time they are waiting for the remaining devices.

To work around these issues, we implemented a training mode that instead of com-
paring the performances of the two device groups, it compares the global performance of
one iteration with the global performances yield by the previous iterations. In this train-
ing mode, exemplified in Figure 4.7, the work-load transfers form one device group to
the other is also guided by a different method than in the 50/50 split mode. In the CPU
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assisted GPU execution mode, the initial execution is performed only by the GPUs, to
obtain a first performance value. From the second iteration onward, a percentage value
(configured by the user) called the transferable amount, is taken from the GPU group and
added to the CPU group partition. The process repeats itself until the result yield by an
iteration is worse than the iteration before. From then on, the transferable amount will be
consecutively divided by 2 after each iteration. To determine the next work distribution
to test, the algorithm will selects the distribution with the best performance so far and
increase the CPU devices partition by the transferable amount. Similarly to the 50/50
split training, the transferable amount will tend to decrease over iterations and its impact
on the partitions will also decrease.

4.5.1.3 Dynamic load balancing

When the main differences between CPU and GPU devices were identified, it was
pointed out that the performance of a CPU is hard to predict due to their multi-threading
operating model, as it is affected by the current work-load of the system. When a training
session is executed, it will be affected by the work-load of the CPU at that time, and the
resulting best configuration and work distribution will reflect that. However, the global
work-load of a system can change during the application’s execution time, thus, the cur-
rent work distribution may no longer be the optimal one.

To try to compensate the possible work-load fluctuations during execution time with-
out introducing a noticeable overload, Marrow enables the dynamic balance of the work
distribution. For that purpose, it comprises a lightweight online monitoring process,
which detects continuous performance descrepacies between the two device groups and
performs a quick partitioning rebalance, transfering a fixed small percentage of the work-
load of the worst performing device group to the best performing one. After a couple of
rebalancing attempts, if the balance is still not satisfactory, Marrow performs a lighter
version of a training execution, where only the current configuration is trained.

To monitor the runtime execution of a submitted task, each task launching thread
measures the duration of its partial execution over the computational tree. Upon com-
pletion, each thread sends their execution duration time to the Auto-tuner module,
so that the latter may evaluate the need for a rebalance. To that end, the Auto-tuner,
when in the possession of all the measured execution times, picks the durations with the
longest running execution time of each device group and it calculates the ratio between
the shortest and the longest running durations through the following function:

performanceRatio = shortestDuration/longestDuration (4.3)

This value is then compared against the balancingRatio parameter, a ratio (between 0 and
1) defined by the user in the configuration file. If the performanceRatio is lower than the
balancingRatio, this execution is considered to be unbalanced. However, this discrepancy
can be an isolated case, so, instead of triggering the partition rebalance after one or a
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t lbt(t− 1) isUnbalanced(dev) lbt(t) Balance load?
0 - - 0.00
1 0.00 1 0.66
2 0.66 1 0.88
3 0.88 0 0.30
4 0.30 1 0.76
5 0.76 1 0.92
6 0.92 1 0.97
7 0.97 1 0.99 Yes
8 0.99 0 0.34
9 0.34 0 0.11

10 0.11 0 0.04
11 0.04 1 0.67
12 0.67 1 0.89
13 0.89 1 0.96
14 0.96 1 0.99 Yes

Table 4.1: Example of the evolution of lbl for weight = 2/3

fixed number of unbalanced executions, the decision of whether or not to perform a re-
balance is delegated upon a function that we called the Load Balancing Threshold function
(lbt function). This function’s value is influenced by the historical information of previous
executions, as its value increases with each unbalanced execution and decreases when
the execution is balanced. When increasing, the lbt value will get closer to the value 1,
therefore, we set the rebalance to trigger when the lbt value reaches 0.99. This allows for
a better judgment on the decision of whether or not to rebalance the partitions, since the
function’s value only increases with a predominance of unbalanced executions over the
latest executions. The lbt function is defined in the following way:

lbt(t) = isUnbalanced× weight+ lbt(t− 1)× (1− weight) (4.4)

The weight parameter is defined in the configuration file and represents the weight with
which an unbalanced execution affects the lbt function. The bigger the weight value is,
the sooner the rebalance is triggered. The isUnbalanced value can be defined as:

isUnbalanced =

{
0 if performanceRatio ≤ balancingRatio

1 otherwise

Everytime the rebalance is triggered, the lbt value is slightly decreased (the equiva-
lent of a balanced execution). By not reseting its value, if the work distribution remains
unbalanced, the rebalance will be triggered sooner, expectedly in every execution until
the balance is reestablished. Table 4.1 exemplifies the evolution of the lbt function along
a few iterations with both balanced and unbalanced executions.

Also, everytime the rebalance is triggered, a rebalance counter is incremented. After
a number of rebalancing failures (the number is defined in the configuration file), if the
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work distribution remains unbalanced, the platform reverts to a partial execution of the
training process that only considers the current fission/overlap configuration. This train-
ing mode, is similar to the offline training process described above. However, since it will
be executed during the normal operation of the application, there is a need to minimize
the overhead introduced by this process. Thus, when this process is executed during a
normal execution, only the current configuration is going to be trained. Given that the
unbalance was most likely introduced by changes in the system’s overall load or an in-
put with a size that differs from one of the already present in the Knowledge Base, there
may be a different configuration that suits better this new conditions. However, the pos-
sible performance gains from choosing a better configuration are not significant enough
(according to our evaluation) to justify the added overhead of a full training execution.

4.5.2 Partitioning Derivation

Some applications have an undefined number of possible input sizes. Even when this
number is limited and known during the application’s install time, training every dis-
tinct input data size may be unbearably heavy, even considering it is a onetime only,
offline execution. To that extent, Marrow keeps a Knowledge Base of every trained and de-
rived work-load distribution configurations. When a skeleton receives a request with an
input data size different from the sizes of the executions previously executed (meaning
that the partitioning information is not present in the Knowledge Base), the work-load
distribution is derived from the partitioning information of the previously executed data
sizes.

In this version of Marrow, the derivation consists in an interpolation between the new
data size dimensions and the stored data sizes. The interpolation is achieved using the
Euclidean distance, therefore, depending on the number of dimensions of the data, the
distance between the inputed data i and the stored data info s is calculated through the
function:

distance(i, s) =
√
(sdim1 − idim1)2 + (sdim2 − idim2)2 + ...+ (sdimn − idimn)2 (4.5)

This derivation process is built under the assumption that the closer the data sizes
are, the more similar the ideal work-distribution configuration is. In this sense, a derived
work-distribution is expected to have an acceptable performance at its first execution. If
the work distribution is still considered unbalanced by the online system monitoring, the
work distribution is rebalanced over the next couple of iterations without a noticeable
overhead. In cases that the ideal work distribution (for the current system configura-
tion) is too far from the derived distribution, a light training is executed. The resultant
partitioning of the rebalance process updates the partitioning information on the Knowl-
edge Base for the current data-size, allowing the future requests with this data size to be
executed in a balanced distribution.
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4.6 Summary

In this chapter, we presented the modifications to the Marrow framework performed
during this work. We distinguished different execution platforms and introduced a work
distribution mechanism to balance the load between GPUs and CPUs. We also explored
the OpenCL fission functionality to take advantage of data locality in the CPUs.

Furthermore, we simplified the programming model of the framework by eliminat-
ing the possibility for inconsistencies between the configured and the submitted data
dimensions, as we also lifted the restrictions over the submittable data sizes, previously
stipulated upon the creation of the computational tree.

Our work-load distribution approach is based on an offline training, where the ideal
number of overlapping partitions, as well as the ideal fission level is selected, and at the
same time, we reach a balanced work-load distribution among GPU and CPU devices,
for the selected configuration and inputted data size. To achieve such balance, we imple-
mented two different training modes with two different approaches.

To maintain the balance over continuous executions while addressing possible sys-
tem work-load fluctuations, as well as different performances for different input sizes,
our implementation also includes an online system monitoring that detects performance
discrepancies and corrects the work-load balance in a lightweight fashion.
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5
Evaluation

In this chapter, we present the evaluation of our approach to multi-CPU/multi-GPU sup-
port in the Marrow framework, presented in the previous chapter. In this study, we
analyze the performance of the framework when executed on a CPU-only environment
(Section 5.4). We then compare GPU-only executions of our benchmarks with executions
of the same benchmarks using both CPU and GPU devices (Section 5.5). We took advan-
tage of the dynamic load balance mechanism to evaluate the precision of the 50/50 split
training method (Section 5.6) and finally, we analyze the behavior of the dynamic load
balance (Section 5.7).

5.1 Methodology and Metrics

The devised evaluation process aims to answer the following questions:

1. Can we take advantage of the OpenCL fission feature to increase the performance
of CPU OpenCL computations?

2. Can we take advantage of the CPU to increase the performance in a heterogeneous
system composed by GPUs and CPUs?

3. How accurate is the our training method approach?

4. How does the framework respond to alterations to the input data sizes and the
system’s work-load?

To analyze the OpenCL fission we compare the execution times achievable with fis-
sion partitioning with the execution times without fission. To evaluate the impact of
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the CPU in the system’s performance, we analyze the speedups achievable for a set of
benchmarks. To evaluate the accuracy of the training, we compare the measured execu-
tion times of each device group (CPU and GPU). Finally, we performed two test cases
to evaluate the dynamic adaptation behavior of the framework: one that attests the effi-
ciency of the configuration derivation process and another that analyzes the behavior of
the work-load partitioning when the system’s work-load is intentionally altered, with an
application design for this effect.

The benchmark executions consist in submitting the same input over the computa-
tional tree for 500 runs and the duration of the computation is measured. From those 500
runs, the highest and the lowest thirds of the execution times are ignored and the average
is computed over the inner third (167 runs are considered). The first of this executions is
the training execution which duration will be ignored with the highest third. The over-
lap partitions configurations tested are from 1 to 4 and the OpenCL fission partitioning
tested are from caches L1 to L3 and without any fissioning.

5.2 Case-Studies

To conduct our evaluation, we adapted five of the benchmarks already available in the
Marrow benchmark suite, namely: Image Filter Pipeline, FFT transformation, N-body-
simulation, Saxpy computation and Image Segmentation.

Image Filter Pipeline is a benchmark that consists in the sequential application of three
image filters over an inputted image. Some of the filter kernels were adapted from the
AMD’s OpenCL Samples. The filters applied are the Gaussian Noise, Solarize and Mirror
Image. The computational tree contains two Pipeline skeletons, one nested inside the
other and the three kernels are the leaf nodes. In every one of these kernels, each thread
computes over two non-contiguous pixels of the same line. Therefore, some restrictions
have to be specified. Firstly, when initializing the KernelWrapper for each kernel, the
threadSize of the first dimension needs to be 2. Secondly, when creating a Vector for
submission, the indivisible size must be the width (size of a line) of the input image.

FFT benchmark was initially adapted from the Shoc Benchmark Suite [44]. It consists
in a set of Fast-Fourier Transformations with 512kbs each, being the computational tree a
two-stage pipeline that composes the FFT with its inverse. The indivisibleSize of the input
arguments is expressed as numFFTs×numElementsPerFFT and the threadSize of each
kernel is 512 (the size of a FFT).

N-Body simulation is a classical problem that simulates the position and the velocity
of celestial particles based on the interactions among them. This benchmark was initially
adapted from the AMD’s OpenCL Samples and follows the direct-sum algorithm, of com-
plexity O(n2). The computational tree is composed by one Loop skeleton and the n-body
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kernel. Given that in this simulation, each particle (body) is affected by all the other par-
ticles in the set, a full synchronization between iterations is required between iterations
so all the computing devices have a global vision of the previous iteration result.

Saxpy stands for “Single-Precision AX Plus Y” and is part of BLAS (Basic Linear Al-
gebra Subroutines). This benchmark consists in the multiplication of a matrix with a
scalar value and the result is then summed with another matrix. This computation
(z[i] = ax[i] + y[i]) can be completely parallelizable since each thread only operates over
a single element of each matrix. The computational tree consists in a single Map skeleton
with the Saxpy computation kernel and no partition restrictions are specified.

Segmentation benchmark performs a transformation over a gray-scale three dimen-
sional image, changing its value to either white, gray or black. The computational tree is
expressed as a single Map skeleton with a nested kernel. Although there is no algorith-
mic dependencies between pixel elements, the indivisible size is set to the size of the first
two dimensions so the partitioning is performed only over the last one.

5.3 Systems

To evaluate different characteristics of our prototype solution, we used the two different
systems described in Table 5.1.

System S1 does not possess any GPU device but it contains 4 Opteron 6272 CPU pro-
cessors with 16 cores each, summing a total of 64 cores. Both L1 and L2 caches are shared
between two cores1 (32 caches total) and the L3 caches are shared between 8 cores (8 L3
caches total). This systems characteristics provide an interesting environment to evalu-
ate the OpenCL fission feature, as well as the performance of the Marrow framework in
a CPU-only environment.

System S2 holds two identical AMD HD 7950 GPU devices connected to the mother-
board with two dedicated PCIe x16 lanes (one per GPU), allowing the system to scale
better when the two GPUs are used by reducing the communication overhead. This sys-
tem is also equipped with a single hyper-threaded 6-core Intel i7-3930K totaling in 12
CPU threads. Each core as its own L1 and L2 caches (total of 6 caches) and a single L3
cache is shared among all the cores. This system is used to evaluate the CPU and GPU
interoperability and work distribution of the Marrow framework.

1Actually each core has its own dedicated L1 data cache, only the L1 instruction cache is shared, but this
is the L1 cache identified by OpenCL Fission.
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CPU RAM #CPU threads Drivers GPUs

S1
4 x AMD Opteron
6272 @ 2.20GHz

64GB 64 1214.3 N/A

S2
Intel i7-3930K

@ 3.20GHz
64GB 12 1113.2 2 x HD7950

Table 5.1: Systems characteristics

Benchmark Input Input Execution
type argument number of Execution time

Fission subdevices time (no fission)
Image 1024x1024 L3 8 8.5 9.8

Filter size 2048x2048 L2 32 22.0 34.8
pipeline (pixels) 4096x4096 L2 32 65.1 120.3

(pixels) 8192x8192 L2 32 222.8 377.1
Size 128MB L2 32 34.7 103.7

FFT of 256MB L2 32 56.5 197.9
data-set 512MB L2 32 106.4 423.8
Number 8192 L2 32 35.8 138.4

NBody of 16384 L3 8 99.0 284.0
bodies 32768 L2 32 383.4 1116.2

65536 L2 32 1499.0 4433.6
Number 1×106 L2 32 2.2 7.4

Saypy of 10×106 L2 32 23.9 72.1
elements 50×106 L2 32 102.9 270.8
Number 1MB L3 8 1.1 2.2

Segmentation of 8MB L3 8 4.3 11.8
elements 60MB L2 32 31.0 61.5

Table 5.2: CPU only executions in system S1

5.4 CPU-only Execution

In this work we introduced the CPU as an OpenCL device in the Marrow framework,
previously only supporting GPU devices. In this section, we analyze how the framework
performs in a CPU only environment. Also, since we did not find any studies regard-
ing the performance of OpenCL device fission feature, we started our investigation by
analyzing the possibility of increasing the performance of an application by explicitly
partitioning the CPU device and independently controlling the resulting sub-devices.

Table 5.2 shows the obtained results of the execution of the benchmarks on system
S1, with the execution time after the offline training and the expected execution time if
no fission partitioning were used. These no-fission execution times were retrieved from
the training performance measurements. To be noted that these performance measure-
ments, showed to be a pretty accurate estimation of the real execution times. For a better
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Figure 5.1: Comparison of the execution times with and without fission for Image
Pipeline, Saxpy and Segmentation benchmarks on system S1

comparison, the results are also graphically represented in Figures 5.1 and 5.2. The train-
ing execution consisted in testing the performance with fission over the caches L1, L2
and L3 and also without any fission. To be noted that OpenCL identifies the full set of
CPU processors as a single device, meaning that if no fission is used, the 4 processors are
presented to the application as a unified device.

By analyzing all the benchmark executions, it can be noted that the performance was
highly improved with the use of the OpenCL fission functionality. Note that, however,
the ideal fission level varies from benchmark to benchmark, and it is also affected by the
size of the input data. Despite that, the biggest performance difference is between the
no-fission configuration and the remaining. The reason for these numbers is predictably
bounded to locality, as we are in presence of a NUMA architecture, where each CPU has
its own memory slots. Therefore, the access times of each device to the same memory
address is different for each CPU. As an example, Figure 5.3 shows the execution time
for each configuration, as measured by the training process of the FFT with a 256 MB
input size. The differences in the performance of the no-fission configuration and the
remaining configurations is the most noticeable, but the performance differences among
the latter cannot be overlooked.

5.5 Comparison against GPU-only executions

In this section we compare, from a performance perspective, Marrow executions that
resort only to GPU executions, to the executions that also distribute the work-load among
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Figure 5.2: Comparison of the execution times with and without fission for FFT and N-
Body benchmarks on system S1

the available CPUs. We perform our analysis for 1 and 2 GPUs using system S2, in order
to access the gains obtained by the CPUs’ assistance in either case.

For this evaluation, we executed of all the benchmarks using these different configu-
rations:

• GPU-only execution, with a single and both GPUs. Internally, only the different
configurations of overlapping partitions are trained;

• CPU plus GPU executions with the 50/50 split training method (T1);

• CPU plus GPU executions with the CPU assisted GPU execution training method
(T2).

In the two later configurations, where the CPU was used, the trained fission configura-
tions were from caches L1 to L3 and with no fission. Tables 5.3 and 5.4 show the obtained
results, for 1 and 2 GPUs, respectively. In the Figures 5.4 and 5.5, we display the speedup
obtained with both training modes, when compared to GPU-only executions.

Image Filter Pipeline This is a benchmark where the GPU excels the CPU performance
and it can be observed in the resultant work-load distributions where the biggest CPU
ratio is 8.2% for the smallest input, and it shows a tendency to decrease as the input
size increases. Despite the small work-load, the CPU still proved to be useful, achiev-
ing significant speedups in the performance of this benchmark, for both 1 and 2 GPU
executions.
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Benchmark Input Input 1 GPU
type argument Execution 50/50 Training CPU assisted GPU Training

time (ms) Configuration Execution Distribution Configuration Execution Distribution
(GPU Only) (fission/overlap) time (ms) (GPU/CPU) (fission/overlap) time (ms) (GPU/CPU)

Filter Image 1024x1024 1.97 L2/3 1.10 91.8/8.2 L1/3 1.08 92.5/7.5
pipeline size 2048x2048 5.10 L3/4 3.17 92.9/7.1 none/4 3.17 93.8/6.3

(pixels) 4096x4096 16.80 none/4 12.59 93.8/6.3 none/4 12.38 93.8/6.3
Size 128MB 35.28 L2/3 12.42 32.8/67.2 L2/4 11.82 37.5/62.5

FFT of 256MB 67.83 L2/4 25.01 31.3/68.7 L1/4 23.40 30.0/70.0
data-set 512MB 88.93 L1/3 51.28 37.1/62.9 L2/1 51.06 15.0/85.0
Number 16384 37.17 - - - L1/1 35.75 95.0/5.0

NBody of 32768 101.56 - - - L2/1 101.55 97.5/2.5
bodies 65536 356.85 - - - L2/1 356.78 98.8/1.2

Number 1×106 2.56 L1/2 0.87 41.4/58.6 L2/2 0.91 37.5/62.5
Saypy of 10×106 14.91 L1/2 8.15 45.3/54.7 none/4 8.20 67.5/32.5

elements 50×106 72.86 L1/3 40.34 43.8/56.3 L1/3 37.31 47.5/52.5
Number 1MB 0.79 none/2 0.36 59.9/40.1 none/1 0.35 55.0/45.0

Segmentation of 8MB 2.88 none/4 1.32 81.3/18.7 L3/4 1.32 78.8/21.2
elements 60MB 16.70 none/4 9.42 82.6/17.4 L1/4 9.27 78.8/21.2

Table 5.3: Benchmark execution on system S2 using 1 GPU

Benchmark Input Input 2 GPUs
type argument Execution 50/50 Training CPU assisted GPU Training

time (ms) Configuration Execution Distribution Configuration Execution Distribution
(GPU only) (fission/overlap) time (ms) (GPU/CPU) (fission/overlap) time (ms) (GPU/CPU)

Filter Image 1024x1024 1.12 L3/2 0.79 94.6/5.4 L1/3 0.78 98.8/1.2
pipeline size 2048x2048 3.84 L3/4 1.90 96.1/3.9 none/3 1.92 98.8/1.2

(pixels) 4096x4096 11.76 none/4 6.63 96.9/3.1 none/4 6.67 97.5/2.5
Size 128MB 23.76 L1/4 9.42 59.8/40.2 L2/3 10.09 52.5/47.5

FFT of 256MB 43.12 L1/4 19.07 58.6/41.4 L2/4 19.47 55.0/45.0
data-set 512MB 77.21 L1/4 42.93 56.3/43.8 L1/4 136.71 57.5/42.5
Number 16384 29.87 - - - L3/1 29.44 98.8/1.2

NBody of 32768 69,63 - - - L2/1 69.61 98.8/1.2
bodies 65536 200.76 - - - L2/1 200.81 98.8/1.2

Number 1×106 1.59 none/2 0.78 75.0/25.0 L1/2 0.69 67.5/32.5
Saypy of 10×106 10.97 L3/4 5.20 87.5/12.5 none/4 5.10 88.8/11.2

elements 50×106 46.84 L3/4 28.10 85.2/14.8 L1/4 28.86 77.5/22.5
Number 1MB 0.72 none/1 0.31 69.5/30.5 none/2 0.35 85.6/14.4

Segmentation of 8MB 1.87 none/3 0.97 88.3/11.7 none/2 1.01 88.8/11.2
elements 60MB 10.75 none/4 5.43 93.0/7.0 L1/4 5.84 88.8/11.2

Table 5.4: Benchmark execution on system S2 using 2 GPU
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Figure 5.3: Execution times measured during the training of FFT with 256 MB input

FFT This benchmark is one of the cases where the CPU outperforms the GPU, possibly
caused by the fact that it is the benchmark with the biggest input size, increasing the cost
of the communication with the GPU, but also the nature of the computations, containing
exponential and trigonometric operations, computations where the CPU excels as well.
For 1 GPU executions, only a bit over 30% of the work-load is assigned to the GPU which
explains the speedups over 2.5 when executing with the CPU. With 2 GPUs, the amount
of work assigned to the GPUs grows until almost 60%. In both 1 and 2 GPU executions,
the speedup shows a tendency to decrease as the input size increases. The fact that each
GPU has its own PCIe bus improves the scalability from one GPU to two GPU devices.
Given the increased amount of data communication that this benchmark requires, if the
GPU devices shared the same PCIe bus, it would be expected that the dual GPU training
partitions would show a smaller work-load assigned to the GPUs.

One interesting fact lies in the 512MB executions. The work-load distribution is very
different in the two training modes, however, the resulting execution times are close to
each other. This shows that, for some applications and input data sizes, there may be
more than one viable work-load partitioning to achieve the same level of performance.

N-body This benchmark is not suitable to be trained under the 50/50 split training
mode, due to the existence of a synchronized loop. Running this benchmark under this
training mode, would take a lot of time and the performance would be too degraded,
as the tendency (shown during the development) was to keep transferring work-load to
the CPU group, as the global performances decay. Therefore, we opted to not include
those results in the evaluation. Under the CPU assisted GPU execution training mode, the
results show no significant speedups when the CPU enters the scene. The fact that the
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Figure 5.4: Speedup for 1 GPU executions

global synchronization is always performed in the CPU, explains the low work-load as-
signed to this device. Since the CPU has little to no impact in the OpenCL executions, the
speedup is, as expected, close to 1, meaning that for this benchmark, we could not profit
from the CPU computational power. However, no overhead was introduced with the use
of the CPU for OpenCL computations. Despite the fact that we did not profit from using
the CPU in this particular benchmark, this cannot be generalized to every globally syn-
chronized loop skeletons. We expect that, with some lighter computations, the CPU may
be of use to help improve the performance by taking care of a part of the computation, as
long as it does not compromise the synchronization process.

Saxpy For 1 GPU, we achieved close to linear speedup for the bigger inputs. The re-
sults are as expected, since the GPU/CPU work-load ratio is close to an even work-load
distribution (approximately 45%/55% for the T1 training mode and slightly further apart
in the T2 mode), meaning that the work-load of the GPU was reduced by more than an
half (except in one case in T2). The execution with the smallest input, achieved a speedup
higher than 2.5 in both training modes. A little over the expected, but this occurrence can
be justified by the fact that Saxpy is more data-bound than computation-bound and due
to the architectural nature of the GPU, some work size dimensions may fit the device
better. This shows us that this empirical approach can be also useful to find work size
partitions that are more GPU friendly.

For 2 GPUs, the speedup achieved for the smaller inputs is a little higher than 2,
which is a little unexpected, since only 25% or less of the work-load is performed by the
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Figure 5.5: Speedup for 2 GPU executions

CPU (expect in one case in T2). Nonetheless, as the number of elements decreases, the
speedup also decreases to more expected values. Similarly to the 1 GPU execution, this
can be justified by Saxpy being a data-bound problem and due to the architecture of the
GPU devices.

Like in the FFT benchmark, also in Saxpy with the 10 million elements input, with 1
GPU, both trainings identified two different configurations and work distributions, but
the yielded execution time were also pretty close.

Segmentation This is another case where the GPUs outperform the CPU, but a signifi-
cant speedup can be achieved by taking advantage of the latter device. Compared to the
Image Filter Pipeline benchmark, this benchmark has a higher data-to-computation ratio,
meaning that the GPU communication overhead has more impact in the GPUs’ overall
execution time. Akin to the Saxpy benchmark, we believe that the training is balancing
the GPU work-load to avoid prompting executions with few data to compute, where the
communication overhead would not be worth, thus, explaining the higher than expected
speedup.

Final Remarks These results confirm that it can be profitable to exploit the combination
of CPU and GPU devices in the execution of parallel computations, when compared to
GPU-only computations. It may also be observed that the best work distribution config-
uration is application dependent, and even data-set size dependent within applications.
This fact validates our application-targeted training approach, since having a general,
application oblivious approach, requires an empirical method like the offline training we
implemented. Another interesting fact about these results is that in some data-bound
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benchmarks, the speedup achieved was even better than the expected, considering the
amount of work-load that was distributed to the CPU. This fact is more noticeable for
smaller inputs, where the PCIe transmission overhead has more impact on the perfor-
mance, given the small amount of data to compute. In general, this overhead is miti-
gated for bigger inputs and the GPU executions prove themselves more advantageous.
We assign this to the fact that, some partition sizes are more friendly of the GPU’s specific
architecture, achieving shorter execution times. As a final remark, we can observe that
the number of overlapping partitions that display the best performance is not the same
for different input sizes of the same benchmarks, but its tendency is to increase with the
increase of the input size. This observation can be useful for the future development of
a performance model that is able to infer the performance of a computation when in the
presence of alterations to the input data size. As for the OpenCL device fission level, the
ideal fission level does not follow a perceptible pattern. Even for the same benchmark,
the training picked different fission configurations for the same input, in the different
training modes.

By comparing the results of each training mode, there is no absolute winner on the
best approach, as they both achieve close performance levels for the same benchmarks
and data-sizes. Although, for each execution of the benchmarks, one of the training meth-
ods had a slightly better performance, we cannot conclude that one approach is better
than the other, as the best performing training method is not always the same, even for
the same benchmark with different input sizes. The only exception is in the N-Body
benchmark and this can be generalized to every application with a Loop skeleton in its
computational tree, as the 50/50 split training method is not suitable for these skeletons,
making the CPU assisted GPU execution the best training approach for this applications.

5.6 Training Evaluation

From the results of the previous section, we can conclude that we can achieve significant
speedups by combining the computational power of CPU and GPU devices. Our 50/50
split training method achieves these speedups by balancing the execution times of each
device group. In this section, we evaluate the accuracy of that balancing. To do so, we
slightly modified the framework to announce the average value of the performanceRatio
(Equation 4.3, part of the dynamic load balancing, detailed in Section 4.5.1.3), at the end
of all executions. We do not consider the CPU assisted GPU execution training method
for this evaluation, as it lies on a different approach, based on the global performance.
Therefore, the individual performance of each device group is not a useful information
to compare the effectiveness of the method. All the benchmarks were executed using only
one GPU device (with a 50/50 split training execution) and the average performanceRatio
is expressed in Table 5.5.

As the results show, the ratio between the two devices was always greater than 0.8,
going from 0.825 to 0.919. We consider that these values validate the premise that this
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Benchmark Input parameter performanceRatio

1×106 0.885
Saxpy 10×106 0.919

50×106 0.874
1MB 0.979

Segmentation 8MB 0.863
60MB 0.832

1024x1024 0.842
Filter pipeline 2048x2048 0.855

4096x4096 0.846
128MB 0.846

FFT 256MB 0.825
512MB 0.841

Table 5.5: Average benchmark duration for each

training method lies upon. From this values, we can also infer that 0.8 is a nice value for
the configurable balancingRatio parameter, to identify unbalanced executions. For some
benchmarks like Saxpy, even higher values can be used since lowest performanceRatio
average value we obtained was 0.874.

5.7 Work-load Derivation and Dynamic Balancing

To evaluate the capacity of our dynamic work-load balance approach, we performed two
tests with our framework:

• A test where we performed a training execution for one input size and the remain-
ing input sizes are subject to the work-load derivation and the dynamic work-load
balance;

• A test where we intentionally increase and decrease the CPU’s work-load during
a benchmark’s execution, and analyze the changes in the application’s work-load
distribution.

5.7.1 Image Pipeline work-load distribution derivation

For this test, we used the Image Pipeline benchmark and we performed a training for
one of the input sizes and submitted different inputs without activating the training. Our
goal is to compare the performance of the work-load distribution derived from the pre-
viously executed input sizes (with possible dynamic rebalances or retraining), with the
performance achievable with a training for each of the inputted sizes. The balancingRatio
was set to 0.85. Recall that, once derived, the work-distribution information is stored in
the Knowledge Base, and some inputs may derive from the previously derived work-load
distributions.
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Image Image Training result
id size Fission Overlap GPU (%) CPU (%) Execution time

Image 1 1024x1024 L3 3 90.8 9.2 1.10
Image 2 512x512 L3 2 87.5 12.5 0.54
Image 3 1024x2048 L1 4 91.5 8.5 1.74
Image 4 2048x512 L2 3 89.8 10.2 1.06
Image 5 2048x2048 none 4 92.9 7.1 3.17
Image 6 4096x4096 L3 4 93.8 6.3 12.59

Table 5.6: Filter Pipeline: performance obtained from the training’s results

Image Image Derivation Required balancing Resulting distribution Execution Relative
id Nearest neighbor load balance training GPU (%) CPU (%) time performance

Image 2 Image 1 6 1 81.0 19.0 0.64 84%
Image 3 Image 1 2 0 90.7 9.3 1.87 93%
Image 4 Image 1 4 0 90.6 9.4 1.07 100%
Image 5 Image 3 1 0 90.6 9.4 3.48 91%
Image 6 Image 5 0 0 91.8 8.2 13.41 94%

Table 5.7: Filter Pipeline: performance obtained from the derivation of the work-load
distribution from past executions

As a comparison point, Table 5.6 shows the execution times of each input, when ex-
ecuted with a previous training execution. Table 5.7 shows the results of this evaluation
test. The images were submitted in the order they appear in the table, meaning that each
input could derive its work-load distribution from the input sizes that were submitted
before.

As we can see from the relative performance values, although the derived work-load
distributions do not reach the same performance levels achieved with a training, the exe-
cution times of both executions came pretty close, even taking into consideration that the
derived fission/overlap configuration is not always the ideal one, found during train-
ing. Most of the derived work-load distributions performed with more than 90% of the
performance of its ideal distribution and configuration. Also, the rebalancing mecha-
nism proved to be effective in this test-case, as a balanced distribution could be found
after a few rebalance attempts and only one of the cases required a retraining to find the
work-load balance.

5.7.2 Reaction to system’s load changes

For this test case we intentionally loaded and unloaded the CPU during the execution
of a benchmark and observed the changes in the work-load distribution. It required
some minor changes in the framework so the new work-load is announced anytime the
dynamic load balance is triggered.

To make the system’s load fluctuate, we designed a simple application (that is further
referred to as LFA), that spawns multiple threads that runs a loop of algebraic computa-
tions. For this test case, we used 12 threads, to match the number of the CPU’s hardware
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threads. The selected benchmark was the Saxpy, with the 50 million elements input, be-
cause it is one of the benchmarks that distributed a big part of the work to the CPU (more
than 50%).

We started this test case by training the benchmark using one GPU and without any
kind of user submitted system load. The obtained partitioning was 49.61% to the GPU
and 50.39% to the CPU, with L1 cache fission and 4 overlapping partitions. The average
partitioningRatio was 0.89, therefore, we configured the framework to trigger the dynamic
load balance at 0.85. We then started the benchmark, still without any system’s load inter-
ference, and observed that the dynamic load balance was not triggered. Then, still with
the benchmark running, we started our load fluctuation application and waited until the
work-load was rebalanced. After some iterations without the dynamic load balance be-
ing triggered, we terminated the load fluctuation application and again, waited until the
balance was reestablished.

40.00%

45.00%

50.00%

55.00%

60.00%

LFA
on

RT LFA
off

RT RT

GPU CPU

Figure 5.6: Dynamic rebalance to system’s load fluctuations

Figure 5.6 displays the work-load modifications along this test case. The points la-
beled with LFA on and LFA off represent the first load-balance after the load fluctuation
application was executed and terminated, respectively. The points labeled with RT are
the result of a retraining, being the remaining results of a simple load adjustment.

As the results show, the application reacted to the load variation and executed 6 load
rebalances until the retraining triggered, stabilizing the work-load distribution at 58.18%
to the GPU and 40.82% to the CPU. After the retraining, the work-load remained balanced
until the load fluctuation application was terminated. Similarly to the previous case, the
framework tried another 6 consecutive load balances until the retraining triggered. How-
ever, the resultant work-load distribution of this retraining was not sufficiently balanced
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because the dynamic load balance kept triggering, demanding another retraining itera-
tion to kick in and bringing the work-load to a balanced state with 49.22% of the work
assigned to the GPU and the remaining 50.78% to the CPU.

5.8 Final Remarks

In Section 5.1, we introduced the questions that we wanted to answer with the evaluation
of our work. In this section, we answer those questions based on the results we obtained
in our evaluation.

1. Can we take advantage of the OpenCL fission feature to increase the performance
of CPU OpenCL computations?

The results of Section 5.4 show that the OpenCL fission can be profitable to achieve higher
performance levels, not only to take advantage of data locality in the different CPU’s local
memory, but also to profit from cache level locality inside each CPU. This result is further
validated by the results of Section 5.5, by the fact that the training process selected, fission
configurations over the no-fission configuration in some of the benchmarks. With that in
mind, it is safe to say that we can take advantage of the OpenCL fission functionality, but
when to use it and for what dimensions the CPU should be partitioned is still difficult to
predict.

2. Can we take advantage of the CPU to increase the performance in a heterogeneous
system composed by GPUs and CPUs?

Section 5.5 compares the performance of the benchmarks using just the GPUs with the
performance of combined executions of GPUs and CPUs. For both one and two GPUs
executions, the speedups obtain were pretty satisfying, yielding good speedups in ev-
ery benchmark, except for the N-Body. We consider our approach as a good method to
achieve balance over the devices, as all the work distribution concerns are delegated on
the platform.

3. How accurate is the our training method approach?

We analyzed the 50/50 split training method in Section 5.6, to compare the execution times
of each device group. The results were pretty close, with ratios over 0.8 when comparing
the fastest group with the slowest. We did not evaluate the CPU assisted GPU execution
training method, as it relies on a different premise, but given the similar speedups ob-
tained in Section 5.5, we consider both approaches equally valid, as we cannot reject one
over the other, except when the computational tree has a Loop skeleton, with global syn-
chronization, in which case, the CPU assisted GPU execution is clearly the best approach.

4. How does the framework respond to alterations to the input data sizes and the
system’s work-load?
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In Section 5.7 we evaluate how the platform reacts to inputs of different sizes and to sys-
tem load fluctuations. The platform reacted pretty well to inputs with different sizes on
the Image Pipeline benchmark, achieving balance after a few rebalancing iterations and,
in one case, after rerunning the training for the current configuration. Although not opti-
mal, the performance achieved by the dynamic rebalancing mechanism was considerably
close to the achievable performance with the best fission/overlapping configuration.

When under the influence of load from external applications, the framework quickly
detected the load fluctuations and triggered the work-load rebalance mechanism that
balanced the load into a more stable state.
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6
Conclusion

6.1 Goals and Results

The main goal of this thesis was to extend a multi-GPU algorithmic skeleton framework,
to combine the power of the GPUs with the power of the CPU for the skeletal compu-
tations, improving the performance of a system while maintaining the same level of ab-
straction provided by the skeletons. To this extent, we extended the Marrow framework,
introducing the support for CPU computations as well as dynamic work balance among
devices.

Unlike the previous version of Marrow where the work distribution among the GPU
devices was achieved statically, based on performance benchmarks results obtained dur-
ing the install process. In this version, we had to adopt a more dynamic way to distribute
the work-load among CPUs and GPUs, due to the inability to achieve optimal work bal-
ance before actually executing the target application. To guarantee that the application
runs with the best execution and platform configuration possible, the work balance is
achieved through a number of offline training executions, where the performance of var-
ious work distributions, overlapping partitioning and OpenCL fission combinations, are
measured to prepare the platform to execute the applications requests with the best per-
forming configuration found.

The work-load distribution is achieve through the replication of the computational
trees over the different devices and the data is partitioned among the devices based on
the training results. This way, the data locality is guaranteed between different kernel ex-
ecutions on the same tree, minimizing device communication. During the training stage,
the data partitioning is based on one of the two training modes that we designed, that
select the work distribution to test, based on each devices performance on the previous
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training iteration, aiming to achieve a better partitioning along the training process.
The evaluation of our prototype shows that CPU and GPU devices have different

performance ratios depending on each benchmark computations and data-sizes. Despite
that, the training process was always able to find a balanced work distribution for each
tested application, significantly improving its performance when compared to GPU-only
executions.

Overall, we fulfilled all our goals, achieving integration and cooperation between
CPU and GPU devices in Marrow, while abstracting the programmer from the underly-
ing heterogeneity.

A paper presenting part of the work developed in this thesis has been accepted for
presentation at the International Workshop on Algorithms, Models and Tools for Paral-
lel Computing on Heterogeneous Platforms (HeteroPar’2014), and will be subsequently
published in EuroPar’s workshop companion [45].

6.2 Future Work

In this work we addressed heterogeneity between GPU and CPU devices. One interesting
next step could be to consider support for other heterogeneous devices which would in-
troduce another work balance dimension, increasing the complexity of our current train-
ing approach. This added complexity may derail the current training approach and a
more refined approach may be necessary.

Currently, the kernel functions offloaded to the devices are expressed in native
OpenCL language. To maintain the compatibility of those kernels among devices, we had
to abdicate from kernel-level device specific optimizations which would imply different
implementations for different devices. In the future, this limitation can be surpassed by
creating a higher level layer for kernel programming, allowing the framework to inter-
nally perform those device specific optimizations over each generated kernel, while, at
the same time, providing a friendlier programming interface to the programmer. This
added abstraction layer can also open the way for the support of different execution
backends, other than OpenCL.

In this version, we only focused on applications with a single computational tree. To
further increase the range of programmable scenarios, given that some applications may
require the definition of more than one tree, in a future work it would be interesting to
provide support for work-load adaptation considering multiple computational trees.

Our approach to the work-load distribution derivation has a linear complexity, which
means that with the increase of the number of work-load distributions for different data
sizes in the Knowledge Base, the amount of comparisons during the interpolation will also
increase. This module can be improved in the future, by reducing the complexity of the
derivation, and also by exploring other approaches to derivate the work-load distribu-
tion, other than the Euclidean distance.
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