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Abstract

This paper demonstrates the use of a single-chip FPGA for the segmentation
of moving objects in a video sequence. The system maintains highly accurate
background models, and integrates the detection of foreground pixels with
the conversion into labelled objects using a connected component labelling
algorithm. The background models are based on 24-bit RGB values and 8-bit
greyscale intensity values. A multimodal background differencing algorithm
is presented, using a single FPGA chip and four blocks of RAM. The real-
time connected component labelling algorithm, also designed for FPGA im-
plementation, has efficiently been integrated with the pixel level background
subtraction to extract pixels of a moving object as a single blob. The con-
nected component algorithm, run-length encodes the binary image output of
the background subtraction, and performs connected component analysis on
this representation. The run-length encoding, together with other parts of
the algorithm, is performed in parallel; sequential operations are minimized
as the number of run-lengths are typically less than the number of pixels.

Key words: Background differencing; Image Segmentation; Connected
Component labelling; Object extraction; FPGA.

1. Introduction

Detection and tracking of objects in real-time using a stationary camera
is an active field of research in the vision community with a wide range
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of applications in the fields of monitoring and surveillance, smart rooms,
vehicle tracking, biological image analysis and video compression. The first
stage in processing for many video-based applications is the segmentation
of (usually) moving objects with significant difference in colour and shape
from the background, a very basic yet computationally expensive task for
real-time purposes. The second stage is the connected-component labelling
of the binary image; a highly sequential operation. This is then followed by
extracting features of the moving object(s) to support tracking; for example,
the centroid, colour histogram, width and height.

Using a Field Programmable Gate Array (FPGA) as an image accelerator,
we demonstrate in this paper how real-time extraction of moving objects from
image sequences taken under variable lighting conditions can be achieved
efficiently on an FPGA architecture. The implementation has a number of
uses in embedded systems and automated visual surveillance systems. Real-
time image processing is difficult to achieve on a serial processor, due to
the movement of large data sets and complex operations that need to be
performed on the image [15]. Advances in semiconductor technology makes it
possible to design complete embedded System-on-Chip (SoC) by combining
sensor, signal processing and memory onto a single substrate [21]. New
embedded vision systems have emerged as a result of this level of integration
and are likely to proliferate in the coming years. The aim of such computer
vision systems is to scan scenes and make judgements that remove or decrease
the need for human observers – thus the need to develop imaging functions
with performance comparable to trained human operators [28].

Field Programmable Gate Arrays (FPGAs), have been available for over
two decades. Recent increases in programmable fabric density have made this
an appealing platform for accelerating computer vision and image processing
algorithms. The potential uses of FPGAs in areas like medical image pro-
cessing, computational fluid dynamics, target recognition, embedded vision
systems, gesture recognition and automotive infotainment have been demon-
strated in [5, 9, 17, 18, 21]. Digital Image processing or computer vision al-
gorithms can be broken down into three major stages [14]: early processing,
implemented by local pixel-level functions; intermediate processing, which
includes segmentation, motion estimation and feature extraction; and late
processing, including interpretation and using statistical and artificial intel-
ligence algorithms[1]. Typically algorithm sophistication is concentrated in
the later stages, but processing demands dominate in the early stages [32].

In this paper, we preset the integration of two basic image processing al-
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gorithms: background differencing (background subtraction) and connected
component labelling, designed specifically for efficient FPGA implementa-
tion. Published background differencing algorithms tend to focus on ro-
bustness in varying lighting conditions, and on shadow extraction [1], while
connected component labelling algorithms tend to focus on the resolution of
equivalence table[19]. An integrated system, capable of extracting labelled
regions of similar pixels (of a moving object) from real-time video sequence
using FPGA is presented. The gate-rich capabilities of FPGAs offer the po-
tential to efficiently implement both algorithms on a single chip for real time
processing.

2. Binary Foreground Extraction

Image segmentation, defined as the grouping of pixels that are coher-
ent in space, range, and time domain, is usually the first stage in pro-
cessing for many video applications. The input image usually defines an
algorithm suitable for segmentation. Comaniciu et al [7] presents a tech-
nique for segmenting a video frame into representative blobs detected in the
spatial and colour domains. Similarly, Boykov et al in [6] demonstrates a
general-purpose segmentation method for extracting objects using the s/t
graph cuts, with reported success in segmenting photos, video and medical
images. Fuzzy c-means algorithms based on the idea of clustering pixels
with similar characteristics have successfully been used in segmentation [32].
Zhou et al [32, 31, 30] introduced the mean shift based fuzzy c-means algo-
rithm, which addresses the computational requirement of the original fuzzy
c-means algorithm with reported improved segmentation. Where the input
is a video sequence and the camera is stationary, a natural approach is to
model the background and detect foreground object by differencing the cur-
rent frame with the background. A wide and increasing variety of techniques
for background modelling have been described; a good comparison is given
by Gutchess et al [11].

The most popular method is unimodal background modelling, in which
a single value is used to represent a pixel, which has been widely used due
to its relatively low computational cost and memory requirements [13, 29].
This technique gives a poor results when used in modelling non-stationary
background scenarios like waving trees, rain and snow. A more powerful
alternative is to use a multimodal background representation, which uses
more than one process (mostly mixture of Gaussians) to represent a single
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background pixels. However, the computational demands make multimodal
techniques unpopular for real-time purposes; there are also disadvantages in
multimodal techniques [10, 26, 29] including the blending effect, which causes
a pixel to have an intensity value which has never occurred at that position
(a side-effect of the smoothing used in these techniques). Other techniques
rely heavily on the assumption that the most frequent intensity value during
the training period represents the background. This assumption may well be
false, causing the output to have a large error level.

2.1. Grimson’s Algorithm

Grimson et al [26, 27] introduced a multimodal approach, modelling the
values of each pixel as a mixture of Gaussians (MoG). The background is
modelled with the most persistent intensity values. The algorithm has two
variants, colour and gray-scale: in this paper, we concentrate on the gray-
scale version. The probability of observing the current pixel value is given
as:

P (Xt) =
k

∑

i=1

ωi,tη(Xt, µi,t, σi,t) (1)

Where µi,t, σi,t and ωi,t are the respective mean, standard deviation and
weight parameters of the ith Gaussians component of pixel X at time t. η is
a Gaussian probability density function

η(Xt, µi,t, σi,t) =
1

σi,t

√
2π

e

(Xt−µi,t)
2

2σ2
i,t (2)

A new pixel value is generally represented by one of the major components
of the mixture model and used to update the model. For every new pixel
value, Xt, a check is conducted to match it with one of the K Gaussian
distributions. A match is found when Xt is within 2.5 standard deviation of
a distribution. If none of the K distributions match Xt, the least weighed
distribution is replaced with a new distribution having Xt as mean, high
variance and very low weight. The update equations are as follows:

wi,t = wi,t−1 + α(mi,t − wi,t−1) (3)

where α is the learning rate and

mi,t =

{

1 if there is a match
0 otherwise

(4)
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µt = µt−1 − ρ(Xt − µt) (5)

σ2

t = (1− ρ)σ2

t−1 + ρ(Xt − µt)
T (Xt − µt) (6)

Only the matched distribution will have its mean and variance updated, all
others remain unchanged. For

ρ = αη(Xt|µt, σt) (7)

The first B distributions (ordered by ωk) are used as a model of the back-
ground, where

B = argb min(
b

∑

k=1

ωk > T ). (8)

The threshold T is a measure of the minimum portion of the data that should
be accounted for by the background.

2.2. Temporal Low-Pass filtering Algorithm

Aleksej [20] introduced a method to avoid false alarms due to illumina-
tion, using a temporal filter to update the background model, while a global
threshold value T was used to extract target regions. The background update
he used is of the form

B(k, l, n) =
(p− c)

p
B(k, l, n− 1) +

c

p
I(k, l, n)

where c is the number of consecutive frames during which a change is ob-
served and is reset to zero each time the new value becomes part of the
background; p is the adaptation time or insertion delay constant. The mov-
ing target is extracted on a pixel level with the following relation:

f(k, l, n) =

{

1 |I(k, l, n)−B(k, l, n)| > L

0 otherwise
(9)

where f(k,l,n), B(k,l,n) and I(k,l,n) are the respective foreground, background
and greyscale intensity value of pixel (k,l) for the nth frame, and L is the
global threshold value.

The low-pass filtering algorithm is attractive for two reasons. First it
is very simple and hence updating the background information is computa-
tionally cheap and memory consumption is minimal. The use of single global
threshold value as well as a single mode makes it unattractive for scenes with
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varying lighting intensities. In contrast, Grimson’s algorithm [26] is robust to
outdoor environments where lighting intensity can suddenly change, and it
handles multimodal backgrounds such as moving foliage (cyclical/oscillating
motion) without manual initialisation. Unfortunately, accurate maintenance
of mean, variance and weight for the MoG at every pixel location requires the
use of floating-point numbers (unsuitable for hardware implementation [3]),
or high precision fixed point numbers when implemented in hardware. To
efficiently implement the MoG background subtraction algorithm on a hard-
ware architecture for real-time processing, modifications have been made to
the algorithm in section 2.3; trading off some level of accuracy for speed-up.

2.3. Our Approach

We present here a novel hybrid background modelling algorithm [1] that
combines the attractive features of Grimson’s algorithm [26] and the temporal
low-pass filtering [20], with appropriate modifications to improve segmenta-
tion of the foreground image. The main contribution of the algorithm pre-
sented is its efficient implementation on a reconfigurable hardware platform
such as Field Programmable Gate Array (FPGA). Following Grimson [26],
we maintain a number of clusters, each with weight wk, where 1 ≤ k ≤ K,
for K clusters. Rather than modelling a Gaussian distribution, we maintain
a model with a central value, ck of 11-bits (8 bits integer part and 3 bits
fractional part). We use an implied global range, [ck − 15, ck + 15], rather
than explicitly modelling a range for each pixel based on its variance as in
[26]. The weights and central values of all the clusters are initialised to 0.

A pixel X = I(i, j) (where X is 11-bit fixed-point) from an image I is
said to match a cluster, k, if X ≥ ck − 15 and X ≤ ck + 15. The highest
weight matching cluster is updated, if and only if its weight after the update
will not exceed the maximum allowed value (i.e. wk ≤ 64, given the data
width of the weight as 6 bits). The exponential moving average, which is
easier to implement on FPGA has been used in all the update equations.
Typically, more weight is given to the observed value to obtain a value closer
to the average. The update for the weight is as follows:

wk,t =

{

63

64
wk,t−1 + 1

64
for the matching cluster

63

64
wk,t−1 otherwise

(10)

The central values of all the clusters are also updated as follows:

ck,t,i,j =

{

7

8
ck,t−1,i,j + 1

8
Xi,j matching cluster

ck,t−1,i,j otherwise
(11)
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Where ck,t,i,j is the central value for cluster k at time t for pixel (i, j). If no
matching cluster is found, then the least weighted cluster’s central value, cK

is replaced with X; its weight is reset to zero. The way we construct and
maintain clusters make our approach gradually incorporate new background
objects. The K distributions are ordered by weight, with the most likely
background distribution on top. Similar to [26], K (usually set to 3) is
the total number of clusters used to model every single background pixel
(multimodal) to accommodate oscillating background objects. The first B

out of K clusters are chosen as the background model, where

B = argb min(
b

∑

k=1

ωi > T ) (12)

. The threshold T is a measure of the minimum portion of the data that
should be accounted for by the background.

We classify a pixel as foreground pixel based on the following two condi-
tions:

1. If the intensity value of the pixel matches none of the K clusters.

2. If the intensity value is assigned to the same cluster for two successive
frames, and the intensity values X(t) and X(t − 1) are both outside
the 40% mid-range [ck − 6, ck + 6].

The second condition makes it possible to detect targets with low contrast
against the background, while maintaining the concept of multimodal back-
grounds. A typical example is a moving object with greyscale intensity close
to that of the background, which would be classified as background in [26].
This requires the maintenance of an extra frame, with values representing
the recently processed background intensities.

2.4. Experimental Results

We evaluate the performance of our approach against that of [26] using
K = 3, thus 3 cluster in our case and 3 distributions in [26] per pixel. We
use twelve randomly selected video sequences; seven outdoor and five indoor
scenes with a total of 1600 frames. One of the seven outdoor sequences
is taken from a publicly available dataset (PETS 2000 camera 1) [23], two
taken with a close range camera placed at a distance of about five meters
and the last four taken in a reasonably challenging outdoor scene with oscil-
lating background objects (river waves and foliage). The five indoor scenes
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have varying lighting intensity, with two taken in a very reflective room.
Reference standard segmentations on these sequences have been constructed
by using manually marked frames; results of the algorithms are compared
to this reference standard. The results of the pixel level comparison be-
tween the ground truth and the extracted foreground image for each frame
of all the 12 sequences are based on true positive(TP ), true negative(TN),
false negative(FN) and false positive(FP ) pixels. We have used three mea-
sures Sensitivity (SENS) expressed as TP

TP+FN
, Jaccard Coefficient (JC) ex-

pressed as TP
TP+FP+FN

and Percentage Correct Classification (PCC) expressed

as TP+TN
TP+FP+TN+FN

to evaluate the performance of the two algorithms. Table
1 shows the superiority of our algorithm against that in [26] in terms of
sensitivity. The algorithm does produce more false positive errors; this is
the side-effect of our approach in detecting targets with low contrast against
the background. However, in our target application false positive errors of
the type reported are more acceptable than false negative errors, as subsys-
tem tracking stages can discard distracters such as shadows. Figure 1 gives
sample images of the outputs generated by the two algorithms.

    
 

    
 

     

Figure 1: Sample outputs of the algorithms. The top row shows the original images with
their corresponding manually marked ground truth. The middle and bottom rows show
outputs of Grimson’s algorithm and our approach respectively. Images on the second and
fourth columns are the outputs after applying morphology.
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Grimson’s (%) Our Approach (%)
Seq. SENS JC PCC SENS JC PCC
1 78.92 62.30 99.86 79.08 60.04 99.84
2 80.99 76.67 99.34 83.18 79.55 99.43
3 64.34 59.93 95.86 79.87 75.02 97.44
4 82.20 72.27 98.06 84.88 73.08 98.07
5 68.55 48.68 97.10 76.72 41.76 95.71
6 68.70 49.51 96.11 76.26 52.13 96.12
7 45.96 32.99 98.56 56.35 35.27 98.40
8 75.58 53.99 99.52 81.39 51.23 99.42
9 74.33 64.75 97.50 89.91 69.40 97.55
10 48.60 37.48 95.60 83.01 53.69 96.11
11 68.50 11.76 80.90 80.23 10.64 74.95
12 48.47 17.73 93.62 79.44 17.58 89.43

Table 1: Per-pixel performance in terms of Sensitivity, Jaccard Coefficient and Percentage
Correct Classification for the approach in [26] and our’s. The three measures are computed
on the outputs from the algorithms after applying morphological opening. For every
sequence, the value in bold signifies the algorithm with the best measure for that particular
sequence.
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3. Connected Components

The foreground extraction algorithms described in section 2 are used to
identify foreground pixels in each new frame while updating the description of
each pixel’s background data. This is followed by the labelling of the binary
foreground image into regions using the connected components algorithm.
We present a run-length based connect component algorithm, which can
easily be integrated with the background subtraction algorithm to avoid the
intermediate binary foreground data structure. The algorithm is similar to
the two-pass connected component algorithm, but rather than pixels, we
use run-lengths, which are much more compact that individual pixels. The
original two-pass algorithm (Rosenfeld and Pfaltz [22, 24]), uses two raster
scans of the image and an equivalence table resolution stage[19]. Details of
the algorithm (using the 4-adjacency definition of connectivity) are as follows:

Initial labelling :-The binary input image is scanned in raster order, to
label foreground pixels by reference to the left and upper neighbours. If the
neighbours are background pixels, a new label is assigned. If they are both
foreground with different labels, the left label is copied to the current pixel,
and an entry is made in the equivalence table linking the upper and left labels.
If only one neighbour is labelled, or they share the same label, the value is
propagated.

Resolving Equivalences :-The initial labelling step is followed by equiva-
lence resolution, after which the image is scanned again and each label is
replaced by the label assigned to its equivalence class. This approach has
been used in [16, 25], directly, or modified for implementation as the resolu-
tion of label equivalences has a great impact on run time. One drawback of
this algorithm is the high dynamic storage required for the equivalence table.

To reduce storage requirements, Haralick [12] suggested a multi-pass la-
belling algorithm with increased computational time. In this algorithm, a
foreground pixel with only background neighbours is assigned a new label.
However, where there are any labelled neighbours, the minimum label is as-
signed. The algorithm alternates raster and reverse-raster scans until the
labelling stabilises. The algorithm is highly sequential, and the repeated im-
age scans make it computationally inefficient, as scan-times tend to dominate
connected component cycles.

Crookes et al [8] successfully implemented the multi-pass connected com-
ponent labelling algorithm on an FPGA using off-chip RAM. The implemen-
tation fits on a single Xilinx XC4010E chip with 20 × 20 CLBs and for an
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image size of 256 × 256, the design runs at 76MHz. The implementation
suffers from all the problems associated with the base algorithm and hence
the time taken to process a frame is dependant on the complexity of ob-
jects in the scene. A similar implementation is presented in by Benkrid et
al. ([4]) using a bigger device, Xilinx Virtex-E FPGA. For an image size
of 1024 × 1024, the design consumes 583 slices, 5 Block RAMs and runs at
72MHz.

3.1. Our Approach

The labelling algorithm as presented in [24] can result in a very large
equivalence table. Resolving the equivalence table has been the focus of
most labelling algorithms, with little effort to implement such algorithms
on hardware architecture for real-time processing. Our algorithm [2] is suit-
able for implementation on a hardware platform, and also minimises use of
memory. Our key contribution is to process using a run-length encoding rep-
resentation. This is easily parallelised by processing multiple rows in parallel,
and can be integrated with the background differencing algorithm, avoiding
the requirement to calculate a binary foreground image as an intermediate
data structure. The run-length encoded format is also much more compact
than a binary image (individual runs have a single label), and so the sequen-
tial label propagation stage is much faster than the conventional algorithm.
Details of the algorithm are given below.

The stages involved in our implementation are as follows:

1. Pixels are converted to runs in parallel by rows,

2. Initial labelling and propagation of labels,

3. Equivalence table resolution and

4. Translating run labels to connected component.

The design is parallelised as much as possible. Although stages 2 and 3 are
sequential, they operate on runs, which are far less numerous than pixels.
Similar to stage 1, stage 4 can be executed in parallel by row. A run has
the properties {ID,EQ, s, e, r}, where ID is the identity number of the run,
EQ is the equivalence value, s the x offset of the start pixel, e the x offset
of the end pixel, and r the row. The first stage involves row-wise parallel
conversion from pixels to runs. Depending on the location and access mode
of the memory holding the image, the entire image may be partitioned into
n parts to achieve n run-length encoding in parallel. The use of runs rather
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than pixels reduces the size of the equivalence table in some cases similar to
figure 4 and hence makes it easier to resolve.

The following sequential local operations are performed in parallel on
each partition, for an image size M ×N to assign pixels to runs:

Algorithm 3.1: PixelToRuns(T )

∀T : T (x, y) = I(x, y)
i← 0
isBlock ← 0
if T (x, y) = 1 and isBlock = 0

then

{

si ← x

isBlock ← 1
if isBlock = 1 and (T (x, y) = 0 or x = M)

then























ei ← (x− 1)
ri ← y

IDi ← EQi ← 0
i← i + 1
isBlock ← 0

where isBlock is 1 when a new run is scanned for partition T and M is the
width of the image. A run is complete when the end of a row is reached
or when a background pixel is reached. The maximum possible number of
runs in an M × N image is 2MN . This worst case occurs when the image
is a pixel-wise chequerboard pattern; see figure 2. The second stage involves
initial labelling and propagation of labels. The IDs and equivalences (EQs)
of all runs are initialized to zero. This is followed by a raster scan of the
runs; assigning provisional labels which propagate to any adjacent runs on
the row below. For any unassigned run (IDi = 0) a unique value is assigned
to both its ID and EQ.

Figure 2: Worse case scenario.

For each run i with ID IDi, excluding runs on the last row of the image;
runs one row below runi are scanned for an overlap. An overlapping run in
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4-adjacency (ie. si ≤ ej and ei ≥ sj) or 8-adjacency (ie. si ≤ ej + 1 and
ei + 1 ≥ sj) is assigned the ID IDi, if and only if IDj is unassigned. If there
is a conflict (if an overlapping run has assigned IDj), the equivalence of run
i, EQi is set to IDj. This is summarized in algorithm 3.2.

Algorithm 3.2: InitLabelling(runs)

m← 1
for i← 1 to TotalRuns

do







































































if IDi = 0

then

{

IDi ← EQi ← m

m← m + 1
for each rj ∈ ri+1

do







































if IDj = 0 and ei ≥
sj and si ≤ ej

then

{

IDj ← IDi

EQj ← IDi

if IDj 6= 0 and ei ≥
sj and si ≤ ej

then
{

EQi ← IDj

Where TotalRuns excludes runs on the last row of the image. Applying
PixelToRuns() to the object in figure 3 (a ’U’ shaped object) will generate
four runs each with unassigned ID and EQ.

0 1 2 3 4 5 6
0
1
2
3
4

C o lu m n s

R
o

w
s

0 1 2 3 4 5 6
0
1
2
3
4

C o lu m n s

R
o

w
s B 1

B 2 B 3

B 4

Figure 3: U shaped object with 4 runs after PixelToRuns()

The third stage is resolution of conflicts, similar to [24] as shown in al-
gorithm 3.3. In the example above (figure 3 and table 2) a conflict occurs
at B3; the initially assigned EQ = 1 in iteration 1 changes to EQ = 2 in
iteration 3 due to the overlap with B1 and B4, see table 2. This conflict is
resolved in ResolveConflict() resulting in ID = 2 and EQ = 2 for all the
four runs. Even though ResolveConflict() is highly sequential, it takes half
the total cycles as the two ‘if statements’ in the second loop are executed
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IT B1 B2 B3 B4

1 ID 1 0 1 0
EQ 1 0 1 0

2 ID 1 2 1 2
EQ 1 2 1 2

3 ID 1 2 1 2
EQ 1 2 2 2

Table 2: Results for the object in fig.3 after 3 iterations.

simultaneously. The final IDs (final labels) are written back to the image at
the appropriate pixel location, without scanning the entire image, as each
run has associated s, e and r values.

Algorithm 3.3: ResolveConflict(runs)

for i← 1 to TotalRuns

do















































if IDi 6= EQi

then







































TID ← IDi

TEQ← EQi

for j ← 1 to TotalRuns

do















if IDj = TID

then
{

IDj ← TEQ

if EQj = TID

then
{

EQj ← TEQ

To illustrate the performance of the algorithm, consider the stair-like
8-connected component illustrated in figure 4. Using the multiple pass ap-
proach, a stair-like component with N steps will require 2(N − 1) scans to
completely label. Using our approach, both images take two scans to com-
pletely label. As shown in figure 4, the runs are extracted in the first scan,
while the 8-adjacency labelling is done in the second scan. Tables 3 and 4
show results after the first and second scan respectively. It is clear from table
4 that no further scans are required. The same image (figure 4) will result
in an equivalence table with five entries if the two-pass algorithm[24] is used,
due to the successive offsetting of rows to the left.
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B1 B2 B3 B4 B5 B6 B7

ID 0 0 0 0 0 0 0
EQ 0 0 0 0 0 0 0
ST 16 6 14 3 12 0 10
EN 17 8 15 5 13 2 11
RW 0 1 1 2 2 3 3

Table 3: Results after first image scan, where ST=start, EN=end and RW=row.

B1 B2 B3 B4 B5 B6 B7

ID 1 2 1 2 1 2 1
EQ 1 2 1 2 1 2 1

Table 4: Results after second scan. The start, end and row remain unchanged

3.2. Analysis of our algorithm

We compared our implementation and that presented in [4] using a set of
complex images of various sizes. The testing environment is an Intel Pentium
IV 2.8GHz personal computer with 2.0GB SDRAM running MATLAB/C. A
graph showing the processing time (in seconds) of the two implementations,
for 200 naturalistic images each of size 720 × 576 is shown in figure 5. In
the worse case scenario, where there are no continuous pixels in a row as in
figure 2, our approach incurs extra writing overheads. The implementation
in hardware running at real-time is a significant advantage.

4. Segmentation and Labelling in Hardware

In this section we present a hardware implementation of the multi-modal
background modelling algorithm [1] in section 2, followed by the labelling of
the foreground objects using the run-length encoding algorithm [2] presented

B 2

B 4

B6

B1

B3

B 5

B 7

0 1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 1 4 15 16 17

0

1

2

3

Figure 4: Example of a 3 and 4-stairs connected component
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Figure 5: Graph showing processing time for 200 images of size 720x576

in section 3. The run-length encoding is integrated with the detection of fore-
ground pixels during segmentation, avoiding the intermediate data structure
as well as reducing the latency of the entire implementation on FPGA. Multi-
modal background modelling is required to model scenes with non-stationary
background objects, so reducing false positive alerts. To successfully imple-
ment our algorithm on a Field Programmable Gate Array, access to 17n bits
of background data is required every clock cycle, where n is the total number
of background clusters and 17 bits is the total number of bits require for the
cluster’s weight (6 bits) and central value (11 bits). The hardware setup is
composed of a digital video camera, two display units (one to output a bi-
nary foreground image for diagnostic purposes, and the other to output the
connected component labels) and an FPGA prototyping board. The RC340
board is packaged with Xilinx Virtex IV XC4VLX160 FPGA, 4 banks of
ZBT SRAM totalling 32MBytes and two DVI output ports. Note that the
maximum achievable clock frequency of the FPGA chip, is constrained by
the connected external devices.

Camera data is sent to the FPGA chip every clock cycle. The address
of the pixel data from the camera is used to address the correct background
information from the external RAM. The RGB data from the camera is con-
verted into greyscale intensity and compared with the background data. The
resulting binary pixel from the comparison is then converted into run-length
for further processing into a connected component label. Figure 6 is a high-
level diagram of the setup. The design on FPGA has six different blocks;
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the rgb2gray, binarization, background update, initial labelling, conflict res-
olution and the output blocks. The initial labelling and conflict resolution
blocks are triggered when an entire frame has been binarized. All the other
four blocks run in parallel.

FPGA chip

RAM 2

RAM 1

24

34

34

34

34

Figure 6: A high-level block diagram of the FPGA implementation

4.0.1. rgb2gray Block

The rgb2gray block reads 24 bit camera data, converts it into 8 bit
grayscale intensity and further converts the 8 bits into a 11 bit fixed-point
value with 8 bits integer part and 3 bits fractional part. The correspond-
ing 34 bit background data for the current pixel is read from the external
RAM onto the FPGA chip in 2 clock cycles. The 34 bit data is for the 2
background components, each 17 bits long. This block is fully pipelined and
it takes exactly three clock cycles to complete. Note the external RAM is
a single port RAM, hence the need to use two blocks for double buffering;
background data is read from the first and the updated background data
written onto the other.

4.0.2. Binarization/run Encoding Block

This block identifies foreground pixels and encodes the runs; it also gen-
erates the foreground image for verification purposes (this part of the imple-
mentation could be discarded in a completed system). The 34 bit background
data from the rgb2gray block is split into two 17 bit bimodal background com-
ponents. Each of the 17 bits is then further split into their corresponding
background intensity value of 11 bits and weight value of 6 bits. A range is
then defined around the 11 bit background value. If the current pixel value
falls within either of the defined ranges, the pixel is considered background;
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else it is a foreground pixel. If the current pixel is the first foreground pixel in
the row or the first foreground pixel after the last run-length in the same row,
a new run-length encoding starts with this pixel as the first in the run-length.
If the pixel is a background pixel or the last in the row, any run-length en-
coding already in progress will terminate with the previous pixel as the last
in the run-length.

4.0.3. Background Update Block

The current pixel value is used to update the exiting background value
as shown in equation 11, thus if the pixel is a foreground pixel, the least
weighted background model is replaced with the current pixel value. This
block takes exactly 2 clock cycles to complete. The updated value is then
written onto the external RAM block and used when the next frame is read
from the camera.

4.0.4. Initial Labelling Block

This block is only triggered when an entire frame has been processed. The
run-lengths generated from the binarization/run encoding block are used in
this block. Initial run-length labels which may propagate onto overlapping
runs are assigned in this block. Two runs overlap if they are a pixel away from
each other, either horizontally or vertically (for 4-adjacency) and diagonally
(for 8-adjacency). This block takes as many clock cycles as there are runs in
the current image.

4.0.5. Conflict Resolution Block

This block is used to resolve any entries in the equivalence table. There
is an entry in the equivalence table if the ID and EQ of a run-length are
not equal after the initial labelling. This is the most sequential part of the
implementation and can take the same number of clock cycles as the square
of the number of runs in the image to complete in the worse case. However,
such a case is unusual in real-world images – with the use of run-lengths there
are normally few or no entries in the equivalence table.

4.1. Output Block

This block is used to control the two external VGA displays and runs at
the same frequency as the display units, typically 60Hz. The binary image
generated during the image binarization is written onto a dual-port Block
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RAM for display for visual verification. The output of the connected compo-
nent label is also buffered onto a different dual-port Block RAM for display
purposes. Three different colours are used to display the connected compo-
nents to distinguish between different regions.
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Figure 7: A block diagram of the entire architecture as implemented on the FPGA fabric.

A block diagram of the FPGA implementation is shown in figure 7. The
outputs from the design have been compared with that of the software im-
plementation in MATLAB/C++ to verify the correctness. Sample outputs
from the implementation are shown in figure 8. The entire design imple-
mented on the Xilinx Virtex IV FPGA has been clocked at a frequency of
65MHz. At this reported frequency, the designed is capable of processing 35
frames per second for a standard image size of 640 × 480 from binarization
to connected component labelling. Note, the clock frequency includes logic
for controlling all the external devices like the VGA, memory and camera.
Resource utilization of the entire implementation is summarized in table 5.
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Resource Total Used Per.

Flip Flops 1,316 out of 135,168 1%
4 input LUTs 1,232 out of 135,168 1%
Block RAMs 19 out of 144 6%
bonded IOBs 239 out of 768 31%
Occupied Slices 1,351 out of 67,584 1%
SSRAM (VGA) 20 out of 256 Mbits 7.8%

Table 5: Resource utilization of the bimodal greyscale implementation, using XC4VLX160,
package ff1148 and speed grade -10 .

5. Conclusion

We have demonstrated how a single chip FPGA can effectively be used
in the implementation of a highly sequential digital image processing task
in real-time. This paper presents hardware implementations of two different
algorithms, combined effectively for FPGA implementation. We have pre-
sented an architecture for extracting connected components from a binary
image generated using a multimodal (bimodal) background modelling on an
FPGA without a frame buffer when using a camera as the input source.

The connected component algorithm that we have successfully imple-
mented is an extension of the very first algorithm present in [24], exploit-
ing the desirable properties of run-length encoding, combined with the ease
of parallel conversion to run-length encoding. The processing speed and
resources used in the implementation make room for other vision analysis
algorithms to be implemented on the hardware platform.
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