159 research outputs found

    Solving Combinatorial Optimization Problems Using Genetic Algorithms and Ant Colony Optimization

    Get PDF
    This dissertation presents metaheuristic approaches in the areas of genetic algorithms and ant colony optimization to combinatorial optimization problems. Ant colony optimization for the split delivery vehicle routing problem An Ant Colony Optimization (ACO) based approach is presented to solve the Split Delivery Vehicle Routing Problem (SDVRP). SDVRP is a relaxation of the Capacitated Vehicle Routing Problem (CVRP) wherein a customer can be visited by more than one vehicle. The proposed ACO based algorithm is tested on benchmark problems previously published in the literature. The results indicate that the ACO based approach is competitive in both solution quality and solution time. In some instances, the ACO method achieves the best known results to date for the benchmark problems. Hybrid genetic algorithm for the split delivery vehicle routing problem (SDVRP) The Vehicle Routing Problem (VRP) is a combinatory optimization problem in the field of transportation and logistics. There are various variants of VRP which have been developed of the years; one of which is the Split Delivery Vehicle Routing Problem (SDVRP). The SDVRP allows customers to be assigned to multiple routes. A hybrid genetic algorithm comprising a combination of ant colony optimization, genetic algorithm, and heuristics is proposed and tested on benchmark SDVRP test problems. Genetic algorithm approach to solve the hospital physician scheduling problem Emergency departments have repeating 24-hour cycles of non-stationary Poisson arrivals and high levels of service time variation. The problem is to find a shift schedule that considers queuing effects and minimizes average patient waiting time and maximizes physicians’ shift preference subject to constraints on shift start times, shift durations and total physician hours available per day. An approach that utilizes a genetic algorithm and discrete event simulation to solve the physician scheduling problem in a hospital is proposed. The approach is tested on real world datasets for physician schedules

    Metaheuristics For Solving Real World Employee Rostering and Shift Scheduling Problems

    Get PDF
    Optimising resources and making considerate decisions are central concerns in any responsible organisation aiming to succeed in efficiently achieving their goals. Careful use of resources can have positive outcomes in the form of fiscal savings, improved service levels, better quality products, improved awareness of diminishing returns and general output efficiency, regardless of field. Operational research techniques are advanced analytical tools used to improve managerial decision-making. There have been a variety of case studies where operational research techniques have been successfully applied to save millions of pounds. Operational research techniques have been successfully applied to a multitude of fields, including agriculture, policing, defence, conservation, air traffic control, and many more. In particular, management of resources in the form of employees is a challenging problem --- but one with the potential for huge improvements in efficiency. The problem this thesis tackles can be divided into two sub-problems; the personalised shift scheduling & employee rostering problem, and the roster pattern problem. The personalised shift scheduling & employee rostering problem involves the direct scheduling of employees to hours and days of week. This allows the creation of schedules which are tailored to individuals and allows a fine level over control over the results, but with at the cost of a large and challenging search space. The roster pattern problem instead takes existing patterns employees currently work, and uses these as a pool of potential schedules to be used. This reduces the search space but minimises the number of changes to existing employee schedules, which is preferable for personnel satisfaction. Existing research has shown that a variety of algorithms suit different problems and hybrid methods are found to typically outperform standalone ones in real-world contexts. Several algorithmic approaches for solving variations of the employee scheduling problem are considered in this thesis. Initially a VNS approach was used with a Metropolis-Hastings acceptance criterion. The second approach utilises ER&SR controlled by the EMCAC, which has only been used in the field of exam timetabling, and has not before been used within the domain of employee scheduling and rostering. ER&SR was then hybridised with our initial approach, producing ER&SR with VNS. Finally, ER&SR was hybridised into a matheuristic with Integer Programming and compared to the hybrid's individual components. A contribution of this thesis is evidence that the algorithm ER&SR has merit outside of the original sub-field of exam scheduling, and can be applied to shift scheduling and employee rostering. Further, ER&SR was hybridised and schedules produced by the hybridisations were found to be of higher quality than the standalone algorithm. In the literature review it was found that hybrid algorithms have become more popular in real-world problems in recent years, and this body of work has explored and continued this trend. Problem formulations in this thesis provide insight into creating constraints which satisfy the need for minimising employee dissatisfaction, particularly in regards to abrupt change. The research presented in this thesis has positively impacted a multinational and multibillion dollar field service operations company. This has been achieved by implementing a variety of techniques, including metaheuristics and a matheuristic, to schedule shifts and roster employees over a period of several months. This thesis showcases the research outputs by this project, and highlights the real-world impact of this research

    Integration of operations research and artificial intelligence approaches to solve the nurse rostering problem

    Get PDF
    Please note, incorrect date on spine and title page (2016). Degree was awarded in 2019.Nurse Rostering can be defined as assigning a series of shift sequences (schedules)to several nurses over a planning horizon according to some limitations and preferences. The inherent benefits of generating higher-quality rosters are a reduction in outsourcing costs and an increase in job satisfaction of employees.This problem is often very dicult to solve in practice, particularly by applying a sole approach. This dissertation discusses two hybrid solution methods to solve the Nurse Rostering Problem which are designed based on Integer Programming,Constraint Programming, and Meta-heuristics. The current research contributes to the scientific and practical aspects of the state of the art of nurse rostering. The present dissertation tries to address two research questions. First, we study the extension of the reach of exact method through hybridisation. That said, we hybridise Integer and Constraint Programming to exploit their complementary strengths in finding optimal and feasible solutions, respectively. Second,we introduce a new solution evaluation mechanism designed based on the problem structure. That said, we hybridise Integer Programming and Variable Neighbourhood Search reinforced with the new solution evaluation method to efficiently deal with the problem. To benchmark the hybrid algorithms, three different datasets with different characteristics are used. Computational experiments illustrate the effectiveness and versatility of the proposed approaches on a large variety of benchmark instancesNurse Rostering can be defined as assigning a series of shift sequences (schedules)to several nurses over a planning horizon according to some limitations and preferences. The inherent benefits of generating higher-quality rosters are a reduction in outsourcing costs and an increase in job satisfaction of employees.This problem is often very dicult to solve in practice, particularly by applying a sole approach. This dissertation discusses two hybrid solution methods to solve the Nurse Rostering Problem which are designed based on Integer Programming,Constraint Programming, and Meta-heuristics. The current research contributes to the scientific and practical aspects of the state of the art of nurse rostering. The present dissertation tries to address two research questions. First, we study the extension of the reach of exact method through hybridisation. That said, we hybridise Integer and Constraint Programming to exploit their complementary strengths in finding optimal and feasible solutions, respectively. Second,we introduce a new solution evaluation mechanism designed based on the problem structure. That said, we hybridise Integer Programming and Variable Neighbourhood Search reinforced with the new solution evaluation method to efficiently deal with the problem. To benchmark the hybrid algorithms, three different datasets with different characteristics are used. Computational experiments illustrate the effectiveness and versatility of the proposed approaches on a large variety of benchmark instance

    The General Combinatorial Optimization Problem: Towards Automated Algorithm Design

    Get PDF
    This paper defines a new combinatorial optimisation problem, namely General Combinatorial Optimisation Problem (GCOP), whose decision variables are a set of parametric algorithmic components, i.e. algorithm design decisions. The solutions of GCOP, i.e. compositions of algorithmic components, thus represent different generic search algorithms. The objective of GCOP is to find the optimal algorithmic compositions for solving the given optimisation problems. Solving the GCOP is thus equivalent to automatically designing the best algorithms for optimisation problems. Despite recent advances, the evolutionary computation and optimisation research communities are yet to embrace formal standards that underpin automated algorithm design. In this position paper, we establish GCOP as a new standard to define different search algorithms within one unified model. We demonstrate the new GCOP model to standardise various search algorithms as well as selection hyper-heuristics. A taxonomy is defined to distinguish several widely used terminologies in automated algorithm design, namely automated algorithm composition, configuration and selection. We would like to encourage a new line of exciting research directions addressing several challenging research issues including algorithm generality, algorithm reusability, and automated algorithm design

    Novel heuristic and metaheuristic approaches to the automated scheduling of healthcare personnel

    Get PDF
    This thesis is concerned with automated personnel scheduling in healthcare organisations; in particular, nurse rostering. Over the past forty years the nurse rostering problem has received a large amount of research. This can be mostly attributed to its practical applications and the scientific challenges of solving such a complex problem. The benefits of automating the rostering process include reducing the planner’s workload and associated costs and being able to create higher quality and more flexible schedules. This has become more important recently in order to retain nurses and attract more people into the profession. Better quality rosters also reduce fatigue and stress due to overwork and poor scheduling and help to maximise the use of leisure time by satisfying more requests. A more contented workforce will lead to higher productivity, increased quality of patient service and a better level of healthcare. Basically stated, the nurse rostering problem requires the assignment of shifts to personnel to ensure that sufficient employees are present to perform the duties required. There are usually a number of constraints such as working regulations and legal requirements and a number of objectives such as maximising the nurses working preferences. When formulated mathematically this problem can be shown to belong to a class of problems which are considered intractable. The work presented in this thesis expands upon the research that has already been conducted to try and provide higher quality solutions to these challenging problems in shorter computation times. The thesis is broadly structured into three sections. 1) An investigation into a nurse rostering problem provided by an industrial collaborator. 2) A framework to aid research in nurse rostering. 3) The development of a number of advanced algorithms for solving highly complex, real world problems

    The Application of Bayesian Optimization and Classifier Systems in Nurse Scheduling

    Get PDF
    Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each persons assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems

    'The application of Bayesian Optimization and Classifier Systems in Nurse Scheduling'

    Get PDF
    Abstract. Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person's assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems
    • …
    corecore