1,853 research outputs found

    Adaptive foreground segmentation using fuzzy approach

    Get PDF
    Intelligent visual surveillance which attempts to detect, recognize and track certain objects from image sequences is becoming an active research topic in computer vision community. Background modeling and foreground segmentation are the first two and the most important steps in any intelligent visual surveillance systems. The accuracy of these two steps highly effects performance of the following steps. In this thesis, we propose a simple and novel method which employs histogram based median method for background modeling and a fuzzy k-Means clustering approach for foreground segmentation. Experiments on a set of videos and benchmark image sequences show the effectiveness of the proposed method. Compared with other two contemporary methods - k -Means clustering and Mixture of Gaussians (MoG) - the proposed method is not only time efficient but also provides better segmentation results

    Novel Application of Neutrosophic Logic in Classifiers Evaluated under Region-Based Image Categorization System

    Get PDF
    Neutrosophic logic is a relatively new logic that is a generalization of fuzzy logic. In this dissertation, for the first time, neutrosophic logic is applied to the field of classifiers where a support vector machine (SVM) is adopted as the example to validate the feasibility and effectiveness of neutrosophic logic. The proposed neutrosophic set is integrated into a reformulated SVM, and the performance of the achieved classifier N-SVM is evaluated under an image categorization system. Image categorization is an important yet challenging research topic in computer vision. In this dissertation, images are first segmented by a hierarchical two-stage self organizing map (HSOM), using color and texture features. A novel approach is proposed to select the training samples of HSOM based on homogeneity properties. A diverse density support vector machine (DD-SVM) framework that extends the multiple-instance learning (MIL) technique is then applied to the image categorization problem by viewing an image as a bag of instances corresponding to the regions obtained from the image segmentation. Using the instance prototype, every bag is mapped to a point in the new bag space, and the categorization is transformed to a classification problem. Then, the proposed N-SVM based on the neutrosophic set is used as the classifier in the new bag space. N-SVM treats samples differently according to the weighting function, and it helps reduce the effects of outliers. Experimental results on a COREL dataset of 1000 general purpose images and a Caltech 101 dataset of 9000 images demonstrate the validity and effectiveness of the proposed method

    Automated Semantic Content Extraction from Images

    Get PDF
    In this study, an automatic semantic segmentation and object recognition methodology is implemented which bridges the semantic gap between low level features of image content and high level conceptual meaning. Semantically understanding an image is essential in modeling autonomous robots, targeting customers in marketing or reverse engineering of building information modeling in the construction industry. To achieve an understanding of a room from a single image we proposed a new object recognition framework which has four major components: segmentation, scene detection, conceptual cueing and object recognition. The new segmentation methodology developed in this research extends Felzenswalb\u27s cost function to include new surface index and depth features as well as color, texture and normal features to overcome issues of occlusion and shadowing commonly found in images. Adding depth allows capturing new features for object recognition stage to achieve high accuracy compared to the current state of the art. The goal was to develop an approach to capture and label perceptually important regions which often reflect global representation and understanding of the image. We developed a system by using contextual and common sense information for improving object recognition and scene detection, and fused the information from scene and objects to reduce the level of uncertainty. This study in addition to improving segmentation, scene detection and object recognition, can be used in applications that require physical parsing of the image into objects, surfaces and their relations. The applications include robotics, social networking, intelligence and anti-terrorism efforts, criminal investigations and security, marketing, and building information modeling in the construction industry. In this dissertation a structural framework (ontology) is developed that generates text descriptions based on understanding of objects, structures and the attributes of an image

    Accelerated hardware video object segmentation: From foreground detection to connected components labelling

    Get PDF
    This is the preprint version of the Article - Copyright @ 2010 ElsevierThis paper demonstrates the use of a single-chip FPGA for the segmentation of moving objects in a video sequence. The system maintains highly accurate background models, and integrates the detection of foreground pixels with the labelling of objects using a connected components algorithm. The background models are based on 24-bit RGB values and 8-bit gray scale intensity values. A multimodal background differencing algorithm is presented, using a single FPGA chip and four blocks of RAM. The real-time connected component labelling algorithm, also designed for FPGA implementation, run-length encodes the output of the background subtraction, and performs connected component analysis on this representation. The run-length encoding, together with other parts of the algorithm, is performed in parallel; sequential operations are minimized as the number of run-lengths are typically less than the number of pixels. The two algorithms are pipelined together for maximum efficiency

    Automated Global Feature Analyzer - A Driver for Tier-Scalable Reconnaissance

    Get PDF
    For the purposes of space flight, reconnaissance field geologists have trained to become astronauts. However, the initial forays to Mars and other planetary bodies have been done by purely robotic craft. Therefore, training and equipping a robotic craft with the sensory and cognitive capabilities of a field geologist to form a science craft is a necessary prerequisite. Numerous steps are necessary in order for a science craft to be able to map, analyze, and characterize a geologic field site, as well as effectively formulate working hypotheses. We report on the continued development of the integrated software system AGFA: automated global feature analyzerreg, originated by Fink at Caltech and his collaborators in 2001. AGFA is an automatic and feature-driven target characterization system that operates in an imaged operational area, such as a geologic field site on a remote planetary surface. AGFA performs automated target identification and detection through segmentation, providing for feature extraction, classification, and prioritization within mapped or imaged operational areas at different length scales and resolutions, depending on the vantage point (e.g., spaceborne, airborne, or ground). AGFA extracts features such as target size, color, albedo, vesicularity, and angularity. Based on the extracted features, AGFA summarizes the mapped operational area numerically and flags targets of "interest", i.e., targets that exhibit sufficient anomaly within the feature space. AGFA enables automated science analysis aboard robotic spacecraft, and, embedded in tier-scalable reconnaissance mission architectures, is a driver of future intelligent and autonomous robotic planetary exploration

    Video browsing interfaces and applications: a review

    Get PDF
    We present a comprehensive review of the state of the art in video browsing and retrieval systems, with special emphasis on interfaces and applications. There has been a significant increase in activity (e.g., storage, retrieval, and sharing) employing video data in the past decade, both for personal and professional use. The ever-growing amount of video content available for human consumption and the inherent characteristics of video data—which, if presented in its raw format, is rather unwieldy and costly—have become driving forces for the development of more effective solutions to present video contents and allow rich user interaction. As a result, there are many contemporary research efforts toward developing better video browsing solutions, which we summarize. We review more than 40 different video browsing and retrieval interfaces and classify them into three groups: applications that use video-player-like interaction, video retrieval applications, and browsing solutions based on video surrogates. For each category, we present a summary of existing work, highlight the technical aspects of each solution, and compare them against each other

    On the Use of Low-Cost RGB-D Sensors for Autonomous Pothole Detection with Spatial Fuzzy <em>c</em>-Means Segmentation

    Get PDF
    The automated detection of pavement distress from remote sensing imagery is a promising but challenging task due to the complex structure of pavement surfaces, in addition to the intensity of non-uniformity, and the presence of artifacts and noise. Even though imaging and sensing systems such as high-resolution RGB cameras, stereovision imaging, LiDAR and terrestrial laser scanning can now be combined to collect pavement condition data, the data obtained by these sensors are expensive and require specially equipped vehicles and processing. This hinders the utilization of the potential efficiency and effectiveness of such sensor systems. This chapter presents the potentials of the use of the Kinect v2.0 RGB-D sensor, as a low-cost approach for the efficient and accurate pothole detection on asphalt pavements. By using spatial fuzzy c-means (SFCM) clustering, so as to incorporate the pothole neighborhood spatial information into the membership function for clustering, the RGB data are segmented into pothole and non-pothole objects. The results demonstrate the advantage of complementary processing of low-cost multisensor data, through channeling data streams and linking data processing according to the merits of the individual sensors, for autonomous cost-effective assessment of road-surface conditions using remote sensing technology
    • …
    corecore