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ABSTRACT 

 Novel Application of Neutrosophic Logic in Classifiers Evaluated  

under Region-Based Image Categorization System 

by 

Wen Ju, Doctor of Philosophy 

Utah State University, 2011 

Major Professor: Dr. Heng-Da Cheng 
Department: Computer Science 

 

Neutrosophic logic is a relatively new logic that is a generalization of fuzzy logic. In 

this dissertation, for the first time, neutrosophic logic is applied to the field of classifiers 

where a support vector machine (SVM) is adopted as the example to validate the 

feasibility and effectiveness of neutrosophic logic. The proposed neutrosophic set is 

integrated into a reformulated SVM, and the performance of the achieved classifier N-

SVM is evaluated under an image categorization system. Image categorization is an 

important yet challenging research topic in computer vision. In this dissertation, images 

are first segmented by a hierarchical two-stage self-organizing map (HSOM), using color 

and texture features. A novel approach is proposed to select the training samples of 

HSOM based on homogeneity properties. A diverse density support vector machine (DD-

SVM) framework that extends the multiple-instance learning (MIL) technique is then 

applied to the image categorization problem by viewing an image as a bag of instances 

corresponding to the regions obtained from the image segmentation. Using the instance 
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prototype, every bag is mapped to a point in the new bag space, and the categorization is 

transformed to a classification problem. Then, the proposed N-SVM based on the 

neutrosophic set is used as the classifier in the new bag space. N-SVM treats samples 

differently according to the weighting function, and it helps reduce the effects of outliers. 

Experimental results on a COREL dataset of 1000 general-purpose images and a Caltech 

101 dataset of 9000 images demonstrate the validity and effectiveness of the proposed 

method.   

(69 pages) 
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CHAPTER 1 

INTRODUCTION 

	  
Neutrosophy is a branch of philosophy, which studies the origin and nature of 

neutralities, as well as their interrelation with different conceptive domains [1]. 

Neutrosophic logic is a multiple value logic based on neutrosophy. Fuzzy logic extends 

classical logic by assigning a membership function ranging in degree between 0 and 1 to 

variables. As a generalization of fuzzy logic, neutrosophic logic introduces a new 

component called “indeterminacy” and carries more information than fuzzy logic. One 

could expect that the application of neutrosophic logic would lead to better performance 

than fuzzy logic. Neutrosophic logic is so new that its use in many fields merits 

exploration. In this dissertation, for the first time, neutrosophic logic is applied to the 

field of classifiers. The proposed classifier is then evaluated under an image 

categorization system to validate its feasibility and effectiveness.  

1.1 Neutrosophic Logic 

Neutrosophic logic was introduced in 1995 as a generalization of fuzzy logic [1].  At 

its heart, each proposition is estimated to have a percentage of truth in subset T, a 

percentage of indeterminacy in subset I, and a percentage of falsity in subset F, where T, 

I, F are subsets of real numbers from [0, 1]. Here is an example. Jack wants to invite Kate 

to the homecoming banquet. Kate may or may not accept the invitation. In neutrosophic 

terms, the statement “Kate will accept the invitation” can be described in the following 
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way: it is 60% true, 40% indeterminate, and 30% false. Neutrosophic logic is close to 

human reasoning in the way that it considers the uncertain character of real life.  

A neutrosophic set is a generalization of a classical set and a fuzzy set. Generally, a 

neutrosophic set is denoted as <T, I, F>. An element x(t, i, f) belongs to the set in the 

following way: it is t true, i indeterminate, and f false in the set, where t, i, and f are real 

numbers taken from sets T, I, and F with no restriction on T, I, F, nor on their sum 

m=t+i+f. Figure 1.1 shows the relationship among classical set, fuzzy set and 

neutrosophic set. In a classical set, i = 0, t and f are either 0 or 1. In a fuzzy set, i = 

0,0 , 1t f≤ ≤  and t + f = 1. In a neutrosophic set, 0 , , 1t i f≤ ≤ . 

 

Fig. 1.1: Relationship among classical set, fuzzy set and neutrosophic set. 

Neutrosophic logic has been applied to medical and color image processing 

problems recently. A novel approach for image thresholding is proposed by defining 

neutrosophic set in image domain in [2]. In [3], neutrosophy is applied to image 

processing by defining a neutrosophic domain. Image segmentation is then performed in 

that domain. A region growing algorithm based on neutrosophic logic is implemented for 
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the automatic segmentation algorithm of breast ultrasound images in [4]. A novel 

approach for image denoising based on neutrosophic set is proposed in [5]. In this 

dissertation, for the first time, a neutrosophic set is applied to the field of classifiers 

where an SVM is adopted as the example to validate the feasibility and effectiveness of 

neutrosophic logic. This brand new application of neutrosophic logic consists of 

neutrosophic set that is integrated into a reformulated SVM, and the performance of the 

achieved classifier N-SVM is evaluated under an image categorization system. 

1.2 Image Categorization 

With the rapid development of the Internet and digital photography, the size of the 

average image collection on the web has been growing rapidly in recent years. The 

semantic meaning associated with an image is usually perceived by human viewers. In 

order to handle the massive amounts of digital image resources, an automated system that 

discovers semantic meaning from low-level image features is highly desirable. Image 

categorization is such a tool that refers to the process of labeling images into one of a set 

of predefined categories. The computer algorithm learns the relationship between the 

content of an image and its associated semantic meaning, and then assigns a class label 

(keyword) to the image accordingly [6]. 

Image categorization is an important research topic having potential applications in 

biomedicine, image understanding, digital libraries, remote sensing, web image 

searching, and surveillance systems, etc.  Usually, it is not a very difficult task for 

humans, but for computers it has proven to be a highly challenging problem because an 

automatic image categorization system has to distinguish among different categories and 
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deal with several object types simultaneously in an image [7]. Humans tend to interpret 

images and measure their similarity using high-level concepts, such as labels (keywords) 

and text description. However, the features extracted from images by automatic computer 

vision methods are usually low-level contents, such as color, shape, texture, and spatial 

layout, etc. In general, there is no direct connection between high-level concepts and low-

level content [8]. The discrepancy between the limited descriptive power of low-level 

image features and the richness of human semantics is usually referred to as the 

“semantic gap” [9, 10]. Given a set of labeled images, the goal of an image categorization 

system is to reduce the semantic gap by designing a computer algorithm that 

automatically learns the semantic concepts from low-level features contained in images. 

Then, for a previously unseen image, the system will assign a class label to it from a 

number of predefined categories. 

A lot of machine learning techniques have been used widely in the field of image 

processing [11, 12, 13], and image categorization is of no exception. The techniques used 

in image categorization could be grouped into two classes: the probabilistic modeling 

based methods, and the classification based methods.  

1.2.1 Probabilistic Modeling-based Methods 

Probabilistic modeling based methods aim to build a relevance model that represents 

the connection between images and labels (keywords).  

In the work of [14], a set of blob tokens obtained from clustering image regions are 

translated to a set of keywords through a machine translation model (TM). By assuming 

that image categorization could be viewed as similar to the cross-lingual retrieval 
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problem, a cross-media relevance model (CMRM) is proposed in [15]. CMRM is a 

discrete model that depends on the clustering of feature vectors into blobs, and its 

performance is highly influenced by the quality of the clustering. The CMRM model is 

further improved by a continuous space relevance model (CRM) in [16] and a multiple-

Bernoulli relevance model (MBRM) in [17]. In CRM, an image is segmented into 

regions, and each region is represented by a continuous-valued feature vector. Given a set 

of predefined images, a joint probabilistic model for the link between the image features 

and their labels is firstly estimated. Then, the probability of image regions belonging to a 

specific keyword could be predicted using that model. The MBRM is proposed to 

generate keywords based on the multiple Bernoulli distribution instead of the 

multinomial one used in CRM. Both CRM and MBRM build the model directly from 

continuous features without relying on clustering techniques, and consequently they do 

not have the problem of granularity issues. More recently, a dual cross-media relevance 

model (DCMRM), which calculates the expectation over keywords in a predefined 

lexicon, has been proposed to solve the image categorization problem [18].  

The probabilistic latent semantic analysis technique (pLSA) is adopted for image 

classification in [19], which has too many parameters. In order to reduce the number of 

parameters, the latent Dirichlet allocator (LDA) is incorporated into the pLSA model in 

[20, 21].  A robust pLSA model using rival penalized competitive learning is introduced 

in [22] to solve image categorization problem. Carneiro et al. [23] propose a supervised 

multi-class labeling method, in which a two-level mixture probabilistic model is built to 

learn the relationship between images and their labels. One of the mixtures is the density 
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estimated for each image, and the other mixture is associated with all images sharing a 

common semantic label. The spatial relationship among regions is captured by a Markov 

random field model, and a maximum a posterior rule is applied to interpret images in 

[24]. A one-dimensional hidden Markov model (HMM) is proposed for indoor/outdoor 

scene classification, which is trained over quantized color histograms of image blocks 

[25]. In the automatic linguistic indexing of pictures (ALIP) system proposed by Li and 

Wang [26], the keywords are captured by a two-dimensional multi-resolution HMM 

trained on color and texture features of image blocks. A hierarchical spatial Markov 

model for image categorization is presented in [27].  Word correlation is also integrated 

into the categorization process in some studies, such as the coherent language model [28], 

the wordnet-based method [29], and the correlated label propagation [30].  

1.2.2 Classification-based Methods 

In contrast to probabilistic modeling-based methods, each semantic label or keyword 

is regarded as an independent class and corresponds to a classifier in the classification-

based methods [31].  

Histograms have been used widely in many image categorization problems. The k-

nearest neighbor classifier is applied to color histograms to discriminate between indoor 

and outdoor images in [32]. Support vector machines (SVMs) built on color histogram 

features are adopted to classify images containing different objects [33]. Vailaya et al. 

[34] categorize sunset/forest/mountain images using Bayesian classifiers over color 

histograms and categorize city/landscape images using the same classifier on edge 
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directions histograms. Chang et al. apply SVMs and Bayes point machines for image 

annotation, where color, shape, and wavelet-based texture features are used [35].  

The advantage of histograms is their efficient calculation, and the disadvantage of a 

global histogram representation is that the spatial distribution of images is not considered. 

Many approaches have been proposed to cope with this drawback. Huang et al. construct 

a classification tree using color correlograms that extracts the spatial relationship among 

colors in an image [36]. Gdalyahu and Weinshall adopt local curve matching for shape 

silhouette classification, where the objects of images are described by their outlines [37]. 

By dividing an image into blocks, methods based on sub-images have also been proposed 

to explore the local and spatial properties of images. Gorkani and Picard divide an image 

into 16 non-overlapping blocks of equal size, and the dominant orientations are 

calculated for each block [38]. The images are then classified as city/suburb scenes, 

which are determined by the majority of orientations of the blocks. The work in [39] 

divides an image into a fixed number of partially overlapping subdivisions, and a multi-

class SVM is trained to classify an unseen image into one of the predefined categories.  

1.3 Proposed Image Categorization System 

As discussed in Section 1.2.2, approaches based on sub-images can explore the local 

and spatial properties of an image. However, a rigid partition of an image into blocks 

often breaks an object into several blocks. Thus, visual information contained in objects 

that could be helpful to image categorization may be destroyed in this way. To address 

this problem, image segmentation could be adopted as a powerful tool to extract object 

information from an image. Image segmentation is a process of dividing an image into 
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different regions such that each region is, but the union of any two adjacent regions is 

not, homogeneous [40]. Image segmentation is a well-studied topic and has been applied 

to many fields, such as medical image detection and color image classification [3, 41]. In 

this dissertation, I focus on solving region-based image categorization problem. A 

hierarchical two-stage self-organizing map (HSOM) is used to decompose an image into 

a collection of regions. A novel method is proposed to explore the homogeneity property 

of the image and select training samples for the HSOM. 

Recently, multiple-instance learning (MIL) has been applied to image 

categorization. MIL is a variation of supervised learning, whose task is to learn a concept 

given positive and negative bags of instances. It assumes that bags and instances share 

the same set of labels, and a bag receives a positive label if at least one of its instances in 

the bag is assigned with that label. In the context of the region-based image 

categorization problem, images are viewed as bags, and regions are viewed as instances.  

 Diverse density (DD) model is first proposed in [42] to solve the MIL problem. By 

exploring the distribution of instance feature space, a feature point with a large DD value 

is selected that is close to all instances in the positive bags and far away from the 

instances in the negative bags. Upgrading single-instance learning methods, such as 

decision trees, neural network and SVMs, is a new trend to cope with MIL problems [6, 

43, 44, 45, 46]. Two SVM-based formulations of MIL, mi-SVM and MI-SVM, are 

proposed in [45]. Both algorithms solve the maximum margin problem under MIL 

constraints by modifying the conventional SVM through an iterative heuristic 

optimization. Chen and Wang propose a DD-SVM algorithm in [46], which assumes that 
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the classification of bags is only related to some properties of the bags. Consequently, it 

solves the MIL problem by transforming the original feature space to a new bag feature 

space, and training an SVM in the new space. Two sets of SVMs, MIL-based SVMs and 

global-feature-based SVMs, are integrated to provide the final classification results in 

[43]. Yang et al. [6] propose an asymmetrical SVM-based MIL algorithm that extends the 

conventional SVM to the MIL setting by introducing loss functions for false positives 

and false negatives. Deep SVM is introduced in [47], wherein an SVM is trained in the 

standard way and the kernel activations of support vectors are used as inputs to train 

another SVM at the next layer. In this dissertation, the framework of DD-SVM proposed 

in [46] is adopted in the proposed region-based image categorization system. A novel 

reformulated SVM based on a neutrosophic set is proposed to replace the standard SVM. 

As discussed in Section 1.1, neutrosophic logic is applied to the field of classifiers in 

this dissertation. I propose a novel neutrosophic set for SVM inputs and combine it with 

the reformulated SVM which treats samples differently according to the weighting 

function. The proposed classifier helps reduce the effects of outliers and is applied under 

a DD-SVM framework to solve the MIL problem in region-based image categorization.  

The rest of the dissertation is organized as follows. Chapter 2 presents the image 

segmentation method based on homogeneity property. Chapter 3 introduces the DD-SVM 

framework as an extension of the MIL problem. Chapter 4 describes in detail the novel 

reformulated SVM based on neutrosophic set. The experiment results are presented in 

Chapter 5, and finally conclusions are drawn in Chapter 6.  
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CHAPTER 2 

IMAGE SEGMENTATION 

	  
Image segmentation is the process of dividing an image into non-overlapping 

regions, such that each region is homogeneous but the joint of any two neighboring 

regions is non-homogeneous. Segmentation is essential to image processing and pattern 

recognition. Due to the fact that abundant information is contained in color images and 

the power of PCs is increasing rapidly, color image segmentation has attracted more and 

more attention [48].   

Neural network approaches have been studied and used a lot in recent years. Self-

organizing map (SOM) networks, as a kind of neural network based on the idea of 

preserving the topology of the original input dataset, were first proposed by Kohonen 

[49]. Unlike simple competitive learning methods where only the winning neurons are 

updated to learn, the neurons in the neighborhood of the winning neurons in SOM are 

also updated in the learning process and lead to an ordered feature-mapping that could be 

explored in many applications. The limitation of this method is that the final number of 

classes has to be specified a priori. Lampinen and Oja [50] proposed a hierarchical SOM 

(HSOM) to solve this drawback. Arbitrarily complex clusters are formed, and the 

resultant clusters match the desired classes better than the conventional SOM.  

In this chapter, an image segmentation method based on color and texture features 

using a hierarchical two-stage self-organizing map (HSOM) is presented. A novel 

approach for selecting training samples for the HSOM, based on homogeneity, is 

proposed. Fig. 2.1 shows the outline of the proposed segmentation method.  
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Fig. 2.1: The outline of the proposed image segmentation method. 

Section 2.1 describes the feature extraction, and Section 2.2 introduces HSOM. The 

proposed selection approach for the training samples of HSOM is discussed in detail in 

Section 2.3. Experimental results are given at the end of this chapter. 

2.1 Feature Extraction 

In the proposed method, both color and texture features are extracted from the image. 

Texture refers to a pattern of elements placed closely together in such a manner that the 

pattern somehow repeats itself. Texture feature contains valuable information and has 

been used extensively in the research of image processing. Laws [51, 52] developed a 

coherent set of “texture energy” masks that can be used to extract texture features from 

images for image segmentation and classification.   

The two-dimensional masks used to extract texture features are derived from five 

simple one-dimensional filters which are: 

L5  =  (  1    4    6    4   1   ) 

E5  =  ( -1   -2   0    2   1   ) 

Input Image 

(Raw Data) 

Region 
Merging	  

Feature Extraction 

(Color & Texture) 

	  

(Raw	  Data)	  

Selection of 

Training Samples 

	  

(Raw	  Data)	  Two-stage 
HSOM	  

Segmented 
Image 

(Raw	  Data)	  
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S5  =  ( -1    0    2    0   -1  ) 

       W5  =  ( -1   2   0    -2   1  ) 

R5  =  (  1    4    6    -4   1  ) 

The letters stand for Level, Edge, Spot, Wave and Ripple. These masks are 

convolved with the transposes of each other to provide a set of symmetric and anti-

symmetric masks, whose center weights are zero-sum except for the Level filters. Four of 

Laws’ most successful masks are shown in Fig. 2.2.  

	    

Fig. 2.2: Four of Laws’ masks for texture feature. 

L5E5 is a horizontal edge mask enhancing the horizontal structure in texture. E5S5 

is peculiar V-shape mask that responds best to textures with a low correlation. R5R5 is a 

high-frequency spot detector producing a grainy feature plane that is very difficult to 

reproduce. L5S5 is a vertical line detector that enhances the vertical edges in the image. 
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In this work, each pixel in the image is represented by a seven-dimensional vector: 

{r, g, b, e5l5, e5s5, r5r5, l5s5}. The first three components of the feature vector are R, G, 

and B values for each pixel in the original image. The next four components are obtained 

by applying the Laws’ texture energy measures as introduced above [51].  

2.2 Introduction of SOM and HSOM 

The basic idea of a self-organizing map (SOM) is simple and effective. An SOM 

consists of M neurons located on a regular low-dimensional grid, usually one- or two-

dimensional. The lattice of the grid is either hexagonal or rectangular, as shown in Fig. 

2.3.  

 

Fig. 2.3: The SOM neighborhood set for hexagonal and rectangular lattice. 

 

The training mechanism for an SOM is iterative. Each neuron i has a d-dimensional 

prototype vector 1[ ,..., ]i i idm m m= . At the beginning of every training step, a sample data 

vector x is randomly chosen from the training set. Distances between x and all prototype 
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vectors are calculated. The best-matching unit (BMU) denoted as b is the map unit with a 

prototype closest to x: 

                                           min{ }b ii
x m x m− = −                                          (2.1)   

Next, the prototype vectors are updated. The BMU and its topological neighbors are 

moved closer to the input vector in input space, as shown in Fig. 2.4. The update rule for 

the prototype vector of unit i is: 

                                 ( 1) ( ) ( ) ( )[ ( )]i i bi im t m t t h t x m tα+ = + −                               (2.2)       

where t denotes time, ( )tα is the learning rate, and ( )bih t is a neighborhood kernel 

centered on the winner unit. An example of a kernel would be the Gaussian kernel: 

                                           
2

2( ) exp( )
2 ( )
b i

bi

r r
h t

tσ

−
= −                                           (2.3) 

where rb and ri are positions of neurons, b and i are on the SOM grid, and ( )tσ is the 

neighborhood radius. Both the learning rate ( )tα and neighborhood radius ( )tσ decrease 

monotonically with time. 

During training, the SOM behaves like a flexible net folding onto the “cloud” 

formed by the training data. Because of the relationships within neighborhood, 

neighboring prototypes are pulled in the same direction, and prototype vectors of 

neighboring units resemble each other. Thus, the goal of an SOM is to create a 

topologically (i.e., locally) ordered mapping of the input samples. 
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Fig. 2.4: Updating the BMU and its neighbors towards the input sample x. 
The neuron position before and after the update is represented by the black 
and the gray dots, respectively. The lines show neighborhood relations. 

 
 

The hierarchical SOM (HSOM) can be defined as a two-layer SOM, and its training 

mechanism is: 

1. For each input vector x, the best matching unit is chosen from the first layer map, 

and its index b is input into the second layer;  

2.  The best matching unit for input b is chosen from the second layer map, and its 

index is the output of the network. 

In a conventional self-organizing map (SOM) network, the number of regions in the 

final segmented image relies on the number of neural units in the Kohonen layer. But it is 

highly improbable that the number of regions in an image is known a priori. This 

significant shortcoming is overcome by implementing a hierarchical SOM as a pattern 



16 
 

 

classifier to group the output neurons into subsets, each of which corresponds to a 

discrete region. The HSOM used in this dissertation has 100 output neurons arranged in a 

10 x 10 grid in the first stage and 20 neurons in the second stage.  

2.3 Selection of Training Samples  
Based on Homogeneity 

Literature that discusses the selection of the samples for training the SOM is scarce. 

Random selection is most commonly used to select the training samples for an HSOM. 

While random selection ensures an unbiased collection of training samples, it does not 

always provide the optimal set of training samples. In the case of image segmentation, the 

pixels around the boundary of the perceptual segments provide more information and 

should be emphasized in the training procedure. Therefore, a novel approach for selecting 

training samples is proposed in this dissertation.  

The selection criterion is based on a definition of homogeneity βij for pixel (i, j) in a 

gray image proposed in [52], which is composed of the following five components: 

1. Edge value:                               2 2
1 2ije s s= +                                           (2.4) 

where s1 and s2 are the results of applying the row and column masks of the Sobel edge 

detector, respectively. 

2. Standard deviation:      

1 1
2 2

2
2

1 1
2 2

1 ( )

d di j

ij pq ij
d dp i q j

v g
d

µ

− −
+ +

− −
= − = −

= −∑ ∑                       (2.5) 

where iju is the mean of the gray levels within the window wij centered at (i, j) of size d. 



17 
 

 

3. Entropy:                            
1

1 log
2log

L

ij k k
k

h P P
d =

= − ∑                               (2.6) 

where Pk is the probability of the kth gray level, which can be calculated as 2
kn
d

, nk is the 

total number of pixels with the kth gray level, and L is the total number of gray levels in 

the window wij. 

4. Skewness:                      

1 1
2 2

3

1 1
2 2

3 3

( )

( 1)

d di j

pq ij
d dp i q j

ij
ij

g

N

µ

γ
σ

− −
+ +

− −
= − = −

−

=
−

∑ ∑
                           (2.7) 

5. Kurtosis:                      

1 1
2 2

4

1 1
2 2

4 3

( )

3
( 1)

d di j

pq ij
d dp i q j

ij
ij

g

N

µ

γ
σ

− −
+ +

− −
= − = −

−

= −
−

∑ ∑
                        (2.8) 

where σ is the standard deviation over N observations.  

The homogeneity measure βij is the normalized value of Aij which is defined as:	  

                    3 4(1 ) (1 ) (1 ) (1 ) (1 )ij ij ij ij ij ijA E V H R R= − × − × − × − × −                (2.9) 

where E, V, H, R3 and R4 are the normalized value of those defined in Eq. (2.4) to Eq. 

(2.8), respectively. The more uniform the local region surrounding a pixel is, the larger 

the homogeneity value βij for that pixel.  

The homogeneity measure βij defined above holds only for grayscale images. In 

order to be used in a color image, the concept is extended to the domain of RGB images. 

Suppose βRij, βGij, and βBij are the homogeneity measures calculated in the R, G, and B 
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color planes, respectively, the homogeneity measure for the pixel (i, j) in the RGB 

domain can be defined as: 

                      0.33 0.33 0.33
ij ij ij ijRGB R G Bβ β β β= × + × + ×                                (2.10) 

The non-homogeneity measure in the RGB domain can be calculated as: 

                                        1
ij ijRGB RGBϕ β= −                                                     (2.11) 

The steps of the proposed algorithm are: 

1.  A location set Φ  is defined to contain the pixel locations of all training samples 

and is initialized to empty.  

2. The average non-homogeneity value is calculated for the entire image as: 

                                    
1 1

0 0

1
image pq

M N

RGB
p qMNϕµ ϕ
− −

= =

= ∑∑                                    (2.12)                             

3. The image is divided into blocks of arbitrary size d*d (in this dissertation, d=15), 

and the local average nonhomogeneity value for each block t is calculated as: 

                                     

1 1
2 2

2
1 1
2 2

1
block pq

d di j

RGB
d dp i q j

dϕµ ϕ

− −
+ +

− −
= − = −

= ∑ ∑                                   (2.13) 

4. For each d*d block t of the image, the number of pixels to be chosen for 

training is decided by the threshold: 

              

2max{10, ( )* } ( 0)

10 ( 0)
block image block image

block image

training

d if
n

if
ϕ ϕ ϕ ϕ

ϕ ϕ

µ µ µ µ

µ µ

⎧ − − >
⎪

= ⎨ − <=⎪⎩

           (2.14)                                                            
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5. ntraining pixel locations are then randomly selected from that block t and are 

added to the location set Φ . 

6. Repeat steps 2-4 for all the blocks in the image.  

7. The vectors corresponding to the locations in set Φ  are then extracted from 

the HSOM input matrix to form the final training set. 

The algorithm ensures that the training dataset contains more pixels representing the 

diverse regions in the image than those representing the homogeneous regions. Therefore, 

a training dataset generated in this way carries more information about the image than the 

training dataset obtained by random selection, and it leads to better results of 

segmentation. 

The output of the HSOM is often an over-segmented image. Hence, the region-

merging process in [53, 54] is carried out to combine regions that are similar to each 

other. After this step, the final segmented image is generated. 

Examples of the segmentation results are shown in Fig. 2.5.          
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Fig. 2.5: Segmentation results by HSOM based on homogeneity measure.  
First row: Original images; Second row: Segmented images, respectively. 
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CHAPTER 3 

DIVERSE DENSITY-SUPPORT VECTOR  

MACHINE FRAMEWORK 

 

Multiple-instance learning (MIL) is a variation of supervised learning, whose task is 

to learn a concept given positive and negative bags of instances. The standard MIL 

problem assumes that bags and instances share the same set of labels. A bag is labeled 

positive if at least one of its instances is positive, and the bag is labeled negative if all of 

its instances are negative. To view the image categorization problem in MIL terms, an 

image is considered as a bag that contains a number of instances corresponding to the 

regions obtained from the image segmentation. Different bags may have different 

numbers of instances. For a particular category, a positive label means that the image 

belongs to it, and a negative label means that the image does not belongs to it.  

Chen and Wang proposed a diverse density-support vector machine (DD-SVM) 

algorithm that extends the standard MIL and applied it to the problem of region-based 

image categorization [46]. DD-SVM assumes that a positive bag must contain some 

number of instances satisfying various properties, which are captured by bag features. 

Each bag feature is defined by an instance in the bag and an instance prototype derived 

from the DD function. Therefore, the bag features summarize the bag from several 

aspects. The basic idea of the DD-SVM framework is to map every bag to a point in a 

new feature space, named the bag feature space, and to train SVMs in the bag feature 

space.  
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Now let us describe the DD-SVM in mathematical representation. After the 

segmentation process in Chapter 1, the mean of the set of feature vectors belonging to 

each region is calculated and denoted as the region feature vector x, which is also called 

the instance feature vector in terms of the MIL problem. An image Bi, which is 

segmented into Ni regions{ : 1,..., }j iR j N= , is represented by a collection of region 

feature vectors{ : 1,..., }ij ix j N= . Let D be the labeled dataset, which consists of l 

bag/label pairs, i.e., 1, 1 ,{( ),..., ( )}l lD B y B y= , where {1, 1}iy ∈ − . The diversity density 

(DD) function over the instance feature space is defined as: 

                 
2

1 1

1( , ) [ (1 )]
2

i
ij w

Nl x xi
D i

i j

yDD x w y e− −

= =

+
= − −∏ ∏                       (3.1) 

Here, x is a point in the instance feature space, w is a weight vector defining which 

features are considered important and which are considered unimportant [38]. .
w

denotes 

a weighted norm defined by:  

                                      
1

2 2[ ( ) ]T
w

x x Diag w x=                                         (3.2) 

where Diag(w) is a diagonal matrix whose (i, i)-th entry is the i-th component of w.  

The values of the DD function are always between 0 and 1. If x is close to instances 

from different positive bags, and at the same time, far away from instances in all negative 

bags, the value of the DD function is close to 1. Thus, it measures a co-occurrence of 

instances from different positive bags. 

The DD function defined in Eq. (3.1) is a continuous and highly nonlinear function 

with multiple local maximums and minimums. A larger value of the DD function at a 
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point indicates a higher probability that the point fits better with the instances from 

positive bags than with those from negative bags. Thus, the local maximums of the DD 

function could be selected as instance prototypes that represent a class of instances that is 

more likely to appear in positive bags than in negative bags. Learning instance prototypes 

then becomes an optimization problem, which is finding local maximums of the DD 

function in a high-dimensional space. Gradient-based methods are applied to solve this 

optimization problem.  

Each instance prototype represents a class of instances that is more likely to appear 

in the bags with the specific label than in the other bags. A bag feature space is then 

constructed using the instance prototypes, each of which defines one dimension of the 

bag feature space. Let * *{( , ) : 1,..., }k kx w k n=  be the collection of instance prototypes, the 

bag feature ( )iBφ  is defined as: 

                                 

*
1

*
2

*

*
1,..., 1

*
1,..., 2

*
1,...,

min

min
( )

min

i

i

i n

j N ij w

j N ij w
i

j N ij n w

x x

x x
B

x x

φ

=

=

=

⎡ ⎤−
⎢ ⎥
⎢ ⎥−
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎣ ⎦

M
                                    (3.3) 

 
Using the definition in Eq. (3.3), every bag is mapped to a point in the bag feature 

space [46]. The region-based image categorization problem is now transformed into a 

classification problem. SVMs are trained in the bag feature space to serve as classifiers. 
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CHAPTER 4 

NOVEL REFORMULATED SUPPORT VECTOR MACHINE 

 BASED ON NEUTROSOPHIC SET 

In this dissertation, I use the same DD-SVM framework as presented in Chapter 3, 

except that instead of using standard SVMs in the bag feature space, a novel reformulated 

SVM based on a neutrosophic set is proposed and applied.  

4.1 Background of SVM 

Introduced by Vapnik [55], support vector machines (SVMs) are based on statistical 

learning theory. They have been studied in the framework of structural risk minimization 

(SRM), which is an inductive principle for learning from a finite training dataset and are 

useful in working with small-sized samples.  

Given a training set S containing n labeled points (x1, y1),…, (xn, yn), where xj∈RN 

and yj∈{-1, 1}, j=1, …, n. Suppose the positive and negative samples can be separated by 

some hyperplane. This means there is a linear function between the positive and negative 

samples with the form: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   ( )d x w x b= ⋅ + 	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (4.1) 	  

For each training sample xj, d(xj) ≥ 1 if yj = 1; d(xj) < -1, otherwise. This function is 

also called as decision function. A test sample x can be classified as: 

                                    ( )( )y sign d x=                                                (4.2) 
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For a given training dataset, many possible hyperplanes could be found to separate 

the two classes correctly. SVM aims to find an optimal solution by maximizing the 

margin around the separating hyperplane.  The solution for a case in two-dimensional 

space has an optimal separating line, as shown in Figure 4.1.  

 

Figure 4.1: An optimal separating line for a two-dimensional space case. 

The support vectors are the points on the hyperplanes:  

                                   ( ) 1j jy w x b⋅ + =                                       (4.3) 

For another sample {xi, yi} that is not on the support vector hyperplanes, it has:  

                                    ( ) 1j jy w x b⋅ + > .                                    (4.4) 

Mathematically, the margin M between two support vectors is finally obtained by: 

                                        2M
w

=                                             (4.5) 
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where w  is the norm of w. 

Thus, maximizing the margin M is equivalent to minimizing w  with the constraint 

that there is no sample between the support vector hyperplanes. This constraint can be 

described as: 

                                      ( ) 1j jy w x b⋅ + ≥                                          (4.6) 

In the case that the original samples could not be separated by any hyperplane, SVM 

will transform the original samples into a higher dimensional space by using a nonlinear 

mapping. Here, Φ(x) denotes the mapping from RN to a higher dimensional space Z. A 

hyperplane needs to be found in the higher dimensional space with maximum margin as:  

                                                    0=+⋅ bzw                                                (4.7) 

such that for each point (zj, yj), where zj=Φ(xj):  

                                      ( ) 1, 1, , .j jy w z b j n⋅ + ≥ = K                                 (4.8) 

When the dataset is not linearly separable, the soft margin is allowed by introduction 

of n non-negative variables, denoted by 1, 2,( ... )nξ ξ ξ ξ= , such that the constraint for each 

sample in Eq. (4.8) is rewritten as: 

                                  ( ) 1 , 1, , .j j jy w z b j nξ⋅ + ≥ − = K                                (4.9) 

The optimal hyperplane problem is the solution to the problem:  

                              minimize
1

1
2

k
jj

w w C ξ
=

⋅ + ∑                                         (4.10) 
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  subject to   ( ) 1 , 1, , .j j jy w z b j nξ⋅ + ≥ − = K                             (4.11) 

where the first term in Eq. (4.10) measures the margin between support vectors, and the 

second term measures the amount of misclassifications. C is a constant parameter that 

tunes the balance between the maximum margin and the minimum classification error. 

Then, for a test point x̂which is mapped to ẑ in the feature space, the classification result 

ŷ is given as: 

                                             ˆ ˆ( )y sign w z b= ⋅ +                                          (4.12) 

4.2 Fuzzy SVM 

Lin and Wang propose fuzzy support vector machine in [56]. A membership sj is 

assigned for each input sample (xj, yj), where 0< sj <1. Since the membership sj is the 

attitude of the corresponding point xj toward one class, and the parameter jξ  is a measure 

of error in the SVM, the term sj jξ  is a measure of error with different weighting. The 

optimal hyperplane problem is then regarded as the solution to: 

                            minimize 
1

1
2

k
j ji

w w C s ξ
=

⋅ + ∑                                     (4.13) 

                      subject to ( ) 1 , 1, , .j j jy w z b j nξ⋅ + ≥ − = K                            (4.14) 

In order to use FSVM, a membership function needs to be defined for each input 

sample. Here, I use the membership function definition proposed in [57]. From Eq. (4.10) 

one can see that if the iξ  of a misclassified data xi is increased, the newly learned 

hyperplane will have a tendency to correctly classify xi in order to eliminate the larger  



28 
 

 

 

Fig. 4.2: Different regions in high dimension space. 

error that xi	  introduced to the classifier and finally minimize Eq. (4.10). Correspondingly 

in Eq. (4.13), assigning a larger membership si for an input increases the probability of 

correctly classifying that sample while a smaller membership decreases the probability of 

correctly classifying the sample. Based on this observation, the membership function is 

defined as follows. 

1. First, a traditional SVM is trained using the original training set. 

2. After step 1, the hyperplane 0w z b⋅ + =  is found. Assuming that if 0w z b⋅ + > , the 

data is assigned to the positive class; otherwise, the data is assigned to the negative 

class. There also are two other hyperplanes 1w z b⋅ + = and 1w z b⋅ + = −. As indicated 

in Fig. 4.2, the high dimension space is divided into four regions by these three 

hyperplanes. For the positive samples, region A represents the input points that are 

correctly classified and the associated ξ s are 0. Region B represents the input points 

that are also correctly classified but the associated ξ s are non-zero. Region C and D 

represents the input points that are incorrectly classified. For the negative samples, 

similar regions with the same properties as for the positive samples can be obtained 

by simply swapping the region positions. In the following discussion, only consider 

0w z b⋅ + = 	  

1w z b⋅ + = − 	  

A	   B	   C	   D	  

1w z b⋅ + = 	  
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positive cases are considered. Applying these same principles to negative cases is 

straightforward.  

3. The points in region A have no contribution to the optimization Eq. (4.13) since their 

ξ s are 0. Thus, no matter what membership is assigned to them, it will not affect the 

resultant hyperplane. Here for simplicity, a constant value sA = s1 is assigned to them 

where 0 < s1 < 1. 

4. The points in region B are correctly classified, but they have non-zero ξ s. Thus, they 

contribute to the optimization equation but should be treated as less important than 

the points in regions C and D, since they are correctly classified. The more near to the 

hyperplane 0w z b⋅ + > , the more important in the next training procedure to achieve 

a better classification result. Given d=w z b⋅ + , where z=Φ(x) for input point x, the 

membership for region B is defined as: 

                                                   1 2(1 )Bs s d s= + − ×                                            (4.15)   

where s2 > 0, 0 < s1 + s2 < 1 and 0 1d≤ ≤  in   region B.      

5.  The points in region C are incorrectly classified. It can be predicted that in the next 

training procedure, the hyperplane can move towards these points, thus allowing 

more of them can be classified correctly. The nearer the points to the 

hyperplane 0w z b⋅ + > , the less important they are in the next training procedure. As 

explained in step 4, however, they are more important than the points in region B. 

Using the same notation as step 4, the fuzzy membership for region C is defined as: 

                                                   1 2 3( )Cs s s d s= + + ×                                        (4.16) 

where s3 > 0, 0 < s1 + s2 + s3 < 1, and 1 0d− ≤ ≤  in region  C. 
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6.  The points in region D are incorrectly classified. The further away the points are 

from the hyperplane 0w z b⋅ + > , the more probably an outlier exists; thus, the smaller 

membership should be assigned. The membership for region D is defined as: 

                                                    1 2 3( ) / k
Ds s s s d= + +                                         (4.17) 

where k>0 and 1d ≤ −  in region D. Here, k is a positive integer, and the larger k is, 

the faster the membership decreases with the increase of distance d. The value of k is 

chosen as 9 in the experiment.  

7. With the memberships defined in steps 3-6, an FSVM is trained and the obtained 

FSVM is used as a classification tool.  

Above, are the steps to design the proposed membership function. The defined 

membership function is shown in Fig. 4.3.  

 

Fig. 4.3: Defined membership function. 

The parameters s1, s2, s3 are adjustable. They are initialized under the constraint that 

all of them are positive and the sum of them is smaller than 1. An FSVM is trained using 

the resultant membership function from those initial parameters. Then, the same training 

data is used as the test data on the trained FSVM and those three parameters are adjusted 
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to achieve the highest classification results. Finally, the trained FSVM is used to classify 

the actual test data. 

4.3 Reformulated SVM 

A similar idea as the fuzzy SVM introduced in Section 4.2 is adopted in the 

reformulated SVM. The difference is that the membership sj is substituted by weighting 

function gj where gj >0. Different inputs contribute differently to the training procedure, 

and the weighting function gj is used to evaluate the degree of importance for each input. 

The value of gj is a positive number, and it does not necessarily need to be smaller than 1. 

Now, the optimal hyperplane problem in the reformulated SVM is the solution to: 

                           minimize 
1

1
2

k
j jj

w w C g ξ
=

⋅ + ∑                                       (4.18) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  subject to ( ) 1 , 1, , .j j jy w z b j nξ⋅ + ≥ − = K                              (4.19) 

4.4 Neutrosophic Set 

The neutrosophic set is a generalization of the classical set and fuzzy set [1]. In 

classical theory, there are only <A> and <Non-A>. The degree of neutralities <Neut-A> 

is introduced and added in neutrosophic theory. Generally, a neutrosophic set is denoted 

as <T, I, F>. An element x(t, i, f) belongs to the set in the following way: it is t true in the 

set, i indeterminate in the set, and f false, where t, i, and f are real numbers taken from the 

sets T, I, and F with no restriction on T, I, F, nor on their sum m=t+i+f. The major 

difference between a neutrosophic set (NS) and a fuzzy set (FS) is that there is no limit 

on the sum m in a neutrosophic set, while in a fuzzy set m (m=t+f) must be equal to 1. 
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Many research results have shown that the standard SVM is very sensitive to outliers. 

Here, I propose a neutrosophic set for the input samples of SVM based on the distances 

between the sample and the class centers. The neutrosophic set explores the spatial 

distribution of the training samples and can help solve the problems of outliers when 

integrated into the reformulated SVM.  

Using the same notations as in Section 4.1, the neutrosophic set for input samples 

are denoted as a sequence of points ( , , , , ), 1,..., .j j j j jx y t i f j n= . For the statement that 

“an example xj belongs to class yj”, it is tj true, ij indeterminate, and fj false. The center of 

positive samples C+, the center of negative samples C-, and the center of all samples Call 

are defined as the following: 

                                     
, ,

1 1

1

1 1

1

n n

k k
k k

n

all k
k

C x C x
n n

C x
n

+ −

+ −
= =+ −

=

= =

=

∑ ∑

∑
                                (4.20) 

where n+ is the number of positive samples and n- is the number of negative samples.  

I denote U as the whole input samples set, P as the positive samples subset, and N as 

the negative samples subset. For positive samples where yj = 1, the neutrosophic 

components are defined as: 
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where ||x|| denotes the Euclidean distance of variable x. For negative samples where yj = -

1, the neutrosophic components are defined as: 
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                                        (4.22) 

With the above definition, every input sample is associated with a triple <tj, ij, fj> as 

its neutrosophic components. The larger tj it has, the higher the probability it belongs to 

the labeled class. The larger ij it has, the higher the probability it is indeterminate. The 

larger fj it has, the higher the probability it belongs to the opposite of the labeled class. 

The triple contains valuable information extracted from the spatial distribution of the 

training samples and provides helpful clues in the classifier design. 

For the image categorization problem considered in this dissertation, there are 

usually more than two categories in the dataset. Since SVM is a binary classifier that can 

only classify the inputs as positive or negative, an appropriate multi-class approach is 

needed to handle several categories here. Two common methods are “one-against-one” 

and “one-against-the-rest.” For one-against-one, an SVM is trained for each pair of two 

classes, that is, ( 1)
2

m m× −  SVMs are generated for m categories to accomplish the task. 

For one-against-the-rest, an SVM is trained to classify one category against all the others 

together, that is, m SVMs are generated for m categories. Clearly one-against-one is more 
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time-consuming; thus the one-against-the-rest strategy is applied more widely in 

categorization problems.  

Using the one-against-the-rest strategy, one category is selected as the positive class, 

and all the other categories together are regarded as the negative class. Usually, the 

number of images in each category is roughly the same. Thus, the number of samples in 

the negative class is m-1 times of the number of samples in the positive class for m 

categories. This makes an unbalanced dataset for the SVM to train. If I still use the 

definitions in Eq. (4.20), the center of all samples Call is very near to the center of 

negative samples C- due to the unbalance property of the dataset. But what I really expect 

is that Call represents the center of the samples in view of data distribution. That is, the 

distance between Call and the positive group is roughly the same as the distance between 

Call and the negative group. For examples, if I am given a dataset consisting of four one-

dimensional points with coordinates as 3, 25, 30, and 35, point 3 is the positive sample, 

while the points 25, 30, and 35 are the negative samples. From the data distribution, I 

expect that the center of all points Call is around the point with coordinate 16.5. However, 

the center Call calculated using Eq. (4.20) is 23.25, which is more adjacent to the negative 

samples. To solve this problem, one can view point 3 as appearing three times. In other 

words, there are three points in the positive class, which are all the same as coordinate 3.  

Using the same Eq. (4.20) but using the dataset consisting of 6 points (3, 3, 3, 25, 30, 35), 

the center Call is calculated as 16.5 which is what I expect. In this way, the unbalance 

property is reduced between the positive and negative samples, without introducing any 

new samples other than old ones to the training dataset. In terms of mathematics 
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representation, Call calculated using the above method is actually the mean of the center 

of negative samples C-, and the center of positive samples C+. So generally speaking, to 

eliminate the effect of an unbalanced dataset, a simple but effective modification could be 

made to Eq. (4.20) as:  
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                                    (4.23) 

If the dataset is balanced such that the number of positive samples is roughly the 

same as the number of negative samples, Call defined in Eq. (4.23) is almost the same as 

the result calculated using Eq. (4.20). For an unbalanced dataset, the modified formula 

eliminates the effect of unbalance, and the resulting Call represents the center of all the 

samples in the view of data distribution. 

4.5 Integrating Neutrosophic Set  
      with Reformulated SVM 

In order to use the reformulated SVM, a weighting function for input samples should 

be defined. Following the steps in Section 4.4, every sample has been associated with a 

triple <tj, ij, fj> as its neutrosophic components. A larger tj means the sample is nearer to 

the center of the labeled class and is less likely an outlier. So, tj should be emphasized in 

the weighting function. A larger ij means the sample is harder to be discriminated 

between two classes. This factor should also be emphasized in the weighting function in 

order to classify the indeterminate samples more accurately. A larger fj means the sample 
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is more likely an outlier. This sample should be treated less importantly in the training 

procedure. Based on these analyses, the weighting function gj is defined as: 

                                           j j j jg t i f= + −                                                       (4.24) 

After integrating the proposed weighting function into the reformulated SVM 

introduced in Section 4.3, training samples are utilized differently in the training 

procedure according to their spatial distribution. Thus, the proposed classifier, denoted as 

neutrosophic-support vector machine (N-SVM), reduces the effects of outliers in the 

training samples and improves the performance when compared to a standard SVM. 
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CHAPTER 5 

EXPERIMENTAL RESULTS AND DISCUSSION 

	  
 The proposed region-based image categorization method was evaluated on two 

datasets: COREL 1000 dataset and Caltech 101 dataset. Section 5.1 describes the image 

datasets and training strategy for classifiers. The performances among the proposed N-

SVM, the traditional SVM, and fuzzy SVM are compared and analyzed in Section 5.2. 

Section 5.3 evaluates the effective of the proposed segmentation method. The effects of 

an unbalanced dataset are examined in Section 5.4.  

5.1 Image Dataset and Training Strategy 

The COREL dataset used in this dissertation consists of 1000 general-purpose 

images [58]. All the images are in JPEG format with a size of either 256 × 384 or 384 × 

256. There are ten diverse image categories in the dataset, each containing 100 images. 

The categories are: African people and villages, beach, historical buildings, buses, 

dinosaurs, elephants, flowers, horses, mountains and glaciers, and food. Some randomly 

selected sample images from each category are shown in Fig. 5.1.  

Caltech 101 dataset is also used here. It contains a total of 9146 images, split 

between 101 distinct objects (including faces, watches, ants, pianos, etc.) and a 

background category (make a total of 102 categories). The background category is not 

used in this dissertation. The number of images per category varies from 31 to 800. In 

order to make a robust comparison, I have discarded 15 categories that contain less than 

40 samples.  
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Fig. 5.1: Sample images from COREL dataset. 
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To evaluate the performance of the proposed N-SVM, a traditional SVM and a fuzzy 

SVM were also trained and applied to the region-based image categorization problem for 

comparison. The differences among these classifiers are the restriction for finding the 

optimal hyperplane. In a fuzzy SVM, membership function sj is introduced and 

multiplied to the error parameter jξ 	  in Eq. (4.13) as compared to the traditional SVM in 

Eq. (4.10). Membership function sj is substituted by weighting function gj in N-SVM, as 

shown in Eq. (4.18). After the optimal hyperplane is solved, the same classification 

criterion is applied to all classifiers, as shown in Eq. (4.12). In our experiments, all the 

classifiers (SVM, fuzzy SVM, and N-SVM) are trained using the same strategy. The one-

against-the-rest method is used to solve the multi-class problem: (a) for each category, a 

classifier is trained to separate that category from all other categories; (b) the final 

predicted class label is decided by the winner of all classifiers, that is, the one with the 

maximum value inside the ( )sign ⋅  function in Eq. (4.12). For the COREL dataset, images 

within each category are randomly divided into a training set (50 images) and a test set 

(50 images). For each category in the Caltech 101 dataset, 30 images are randomly 

selected as a training set and 50 (or less if they are the remainder) different images are 

randomly selected as test set. For each SVM designed for category i as positive samples, 

the training sets of all the categories other than category i are put together as the negative 

samples. Each experiment is repeated for five random splits, and the average of the 

classification results obtained over five different test sets is reported.  
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5.2 Comparison of the Proposed N-SVM with  
      Traditional SVM and Fuzzy SVM  

The proposed N-SVM is a reformulated SVM designed to reduce the effects of 

outliers in the training samples. To validate its performance, the classification results of 

the categorization problem were compared to the results obtained from the traditional 

SVM. Recently, a fuzzy SVM has been applied to many fields including bioinformatics, 

image retrieval, and text categorization [57, 59, 60]. Since neutrosophic logic is a 

generalization of fuzzy logic, it is very meaningful to compare the performance between 

the fuzzy SVM and the proposed N-SVM. So, in this section the comparison focuses on 

the classification performance among the proposed N-SVM, the traditional SVM, and the 

fuzzy SVM as introduced in Section 4.2. To evaluate the performance, all the classifiers 

are trained using the strategy described in Section 5.1. Thus, ten SVMs, ten fuzzy SVMs, 

and ten N-SVMs are generated, respectively. For each random split of the images, the 

same set of training data and test data is used in the corresponding SVM, fuzzy SVM, and 

N-SVM. Since the dataset is unbalanced, Eq. (4.23) is used to calculate the parameters of 

the weighting function gj in N-SVM. The classification results are presented in Table 5.1.  

Table 5.1: Average Classification Accuracy of the Proposed N-SVM, Standard SVM, 

and Fuzzy SVM on COREL 1000 Dataset, Respectively. 

Classifier Average Classification 
Accuracy 

N-SVM 87.7% 

SVM 82.2% 

fuzzy SVM 84.3% 
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The results clearly show that the proposed N-SVM performs the best. It outperforms 

both the traditional SVM and fuzzy SVM in terms of the average classification accuracy 

by 5.5% and 3.4%, respectively. The weighting function of the N-SVM successfully 

reduces the effect of outliers and leads to a higher classification accuracy compared to the 

traditional SVM. As a generalization of a fuzzy set, a neutrosophic set introduces one 

more property “neutrality” to be associated with the inputs. Thus, the proposed N-SVM 

contains more information in the weighting function and achieves better results compared 

to the fuzzy SVM. In addition, the proposed system was also compared with the DD-

SVM system in [46]. The classification accuracy of DD-SVM using the same dataset is 

81.5%. N-SVM improves the accuracy by 6.2%.  

Next, a closer analysis of the performance is made by looking at classification 

results on every category in terms of the confusion matrix. The classification results are 

listed in Table 5.2.  

Table 5.2: Confusion Matrix of the Proposed N-SVM Using Eq. (4.23). 

 Africa Beach Building Bus Dinosaur Elephant Flower Horse Mountain Food 

Africa 0.812 0.008 0.036 0.016 0.008 0.056 0.004 0.016 0.024 0.020 

Beach 0.028 0.756 0.024 0.016 0.008 0.020 0.008 0.012 0.120 0.008 

Building 0.036 0.040 0.836 0.008 0.004 0.016 0.012 0.008 0.016 0.024 

Bus 0.004 0.008 0 0.980 0 0 0 0 0.004 0.004 

Dinosaur 0 0 0 0 0.996 0 0 0 0 0.004 

Elephant 0.024 0.004 0.008 0.004 0 0.880 0 0.012 0.036 0.032 

Flower 0.008 0.004 0 0.008 0 0.004 0.936 0.008 0.008 0.024 

Horse 0.008 0.008 0 0 0 0.008 0 0.964 0.004 0.008 

Mountain 0.008 0.148 0.032 0.016 0.004 0.040 0.004 0.008 0.736 0.004 

Food 0.032 0.016 0.008 0.012 0.008 0.020 0.012 0.008 0.008 0.876 
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Each row in Table 5.2 gives the average percentage of images in one category 

classified to each of the 10 categories by N-SVM using Eq. (4.23). The numbers on the 

diagonal (shaded) show the classification accuracy for each category, and off-diagonal 

entries indicate classification errors. According to the confusion matrix, the largest two 

errors (the underlined and italic numbers in Table 5.2) are the errors between the 

categories of “beach” and “mountains and glaciers.” Twelve percent of the “beach” 

images are misclassified as “mountains and glaciers,” while 14.8% of the “mountains and 

glaciers” images are misclassified as “beach.”  Figure 5.2 presents 10 misclassified 

images from both categories. All five “beach” images contain mountain-like regions, and 

all “mountains and glaciers” images contain regions corresponding to a lake or ocean. 

This may be the reason for the classification errors.  

To further evaluate the performance of the proposed method, the same set of 

experiments was tested on Caltech 101 dataset. The results are given in Table 5.3. 

 

           

  

Fig. 5.2: Misclassified images from “beach” and “mountains and glaciers” categories. 
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Table 5.3: Average Classification Accuracy of the Proposed N-SVM, Standard SVM, 

and Fuzzy SVM on Caltech 101 Dataset, Respectively. 

Classifier Average Classification 
Accuracy 

N-SVM 65.9% 

SVM 61.6% 

fuzzy SVM 63.5% 

 

The results demonstrate that the proposed method still performs the best on a larger 

scale dataset. It outperforms both the traditional SVM and fuzzy SVM in terms of the 

average classification accuracy by 4.3% and 2.4%, respectively.    

In summary, the experimental results demonstrate that the improvement of the 

classification accuracy is significant and adequately validates the correctness and 

effectiveness of the proposed reformulated SVM integrated with a neutrosophic set. 

Moreover, as a classification tool, the proposed N-SVM is independent of application. It 

can be applied to all classification problems wherein the traditional SVM is used, and 

theoretically it may achieve better results than the traditional SVM. 

5.3 Evaluation of the Proposed  
      Segmentation Method 

To my knowledge, comparisons of the performance among different image 

segmentation algorithms are usually subjective. To evaluate the effectiveness of the 

proposed segmentation method, the categorization accuracy is adopted as the 

measurement. I compare the classification results of the proposed system with the ones 
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obtained from other segmentation approaches using the same classifiers. Here, the 

unsupervised k-means clustering algorithm is implemented for image segmentation as 

comparison. For fair comparison, all the following steps after segmentation are the same 

for both the k-means clustering and the proposed segmentation method. That is, for the 

regions obtained from each segmentation method, ten N-SVMs are trained respective to 

the weighting function calculated using Eq. (4.23). Table 5.4 gives the classification 

accuracy for the two methods tested on COREL 1000 dataset.  

Table 5.4: Average Classification Accuracy of the Proposed Segmentation 

Algorithm and k-Means Clustering, Respectively. 

Segmentation 
Method 

Average Classification 
Accuracy 

proposed 
algorithm 

87.7% 

k-means 
clustering 

86.1% 

 

The proposed segmentation method achieves a 1.6% improvement over the k-means 

clustering method in the average classification accuracy, which confirms the effect of the 

proposed segmentation algorithm when integrated into the image categorization problem. 

As concluded in [46], DD-SVM has low sensitivity to image segmentation. Thus, 

although the improvement of the accuracy is not that huge, it should demonstrate the 

effectiveness of the proposed segmentation method. The novel selection method in the 

proposed segmentation algorithm ensures that the training dataset contains more pixels 

representing the diverse regions in the image, rather than those representing the 
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homogeneous regions. Therefore, the training dataset obtained in this way carries more 

information than the training dataset generated by random selection, and it gives better 

results of segmentation. Furthermore, better segmentation results lead to better 

classification results in the region-based image categorization problem. 

5.4 Analysis of the Effect of the  
      Unbalanced Dataset 

As discussed in Section 4.1, if the one-against-the-rest strategy is used to solve the 

multi-class problem, the training dataset for N-SVM will be unbalanced. The number of 

samples in the negative class is m-1 times the number of samples in the positive class for 

m categories. To eliminate the unbalance, Eq. (4.23) is proposed as a modification to Eq. 

(4.20) when calculating the center of all the samples Call. Call calculated using Eq. (4.20) 

is the center simply based on the coordinates of the samples. Considering the unbalance 

property of the training dataset, the resulted Call using Eq. (4.23) is the center of all the 

samples regarding to the data distribution in the input space.  

In this section, I analyze the effects of the unbalanced dataset on the classification 

results. Two sets of 10 N-SVMs are designed using Eq. (4.20) and Eq. (4.23), 

respectively. They are trained using the same strategy as in Section 5.1. For each random 

split of the images, the same sets of training data and test data are used in the 

corresponding N-SVM of those two sets. Table 5.5 summarizes the classification results 

for the two sets of N-SVMs on COREL 1000 dataset. 
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Table 5.5: Classification Results of the Proposed N-SVM using Eq. (4.20) and Eq. 

(4.23), Respectively. 

Classifier Average Classification 
Accuracy 

N-SVM using Eq. 
(23) 

87.7% 

N-SVM using Eq. 
(20) 

86.7% 

 

The results show that the N-SVM generated using the modified definition of Call 

achieves a better classification accuracy compared with the N-SVM generated using Eq. 

(4.20). In Eq. (4.20), for the unbalanced dataset wherein the number of negative samples 

is multiple times of the number of positive samples, Call is very close to the center of 

negative samples C-. For a positive sample, its neutrosophic component ij approaches fj as 

observed from Eq. (4.21).  As a result, the weighting function gj of positive samples is 

almost only composed of tj. Thus, the performance of the weighting function is weakened 

due to the unbalance of the training dataset. With the modified definition in Eq. (4.23), 

even for the unbalanced dataset, Call is still in the middle of the center of positive samples 

C+ and the center of negative samples C-. The neutrosophic components associated with 

positive samples keep their attributes and contribute equally to weighting function gj. 

Weighting function gj acts as designed and reduces the effect of outliers. The experiment 

results also confirm this analysis. As discussed in Section 5.2, most of the 

misclassifications result from the semantic and visual similarity between the “beach” 

category and “mountains and glaciers” category, which is irrelevant to the unbalance 
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property of the dataset. Thus, although the improvement of the accuracy is 1%, it does 

validate that the modified definition of Call helps eliminate the effects of unbalanced 

dataset. 
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CHAPTER 6 

CONCLUSION 

Neutrosophic logic is a relatively new logic that is a generalization of fuzzy logic. In 

this dissertation, for the first time, it is applied to the field of classifiers. The proposed 

classifier N-SVM is then evaluated under an image categorization system to validate its 

effectiveness. The main contributions are: 

1. This dissertation is a brand new application of neutrosophic logic in pattern 

recognition. A novel reformulated SVM based on a neutrosophic set is proposed. 

Each input sample is associated with three neutrosophic components. A weighting 

function is designed based on the neutrosophic components to evaluate the degree of 

importance for each input in the training procedure. After integrating the proposed 

weighting function into the reformulated SVM, the achieved novel classifier N-SVM 

helps reduce the effects of outliers in the training samples. Experimental results 

show that the proposed classifier outperforms both the traditional SVM and fuzzy 

SVM in terms of classification accuracy under the discussed image categorization 

problem. Moreover, as a classification tool, the proposed N-SVM is independent of 

application. It can be applied to all the classification problems wherein the 

traditional SVM is used, and theoretically it may obtain better results than the 

traditional SVM.  

2. An effective image segmentation method using a hierarchical SOM is adopted. To 

provide the optimal set of training samples for the HSOM, a novel approach to select 

training samples based on the homogeneity measure is proposed. The selection 
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approach ensures that the training dataset contains more pixels representing the 

diverse regions in the image, rather than those representing the homogeneous regions. 

The training dataset achieved in this way carries more information than the one 

obtained by random selection and leads to better segmentation results. The 

experimental results show that the proposed segmentation technique achieves higher 

classification accuracy in the categorization system than the unsupervised k-means 

clustering algorithm, which validates the effectiveness of the proposed segmentation 

method.  

3. One-against-the-rest is a common technique to solve the multi-class problem 

encountered in most image categorization applications. As a result, the training 

dataset for N-SVM tends to be unbalanced. To eliminate the unbalance, a modified 

formula considering the sample distribution in the input space is proposed to 

calculate the center of all samples Call. The experiment results validate that the 

modified definition of Call helps eliminate the effects of an unbalanced dataset. 

In summary, the application of neutrosophic logic to classifiers discussed in this 

dissertation has demonstrated good performance, as expected. By examining the 

experimental results, several aspects could be studied in the future. The future work for 

this dissertation is described as follows:  

1. Neutrosophic logic could be applied to other kinds of classifiers such as neutral 

network, decision tree or the deep SVM in [47], etc. Moreover, it could also be 

applied to other research fields. 
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2. As discussed in Section 5.2, most of the classification errors in the experiment 

resulted from the semantic and visual similarity between the “beach” category and 

“mountains and glaciers” category. This phenomenon is very common in image 

categorization problems wherein class labels are associated with images. In fact, 

such keywords are often semantically related to respective regions rather than the 

entire image. Thus, in future work, one could associate keywords with regions in an 

image, and model the image categorization as a multi-label, multi-instance learning 

system to solve the problem and improve the classification accuracy. 
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