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Abstract 

Intelligent visual surveillance which attempts to detect, recognize and track certain ob­

jects from image sequences is becoming an active research topic in computer vision com­

munity. Background modeling and foreground segmentation are the first two and the most 

important steps in any intelligent visual surveillance systems. The accuracy of these two 

steps highly effects performance of the following steps. In this thesis, we propose a simple 

and novel method which employs histogram based median method for background mod­

eling and a fuzzy k-Means clustering approach for foreground segmentation. Experiments 

on a set of videos and benchmark image sequences show the effectiveness of the proposed 

method. Compared with other two contemporary methods - fc-Means clustering and Mix­

ture of Gaussians (MoG) - the proposed method is not only time efficient but also provides 

better segmentation results. 
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Chapter 1 

Introduction 

In recent years, intelligent visual surveillance, also called automated visual surveillance 

has emerged as an important research topic in computer vision community and with good 

reason. According to New Scientist magazine: "If the technology takes off it could put 

an end to a longstanding problem that has dogged CCTV almost from the beginning. It 

is simple: there are too many cameras and too few pairs of eyes to keep track of them. 

With more than a million CCTV cameras in the UK alone, they are becoming increasingly 

difficult to manage. 

Surveillance cameras are cheap and ubiquitous. In conventional approach of visual 

surveillance systems, Closed-Circuit Television (CCTV) cameras are installed in public 

and private areas to capture indoor or outdoor scene information, which is then transmitted 

and displayed in a terminal or a television where a human observer keeps monitoring and 

optionally records video information in a storage medium [61]. 

However, the manpower required for surveillance is not only expensive but may also 

involves a host of associated problems. From the real-time threat detection perspective, it 

1 New Scientist, 12 July 2003, page 4. 
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CHAPTER I. INTRODUCTION 2 

is a well known fact that over a period of time, the human visual attention drops below an 

acceptable level even when trained personnel are assigned to the surveillance task. Further, 

it is difficult for one operator to concurrently monitor several places. Currently, most of the 

video information from the cameras are used merely as an archive to refer back to once an 

incident is known to have taken place [52]. 

The purpose of intelligent visual surveillance system is to obtain a description of what 

is happening in a monitored area and then to take appropriate action based on that interpre­

tation, e.g., alert a human supervisor to reduce human involvement significantly and assist 

human operators for better monitoring [24], [2]. 

The essential idea of developing an intelligent visual surveillance system is to detect 

motion and track objects of interest that generates motion, upon which higher level recog­

nition capabilities can be achieved [42], [24], [25], [27]. 

A typical method to detect unusual motion is through background subtraction - a tech­

nique which detects moving regions in an image by taking the difference between the cur­

rent frame and the background model in a pixel-by-pixel fashion [24], [25]. Background 

subtraction has two important components: (1) background modeling and (2) foreground 

segmentation. Background modeling is a representation of the empty scene (without fore­

ground objects), while foreground segmentation is the detection of moving foreground ob­

jects within the monitored scene. 

In an ideal situation, the background model is known in advance and the background 

does not change over time. However, in realistic environments, background subtraction 

methods encounter several problems. Following is a brief description of some of the im­

portant ones [29], [35], [43]: 

• the monitored area contains moving foreground objects and it is difficult to get an 
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empty background model, i.e., public areas such as airport terminals, shopping malls, 

etc. 

• the appearance of objects in background model changes due to illumination changes 

in the scene, e.g., changing weather conditions, time of the day, or the switching of 

lights can lead to entire scene being misclassified as foreground object(s). 

• there may be dynamic background objects in the surveillance scene, i.e., flickering 

computer screen, wavering tree branches, etc. 

• some or all of the static background part may convert to a dynamic background, e.g., 

by turning on a computer screen. A dynamic background pixel can also turn to a 

static one such as a wavering tree branch when the wind stops. 

• the background object turns to the foreground object, e.g., in a parking lot, a car 

may enter the scene and is parked. Initially, the car needs to be detected as a fore­

ground object but after it has been parked there, should be considered as part of the 

background, and vice versa. 

Background model for general scenes should be able to represent not only the stationary 

objects, i.e., walls, doors and room furniture, but also the non-stationary (or "dynamic") 

objects such as waving tree branches, moving escalators. Moreover, background model for 

general environments should self-evolve to incorporate illumination changes in the scene 

and changes of background objects (i.e., add, remove and relocate the background objects). 

Once background is computed or known, foreground segmentation and detection of 

moving foreground objects can be done by subtracting and thresholding each incoming 

video frame from the background model [15]. Some of the difficulties in foreground seg­

mentation [2], [27] are as follows: 
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• Finding a threshold to differentiate between background and foreground is difficult. If 

the threshold is too low, some background pixels may be misclassified as foreground 

pixels. If the threshold is too high then some foreground pixels may be misclassi­

fied as background pixels. In the latter case, the foreground region might consist of 

apertures inside and/ or get segmented into several isolated regions. The inaccurate 

segmentation results will create problems for later tasks, i.e., tracking the foreground 

objects and will result in poor performance of the overall surveillance system. 

• Shadow introduces several difficulties for the process of detecting foreground, i.e., 

object shape distortion, object merging or even object losses due to shadow over 

another object. Shadows are categorized into cast shadows and self shadows. The 

cast shadow is caused by moving objects on the side of the object while self shadow 

is caused by the object on itself, i.e., shadows cast by folding of a shirt. During the 

process of cast shadow removal, some of the self shadow regions may also be deleted 

which may not be desirable. 

• Another major problem in foreground segmentation is the camouflage. When a fore­

ground object has a similar color and intensity as the background, it is difficult to 

distinguish between them. Part of the foreground object is misclassified as the back­

ground, and that may lead to missing or split foreground object regions. 

Designing an automated surveillance system has a number of issues and difficulties 

and some of those have been presented above. The first stage of an automated surveillance 

system is to build a background model from which the foreground object(s) can be properly 

separated. Therefore, there is a need to improve background modeling and foreground 

segmentation processes to improve the overall surveillance task. 



CHAPTER I. INTRODUCTION 5 

In this thesis, we use a fast and effective background modeling scheme that is based on 

a histogram based median method. It estimates the background model from the image se­

quence itself without prior knowledge of the scene, i.e., even in the presence of foreground 

objects in the image sequence [28], and proposes fuzzy k-Means clustering for foreground 

segmentation, which eliminates the dilemma of choosing a proper threshold. 

Rest of the thesis is organized as follows: Chapter 2 is a detailed introduction of the 

entire intelligent visual surveillance system and its functional components. Chapter 3 pro­

vides a brief survey of the related work with an emphasis on two techniques directly related 

to this thesis: k-Means clustering and Mixture of Gaussians. Chapter 4 provides details of 

the proposed method. Experimental results and comparisons are presented in Chapter 5 and 

finally, Chapter 6 provides some concluding remarks. 



Chapter 2 

Intelligent Visual Surveillance 

This chapter gives an overview of intelligent visual surveillance. The general framework 

and the functional components are explained, followed by some applications of the intelli­

gent visual surveillance. Finally, the conventional approaches for motion detection which 

is the first important step in intelligent visual surveillance are discussed. 

2.1 Overview of the Intelligent Visual Surveillance 

Intelligent visual surveillance attempts to detect, recognize and track certain objects from 

image sequences. Its general framework includes following stages: 

• modeling of environments 

• detection of motion 

• classification of moving objects 

• tracking 

6 



CHAPTER 2. INTELLIGENT VISUAL SURVEILLANCE 

understanding and description of behaviors 

• human identification 

fusion of data from multiple cameras 

Figure 2.1 is the illustration of the intelligent visual surveillance system [24]. 

QCamera 1 / Camera n 

Motion Detection 

Environment modeling 

Motion segmentation 

Object classification 

Tracking 

B ehavior understanding 

and description 

Personal 

identification 

Environment modeling 

Motion segmentation 

Object classification 

Tracking 

B ehavior understanding 

and description 
Personal 

identification 

Fusion of information from multiple cameras 

Figure 2.1: General framework of intelligent visual surveillance 

Motion detection is the first and the most important step in nearly every visual surveil­

lance system. It aims at segmenting regions corresponding to moving objects from the rest 

of an image. Subsequent processes such as tracking and behavior recognition are greatly 
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dependent on it. Environment modeling, motion segmentation, and object classification 

are typical processes in motion detection [24], [57]. Environment modeling is same as the 

background modeling, and aims to establish a background model for the surveillance scene. 

Motion Segmentation is carried out to detect regions corresponding to moving objects such 

as vehicles and humans. Detection of moving regions provides a focus of attention for later 

processes since only these regions need be considered. Object classification is the determi­

nation of the type of object corresponding to different moving regions, i.e., in road traffic 

scenes, may include humans, vehicles, flying birds and moving clouds. 

After motion detection, surveillance systems generally track moving objects from one 

frame to another in an image sequence. The difficulty of tracking is determining the ap­

pearance and location of a particular object in the sequence of frames, i.e., two people 

walk towards each other, after occlusion, the tracking algorithms have to figure out "who 

is who?" among all the frames [21]. Understanding of behaviors is the recognition of sus­

picious motion patterns: the behaviors in the testing sequence are analyzed and compared 

with typical labeled behaviors. In some applications, description of behaviors using natural 

language is necessary for a nonspecialist operator involved in visual surveillance [41]. 

Personal identification deals with the issue "who is now entering the area under surveil­

lance?". It can be treated as a special behavior understanding problem. In such applications, 

biometric features such as human face and gait are widely used [55]. Fusion of informa­

tion from multiple cameras can benefit the surveillance task because the surveillance area 

is expanded and multiple view information can overcome occlusion. The problems in this 

step range over camera installation (cover the entire scene with the minimum number of 

cameras), object matching (find the correspondences between the objects in different im­

age sequence taken by different cameras) and data fusion, i.e., to "synthesize the tracking 
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results of different cameras to obtain an integrated trajectory" [24]. 

From the functional blocks point of view, intelligent visual surveillance system consists 

of three levels: pixel processing level, object segmentation level and tracking level as shown 

in Figure 2.2. 

Time of 
the day 

Light Cycler 

Scene I ^ 
Geometry,_J^ 

^TV 

Tracking Level 

Segmentation Level 

Pixel Processing Level 

Image 
Sequence 

Figure 2.2: Building blocks of intelligent visual surveillance system 

Pixel processing level is a basic step for any intelligent visual surveillance system. The 

classification of foreground and background is based on the pixel itself, i.e., intensity, color. 

Object segmentation level establishes clear foreground object's blob, which is a spatially 

coherent group of pixels clustered together. Usually 4-connectivity or 8-connectivity anal­

ysis is performed to identify blobs [2]. 4-connected pixels are neighbors to every pixel that 

touches one of their edges. These pixels are connected horizontally and vertically. In terms 

of pixel coordinates, every pixel that has the coordinates (x± \,y) or (x,y± 1) is connected 
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to the pixel at (x,y). 8-connected pixels are neighbors to every pixel that touches one of 

their edges or corners. These pixels are connected horizontally, vertically, and diagonally. 

In addition to 4-connected pixels, every pixel with coordinates (x±l,v±l)or(jc±l,y=Fl) 

is connected to the pixel at (x,y). 

2.2 Applications of Intelligent Visual Surveillance 

Intelligent visual surveillance has a wide range of applications, such as a security for com­

munities and important buildings, traffic surveillance in cities and expressways, detection 

of military targets, etc [19]. However, the most investigated application is the surveillance 

of people or vehicles. Some of the important applications are described as follows: 

1. Crowd flux statistics and congestion analysis 

Using techniques for human detection, visual surveillance systems can automatically com­

pute the flux of people at important public areas such as shopping malls and travel sites, and 

then provide congestion analysis to assist in the management of people [11]. In a similar 

way, visual surveillance systems can monitor expressways and junctions in road networks, 

and further analyze the traffic flow and the status of road congestion, which are of great 

importance for traffic management [24]. 

2. Identity checking (biometrics) 

Video surveillance can be used for access control in some security-sensitive locations such 

as military bases and important organizations. Identity of a person can be verified by differ­

ent biometric features such as height, facial appearance and walking gait in real time, and 

then to decide whether of the visitor can be cleared for entry or not [7]. 
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3. Suspect identification 

Using intelligent visual surveillance, criminals or suspects can be identified in public or 

suspected places, e.g., subway stations, casinos by analyzing biometric features of that sus­

pect. If the person detected is a suspect, alarms are given immediately. Such systems along 

with face recognition capability have already been used at public sites, but the reliability is 

too low for police requirements [24]. 

4. Interactive surveillance using multiple cameras 

For social society, cooperative surveillance using multiple cameras could be used to ensure 

the security of an entire community, for example by tracking suspects over a wide area 

by using the cooperation of multiple cameras. For traffic management, interactive surveil­

lance using multiple cameras can help the traffic police discover, track, and catch vehicles 

involved in traffic offences [24]. 

5. Anomaly detection and alarming 

In some circumstances, it is necessary to analyze the behaviors of people and vehicles and 

determine whether these behaviors are normal or abnormal. For example, visual surveil­

lance systems set up in supermarkets and parking lots can analyze abnormal behaviors 

indicative of a theft and robbery [14]. 

2.3 Approaches for Motion Detection 

Robust tracking of objects and the processes after tracking call for a reliable and effective 

moving object detection method. Such kind of methods can be characterized by some 
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important features: high precision with two meanings of accuracy in shape detection and 

reactivity to changes in time, flexibility in different scenarios (indoor, outdoor) or different 

light conditions, and efficiency, in order for detection to be provided in real-time [19]. 

There are three conventional approaches in literature for motion segmentation or foreground 

segmentation [24], [2]. 

2.3.1 Background subtraction 

Background subtraction is a popular method for motion segmentation. It is especially useful 

in situations with a relatively static background. It can detect moving regions in an image 

by taking the difference between the current image and a reference background image in a 

pixel-by-pixel fashion. It is a simple and computationally affordable method for real-time 

applications, but is extremely sensitive to changes in dynamic scenes derived from lighting 

and extraneous events etc. Therefore, it is highly dependent on a good background model 

to reduce the influence of these changes [18], [22], [45] in the background model. 

The background subtraction method can be written mathematically as: 

FG{x,y) = \ 
I 0, otherwise. 

where Lxy) is the color of a pixel at a 2D location (x,y) and BG^xy^ is the color of the 

same pixel in the background model. If the difference between these two values exceeds 

some threshold T, then this pixel {x,y) in the current frame is classified as the foreground, 

otherwise it is treated as the background. 
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2.3.2 Temporal differencing 

Temporal differencing, also known as the Frame Differencing makes use of pixel-wise dif­

ferences between two or three consecutive frames in an image sequence to extract moving 

regions [3]. Temporal differencing is very adaptive to dynamic environments, but generally 

does a poor job of extracting all of the relevant pixels, e.g., there may be holes left inside 

moving entities. 

Mathematically, temporal differencing can be written as: 

t 
1, \i\l\ ,~l'r\\>T; 

FG{x,y) = { ' ^ ^ ' 
0, otherwise. 

where /{ -, is the intensity of a pixel at the location (x,y) in the current frame captured 

at time t and I'r\ is the intensity of the same pixel in a frame captured at time t — 1. If 

the difference between these two exceeds the threshold T, the pixel (jr,y) in current frame 

is considered as the foreground, otherwise, it is considered as the background. Sometimes 

more than two consecutive frames are considered to increase the accuracy of detection. 

2.3.3 Optical flow 

Optical flow based motion segmentation methods use characteristics of flow vectors of 

moving objects over time to detect moving regions in an image sequence. They can be used 

to detect independently moving objects even in the presence of camera motion. However, 

most flow computation methods are computationally complex and very sensitive to noise, 

and cannot be applied to video streams in real time without specialized hardware. An 

illustration of optical flow is shown in Figure 2.3. More detailed discussion of optical flow 

file:///i/l/
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can be found in [4]. 

w5 

Figure 2.3: Optical flow 

2.4 Summary 

This chapter presents a detailed view of intelligent visual surveillance in terms of its frame­

work and functional components. As one can observe, background modeling and fore­

ground segmentation are at the heart of the intelligent visual surveillance. 



Chapter 3 

Related Work 

For background modeling without specific domain knowledge, the background is usually 

represented by image features at each pixel. The features extracted from an image sequence 

can be classified into three types [35], [38]: spectral, spatial, and temporal features. Spec­

tral features could be gray-scale or color information. Spatial features could be gradient 

or local structure, and temporal features could be inter-frame changes at the pixel. Most 

of the existing methods use spectral information, i.e., distribution of intensities or colors 

at each pixel for background modeling since it is straightforward and suitable for static 

background pixels [15], [60], [22], [54]. To tolerate the illumination changes, some spatial 

features are incorporated with spectral information [37], [29]. Temporal features are inves­

tigated in [58], [36], [35] to describe the dynamic background pixels such as waving trees, 

flicking screens. In this thesis, we use color information represented in HSV color space 

for background modeling and foreground segmentation. 

15 
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3.1 Color Space 

The images extracted from video are represented in RGB color space (R: Red; G: Green; 

B: Blue). In this color space, spectral information is equally spread among all of the three 

components, and it is not perceptually similar to our eyes. Any change in illumination 

results in changes in values of all of the three components. Therefore, most of the back­

ground subtraction approaches convert RGB color space to some other color space such as 

HSV color space before further processing. HSV stands for Hue, Saturation and Value. It 

is a widely described color scheme in literature for surveillance [44], [1], [27], [2]. It is a 

nonlinear transformation of RGB color space. 

Figure 3.1 is a pictorial representation of HSV color space. It provides a color decom­

position close to human perception where wavelength, brightness and intensity information 

are separated [34]. The H (Hue) determines the basic color. A hue is referenced as an angle 

on a color wheel with a range of [0,360°]; the S (Saturation) determines the grey level of the 

color (or the amount of white light in the color) in the range [0,1]; the V (Value) represents 

the global intensity of the light with a range of [0,1]. 

The advantage of using this color space is that the intensity (V) can be separated from 

the chromatic information (HS). All of the useful information is present only in the V chan­

nel. HSV color space can deal with noise and shadow in the image region very effectively. 

The mathematical relationship between RGB and HSV is given as follows [32]: 

{ 8 if B<G 

360° - 9 if B > G 

^ ' - ^ T B | m i n ( R ' G ' B ) l 
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Value 

Yellow 

Cyan 

l/ = 1 
(White) 

l /=0 
(Black) 

ft (Hue Angle) 

S (Saturation) 

Figure 3.1: Representation of HSV color space in a 3 dimensional space 

in which 

9 = cos 

V = -(R + G + B) 

., ^[{R-G) + {R-B)] 

[(R-G)2 + {R-B)(G-B)}i 

Normalized color space is another popular color space [56], [45], [15] used in intelli­

gent visual surveillance. It is independent of the intensity and thus, robust to shadows and 

varying lighting conditions, with mathematical transformation given as: 

M 

\*J 

' (R + G + G)/3 ^ 

R/{R + G + B) 

y G/{R + G + B) ) 

in which r and g represent the normalized colors red and green, and / is the intensity of 
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the RGB color pixel. 

3.2 Previous Work 

Up until now, a large amount of work has been proposed to address the issues of background 

model representation and adaption. These algorithms share the common assumption that 

an initial background model can be obtained by employing a period of training sequence, 

in which no foreground objects are present [22], [40], [58]. 

In some cases it is impractical or impossible to record a separate background sequence 

without objects' interference, e.g., airport terminals. Further, it is expensive to clear up 

the scene from foreground objects on a regular basis since this procedure must be repeated 

every time there is even a small change in the background. 

Median filter [17] and Kalman filter [51] were proposed to address the above limita­

tions. They provide a good background model when the scene is not too crowded, i.e., at 

every pixel, the background should be visible more than fifty percent of the time during the 

training sequence. If the assumption fails, the output background model contains blending 

pixels or areas of error. 

Long and Yang [40] presented an adaptive smoothness method based on the assumption 

that the longest and most stable interval of pixel intensity is most likely to represent the 

background. At each pixel, a moving window along time is employed to search for the 

stable intervals. However, when the data include multi-modal distributions (i.e., dynamic 

backgrounds including swaying trees) and when the modes from foreground objects are 

stationary for a long period of time, a lot of pixels are incorrectly classified. 

Gutchess and Trajkovic [20] presented an algorithm, called the Local Image Flow algo­

rithm which utilizes the cue of local optical flow fields in the neighborhood of each pixel to 
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compute the probability of each stable interval of intensity being the background and then 

selects the most probable one to represent the background. Since the result of computation 

of local optical flow is sensitive to the insignificant movement of other objects in the sce­

nario or the interaction between objects, the algorithm is less robust to deal with complex 

situations. 

Stauffer et al. [53] designed a mixture of Gaussian (MoG) model, currently one of the 

most popular methods, to effectively deal with the dynamic background and light changes. 

Each pixel in MoG is modeled by three to five Gaussian distributions, which are adaptively 

adjusted as each new frame is coming. The main deficiency of MoG is that it is time 

consuming. Some researches are dedicated in improving the learning rate of MoG [33]. 

Another serious problem of MoG is that the slow moving objects and zooming objects are 

easily separated as referenced background, which makes the foreground information lost. 

To overcome the problem of inaccurate background model caused by errors in param­

eter estimation methods such as MoG, Elgammal, Harwood et al. [15] proposed a non-

parametric model for background modeling. The model employs a kernel estimator to 

determine the type of current pixel value based on recently observed values for this pixel. 

However, several pre-calculated lookup tables for the kernel function values are required 

to reduce the burden of computation in this approach. Also, this method can not resist the 

influence of foreground objects in the training stage. 

Pixel-based methods mentioned above assume that the time series of observations is 

independent on each pixel. Region- or frame-based models are recently developed in [9], 

[58], [46], [13]. These models consider pixel as correlated random variables, and estimate 

probabilities based on their neighborhood relationships. 

Lipton and Haering [39] hold the philosophy that the background pixels share some 
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chromatic and temporal overlap with their neighbors. Such kind of similarities between 

pixels are served to cast votes for each other in the local region to determine pixel's back­

ground period. The disadvantage of this algorithm is that the output performance is highly 

related to the initial guess of each pixel's background mode. 

Oliver et al. [48] proposed an approach called Eigenbackgrounds which captures spatial 

correlations by applying principal component analysis to a set of Ni video frames that do 

not contain any foreground objects. This results in a set of basis functions of which only 

the first d basic functions are required to capture the primary appearance characteristics 

of these frames. A new frame can then be projected into the eigenspace denned by these 

d basis functions and then back projected into the original image space. Since the basis 

functions only model the static part of the scene when no foreground objects are present, 

the back projected image does not contain any foreground objects. As such, it can be used as 

a background model. The limitation of this approach is that computing the basis functions 

requires a set of video frames without foreground objects. 

Li et al. [36], [37], [35], [38] proposed a generalized framework using Bayesian theory 

to update the background model by frame-based features. The approach is reported to be 

robust to illumination changes (gradual and sudden "once-off'), dynamic backgrounds (i.e., 

waving trees, rippling water surfaces) and changed background (add, remove and relocate 

background objects). The shortcoming is that if the foreground objects remain motionless 

in the scene for a while, they are quickly absorbed into the background. 

Due to its pervasiveness in various contexts, background subtraction has been investi­

gated by many researchers with plenty of published literature (see surveys in [49], [50]). 

There is no unique classification of proposed methods. The following include some usually 

referred dichotomies [43]: 
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• Parametric versus nonparametric: Parametric models (e.g., [60]) are tightly coupled 

with underlying assumption, do not always perfectly correspond to the real data, and 

the choice of parameters can be cumbersome, thus reducing automation. On the 

other hand, nonparametric models (e.g., [15], [30]) are more flexible but heavily data 

dependent. 

• Unimodal versus multimodal: Basic background models assume that the intensity 

values of a pixel can be modeled by a single unimodal distribution (e.g., [60], [17], 

[20]). Such models usually have low complexity, but cannot handle moving back­

grounds, while this is possible with multimodal models (e.g., [53], [58]), but at the 

price of higher complexity. 

• Recursive versus nonrecursive: Nonrecursive techniques (e.g., [60], [53]) store a 

buffer of a certain number of previous sequence frames and estimate the background 

model based on the temporal variation of each pixel within the buffer, while recursive 

techniques (e.g., [58], [10]) recursively update a single background model based on 

each input frame. In nonrecursive techniques, the background well adapts to eventual 

variations, but memory requirements can be significant while in recursive techniques, 

space complexity is lower, but input frames from distant past can have an effect on 

the current background, and therefore any error in the background model is carried 

out for a long time period. 

• Pixel-based versus region-based: Pixel-based methods (e.g., [60], [30], [53]) assume 

that the time series of observations is independent at each pixel, while region-based 

methods (i.e., [58], [15]) take advantage of inter-pixel relations, segmenting the im­

ages into regions or refining the low-level classification obtained at the pixel level. 
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This step obviously increases the overall complexity. 

3.3 k-Means clustering Method 

Background estimation using the median intensity value for each pixel was first used in a 

traffic monitoring system [17]. In [28], a histogram is constructed to determine the confi­

dence of median value as the estimated background pixel. 

Figure 3.2 shows a history map to represent intensity characteristics of a pixel over 

a time period. In this figure, the observed images are the image frames obtained from the 

video over a period of time. The cell string represents entire intensity variation at each pixel 

location over all the frames, and represents the D dataset. Each pixel has three components 

H, S and V which are obtained from R, G and B. 

Observed images 
Pixel (0.0) 
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1 1 

Hi Si V 
- 1 ( - - » • - • 
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Figure 3.2: History map: A sample overview of how pixels intensities change with time 

In general, a histogram displays continuous data in ordered columns or bins, also re­

ferred to as bars [27]. The bars must be adjacent and the intervals are generally of the same 
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size. It is an effective way to represent continuous measures, such as time or intensity. In 

[28], histogram is used to identify a stable intensity value of each pixel in a certain time 

interval. 

The histogram based median method for background modeling is based on a simple 

observation that the more often a pixel takes a particular stable color, the more likelihood 

it belongs to the background. To locate these pixels, the histogram is used to identify how 

often a particular pixel takes a specific color value. 

More specifically, the pixel's HSV values among the training frames are stored, and 

then the histogram of 4 bins for each pixel's color component is constructed. The median 

value of the largest bin from the histogram is chosen as the estimated background model's 

color value. As an example in Figure 3.3, the HSV values for the pixel (x,y) in the back­

ground model are (0.61,0.19,0.34). The same procedure is applied on all pixels and the 

background model is then established. 

The next step is to separate the foreground objects from the background through seg­

mentation. In [28], k-Means clustering method is used. It can find a group of pixels similar 

in color, position or a combination of both. The value of k represents the number of clusters 

to be formed among the pixels of the image. The similarity measure between the feature 

vectors is calculated by the Euclidean distance function. The detailed steps are as follows: 

1. Convert current video frame into HSV color space; 

2. Subtract the H, S and V component of background model (obtained using histogram 

based median method) from the H, S and V components of the video frame and store 

their absolute values into a difference matrix; 

3. Find minimum and maximum values in the difference matrix. The minimum value 
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For one pixel (x, y) 

0.53 10.61 0.65 0.55 10.74 

a 
Median of H: 0.61 

0.23b.l3p.25P.18b.l9 

a 
Median of S: 0 19 

0.28 0.27 0.35 0.45 0.34 

a 
Median of V: 0.34 

Figure 3.3: Background modeling process using histogram based median method 
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corresponds to the seed of the background cluster, denoted by Ml whereas the maxi­

mum value corresponds to the seed of the foreground cluster, denoted by M2; 

4. If DJI > Da, then assign i to foreground cluster, otherwise assign i to the background 

cluster where D;\ is pixel's distance to the centroid of the background cluster whereas 

D,2 is pixel's distance to the centroid of the foreground cluster; 

5. Recalculate mean of the background cluster Ml and mean of the foreground cluster 

M2; 

6. Repeat step 4 and step 5 until Ml and M2 do not change significantly (i.e., the differ­

ence between the two mean is approximately zero, e.g. 0.001 or so); 

7. Report pixels in foreground cluster as the foreground region and also the pixels in the 

background cluster as the background region. 

3.4 Mixture of Gaussians 

In background modeling, pixel intensity is the most commonly used feature. If we monitor 

the intensity values of a pixel over time in a relatively static scene, then the pixel inten­

sity can be reasonably modeled with a Gaussian distribution N(fj, a2), given that the image 

noise over time can be modeled by a zero mean Gaussian distribution N(0,a2). This Gaus­

sian distribution model [60] for the intensity value of a pixel is the underlying model for 

many background subtraction techniques. However, such single-mode models cannot han­

dle dynamic backgrounds, such as waving trees, lighting changes and shadow casts. 

Typically, in outdoor environments with moving trees and bushes, the background scene 

is not completely static. For example, a particular pixel may belong to sky in one frame, and 
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leaf of a tree in another frame, a tree branch in a third frame, and so on. In each situation, 

the pixel will have a different intensity or color, so a single Gaussian assumption for the 

probability density function of the pixel intensity will not hold. Instead, a generalization 

based on a mixture of Gaussians is proposed by Stauffer and Grimson [18], [53], [54] 

to model such variations. In this method, the pixel intensity is modeled by a mixture of 

K Gaussian distributions (K is a small number from 3 to 5). They report good results 

on outdoor scenes, especially in case of multi-modal backgrounds. The work of [56] is 

close to Stauffer and Grimson's work. It employs incremental update algorithm which is 

Expectation Maximization (EM) algorithm for parameters of MoG. 

In [56], colors of a pixel in a background object among frames are also described by 

multiple Gaussian distributions. The mode2 of the 3D RGB color histogram for one pixel 

over time can be considered as the background color for that pixel. 

Due to the fact that the normalized rg color space can effectively deal with shadows 

and varying lightings, 3D color space in [56] is converted to normalized rg color space. 

That's to say in RGB color space, a pixel can be denoted by a triplet (R,G,B) in a frame 

and now can be denoted by a tuple (r, g). Then the mode of the 2D rg color histogram for 

one pixel over time could be considered as the background color for the pixel. Moreover, 

the channel r and the channel g are uncorrected, instead of estimating a 2D rg-histogram, 

two ID histograms r and g are separately estimated. 

The ID color histograms r and g then can be modeled by the mixture model [6], which 

is given as below: 
2In statistics, the mode is the value that occurs the most frequently in a data set or a probabil­

ity distribution. In Gaussian distribution, the mean, median and mode all coincide. Available at 
http://en.wiki pedia.org/wiki/Mode_(statistics) 

http://en.wiki
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K 

where itj is the prior of the Gaussian distribution /_,- with meanly and standard deviation 

Oj, and x is the color value r or g and K is the number of Gaussians or kernels. Figure 3.4 

is an example of Mixture of Gaussians distribution with K = 3 used in this scheme. 
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Figure 3.4: One dimensional Mixture of Gaussians model consisting of 3 single Gaussians 

At first, the three Gaussians' parameters are set as Kj = l/K, HJ — j/(K+\) and Oy = 

0.01 jK which means the K number of kernels are equally distributed over the normalized 

r and g channels. Then MoG method estimates and updates the parameters 7iy, JJJ and 

Gj for both r and g channels in the mixture model formula by Expectation Maximization 

algorithm [12], which is the incremental variant of the maximum-likelihood estimation: 

0.12-
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0.08-

0.06-
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nj*-Kj + T(P{J\x}-Xj) 
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1 

o)^o2
j + ^P{j\x}{{x-^f-o]) 

in which 

P{j\x} = njfj{jr^aj) 

p{x) 

is the posterior - the chance that the color value x is part of kernel j . The variable y is the 

learning rate and indicates to what amount the parameters are updated. For one complete 

update of all of the parameters, one should apply all of these formulas over the range j = 

{l,...,K} for both r and g channels of each pixel in the image frame. 

Figure 3.5 is the illustration of the background modeling process using MoG method. 

The mode of p{x) is assumed to be the background color whereas the estimated means of r 

and g corresponding to the highest priors. 

After learning the mode of each background pixel, we can determine a pixel in the 

current frame to be part of the foreground if the differences between both the normalized 

color values and the estimated means corresponding to the highest priors are larger than 

2.576 a (i.e., 99% confidence). 

3.5 Summary 

In this chapter, we have discussed different approaches proposed in the literature for back­

ground modeling and foreground segmentation. The two algorithms - k-Means clustering 

method which is the basis of the proposed method and Mixture of Gaussians which is 

widely investigated in literature are discussed in detail. 
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Each pixel in a frame can denoted by (r, g) in normalized color space. 

These two color channels r and g are independent with each other. 

The pixel's color values among the frames can be modeled by a mixture of 

Gaussians p(r) and^fg). 

peg)- 2>>/j(*-./<>.0>) 

Update TTj^j.CTj by 

EM algorithm. 

Find the highest value among JTj 

and record its index, say idx_r, idx_r 

can be 1 or 2 or 3. Then select the 

corresponding/^jA r. 

Update ni,}Ai,ai by 

EM algorithm. 

Find the highest value among TT;-

and record its index, say idx_g, 

idx_g can be 1 or 2 or 3. Then select 

the corresponding fl^ g. 

The estimated background model's values 

for the pixel are ( fxiis_r, /*iA_, )• 

Figure 3.5: Background modeling process using MoG method 



Chapter 4 

The Proposed Method 

This chapter describes details of the proposed method. The background modeling approach 

using a histogram based median method is presented, which dynamically models the back­

ground without prior knowledge of the scene. Then a fuzzy k-Means clustering method is 

presented to segment the foreground objects from the background. 

4.1 Statistical Background Modeling 

Let /, (x,y) is the intensity of a pixel p(x,y) in a frame t such that 1 < t < N' where N' is the 

total number of frames in an image sequence or video. The background model is built by 

the training sequence {/) (x,y),.. .,I^(x,y)} where N is the number of image frames used 

in the training period such that N < N'. 

To make the task feasible, we make the following assumptions, similar to those in [20], 

[28]: 

1. Each pixel in the image reveals the background for a short interval of the sequence 

such that one bin out of the four reaches 50% of the total probability. 

30 
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2. The background is nearly stationary with stable and constant illumination. 

3. A short processing delay is allowed subsequent to acquiring the training sequence. 

Figure 4.1-(a) is an illustration of N frames from a video used for background modeling. 

Figure 4.1-(b) shows an intensity typical plot over time for only one pixel in the image 

marked by the plus sign in each of these frames. The human object enters the scene around 

Frame 100 but occludes the marked pixel around Frame 119. 

From Figure 4.1-(b), it can be seen that for the same pixel, the intensity is quite stable 

as a background pixel but it changes significantly when it is occluded by a pixel in the 

foreground object. The histogram for the intensity values of the same pixel can better 

illustrate the stable value among the frames as shown in Figure 4.1-(c). 

The histogram based median method for background modeling can deal with the so-

called bootstrapping problem - it can model the background model even in the presence of 

foreground objects. The use of HSV color space gives advantage of noise removal. The 

detailed steps of the scheme are as follows [28]: 

1. Convert each of the N frames of the training sequence from RGB color space to HSV 

color space. 

2. For each pixel among the frames, construct a 4-bins histogram on its intensity values, 

or the V component (For the purpose of displaying the background, all of the three 

HSV components are needed but for processing, only V component is significant and 

needed). 

3. Find a bin with the highest frequency of intensity values from the histogram. 

4. Our objective is to locate the highest bin and pick up the intensity values among 

frames falling into the highest bin. In the general case, we may scan the intensity 
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Frame #1 

Frame #N 

Frame #101 

(a) N frames from a sample video 

(b)The intensity values of the pixel denoted by a plus sign among the N frames 
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£ 60 

(c)The histogram of V component of the pixel denoted by the plus sign among the N frames 

Figure 4.1: Background modeling of a single pixel using its statistical information 
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values first, and establish histogram to find out the index of the highest bin. Then we 

have to scan the intensity values again to record the intensity values fall into the range 

of the highest bin. Here, we want to scan one time only to find out those intensity 

values to reduce processing time. We use the idea of flags which offer a space-time 

tradeoff. For each pixel among frames, establish flags which record the bin numbers 

the intensity values fall into. For example, in Frame 1, the intensity value falls into 

the second bin in V histogram, the flag for this pixel in Frame 1 is 2. 

5. Select intensity values whose flags are the same as the highest bin number and store 

them in a buffer and discard it otherwise. 

6. Choose the median of all the intensity values in the buffer and consider it as the 

intensity value of the pixel in the background model. 

7. Perform step 2-6 until all pixels are processed. 

After background model is established, segmentation for foreground objects can be 

done through the background subtraction method as explained in subsequent sections. 

4.2 Adaptive Foreground Segmentation 

Foreground segmentation is the process of classifying each pixel either as the background 

or the foreground. By background subtraction, one can detect the motion in a given frame. 

If a pixel is part of the background in current frame, the difference between its intensity 

value in current frame and that of the background model approximates to zero and is far 

from zero otherwise. Further, it is important to note that the foreground objects do not enter 
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the scene as isolated pixels but as a group of adjacent pixels and exhibit similarity in color 

or intensity. 

Clustering is the process of dividing data items into classes or clusters. Clustering algo­

rithms attempt to segregate a data set into distinct regions of membership with an essential 

goal to minimize the disperse between data items within a cluster and maximizing it among 

the data items in different clusters. Generally speaking, clustering techniques can be classi­

fied into two broad categories [16]: (1) exclusive clustering and (2) overlapping clustering. 

In exclusive clustering, assignment of a data item to a particular cluster is made on the 

basis of hard or crisp decision. Therefore, a data item can belong to one and only one 

cluster. If we need to cluster a set % — {x \, X2,..., JC/V } of N data items, the goal of exclusive 

clustering is to partition x into k, 2 < k < N disjoint, non-empty clusters {C\ ,C2, • • • ,Q} 

such that: 

X = C iUC 2 U. . .UQ 

where: 

QnCj=0,iJe{l,...,k} and 

C,-#0,ie{l , . . . ,*} 

In overlapping clustering, also known as the fuzzy clustering, a data item may belong 

to more than one cluster with different degrees of memberships. The membership values 

typically range between 0 and 1 and indicate the extent to which a particular data item may 

belong to a certain cluster. 

Bezdeck [5] proposed a family of fuzzy clustering algorithms. Such algorithms con­

sider each cluster as a fuzzy set while a membership function measures the probability that 

each training sample belongs to a cluster. As a result, each sample may be assigned to 
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multiple clusters with some degree of certainty, as determined by the membership function. 

Therefore, partitioning of data is based on soft decision. Fuzzy k-Means clustering [26] 

facilitates identification of overlapping groups of objects by allowing the objects to belong 

to more than one group. The essential difference between fuzzy k-Means clustering and 

standard k-Means clustering is primarily the way data is partitioned among the clusters. 

In order for us to be able to properly detect foreground objects, it is important to dis­

tinguish between foreground and background pixels. Since the change in intensity value 

can be either due to change in the characteristics of the background or due to introduction 

of foreground objects, we believe that the fuzzy k-Means is more appropriate to establish 

suitability of each pixel as background or foreground due to its varying degree of mem­

bership. Further, the membership values of a pixel may change over time as the scene 

progresses. Fuzzy k-Means in general improves the standard k-Means clustering by finding 

better centers of clusters and has better time performance for convergence [47]. 

The fuzzy k-Means algorithm for detection of foreground objects is as followings: 

1. Set the number of clusters k — 2: a background cluster and a foreground cluster and 

set the blending factor, or the extent of overlapping between clusters b = 1.25 [62]. 

2. Initialize to compute the clusters' means. Subtract the current frame in HSV color 

space from the background model. It will give us a difference matrix. From the 

absolute values of the matrix, select the maximum and the minimum values of V 

component and use them as the the means Hi, i= 1,2 of the two clusters co,-. 

3. For each pixel Xj, calculate its distance J,7- from the foreground mean and the back­

ground mean using absolute difference matrix where i is the cluster, j is the pixel 

such that i = 1,2 and 1 < j < n, n is the total number of pixels in a frame. Here 
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we use Manhattan distance as the distance function since the feature used (i.e., V 

component) is only 1-dimensional and hence, requires less computations. 

4. Compute the memberships of each pixel Xj among the clusters co, as: 

E(iMv)W-'> 
l=\ 

5. Compute new means for each of the two clusters: 

Y.[K<*\*j)\bx] 

I [P{<»i\xj)}h 

6. If fj((new) — fii{old) < y where y is the established threshold, go to 7; otherwise re­

place old mean value with the new one and go to 3. 

7. If P((£>fg\xj) < P((Obg\xj), Xj belongs to the background cluster; otherwise it belongs 

to the foreground cluster. 

At the end of the classification process, we obtain a binary image in which all of the 

foreground pixels are set to 1 whereas all of the background pixels are set to 0. Since 

the background modeling and foreground segmentation are based on pixel-level, the output 

may contain noise in form of spots, holes and spurs. Therefore, there may be a need to 

employ some post-processing algorithm to remove such noise or to shrink or fill these holes 

[56], [63], [23]. 
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4.3 Summary 

This chapter presents the proposed method and deals with the first two steps of intelligent 

visual surveillance systems. The background is modeled by statistical method and his­

togram analysis for bootstrapping in dynamic scene. The foreground segmentation is done 

by fuzzy k-Means clustering which automatically finds the grouping of foreground pixels 

and the background pixels. The fuzzy k-Means clustering method is more robust than the 

approaches which set thresholds to differentiate the foreground and the background pixels 

since the threshold may vary significantly from scene to scene. 



Chapter 5 

Experimental Results 

This chapter presents some of the experimental results of the proposed method. These 

experiments are conducted on a series of indoor videos and on a set of benchmark videos. 

We have compared results with two other similar methods discussed before. 

5.1 Comparative Results 

In order to validate the proposed scheme, a series of experiments are conducted using a 

2.4GHz Intel quad-core PC running Microsoft Windows XP. For testing purposes, all of the 

implementation are in MATLAB. All of the videos we recorded have dimensions of either 

640x480 or 320x240 pixels. As suggested in [28] and [31], we chose to use 40 frames to 

establish the initial background model with a threshold for change y = 0.001. 

Figure 5.1 shows a set of sample frames for a video with 640x480 pixels dimensions. 

These frames are extracted from an indoor video taken in a corridor and represent a typical 

environment in video surveillance applications. The background modeling result of this set 

of images is given in Figure 5.2 - an almost perfect background image. 

39 
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Figure 5.1: The images from an indoor video for background modeling taken in a corridor 
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Figure 5.2: The estimated background using image sequence in Figure 5.1 

In Figure 5.3, the image set is from a similar video but with a lower dimensions of 

320x240 pixels. The established background modeling result for this image set is given in 

Figure 5.4. 

The segmentation results using the discussed three methods can be found in Figure 5.5, 

Figure 5.6 and Figure 5.7. As one can observe, the proposed method can always provides 

better results whereas MoG fails. It is due to the underlying assumption of MoG that the 

color distribution of each pixel among frames can be modeled by a few number of Gaussians 

which do not always perfectly correspond to the real data. In Figure 5.3, the foreground 

object has a wide color distribution and that may lead to misclassifications in MoG. 

Table 5.1 and Table 5.2 provide the processing time for each of these three methods 

for both background modeling and foreground segmentation. For background modeling, k-

Means clustering method and our proposed method are faster than MoG but our proposed 

method provides better results. In foreground segmentation step, k-Means clustering is the 

slowest among all of the schemes compared. Even though the proposed algorithm is a bit 

slower than MoG but, as can be observed, provides better segmentation results than any of 
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4-
Figure 5.3: Another set of images from an indoor video but with a lower dimension 



CHAPTERS. EXPERIMENTAL RESULTS 43 

Figure 5.4: The estimated background using image sequence in Figure 5.3 

the other algorithms. 

Table 5.1: The processing time corresponding to video in Figure 5.1 

Video size 
640x480 pixels 
k-Means Clustering 
Mixture of Gaussians 
The proposed method 

modeling 
(sec) 
354 
453 
354 

segmentation 
(sec/frame) 

535.0 
0.6 

15.0 

In addition to testing our approach on some in-house videos, we also conducted exper­

iments on some of the benchmark videos in PETS series3. We conducted our experiments 

on 1452 frames in PETS2000 video, on 2688 frames in a PETS2001 video and on 2550 

frames in PETS2006 video. PETS2000 and PETS2001 videos are outdoor video scenes 

with human objects and vehicles moving in and out of the scene. Figure 5.8 and Figure 5.9 

show the segmentation results on some of the frames. PETS2006 is a video of an indoor 

scene captured in a subway with group of people. Some of the segmentation results for this 
3Available at http://ftp.cs.rdg.ac.uk/ 

http://ftp.cs.rdg.ac.uk/
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(a) Original frame 71 (b) Segmentation by MoG 

(c) Segmentation by k-Means clustering (d) Segmentation by the proposed method 

Figure 5.5: Segmentation results using 3 different methods on frame 71 of video in Figure 
5.1 

Table 5.2: The processing time corresponding to video in Figure 5.3 

Video Size 
320x240 pixels 
k-Means Clustering 
Mixture of Gaussians 
The proposed method 

modeling 
(sec) 

92 
136 
92 

segmentation 
(sec/frame) 

21.0 
0.2 
2.0 
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(a) Original frame 121 (b) Segmentation by MoG 

(c) Segmentation by k-Means clustering (d) Segmentation by the proposed method 

Figure 5.6: Segmentation results using 3 different methods on frame 121 of video in Figure 
5.1 
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(a) Original frame 141 (b) Segmentation by MoG 

(c) Segmentation by k-Means clustering (d) Segmentation by the proposed method 

Figure 5.7: Segmentation results using 3 different methods on frame 141 of video in Figure 
5.3 
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(a) original frames in PETS2000 (b) Segmentation results by the proposed method 

Figure 5.8: Segmentation results on PETS2000 using the proposed method 
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(a) original frames in PETS2001 (b) Segmentation results by the proposed method 

Figure 5.9: Segmentation results on a PETS2001 video using the proposed method 
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(a) original frames in PETS2006 (b) Segmentation results by the proposed method 

Figure 5.10: Segmentation results on a PETS2006 video using the proposed method 
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video are shown in Figure 5.10. The corresponding processing time for the PETS series 

videos are listed in Table 5.3. 

Table 5.3: The processing time of the proposed approach for PETS series videos 

Video size 
(pixels) 
PETS2000 (768x576) 
PETS2001 (768x576) 
PETS2006 (720x576) 

# of frames 

1452 
2688 
2550 

modeling 
(sec) 
452 
447 
422 

segmentation 
(sec/frame) 

20.2 
22.4 
15.8 

Table 5.4: The processing time of MoG for PETS series videos 

Video size 
(pixels) 
PETS2000 (768x576) 
PETS2001 (768x576) 
PETS2006 (720x576) 

modeling 
(sec) 
628 
631 
615 

segmentation 
(sec/frame) 

0.8 
0.9 
0.7 

Table 5.5: The processing time of k-Means clustering method for PETS series videos 

Video size 
(pixels) 
PETS2000 (768x576) 
PETS2001 (768x576) 
PETS2006 (720x576) 

modeling 
(sec) 
452 
447 
422 

segmentation 
(sec/frame) 

843 
861 
789 
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5.2 Analysis and Discussion 

From the previous section, we can see that the performance of our proposed method is 

better than the two similar contemporary methods. It can detect foreground objects like 

vehicles, single and group of humans in a scene. When there is no foreground object in the 

scene, the proposed method gives very limited isolated white pixels which are caused by 

image noise. Such kind of image noise can be easily removed by morphological operators, 

i.e., a pair of open and close [2], [56], [35]. 

There are some limitations of the proposed method. When the global illumination 

changes in the scene, e.g., in PETS2001, the whole frame is detected as foreground. The 

background subtraction technique is based on an accurate background model from which 

foreground objects can be detected. Thus, it is necessary to include the adaptability of 

background model, i.e., robust to gradual illumination and sudden illumination changes. 

The former one is easier than the latter one to deal with. A simple way to tolerate gradual 

illumination change is IIR (Infinite Impulse Response) filter. One feasible solution dealing 

with the latter problem is proposed by Li et al. [35]. 

Secondly, when the foreground object enters the scene and essentially becomes part of 

the background, for example, gray car (in the first original frame of Figure 5.8, the second 

car counting from right side in the parking lot) getting parked in Figure 5.8, green car (in 

the first original frame of Figure 5.9, the third car counting from right side in the parking 

lot) getting parked in Figure 5.9, the cars are not absorbed into the background. Therefore, 

in all of the following frames, the gray car and the green car are detected as the foreground 

objects. However, it is not always necessary to convert the foreground to the background, 

for example, in Figure 5.10, the luggage was dropped on the floor and alarms should be 

invoked to get the operator's attention. Different surveillance applications determine the 
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actions surveillance systems should do. 

Thirdly, there are some foreground object regions missing after detection, i.e., in Figure 

5.8 and Figure 5.9. The vehicles are not totally detected. The reason for that is the intensity 

of the foreground object is too close to the background, this problem is also known as 

camouflage. More features such as spatial information can be incorporated to get rid of 

such kind of problems. 

Shadows as in Figure 5.10 is another big problem. Due to the color space we used, most 

of the human objects' shadows are removed. But in the frame with group of persons, one 

severe shadow (in the third original frame of Figure 5.10, the second person counting from 

right side) can not be suppressed and needs additional techniques handling it. 

Segmentation processing speed or convergence speed is the major problem in k-Means 

clustering method. The proposed scheme outperforms k-Means clustering method for seg­

mentation processing time. For MoG method, when the background involves a wide dis­

tribution of color/ intensity, modeling the background with a mixture of a small number of 

Gaussian distribution is not efficient. Moreover, when foreground objects are included in 

the training frames, MoG doesn't work well and it will misclassify [59] as in Figure 5.7. 

For objects that present a slow motion, only the edges are highlighted. The central parts 

of the object are absorbed quickly, resulting in a set of sparse points of the object [23]. 

Finally, the background modeling time of MoG is higher than the k-Means clustering and 

the proposed method. 

One may doubt whether our proposed method can be applied to real-time applications. 

The answer is yes because of the two reasons. One is the dimension of the image frames 

or videos. Most of the videos in real-life surveillance have a smaller dimension of 320x240 

pixels or 160x120 pixels. Our test image sequences have much higher resolutions, such 
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as 640x480 pixels, 768x576 pixels or 720x576 pixels. These sizes are equal to or more 

than four times of the size of 320x240 pixels, i.e. ^ ^ t o = -̂ As o n e c a n s e e m Table 5.1 

and Table 5.2, when the dimension reduces, the processing time reduces significantly. The 

other reason is the implementation tool. MATLAB is much slower than other lower level 

developing tools, such as VC++ and OpenCV. The proposed algorithm developed by other 

tools will have much higher speed than in MATLAB. 

There is one interesting note for the experiments which is the effectiveness using dis­

tance as the feature in k-Means clustering method and our proposed method. In k-Means 

clustering or fuzzy k-Means clustering, calculating the means or centroids of the clusters 

are based on the data set itself, in our case here, it's the difference matrix of V component. 

After one iteration, we calculate the average of the V values falling into foreground cluster 

and background cluster separately. However, if we use the average of the distances falling 

into foreground cluster and background cluster as the new means, the segmentation results 

are sometimes even better than using difference matrix. The reason behind that is probably 

the distance is served as weights. The smaller the distance value, the closer the pixel be­

longs to the cluster. But if there is no foreground object in the scene, this distance scheme 

may give unpredictable results. 

5.3 Summary 

This chapter presents background modeling results using histogram based median method 

and the segmentation results using the proposed method. The segmentation results using 

other two methods on the same video frame are presented too. From segmentation results 

and the processing time, it is obvious that the proposed method is better than the other two 

similar contemporary methods. 



Chapter 6 

Conclusions and Future Work 

The separation of moving foreground objects from a static background is a crucial step in 

intelligent visual surveillance. Background subtraction including background modeling and 

foreground segmentation is the typical approach. The purpose of background modeling is 

to extract the empty scene model from a short training sequence where foreground objects 

may be present [8]. 

In this thesis, background is modeled by the median of every pixel's intensity over the 

sequence. The output background model is good when each background value appears for 

more than 50% of the sequence duration. The task of extracting foreground objects from 

the background is difficult due to the noise of the camera, shadows of the objects and the 

variations of the illumination even if the background is almost stationary. A fuzzy k-Means 

clustering method is proposed for segmentation purpose. The experimental results of indoor 

videos and benchmark videos prove the effectiveness of the proposed method. 

Some of the future work includes the following: 

1. In certain cases, the 50% assumption for background modeling may not be true be­

cause the video sequence to be initialized cannot be selected arbitrarily. Therefore, 

54 
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there is a need to investigate a more robust background modeling approach. 

2. Evaluation of the segmentation using quantitative measures as given in [35]. The 

segmentation results are compared with the ground truth in terms of the following 

two measures: false negative error - the number of foreground pixels that are missed; 

false positive error - the number of background pixels that are misdetected as fore= 

ground. 

3. In current stage, we use one constant background model for foreground segmenta­

tion. If there is any change in the scene, i.e.,gradual illumination changes or changed 

backgrounds, our model can not learn the changes from the incoming frames. Back­

ground subtraction maintenance to deal with such problems needs to be investigated. 
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