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ABSTRACT 

This dissertation presents metaheuristic approaches in the areas of genetic algorithms and 

ant colony optimization to solve combinatorial optimization problems. 

 

Ant colony optimization for the split delivery vehicle routing problem 

An Ant Colony Optimization (ACO) based approach is presented to solve the Split 

Delivery Vehicle Routing Problem (SDVRP). SDVRP is a relaxation of the Capacitated 

Vehicle Routing Problem (CVRP) wherein a customer can be visited by more than one 

vehicle. The proposed ACO based algorithm is tested on benchmark problems previously 

published in the literature.  The results indicate that the ACO based approach is 

competitive in both solution quality and solution time. In some instances, the ACO 

method achieves the best known results to date for the benchmark problems. 

 

Hybrid genetic algorithm for the split delivery vehicle routing problem (SDVRP)   

The Vehicle Routing Problem (VRP) is a combinatory optimization problem in the field 

of transportation and logistics. There are various variants of VRP which have been 

developed of the years; one of which is the Split Delivery Vehicle Routing Problem 

(SDVRP). The SDVRP allows customers to be assigned to multiple routes. A hybrid 

genetic algorithm comprising a combination of Ant Colony Optimization (ACO), Genetic 

Algorithm (GA), and heuristics is proposed and tested on benchmark SDVRP test 

problems. 

 

Genetic algorithm approach to solve the hospital physician scheduling problem 

Emergency departments have repeating 24-hour cycles of non-stationary Poisson arrivals 

and high levels of service time variation. The problem is to find a shift schedule that 

considers queuing effects and minimizes average patient waiting time and maximizes 

physicians’ shift preference subject to constraints on shift start times, shift durations and 

total physician hours available per day.  An approach that utilizes a genetic algorithm and 

discrete event simulation to solve the physician scheduling problem in a hospital is 

proposed.  The approach is tested on real world datasets for physician schedules. 
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CHAPTER I 

INTRODUCTION  
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1. Chapter Abstract 

In this chapter, a brief overview on metaheuristics is presented. Since, this dissertation 

focuses on Genetic Algorithms and Ant Colony Optimization, a detailed overview of 

both the metaheuristics is provided in the chapter.  

2. Metaheuristics Overview 

A large number of well-known numerical combinatorial programming, linear 

programming (LP), and nonlinear programming (NLP) based algorithms are applied to 

solve a variety of optimization problems. In small and simple models, these algorithms 

were always successful in determining the global optimum. But in reality, many 

optimization problems are complex and complicated to solve using algorithms based on 

LP and NLP methods. Combinatorial optimization (Osman and Kelly, 1996a) can be 

defined as a mathematical study of finding an optimal arrangement, grouping, ordering, 

or selection of discrete objects usually finite in number. A combinatory optimization 

problem can be either easy or hard. We call the problem easy if we can develop an 

efficient algorithm to solve for optimality in a polynomial time. If an efficient algorithm 

does not exist to solve for optimality in a polynomial time, we call the problem hard. An 

optimal algorithm to compute optimality for hard problems requires a large number of 

computational steps which grows exponentially with the problem size.  The 

computational drawbacks of such algorithms for complex problems have led researchers 

to develop metaheuristic algorithms to obtain a (near) optimal solution.  

 

The term "metaheuristic” was first coined by Fred Glover (1986).  Generally, it is applied 

to problems classified as NP-Hard or NP-Complete but could also be applied to other 

combinatorial optimization problems. Metaheuristics are among the best known methods 

for a good enough and cheap (i.e., minimal computer time) solution for NP-Hard or NP-

Complete problems. Some of the typical examples where metaheuristics are used are the 

traveling salesman problem (TSP), scheduling problems, assignment problems, and 

vehicle routing problems (VRP). Such types of problems falls under combinatory 

optimization problems. According to Osman and Laporte (1996b), a metaheuristic 
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algorithm is defined as: "An iterative generation process which guides a subordinate 

heuristic by combining intelligently different concepts for exploring and exploiting the 

search space, learning strategies are used to structure information in order to find 

efficiently near-optimal solutions." According to Blum and Roli (2003a), metaheuristics 

are strategies that guide a search process which explore the search space to find a (near-) 

optimal solution. Metaheuristics are not problem-specific and may make use of domain-

specific knowledge in the form of heuristics. Some of the well known metaheuristic 

approaches are genetic algorithm, simulated annealing, Tabu search, memetic algorithm, 

ant colony optimization, particle swarm optimization, etc. The following sections provide 

an overview of Genetic Algorithms and Ant Colony Optimization, which are relevant to 

this dissertation. 

3. Genetic Algorithms  

Genetic algorithms are population based search algorithms to solve combinatorial 

optimization problems. It was first proposed by John Holland (1989).  They generate 

solutions for optimization problem based on theory of evolution using concepts such as 

reproduction, crossover and mutation.  The fundamental concept of a genetic algorithm 

states a set of conditions to achieve global optima. These conditions describe the 

reproduction process and ensure that better solution remain in future generations and 

weaker solutions be eliminated from future generations. This is similar to the Darwin’s 

survival of fittest concept in the theory of evolution. A typical genetic algorithm (GA) 

consists of the following steps (Holland, 1989): 

Step 1:  Generate an initial population of N solutions. 

Step 2:  Evaluate each solution of the initial population using a fitness 

function/objective function.  

Step 3:  Select solutions as parents for the new generation based on probability 

or randomness.  The best solutions (in terms of fitness or objective) 

have a higher probability of being selected than poor solutions.  
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Step 4:  Use the parent solutions from Step 3 to produce the next generation 

(called offspring). This process is called as crossover. The offspring 

are placed in the initial set of solutions replacing the weaker solutions. 

Step 5:  Randomly alter the new generation by mutation. Usually this is done 

using a mutation probability. 

Step 6:  Repeat Steps 2 through 5 until a stopping criteria is met.  

A flowchart of a simple GA is shown in Figure 1.1 below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Genetic Algorithm Flowchart 

 
A genetic algorithm search mechanism consists of three phases:  (1) Evaluation of fitness 

function of each solution in the population, (2) selection of parent solutions based on 

fitness values, and (3) application of genetic operations such as crossover and mutation to 

generate new offspring. 
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The initial population in genetic algorithm is normally generated randomly but heuristic 

approaches can also be applied to get a good set of initial solutions for the initial 

population.  Genetic operations involve crossover and mutation.  In a crossover 

operation, one or two points in the parent string are cut at random and the properties are 

exchanged between two parents to generate two or four offspring.  For example, consider 

two binary parents represented by Parent 1: 1-0-0-1 and Parent 2: 1-1-0-0.  A crossover 

can occur at any point(s) between each element of the parent.  Based on probability (i.e., 

generating a random number between 0 and 1), a crossover point is chosen.  For example, 

if the crossover point was after the second position for the above parents.  Then, the two 

new offspring are generated as follows:  Offspring 1: 1-0-0-0 and Offspring 2: 1-1-0-1.  

These offspring inherits certain characteristics from their parents. 

 

There are various crossover techniques that are described in literature such as one-point 

crossover, two-point crossover, multi point crossover, variable to variable crossover and 

uniform crossover (HasancËebi and Erbatur, 2000). In one-point crossover, a single point 

is selected in the parent string and crossover operation is performed.  In two-point 

crossover, two points are selected in the parent string and crossover is performed 

accordingly.  In multi point crossover, more than two points are selected randomly and 

crossover is performed. In variable to variable crossover, the parents are divided into 

substrings and a one point crossover is performed for each substring. In uniform 

crossover, randomly generated crossover masks are first created. Then for the child, 

wherever there is one is the mask, the genes are copied from parent 1 and for zeros, the 

genes are copied from parent 2.The second child is created either by complementing the 

original mask or by creating a new crossover mask. 

 

Once the crossover operations performed, mutation is done to prevent the genetic 

algorithm from being trapped in local optima (Osman and Kelly, 1996a). But the 

mutation probability is kept low to avoid delay in convergence to global optima.  In the 

mutation stage, again using the concept of probability, an offspring will be selected and 

all or some of its positional values will be changed.  For example, consider applying 
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mutation on Offspring 1: 1-0-0-0.  After applying mutation, the new Offspring 1:  0-1-1-1 

will be formed.  There is also a concept called elitism in genetic algorithm.  If elitism is 

used, the fittest parent(s) are directly copied to the new population. 

 

Problems for generating feasible offspring are problem specific and hence, the 

application of crossover and mutation operators also differs.  Also, due to constraints of a 

particular problem, pure genetic algorithms cannot be applied to obtain a feasible set of 

solutions.  In such cases, to ensure feasibility, additional procedures are used to ensure 

feasibility based on the specific problem's constraints. 

 

Over a period of time, a lot of variants of genetic algorithms have been developed. 

Adaptive Genetic Algorithms (AGA) (Srinivas & Patnaik, 1994) is one of the most 

significant variant of genetic algorithm.  In a normal GA, the crossover and mutation 

probabilities are fixed.  The selection of this probability is significant because it decides 

on the convergence rate and the accuracy of the solution.  Usually crossover probabilities 

are fixed between 0.6 and 0.8 and the mutation probability is between 1-3%.  An AGA in 

turn dynamically changes the crossover and mutation probability based on the fitness 

value of the new generation.  This real time manipulation of these probabilities aids in 

better convergence and maintaining a diverse population.  Some of the recent application 

of adaptive genetic algorithm are bilateral multi-issue simultaneous bidding negotiation 

(2008) and designing and optimizing phase plates for shaping partially coherent beams 

(March 2010).  Another variant is the multiobjective genetic algorithm, which is 

explained in the section 3.1. 

 

Some of the most recent applications of genetic algorithms are in deployment of security 

guards in a company (Dec 2010a), optimizing the design of spur gears (2010c), electric 

voltage stability assessment (2010a), capacitated plant location problem (2010b), 

evaluation of RFID applications (Nov 2010b), supply chain management to coordinate 

production and distribution (Dec 2010b), and forecasting of energy consumption (Nov 

2010a). 
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3.1 Solving Multiobjective Optimization Problems with Genetic Algorithms 

In the real world, there are an infinite number of problems that require more than one 

objective to be simultaneously satisfied under a given set of constraints.  Such problems 

fall under the category of multiobjective optimization problems.  Multiobjective 

optimization problems can be found in various fields:  oil and gas industries, finance, 

aircraft, and automobile design.  

 

Consider a minimization problem consisting of N objectives with a series of constraints 

and bounds on decision variables. Given an n dimensional decision variables vector, the 

goal is to find a vector in solution space that minimizes the given set of N objective 

function (2002a, 2006). Examples of the objectives to be simultaneously solved would be 

maximizing profit while minimizing costs, maximizing the fuel efficiency but not 

compromising on performance.  In certain cases, objective functions may be optimized 

independently, but generally objectives must be simultaneously optimized to reach a 

reasonable solution that compromises the multiple objectives.  Instead of a single solution 

that simultaneously minimizes each objective function, the aim of a multiobjective 

problem is to determine a set of non-dominated solutions, known as Pareto-optimal (PO) 

solutions (2002a).  A Pareto optimal set is a set of solutions that are non-dominated with 

respect to each other.  While traversing from one solution to another in a Pareto set, there 

is always a certain amount of compromise in one objective(s) with respect to 

improvement in other objective(s).  Finding a set of such solutions and then comparing 

them with one another is the primary goal of solving multiobjective optimization 

problems.   

 

In the real world, it is impossible to optimize all the objective functions simultaneously.  

A traditional multiobjective optimization approach aggregates together (e.g., by 

normalizing, using weights) various objectives to form a single overall fitness function, 

which can then be treated by classical techniques such as simple GAs, multiple objective 

linear programming (MOLP), random search, etc.  But using such aggregate approaches 

produces results which are sensitive to the weights selected.  Hence, the goal of a 
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multiobjective optimization problem is the find a set of solutions, each of which satisfies 

all the objective functions at an acceptable level and are non-dominated by other 

solutions.  These set of solutions are called Pareto optimal set and the corresponding 

objective function values are called Pareto front (1985a).  The size of the Pareto optimal 

set depends on the size of a problem and hence, it is difficult to find the entire Pareto-

Optimal set for larger problems. Also, in combinatory optimization problems, it generally 

impossible to compute the evidence of a Pareto optimal set. 

 

There are numerous approaches provided in the literature to solve multiobjective 

optimization problems.  One approach is to combine the individual objective functions 

into a single composite function by weighting the objectives with a weight vector (2006).  

The results obtained from this approach largely depend on the weights selected and 

proper selecting of weights can has a major impact on the final solution.  The primary 

drawback of this approach is that instead of returning a set of solutions, it returns a single 

solution.  Another approach is to determine an entire Pareto optimal solution set, or a 

representative subset, and is a preferred approach to solve real world multiobjective 

optimization solutions (2006). Some of the most well known operations research 

approaches to solve multiobjective problems are efficient frontier, goal programming, 

game theory, Gradient Based/Hill Climbing, Q-Analysis, and compromise programming 

(2002b).  

 

Conventional optimization techniques such as simplex-based methods and simulated 

annealing are not designed to solve problems with multiple objectives.  In such cases, 

multiobjective problems have to be reformulated as a single-objective optimization 

problem which results in a single solution per run of the optimization solver.  However, 

evolutionary algorithms (EAs) such as genetic algorithms can be applied to solve such 

problems.  Genetic algorithms are population based search algorithms and can be used to 

solve multiobjective optimization problems. Genetic Algorithms can solve such problems 

by using specialized fitness functions and introducing methods to promote solution 

diversity (2006).  
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When applying genetic algorithms (GA) to a problem with a single objective function, we 

randomly select a set of individuals (chromosomes) to form the initial population.  We 

then evaluate their fitness functions.  Using this initial population, we then create a new 

population by incorporating mutation and crossover operations and then, repeat the 

process of fitness evaluation and crossover-mutation process over many generations with 

a hope of converging to the global optimum.  In traditional single-objective GA approach 

to solve multiobjective problems, we can combine the individual objective functions into 

a single composite function by weighting the objectives with a weight vector.  Another 

approach is to make most of the objectives as varying constraints and optimize just the 

main objective.  Both these approaches require multiple runs to generate Pareto-optimal 

solutions consecutively.  But the ability of GA to simultaneously search different regions 

of a solution space makes it possible for a generic single-objective GA to be modified 

into a multiobjective GA to find a set of Pareto optimal solutions in one run.  In addition, 

most multiobjective GAs do not require the user to prioritize, scale, or weight objectives.  

Therefore, GAs is one of the most frequently used metaheuristics to solve multiobjective 

optimization problems.  In fact, 70% of the metaheuristics approaches used to solve 

multiobjective optimization problems uses genetic algorithms (2002b). 

 

The fundamental goals in multiobjective genetic algorithm design are: 

• Directing the search towards the Pareto set (fitness assignment and selection), 

• Maintaining a diverse set of Pareto solutions(diversity), and 

• Retaining the best chromosomes in future generations (elitism) (2004b) with 

computational speed being another important criterion.  

 

Some of the well known variants of multiobjective genetic algorithms are listed below: 

• The first multiobjective genetic algorithm called vector evaluated genetic 

algorithm (VEGA) was developed by Schaffer (1985b).  It mainly focused on the 

fitness selection and did not address the issues related with maintaining diversity 

and elitism.  
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• Multiobjective Genetic Algorithm (MOGA) (1993a; 1993b) used Pareto ranking 

and fitness sharing by niching for fitness selection and maintenance of diversity 

respectively. 

• Hajela & Lin’s Weighting-based Genetic Algorithm (HLGA) (1992b) is based on 

assigning weights to each normalized objectives.  

• Non-dominated Sorting Genetic Algorithm (NSGA) (1995) in which the fitness 

assignment was based on Pareto fitness sharing and diversity was maintained by 

niching.  

• Niched Pareto Genetic Algorithm (NPGA) (June 1994) in which diversity is 

based on tournament selection criteria. 

• Pareto-Archived Evolution Strategy (PAES) (1999b) in which Pareto dominance 

rule is used to replace a parent in the new population. 

4. Ant Colony Optimization 

Ant Colony Optimization (ACO) is a metaheuristic approach proposed by Dorigo 

(1992a) in 1992 to solve combinatory optimization problems.  Inspired by the behavior of 

ants forming pheromone (e.g., a trace of a chemical substance that can be smelled by 

other ants (Rizzoli et al. , 2004a)) trails in search of food, ACO belongs to a class of 

algorithms which can be used to obtain good enough solutions in reasonable 

computational time for combinatory optimization problems.  Ants communicate with one 

another by depositing pheromones.  Initially in search of food, ants wander randomly and 

upon finding a food source, return to their colony.  On their way back to the colony, they 

deposit pheromones on the trail.  Other ants then tend to follow this pheromone trail to 

the food source and on their way back may either take a new trail, which might be shorter 

or longer than the previous trail, or would come back along the previous laid pheromone 

trail.  Also, on their way back, the other ants deposit pheromones on the trail.  

Pheromones have a tendency to evaporate with time.  Hence, over a period of time, the 

shortest trail (path) from the food source to the colony would become more attractive and 

have a larger amount of pheromone deposited as compared with other trails.  A pictorial 

explaining of the above defined steps is shown in Figure 1.2 below. Initially, a single ant, 
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called "blitz," goes from the colony to the food source via the blue pheromone trail.  As 

time progresses, more and more ants either follow this blue trail or form their own shorter 

trail (red and orange trail).  Eventually, the shortest trail (red) becomes more attractive 

and is taken by all the ants from the colony to the food source and the other trails 

evaporate in a period of time (2004a). 

 

Figure 1.2: Ant Colony Optimization 

 

4.1 ACO Algorithm 

The ACO replicates the foraging behavior of ants to construct a solution.  The main 

elements in an ACO are ants which independently build solutions to the problem.  For an 

ant k, the probability of it visiting a node j after visiting node i, depends on the two 

attributes namely:   

• Attractiveness (����:  It is a static heuristic value that never changes.  In the case 

of VRP, it is calculated as inverse of arc length for shortest path problems and for 

other variants, it can depend on other parameters besides the arc length (e.g., in 

Food Source 

Ant Colony 
(Nest) 

Pheromone 
Trails 
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VRPTW it also depends on the current time and the time window limits of the 

customers to be visited (2004a). 

• Pheromone trails�����:  It is the dynamic component which changes with time.  

It is used to measure the desirability of insertion of an arc in the solution.  In other 

words, if an ant finds a strong pheromone trail leading to a particular node, that 

direction will be more desirable than other directions.  The trail desirability 

depends on the amount of pheromone deposited on a particular arc (2004a). 

 

The probability of an unvisited node j being selected after node i is according to a 

random-proportional rule (2004a): 

��	
��� � 
���������
�������∑ 
���������
������� �����           �� � !�  
                                                                 �". "�                                                            

 

Where $�	 � 1/'�	 , where '�	 is the length of arc, ( )*' + are which determine the 

relative influence of pheromone trail and heuristic information respectively, !� 
 is the 

feasible neighborhood of k (i.e., nodes not yet visited by k). 

 

The pheromone information on a particular arc (i,j) is updated in the pheromone matrix 

using the following equation: ,�	�� - 1�  �  �1 . /�,�	  - ∑ ∆1�23 ,�	
(t)                                                                   �". 4� 

 
Where 0 6 / 6 1 the pheromone trail evaporation rate and m is the number of ants. Trail 

evaporation also occurs after each iteration, usually by exponential decay to avoid 

locking into local minima (2004a).  

 

After each iteration, the best solution found is used to update the pheromone trail.  This 

procedure is repeated again and again until a terminating condition is met.  In ACO, the 

pheromone trail is updated locally during solution construction and globally at the end of 

construction phase.  An interesting aspect of pheromone trail updating is that every time 
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an arc is visited, its value is diminished which favors the exploration of other non visited 

nodes and diversity in the solution (2004a). 

 

There is an another optional component called Daemon actions which are used to 

perform centralized actions such as calling a local search procedure or collect global 

information to deposit addition pheromones on edges from a non-local perspective. 

Pheromone updates performed by daemons are called off-line pheromone updates 

(2004a). 

 

The ACO pseudo-code for ACO is described below: 

 Procedure ACO 

  While (terminating condition is not met) 

  Generate_solutions() 

  Pheromone_Update() 

  Daemon_Actions() // this is optional 

  End while 

 End procedure 

Some of the more recent application where ACO is applied are in multimode resource-

constrained project scheduling problem (MRCPSP) with the objective of minimizing 

project duration (Zhang, 2012a), inducing decision trees (Otero et al., 2012b), wherein 

traditional ACO algorithm is developed combining the traditional decision tree induction 

algorithm and ACO,  and Robot path planning (Bai et al., 2012c).  

5. Dissertation Organization 

The rest of the dissertation is organized as follows.  Chapter II discusses literature, an ant 

colony optimization procedure, and computational results for the split delivery vehicle 

routing problem. Chapter III discusses literature, a hybrid genetic algorithm procedure, 

and computational results for the split delivery vehicle routing problem. Chapter IV 

discusses literature and a genetic algorithm approach to solve a specific hospital 

physician scheduling problem. Summary and future works are presented in Chapter V.  
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Also, references for each chapter of the dissertation are provided at the end of each 

chapter. 
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Publication Statement 

This paper is a joint work between Gautham P. Rajappa, Dr. Joseph H. Wilck, and Dr. 

John E. Bell. Currently, we are working on the paper for publication. To the best of our 

knowledge, ACO has never been applied to SDVRP and hence, we intend to publish this 

paper in near future.  

Chapter Abstract  

An Ant Colony Optimization (ACO) based approach is presented to solve the Split 

Delivery Vehicle Routing Problem (SDVRP).  SDVRP is a relaxation of the Capacitated 

Vehicle Routing Problem (CVRP) wherein a customer can be visited by more than one 

vehicle.  The proposed ACO based algorithm is tested on benchmark problems 

previously published in the literature.  The results indicate that the ACO based approach 

is competitive in both solution quality and solution time.  In some instances, the ACO 

method achieves the best known results to date for some benchmark problems. 

1. Introduction 

The Vehicle Routing Problem (VRP) is a prominent problem in the fields of logistics and 

transportation.  With an objective to minimize the delivery cost of goods to a set of 

customers from depot(s), numerous variants of the VRP have been developed and studied 

over the years.  One such variant is the Split Delivery Vehicle Routing Problem 

(SDVRP) which is a relaxation of the Capacitated Vehicle Routing Problem (CVRP).  In 

the case of a CVRP, each customer is served by only one vehicle, whereas in SDVRP, the 

customer demand can be split between vehicles.  For example, consider three customers 

each with a demand of 100 served by vehicle with a capacity of 150.  In the case of the 

CVRP, three vehicles are required but in the case of SDVRP, since the customer demand 

can be split amongst multiple vehicles, only two vehicles are required to fulfill the 

customer demand.  SDVRP was first developed by Dror and Trudeau (1989; 1990).  They 

showed that if the demand is relatively low compared to the vehicle capacity and the 

triangular inequality holds, an optimal solution exists in the SDVRP in which two routes 

cannot have more than one common customer.  In addition, it was proven that the 
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SDVRP is NP-hard and has potential in savings in terms of the distance traveled as well 

as the number of vehicles used.  

Over the past few years, several metaheuristics such as Genetic Algorithms and Tabu 

Search were applied to solve SDVRP.  However, to the best of my knowledge, no journal 

article has applied and experimentally tested the ability of the ACO algorithm on SDVRP 

instances.  Hence, I developed an ACO for SDVRP and test the capability of my 

algorithm on benchmark test problems.  

 

The rest of the chapter is organized as follows:  Section 2 and Section 3 provide an 

overview of SDVRP and ACO algorithm respectively.  Computational experiments are 

described in Section 4.  Conclusions and future work are summarized in Section 5. 

2. SDVRP Problem Formulation and Benchmark Data Sets 

In this section, I present the problem formulation and discuss the relevant literature for 

SDVRP. 

 

According to Aleman et al. (2010b), the SDVRP is defined on an undirected graph G = 

(V ,E) where V  is the set of n + 1 nodes of the graph and E = {(i, j ) : i, j 7 V, i <j} is the 

set of edges connecting the nodes .  Node 0 represents a depot where a fleet M  of 

identical vehicles with capacity Q are stationed, while the remaining node set N = {1, . . . 

, n} represents the customers.  A non-negative cost, usually a function of distance or 

travel time, cij is associated with every edge (i, j).  Each customer i 7 N has a demand of 

qi units.  The optimization problem is to determine which customers are served by each 

vehicle and what route the vehicle will follow to serve those assigned customers, while 

minimizing the operational costs of the fleet, such as travel distance, gas consumption, 

and vehicle depreciation.  The most frequently used formulations for SDVRP found in 

literature are from Dror and Treadeau (1990), Frizzell and Giffin (1992b), and Dror et al. 

(1994). 
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I use the SDVRP flow formulation from Wilck and Rajappa (2010c) which is given 

below.  This formulation assumes that cij satisfies the triangle inequality and that exactly 

the minimum number of vehicle routes, , are used.  The formulation does not assume 

that distances are symmetric. 

 

Indexed Sets: 

 ; node index ; 1 is the depot 

; node index 

; route index 

 

Parameters: 

:  The number of vehicle routes 

:  The number of nodes 

:  The vehicle capacity 

:  The cost or distance from node  to node  

:  The demand of customer , where . 

 

Decision Variables: 

:  A binary variable that is one when arc  is traversed on route ; zero otherwise 

:  Free variable used in the sub-tour elimination constraints 

:  A binary variable that is one when node  is visited on route ; zero otherwise 

:  A variable that denotes the amount of material delivered to node  on route  

Without loss of generality,  and  are not defined for . 

 

Objective:  Minimize Travel Distance 

Minimize        (2.1) 

K
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Constraints: 

        (2.2) 

      (2.3) 

      (2.4) 

     (2.5) 

       (2.6) 

       (2.7) 

       (2.8) 

     (2.9) 

       (2.10) 

       (2.11) 

 

The objective is represented by Equation (2.1), which is to minimize the total distance 

traveled.  Constraints (2.2) and (2.3) ensure that all customer demand is satisfied without 

violating vehicle capacity.  Constraints (2.4) and (2.5) ensure flow conservation and that 

sub-tours are eliminated, respectively.  Constraints (2.6) and (2.7) force the binary 

variables to be positive if material is delivered to node  on route .  Constraint (2.8) 

ensures that the depot is entered and exited on every vehicle route, and constraints (2.9) – 

(2.11) provide variable restrictions.   

 

In recent work on the SDVRP, several researchers developed approaches for generating 

solutions to the SDVRP.  Archetti et al. (2006) developed a Tabu search algorithm called 
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SPLITTABU to solve the SDVRP in which they showed that there always exists an 

optimal solution where the quantity delivered by each vehicle when visiting a customer is 

an integer number.  Also, Archetti et al. (2008a) performed a mathematical analysis and 

proved that by adopting a SDVRP strategy, a maximum of 50% reduction can be 

achieved in the number of routes.  Also they showed that when the demand variance is 

relatively small and the customer demand is in the range of 50% to 70% of the vehicle 

capacity, maximum benefits are achieved by splitting the customer’s demand.  

Furthermore, Archetti et al. (2008b) presented a solution approach that combines 

heuristic search and integer programming.  Boudia et al. (2007a) solved an SDVRP 

instance using a memetic algorithm with population management which produced better 

and faster results than the SPLITTABU approach (Archetti et al. (2006)).  Mota et al. 

(2007d) proposed an algorithm based on scatter search methodology which generated 

excellent results compared to SPLITTABU.  

 

Two approaches are used as a comparison with regard to this research.  First, Jin et al. 

(2008) proposed a column generation approach to solve SDVRP with large demands, and 

in which the columns have route and delivery amount information and limited-search-

with-bound algorithm is used to find the lower and upper bounds of the problem.  They 

used column generation to find lower bounds and an iterative approach to find upper 

bounds for a SDVRP.  They also suggested that their approach of solving the SDVRP 

does not yield good solutions for large customer demands and in such cases, they 

recommend solving the SDVRP instance as a CVRP.  Second, Chen et al. (2007b) create 

test problems and developed a heuristic which is a combination of a mixed integer 

program and record-to-record travel algorithm to solve SDVRP. 

 

Archetti and Sperenza (2012) have published an extensive survey on SDVRP and its 

variants.  However, despite several exact optimization and metaheuristic solution 

methods being applied to the SDVRP, no previous research has applied the ant colony 

optimization metaheuristic to the SDVRP. 
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The number of customers for the 11 data sets from Jin et al. (2008) ranged from 50 to 

100, with an additional node for the depot.  The data sets also differ by amount of spare 

capacity per vehicle.  The customers were placed randomly around a central depot and 

demand was generated randomly based on a high and low threshold.  The number of 

customers for 21 data sets from Chen et al. (2007b) ranged from 8 to 288, with an 

additional node for the depot.  The data sets do not have any spare vehicle capacity.  The 

customers were placed on rings (i.e., circular pattern) surrounding a central depot and the 

demand was either 60 or 90, with a vehicle capacity of 100. 

3. Ant Colony Optimization Approach 

In this section I describe the ACO algorithm for SDVRP and in addition, I also provide 

some important literature relevant to the application of ACO to VRP and its variants. 

 

Ant Colony Optimization (ACO) is a metaheuristic proposed by Dorigo (1992a).  

Inspired by foraging behavior of ants, ACO belongs to a class of metaheuristic algorithms 

that can be used to obtain near optimal solutions in reasonable computational time for 

combinatorial optimization problems.  Ants communicate with one another by depositing 

pheromones, a trace chemical substance that can be detected by other ants (Rizzoli et al. 

(2004d).  As ants travel, they deposit pheromones along their trail, and other ants tend to 

follow these pheromone trails. However during their journey, ants may randomly 

discover a new trail, which might be shorter or longer than the previous trail.  

Pheromones have a tendency to evaporate.  Hence, over a period of time, the shortest trail 

(path) from the food source to the colony will have a larger amount of pheromone 

deposited as compared with other trails and will become the preferred trail.  

 

The main elements in an ACO are ants that independently build solutions to the problem. 

For an ant k, the probability of it visiting a node j after visiting node i depend on the two 

attributes namely:   

• Attractiveness (8���:  It is a static component that never changes. In the case of 

VRP, it is calculated as inverse of arc length for shortest path problems and for 
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other variants, it can depend on other parameters besides the arc length (e.g., in 

VRPTW it also depends on the current time and the time window limits of the 

customers to be visited (Rizzoli et al., 2004d)). 

• Pheromone trails�����:  It is the dynamic component which changes with time. It 

is used to measure the desirability of insertion of an arc in the solution. In other 

words, if an ant finds a strong pheromone trail leading to a particular node, that 

direction will be more desirable than other directions. The trail desirability 

depends on the amount of pheromone deposited on a particular arc. 

 

For solving a VRP, each individual ant simulates a vehicle.  Starting from the depot, each 

ant constructs a route by selecting one customer at a time until all customers have been 

visited.  Using the formula from Dorigo et al. (1997b), the ant selects the next customer j 

as shown in equation (2.12): 

 

j= 9 arg max {(τiu)(η
iu

β
) }  for u::Mk ,q≤q

o
 

Equation �2.13�,  otherwise
 

<                                                            (2.12) 

 

where ,�=  is the amount of pheromone on arc (i,u), u being all possible unvisited 

customers.  In classic VRP, locations already visited are stored in ants’ working memory 

Mk and are not considered for selection.  However, in the case of SDVRP, the locations 

for which the demands have not been fulfilled (demand >0) are stored in the ants’ 

working memory and are considered for selection.  β establishes correlation between the 

importance of distance with respect to the pheromone quantity (β >0).  q is a randomly 

generated variable between 0 and 1 and q0 is a predefined static parameter.  If equation 

(2.12) does not hold, the next customer to be visited is selected based on a random 

probability rule as shown in equation (2.13): 

 

Pij= > [�τij)� 
[(ηij

β)]∑ [�τij)� 
[(ηij

β)] 
j:Mk

          if j::Mk ,  q>q
o

0 �depot�,             otherwise

<                                                           (2.13) 
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If the vehicle capacity constraint is satisfied, the ant will return to the depot before 

starting the next tour in its route.  This selection process continues until all customers are 

visited by an ant.  In ACO, the pheromone trail is updated locally during solution 

construction and globally at the end of construction phase.  An interesting aspect of 

pheromone trail updating is that every time an arc is visited, its value is diminished which 

favors the exploration of other non-visited nodes and diversity in the solution.  

Pheromone trials are updated by reducing the amount of pheromone deposited on each 

arc (i,j) visited by an ant (local update).  Also, after a predetermined number of ants 

construct feasible routes, pheromones are added to all the arcs of the best found solution 

(global update). 

  

Local update on a particular arc (,�	� is updated done using equation (2.14) : 

τij = �1-α?τij +ατ0                                                                                                   (2.14) 

where 0≤α≤1 is the pheromone trail evaporation rate and τ0 is the initial pheromone value 

for all arcs.  

 

Global trial updating is done using equation (2.15): 

τij = (1-α)τij +αL-1                                                                                                  (2.15) 
where L is the best found objective function value (total distance). 

 

This procedure is repeated until a terminating condition is met.  There is an another 

optional component called Daemon actions which are used to perform centralized actions 

such as calling a local search procedure or collecting global information to deposit 

addition pheromones on edges from a non-local perspective. Pheromone updates 

performed by daemons are called off-line pheromone updates. 

The pseudo-code for ACO is shown below:  

 Procedure ACO 

  While (terminating condition is not met) 

  Generate_solutions () 

  Local_Update_of_Pheromones () 

  Global_Update_of_Pheromones () 
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  Actions_If_Necessary () // this is optional 

  End while 

 End procedure 

 
The ACO flowchart is shown in Figure 2.1 below: 
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Figure 2.1: ACO Flowchart 
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Over a period of time, researchers have developed numerous ACO based solutions for 

VRP and its variants.  One of the first papers on application of ACO in VRP was 

proposed by Bullheimer et al. (1997a; 1999a).  They proposed a variant called “hybrid 

ACO” using 2-opt heuristic. Their algorithm was tested on fourteen Christofides 

benchmark problems and computation results showed that the results obtained were not 

as good as the ones obtained from other metaheuristics.  Additionally, Gambardella et al. 

(1999b) proposed an algorithm based on ACO called MACS-VRPTW (Multiple Ant 

Colony System for Vehicle Routing Problems with Time Windows).  This is the first 

paper in which a multi-objective minimization problem is solved using a multiple ant 

colony optimization algorithm. MACS-VRPTW not only provided improved solutions on 

benchmark test problems but also was on par or better than other existing methods in 

terms of solution quality and computation time.  Next, Baran and Schaerer (2003) 

proposed a multi objective ACO for VRPTW based on MACS-VRPTW but instead of 

using two ant colonies, only one ant colony was used to find a set of Pareto optimal 

solutions for three objectives.  

 

Rizzoli et al. (2004d) have done extensive surveys on ACO for VRP and its variants. 

Montemanni et al. (2004c) proposed an ACO solution called ACS-DVRP to solve the 

Dynamic VRP (DVRP) in which the large DVRP problem was divided into smaller static 

VRP problems.  Bell et al. (2004a) proposed single and multiple ant colony 

methodologies to solve the VRP. Their experimental results showed that the best results 

were obtained when the candidate list size was between ten and twenty.  Doerner et al. 

(2004b) proposed a parallel ant system algorithm for CVRP and this is the first paper 

which shows the effect of parallelization of processors on speed and efficiency.  

Additionally, Favaretto et al. (2007c) formulated and provided an ACO based solution for 

VRP with multiple time windows and multiple visits which consider periodic constraints. 

Computation results show that their proposed algorithm provides better solutions as 

compared to some of the other metaheuristics published in the literature. Also, Gajpal and 

Abad (2009) proposed an ant colony system for VRP with simultaneous delivery and 

pickup (VRPSDP).  Computational results on benchmark test problems show that the 
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proposed algorithm provides better results both in terms of solution quality and CPU 

time.  Finally, Hu et al. (2011) provided an ACO based solution for distributed planning 

problems for home delivery in which a revised methodology to update the pheromone 

and the probability matrix is proposed. 

  

However, to the best of my knowledge and despite previous success applying ACO to 

variants of the VRP, no journal article has applied ACO to the SDVRP and 

experimentally tested the ability of the algorithm on SDVRP instances.  

4. Computational experiments  

One of the route improvement strategies is to have a candidate list to determine the next 

location for each customer.  Only a set of predetermined closest locations are included in 

the candidate list.  In previous research (Bullnheimer et al. (1999a)), irrespective of the 

problem size, the size of the candidate list was set to one fourth of the total number of 

customers. In pilot testing, I experimented with different candidate list sizes and for our 

research the candidate list size of one ninth (n/9, where n is the number of customers) 

was found to yield the best solutions.  Additionally, in the case of CVRP, an ant (vehicle) 

travels to a customer (node) only if the customer’s demand can be completely fulfilled 

with the remaining vehicle capacity.  But in the case of SDVRP, since a customer’s 

demand can be split amongst multiple vehicle routes, the ant travels to a customer based 

on three conditions:  (1) If the customer is in the candidate list, (2) if the customer’s 

demand is not completely fulfilled, and (3) there is remaining capacity on the vehicle.  If 

the above conditions cannot be satisfied for any location, the ant (vehicle) returns to the 

depot. 

 

The ACO algorithm for this study was coded in Java on a Windows7, Intel i5 2.4 Ghz, 4 

GB RAM computer.  For all our test datasets, search parameters were tuned during pilot-

testing and set as shown in Table 2.1.  The algorithm was tested against two procedures 

from the literature, namely Jin et al. (2008) and Chen et al. (2007b).  Each problem in the 

dataset was run in 10 separate iterations (Fuellerer et al. (2010a)).  The results are shown 
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in Table 2.2 and Table 2.3. The vehicle capacity for datasets in Table 2.2 and Table 2.3 

are 160 and 100 respectively.    

Table 2.1: Parameters 

Parameter Values 

α 0.5 

β 1.3 
τ0 10-5 

q0 0.9 
m (global update counter) 10 

Number of iterations 100,000 

Table 2.2: Comparing ACO results versus Jin et al. (2008)  

  Ant Colony Optimization Results from Jin et al. 

Dataset Objective 

Function 

(Average (std 

dev)) 

Objective 

Function    

(Best) 

Best 

Time(s) 

Total 

Time(s) 

Objective 

Function 

Total 

Time(s) 

GAP 

s51d2 744.03(14.07) 727.28 186.59 699.56 722.93 10741 0.60% 
s51d3 1001.97(15.87) 982.66 164.5 843.23 968.85 833 1.43% 
s51d4 1654.56(12.68) 1629.09 1053.95 1074.66 1605.64 789 1.46% 
s51d5 1416.60(20.37) 1389.01 519.44 1015.48 1361.24 10 2.04% 
s51d6 2302.72(14.16) 2267.97 584.65 1339.20 2196.35 478 3.26% 
576d2 1161.19(12.47) 1134.27 1431.9 1742.09 1146.68 75074 -1.08% 

s76d3 1527.25(19.06) 1502.36 979 2078.88 1474.89 3546 1.86% 
s76d4 2218.51(21.63) 2191.83 337.7 1310.30 2157.87 369 1.57% 
s101d2 1484.12(16.99) 1457.39 930.81 3352.49 1460.54 189392 -0.22% 

s101d3 2000.94(33.52) 1948.09 3166.21 3938.37 1956.91 36777 -0.45% 

s101d5 2972.54(17.29) 2945.41 3778.25 4947.82 2885 5043 2.09% 

*The objective function values highlighted in bold are the best results 
Note:  GAP indicates ACO versus best known solution.  A negative GAP indicates a new 

best solution when compared to previous literature. 
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Table 2.3: Comparing ACO results versus Chen et al. (2007a)  

    Ant Colony Optimization Results from Chen et al. 

Dataset Objective Function 

(Average (std dev)) 

Objective 

Function    

(Best) 

Best Time 

(s) 

Total Time(s) Objective 

Function 

Time(s) GAP 

sd1 240(0) 240 1.743 76.01 228.28 0.7 5.13% 
sd2 758(11.35) 740 56.77 87.25 714.4 54.4 3.58% 
sd3 451.52(2.42) 447.69 66.12 81.81 430.61 67.3 3.97% 
sd4 679.04(1.86) 673.89 65.43 202.75 631.06 400 6.79% 
sd5 1454.91(3.85) 1445.64 106.92 405.28 1408.12 402.7 2.66% 
sd6 860.45(0) 860.45 0.13 378.08 831.21 408.3 3.52% 
sd7 3640(0) 3640 0.3 603.01 3714.4 403.2 -2.00% 

sd8 5110.80(45.67) 5068.28 214.58 963.57 5200 404.1 -2.53% 

sd9 2140.15(14.99) 2129.59 201.15 1017.24 2059.84 404.3 3.39% 
sd10 2841.07(14.97) 2807.05 1352.83 2013.42 2749.11 400 2.11% 
sd11 13280(0) 13280 2.65 3086.07 13612.12 400.1 -2.44% 

sd12 7280.06(0) 7280.06 2337.17 3367.17 7399.06 408.3 -1.61% 

sd13 10281.74(282.23) 10171.92 4653.16 5232.16 10367.06 404.5 -1.88% 

sd14 11069.11(46.97) 11021.54 7325.6 9208.81 11023 5021.7 -0.01% 

sd15 15405.92(79.36) 15309.9 12816.82 17594.98 15271.77 5042.3 0.25% 
sd16 3411.31(11.17) 3398.69 0.743 17201.99 3449.05 5014.7 -1.46% 

sd17 26586.11(16.56) 26560.11 12188.12 23866.41 26665.76 5023.6 -0.40% 

sd18 14772.57(30.52) 14720.11 24301.78 24439.43 14546.58 5028.6 1.19% 
sd19 20376.31(29.96) 20312.44 11455.71 38677.42 20559.21 5034.2 -1.20% 

sd20 40479.27(51.83) 40390.68 49658.4 78854.50 40408.22 5053 -0.043% 

sd21 11449.88(26.31) 11411.61 1.64 121148.80 11491.67 5051 -0.70% 

*The objective function values highlighted in bold are the best results 
Note:  GAP indicates ACO versus best known solution.  A negative GAP indicates a new best solution when compared to 

previous literature. 
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The GAP column in Table 2.2 and Table 2.3 is the percentage difference in objective 

function values of ACO and those obtained from Jin et al. (2008) and Chen et al. (2007b) 

respectively. From Table 2.2, ACO solutions were between 0.6% - 3.26% of the objective 

function values from Jin et al. (2008) but the computational times were much faster. Also 

for 3 datasets, ACO found the best known solutions. For example, in problem s76d2, I 

found an improved solution that is 1.08% better than the previously best known solution.  

This problem is a 75 node problem and is one of three problems that the best known 

solution was improved on in this dataset using the ACO methodology. 

 

However, much greater success was found in improving the best known solutions in the 

problem sets of Chen et al. (2007a).  From Table 2.3, for 11 out of the 21 datasets, ACO 

produced better results; however this often came at the expense of computational time.  

For example in problem sd8, ACO was able to find the objective function value 5068.28.  

This value is 2.53% better than the previously known best solution.  Overall, ACO was 

able to find improved solutions in eleven of the problems that ranged from 0 to 2.53% in 

improvement. However, for several of the smaller problems (sd1-sd5), the method 

appeared to have difficulty.  Since these problems consist of fewer than 40 nodes, it was 

expected that the combination of using a candidate list size of n/9 and the small problem 

size may have restricted the algorithm from considering enough nodes in the route 

construction process. 

 

Therefore, in post-hoc testing of these 5 datasets, the candidate list size was removed in 

order to assess the ability of ACO to solve these smaller problems without the need for a 

candidate list size.  The results of this post-hoc test are listed in Table 2.4. Notice that 

after the candidate list was removed, the objective function for sd1 was improved from 

240 to 228.28, which is equal to the previously best known solution.  Also, as you can see 

from Table 2.3 and Table 2.4, for datasets sd2, sd3 and sd4, a significant improvement in 

objective function values at the expense of computational time were obtained without 

using a candidate list. 
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Table 2.4: Post-hoc results (without using a candidate list) 

    Ant Colony Optimization Results from Chen et al. 

Dataset Objective 

Function 

(Average (std 

dev)) 

Objective 

Function    

(Best) 

Best 

Time 

(s) 

Total 

Time(s) 

Objective 

Function 

Time(s) GAP 

sd1 228.28(0) 228.28 0.25 27.27 228.28 0.7 0.00% 

sd2 747.56(8.86) 734.34 92.53 121.29 714.4 54.4 2.79% 
sd3 454.72(6.9) 440.07 48.56 111.11 430.61 67.3 2.20% 
sd4 670.18(3.93) 665.94 131.68 270.08 631.06 400 5.53% 
sd5 1454.49(4.32) 1448.01 261.28 535.34 1408.12 402.7 2.83% 

*The objective function values highlighted in bold are the best results 
 
As seen from the results Table (Table 2.2 and Table 2.3), ant colony optimization has the 

ability to produce results within only a few percent of the optimal solutions. Also, 

SDVRP has complex constraints that the memory and learning features of ACO are able 

to navigate and find improved solutions to, consistent with previous research on other 

variants of the VRP.  In our experimental results, for larger problem instance (Table 2.3), 

ACO produced better results than the optimal solutions but at the expense of 

computational time.  Also, the use of candidate lists on larger problems and tuning of 

ACO parameters significantly improves the ability of ACO to find better solutions.  

The objective function values for the two datasets are compared with the dual bound 

obtain by column generation (working paper, Wilck and Cavalier, 2012a), results of 

which are shown in Table 2.5 and Table 2.6 respectively. The GAP represents the 

percentage difference between the objective function values of ACO and the column 

generation dual bound. As you can see from Table 2.5 and Table 2.6 below, the 

percentage difference between ACO objective function and column generation dual 

bound ranges from 0 % to 6.36 % (2007a) and 3.60% to 8.17%(2008) respectively. 
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Table 2.5: Comparison of ACO objective function for Chen et al. (2007a) and Column generation dual bound 

(Working paper, Wilck and Cavalier) 

Dataset ACO Objective function Column generation dual bound* GAP 

sd1 240 228.28 4.88% 
sd2 740 708.28 4.29% 
sd3 447.69 430.58 3.82% 
sd4 673.89 631.05 6.36% 
sd5 1445.64 1390.57 3.81% 
sd6 860.45 831.21 3.40% 
sd7 3640 3640.00 0.00% 
sd8 5068.28 5068.28 0.00% 
sd9 2129.59 2044.23 4.01% 

sd10 2807.05 2684.84 4.35% 
sd11 13280 13265.29 0.11% 
sd12 7280.06 7275.97 0.06% 
sd13 10171.92 10093.72 0.77% 
sd14 11021.54 10632.67 3.53% 
sd15 15309.9 15146.92 1.06% 
sd16 3398.69 3375.95 0.67% 
sd17 26560.11 25320.09 4.67% 
sd18 14720.11 14253.94 3.17% 
sd19 20312.44 19768.23 2.68% 
sd20 40390.68 38071.58 5.74% 
sd21 11411.61 11062.32 3.06% 

*Column Generation cpu specifications:  CPLEX and FORTRAN 95, GNU, Intel Xeon, 2.49 GHz, 8 GB RAM. 

Column Generation stopping criteria:  5% GAP [i.e., GAP = (Primal Solution - Dual Bound) / Primal Solution]. 
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Table 2.6: Comparison of ACO objective function for Jin et al. (2008) and Column 

generation dual bound (Working paper, Wilck and Cavalier) 

Dataset ACO Objective 

function 

Column generation 

dual bound* 

GAP 

s51d2 727.28 688.83 5.29% 
s51d3 982.66 920.58 6.32% 
s51d4 1629.09 1520.71 6.65% 
s51d5 1389.01 1310.12 5.68% 
s51d6 2267.97 2115.20 6.74% 
576d2 1134.27 1093.39 3.60% 
s76d3 1502.36 1399.37 6.86% 
s76d4 2191.83 2039.11 6.97% 
s101d2 1457.39 1395.25 4.26% 
s101d3 1948.09 1859.36 4.55% 
s101d5 2945.41 2704.63 8.17% 

*Column Generation cpu specifications:  CPLEX and FORTRAN 95, GNU, Intel Xeon, 2.49 

GHz, 8 GB RAM. 

Column Generation stopping criteria:  5% GAP [i.e., GAP = (Primal Solution - Dual Bound) 

/ Primal Solution]. 

5. Conclusions and Future directions 

In this study, I presented an ACO based approach to solve the Split Delivery Vehicle 

Routing Problem (SDVRP).  The algorithm was tested on benchmark test problems and 

results obtained were promising.  Also for some instances, the best known solution to 

date was found using the ACO algorithm.  Also, an interesting observation that I can 

highlight and consider for future research is the use of a candidate list size.  As 

mentioned in previous literature (1999a), a candidate list size of one fourth of the total 

number of customers is recommended but for my datasets, a candidate list of one ninth 

the total number of customers was found to yield better results during pilot testing.  

However, at times, this restricted the ability to find improved solutions on the smallest 

problems.  Hence, further research on developing a logic that will generate an ideal 

candidate list based on total number of customers is needed.  Also in the future, I hope to 

focus on improving the ACO algorithm for SDVRP by (1) using local exchange 

heuristics to improve the solution, and (2) using specialized groups of ants and multiple 

colonies as mentioned in the literature Bell and McMullen (2004a), Gambardella et al. 

(1999b), and others. 
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Chapter Abstract 

Vehicle Routing Problem (VRP) is a combinatory optimization problem in the field of 

transportation and logistics. There are various variants of VRP which have been 

developed of the years one of which is the Split Delivery Vehicle Routing Problem 

(SDVRP). The SDVRP allows customers to be assigned to multiple routes. A hybrid 

genetic algorithm comprising a combination of Ant Colony Optimization, genetic 

algorithm and heuristics is proposed and tested on benchmark SDVRP test problems. 

1. Introduction 

Vehicle Routing Problem (VRP) is an important combinatory optimization problem in 

the field of transportation and logistics. The objective of the VRP is to minimize the cost 

associated with delivering goods to a set of customers with known demands with vehicle 

routes originating and terminating at a central depot or depots. The basic underlying 

concept of a VRP is derived from Traveling Salesman Problem (TSP) but instead of a 

single route , VRP extends TSP  to multiple routes in which a set of customers are 

serviced in a particular route with the objective of minimizing the total cost. VRP was 

first proposed by Dantzig and Ramser (1959) to reduce costs in distributing gasoline from 

a central depot to various bunks. Over a period of time, various variants of VRP were 

developed, a brief description of which is given below: 

• Vehicle Routing Problem with Time Windows (VRPTW): The customer location 

has a time frame within which the deliveries have to be made. 

• Capacitated Vehicle Routing Problem (CVRP): In this case, there is a restriction 

on the delivery vehicle capacity 

• Split Delivery Vehicle Routing Problem (SDVRP): It is a relaxed version of CVRP 

in which the goods can be delivered to the customer by more than one route (vehicle). 

• Multiple Depot Vehicle Routing Problem (MDVRP): Customers are served from 

multiple depot. 
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• Vehicle Routing Problem with Pick-Ups and Deliveries (VRPPD): In this case, the 

delivery vehicle picks up goods from a pick-up locations and drops it off at the 

customer location 

• Vehicle Routing Problem with Backhauls (VRPB): In the case, once all the 

deliveries are done to the customer, the vehicle needs to pickup goods from the 

customer. 

• Periodic Vehicle Routing Problem (PVRP): In this case, the deliveries are done in 

days. 

• Stochastic Vehicle Routing Problem (SVRP): In this case, the components of the 

problem are stochastic in nature. 

The objective of this paper is on Split Delivery Vehicle Routing Problem (SDVRP). This 

paper focuses on developing a hybrid genetic algorithm to solve SDVRP. Due to 

constraints of the problem, a pure genetic algorithm cannot be applied to generate a new 

set of feasible solutions and hence the name, hybrid genetic algorithm. In this paper, I use 

a combination of Ant Colony Optimization, heuristics and Genetic Algorithms to solve 

the split delivery vehicle routing problem.  

 

The rest of the chapter is organized as follows. Section 2 provides an overview of 

SDVRP. Section 3 focuses on literature of various methodologies that have been 

developed to solve the SDVRP. Section 4 explains the proposed hybrid genetic algorithm 

in detail. Computation experiments are discussed in Section 5 and conclusions and future 

work is discussed in Section 6. Also, for details about Ant colony optimization, please 

refer to Chapter I and Chapter II of the dissertation. 

2. Split Delivery Vehicle Routing Problem (SDVRP) 

SDVRP was first developed Dror and Trudeau (1989a; 1990) as a relaxed version of 

CVRP. They developed a heuristic algorithm to solve the problem and also proved that 

when triangular inequality i.e. sum of two sides of a triangle is greater than the third side 

holds good, an optimal solution exists in the SDVRP in which two routes cannot have 

more than one common customer. They also showed that SDVRP is NP-hard. As shown 



 

in Figure 3.1 below, in the case of a CVRP, each customer is served by only one vehicle 

but since SDVRP is a relaxed version of CVRP, the customer demand can be split 

between vehicles. 

 

Consider for example, the customer demand is 300 and the vehicle capacity is 100. In the 

case of CVRP, we require three vehicles but in the case of SDVRP, since the customer 

demand can be split amongst multiple vehicles, we just require 2 vehicles to fulfi

customer demand. SDVRP has potential in savings in terms of the distance traveled as 

well as the number of vehicles used. 

 

According to Aleman et al. (2010d)

(V ,E) where V ={0, 1, . . . , n}7 V, i <j} is the set of edges connecting the nodes. Node 0 represents a depot where a 

fleet M = {1, . . . , m} of identical vehicles with capacity 

remaining node set N = {1, . . . , n}

usually a function of distance or travel time,

customer i 7 N has a demand of 

customers are served by each vehicle and what route will the vehicle follow to serve 

those assigned customers, while minimizing the operational costs of the fleet, such as 

.1 below, in the case of a CVRP, each customer is served by only one vehicle 

but since SDVRP is a relaxed version of CVRP, the customer demand can be split 

Figure 3.1: CVRP v/s SDVRP 

Consider for example, the customer demand is 300 and the vehicle capacity is 100. In the 

case of CVRP, we require three vehicles but in the case of SDVRP, since the customer 

demand can be split amongst multiple vehicles, we just require 2 vehicles to fulfi

customer demand. SDVRP has potential in savings in terms of the distance traveled as 

well as the number of vehicles used.  

(2010d), the SDVRP is defined on an undirected graph 

V ={0, 1, . . . , n} is the set of n + 1 nodes of the graph, and E = {(i, j ) : i, j 

is the set of edges connecting the nodes. Node 0 represents a depot where a 

of identical vehicles with capacity Q are stationed, while the 

1, . . . , n} represents the customers. A non-negative cost, 

usually a function of distance or travel time, cij is associated with every edge 

has a demand of qi units. The optimization problem is to determine which 

served by each vehicle and what route will the vehicle follow to serve 

those assigned customers, while minimizing the operational costs of the fleet, such as 
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.1 below, in the case of a CVRP, each customer is served by only one vehicle 

but since SDVRP is a relaxed version of CVRP, the customer demand can be split 

 

Consider for example, the customer demand is 300 and the vehicle capacity is 100. In the 

case of CVRP, we require three vehicles but in the case of SDVRP, since the customer 

demand can be split amongst multiple vehicles, we just require 2 vehicles to fulfill the 

customer demand. SDVRP has potential in savings in terms of the distance traveled as 

, the SDVRP is defined on an undirected graph G = 

E = {(i, j ) : i, j 

is the set of edges connecting the nodes. Node 0 represents a depot where a 

are stationed, while the 

negative cost, 

is associated with every edge (i, j). Each 

units. The optimization problem is to determine which 

served by each vehicle and what route will the vehicle follow to serve 

those assigned customers, while minimizing the operational costs of the fleet, such as 
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travel distance, gas consumption, and vehicle depreciation. Various problem formulations 

for SDVRP have been developed over the years and the most frequently used formulation 

are from Dror and Treadeau (1990), Frizzell and Giffin (1992b), Dror et al (1994a) which 

can be found in the literature. 

 

For a detailed mathematical model formulation of SDVRP, please refer to Section 2 of 

Chapter II.  

3. Literature Review 

In this section, an extensive literature review on various methodologies that have been 

developed to solve the SDVRP is conducted. Both exact and heuristic methods have been 

proposed by various researchers to solve SDVRP. For large problem instances, it’s not 

convenient to solve SDVRP using exact approaches due to large computational cost and 

hence, heuristic approach is the only way to obtain near-optimal solutions. SDVRP was 

introduced by Dror and Trudeau (1989a) in the year 1989. In their paper they showed that 

if the demand is relatively low to the vehicle capacity and the triangular inequality holds 

good (i.e. sum of two sides of a triangle is greater than the third side holds good, an 

optimal solution exists in the SDVRP in which two routes cannot have more than one 

common customer), there is little benefit of splitting the demands. In contrast, if the 

customer demand is at least 10% more than the vehicle capacity, the overall cost 

associated with SDVRP is lower as compared to that of a regular VRP. Sierksma and 

Tijssen (1998c) proposed a set-covering formulation for the SDVRP to build the 

helicopters schedule for supporting offshore platforms in the North Sea to exchange 

crews. Archetti et al. (2008a) performed a mathematical analysis and proved that by 

adopting a SDVRP strategy, a maximum of 50% reduction would be achieved in the 

number of routes. Also they showed that when the demand variance is relatively small 

and the customer demand is in the range of 50% to 70% of the vehicle capacity, 

maximum benefits can be achieved by splitting the customer’s demand.  

 



45 
 

Archetti et al. (2006b) developed a Tabu search algorithm called SPLITTABU to solve 

the SDVRP in which they showed that always exists an optimal solution where the 

quantity delivered by each vehicle when visiting a customer is an integer number. In the 

paper on an optimization based heuristics for SDVRP, Archetti et al. (2008b) present a 

solution approach that combines heuristics search and integer programming. The IP is 

used to investigate the search space identified initially by a Tabu search heuristics. 

Boudia et al. (2007b) solved an SDVRP instance using memetic algorithm with 

population management which produced better and faster results than the SPLITTABU 

approach (Archetti et al., 2006b). 

 

 Mota et al. (2007d) proposed an algorithm based on scatter search methodology with the 

objective function of having minimum number of vehicles. For customer demands less 

than half of the vehicle capacity, their results were found to be excellent as compared to 

the results obtained by SPLITTABU proposed by Archetti et al. (2006b). But for demand 

over half the vehicle capacity, their results were not good. Mullaseril et al. (1997b) 

modeled a feed distribution problem in a cattle ranch in Arizona as SDVRP with time 

windows to schedule a fleet of trucks to distribute feed to cattle in various pens spread 

across the ranch.  

 

Nakao and Nagamochi (2007e) proposed a dynamic program based heuristics to solve a 

Discrete Split Delivery Vehicle Routing problem. A Discrete SDVRP is a variant of 

SDVRP in which each customer demand may have more than one item, each of which 

cannot be split where items may have more than one size. Jin et al. (2008d) proposed a 

column generation approach to solve SDVRP with large demands in which the columns 

have route and delivery amount information and limited-search-with-bound algorithm is 

used to find the lower and upper bounds of the problem. They used a column generation 

to find lower bounds and an iterative approach to find upper bounds for a SDVRP. They 

also suggested that their approach of solving the SDVRP does not yield good solutions 

for large customer demands and in such cases, they recommend solving the SDVRP 

instance as a CVRP.  
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Aleman et al. (2010d) proposed three heuristic approaches to solve the SDVRP. The first 

approach is an adaptive constructive algorithm called route angle control measure, which 

yielded good results for large customer demands problem. The second approach is an 

iterative approach which solves the adaptive constructive algorithm repeatedly. The third 

approach was a variable neighborhood descent which produced the best results amongst 

all the three approaches.  These algorithms provided better results than other approaches 

on benchmark test problems. Chen et al. (2007c) developed a heuristic that combines a 

mixed integer program and record-to-record travel algorithm to solve SDVRP.  

 

Moghaddam et al. (2007f) used simulated annealing to solve SDVRP with the objective 

function of maximizing the vehicle utilization. Ambrosino and Sciomachen (2007a) 

proposed a SDVRP solution based on clustering procedure along with a local search to 

solve a food distribution problem for a Italian company.  

4. Hybrid Genetic Algorithm Approach 

4.1 Genetic Algorithms 

Genetic algorithms are population based search algorithms to solve combinatorial 

optimization problems. It was first proposed by John Holland (1989b). In these 

algorithms the search space (population) of a problem is represented as a collection of 

individuals (chromosomes).Genetic algorithms generate solutions for optimization 

problem based on theory of evolution using concepts such as reproduction, crossover and 

mutation.  The fundamental concept of a genetic algorithm states a set of conditions to 

achieve global optima. These conditions describe the reproduction process and ensure 

that better solution remain in future generations and weaker solutions be eliminated from 

future generations. This is similar to the Darwin’s survival of fittest concept in the theory 

of evolution. A typical genetic algorithm consists of the following steps (1989b): 

• Step 1: Generate an initial population of N solutions. 

• Step 2: Evaluate each solution of the initial population using a fitness 

function/objective function.  
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• Step 3: Select solutions as parents for the new generation based on probability or 

randomness.  The best solutions (in terms of fitness or objective) have a higher 

probability of being selected than poor solutions.  

• Step 4: Use the parent solutions from Step 3 to produce the next generation 

(called offspring). This process is called as crossover. The offspring are placed in 

the initial set of solutions replacing the weaker solutions. 

• Step 5: Randomly alter the new generation by mutation. Usually this is done 

using a mutation probability. 

• Step 6: Repeat Steps 2 through 5 until a stopping criteria is met.  

Thus the genetic algorithm search mechanism consists of three phases: (1) Evaluation of 

fitness function of each solution in the population (2) selection of parent solutions based 

on fitness values and (3) application of genetic operations such as crossover and mutation 

to generate new offspring. For additional descriptions of genetic algorithms, please refer 

to Chapter I.  

 

Due to the constraints of a SDVRP, it is not possible to directly use genetic algorithm in 

the way it is described above.  In particular, after crossover and mutation, there may be 

solutions which do not satisfy the constraints. Hence, to obtain a feasible set of offspring, 

we may need to modify the way crossover is done or another possibility is to remove 

infeasible solutions after mutation and replace them with the solutions having higher 

fitness value in the old population (2002b). Hence a hybrid genetic algorithm needs to be 

developed to ensure feasibility in the new generation. 

 

The hybrid genetic algorithm is described below: 

• Solution encoding: It’s represents a feasible vehicle route. The solutions are 

encoded as a series of random numbers from 0 to N, wherein, each N represents a 

node (customer location) and 0 represents a depot. For example, a route is 

represented as [0,1,2,3,0,3,4,5,0]. 
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• Initial population: The initial population in the genetic algorithm is normally 

generated randomly but other approaches such as heuristics approach and ant 

colony optimization can also be applied to get a good set of initial population. For 

the hybrid genetic algorithm, 1000 random solutions from ant colony optimization 

are used for initial population.  

• Fitness: The objective function is evaluated for each route from the initial 

population and then a corresponding fitness value is assigned. The fitness value is 

the total distance of a particular route. 

• Selection: Using the fitness value of each route, the top 500 routes from the initial 

population are selected for future generation.  

• Future Generation (Crossover and mutation): 

o The size of the future generation is set to 50. 

o Due to the constraints of SDVRP, mutation was not considered. 

o Elitism: The top 5 results from previous generation were used in the next 

generation 

o Crossover: Two parents are randomly selected from the previous 

generation. A one point crossover is then applied to each of these parents 

to generate future generation using the heuristics described below. 

Crossover is performed until 50 new routes are generated. 

• Heuristics:  The routes are constructed as follows: 

o Condition 1: For all the available nodes (demand is not satisfied), add the 

next node to the route if: 

� The node’s demand is less than the remaining capacity of the 

vehicle and 

� The next node is closest to the previous node and 

�  The next node has the largest demand amongst all the nodes. 

o Condition 2: If condition 1 is not satisfied, then for all the available nodes 

(demand is not satisfied), add the next node to the route if: 

� The node’s demand is less than the remaining capacity of the 

vehicle and 
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� The next node is closest to the previous node. 

o If condition 1 and condition 2 are not satisfied, go back to the depot. 

• Termination condition: For 100 iterations, repeat the Fitness to Heuristics 

procedure and then display the best route. 

The flowchart for the hybrid genetic algorithm is shown in Figure 3.2 below: 

5. Computation experiments 

The Hybrid genetic algorithm for this study was coded in Java on a Windows7, Intel i5 

2.4 Ghz, 4 GB RAM computer. For all our test datasets, the algorithm parameters were 

tuned during pilot-testing and set as shown in Table 3.1 below. The algorithm was tested 

on two datasets from the literature, namely Jin et al.(2008d) and Chen et al. (2007c) , and 

the comparative results are shown below in Table 3.2 and Table 3.3 respectively. The 

vehicle capacity for datasets in Table 3.2 and Table 3.3 are 160 and 100 respectively.  
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Figure 3.2: Hybrid GA Flowchart 

 

  

Step 2: (Selection) Select the top 500 routes from the 
initial population for future generation 

Step 3: (Future Generation) Select the top 5 routes 
from previous generation and add it to the future 

generation (Elitism) 

Step 4: (Crossover) Select 2 parents randomly from 
previous generation and perform a one-point crossover 

Step 5: (Route Construction) Apply the heuristics to 
build new routes and add it to the future generation 

Step 6:  Repeat Step 4 and Step 5 until a future 
generation of 50 is generated 

Step 7: Evaluate the fitness of the future generation and 
sort them according to the shortest distance 

Step 1(Initial Population) Generate 1000 random 
routes using Ant Colony Optimization and evaluate 

fitness of each route 

Step 8: (Terminating condition) Repeat Step3 to Step 7 
for 100 iterations 

Step 9: Once the terminating condition is met, display 
the best route 
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Table 3.1: Parameters 

Parameter Values 

Initial Population 500 
Size of Future Generation 50 

Elite List 5 
Number of future generation (Terminating 

condition) 
100 

 

Table 3.2: Comparing Hybrid GA results versus Jin et al.(2008d) 

  Hybrid Genetic Algorithm Results from Jin et al. 

Dataset Objective 

Function 

(Average (std 

dev)) 

Objective 

Function    

(Best) 

Total 

Time

(s) 

Objective 

Function 

Total 

Time(s) 

GAP 

s51d2 862.67(11.44) 845.86 2.22 722.93 10741 17.00% 
s51d3 1118.48(23.45) 1080.32 2.409 968.85 833 11.51% 
s51d4 1775.10(15.90) 1752.79 2.642 1605.64 789 9.16% 
s51d5 1542.91(14.17) 1512.46 2.52 1361.24 10 11.11% 
s51d6 2401.90(1.20) 2398.47 2.884 2196.35 478 9.20% 
576d2 1292.75(5.64) 1282.8 4.2 1146.68 75074 11.87% 
s76d3 1674.94(14.12) 1649.51 4.6 1474.89 3546 11.84% 
s76d4 2396.14(24.93) 2357.02 4.87 2157.87 369 9.23% 
s101d2 1624.82(20.89) 1586.97 7.26 1460.54 189392 8.66% 
s101d3 2158.10(24.09) 2122.04 7.94 1956.91 36777 8.44% 
s101d5 3134.49(17.22) 3109.88 8.55 2885 5043 7.79% 

  



52 
 

Table 3.3: Comparing Hybrid GA results versus Chen et al. (2007c) 

    Hybrid Genetic 

Algorithm 

Results from Chen et al. 

Dataset Objective 

Function 

(Average (std 

dev)) 

Objective 

Function    

(Best) 

Total 

Time(s) 

Objective 

Function 

Time(s) GAP 

sd1 232.38(2.83) 228.28 1.876 228.28 0.7 0.00% 

sd2 762.83(5.96) 760 2.76 714.4 54.4 6.38% 
sd3 466.56(4.86) 458.25 2.985 430.61 67.3 6.42% 
sd4 677.05(2.65) 676.28 3.019 631.06 400 7.17% 
sd5 1520.91(13.68) 1484.85 4.898 1408.12 402.7 5.45% 
sd6 860.44(0) 860.44 4.609 831.21 408.3 3.52% 
sd7 3640(0) 3640 6.154 3714.4 403.2 -2.00% 

sd8 5213.19(62.73) 5106.5 8.204 5200 404.1 -1.80% 

sd9 2254.75(25.08) 2206.02 8.806 2059.84 404.3 7.10% 
sd10 2853.12(36.29) 2757.51 12.588 2749.11 400 0.31% 
sd11 13320(28.28) 13280 19.278 13612.12 400.1 -2.44% 

sd12 7676.31(31.68) 7627.82 24.835 7399.06 408.3 3.09% 
sd13 10559.42(44.6) 10470.09 28.642 10367.06 404.5 0.99% 
sd14 11399.11(32.14) 11359.9 13.56 11023 5021.7 3.06% 
sd15 15766.5(56.75) 15681.02 24.3 15271.77 5042.3 2.68% 
sd16 3397.48(4.34) 3391.7 18.18 3449.05 5014.7 -1.66% 

sd17 27532.4(83.43) 27407.36 31.05 26665.76 5023.6 2.78% 
sd18 15007.04(77.58) 14853.66 31.227 14546.58 5028.6 2.11% 
sd19 20635.12(172.20) 20260.55 49.54 20559.21 5034.2 -1.45% 

sd20 41151.15(134.84) 40866.09 89.348 40408.22 5053 1.13% 
sd21 11465.5(32.77) 11389.72 474.05 11491.67 5051 -0.89% 

 

The GAP column in Table 3.2 and Table 3.3 is the percentage difference in objective 

function values of the hybrid GA and those obtained from Jin et al.(2008d) and Chen et 

al. (2007c) respectively. From Table 3.2, the hybrid GA was able to find solutions within 

8%-17% for all the datasets. However, much greater success was found in improving the 

best known solutions in the 21 datasets of Chen et al. (2007c) .From Table 3.3, the hybrid 

GA found better solutions for 6 of the 21 datasets (sd7, sd8, sd11, sd16, sd19 and sd21) 

and were on par with the objective solution for one dataset (sd1) For the remaining 

datasets, the hybrid GA found solutions that were between 0.3% to 7.2% of the objective 

function but the computational times for hybrid GA were much faster for all the 21 

datasets. 
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The objective function values for the two datasets are compared with the dual bound 

obtain by column generation (working paper, Wilck and Cavalier, 2012a), results of 

which are shown in Table 3.4 and Table 3.5 respectively. The GAP represents the 

percentage difference between the objective function values of ACO and the column 

generation dual bound. As you can see from Table 3.4 and Table 3.5 below, the 

percentage difference between ACO objective function and column generation dual 

bound ranges from 0 % to 6.7 % (2007c) and 11.80% to 18.56%(2008d) respectively. 

Table 3.4: Comparison of ACO objective function for Chen et al. (2007c) and 

Column generation dual bound (Working paper, Wilck and Cavalier) 

Dataset ACO Objective 

function 

Column generation dual 

bound* 

GAP 

sd1 228.28 228.28 0.00% 
sd2 760 708.28 6.81% 
sd3 458.25 430.58 6.04% 
sd4 676.28 631.05 6.69% 
sd5 1484.85 1390.57 6.35% 
sd6 860.44 831.21 3.40% 
sd7 3640 3640.00 0.00% 
sd8 5106.5 5068.28 0.75% 
sd9 2206.02 2044.23 7.33% 
sd10 2757.51 2684.84 2.64% 
sd11 13280 13265.29 0.11% 
sd12 7627.82 7275.97 4.61% 
sd13 10470.09 10093.72 3.59% 
sd14 11359.9 10632.67 6.40% 
sd15 15681.02 15146.92 3.41% 
sd16 3391.7 3375.95 0.46% 
sd17 27407.36 25320.09 7.62% 
sd18 14853.66 14253.94 4.04% 
sd19 20260.55 19768.23 2.43% 
sd20 40866.09 38071.58 6.84% 
sd21 11389.72 11062.32 2.87% 

*Column Generation cpu specifications:  CPLEX and FORTRAN 95, GNU, Intel Xeon, 2.49 

GHz, 8 GB RAM. 

Column Generation stopping criteria:  5% GAP [i.e., GAP = (Primal Solution - Dual Bound) 

/ Primal Solution]. 
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Table 3.5: Comparison of ACO objective function for Jin et al. (2008d) and Column 

generation dual bound (Working paper, Wilck and Cavalier) 

Dataset ACO Objective 

function 

Column generation 

dual bound* 

GAP 

s51d2 845.86 688.83 18.56% 
s51d3 1080.32 920.58 14.79% 
s51d4 1752.79 1520.71 13.24% 
s51d5 1512.46 1310.12 13.38% 
s51d6 2398.47 2115.20 11.81% 
576d2 1282.8 1093.39 14.77% 
s76d3 1649.51 1399.37 15.16% 
s76d4 2357.02 2039.11 13.49% 
s101d2 1586.97 1395.25 12.08% 
s101d3 2122.04 1859.36 12.38% 
s101d5 3109.88 2704.63 13.03% 

*Column Generation cpu specifications:  CPLEX and FORTRAN 95, GNU, Intel Xeon, 2.49 

GHz, 8 GB RAM. 

Column Generation stopping criteria:  5% GAP [i.e., GAP = (Primal Solution - Dual Bound) 

/ Primal Solution]. 

6. Conclusions and Future directions 

This paper focused on solving instances of SDVRP from previous literature using a 

hybrid GA that consists of ACO, GA, and a heuristics to build route for SDVRP. Based 

on the results from Table 3.2 and Table 3.3, the hybrid GA were able to provide better 

results for the datasets from Chen et al. (2007c) and at a faster computational time as 

compared to the datasets from Jin et al. (2008d). I speculate that the nature of the datasets 

in Jin et al. (2008d) may be the reason for such results (i.e., these data sets were random; 

whereas the other data sets had patterns). One of the route improvement strategies is to 

have a candidate list to determine the next location for each customer in which only a set 

of predetermined closest locations are included in the candidate list. In previous research 

Bullnheimer et al. (1999a), irrespective of the problem size, the size of the candidate list 

was set to one fourth of the total number of customers. Hence, in future, I would like to 

incorporate a candidate list in our hybrid GA. Also, in future, I would like to test the 

hybrid GA on other variants of vehicle routing problem. 
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Abstract 

Emergency departments have repeating 24-hour cycles of non-stationary Poisson arrivals 

and high levels of service time variation. The problem is to find a shift schedule that 

considers queuing effects and minimizes average patient waiting time and maximizes 

physicians’ shift preference subject to constraints on shift start times, shift durations and 

total physician hours available per day.  An approach that utilizes a genetic algorithm and 

discrete event simulation to solve the physician scheduling problem in a hospital is 

proposed.  The approach is tested on real world datasets for physician schedules. 

1. Introduction 

Over the past two decades, genetic algorithms are being applied in solving complex real 

world combinatorial optimization problems such as vehicle routing, sequencing and 

scheduling of jobs on single machines and multiple machines, knapsack and bin packing 

problems, resource scheduling, and inventory problems.  According to Fukunaga et al. 

(2002a) , a staff scheduling problem is known to be an NP-complete problem.  Hence, 

metaheuristics such as genetic algorithms and Tabu Search are a commonly used 

methodology to solve such problems. 

 

Every hospital faces a challenge of preparing a staff schedule based on the availability 

and preferences of the staff.  A good work schedule should not only reduce the labor cost 

but also allow for more opportunities and a high degree of satisfaction amongst the staff. 

In addition, the staffs have to be scheduled in such a way that there are minimal or 

considerable waiting times for patients.  Hence, the research objective of this chapter is to 

utilize a genetic algorithm to build physician shift schedules based on constraints such as 

physicians’ preferences, their working hours and average patient wait times. The 

approach is tested on real-world datasets for physician schedules. 
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The rest of the chapter is organized as follows:  Section 2 focuses on the literature 

associated with staff scheduling, Section 3 explains the problem and genetic algorithm 

approach in detail, and Results, Conclusions and future research are described in Section 

4.  

2. Literature Review 

According to Fukunaga et al. (2002a) a staff scheduling problem is known to be an NP-

complete problem. Hence, one of the ways to obtain a feasible set of solutions in a 

reasonable amount of time frame is by application of heuristic and metaheuristics 

methods.  Dean (2008a) proposed a two genetic algorithm (heuristic) solutions that 

applies a bit-string and a two dimensional chromosome structure for staff scheduling. In 

particular, Dean (2008a) modeled a staff schedule in the form of a two dimensional 

chromosome structure, in which the rows and columns represented the employees and 

days respectively. He compared these results to the results obtained by a bit-string 

structure (chromosomes) representation of a staff schedule. Downsland (1998a) proposed 

a Tabu Search and strategic oscillation approach to schedule the nurse roster in a major 

UK hospital. Easton and Mansour (1999) proposed a distributed genetic algorithm to 

tackle problems related to generalized set covering (GSC), deterministic goal programs 

(DGP), and stochastic goal programs (SGP).  The distributed genetic algorithm used 

penalty functions for infeasible offspring and also employed a local search algorithm to 

enhance the performance.  The DGP was tested on three different sets of data and it 

provided better solutions but at the expense of computational time.  

 

Aickelin and Downsland (2004) developed an indirect approach in which initially a 

heuristic decoder builds the staff schedule from various combinations of available 

resources.  Then a genetic algorithm was applied to optimize the output schedule from 

the heuristic decoder.  The genetic algorithm only solved an unconstrained problem 

leaving the constraint handling to the heuristic decoder that uses them to directly bias the 

search rather than in penalty functions alone.  Also, all problem specific knowledge was 

held in the heuristic decoder, thus enabling the algorithm to quickly adapt to changes in 
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problem specifications.  The results obtained by this indirect approach were found to be 

more favorable and robust than those obtained by a Tabu search approach.  Tanomaru 

(1995b) used genetic algorithm to solve staff scheduling problem with no predefined shift 

intervals. Hence instead of having predefined shift intervals, the planning horizon was 

split into uniform time intervals and staffs were assigned accordingly.  Also, after every 

iteration, a number of heuristics were applied to improve the solution.  Results were 

found to be optimal for small instances and good for large instances of the problem.  

 

Jan et al. (2000b) used genetic algorithms to schedule nurses in a hospital using the 

concept of hard and soft constraints.  The objective was to minimize the penalty function 

for violating the soft constraints and reduce the variance in individual nurse schedule to 

ensure fairness of schedule.  Jan et al. (2000b) also suggested a method to allow the 

decision maker to adjust a schedule and direct the search during its execution.  

 

Cai and Li (2000a) presented a genetic algorithm to solve the nurse scheduling problem 

with the following three objectives in decreasing order of importance:  (1) Minimize total 

cost, (2) Minimize staff surplus, and (3) Minimize the variance in staff surplus.  

Predefined weekly schedules were assigned when the optimal number of workers for 

each schedule is found.  Heuristics were then applied to resolve the constraints that were 

violated.  The results were of good quality and were incorporated into the existing 

scheduling system. 

  

Puente et al. (2009b) proposed a combination of heuristic decoder and genetic algorithm 

approach to schedule doctors in an emergency department.  They used the concept of 

hard and soft constraints wherein weights were assigned to the soft constraints based on 

their importance.  Actual results obtained by using this heuristic method have achieved a 

more balanced shift-assigning among the doctors with a high degree of satisfaction. Ohki 

et al. (2008b) developed a cooperative genetic algorithm (CGA) which uses crossover 

operator and periodically, the mutation operator to solve the nurse scheduling problem. 

They used penalty functions for evaluating the difference of the part of the shift schedule 
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between the original schedule given at the beginning of the current month and the 

schedule to be newly optimized.   

  

To tackle the scheduling problem in a Belgian hospital, Burke et al. (1998b) developed a 

commercial heuristic solution called Plane in which the heuristic was a combination of 

Tabu search and algorithms based on manual scheduling techniques. Plane can decide 

(per nurse) which duties can or cannot be performed (according to that nurse’s 

qualification category) when there is not enough personnel available and also provides an 

objective schedule in which all nurses are treated equally and the number of violated 

constraints is relatively low. 

   

Inoue et al. (2003c) proposed an interactive scheduling approach wherein the fitness 

function was based on a measure of violation of soft constraints.  However, at each 

iteration of solution generation, the users were given the opportunity to modify the 

schedule based on their opinion.  The genetic algorithm used combinations of crossover, 

mutation and heuristics for repairing the crossover (new generation).  Brusco and Jacobs 

(1993) proposed simulated annealing approach to address the cyclic staff scheduling 

problem.  Their heuristic provided high quality solutions in a short computational time on 

a test dataset.  They also suggested that branch-and-bound integer programming was 

impractical to solve cyclic staff scheduling problems.  

 

Burke et al. (2009a) proposed a scatter search algorithm to schedule nurses in a hospital. 

In contrast to heuristics which work with one set of solutions, a scatter search algorithm 

works with a population of solutions. A scatter search algorithm is similar to memetic 

algorithms except that the random decisions are replaced with intelligently designed rules 

and solutions created from more than one parent. The results of the scatter search 

algorithm with hill climbing improvement method were found be more optimal when 

tested against benchmark problems. Burke et al. (2001) used memetic algorithms for 

nurse scheduling and concluded that although memetic algorithm produces highly quality 

solutions, it requires a greater computation time than tabu search.  Özcan (2005) 
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developed a memetic approach to solve a nurse rostering problem wherein the planning 

horizon was two weeks of shift schedule. Özcan (2005) used the hill climbing method to 

evaluate and repair each constraint that violated the shift schedule. In order to minimize 

the total staff with different experience levels subject to several labor agreements, 

Brunner and Edenharter (2011) formulated a staff scheduling problem as mixed integer 

linear program and solved it using a column generation based heuristics at the anesthesia 

department of a hospital.  

 

Dias et al. (2003b) developed a tabu search and a genetic algorithm for solving the 

rostering problem in Brazilian hospitals wherein the soft constraints were weighted based 

on their priority and was used in the objective function. Results on test dataset showed 

that the genetic algorithm slightly outperformed Tabu search but, in practice, both 

approaches were well received by the hospital staff. A wide variety of numerous other 

operations research methods like column generation, constraint programming, Pareto 

optimization, mixed integer programming, hyperheuristics etc. have been applied to solve 

the staff scheduling problem, overviews of which can be found in the survey papers by 

Ernst et al. (2004a).  

 

Paul et al. (2010) presented a systematic review of emergency department simulation 

literature from 1970 to 2006. Jacobson et al. (2006a) conducted a survey on various 

discrete event simulation models relevant to hospitals. Also, Jun et al. (1999a) have 

conducted an extensive survey on application of discrete event simulation in healthcare. 

Kumar and Kapur (1989a) used simulation to analyze alternatives to schedule nurses in 

emergency room at Georgetown University Hospital. Rosetti et al. (1999c) applied 

simulation to test various alternatives of emergency department physicians staffing 

schedules and to analyze the impact of the schedules on patient throughput and resource 

utilization. Weng et al. (2012) proposed a bi-level framework called  multi–tool 

integrated methodology (MTIM)  to schedule staff for each emergency room across 

various hospitals (distributed resource allocation decision) within the budget limitations. 
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Gendreau et al. (2007a) proposed four different scheduling techniques namely: tabu 

search, constraint programming, mathematical programming and column generation to 

schedule physicians in emergency department at five different hospitals in Canada. Yeh 

and Lin (2007b) proposed a combination for simulation modeling and genetic algorithms 

to improve quality of care in emergency department. The simulation model was used for 

analysis of flow of patients in the emergency department and genetic algorithm was used 

to develop a nurse schedule with the objective of minimizing patient wait time. 

Laskowski et al. (2009c) applied agent based models and queuing models to evaluate 

patient access and patient flow through emergency department. Xiao et al.(2010a) 

proposed a time window based incremental resource scheduling methodology (dynamic 

scheduling) that uses a genetic algorithm to schedule and reschedule resources based at 

selected points(time windows). To study the effectiveness of their methodology, their 

approach was integrated with an existing discrete event simulation system. 

 

Though not in healthcare industry, Pantel et al. (1998c) applied a two step approach that 

had a combination of genetic algorithm and discrete event simulation for solving job shop 

scheduling problems in a semiconductor industry. In the first step, they used discrete 

event simulation to model the dynamic system behavior and in the second step, they 

applied genetic algorithm to minimize the average residence time to produce a set of 

batches in function of batch order in a multipurpose-multiobjective plant with unlimited 

storage. The discrete event simulation model was embedded in the optimization loop to 

evaluate the objective function. In our approach to solve the physician scheduling 

problem in healthcare, we also embed our discrete event solution module into the genetic 

algorithm, details of which are explained in Section 3. 

3. Problem Definition and Genetic Algorithm approach 

3.1 Problem Definition 

In a typical emergency room at a hospital, patients arrive at random times and these 

arrival rates vary with respect to time of the day. Also, the services of the physicians are 

stochastic in nature. Constraints such as physicians preferences on shift start time and 
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shift duration, average patient waiting times and restriction on total working hours for all 

the physicians per day makes it a very complicated problem to solve. Hence, an efficient 

staff schedule algorithm should consider all these real world constraints and produce a 

result which satisfies both the physicians as well as the patients. A genetic algorithm 

approach is proposed in this paper to solve the staff scheduling problem and is tested on 

two datasets. 

3.1.1 Datasets 
 
The given data for the two datasets is shown in Table 4.1. For the two datasets, the 

average number of patients arriving per hour is assumed to be Poisson arrivals and the 

service times are assumed to be exponential distributed. 

 

Table 4.1: Given Data 

Given Data Dataset 1 Dataset2 

Average service time 15 minutes (exponential 
distribution) 

33 minutes (exponential 
distribution) 

Average number of patients 

arriving per hour 

Poisson Arrivals (Table 
4.2) 

Poisson Arrivals (Table 4.3) 

Maximum physician hours per 

day 

48 68 

Feasible shifts with preference  Table 4.4 Table 4.5 
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Table 4.2: Average number of patients arriving per hour (Dataset 1) 

Hour of the day Average number of 

patients arriving 

Hour of the day Average number of 

patients arriving 

12:00 AM 3.690616 12:00 PM 8.178273 

1:00 AM 2.911858 1:00 PM 7.79489 

2:00 AM 2.293054 2:00 PM 7.792522 

3:00 AM 2.017725 3:00 PM 8.053659 

4:00 AM 1.831175 4:00 PM 7.983501 

5:00 AM 1.856022 5:00 PM 7.969416 

6:00 AM 2.251625 6:00 PM 8.282366 

7:00 AM 3.803911 7:00 PM 7.664413 

8:00 AM 5.446445 8:00 PM 7.238266 

9:00 AM 7.066014 9:00 PM 6.578026 

10:00 AM 7.939452 10:00 PM 5.526836 

11:00 AM 8.49382 11:00 PM 4.336112 

 

Table 4.3: Average number of patients arriving per hour (Dataset 2) 

Hour of the 

day 

Average number of 

patients arriving 

Hour of the day Average number of 

patients arriving 

12:00 AM 2.621795 12:00 PM 7.083333 

1:00 AM 1.916667 1:00 PM 6.826923 

2:00 AM 1.448718 2:00 PM 6.557692 

3:00 AM 1.294872 3:00 PM 6.570513 

4:00 AM 1.403846 4:00 PM 6.076923 

5:00 AM 1.378205 5:00 PM 6.512821 

6:00 AM 1.839744 6:00 PM 6.730769 

7:00 AM 2.858974 7:00 PM 6.750000 

8:00 AM 4.288462 8:00 PM 6.064103 

9:00 AM 5.769231 9:00 PM 5.384615 

10:00 AM 6.769231 10:00 PM 4.339744 

11:00 AM 7.038462 11:00 PM 3.147436 
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Table 4.4: Feasible shifts with preference (Dataset 1) 

 Shift duration (hours) 

Hour of the day 8 10 12 

7:00 AM 6 5 3 
11:00 AM 6 3 4 
3:00 PM 6 3 1 
7:00 PM 4 4 2 

11:00 PM 2 3 3 

Table 4.5: Feasible shifts with preference (Dataset 2) 

 Shift durations (hours) 

   Hour of the day 8 9 10 11 12 

7:00 AM 4 6 6 3 2 

8:00 AM 4 6 6 3 2 
9:00 AM 4 6 6 4 2 

10:00 AM 4 6 6 4 2 

11:00 AM 4 6 6 4 2 
12:00 PM 5 5 5 3 2 

1:00 PM 5 6 5 4 2 
2:00 PM 5 6 5 4 2 

3:00 PM 5 5 5 4 2 
4:00 PM 6 5 5 3 2 
5:00 PM 6 5 3 3 2 

6:00 PM 3         
9:00 PM 2 3 3 3   

10:00 PM 3 6 6 4 2 
11:00 PM 3 5 5 3 2 

 

From Table 4.4, for dataset 1, the shift start times are at 7AM, 11AM, 3PM, 7PM and 

11PM. All shifts must start only at these times. The shift duration for each of the shift 

start times is 8, 10 or 12 hours. The preferences for each combination of shift start time 

and shift duration are shown in Table 4.4. The preferences are numbered from 1 to 6, 6 

being the most preferred start time and shift duration, and 1 being the least preferred. The 

interpretation of feasible shifts with preferences for dataset 2 (Table 4.5) is similar to that 

of dataset 1.  
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3.1.2 Objective Functions and Constraints 
Based on the given data, the objectives and constraints for the two datasets are described 

below. 

Objectives 

Based on the given data, the objective is to build a shift schedule that: 

1) Maximize the preference of physicians. 

2) Minimize the average waiting time for patients. 

Constraints 

1) There is no overtime i.e. the shift schedule should not exceed the maximum 

physician hours per day. 

2) At least one physician is available every hour. 

3) Shifts can start only at times shown in the preference matrix (Table 4.4 and Table 

4.5). 

Since it is a multiobjective optimization problem, weights (penalties) are assigned to each 

objective and weighted sum is used to calculate the objective function value.  Noon et 

al.(2007)  had a mathematical formulation for the given problem and this formulation has 

been modified to suit our problem definition. The mathematical formulation for the 

problem is described in Section 3.1.3. 

3.1.3 Mathematical Formulation  
 

Indexed Sets: 

 � �  ��@A BAC�D' �CD@ 1 … . F, HIACA F �J 24 IDLCJ � � JI��� �*'AM �CD@ 1 … . N , HIACA N �J �IA �D�)O *L@PAC D� BD�A*��)O JI���J F�  � FD�)O J�@LO)��D* CL* ��@A  �, � )CA �*�AQACJ 
 
Parameters: 

  $ �  JACR�SA C)�A �SD*J�)*�, AMBD*A*��)O '�J�C�PL��D*�  T�  �  )CC�R)O C)�A �DC ��@A BAC�D' �  '	  �  'LC)��D* D� A)SI JI��� �  �	 �  �CA�ACA*SA D� JI��� � 
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U �  @)M�@L@ )R)�O)POA JACRAC�BIVJ�S�)*� IDLCJ W3 �  HA�QI� )JJDS�)�A' H��I )RAC)QA B)��A*� H)�� ��@A WX �  HA�QI� )JJDS�)�A' H��I JI��� BCA�ACA*SA BA*)O�V P�	  �  Y1 , �� JI��� � �J )JJ�Q*A' �D ��@A �0 , D�IACH�JA < 
 
 
Decision Variables: 

 J�   �  *L@PAC D� JACRACJ �BIVJ�S�)*J� )R)�O)POA )� ��@A BAC�D' � M	 �  *L@PAC D� JACRACJ �BIVJ�S�)*J� �* JI��� � 

 

Accounting Variables (Calculated from decision variables and discrete event 

simulation): 

 H� �   �D�)O )RAC)QA B)��A*� H)�� ��@A �DC ��@A BAC�D' �   
 

Objective: Z �  [�\�W3 ∑  H�   -  WX ∑ ��	 ] M	?	̂_̀� ?                                          (4.1) 
 

Constraints: 

 

1) Total physician hours is ≤ H (maximum physician hours/day) 

 ∑ �'	 ]  M	� 6  U	̂                                                                       (4.2) 

 
2) The number of physicians in each shift must be equal to number of 

physicians every hour 

 ∑ �P�	� ] � M	�	̂ � J�  a �                                                                       (4.3) 

 

3) At least one physician every hour 

 J� b  1, �*�AQAC a �                                                                   (4.4) 

 

4) Number of physicians in a given shift 

 M	 b  0, �*�AQAC a �                                                                               (4.5) 
Solve for: H�  � ��
T�, μ, J��): (Average patient waiting time function from discrete event 

simulation). The discrete event simulation module is an integral part of the proposed 

Genetic Algorithm to evaluate average patient wait times for each feasible shift schedule. 
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3.2 Genetic Algorithm Approach 

Genetic algorithms are population based search algorithms to solve combinatorial 

optimization problems.  It was first proposed by John Holland (1989).  In these 

algorithms the search space (population) of a problem is represented as a collection of 

individuals (chromosomes) and these individuals are evaluated based on the fitness 

function. Genetic algorithms generate solutions for optimization problem based on theory 

of evolution using concepts such as reproduction, crossover and mutation.  The 

fundamental concept of a genetic algorithm states a set of conditions to achieve global 

optima.  These conditions describe the reproduction process and ensure that better 

solution remain in future generations and weaker solutions be eliminated from future 

generations.  This is similar to the Darwin’s survival of fittest concept in the theory of 

evolution.  A typical genetic algorithm consists of the following steps (1989): 

Step 1:  Generate an initial population of N solutions. 

Step 2: Evaluate each solution of the initial population using a fitness 

function/objective function.  

Step 3: Select solutions as parents for the new generation based on probability 

or randomness.  The best solutions (in terms of fitness or objective) have 

a higher probability of being selected than poor solutions.  

Step 4: Use the parent solutions from Step 3 to produce the next generation 

(called offspring). This process is called as crossover. The offspring are 

placed in the initial set of solutions replacing the weaker solutions. 

Step 5: Randomly alter the new generation by mutation. Usually this is done 

using a mutation probability. 

Step 6: Repeat Steps 2 through 5 until a stopping criteria is met.  

 

Due to the constraints of this problem, it is not possible to directly use genetic algorithm 

in the way it is described above. In particular, after crossover, there may be solutions 

which do not satisfy the constraints.  Hence, to obtain a feasible set of offspring, we may 

need to modify the way crossover is done or another possibility is to remove infeasible 

solutions after mutation and replace them with the solutions having higher fitness value 
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in the old population (2002b) or complete the new population with a schedule heuristics.  

In our approach, if an infeasible solution exists for future generation, we randomly select 

new shift schedules from the initial population. The genetic algorithm approach for 

dataset 1 is explained below.  

 

Solution Encoding 

In Dataset 1, the queuing system is stable (calculated from given data) and a maximum of 

48 physician hours is available per day.  Hence, we simply make decisions on shifts by 

generating random shift schedule and evaluating its fitness function.  The randomly 

generated shift schedules will define how many servers we have on at each hour.  The 

fitness function will determine how well the capacity handled the demand or whether 

there would be large queues. We have three shift durations of 8, 10 or 12 hours.  Hence, 

the maximum number of shift required would be simply the available number of 

physician hours (48 hours) divided by the least shift duration (i.e., 8 hours).  Hence we 

require a maximum of 6 shifts.   

 

As we have 15 preferences, each preference index in the preference matrix (Table 4.6) is 

numbered from 0 to 14 row wise.  For example, index 0 is a 7AM shift with shift duration 

of 8 hours and index 14 is an 11PM shift with duration of 12 hours.  A no schedule is 

assigned the number 15.   

Table 4.6: Shift index (Shift preference) matrix (Dataset 1) 

 
Shift index  

(preferences) 

 Shift 

duration 

(hours) 

 

Hour of the day 8 10 12 

7:00 AM 0(6) 1(5) 2(3) 
11:00 AM 3(6) 4(3) 5(4) 
3:00 PM 6(6) 7(3) 8(1) 
7:00 PM 9(4) 10(4) 11(2) 

11:00 PM 12(2) 13(3) 14(3) 
No schedule 15     
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Step 1: Initial Population 

For the initial population, I first randomly generate 2000 shift schedules of size 6 

(maximum number of shifts).  For example, one shift schedule may be [0,3,4,5,14,15] 

and an another shift sequence may be [4,15,4,9,10,11].  Then each of the 2000 randomly 

generated shift schedule is evaluated to verify if there is at least one physician available 

every hour and there is no overtime in the shift schedule (maximum of 48 physician 

hours per day). If a randomly generated shift schedule has at least one physician every 

hour and there is no overtime, this shift schedule is added to the initial population. This 

process continues until a predetermined number of initial population is generated which 

in our case is set to 500. 

 

Step 2: Evaluation of the fitness function 

It involves two steps as shown below: 

1) Validity of the shift sequence: 

 This is done to verify if there is at least one physician available every hour 

and there is no overtime in the shift schedule (maximum of 48 physician 

hours per day). If a randomly generated shift schedule has at least one 

physician every hour and there is no overtime, this shift schedule is added 

to the population.  

2) Evaluation of Fitness Function: 

 For every shift schedule in the population, its fitness function is calculated 

based on 2 objectives 1) Maximize physician preference and 2) Minimize 

the average patient wait time.  

• Maximize physician preference:  A penalty of (6- preference for that 

particular shift) is imposed. For example, for a 7AM, 8 hour shift, the 

penalty is 6 -6 = 0. 

• Minimize the average patient wait time:  A 2400 hour (100 days * 

24 hours/day) discrete event simulation is implemented for each of the 

shift schedules based on patient arrival rate and availability of 

physicians per hour.  
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• Then the convex combination of weights (penalty) for each of the 

above two objectives is used to evaluate the fitness function. 

Step 3: Selection  

The randomly generated shift schedules are sorted accordingly to the lowest fitness value. 

The top 100 shift sequences are then selected for future generation. 

Step 4: Crossover 

• Elitism: The top 5 shift schedules from the selection step are always 

added to the future generation. 

• Parent Selection: From the selection pool of shift schedules, 2 parents are 

randomly selected and two children of shift sequences are generated using 

one-point crossover for the new generation. 

• The crossover probability is set to 1. 

• There is no mutation. 

• If feasible schedules cannot be found, I randomly add feasible schedules to 

the new generation until the population size of 100 is reached. 

 Step 5: Terminating condition 

Then step 2, 3 and 4 is repeated for a fixed number of generations (terminating 

condition), which in our problem is set to 150. 

 
The genetic algorithm flowchart for dataset 1 is shown in Figure 4.1 below: 
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Figure 4.1: Genetic Algorithm Flowchart (Dataset 1) 

 
For Dataset 2, the queuing system is stable (calculated from given data) and maximum of 

68 physician hours is available per day.  Hence, the maximum number of shift required 

would be simply the available physician hours (68 hours) divided by the least shift 

duration (i.e., 8 hours).  Hence we require a maximum of 9 shifts.  As we have 70 

preferences wherein each preference index in the preference matrix (Table 4.7) is 

numbered from 0 to 69 row wise.  A no schedule is assigned the index 70.  Besides the 

solution encoding, the genetic algorithm approach for dataset 2 is similar to that of 

dataset 1. Due to the problem size, the genetic algorithm parameters such as population 

size, number of generations etc were increased by a factor of 3 for dataset 2 as compared 

to dataset 1. Also, please note that the genetic algorithm parameters such as population 

size, terminating condition etc. were all set during pilot- testing. 

Step 1: Generate initial population of 500 from feasible 
random shift sequences. 

Step 2: Evaluate the fitness function for each solution 
using the objective function 

Step 3: Generate 100 shift sequences for future 
generation by maintaining elitism 

Step 4: Crossover 

Step 5:  Repeat step 2 to step 5 until the terminating 
condition (150 generations) is reached 

 

Step 6: Print the best shift schedule 
 

Step 0: Generate 2000 random shift sequences and 
evaluate validity of each shift sequence 
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Table 4.7: Shift index (Shift preference) matrix (Dataset 2) 

      

Shift 

index(preference) 

Shift duration (hours) 

Hour of the day 8 9 10 11 12 

7:00 AM 0(4) 1(6) 2(6) 3(3) 4(2) 
8:00 AM 5(4) 6(6) 7(6) 8(3) 9(2) 
9:00 AM 10(4) 11(6) 12(6) 13(4) 14(2) 
10:00 AM 15(4) 16(6) 17(6) 18(4) 19(2) 
11:00 AM 20(4) 21(6) 22(6) 23(4) 24(2) 
12:00 PM 25(5) 26(5) 27(5) 28(3) 29(2) 
1:00 PM 30(5) 31(6) 32(5) 33(4) 34(2) 
2:00 PM 35(5) 36(6) 37(5) 38(4) 39(2) 
3:00 PM 40(5) 41(5) 42(5) 43(4) 44(2) 
4:00 PM 45(6) 46(5) 47(5) 48(3) 49(2) 
5:00 PM 50(6) 51(5) 52(3) 53(3) 54(2) 
6:00 PM 55(3)     
9:00 PM 56(2) 57(3) 58(3) 59(3)  

10:00 PM 60(3) 61(6) 62(6) 63(4) 64(2) 
11:00 PM 65(3) 66(5) 67(5) 68(3) 69(2) 

No schedule 70     

4. Results, Conclusions, and Future Work 

4.1 Results 

The genetic algorithm for this study was coded in Java on a Windows7, Intel i5 2.4 Ghz, 

4 GB RAM computer. The discrete event simulation module to evaluate average patient 

wait time was also coded in Java and was integrated with the genetic algorithm to 

generate shift schedules. The algorithm was run for convex combination of weights for 

the objective functions. Due to its simplicity, a weighted sum approach was used to 

calculate the objective function (Abdullah et al. (2006). The results for a convex 

combination of weights ranging from 0 to 1 for dataset 1 and dataset 2 are shown in 

Table 4.8 and Table 4.9 respectively. 
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Table 4.8: Weighted sum approach results (Dataset 1) 

Case 

# 

Preference 

Weight 

Average 

patient wait 

time 

Weight 

GA 

Time(sec) 

Total 

Preference 

Violation 

Average 

patient wait 

time(min) 

Total physician 

hours 

Shift Schedule 

1 1 0 340.964 3 37.94 44 [0, 6, 14, 15, 0, 6] 

2 0.9 0.1 116.315 3 20.89 44 [14, 0, 3, 6, 15, 6] 

3 0.8 0.2 116.923 3 20.89 44 [6, 15, 14, 6, 3, 0] 

4 0.7 0.3 118.778 4 15.31 48 [6, 0, 6, 0, 12, 3] 

5 0.6 0.4 118.633 4 15.31 48 [12, 3, 6, 0, 0, 6] 

6 0.5 0.5 118.827 4 15.31 48 [3, 12, 6, 0, 0, 6] 

7 0.4 0.6 119.131 5 15.31 48 [14, 0, 5, 15, 3, 6] 

8 0.3 0.7 118.623 4 15.31 48 [3, 6, 12, 6, 0, 0] 

9 0.2 0.8 119.079 8 13.88 48 [11, 0, 1, 15, 4, 6] 

10 0.1 0.9 119.995 8 13.88 48 [1, 15, 11, 0, 4, 6] 

11 0 1 119.41 8 13.88 48 [6, 1, 11, 15, 4, 0] 
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Table 4.9: Weighted sum approach results (Dataset 2) 

Case 

# 

Preference 

Weight 

Average 

patient 

wait time 

Weight 

  GA 

Time(sec) 

Total 

Preference 

Violation 

Average patient 

wait time 

(min) 

Total 

Physician 

hours 

Shift Schedule 

1 1 0 1170.017 0 35.95 64 [21, 1, 70, 36, 45, 1, 22, 62, 70] 

2 0.9 0.1 1101.017 0 35.68 65 [17, 2, 7, 45, 36, 70, 70, 61, 11] 

3 0.8 0.2 1145.259 2 35.46 64 [45, 12, 70, 7, 30, 6, 22, 66, 70] 

4 0.7 0.3 1092.167 2 34.39 66 [21, 2, 32, 70, 11, 61, 12, 70, 51] 

5 0.6 0.4 1122.037 3 31.21 66 [1, 12, 70, 7, 30, 17, 42, 70, 66] 

6 0.5 0.5 899.491 3 30.94 67 [2, 62, 1, 70, 70, 21, 32, 50, 13] 

7 0.4 0.6 917.144 6 30.27 67 [21, 11, 70, 33, 36, 70, 68, 1, 26] 

8 0.3 0.7 910.54 12 27.28 68 [69, 30, 2, 16, 70, 70, 24, 21, 55] 

9 0.2 0.8 926.297 10 26.88 68 [68, 31, 27, 70, 46, 3, 0, 12, 70] 

10 0.1 0.9 907.925 13 26.38 67 [45, 10, 19, 70, 70, 8, 27, 5, 67] 

11 0 1 885.737 16 25.58 67 [5, 70, 16, 19, 68, 70, 23, 55, 5] 
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As you can see from Table 4.8 and Table 4.9 above, for dataset 1 and dataset 2, a zero 

weight to the average patient wait time objective function results in an average patient 

time of 37.94 minutes and 35.95 minutes respectively, and when no weight is assigned to 

preferences of the physicians, the average patient weight time is 13.88 minutes and 25.58 

minutes respectively. Also, as the preference weight decreases from 1 to 0 and average 

patient wait time weight increases from 0 to 1, the total preference violation increases and 

the average patient wait time decreases for the two datasets. The computational time for 

the genetic algorithm is shown in the fourth column (GA Time (sec)). As you can see for 

dataset 1 in Table 4.8, for the first 3 cases, wherein the physician preference has more 

weight, the total physician hours used is only 44 hours as compared to the maximum of 

48 hours available each day. Whereas for dataset 2 in Table 4.9, there are only two 

instances (case #8 and case #9) wherein the maximum available physician hours of 68 

hours is completely used.  

 

The shift schedules for each convex combination of weights are shown in the last column 

in Table 4.8 and Table 4.9. For example, for case #2 in dataset 1, the best shift schedule 

is [14,0,3,6,15,6]. Using Table 4.6, the shift schedule is as follows: 

• 14 � Start shift at 11PM for 12 hours 

• 0 � Start shift at 7AM for 8 hours 

• 3 � Start shift at 11AM for 8 hours 

• 6 � Start shift at 3PM for 8 hours 

• 15 � No schedule 

• 6 � Start shift at 3PM for 8 hours 

A similar interpretation can be done for all the cases in the two datasets. The plot of total 

preference violation v/s. average patient wait time for all convex combinations of weight 

for dataset 1 and dataset 2 is shown in Figure 4.2 and Figure 4.3 respectively. 
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Figure 4.2: Total preference violation v/s Average patient wait time (min)(Dataset 1) 

 

Figure 4.3: Total preference violation v/s Average patient wait time (min)(Dataset 2) 
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For Case #2, Case #6 and Case #11 in dataset 1, the number of doctors available per hour 

and the “number of patients of capacity” is shown in Table 4.10 and a plot showing how 

the shift schedule handles the patient arrivals each hour in shown in Figure 4.4(A), Figure 

4.4(B) and Figure 4.4(C) respectively. The “number of patients of capacity” shows the 

amount of patients that can be served by physicians every hour for each shift schedule. 
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Table 4.10: Number of patients of capacity (Dataset 1) 

  Case # 2 Case # 6 Case # 11 

Hour of the 

day 

Average 

number of 

patient 

arrivals/hr 

Available 

physicians/hr 

Number of 

patients of 

capacity 

Available 

physicians/h

r 

Number of 

patients of 

capacity 

Available 

physicians/hr 

Number of 

patients of 

capacity 

12:00 AM 3.690616 1 4 1 4 1 4 

1:00 AM 2.911858 1 4 1 4 1 4 

2:00 AM 2.293054 1 4 1 4 1 4 

3:00 AM 2.017725 1 4 1 4 1 4 

4:00 AM 1.831175 1 4 1 4 1 4 

5:00 AM 1.856022 1 4 1 4 1 4 

6:00 AM 2.251625 1 4 1 4 1 4 

7:00 AM 3.803911 2 8 2 8 2 8 

8:00 AM 5.446445 2 8 2 8 2 8 

9:00 AM 7.066014 2 8 2 8 2 8 

10:00 AM 7.939452 2 8 2 8 2 8 

11:00 AM 8.493820 2 8 3 12 3 12 

12:00 PM 8.178273 2 8 3 12 3 12 

1:00 PM 7.794890 2 8 3 12 3 12 

2:00 PM 7.792522 2 8 3 12 3 12 

3:00 PM 8.053659 3 12 3 12 3 12 

4:00 PM 7.983501 3 12 3 12 3 12 

5:00 PM 7.969416 3 12 3 12 2 8 

6:00 PM 8.282366 3 12 3 12 2 8 

7:00 PM 7.664413 2 8 2 8 3 12 

8:00 PM 7.238266 2 8 2 8 3 12 

9:00 PM 6.578026 2 8 2 8 2 8 

10:00 PM 5.526836 2 8 2 8 2 8 

11:00 PM 4.336112 1 4 1 4 1 4 
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Figure 4.4(A): Number of patients of capacity plot (Case # 2, Dataset 1) 

 

Figure 4.4(B): Number of patients of capacity plot (Case # 6, Dataset 1) 
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Figure 4.4(C): Number of patients of capacity plot (Case # 11, Dataset 1) 

The columns in the plots above represent average patient arrival rate for every hour and 

the lines represent the physicians’ capacity to serve the patients. As you can see from the 

three plots above, when the weights are more towards reducing the patient average wait 

time as compared to physicians’ preference (Figure 4.4(C)), the genetic algorithm 

generates shift schedules that tend to add capacity during peak patient arrival hours as 

compared to Case # 2 , wherein the physicians’ preference have more weight. Hence, the 

addition of extra capacity results in less patient average wait time (Case # 11) as 

compared to Case # 2. 

 

Similarly, for Case #2, Case #6 and Case #11 in dataset 2, the number of doctors 

available per hour and the “number of patients of capacity” is shown in Table 4.11 and a 

plot showing how the shift schedule handles the patient arrivals each hour in shown in 

Figure 4.5(A), Figure 4.5(B) and Figure 4.5(C) respectively. The plots for these cases can 

be interpreted in the same manner in which they were interpreted for Dataset 1. 
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Table 4.11: Number of patients of capacity (Dataset 2) 

  Case # 2 Case # 6 Case # 11 

Hour of the 

day 

Average 

number of 

patient 

arrivals/hr 

Available 

physicians/hr 

Number of 

patients of 

capacity 

Available 

physicians/hr 

Number of 

patients of 

capacity 

Available 

physicians/h

r 

Number 

of patients 

of 

capacity  

12:00 AM 2.621795 1 1.82 2 3.64 2 3.64 
1:00 AM 1.916667 1 1.82 1 1.82 2 3.64 
2:00 AM 1.448718 1 1.82 1 1.82 1 1.82 
3:00 AM 1.294872 1 1.82 1 1.82 1 1.82 
4:00 AM 1.403846 1 1.82 1 1.82 1 1.82 
5:00 AM 1.378205 1 1.82 1 1.82 1 1.82 
6:00 AM 1.839744 1 1.82 1 1.82 1 1.82 
7:00 AM 2.858974 1 1.82 3 5.46 1 1.82 
8:00 AM 4.288462 2 3.64 2 3.64 3 5.46 
9:00 AM 5.769231 3 5.45 3 5.46 3 5.46 

10:00 AM 6.769231 4 7.27 3 5.46 4 7.28 
11:00 AM 7.038462 4 7.27 4 7.28 5 9.1 
12:00 PM 7.083333 4 7.27 4 7.28 5 9.1 
1:00 PM 6.826923 4 7.27 5 9.10 5 9.1 
2:00 PM 6.557692 5 9.09 5 9.10 5 9.1 
3:00 PM 6.570513 5 9.09 5 9.10 5 9.1 
4:00 PM 6.076923 6 10.91 4 7.28 3 5.46 
5:00 PM 6.512821 5 9.09 4 7.28 3 5.46 
6:00 PM 6.730769 3 5.45 4 7.28 4 7.28 
7:00 PM 6.750000 3 5.45 4 7.28 3 5.46 
8:00 PM 6.064103 2 3.64 2 3.64 3 5.46 
9:00 PM 5.384615 2 3.64 2 3.64 3 5.46 
10:00 PM 4.339744 3 5.45 3 5.46 1 1.82 
11:00 PM 3.147436 2 3.64 2 3.64 2 3.64 
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Figure 4.5(A): Number of patients of capacity plot (Case # 2, Dataset 2) 

 

 

Figure 4.5(B): Number of patients of capacity plot (Case # 6, Dataset 2) 
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Figure 4.5(C): Number of patients of capacity plot (Case # 11, Dataset 2) 

4.2 Conclusions and Future Work 

This paper provides a genetic algorithm approach to solve the staff scheduling problem. 

As noted by Michalewicz (1995a), the results of a genetic algorithm are very problem 

specific and the proposed genetic algorithm is also very specific to the problem. Also, 

discrete event simulation was embedded in the genetic algorithm to evaluate the patient 

average wait time. One of the main drawbacks of using weighted sum approach is that the 

objective function is very sensitive to weights. Hence, in future, I would like to use an 

alternate approach proposed by Hajela and Lin (1992), in which multiple solutions can be 

obtained in a single run. Also, this problem only considers an overall physician schedule. 

In future, I would like to modify my genetic algorithm in such a way that it can generate 

schedules for every individual physician. 
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CHAPTER V 

CONCLUSION 
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1. Chapter Abstract 

In this dissertation, genetic algorithm and ant colony optimization was applied to solve 

combinatorial optimization problems in the field of logistics and healthcare staff 

scheduling. In particular, two chapters focus on solving SDVRP using genetic algorithms 

and ant colony optimization. Another chapter applied genetic algorithm to solve a real 

world emergency department staff scheduling problem. 

 

2. Chapter Highlights 

The highlights of each chapter are as follows: 

 

Chapter 2: Ant Colony Optimization for the Split Delivery Vehicle Routing Problem 

• For the first time ever, Ant Colony Optimization was applied to the Split Delivery 

Vehicle Routing Problem. 

• The ACO algorithm found competitive solutions for two benchmark problem sets. 

• In some instances, ACO found the best ever solution for the test problem. 

• Candidate list size plays a key role in the first ever application of ACO to 

SDVRP. 

Chapter 3: A hybrid Genetic Algorithm approach to solve the Split Delivery vehicle 

routing problem 

• A hybrid genetic algorithm consisting of genetic algorithm, heuristics and ant 

colony optimization was developed to solve the SDVRP. 

• The hybrid genetic algorithm found competitive solutions for two benchmark 

problem sets. 

Chapter 4: A Genetic Algorithm approach to solve the physician scheduling 

problem 

• A genetic algorithm was developed to solve a real world physician schedule 

problem. 
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• The problem was a multi objective optimization problem wherein the physicians’ 

shifts were scheduled based on their preferences of shift start time and duration 

,no overtime and in patients’ point of view, reduce their average wait time. 

• The average wait time for patients were calculated using a discrete event 

simulation module and was part of the genetic algorithm. 

3. Future Directions 

The GA and ACO work shown in this dissertation for the SDVRP could be applied to 

other VRP variants with some modification to account for additional constraints, likewise 

additional study of the candidate list issues could be explored.  Finally, using GA and 

ACO in conjunction with an exact method (e.g., column generation) could be explored to 

find both an integer feasible solution and a dual solution (to raise the lower bound) in 

order to solve to optimality. 

 

The GA procedure for the physician scheduling was specific to that problem; however, it 

could be extended to schedule multiple physicians across multiple facilities (e.g., hospital 

systems with more than one site).  It could also be used in conjunction with scheduling 

other resources (e.g., nurses and physicians), where the decisions is further convoluted by 

having nurse and provider schedules that are dependent. 
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