
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Doctoral Dissertations Graduate School

8-2012

Solving Combinatorial Optimization Problems
Using Genetic Algorithms and Ant Colony
Optimization
Gautham Puttur Rajappa
grajappa@utk.edu

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more
information, please contact trace@utk.edu.

Recommended Citation
Rajappa, Gautham Puttur, "Solving Combinatorial Optimization Problems Using Genetic Algorithms and Ant Colony Optimization. "
PhD diss., University of Tennessee, 2012.
https://trace.tennessee.edu/utk_graddiss/1478

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Gautham Puttur Rajappa entitled "Solving
Combinatorial Optimization Problems Using Genetic Algorithms and Ant Colony Optimization." I have
examined the final electronic copy of this dissertation for form and content and recommend that it be
accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in
Industrial Engineering.

Joseph H.Wilck, Major Professor

We have read this dissertation and recommend its acceptance:

Charles Noon, Xueping Li, Xiaoyan Zhu

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Solving Combinatorial Optimization Problems Using

Genetic Algorithms and Ant Colony Optimization

A Dissertation Presented for

the Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Gautham Puttur Rajappa

 August 2012

ii

Copyright © 2012 by Gautham P. Rajappa

All rights reserved.

iii

DEDICATION

To my parents and friends

iv

ACKNOWLEDGEMENTS

First, I would like to express my gratitude to all my committee members.

1) Dr. Joseph H. Wilck, my advisor, for hiring me to pursue my Ph.D. at the

University of Tennessee, Knoxville. You have been a source of inspiration to me

and I whole heartedly thank you for supporting and challenging me for the past

three years. I have had some of the most interesting conversations ranging from

politics to sports with you.

2) Dr. Charles Noon, for taking his time out from his busy schedule and sharing his

knowledge on my dissertation. I consider you as my role model.

3) Dr. Xueping Li, for providing your valuable inputs on my dissertation and also,

for teaching some important courses which have helped me shape my career.

4) Dr. Xiaoyan Zhu, for providing your valuable inputs and pushing me to bring the

best out of me.

Second, I would like to thank all the faculty members from the Departments of Industrial

Engineering and Business Analytics. In particular, I would like to thank Dr. Rapinder

Sawhney. You were there for me whenever I wanted to discuss anything personal or

professional. You always answered me with a smile and some of your inputs have really

helped me a lot in my personal life. Also, I would like to thank Dr. John E. Bell from the

Business School for providing his valuable inputs on my dissertation. I would also like to

thank you for helping me write my first ever journal paper. I honestly believe that the

experience of sitting with you in your office and writing the paper gave me a whole new

perspective of how journals paper have to be written.

Third, I would like to thank all my friends and colleagues, without whose support, I

would never have been able to finish my Ph.D. My colleagues from UT are some the best

students/friends I have ever worked with. In particular, I would like to thank my friends

Avik, Ajit, Aju, Karthik, Gagan, Sherin, Rani, Geetika, and Ashutosh from

Knoxville, who were always there for me and without whom, life would be very different

in Knoxville. Also, I would like to thank my friends Arjun & Sowmya (for planning

v

some wonderful vacations), Aubin (my bank), Priyamvad, Pai, Shailesh, Katti, Vincil,

Ajay, Uday, Gidda, Sharath, Sarpa, Vinay (for your motivating talks), Durgesh (for

your perseverance), and Ameya (the smartest human being that I have ever known).

Finally, I would like to thank my parents Shashikala and Rajappa, Bharath (younger

brother) and Sandhya (my older cousin sister), who always believed in me and supported

me to pursue my dreams.

vi

ABSTRACT

This dissertation presents metaheuristic approaches in the areas of genetic algorithms and

ant colony optimization to solve combinatorial optimization problems.

Ant colony optimization for the split delivery vehicle routing problem

An Ant Colony Optimization (ACO) based approach is presented to solve the Split

Delivery Vehicle Routing Problem (SDVRP). SDVRP is a relaxation of the Capacitated

Vehicle Routing Problem (CVRP) wherein a customer can be visited by more than one

vehicle. The proposed ACO based algorithm is tested on benchmark problems previously

published in the literature. The results indicate that the ACO based approach is

competitive in both solution quality and solution time. In some instances, the ACO

method achieves the best known results to date for the benchmark problems.

Hybrid genetic algorithm for the split delivery vehicle routing problem (SDVRP)

The Vehicle Routing Problem (VRP) is a combinatory optimization problem in the field

of transportation and logistics. There are various variants of VRP which have been

developed of the years; one of which is the Split Delivery Vehicle Routing Problem

(SDVRP). The SDVRP allows customers to be assigned to multiple routes. A hybrid

genetic algorithm comprising a combination of Ant Colony Optimization (ACO), Genetic

Algorithm (GA), and heuristics is proposed and tested on benchmark SDVRP test

problems.

Genetic algorithm approach to solve the hospital physician scheduling problem

Emergency departments have repeating 24-hour cycles of non-stationary Poisson arrivals

and high levels of service time variation. The problem is to find a shift schedule that

considers queuing effects and minimizes average patient waiting time and maximizes

physicians’ shift preference subject to constraints on shift start times, shift durations and

total physician hours available per day. An approach that utilizes a genetic algorithm and

discrete event simulation to solve the physician scheduling problem in a hospital is

proposed. The approach is tested on real world datasets for physician schedules.

vii

TABLE OF CONTENTS

CHAPTER I .. 1

Introduction ... 1

1. Chapter Abstract ... 2

2. Metaheuristics Overview .. 2

3. Genetic Algorithms ... 3

3.1 Solving Multiobjective Optimization Problems with Genetic Algorithms........... 7

4. Ant Colony Optimization .. 10

4.1 ACO Algorithm .. 11

5. Dissertation Organization ... 13

6. References ... 14

CHAPTER II ... 18

Ant Colony Optimization for the Split Delivery Vehicle Routing Problem 18

Publication Statement ... 19

Chapter Abstract ... 19

1. Introduction ... 19

2. SDVRP Problem Formulation and Benchmark Data Sets .. 20

3. Ant Colony Optimization Approach ... 24

4. Computational experiments .. 30

5. Conclusions and Future directions .. 36

6. References ... 37

CHAPTER III ... 40

A hybrid Genetic Algorithm approach to solve the Split Delivery vehicle routing

problem .. 40

Publication Statement ... 41

Chapter Abstract ... 41

1. Introduction ... 41

2. Split Delivery Vehicle Routing Problem (SDVRP) ... 42

3. Literature Review.. 44

4. Hybrid Genetic Algorithm Approach ... 46

4.1 Genetic Algorithms ... 46

5. Computation experiments ... 49

6. Conclusions and Future directions .. 54

7. References ... 55

CHAPTER IV.. 57

A Genetic Algorithm approach to solve the physician scheduling problem.............. 57

Publication Statement ... 58

Abstract ... 58

viii

1. Introduction ... 58

2. Literature Review.. 59

3. Problem Definition and Genetic Algorithm approach .. 63

3.1 Problem Definition.. 63

3.2 Genetic Algorithm Approach .. 69

4. Results, Conclusions, and Future Work .. 74

4.1 Results ... 74

4.2 Conclusions and Future Work .. 85

5. References ... 85

CHAPTER V ... 90

Conclusion ... 90

1. Chapter Abstract ... 91

2. Chapter Highlights .. 91

3. Future Directions .. 92

VITA... 93

ix

LIST OF TABLES

Table 2.1: Parameters.. 31

Table 2.2: Comparing ACO results versus Jin et al. (2008) ... 31

Table 2.3: Comparing ACO results versus Chen et al. (2007a).. 32

Table 2.4: Post-hoc results (without using a candidate list) ... 34

Table 2.5: Comparison of ACO objective function for Chen et al. (2007a) and Column
generation dual bound (Working paper, Wilck and Cavalier) 35

Table 2.6: Comparison of ACO objective function for Jin et al. (2008) and Column
generation dual bound (Working paper, Wilck and Cavalier) 36

Table 3.1: Parameters.. 51

Table 3.2: Comparing Hybrid GA results versus Jin et al.(2008d) 51

Table 3.3: Comparing Hybrid GA results versus Chen et al. (2007c) 52

Table 3.4: Comparison of ACO objective function for Chen et al. (2007c) and Column
generation dual bound (Working paper, Wilck and Cavalier) 53

Table 3.5: Comparison of ACO objective function for Jin et al. (2008d) and Column
generation dual bound (Working paper, Wilck and Cavalier) 54

Table 4.1: Given Data ... 64

Table 4.2: Average number of patients arriving per hour (Dataset 1) 65

Table 4.3: Average number of patients arriving per hour (Dataset 2) 65

Table 4.4: Feasible shifts with preference (Dataset 1) .. 66

Table 4.5: Feasible shifts with preference (Dataset 2) .. 66

Table 4.6: Shift index (Shift preference) matrix (Dataset 1) .. 70

Table 4.7: Shift index (Shift preference) matrix (Dataset 2) .. 74

Table 4.8: Weighted sum approach results (Dataset 1) .. 75

Table 4.9: Weighted sum approach results (Dataset 2) .. 76

Table 4.10: Number of patients of capacity (Dataset 1) ... 80

Table 4.11: Number of patients of capacity (Dataset 2) ... 83

x

LIST OF FIGURES

Figure 1.1: Genetic Algorithm Flowchart ... 4

Figure 1.2: Ant Colony Optimization ... 11

Figure 2.1: ACO Flowchart .. 28

Figure 3.1: CVRP v/s SDVRP .. 43

Figure 3.2: Hybrid GA Flowchart ... 50

Figure 4.1: Genetic Algorithm Flowchart (Dataset 1) .. 73

Figure 4.2: Total preference violation v/s Average patient wait time (min)(Dataset 1) ... 78

Figure 4.3: Total preference violation v/s Average patient wait time (min)(Dataset 2) ... 78

Figure 4.4(A): Number of patients of capacity plot (Case # 2, Dataset 1) 81

Figure 4.4(B): Number of patients of capacity plot (Case # 6, Dataset 1) 81

Figure 4.4(C): Number of patients of capacity plot (Case # 11, Dataset 1) 82

Figure 4.5(A): Number of patients of capacity plot (Case # 2, Dataset 2) 84

Figure 4.5(B): Number of patients of capacity plot (Case # 6, Dataset 2) 84

Figure 4.5(C): Number of patients of capacity plot (Case # 11, Dataset 2) 85

1

CHAPTER I

INTRODUCTION

2

1. Chapter Abstract

In this chapter, a brief overview on metaheuristics is presented. Since, this dissertation

focuses on Genetic Algorithms and Ant Colony Optimization, a detailed overview of

both the metaheuristics is provided in the chapter.

2. Metaheuristics Overview

A large number of well-known numerical combinatorial programming, linear

programming (LP), and nonlinear programming (NLP) based algorithms are applied to

solve a variety of optimization problems. In small and simple models, these algorithms

were always successful in determining the global optimum. But in reality, many

optimization problems are complex and complicated to solve using algorithms based on

LP and NLP methods. Combinatorial optimization (Osman and Kelly, 1996a) can be

defined as a mathematical study of finding an optimal arrangement, grouping, ordering,

or selection of discrete objects usually finite in number. A combinatory optimization

problem can be either easy or hard. We call the problem easy if we can develop an

efficient algorithm to solve for optimality in a polynomial time. If an efficient algorithm

does not exist to solve for optimality in a polynomial time, we call the problem hard. An

optimal algorithm to compute optimality for hard problems requires a large number of

computational steps which grows exponentially with the problem size. The

computational drawbacks of such algorithms for complex problems have led researchers

to develop metaheuristic algorithms to obtain a (near) optimal solution.

The term "metaheuristic” was first coined by Fred Glover (1986). Generally, it is applied

to problems classified as NP-Hard or NP-Complete but could also be applied to other

combinatorial optimization problems. Metaheuristics are among the best known methods

for a good enough and cheap (i.e., minimal computer time) solution for NP-Hard or NP-

Complete problems. Some of the typical examples where metaheuristics are used are the

traveling salesman problem (TSP), scheduling problems, assignment problems, and

vehicle routing problems (VRP). Such types of problems falls under combinatory

optimization problems. According to Osman and Laporte (1996b), a metaheuristic

3

algorithm is defined as: "An iterative generation process which guides a subordinate

heuristic by combining intelligently different concepts for exploring and exploiting the

search space, learning strategies are used to structure information in order to find

efficiently near-optimal solutions." According to Blum and Roli (2003a), metaheuristics

are strategies that guide a search process which explore the search space to find a (near-)

optimal solution. Metaheuristics are not problem-specific and may make use of domain-

specific knowledge in the form of heuristics. Some of the well known metaheuristic

approaches are genetic algorithm, simulated annealing, Tabu search, memetic algorithm,

ant colony optimization, particle swarm optimization, etc. The following sections provide

an overview of Genetic Algorithms and Ant Colony Optimization, which are relevant to

this dissertation.

3. Genetic Algorithms

Genetic algorithms are population based search algorithms to solve combinatorial

optimization problems. It was first proposed by John Holland (1989). They generate

solutions for optimization problem based on theory of evolution using concepts such as

reproduction, crossover and mutation. The fundamental concept of a genetic algorithm

states a set of conditions to achieve global optima. These conditions describe the

reproduction process and ensure that better solution remain in future generations and

weaker solutions be eliminated from future generations. This is similar to the Darwin’s

survival of fittest concept in the theory of evolution. A typical genetic algorithm (GA)

consists of the following steps (Holland, 1989):

Step 1: Generate an initial population of N solutions.

Step 2: Evaluate each solution of the initial population using a fitness

function/objective function.

Step 3: Select solutions as parents for the new generation based on probability

or randomness. The best solutions (in terms of fitness or objective)

have a higher probability of being selected than poor solutions.

4

Step 4: Use the parent solutions from Step 3 to produce the next generation

(called offspring). This process is called as crossover. The offspring

are placed in the initial set of solutions replacing the weaker solutions.

Step 5: Randomly alter the new generation by mutation. Usually this is done

using a mutation probability.

Step 6: Repeat Steps 2 through 5 until a stopping criteria is met.

A flowchart of a simple GA is shown in Figure 1.1 below:

Figure 1.1: Genetic Algorithm Flowchart

A genetic algorithm search mechanism consists of three phases: (1) Evaluation of fitness

function of each solution in the population, (2) selection of parent solutions based on

fitness values, and (3) application of genetic operations such as crossover and mutation to

generate new offspring.

INITIAL POPULATION

SELECTION

EVALUATE FITNESS

FUNCTION

CROSSOVER

MUTATION

PRINT RESULTS

TERMINATING

CONDITION

5

The initial population in genetic algorithm is normally generated randomly but heuristic

approaches can also be applied to get a good set of initial solutions for the initial

population. Genetic operations involve crossover and mutation. In a crossover

operation, one or two points in the parent string are cut at random and the properties are

exchanged between two parents to generate two or four offspring. For example, consider

two binary parents represented by Parent 1: 1-0-0-1 and Parent 2: 1-1-0-0. A crossover

can occur at any point(s) between each element of the parent. Based on probability (i.e.,

generating a random number between 0 and 1), a crossover point is chosen. For example,

if the crossover point was after the second position for the above parents. Then, the two

new offspring are generated as follows: Offspring 1: 1-0-0-0 and Offspring 2: 1-1-0-1.

These offspring inherits certain characteristics from their parents.

There are various crossover techniques that are described in literature such as one-point

crossover, two-point crossover, multi point crossover, variable to variable crossover and

uniform crossover (HasancËebi and Erbatur, 2000). In one-point crossover, a single point

is selected in the parent string and crossover operation is performed. In two-point

crossover, two points are selected in the parent string and crossover is performed

accordingly. In multi point crossover, more than two points are selected randomly and

crossover is performed. In variable to variable crossover, the parents are divided into

substrings and a one point crossover is performed for each substring. In uniform

crossover, randomly generated crossover masks are first created. Then for the child,

wherever there is one is the mask, the genes are copied from parent 1 and for zeros, the

genes are copied from parent 2.The second child is created either by complementing the

original mask or by creating a new crossover mask.

Once the crossover operations performed, mutation is done to prevent the genetic

algorithm from being trapped in local optima (Osman and Kelly, 1996a). But the

mutation probability is kept low to avoid delay in convergence to global optima. In the

mutation stage, again using the concept of probability, an offspring will be selected and

all or some of its positional values will be changed. For example, consider applying

6

mutation on Offspring 1: 1-0-0-0. After applying mutation, the new Offspring 1: 0-1-1-1

will be formed. There is also a concept called elitism in genetic algorithm. If elitism is

used, the fittest parent(s) are directly copied to the new population.

Problems for generating feasible offspring are problem specific and hence, the

application of crossover and mutation operators also differs. Also, due to constraints of a

particular problem, pure genetic algorithms cannot be applied to obtain a feasible set of

solutions. In such cases, to ensure feasibility, additional procedures are used to ensure

feasibility based on the specific problem's constraints.

Over a period of time, a lot of variants of genetic algorithms have been developed.

Adaptive Genetic Algorithms (AGA) (Srinivas & Patnaik, 1994) is one of the most

significant variant of genetic algorithm. In a normal GA, the crossover and mutation

probabilities are fixed. The selection of this probability is significant because it decides

on the convergence rate and the accuracy of the solution. Usually crossover probabilities

are fixed between 0.6 and 0.8 and the mutation probability is between 1-3%. An AGA in

turn dynamically changes the crossover and mutation probability based on the fitness

value of the new generation. This real time manipulation of these probabilities aids in

better convergence and maintaining a diverse population. Some of the recent application

of adaptive genetic algorithm are bilateral multi-issue simultaneous bidding negotiation

(2008) and designing and optimizing phase plates for shaping partially coherent beams

(March 2010). Another variant is the multiobjective genetic algorithm, which is

explained in the section 3.1.

Some of the most recent applications of genetic algorithms are in deployment of security

guards in a company (Dec 2010a), optimizing the design of spur gears (2010c), electric

voltage stability assessment (2010a), capacitated plant location problem (2010b),

evaluation of RFID applications (Nov 2010b), supply chain management to coordinate

production and distribution (Dec 2010b), and forecasting of energy consumption (Nov

2010a).

7

3.1 Solving Multiobjective Optimization Problems with Genetic Algorithms

In the real world, there are an infinite number of problems that require more than one

objective to be simultaneously satisfied under a given set of constraints. Such problems

fall under the category of multiobjective optimization problems. Multiobjective

optimization problems can be found in various fields: oil and gas industries, finance,

aircraft, and automobile design.

Consider a minimization problem consisting of N objectives with a series of constraints

and bounds on decision variables. Given an n dimensional decision variables vector, the

goal is to find a vector in solution space that minimizes the given set of N objective

function (2002a, 2006). Examples of the objectives to be simultaneously solved would be

maximizing profit while minimizing costs, maximizing the fuel efficiency but not

compromising on performance. In certain cases, objective functions may be optimized

independently, but generally objectives must be simultaneously optimized to reach a

reasonable solution that compromises the multiple objectives. Instead of a single solution

that simultaneously minimizes each objective function, the aim of a multiobjective

problem is to determine a set of non-dominated solutions, known as Pareto-optimal (PO)

solutions (2002a). A Pareto optimal set is a set of solutions that are non-dominated with

respect to each other. While traversing from one solution to another in a Pareto set, there

is always a certain amount of compromise in one objective(s) with respect to

improvement in other objective(s). Finding a set of such solutions and then comparing

them with one another is the primary goal of solving multiobjective optimization

problems.

In the real world, it is impossible to optimize all the objective functions simultaneously.

A traditional multiobjective optimization approach aggregates together (e.g., by

normalizing, using weights) various objectives to form a single overall fitness function,

which can then be treated by classical techniques such as simple GAs, multiple objective

linear programming (MOLP), random search, etc. But using such aggregate approaches

produces results which are sensitive to the weights selected. Hence, the goal of a

8

multiobjective optimization problem is the find a set of solutions, each of which satisfies

all the objective functions at an acceptable level and are non-dominated by other

solutions. These set of solutions are called Pareto optimal set and the corresponding

objective function values are called Pareto front (1985a). The size of the Pareto optimal

set depends on the size of a problem and hence, it is difficult to find the entire Pareto-

Optimal set for larger problems. Also, in combinatory optimization problems, it generally

impossible to compute the evidence of a Pareto optimal set.

There are numerous approaches provided in the literature to solve multiobjective

optimization problems. One approach is to combine the individual objective functions

into a single composite function by weighting the objectives with a weight vector (2006).

The results obtained from this approach largely depend on the weights selected and

proper selecting of weights can has a major impact on the final solution. The primary

drawback of this approach is that instead of returning a set of solutions, it returns a single

solution. Another approach is to determine an entire Pareto optimal solution set, or a

representative subset, and is a preferred approach to solve real world multiobjective

optimization solutions (2006). Some of the most well known operations research

approaches to solve multiobjective problems are efficient frontier, goal programming,

game theory, Gradient Based/Hill Climbing, Q-Analysis, and compromise programming

(2002b).

Conventional optimization techniques such as simplex-based methods and simulated

annealing are not designed to solve problems with multiple objectives. In such cases,

multiobjective problems have to be reformulated as a single-objective optimization

problem which results in a single solution per run of the optimization solver. However,

evolutionary algorithms (EAs) such as genetic algorithms can be applied to solve such

problems. Genetic algorithms are population based search algorithms and can be used to

solve multiobjective optimization problems. Genetic Algorithms can solve such problems

by using specialized fitness functions and introducing methods to promote solution

diversity (2006).

9

When applying genetic algorithms (GA) to a problem with a single objective function, we

randomly select a set of individuals (chromosomes) to form the initial population. We

then evaluate their fitness functions. Using this initial population, we then create a new

population by incorporating mutation and crossover operations and then, repeat the

process of fitness evaluation and crossover-mutation process over many generations with

a hope of converging to the global optimum. In traditional single-objective GA approach

to solve multiobjective problems, we can combine the individual objective functions into

a single composite function by weighting the objectives with a weight vector. Another

approach is to make most of the objectives as varying constraints and optimize just the

main objective. Both these approaches require multiple runs to generate Pareto-optimal

solutions consecutively. But the ability of GA to simultaneously search different regions

of a solution space makes it possible for a generic single-objective GA to be modified

into a multiobjective GA to find a set of Pareto optimal solutions in one run. In addition,

most multiobjective GAs do not require the user to prioritize, scale, or weight objectives.

Therefore, GAs is one of the most frequently used metaheuristics to solve multiobjective

optimization problems. In fact, 70% of the metaheuristics approaches used to solve

multiobjective optimization problems uses genetic algorithms (2002b).

The fundamental goals in multiobjective genetic algorithm design are:

• Directing the search towards the Pareto set (fitness assignment and selection),

• Maintaining a diverse set of Pareto solutions(diversity), and

• Retaining the best chromosomes in future generations (elitism) (2004b) with

computational speed being another important criterion.

Some of the well known variants of multiobjective genetic algorithms are listed below:

• The first multiobjective genetic algorithm called vector evaluated genetic

algorithm (VEGA) was developed by Schaffer (1985b). It mainly focused on the

fitness selection and did not address the issues related with maintaining diversity

and elitism.

10

• Multiobjective Genetic Algorithm (MOGA) (1993a; 1993b) used Pareto ranking

and fitness sharing by niching for fitness selection and maintenance of diversity

respectively.

• Hajela & Lin’s Weighting-based Genetic Algorithm (HLGA) (1992b) is based on

assigning weights to each normalized objectives.

• Non-dominated Sorting Genetic Algorithm (NSGA) (1995) in which the fitness

assignment was based on Pareto fitness sharing and diversity was maintained by

niching.

• Niched Pareto Genetic Algorithm (NPGA) (June 1994) in which diversity is

based on tournament selection criteria.

• Pareto-Archived Evolution Strategy (PAES) (1999b) in which Pareto dominance

rule is used to replace a parent in the new population.

4. Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic approach proposed by Dorigo

(1992a) in 1992 to solve combinatory optimization problems. Inspired by the behavior of

ants forming pheromone (e.g., a trace of a chemical substance that can be smelled by

other ants (Rizzoli et al. , 2004a)) trails in search of food, ACO belongs to a class of

algorithms which can be used to obtain good enough solutions in reasonable

computational time for combinatory optimization problems. Ants communicate with one

another by depositing pheromones. Initially in search of food, ants wander randomly and

upon finding a food source, return to their colony. On their way back to the colony, they

deposit pheromones on the trail. Other ants then tend to follow this pheromone trail to

the food source and on their way back may either take a new trail, which might be shorter

or longer than the previous trail, or would come back along the previous laid pheromone

trail. Also, on their way back, the other ants deposit pheromones on the trail.

Pheromones have a tendency to evaporate with time. Hence, over a period of time, the

shortest trail (path) from the food source to the colony would become more attractive and

have a larger amount of pheromone deposited as compared with other trails. A pictorial

explaining of the above defined steps is shown in Figure 1.2 below. Initially, a single ant,

11

called "blitz," goes from the colony to the food source via the blue pheromone trail. As

time progresses, more and more ants either follow this blue trail or form their own shorter

trail (red and orange trail). Eventually, the shortest trail (red) becomes more attractive

and is taken by all the ants from the colony to the food source and the other trails

evaporate in a period of time (2004a).

Figure 1.2: Ant Colony Optimization

4.1 ACO Algorithm

The ACO replicates the foraging behavior of ants to construct a solution. The main

elements in an ACO are ants which independently build solutions to the problem. For an

ant k, the probability of it visiting a node j after visiting node i, depends on the two

attributes namely:

• Attractiveness (����: It is a static heuristic value that never changes. In the case

of VRP, it is calculated as inverse of arc length for shortest path problems and for

other variants, it can depend on other parameters besides the arc length (e.g., in

Food Source

Ant Colony
(Nest)

Pheromone
Trails

12

VRPTW it also depends on the current time and the time window limits of the

customers to be visited (2004a).

• Pheromone trails�����: It is the dynamic component which changes with time.

It is used to measure the desirability of insertion of an arc in the solution. In other

words, if an ant finds a strong pheromone trail leading to a particular node, that

direction will be more desirable than other directions. The trail desirability

depends on the amount of pheromone deposited on a particular arc (2004a).

The probability of an unvisited node j being selected after node i is according to a

random-proportional rule (2004a):

��	
��� � ����������������∑ ���������������� ����� �� � !�
 �". "�

Where $�	 � 1/'�	 , where '�	 is the length of arc, ()*' + are which determine the

relative influence of pheromone trail and heuristic information respectively, !�
 is the

feasible neighborhood of k (i.e., nodes not yet visited by k).

The pheromone information on a particular arc (i,j) is updated in the pheromone matrix

using the following equation: ,�	�� - 1� � �1 . /�,�	 - ∑ ∆1�23 ,�	
(t) �". 4�

Where 0 6 / 6 1 the pheromone trail evaporation rate and m is the number of ants. Trail

evaporation also occurs after each iteration, usually by exponential decay to avoid

locking into local minima (2004a).

After each iteration, the best solution found is used to update the pheromone trail. This

procedure is repeated again and again until a terminating condition is met. In ACO, the

pheromone trail is updated locally during solution construction and globally at the end of

construction phase. An interesting aspect of pheromone trail updating is that every time

13

an arc is visited, its value is diminished which favors the exploration of other non visited

nodes and diversity in the solution (2004a).

There is an another optional component called Daemon actions which are used to

perform centralized actions such as calling a local search procedure or collect global

information to deposit addition pheromones on edges from a non-local perspective.

Pheromone updates performed by daemons are called off-line pheromone updates

(2004a).

The ACO pseudo-code for ACO is described below:

 Procedure ACO

 While (terminating condition is not met)

 Generate_solutions()

 Pheromone_Update()

 Daemon_Actions() // this is optional

 End while

 End procedure

Some of the more recent application where ACO is applied are in multimode resource-

constrained project scheduling problem (MRCPSP) with the objective of minimizing

project duration (Zhang, 2012a), inducing decision trees (Otero et al., 2012b), wherein

traditional ACO algorithm is developed combining the traditional decision tree induction

algorithm and ACO, and Robot path planning (Bai et al., 2012c).

5. Dissertation Organization

The rest of the dissertation is organized as follows. Chapter II discusses literature, an ant

colony optimization procedure, and computational results for the split delivery vehicle

routing problem. Chapter III discusses literature, a hybrid genetic algorithm procedure,

and computational results for the split delivery vehicle routing problem. Chapter IV

discusses literature and a genetic algorithm approach to solve a specific hospital

physician scheduling problem. Summary and future works are presented in Chapter V.

14

Also, references for each chapter of the dissertation are provided at the end of each

chapter.

6. References

Bai, J., Chen, L., Jin, H., Chen, R., & Haitao Mao, H. (2012c) , Robot Path Planning

Based on Random Expansion of Ant Colony Optimization, Lecture Notes in

Electrical Engineering, Recent Advances in Computer Science and Information

Engineering,125,141-146.

Blum, C., & Andrea, R. (2003a). Metaheuristics in Combinatorial Optimization:

Overview and Conceptual Comparison. ACM Computing Surveys (CSUR), 35(3),

268–308.

Delavar, M,R., Hajiaghaei-Keshteli, M., & Molla-Alizadeh-Zavardehi, S. (Dec 2010b).

Genetic algorithms for coordinated scheduling of production and air

transportation. Expert Systems With Applications, 37(12), 8255-8266.

Devaraj, D., & Roselyn, J. P. (2010a). Genetic algorithm based reactive power dispatch

for voltage stability improvement. International Journal of Electrical Power and

Energy Systems, 32(10), 1151-1156.

Dias, A.H.F., & Vasconcelos, J.A.de. (2002a). Multiobjective genetic algorithms applied

to solve optimization problems. IEEE Transactions on Magnetics, 38(2), 1133-

1136.

Dorigo, M. (1992a). Ph.D. Thesis, Optimization, learning and natural algorithms (in

Italian). Politecnico di Milano,Italy.

Otero, F.E.B., Freitas, A.A., & Johnson, C.G. (2012b), Inducing decision trees with an

 ant colony optimization algorithm, Applied Soft Computing.

Fonseca, C.M., & Fleming, P.J. (1993a). Genetic algorithms for multiobjective

optimization: Formulation, discussion and generalization. Paper presented at the

Fifth International Conference on Genetic Algorithms, San Francisco, CA, USA,

416-423.

15

Fonseca, C.M & Fleming, P.J. (1993b). Multiobjective genetic algorithms. Paper

presented at the IEE colloquium on ‘Genetic Algorithms for Control Systems

Engineering’, 193(130), London, UK.

Glover, F. (1986). Future paths for integer programming and links to artificial

intelligence. Computers and Operations Research,13(5), 533–549.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning (Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.)

Hajela, P. & Lin, C.-Y., (1992b). Genetic search strategies in multicriterion optimal

design Structural and Multidisciplinary Optimization, 4(2), 99-107.

HasancËebi, O., & Erbatur, F. (2000) , Evaluation of crossover techniques in genetic

algorithm based optimum structural design,Computers and Structures,78,435-448.

Horn, J. Nafpliotis, N., & Goldberg, D.E., (June 1994). A niched Pareto genetic

algorithm for multiobjective optimization. Evolutionary Computation, Paper

presented at the IEEE world congress on Computational Intelligence, Orlando,

FL, USA, 82-87.

Jian, L., Wang, C., & Yi-xian, Y. (2008). An adaptive genetic algorithm and its

application in bilateral multi-issue negotiation. The Journal of China Universities

of Posts and Telecommunications, 15, 94-97.

Jones, D.F., Mirrazavi, S.K., & Tamiz, M. (2002b). Multi-objective meta-heuristics: An

overview of the current state-of-the-art. European Journal of Operational

Research, 137(1), 1-9.

Knowles, J. & Corne, D. (1999b). The pareto archived evolution strategy: A new baseline

algorithm for pareto multiobjective optimisation. IEEE Press, Paper presented at

the Congress on Evolutionary Computation (CEC99), 1, Piscataway, NJ, 98–

105.

Konak, A., Coit, D.W., & Smith, A.E. (2006). Multi-objective optimization using genetic

algorithms: A tutorial. Reliability Engineering and System Safety, 91(9), 992–

1007.

16

Lai, M-C., Sohn, H-S., Tseng, T-L., & Chiang, C. (2010b). A hybrid algorithm for

capacitated plant location problem. Expert Systems With Applications, 37(12),

8599-8605.

Lau, H.C.W, Ho, G.T.S., Zhao, Y., & Hon, W.T. (Dec 2010a). Optimizing patrol force

deployment using a genetic algorithm. Expert Systems With Applications, 37(12),

8148-8154.

Li, J., Zhu, S., & Lu, B. (March 2010). Design and optimization of phase plates for

shaping partially coherent beams by adaptive genetic algorithms. Optics and

Laser Technology,42(2),317-321.

Li, K., & Su, H. (Nov 2010a). Forecasting building energy consumption with hybrid

genetic algorithm-hierarchical adaptive network-based fuzzy inference system.

Energy & Buildings, 42(11), 2070-2076.

Mendi, F., Baskal, T., Boran, K., & Boran, F. E. (2010c). Optimization of module, shaft

diameter and rolling bearing for spur gear through genetic algorithm. Expert

Systems With Applications, 37(12), 8058-8064.

Osman, I.H, & Kelly,J.P. (1996a). Meta-heuristics. Theory and Applications (Kluwer,

Boston).

Osman, I. H., & Laporte, G. (1996b). “Metaheuristics:A bibliography”. Annals of

Operations Res, 63(5), 513–623.

Osyczka, A. (1985a). Multicriteria optimization for engineering design,” J. S. Gero, Ed.

Academic Press, Inc., New York, NY, 193–227.

Rizzoli, A. E., Oliverio, F., Montemanni, R., & Gambardella, L. M. (2004a). Ant colony

optimisation for vehicle routing problem: from theory to applications. Technical

Report TR-15-04.

Schaffer, J.D. (1985b). Multiple objective optimization with vector evaluated genetic

algorithms. Paper presented at the Proceedings of 1st International Conference on

Genetic Algorithms , Pittsburgh, PA, 93-100.

Srinivas, M. & Patnaik, L.M. (1994). Adaptive Probabilities of Crossover and Mutation

in Genetic Algorithms. IEEE Transactions on Systems, Man and

Cybernetics,24(4),656-667.

17

Srinivas, N. and Deb, K. (1995) Multi-Objective function optimization using non-

dominated sorting genetic algorithms, Evolutionary Computation, 2(3),221–248.

Trappey, A.J.C., Trappey, C.V., & Wu, C.-R. (Nov 2010b). Genetic algorithm dynamic

performance evaluation for RFID reverse logistic management. Expert Systems

With Applications, 37(11), 7329-7335.

Zhang, H. (2012a). ”Ant Colony Optimization for Multimode Resource-Constrained

Project Scheduling.” J. Manage. Eng., 28(2), 150–159.

Zitzler, E., Laumanns, M., & Bleuler, S. (2004b). In X. Gandibleux and others, editors,

A Tutorial on Evolutionary Multiobjective Optimization, Lecture Notes in

Economics and Mathematical Systems,Springer.

18

CHAPTER II

ANT COLONY OPTIMIZATION FOR THE SPLIT DELIVERY

VEHICLE ROUTING PROBLEM

19

Publication Statement

This paper is a joint work between Gautham P. Rajappa, Dr. Joseph H. Wilck, and Dr.

John E. Bell. Currently, we are working on the paper for publication. To the best of our

knowledge, ACO has never been applied to SDVRP and hence, we intend to publish this

paper in near future.

Chapter Abstract

An Ant Colony Optimization (ACO) based approach is presented to solve the Split

Delivery Vehicle Routing Problem (SDVRP). SDVRP is a relaxation of the Capacitated

Vehicle Routing Problem (CVRP) wherein a customer can be visited by more than one

vehicle. The proposed ACO based algorithm is tested on benchmark problems

previously published in the literature. The results indicate that the ACO based approach

is competitive in both solution quality and solution time. In some instances, the ACO

method achieves the best known results to date for some benchmark problems.

1. Introduction

The Vehicle Routing Problem (VRP) is a prominent problem in the fields of logistics and

transportation. With an objective to minimize the delivery cost of goods to a set of

customers from depot(s), numerous variants of the VRP have been developed and studied

over the years. One such variant is the Split Delivery Vehicle Routing Problem

(SDVRP) which is a relaxation of the Capacitated Vehicle Routing Problem (CVRP). In

the case of a CVRP, each customer is served by only one vehicle, whereas in SDVRP, the

customer demand can be split between vehicles. For example, consider three customers

each with a demand of 100 served by vehicle with a capacity of 150. In the case of the

CVRP, three vehicles are required but in the case of SDVRP, since the customer demand

can be split amongst multiple vehicles, only two vehicles are required to fulfill the

customer demand. SDVRP was first developed by Dror and Trudeau (1989; 1990). They

showed that if the demand is relatively low compared to the vehicle capacity and the

triangular inequality holds, an optimal solution exists in the SDVRP in which two routes

cannot have more than one common customer. In addition, it was proven that the

20

SDVRP is NP-hard and has potential in savings in terms of the distance traveled as well

as the number of vehicles used.

Over the past few years, several metaheuristics such as Genetic Algorithms and Tabu

Search were applied to solve SDVRP. However, to the best of my knowledge, no journal

article has applied and experimentally tested the ability of the ACO algorithm on SDVRP

instances. Hence, I developed an ACO for SDVRP and test the capability of my

algorithm on benchmark test problems.

The rest of the chapter is organized as follows: Section 2 and Section 3 provide an

overview of SDVRP and ACO algorithm respectively. Computational experiments are

described in Section 4. Conclusions and future work are summarized in Section 5.

2. SDVRP Problem Formulation and Benchmark Data Sets

In this section, I present the problem formulation and discuss the relevant literature for

SDVRP.

According to Aleman et al. (2010b), the SDVRP is defined on an undirected graph G =

(V ,E) where V is the set of n + 1 nodes of the graph and E = {(i, j) : i, j 7 V, i <j} is the

set of edges connecting the nodes . Node 0 represents a depot where a fleet M of

identical vehicles with capacity Q are stationed, while the remaining node set N = {1, . . .

, n} represents the customers. A non-negative cost, usually a function of distance or

travel time, cij is associated with every edge (i, j). Each customer i 7 N has a demand of

qi units. The optimization problem is to determine which customers are served by each

vehicle and what route the vehicle will follow to serve those assigned customers, while

minimizing the operational costs of the fleet, such as travel distance, gas consumption,

and vehicle depreciation. The most frequently used formulations for SDVRP found in

literature are from Dror and Treadeau (1990), Frizzell and Giffin (1992b), and Dror et al.

(1994).

21

I use the SDVRP flow formulation from Wilck and Rajappa (2010c) which is given

below. This formulation assumes that cij satisfies the triangle inequality and that exactly

the minimum number of vehicle routes, , are used. The formulation does not assume

that distances are symmetric.

Indexed Sets:

 ; node index ; 1 is the depot

; node index

; route index

Parameters:

: The number of vehicle routes

: The number of nodes

: The vehicle capacity

: The cost or distance from node to node

: The demand of customer , where .

Decision Variables:

: A binary variable that is one when arc is traversed on route ; zero otherwise

: Free variable used in the sub-tour elimination constraints

: A binary variable that is one when node is visited on route ; zero otherwise

: A variable that denotes the amount of material delivered to node on route

Without loss of generality, and are not defined for .

Objective: Minimize Travel Distance

Minimize (2.1)

K

{ }1,2, ,i n= K

{ }1, 2, ,j n= K

{ }1, 2, ,k m= K

m

n

Q

ijc i j

id i 1 0d =

ijkx (),i j k

iku

iky i k

ikv i k

iky ikv 1i =

1 1 1

n n m

ij ijk

i j k

i j

Z c x
= = =

≠

=∑∑ ∑

22

Constraints:

 (2.2)

 (2.3)

 (2.4)

 (2.5)

 (2.6)

 (2.7)

 (2.8)

 (2.9)

 (2.10)

 (2.11)

The objective is represented by Equation (2.1), which is to minimize the total distance

traveled. Constraints (2.2) and (2.3) ensure that all customer demand is satisfied without

violating vehicle capacity. Constraints (2.4) and (2.5) ensure flow conservation and that

sub-tours are eliminated, respectively. Constraints (2.6) and (2.7) force the binary

variables to be positive if material is delivered to node on route . Constraint (2.8)

ensures that the depot is entered and exited on every vehicle route, and constraints (2.9) –

(2.11) provide variable restrictions.

In recent work on the SDVRP, several researchers developed approaches for generating

solutions to the SDVRP. Archetti et al. (2006) developed a Tabu search algorithm called

1

, 2,...,
m

ik i

k

v d i n
=

= ∀ =∑

2

, 1,...,
n

ik

i

v Q k m
=

≤ ∀ =∑

1 1

0, 1, , ; 1, ,
n n

ipk pjk

i j
i p j p

x x k m p n
= =
≠ ≠

− = ∀ = =∑ ∑ K K

1, 2,..., ; ; 1,...,ik jk ijku u nx n i n i j k m− + ≤ − ∀ = ≠ =

, 1,..., ; 2,...,i ik ikd y v k m i n≥ ∀ = =

1

, 1,..., ; 2,...,
n

ijk ik

j
j i

x y k m i n
=
≠

= ∀ = =∑

()1 1
2

2, 1,...,
n

jk j k

j

x x k m
=

+ = ∀ =∑

{ }0,1 , 1, , ; 1, , ; ; 1, ,ijkx i n j n i j k m∈ ∀ = = ≠ =K K K

{ }0,1 , 2, , ; 1, ,iky i n k m∈ ∀ = =K K

0, 2, , ; 1, ,ikv i n k m≥ ∀ = =K K

i k

23

SPLITTABU to solve the SDVRP in which they showed that there always exists an

optimal solution where the quantity delivered by each vehicle when visiting a customer is

an integer number. Also, Archetti et al. (2008a) performed a mathematical analysis and

proved that by adopting a SDVRP strategy, a maximum of 50% reduction can be

achieved in the number of routes. Also they showed that when the demand variance is

relatively small and the customer demand is in the range of 50% to 70% of the vehicle

capacity, maximum benefits are achieved by splitting the customer’s demand.

Furthermore, Archetti et al. (2008b) presented a solution approach that combines

heuristic search and integer programming. Boudia et al. (2007a) solved an SDVRP

instance using a memetic algorithm with population management which produced better

and faster results than the SPLITTABU approach (Archetti et al. (2006)). Mota et al.

(2007d) proposed an algorithm based on scatter search methodology which generated

excellent results compared to SPLITTABU.

Two approaches are used as a comparison with regard to this research. First, Jin et al.

(2008) proposed a column generation approach to solve SDVRP with large demands, and

in which the columns have route and delivery amount information and limited-search-

with-bound algorithm is used to find the lower and upper bounds of the problem. They

used column generation to find lower bounds and an iterative approach to find upper

bounds for a SDVRP. They also suggested that their approach of solving the SDVRP

does not yield good solutions for large customer demands and in such cases, they

recommend solving the SDVRP instance as a CVRP. Second, Chen et al. (2007b) create

test problems and developed a heuristic which is a combination of a mixed integer

program and record-to-record travel algorithm to solve SDVRP.

Archetti and Sperenza (2012) have published an extensive survey on SDVRP and its

variants. However, despite several exact optimization and metaheuristic solution

methods being applied to the SDVRP, no previous research has applied the ant colony

optimization metaheuristic to the SDVRP.

24

The number of customers for the 11 data sets from Jin et al. (2008) ranged from 50 to

100, with an additional node for the depot. The data sets also differ by amount of spare

capacity per vehicle. The customers were placed randomly around a central depot and

demand was generated randomly based on a high and low threshold. The number of

customers for 21 data sets from Chen et al. (2007b) ranged from 8 to 288, with an

additional node for the depot. The data sets do not have any spare vehicle capacity. The

customers were placed on rings (i.e., circular pattern) surrounding a central depot and the

demand was either 60 or 90, with a vehicle capacity of 100.

3. Ant Colony Optimization Approach

In this section I describe the ACO algorithm for SDVRP and in addition, I also provide

some important literature relevant to the application of ACO to VRP and its variants.

Ant Colony Optimization (ACO) is a metaheuristic proposed by Dorigo (1992a).

Inspired by foraging behavior of ants, ACO belongs to a class of metaheuristic algorithms

that can be used to obtain near optimal solutions in reasonable computational time for

combinatorial optimization problems. Ants communicate with one another by depositing

pheromones, a trace chemical substance that can be detected by other ants (Rizzoli et al.

(2004d). As ants travel, they deposit pheromones along their trail, and other ants tend to

follow these pheromone trails. However during their journey, ants may randomly

discover a new trail, which might be shorter or longer than the previous trail.

Pheromones have a tendency to evaporate. Hence, over a period of time, the shortest trail

(path) from the food source to the colony will have a larger amount of pheromone

deposited as compared with other trails and will become the preferred trail.

The main elements in an ACO are ants that independently build solutions to the problem.

For an ant k, the probability of it visiting a node j after visiting node i depend on the two

attributes namely:

• Attractiveness (8���: It is a static component that never changes. In the case of

VRP, it is calculated as inverse of arc length for shortest path problems and for

25

other variants, it can depend on other parameters besides the arc length (e.g., in

VRPTW it also depends on the current time and the time window limits of the

customers to be visited (Rizzoli et al., 2004d)).

• Pheromone trails�����: It is the dynamic component which changes with time. It

is used to measure the desirability of insertion of an arc in the solution. In other

words, if an ant finds a strong pheromone trail leading to a particular node, that

direction will be more desirable than other directions. The trail desirability

depends on the amount of pheromone deposited on a particular arc.

For solving a VRP, each individual ant simulates a vehicle. Starting from the depot, each

ant constructs a route by selecting one customer at a time until all customers have been

visited. Using the formula from Dorigo et al. (1997b), the ant selects the next customer j

as shown in equation (2.12):

j= 9 arg max {(τiu)(η
iu

β
) } for u::Mk ,q≤q

o

Equation �2.13�, otherwise

< (2.12)

where ,�= is the amount of pheromone on arc (i,u), u being all possible unvisited

customers. In classic VRP, locations already visited are stored in ants’ working memory

Mk and are not considered for selection. However, in the case of SDVRP, the locations

for which the demands have not been fulfilled (demand >0) are stored in the ants’

working memory and are considered for selection. β establishes correlation between the

importance of distance with respect to the pheromone quantity (β >0). q is a randomly

generated variable between 0 and 1 and q0 is a predefined static parameter. If equation

(2.12) does not hold, the next customer to be visited is selected based on a random

probability rule as shown in equation (2.13):

Pij= > [�τij)�
[(ηij

β)]∑ [�τij)�
[(ηij

β)]
j:Mk

 if j::Mk , q>q
o

0 �depot�, otherwise

< (2.13)

26

If the vehicle capacity constraint is satisfied, the ant will return to the depot before

starting the next tour in its route. This selection process continues until all customers are

visited by an ant. In ACO, the pheromone trail is updated locally during solution

construction and globally at the end of construction phase. An interesting aspect of

pheromone trail updating is that every time an arc is visited, its value is diminished which

favors the exploration of other non-visited nodes and diversity in the solution.

Pheromone trials are updated by reducing the amount of pheromone deposited on each

arc (i,j) visited by an ant (local update). Also, after a predetermined number of ants

construct feasible routes, pheromones are added to all the arcs of the best found solution

(global update).

Local update on a particular arc (,�	� is updated done using equation (2.14) :

τij = �1-α?τij +ατ0 (2.14)

where 0≤α≤1 is the pheromone trail evaporation rate and τ0 is the initial pheromone value

for all arcs.

Global trial updating is done using equation (2.15):

τij = (1-α)τij +αL-1 (2.15)
where L is the best found objective function value (total distance).

This procedure is repeated until a terminating condition is met. There is an another

optional component called Daemon actions which are used to perform centralized actions

such as calling a local search procedure or collecting global information to deposit

addition pheromones on edges from a non-local perspective. Pheromone updates

performed by daemons are called off-line pheromone updates.

The pseudo-code for ACO is shown below:

 Procedure ACO

 While (terminating condition is not met)

 Generate_solutions ()

 Local_Update_of_Pheromones ()

 Global_Update_of_Pheromones ()

27

 Actions_If_Necessary () // this is optional

 End while

 End procedure

The ACO flowchart is shown in Figure 2.1 below:

28

Figure 2.1: ACO Flowchart

Updated pheromone
matrix with the best route

Y

Y

Have all
ants built

the routes?

Go to Step 1

STOP ACO

N

Initialize all parameters

STEP 1: Start building
the routes from depot

Select a node based on
probabilistic conditions

Update pheromone matrix

Evaluate objective

START ACO

Have all
nodes been

visited?

Is objective
function

better than
previous

best?

Update the best objective
function and the best route

Global
updating?

Y

N N

N

Y

29

Over a period of time, researchers have developed numerous ACO based solutions for

VRP and its variants. One of the first papers on application of ACO in VRP was

proposed by Bullheimer et al. (1997a; 1999a). They proposed a variant called “hybrid

ACO” using 2-opt heuristic. Their algorithm was tested on fourteen Christofides

benchmark problems and computation results showed that the results obtained were not

as good as the ones obtained from other metaheuristics. Additionally, Gambardella et al.

(1999b) proposed an algorithm based on ACO called MACS-VRPTW (Multiple Ant

Colony System for Vehicle Routing Problems with Time Windows). This is the first

paper in which a multi-objective minimization problem is solved using a multiple ant

colony optimization algorithm. MACS-VRPTW not only provided improved solutions on

benchmark test problems but also was on par or better than other existing methods in

terms of solution quality and computation time. Next, Baran and Schaerer (2003)

proposed a multi objective ACO for VRPTW based on MACS-VRPTW but instead of

using two ant colonies, only one ant colony was used to find a set of Pareto optimal

solutions for three objectives.

Rizzoli et al. (2004d) have done extensive surveys on ACO for VRP and its variants.

Montemanni et al. (2004c) proposed an ACO solution called ACS-DVRP to solve the

Dynamic VRP (DVRP) in which the large DVRP problem was divided into smaller static

VRP problems. Bell et al. (2004a) proposed single and multiple ant colony

methodologies to solve the VRP. Their experimental results showed that the best results

were obtained when the candidate list size was between ten and twenty. Doerner et al.

(2004b) proposed a parallel ant system algorithm for CVRP and this is the first paper

which shows the effect of parallelization of processors on speed and efficiency.

Additionally, Favaretto et al. (2007c) formulated and provided an ACO based solution for

VRP with multiple time windows and multiple visits which consider periodic constraints.

Computation results show that their proposed algorithm provides better solutions as

compared to some of the other metaheuristics published in the literature. Also, Gajpal and

Abad (2009) proposed an ant colony system for VRP with simultaneous delivery and

pickup (VRPSDP). Computational results on benchmark test problems show that the

30

proposed algorithm provides better results both in terms of solution quality and CPU

time. Finally, Hu et al. (2011) provided an ACO based solution for distributed planning

problems for home delivery in which a revised methodology to update the pheromone

and the probability matrix is proposed.

However, to the best of my knowledge and despite previous success applying ACO to

variants of the VRP, no journal article has applied ACO to the SDVRP and

experimentally tested the ability of the algorithm on SDVRP instances.

4. Computational experiments

One of the route improvement strategies is to have a candidate list to determine the next

location for each customer. Only a set of predetermined closest locations are included in

the candidate list. In previous research (Bullnheimer et al. (1999a)), irrespective of the

problem size, the size of the candidate list was set to one fourth of the total number of

customers. In pilot testing, I experimented with different candidate list sizes and for our

research the candidate list size of one ninth (n/9, where n is the number of customers)

was found to yield the best solutions. Additionally, in the case of CVRP, an ant (vehicle)

travels to a customer (node) only if the customer’s demand can be completely fulfilled

with the remaining vehicle capacity. But in the case of SDVRP, since a customer’s

demand can be split amongst multiple vehicle routes, the ant travels to a customer based

on three conditions: (1) If the customer is in the candidate list, (2) if the customer’s

demand is not completely fulfilled, and (3) there is remaining capacity on the vehicle. If

the above conditions cannot be satisfied for any location, the ant (vehicle) returns to the

depot.

The ACO algorithm for this study was coded in Java on a Windows7, Intel i5 2.4 Ghz, 4

GB RAM computer. For all our test datasets, search parameters were tuned during pilot-

testing and set as shown in Table 2.1. The algorithm was tested against two procedures

from the literature, namely Jin et al. (2008) and Chen et al. (2007b). Each problem in the

dataset was run in 10 separate iterations (Fuellerer et al. (2010a)). The results are shown

31

in Table 2.2 and Table 2.3. The vehicle capacity for datasets in Table 2.2 and Table 2.3

are 160 and 100 respectively.

Table 2.1: Parameters

Parameter Values

α 0.5

β 1.3
τ0 10-5

q0 0.9
m (global update counter) 10

Number of iterations 100,000

Table 2.2: Comparing ACO results versus Jin et al. (2008)

 Ant Colony Optimization Results from Jin et al.

Dataset Objective

Function

(Average (std

dev))

Objective

Function

(Best)

Best

Time(s)

Total

Time(s)

Objective

Function

Total

Time(s)

GAP

s51d2 744.03(14.07) 727.28 186.59 699.56 722.93 10741 0.60%
s51d3 1001.97(15.87) 982.66 164.5 843.23 968.85 833 1.43%
s51d4 1654.56(12.68) 1629.09 1053.95 1074.66 1605.64 789 1.46%
s51d5 1416.60(20.37) 1389.01 519.44 1015.48 1361.24 10 2.04%
s51d6 2302.72(14.16) 2267.97 584.65 1339.20 2196.35 478 3.26%
576d2 1161.19(12.47) 1134.27 1431.9 1742.09 1146.68 75074 -1.08%

s76d3 1527.25(19.06) 1502.36 979 2078.88 1474.89 3546 1.86%
s76d4 2218.51(21.63) 2191.83 337.7 1310.30 2157.87 369 1.57%
s101d2 1484.12(16.99) 1457.39 930.81 3352.49 1460.54 189392 -0.22%

s101d3 2000.94(33.52) 1948.09 3166.21 3938.37 1956.91 36777 -0.45%

s101d5 2972.54(17.29) 2945.41 3778.25 4947.82 2885 5043 2.09%

*The objective function values highlighted in bold are the best results
Note: GAP indicates ACO versus best known solution. A negative GAP indicates a new

best solution when compared to previous literature.

32

Table 2.3: Comparing ACO results versus Chen et al. (2007a)

 Ant Colony Optimization Results from Chen et al.

Dataset Objective Function

(Average (std dev))

Objective

Function

(Best)

Best Time

(s)

Total Time(s) Objective

Function

Time(s) GAP

sd1 240(0) 240 1.743 76.01 228.28 0.7 5.13%
sd2 758(11.35) 740 56.77 87.25 714.4 54.4 3.58%
sd3 451.52(2.42) 447.69 66.12 81.81 430.61 67.3 3.97%
sd4 679.04(1.86) 673.89 65.43 202.75 631.06 400 6.79%
sd5 1454.91(3.85) 1445.64 106.92 405.28 1408.12 402.7 2.66%
sd6 860.45(0) 860.45 0.13 378.08 831.21 408.3 3.52%
sd7 3640(0) 3640 0.3 603.01 3714.4 403.2 -2.00%

sd8 5110.80(45.67) 5068.28 214.58 963.57 5200 404.1 -2.53%

sd9 2140.15(14.99) 2129.59 201.15 1017.24 2059.84 404.3 3.39%
sd10 2841.07(14.97) 2807.05 1352.83 2013.42 2749.11 400 2.11%
sd11 13280(0) 13280 2.65 3086.07 13612.12 400.1 -2.44%

sd12 7280.06(0) 7280.06 2337.17 3367.17 7399.06 408.3 -1.61%

sd13 10281.74(282.23) 10171.92 4653.16 5232.16 10367.06 404.5 -1.88%

sd14 11069.11(46.97) 11021.54 7325.6 9208.81 11023 5021.7 -0.01%

sd15 15405.92(79.36) 15309.9 12816.82 17594.98 15271.77 5042.3 0.25%
sd16 3411.31(11.17) 3398.69 0.743 17201.99 3449.05 5014.7 -1.46%

sd17 26586.11(16.56) 26560.11 12188.12 23866.41 26665.76 5023.6 -0.40%

sd18 14772.57(30.52) 14720.11 24301.78 24439.43 14546.58 5028.6 1.19%
sd19 20376.31(29.96) 20312.44 11455.71 38677.42 20559.21 5034.2 -1.20%

sd20 40479.27(51.83) 40390.68 49658.4 78854.50 40408.22 5053 -0.043%

sd21 11449.88(26.31) 11411.61 1.64 121148.80 11491.67 5051 -0.70%

*The objective function values highlighted in bold are the best results
Note: GAP indicates ACO versus best known solution. A negative GAP indicates a new best solution when compared to

previous literature.

33

The GAP column in Table 2.2 and Table 2.3 is the percentage difference in objective

function values of ACO and those obtained from Jin et al. (2008) and Chen et al. (2007b)

respectively. From Table 2.2, ACO solutions were between 0.6% - 3.26% of the objective

function values from Jin et al. (2008) but the computational times were much faster. Also

for 3 datasets, ACO found the best known solutions. For example, in problem s76d2, I

found an improved solution that is 1.08% better than the previously best known solution.

This problem is a 75 node problem and is one of three problems that the best known

solution was improved on in this dataset using the ACO methodology.

However, much greater success was found in improving the best known solutions in the

problem sets of Chen et al. (2007a). From Table 2.3, for 11 out of the 21 datasets, ACO

produced better results; however this often came at the expense of computational time.

For example in problem sd8, ACO was able to find the objective function value 5068.28.

This value is 2.53% better than the previously known best solution. Overall, ACO was

able to find improved solutions in eleven of the problems that ranged from 0 to 2.53% in

improvement. However, for several of the smaller problems (sd1-sd5), the method

appeared to have difficulty. Since these problems consist of fewer than 40 nodes, it was

expected that the combination of using a candidate list size of n/9 and the small problem

size may have restricted the algorithm from considering enough nodes in the route

construction process.

Therefore, in post-hoc testing of these 5 datasets, the candidate list size was removed in

order to assess the ability of ACO to solve these smaller problems without the need for a

candidate list size. The results of this post-hoc test are listed in Table 2.4. Notice that

after the candidate list was removed, the objective function for sd1 was improved from

240 to 228.28, which is equal to the previously best known solution. Also, as you can see

from Table 2.3 and Table 2.4, for datasets sd2, sd3 and sd4, a significant improvement in

objective function values at the expense of computational time were obtained without

using a candidate list.

34

Table 2.4: Post-hoc results (without using a candidate list)

 Ant Colony Optimization Results from Chen et al.

Dataset Objective

Function

(Average (std

dev))

Objective

Function

(Best)

Best

Time

(s)

Total

Time(s)

Objective

Function

Time(s) GAP

sd1 228.28(0) 228.28 0.25 27.27 228.28 0.7 0.00%

sd2 747.56(8.86) 734.34 92.53 121.29 714.4 54.4 2.79%
sd3 454.72(6.9) 440.07 48.56 111.11 430.61 67.3 2.20%
sd4 670.18(3.93) 665.94 131.68 270.08 631.06 400 5.53%
sd5 1454.49(4.32) 1448.01 261.28 535.34 1408.12 402.7 2.83%

*The objective function values highlighted in bold are the best results

As seen from the results Table (Table 2.2 and Table 2.3), ant colony optimization has the

ability to produce results within only a few percent of the optimal solutions. Also,

SDVRP has complex constraints that the memory and learning features of ACO are able

to navigate and find improved solutions to, consistent with previous research on other

variants of the VRP. In our experimental results, for larger problem instance (Table 2.3),

ACO produced better results than the optimal solutions but at the expense of

computational time. Also, the use of candidate lists on larger problems and tuning of

ACO parameters significantly improves the ability of ACO to find better solutions.

The objective function values for the two datasets are compared with the dual bound

obtain by column generation (working paper, Wilck and Cavalier, 2012a), results of

which are shown in Table 2.5 and Table 2.6 respectively. The GAP represents the

percentage difference between the objective function values of ACO and the column

generation dual bound. As you can see from Table 2.5 and Table 2.6 below, the

percentage difference between ACO objective function and column generation dual

bound ranges from 0 % to 6.36 % (2007a) and 3.60% to 8.17%(2008) respectively.

35

Table 2.5: Comparison of ACO objective function for Chen et al. (2007a) and Column generation dual bound

(Working paper, Wilck and Cavalier)

Dataset ACO Objective function Column generation dual bound* GAP

sd1 240 228.28 4.88%
sd2 740 708.28 4.29%
sd3 447.69 430.58 3.82%
sd4 673.89 631.05 6.36%
sd5 1445.64 1390.57 3.81%
sd6 860.45 831.21 3.40%
sd7 3640 3640.00 0.00%
sd8 5068.28 5068.28 0.00%
sd9 2129.59 2044.23 4.01%

sd10 2807.05 2684.84 4.35%
sd11 13280 13265.29 0.11%
sd12 7280.06 7275.97 0.06%
sd13 10171.92 10093.72 0.77%
sd14 11021.54 10632.67 3.53%
sd15 15309.9 15146.92 1.06%
sd16 3398.69 3375.95 0.67%
sd17 26560.11 25320.09 4.67%
sd18 14720.11 14253.94 3.17%
sd19 20312.44 19768.23 2.68%
sd20 40390.68 38071.58 5.74%
sd21 11411.61 11062.32 3.06%

*Column Generation cpu specifications: CPLEX and FORTRAN 95, GNU, Intel Xeon, 2.49 GHz, 8 GB RAM.

Column Generation stopping criteria: 5% GAP [i.e., GAP = (Primal Solution - Dual Bound) / Primal Solution].

36

Table 2.6: Comparison of ACO objective function for Jin et al. (2008) and Column

generation dual bound (Working paper, Wilck and Cavalier)

Dataset ACO Objective

function

Column generation

dual bound*

GAP

s51d2 727.28 688.83 5.29%
s51d3 982.66 920.58 6.32%
s51d4 1629.09 1520.71 6.65%
s51d5 1389.01 1310.12 5.68%
s51d6 2267.97 2115.20 6.74%
576d2 1134.27 1093.39 3.60%
s76d3 1502.36 1399.37 6.86%
s76d4 2191.83 2039.11 6.97%
s101d2 1457.39 1395.25 4.26%
s101d3 1948.09 1859.36 4.55%
s101d5 2945.41 2704.63 8.17%

*Column Generation cpu specifications: CPLEX and FORTRAN 95, GNU, Intel Xeon, 2.49

GHz, 8 GB RAM.

Column Generation stopping criteria: 5% GAP [i.e., GAP = (Primal Solution - Dual Bound)

/ Primal Solution].

5. Conclusions and Future directions

In this study, I presented an ACO based approach to solve the Split Delivery Vehicle

Routing Problem (SDVRP). The algorithm was tested on benchmark test problems and

results obtained were promising. Also for some instances, the best known solution to

date was found using the ACO algorithm. Also, an interesting observation that I can

highlight and consider for future research is the use of a candidate list size. As

mentioned in previous literature (1999a), a candidate list size of one fourth of the total

number of customers is recommended but for my datasets, a candidate list of one ninth

the total number of customers was found to yield better results during pilot testing.

However, at times, this restricted the ability to find improved solutions on the smallest

problems. Hence, further research on developing a logic that will generate an ideal

candidate list based on total number of customers is needed. Also in the future, I hope to

focus on improving the ACO algorithm for SDVRP by (1) using local exchange

heuristics to improve the solution, and (2) using specialized groups of ants and multiple

colonies as mentioned in the literature Bell and McMullen (2004a), Gambardella et al.

(1999b), and others.

37

6. References

Aleman, R.E., Zhang, X., & Hill, R. R. (2010b). An adaptive memory algorithm for the

split delivery vehicle routing problem, Journal of heuristics, 16(3), 441-473.

Archetti, C., Savelsbergh, M., & Hertz, A. (2006). A Tabu Search Algorithm for the Split

Delivery Vehicle Routing Problem. . Transportation Science, 40(1), 64-73.

Archetti, C., Savelsbergh, M., & Speranza, M. G. (2008a). To split or not to split: That is

the question. Transportation Research, Part E 44(1), 114-123.

Archetti, C., & Speranza, M. G. (2012). Vehicle routing problems with split deliveries.

[10.1111/j.1475-3995.2011.00811.x]. International Transactions in Operational

Research, 19(1-2), 3-22.

Archetti, C., Speranza, M. G., & Savelsbergh, M. (2008b). An Optimization-Based

Heuristic for the Split Delivery Vehicle Routing Problem. Transportation

Science, 42(1), 22-31.

Barán, B., & Schaerer, M. (2003). A multiobjective ant colony system for vehicle routing

problem with time windows. Paper presented at the Proceedings of the 21st

IASTED International Conference Applied Informatics, Austria, 97-102.

Bullnheimer, B., Hartl, R.F., & Strauss, C. (1997a). Applying the ant system to the vehicle

routing problem. Paper presented at the In Proceedings of the 2nd International

Conference on Metaheuristics -MIC97 INRA Sophia-Antipolis & PRiSM,

Versailles.

Bullnheimer, B., Hartl, R.F., & Strauss, C. (1999a). An improved ant system algorithm

for the vehicle routing problem. Annals of Operations Research, 89, 319-328.

Bell, J. E., & McMullen, P. R. (2004a). Ant colony optimization techniques for the

vehicle routing problem. Advanced Engineering Informatics, 18, 41-48.

Boudia, M., Prins, C., & Reghioui, M. (2007a). An effective memetic algorithm with

population management for the split delivery vehicle routing problem. Paper

presented at the Proceedings of the 4th international conference on Hybrid

metaheuristics, Heidelberg

38

Chen, S., Golden, B., & Wasil, E. (2007b). The split delivery vehicle routing problem:

Applications, algorithms, test problems, and computational results. Networks,

49(4), 318-327.

Doerner, K., Hartl, R. F., Kiechle, G., Lucka, M., & Reimann, M. (2004b). Parallel ant

systems for the capacitated vehicle routing problem. . Paper presented at the

Evolutionary Computation in Combinatorial Optimization: 4th European

Conference,EvoCOP 2004, Berlin.

Dorigo, M. (1992a). Ph.D. Thesis Optimization, learning and natural algorithms (in

Italian). Politecnico di Milano,Italy.

Dorigo, M., Gamberdella, L.M. (1997b). Ant colonies for traveling salesman problem.

BioSystem, 43(1), 73-81.

Dror, M. & Trudeau, P. (1989). Savings by split delivery routing. Transportation

Science, 23, 141-145.

Dror, M., Laporte, G. & Trudeau, P. (1994). Vehicle routing with split deliveries.

Discrete Applied Mathematics, 50(3), 239-254.

Dror, M., & Trudeau, P. (1990). Split Delivery Routing. Naval Research Logistics 37,

383-402.

Favaretto, D., Moretti, E., & Pellegrini, P. (2007c). Ant colony system for a VRP with

multiple time windows and multiple visits. Journal of Interdisciplinary

Mathematics, 10(2), 263-284.

Frizzell, P., & Giffin, J. (1992b). The bounded split delivery vehicle routing problem

with grid network distances. Asia-Pacific Journal of Operational Research, 9,

101-116.

Fuellerer, G., Doerner, K. F., Hartl, R. F., & Iori, M. (2010a). Metaheuristics for vehicle

routing problems with three-dimensional loading constraints. European Journal

of Operational Research, 201(3), 751-759. doi: 10.1016/j.ejor.2009.03.046

Gajpal, Y., & Abad, P. (2009). An ant colony system(ACS) for vehicle routing problem

with simultaneous delivery and pickup. Computers &Operations Research, 36,

3215-3223.

39

Gambardella, L. M., Taillard, E., Agazzi, G. (1999b). MACS-VRPTW: A Multiple Ant

Colony System for Vehicle Routing Problems with Time Windows. In D. Corne,

M. Dorigo & F. Glover (Eds.), New Ideas in Optimization (pp. 63-76). UK:

McGraw-Hill.

Hu Meng-Jie, Wang Jian-Ping, & Xiao-Min, L. (2011). Solutions to VRP in Home

Delivery Based on Ant Colony Optimization Algorithm. Advanced Materials

Research, 159, 100-104.

Jin, M., Liua, K., & Eksioglu, B. (2008). A column generation approach for the split

delivery vehicle routing problem. Operations research letters, 36(2), 265-270.

Montemanni, R., Gambardella, L. M., Rizzoli, A.E., & Donati. A.V. (2004c). A new

algorithm for a dynamic vehicle routing problem based on ant colony system.

Technical Report TR-23-02, IDSIA, Galleria 2. Manno, 6928, Switzerland.

Mota, E., Campos, V., & Corberán, Á. (2007d). A New Metaheuristic for the Vehicle

Routing Problem with Split Demands. Lecture Notes in Computer Science, 4446

121-129.

Rizzoli, A. E., Oliverio, F., Montemanni, R., & Gambardella, L. M. (2004d). Ant colony

optimisation for vehicle routing problem: from theory to applications. Technical

Report TR-15-04.

Wilck, J. H., & Rajappa, G. (2010c). Ranking Construction Heuristic Solutions for a

Hybrid Genetic Algorithm for the Split Delivery Vehicle Routing Problem

(SDVRP). Paper presented at the INFORMS Southern Regional Conference 2010,

Huntsville, AL.

Wilck, J.H. & Cavalier, T.M. (2012a). A Column Generation Method for the Split

Delivery Vehicle Routing Problem using a Route-Based Formulation, Working

Paper, University of Tennessee, Knoxville and Pennsylvania State University.

40

CHAPTER III

A HYBRID GENETIC ALGORITHM APPROACH TO SOLVE THE

SPLIT DELIVERY VEHICLE ROUTING PROBLEM

41

Publication Statement

This paper is a joint work between Gautham P. Rajappa and Dr. Joseph H. Wilck. We are

currently working on this paper for publication.

Chapter Abstract

Vehicle Routing Problem (VRP) is a combinatory optimization problem in the field of

transportation and logistics. There are various variants of VRP which have been

developed of the years one of which is the Split Delivery Vehicle Routing Problem

(SDVRP). The SDVRP allows customers to be assigned to multiple routes. A hybrid

genetic algorithm comprising a combination of Ant Colony Optimization, genetic

algorithm and heuristics is proposed and tested on benchmark SDVRP test problems.

1. Introduction

Vehicle Routing Problem (VRP) is an important combinatory optimization problem in

the field of transportation and logistics. The objective of the VRP is to minimize the cost

associated with delivering goods to a set of customers with known demands with vehicle

routes originating and terminating at a central depot or depots. The basic underlying

concept of a VRP is derived from Traveling Salesman Problem (TSP) but instead of a

single route , VRP extends TSP to multiple routes in which a set of customers are

serviced in a particular route with the objective of minimizing the total cost. VRP was

first proposed by Dantzig and Ramser (1959) to reduce costs in distributing gasoline from

a central depot to various bunks. Over a period of time, various variants of VRP were

developed, a brief description of which is given below:

• Vehicle Routing Problem with Time Windows (VRPTW): The customer location

has a time frame within which the deliveries have to be made.

• Capacitated Vehicle Routing Problem (CVRP): In this case, there is a restriction

on the delivery vehicle capacity

• Split Delivery Vehicle Routing Problem (SDVRP): It is a relaxed version of CVRP

in which the goods can be delivered to the customer by more than one route (vehicle).

• Multiple Depot Vehicle Routing Problem (MDVRP): Customers are served from

multiple depot.

42

• Vehicle Routing Problem with Pick-Ups and Deliveries (VRPPD): In this case, the

delivery vehicle picks up goods from a pick-up locations and drops it off at the

customer location

• Vehicle Routing Problem with Backhauls (VRPB): In the case, once all the

deliveries are done to the customer, the vehicle needs to pickup goods from the

customer.

• Periodic Vehicle Routing Problem (PVRP): In this case, the deliveries are done in

days.

• Stochastic Vehicle Routing Problem (SVRP): In this case, the components of the

problem are stochastic in nature.

The objective of this paper is on Split Delivery Vehicle Routing Problem (SDVRP). This

paper focuses on developing a hybrid genetic algorithm to solve SDVRP. Due to

constraints of the problem, a pure genetic algorithm cannot be applied to generate a new

set of feasible solutions and hence the name, hybrid genetic algorithm. In this paper, I use

a combination of Ant Colony Optimization, heuristics and Genetic Algorithms to solve

the split delivery vehicle routing problem.

The rest of the chapter is organized as follows. Section 2 provides an overview of

SDVRP. Section 3 focuses on literature of various methodologies that have been

developed to solve the SDVRP. Section 4 explains the proposed hybrid genetic algorithm

in detail. Computation experiments are discussed in Section 5 and conclusions and future

work is discussed in Section 6. Also, for details about Ant colony optimization, please

refer to Chapter I and Chapter II of the dissertation.

2. Split Delivery Vehicle Routing Problem (SDVRP)

SDVRP was first developed Dror and Trudeau (1989a; 1990) as a relaxed version of

CVRP. They developed a heuristic algorithm to solve the problem and also proved that

when triangular inequality i.e. sum of two sides of a triangle is greater than the third side

holds good, an optimal solution exists in the SDVRP in which two routes cannot have

more than one common customer. They also showed that SDVRP is NP-hard. As shown

in Figure 3.1 below, in the case of a CVRP, each customer is served by only one vehicle

but since SDVRP is a relaxed version of CVRP, the customer demand can be split

between vehicles.

Consider for example, the customer demand is 300 and the vehicle capacity is 100. In the

case of CVRP, we require three vehicles but in the case of SDVRP, since the customer

demand can be split amongst multiple vehicles, we just require 2 vehicles to fulfi

customer demand. SDVRP has potential in savings in terms of the distance traveled as

well as the number of vehicles used.

According to Aleman et al. (2010d)

(V ,E) where V ={0, 1, . . . , n}7 V, i <j} is the set of edges connecting the nodes. Node 0 represents a depot where a

fleet M = {1, . . . , m} of identical vehicles with capacity

remaining node set N = {1, . . . , n}

usually a function of distance or travel time,

customer i 7 N has a demand of

customers are served by each vehicle and what route will the vehicle follow to serve

those assigned customers, while minimizing the operational costs of the fleet, such as

.1 below, in the case of a CVRP, each customer is served by only one vehicle

but since SDVRP is a relaxed version of CVRP, the customer demand can be split

Figure 3.1: CVRP v/s SDVRP

Consider for example, the customer demand is 300 and the vehicle capacity is 100. In the

case of CVRP, we require three vehicles but in the case of SDVRP, since the customer

demand can be split amongst multiple vehicles, we just require 2 vehicles to fulfi

customer demand. SDVRP has potential in savings in terms of the distance traveled as

well as the number of vehicles used.

(2010d), the SDVRP is defined on an undirected graph

V ={0, 1, . . . , n} is the set of n + 1 nodes of the graph, and E = {(i, j) : i, j

is the set of edges connecting the nodes. Node 0 represents a depot where a

of identical vehicles with capacity Q are stationed, while the

1, . . . , n} represents the customers. A non-negative cost,

usually a function of distance or travel time, cij is associated with every edge

has a demand of qi units. The optimization problem is to determine which

served by each vehicle and what route will the vehicle follow to serve

those assigned customers, while minimizing the operational costs of the fleet, such as

43

.1 below, in the case of a CVRP, each customer is served by only one vehicle

but since SDVRP is a relaxed version of CVRP, the customer demand can be split

Consider for example, the customer demand is 300 and the vehicle capacity is 100. In the

case of CVRP, we require three vehicles but in the case of SDVRP, since the customer

demand can be split amongst multiple vehicles, we just require 2 vehicles to fulfill the

customer demand. SDVRP has potential in savings in terms of the distance traveled as

, the SDVRP is defined on an undirected graph G =

E = {(i, j) : i, j

is the set of edges connecting the nodes. Node 0 represents a depot where a

are stationed, while the

negative cost,

is associated with every edge (i, j). Each

units. The optimization problem is to determine which

served by each vehicle and what route will the vehicle follow to serve

those assigned customers, while minimizing the operational costs of the fleet, such as

44

travel distance, gas consumption, and vehicle depreciation. Various problem formulations

for SDVRP have been developed over the years and the most frequently used formulation

are from Dror and Treadeau (1990), Frizzell and Giffin (1992b), Dror et al (1994a) which

can be found in the literature.

For a detailed mathematical model formulation of SDVRP, please refer to Section 2 of

Chapter II.

3. Literature Review

In this section, an extensive literature review on various methodologies that have been

developed to solve the SDVRP is conducted. Both exact and heuristic methods have been

proposed by various researchers to solve SDVRP. For large problem instances, it’s not

convenient to solve SDVRP using exact approaches due to large computational cost and

hence, heuristic approach is the only way to obtain near-optimal solutions. SDVRP was

introduced by Dror and Trudeau (1989a) in the year 1989. In their paper they showed that

if the demand is relatively low to the vehicle capacity and the triangular inequality holds

good (i.e. sum of two sides of a triangle is greater than the third side holds good, an

optimal solution exists in the SDVRP in which two routes cannot have more than one

common customer), there is little benefit of splitting the demands. In contrast, if the

customer demand is at least 10% more than the vehicle capacity, the overall cost

associated with SDVRP is lower as compared to that of a regular VRP. Sierksma and

Tijssen (1998c) proposed a set-covering formulation for the SDVRP to build the

helicopters schedule for supporting offshore platforms in the North Sea to exchange

crews. Archetti et al. (2008a) performed a mathematical analysis and proved that by

adopting a SDVRP strategy, a maximum of 50% reduction would be achieved in the

number of routes. Also they showed that when the demand variance is relatively small

and the customer demand is in the range of 50% to 70% of the vehicle capacity,

maximum benefits can be achieved by splitting the customer’s demand.

45

Archetti et al. (2006b) developed a Tabu search algorithm called SPLITTABU to solve

the SDVRP in which they showed that always exists an optimal solution where the

quantity delivered by each vehicle when visiting a customer is an integer number. In the

paper on an optimization based heuristics for SDVRP, Archetti et al. (2008b) present a

solution approach that combines heuristics search and integer programming. The IP is

used to investigate the search space identified initially by a Tabu search heuristics.

Boudia et al. (2007b) solved an SDVRP instance using memetic algorithm with

population management which produced better and faster results than the SPLITTABU

approach (Archetti et al., 2006b).

 Mota et al. (2007d) proposed an algorithm based on scatter search methodology with the

objective function of having minimum number of vehicles. For customer demands less

than half of the vehicle capacity, their results were found to be excellent as compared to

the results obtained by SPLITTABU proposed by Archetti et al. (2006b). But for demand

over half the vehicle capacity, their results were not good. Mullaseril et al. (1997b)

modeled a feed distribution problem in a cattle ranch in Arizona as SDVRP with time

windows to schedule a fleet of trucks to distribute feed to cattle in various pens spread

across the ranch.

Nakao and Nagamochi (2007e) proposed a dynamic program based heuristics to solve a

Discrete Split Delivery Vehicle Routing problem. A Discrete SDVRP is a variant of

SDVRP in which each customer demand may have more than one item, each of which

cannot be split where items may have more than one size. Jin et al. (2008d) proposed a

column generation approach to solve SDVRP with large demands in which the columns

have route and delivery amount information and limited-search-with-bound algorithm is

used to find the lower and upper bounds of the problem. They used a column generation

to find lower bounds and an iterative approach to find upper bounds for a SDVRP. They

also suggested that their approach of solving the SDVRP does not yield good solutions

for large customer demands and in such cases, they recommend solving the SDVRP

instance as a CVRP.

46

Aleman et al. (2010d) proposed three heuristic approaches to solve the SDVRP. The first

approach is an adaptive constructive algorithm called route angle control measure, which

yielded good results for large customer demands problem. The second approach is an

iterative approach which solves the adaptive constructive algorithm repeatedly. The third

approach was a variable neighborhood descent which produced the best results amongst

all the three approaches. These algorithms provided better results than other approaches

on benchmark test problems. Chen et al. (2007c) developed a heuristic that combines a

mixed integer program and record-to-record travel algorithm to solve SDVRP.

Moghaddam et al. (2007f) used simulated annealing to solve SDVRP with the objective

function of maximizing the vehicle utilization. Ambrosino and Sciomachen (2007a)

proposed a SDVRP solution based on clustering procedure along with a local search to

solve a food distribution problem for a Italian company.

4. Hybrid Genetic Algorithm Approach

4.1 Genetic Algorithms

Genetic algorithms are population based search algorithms to solve combinatorial

optimization problems. It was first proposed by John Holland (1989b). In these

algorithms the search space (population) of a problem is represented as a collection of

individuals (chromosomes).Genetic algorithms generate solutions for optimization

problem based on theory of evolution using concepts such as reproduction, crossover and

mutation. The fundamental concept of a genetic algorithm states a set of conditions to

achieve global optima. These conditions describe the reproduction process and ensure

that better solution remain in future generations and weaker solutions be eliminated from

future generations. This is similar to the Darwin’s survival of fittest concept in the theory

of evolution. A typical genetic algorithm consists of the following steps (1989b):

• Step 1: Generate an initial population of N solutions.

• Step 2: Evaluate each solution of the initial population using a fitness

function/objective function.

47

• Step 3: Select solutions as parents for the new generation based on probability or

randomness. The best solutions (in terms of fitness or objective) have a higher

probability of being selected than poor solutions.

• Step 4: Use the parent solutions from Step 3 to produce the next generation

(called offspring). This process is called as crossover. The offspring are placed in

the initial set of solutions replacing the weaker solutions.

• Step 5: Randomly alter the new generation by mutation. Usually this is done

using a mutation probability.

• Step 6: Repeat Steps 2 through 5 until a stopping criteria is met.

Thus the genetic algorithm search mechanism consists of three phases: (1) Evaluation of

fitness function of each solution in the population (2) selection of parent solutions based

on fitness values and (3) application of genetic operations such as crossover and mutation

to generate new offspring. For additional descriptions of genetic algorithms, please refer

to Chapter I.

Due to the constraints of a SDVRP, it is not possible to directly use genetic algorithm in

the way it is described above. In particular, after crossover and mutation, there may be

solutions which do not satisfy the constraints. Hence, to obtain a feasible set of offspring,

we may need to modify the way crossover is done or another possibility is to remove

infeasible solutions after mutation and replace them with the solutions having higher

fitness value in the old population (2002b). Hence a hybrid genetic algorithm needs to be

developed to ensure feasibility in the new generation.

The hybrid genetic algorithm is described below:

• Solution encoding: It’s represents a feasible vehicle route. The solutions are

encoded as a series of random numbers from 0 to N, wherein, each N represents a

node (customer location) and 0 represents a depot. For example, a route is

represented as [0,1,2,3,0,3,4,5,0].

48

• Initial population: The initial population in the genetic algorithm is normally

generated randomly but other approaches such as heuristics approach and ant

colony optimization can also be applied to get a good set of initial population. For

the hybrid genetic algorithm, 1000 random solutions from ant colony optimization

are used for initial population.

• Fitness: The objective function is evaluated for each route from the initial

population and then a corresponding fitness value is assigned. The fitness value is

the total distance of a particular route.

• Selection: Using the fitness value of each route, the top 500 routes from the initial

population are selected for future generation.

• Future Generation (Crossover and mutation):

o The size of the future generation is set to 50.

o Due to the constraints of SDVRP, mutation was not considered.

o Elitism: The top 5 results from previous generation were used in the next

generation

o Crossover: Two parents are randomly selected from the previous

generation. A one point crossover is then applied to each of these parents

to generate future generation using the heuristics described below.

Crossover is performed until 50 new routes are generated.

• Heuristics: The routes are constructed as follows:

o Condition 1: For all the available nodes (demand is not satisfied), add the

next node to the route if:

� The node’s demand is less than the remaining capacity of the

vehicle and

� The next node is closest to the previous node and

� The next node has the largest demand amongst all the nodes.

o Condition 2: If condition 1 is not satisfied, then for all the available nodes

(demand is not satisfied), add the next node to the route if:

� The node’s demand is less than the remaining capacity of the

vehicle and

49

� The next node is closest to the previous node.

o If condition 1 and condition 2 are not satisfied, go back to the depot.

• Termination condition: For 100 iterations, repeat the Fitness to Heuristics

procedure and then display the best route.

The flowchart for the hybrid genetic algorithm is shown in Figure 3.2 below:

5. Computation experiments

The Hybrid genetic algorithm for this study was coded in Java on a Windows7, Intel i5

2.4 Ghz, 4 GB RAM computer. For all our test datasets, the algorithm parameters were

tuned during pilot-testing and set as shown in Table 3.1 below. The algorithm was tested

on two datasets from the literature, namely Jin et al.(2008d) and Chen et al. (2007c) , and

the comparative results are shown below in Table 3.2 and Table 3.3 respectively. The

vehicle capacity for datasets in Table 3.2 and Table 3.3 are 160 and 100 respectively.

50

Figure 3.2: Hybrid GA Flowchart

Step 2: (Selection) Select the top 500 routes from the
initial population for future generation

Step 3: (Future Generation) Select the top 5 routes
from previous generation and add it to the future

generation (Elitism)

Step 4: (Crossover) Select 2 parents randomly from
previous generation and perform a one-point crossover

Step 5: (Route Construction) Apply the heuristics to
build new routes and add it to the future generation

Step 6: Repeat Step 4 and Step 5 until a future
generation of 50 is generated

Step 7: Evaluate the fitness of the future generation and
sort them according to the shortest distance

Step 1(Initial Population) Generate 1000 random
routes using Ant Colony Optimization and evaluate

fitness of each route

Step 8: (Terminating condition) Repeat Step3 to Step 7
for 100 iterations

Step 9: Once the terminating condition is met, display
the best route

51

Table 3.1: Parameters

Parameter Values

Initial Population 500
Size of Future Generation 50

Elite List 5
Number of future generation (Terminating

condition)
100

Table 3.2: Comparing Hybrid GA results versus Jin et al.(2008d)

 Hybrid Genetic Algorithm Results from Jin et al.

Dataset Objective

Function

(Average (std

dev))

Objective

Function

(Best)

Total

Time

(s)

Objective

Function

Total

Time(s)

GAP

s51d2 862.67(11.44) 845.86 2.22 722.93 10741 17.00%
s51d3 1118.48(23.45) 1080.32 2.409 968.85 833 11.51%
s51d4 1775.10(15.90) 1752.79 2.642 1605.64 789 9.16%
s51d5 1542.91(14.17) 1512.46 2.52 1361.24 10 11.11%
s51d6 2401.90(1.20) 2398.47 2.884 2196.35 478 9.20%
576d2 1292.75(5.64) 1282.8 4.2 1146.68 75074 11.87%
s76d3 1674.94(14.12) 1649.51 4.6 1474.89 3546 11.84%
s76d4 2396.14(24.93) 2357.02 4.87 2157.87 369 9.23%
s101d2 1624.82(20.89) 1586.97 7.26 1460.54 189392 8.66%
s101d3 2158.10(24.09) 2122.04 7.94 1956.91 36777 8.44%
s101d5 3134.49(17.22) 3109.88 8.55 2885 5043 7.79%

52

Table 3.3: Comparing Hybrid GA results versus Chen et al. (2007c)

 Hybrid Genetic

Algorithm

Results from Chen et al.

Dataset Objective

Function

(Average (std

dev))

Objective

Function

(Best)

Total

Time(s)

Objective

Function

Time(s) GAP

sd1 232.38(2.83) 228.28 1.876 228.28 0.7 0.00%

sd2 762.83(5.96) 760 2.76 714.4 54.4 6.38%
sd3 466.56(4.86) 458.25 2.985 430.61 67.3 6.42%
sd4 677.05(2.65) 676.28 3.019 631.06 400 7.17%
sd5 1520.91(13.68) 1484.85 4.898 1408.12 402.7 5.45%
sd6 860.44(0) 860.44 4.609 831.21 408.3 3.52%
sd7 3640(0) 3640 6.154 3714.4 403.2 -2.00%

sd8 5213.19(62.73) 5106.5 8.204 5200 404.1 -1.80%

sd9 2254.75(25.08) 2206.02 8.806 2059.84 404.3 7.10%
sd10 2853.12(36.29) 2757.51 12.588 2749.11 400 0.31%
sd11 13320(28.28) 13280 19.278 13612.12 400.1 -2.44%

sd12 7676.31(31.68) 7627.82 24.835 7399.06 408.3 3.09%
sd13 10559.42(44.6) 10470.09 28.642 10367.06 404.5 0.99%
sd14 11399.11(32.14) 11359.9 13.56 11023 5021.7 3.06%
sd15 15766.5(56.75) 15681.02 24.3 15271.77 5042.3 2.68%
sd16 3397.48(4.34) 3391.7 18.18 3449.05 5014.7 -1.66%

sd17 27532.4(83.43) 27407.36 31.05 26665.76 5023.6 2.78%
sd18 15007.04(77.58) 14853.66 31.227 14546.58 5028.6 2.11%
sd19 20635.12(172.20) 20260.55 49.54 20559.21 5034.2 -1.45%

sd20 41151.15(134.84) 40866.09 89.348 40408.22 5053 1.13%
sd21 11465.5(32.77) 11389.72 474.05 11491.67 5051 -0.89%

The GAP column in Table 3.2 and Table 3.3 is the percentage difference in objective

function values of the hybrid GA and those obtained from Jin et al.(2008d) and Chen et

al. (2007c) respectively. From Table 3.2, the hybrid GA was able to find solutions within

8%-17% for all the datasets. However, much greater success was found in improving the

best known solutions in the 21 datasets of Chen et al. (2007c) .From Table 3.3, the hybrid

GA found better solutions for 6 of the 21 datasets (sd7, sd8, sd11, sd16, sd19 and sd21)

and were on par with the objective solution for one dataset (sd1) For the remaining

datasets, the hybrid GA found solutions that were between 0.3% to 7.2% of the objective

function but the computational times for hybrid GA were much faster for all the 21

datasets.

53

The objective function values for the two datasets are compared with the dual bound

obtain by column generation (working paper, Wilck and Cavalier, 2012a), results of

which are shown in Table 3.4 and Table 3.5 respectively. The GAP represents the

percentage difference between the objective function values of ACO and the column

generation dual bound. As you can see from Table 3.4 and Table 3.5 below, the

percentage difference between ACO objective function and column generation dual

bound ranges from 0 % to 6.7 % (2007c) and 11.80% to 18.56%(2008d) respectively.

Table 3.4: Comparison of ACO objective function for Chen et al. (2007c) and

Column generation dual bound (Working paper, Wilck and Cavalier)

Dataset ACO Objective

function

Column generation dual

bound*

GAP

sd1 228.28 228.28 0.00%
sd2 760 708.28 6.81%
sd3 458.25 430.58 6.04%
sd4 676.28 631.05 6.69%
sd5 1484.85 1390.57 6.35%
sd6 860.44 831.21 3.40%
sd7 3640 3640.00 0.00%
sd8 5106.5 5068.28 0.75%
sd9 2206.02 2044.23 7.33%
sd10 2757.51 2684.84 2.64%
sd11 13280 13265.29 0.11%
sd12 7627.82 7275.97 4.61%
sd13 10470.09 10093.72 3.59%
sd14 11359.9 10632.67 6.40%
sd15 15681.02 15146.92 3.41%
sd16 3391.7 3375.95 0.46%
sd17 27407.36 25320.09 7.62%
sd18 14853.66 14253.94 4.04%
sd19 20260.55 19768.23 2.43%
sd20 40866.09 38071.58 6.84%
sd21 11389.72 11062.32 2.87%

*Column Generation cpu specifications: CPLEX and FORTRAN 95, GNU, Intel Xeon, 2.49

GHz, 8 GB RAM.

Column Generation stopping criteria: 5% GAP [i.e., GAP = (Primal Solution - Dual Bound)

/ Primal Solution].

54

Table 3.5: Comparison of ACO objective function for Jin et al. (2008d) and Column

generation dual bound (Working paper, Wilck and Cavalier)

Dataset ACO Objective

function

Column generation

dual bound*

GAP

s51d2 845.86 688.83 18.56%
s51d3 1080.32 920.58 14.79%
s51d4 1752.79 1520.71 13.24%
s51d5 1512.46 1310.12 13.38%
s51d6 2398.47 2115.20 11.81%
576d2 1282.8 1093.39 14.77%
s76d3 1649.51 1399.37 15.16%
s76d4 2357.02 2039.11 13.49%
s101d2 1586.97 1395.25 12.08%
s101d3 2122.04 1859.36 12.38%
s101d5 3109.88 2704.63 13.03%

*Column Generation cpu specifications: CPLEX and FORTRAN 95, GNU, Intel Xeon, 2.49

GHz, 8 GB RAM.

Column Generation stopping criteria: 5% GAP [i.e., GAP = (Primal Solution - Dual Bound)

/ Primal Solution].

6. Conclusions and Future directions

This paper focused on solving instances of SDVRP from previous literature using a

hybrid GA that consists of ACO, GA, and a heuristics to build route for SDVRP. Based

on the results from Table 3.2 and Table 3.3, the hybrid GA were able to provide better

results for the datasets from Chen et al. (2007c) and at a faster computational time as

compared to the datasets from Jin et al. (2008d). I speculate that the nature of the datasets

in Jin et al. (2008d) may be the reason for such results (i.e., these data sets were random;

whereas the other data sets had patterns). One of the route improvement strategies is to

have a candidate list to determine the next location for each customer in which only a set

of predetermined closest locations are included in the candidate list. In previous research

Bullnheimer et al. (1999a), irrespective of the problem size, the size of the candidate list

was set to one fourth of the total number of customers. Hence, in future, I would like to

incorporate a candidate list in our hybrid GA. Also, in future, I would like to test the

hybrid GA on other variants of vehicle routing problem.

55

7. References

Aleman, R.E., Zhang, X., & Hill, R. R. (2010d). An adaptive memory algorithm for the

split delivery vehicle routing problem. Journal of Heuristics, 16(3), 441-473.

Ambrosino, D., & Sciomachen, A. (2007a). A food distribution network problem: a case

study. IMA J. Manag. Math., 18(1), 33-53.

Archetti, C., Sperenza, M.G., & Hertz, A. (2006b). A Tabu Search Algorithm for the

Split Delivery Vehicle Routing Problem. Transportation Science, 40(1), 64-73.

Archetti, C., Savelsbergh, M. W. P., & Speranza, M. G. (2008a). To split or not to split:

That is the question. Transportation Research, Part E 44(1), 114-123.

Archetti, C., Speranza, M. G., & Savelsbergh, M.W.P. (2008b). An Optimization-Based

Heuristic for the Split Delivery Vehicle Routing Problem. Transportation

Science, 42(1),22-31.

Bullnheimer, B., Hartl, R.F. & Struss, C. (1999a). An improved ant system algorithm for

the vehicle routing problem. . Annals of Operations Research, 89, 319-328.

Boudia, M., Prins, C., & Reghioui, M. (2007b). An effective memetic algorithm with

population management for the split delivery vehicle routing problem. Paper

presented at the Proceedings of the 4th International Conference on Hybrid

Metaheuristics, Dortmund, Germany, 16-30.

Chen, S., Golden, B., & Wasil, E. (2007c). The split delivery vehicle routing problem:

Applications, algorithms, test problems, and computational results. Networks,

49(4), 318-327.

Cordeau, J. F., Gendreau, M., Laporte, G., Potvin, J.-Y., & Semet, F. (2002b). A guide to

vehicle routing heuristics. The Journal of the Operational Research Society,

53(5), 512-522.

Dantzig, G. B., & Ramser, J. H. (1959). The Truck Dispatching Problem. Management

Science, 6(1), 80-91.

Dror, M., & Trudeau, P. (1989a). Savings by split delivery routing. Transportation

Science, 23, 141-145.

Dror, M., Laporte, G. & Trudeau, P. (1994a). Vehicle routing with split deliveries.

Discrete Applied Mathematics, 50(3), 239-254.

56

Dror, M., & Trudeau, P. (1990). Split Delivery Routing. Naval Research Logistics 37,

383-402.

Frizzell, P., & Giffin, J. (1992b). The bounded split delivery vehicle routing problem

with grid network distances. Asia-Pacific Journal of Operational Research, 9,

101-116.

Goldberg, D.E. (1989b). Genetic Algorithms in Search, Optimization and Machine

Learning. reading,Addison-Wesley Longman Publishing Co., Inc, Boston, MA.

Jin, M., Liua, K., & Eksioglu, B. (2008d). A column generation approach for the split

delivery vehicle routing problem. Operations research letters, 36(2), 265-270.

Mota, E., Campos, V., Corberán, Á., & Van Hemert, J. (2007d). A New Metaheuristic for

the Vehicle Routing Problem with Split Demands., Evolutionary Computation in

Combinatorial Optimization, Lecture Notes in Computer Science, 4446, 121-129.

Mullaseril, P. A., Dror, M., & Leung, J. (1997b). Split-delivery routing heuristics in

livestock feed distribution. J. Oper.Res. Soc. , 48(2), 107-116.

Nakao, Y., & Nagamochi, H. (2007e). A DP-based Heuristic Algorithm for the Discrete

Split Delivery Vehicle Routing Problem. Journal of Advanced Mechanical

Design, Systems, and Manufacturing, 1(2), 217-226.

Sierksma, G., & Tijssen, G.A. (1998c). Routing helicopters for crew exchanges on off-

shores locations. Annals of Opertions. Research, 76, 261-286.

Tavakkoli-Moghaddam, R., Safaei, N., Kah, M.M.O, & Rabbani, M. (2007f). A new

capacitated vehicle routing problem with split service for minimizing fleet cost by

simulated annealing. Journal of the Franklin Institute,Modeling,Simulation and

Applied Optimization Part II , 344(5), 406-425.

Wilck, J.H. & Cavalier, T.M. (2012a). A Column Generation Method for the Split

Delivery Vehicle Routing Problem using a Route-Based Formulation, Working

Paper, University of Tennessee, Knoxville and Pennsylvania State University.

57

CHAPTER IV

A GENETIC ALGORITHM APPROACH TO SOLVE THE

PHYSICIAN SCHEDULING PROBLEM

58

Publication Statement

This is a joint work between Gautham P. Rajappa, Dr. Joseph H. Wilck, and Dr. Charles

Noon. We are working on this paper for publication.

Abstract

Emergency departments have repeating 24-hour cycles of non-stationary Poisson arrivals

and high levels of service time variation. The problem is to find a shift schedule that

considers queuing effects and minimizes average patient waiting time and maximizes

physicians’ shift preference subject to constraints on shift start times, shift durations and

total physician hours available per day. An approach that utilizes a genetic algorithm and

discrete event simulation to solve the physician scheduling problem in a hospital is

proposed. The approach is tested on real world datasets for physician schedules.

1. Introduction

Over the past two decades, genetic algorithms are being applied in solving complex real

world combinatorial optimization problems such as vehicle routing, sequencing and

scheduling of jobs on single machines and multiple machines, knapsack and bin packing

problems, resource scheduling, and inventory problems. According to Fukunaga et al.

(2002a) , a staff scheduling problem is known to be an NP-complete problem. Hence,

metaheuristics such as genetic algorithms and Tabu Search are a commonly used

methodology to solve such problems.

Every hospital faces a challenge of preparing a staff schedule based on the availability

and preferences of the staff. A good work schedule should not only reduce the labor cost

but also allow for more opportunities and a high degree of satisfaction amongst the staff.

In addition, the staffs have to be scheduled in such a way that there are minimal or

considerable waiting times for patients. Hence, the research objective of this chapter is to

utilize a genetic algorithm to build physician shift schedules based on constraints such as

physicians’ preferences, their working hours and average patient wait times. The

approach is tested on real-world datasets for physician schedules.

59

The rest of the chapter is organized as follows: Section 2 focuses on the literature

associated with staff scheduling, Section 3 explains the problem and genetic algorithm

approach in detail, and Results, Conclusions and future research are described in Section

4.

2. Literature Review

According to Fukunaga et al. (2002a) a staff scheduling problem is known to be an NP-

complete problem. Hence, one of the ways to obtain a feasible set of solutions in a

reasonable amount of time frame is by application of heuristic and metaheuristics

methods. Dean (2008a) proposed a two genetic algorithm (heuristic) solutions that

applies a bit-string and a two dimensional chromosome structure for staff scheduling. In

particular, Dean (2008a) modeled a staff schedule in the form of a two dimensional

chromosome structure, in which the rows and columns represented the employees and

days respectively. He compared these results to the results obtained by a bit-string

structure (chromosomes) representation of a staff schedule. Downsland (1998a) proposed

a Tabu Search and strategic oscillation approach to schedule the nurse roster in a major

UK hospital. Easton and Mansour (1999) proposed a distributed genetic algorithm to

tackle problems related to generalized set covering (GSC), deterministic goal programs

(DGP), and stochastic goal programs (SGP). The distributed genetic algorithm used

penalty functions for infeasible offspring and also employed a local search algorithm to

enhance the performance. The DGP was tested on three different sets of data and it

provided better solutions but at the expense of computational time.

Aickelin and Downsland (2004) developed an indirect approach in which initially a

heuristic decoder builds the staff schedule from various combinations of available

resources. Then a genetic algorithm was applied to optimize the output schedule from

the heuristic decoder. The genetic algorithm only solved an unconstrained problem

leaving the constraint handling to the heuristic decoder that uses them to directly bias the

search rather than in penalty functions alone. Also, all problem specific knowledge was

held in the heuristic decoder, thus enabling the algorithm to quickly adapt to changes in

60

problem specifications. The results obtained by this indirect approach were found to be

more favorable and robust than those obtained by a Tabu search approach. Tanomaru

(1995b) used genetic algorithm to solve staff scheduling problem with no predefined shift

intervals. Hence instead of having predefined shift intervals, the planning horizon was

split into uniform time intervals and staffs were assigned accordingly. Also, after every

iteration, a number of heuristics were applied to improve the solution. Results were

found to be optimal for small instances and good for large instances of the problem.

Jan et al. (2000b) used genetic algorithms to schedule nurses in a hospital using the

concept of hard and soft constraints. The objective was to minimize the penalty function

for violating the soft constraints and reduce the variance in individual nurse schedule to

ensure fairness of schedule. Jan et al. (2000b) also suggested a method to allow the

decision maker to adjust a schedule and direct the search during its execution.

Cai and Li (2000a) presented a genetic algorithm to solve the nurse scheduling problem

with the following three objectives in decreasing order of importance: (1) Minimize total

cost, (2) Minimize staff surplus, and (3) Minimize the variance in staff surplus.

Predefined weekly schedules were assigned when the optimal number of workers for

each schedule is found. Heuristics were then applied to resolve the constraints that were

violated. The results were of good quality and were incorporated into the existing

scheduling system.

Puente et al. (2009b) proposed a combination of heuristic decoder and genetic algorithm

approach to schedule doctors in an emergency department. They used the concept of

hard and soft constraints wherein weights were assigned to the soft constraints based on

their importance. Actual results obtained by using this heuristic method have achieved a

more balanced shift-assigning among the doctors with a high degree of satisfaction. Ohki

et al. (2008b) developed a cooperative genetic algorithm (CGA) which uses crossover

operator and periodically, the mutation operator to solve the nurse scheduling problem.

They used penalty functions for evaluating the difference of the part of the shift schedule

61

between the original schedule given at the beginning of the current month and the

schedule to be newly optimized.

To tackle the scheduling problem in a Belgian hospital, Burke et al. (1998b) developed a

commercial heuristic solution called Plane in which the heuristic was a combination of

Tabu search and algorithms based on manual scheduling techniques. Plane can decide

(per nurse) which duties can or cannot be performed (according to that nurse’s

qualification category) when there is not enough personnel available and also provides an

objective schedule in which all nurses are treated equally and the number of violated

constraints is relatively low.

Inoue et al. (2003c) proposed an interactive scheduling approach wherein the fitness

function was based on a measure of violation of soft constraints. However, at each

iteration of solution generation, the users were given the opportunity to modify the

schedule based on their opinion. The genetic algorithm used combinations of crossover,

mutation and heuristics for repairing the crossover (new generation). Brusco and Jacobs

(1993) proposed simulated annealing approach to address the cyclic staff scheduling

problem. Their heuristic provided high quality solutions in a short computational time on

a test dataset. They also suggested that branch-and-bound integer programming was

impractical to solve cyclic staff scheduling problems.

Burke et al. (2009a) proposed a scatter search algorithm to schedule nurses in a hospital.

In contrast to heuristics which work with one set of solutions, a scatter search algorithm

works with a population of solutions. A scatter search algorithm is similar to memetic

algorithms except that the random decisions are replaced with intelligently designed rules

and solutions created from more than one parent. The results of the scatter search

algorithm with hill climbing improvement method were found be more optimal when

tested against benchmark problems. Burke et al. (2001) used memetic algorithms for

nurse scheduling and concluded that although memetic algorithm produces highly quality

solutions, it requires a greater computation time than tabu search. Özcan (2005)

62

developed a memetic approach to solve a nurse rostering problem wherein the planning

horizon was two weeks of shift schedule. Özcan (2005) used the hill climbing method to

evaluate and repair each constraint that violated the shift schedule. In order to minimize

the total staff with different experience levels subject to several labor agreements,

Brunner and Edenharter (2011) formulated a staff scheduling problem as mixed integer

linear program and solved it using a column generation based heuristics at the anesthesia

department of a hospital.

Dias et al. (2003b) developed a tabu search and a genetic algorithm for solving the

rostering problem in Brazilian hospitals wherein the soft constraints were weighted based

on their priority and was used in the objective function. Results on test dataset showed

that the genetic algorithm slightly outperformed Tabu search but, in practice, both

approaches were well received by the hospital staff. A wide variety of numerous other

operations research methods like column generation, constraint programming, Pareto

optimization, mixed integer programming, hyperheuristics etc. have been applied to solve

the staff scheduling problem, overviews of which can be found in the survey papers by

Ernst et al. (2004a).

Paul et al. (2010) presented a systematic review of emergency department simulation

literature from 1970 to 2006. Jacobson et al. (2006a) conducted a survey on various

discrete event simulation models relevant to hospitals. Also, Jun et al. (1999a) have

conducted an extensive survey on application of discrete event simulation in healthcare.

Kumar and Kapur (1989a) used simulation to analyze alternatives to schedule nurses in

emergency room at Georgetown University Hospital. Rosetti et al. (1999c) applied

simulation to test various alternatives of emergency department physicians staffing

schedules and to analyze the impact of the schedules on patient throughput and resource

utilization. Weng et al. (2012) proposed a bi-level framework called multi–tool

integrated methodology (MTIM) to schedule staff for each emergency room across

various hospitals (distributed resource allocation decision) within the budget limitations.

63

Gendreau et al. (2007a) proposed four different scheduling techniques namely: tabu

search, constraint programming, mathematical programming and column generation to

schedule physicians in emergency department at five different hospitals in Canada. Yeh

and Lin (2007b) proposed a combination for simulation modeling and genetic algorithms

to improve quality of care in emergency department. The simulation model was used for

analysis of flow of patients in the emergency department and genetic algorithm was used

to develop a nurse schedule with the objective of minimizing patient wait time.

Laskowski et al. (2009c) applied agent based models and queuing models to evaluate

patient access and patient flow through emergency department. Xiao et al.(2010a)

proposed a time window based incremental resource scheduling methodology (dynamic

scheduling) that uses a genetic algorithm to schedule and reschedule resources based at

selected points(time windows). To study the effectiveness of their methodology, their

approach was integrated with an existing discrete event simulation system.

Though not in healthcare industry, Pantel et al. (1998c) applied a two step approach that

had a combination of genetic algorithm and discrete event simulation for solving job shop

scheduling problems in a semiconductor industry. In the first step, they used discrete

event simulation to model the dynamic system behavior and in the second step, they

applied genetic algorithm to minimize the average residence time to produce a set of

batches in function of batch order in a multipurpose-multiobjective plant with unlimited

storage. The discrete event simulation model was embedded in the optimization loop to

evaluate the objective function. In our approach to solve the physician scheduling

problem in healthcare, we also embed our discrete event solution module into the genetic

algorithm, details of which are explained in Section 3.

3. Problem Definition and Genetic Algorithm approach

3.1 Problem Definition

In a typical emergency room at a hospital, patients arrive at random times and these

arrival rates vary with respect to time of the day. Also, the services of the physicians are

stochastic in nature. Constraints such as physicians preferences on shift start time and

64

shift duration, average patient waiting times and restriction on total working hours for all

the physicians per day makes it a very complicated problem to solve. Hence, an efficient

staff schedule algorithm should consider all these real world constraints and produce a

result which satisfies both the physicians as well as the patients. A genetic algorithm

approach is proposed in this paper to solve the staff scheduling problem and is tested on

two datasets.

3.1.1 Datasets

The given data for the two datasets is shown in Table 4.1. For the two datasets, the

average number of patients arriving per hour is assumed to be Poisson arrivals and the

service times are assumed to be exponential distributed.

Table 4.1: Given Data

Given Data Dataset 1 Dataset2

Average service time 15 minutes (exponential
distribution)

33 minutes (exponential
distribution)

Average number of patients

arriving per hour

Poisson Arrivals (Table
4.2)

Poisson Arrivals (Table 4.3)

Maximum physician hours per

day

48 68

Feasible shifts with preference Table 4.4 Table 4.5

65

Table 4.2: Average number of patients arriving per hour (Dataset 1)

Hour of the day Average number of

patients arriving

Hour of the day Average number of

patients arriving

12:00 AM 3.690616 12:00 PM 8.178273

1:00 AM 2.911858 1:00 PM 7.79489

2:00 AM 2.293054 2:00 PM 7.792522

3:00 AM 2.017725 3:00 PM 8.053659

4:00 AM 1.831175 4:00 PM 7.983501

5:00 AM 1.856022 5:00 PM 7.969416

6:00 AM 2.251625 6:00 PM 8.282366

7:00 AM 3.803911 7:00 PM 7.664413

8:00 AM 5.446445 8:00 PM 7.238266

9:00 AM 7.066014 9:00 PM 6.578026

10:00 AM 7.939452 10:00 PM 5.526836

11:00 AM 8.49382 11:00 PM 4.336112

Table 4.3: Average number of patients arriving per hour (Dataset 2)

Hour of the

day

Average number of

patients arriving

Hour of the day Average number of

patients arriving

12:00 AM 2.621795 12:00 PM 7.083333

1:00 AM 1.916667 1:00 PM 6.826923

2:00 AM 1.448718 2:00 PM 6.557692

3:00 AM 1.294872 3:00 PM 6.570513

4:00 AM 1.403846 4:00 PM 6.076923

5:00 AM 1.378205 5:00 PM 6.512821

6:00 AM 1.839744 6:00 PM 6.730769

7:00 AM 2.858974 7:00 PM 6.750000

8:00 AM 4.288462 8:00 PM 6.064103

9:00 AM 5.769231 9:00 PM 5.384615

10:00 AM 6.769231 10:00 PM 4.339744

11:00 AM 7.038462 11:00 PM 3.147436

66

Table 4.4: Feasible shifts with preference (Dataset 1)

 Shift duration (hours)

Hour of the day 8 10 12

7:00 AM 6 5 3
11:00 AM 6 3 4
3:00 PM 6 3 1
7:00 PM 4 4 2

11:00 PM 2 3 3

Table 4.5: Feasible shifts with preference (Dataset 2)

 Shift durations (hours)

 Hour of the day 8 9 10 11 12

7:00 AM 4 6 6 3 2

8:00 AM 4 6 6 3 2
9:00 AM 4 6 6 4 2

10:00 AM 4 6 6 4 2

11:00 AM 4 6 6 4 2
12:00 PM 5 5 5 3 2

1:00 PM 5 6 5 4 2
2:00 PM 5 6 5 4 2

3:00 PM 5 5 5 4 2
4:00 PM 6 5 5 3 2
5:00 PM 6 5 3 3 2

6:00 PM 3
9:00 PM 2 3 3 3

10:00 PM 3 6 6 4 2
11:00 PM 3 5 5 3 2

From Table 4.4, for dataset 1, the shift start times are at 7AM, 11AM, 3PM, 7PM and

11PM. All shifts must start only at these times. The shift duration for each of the shift

start times is 8, 10 or 12 hours. The preferences for each combination of shift start time

and shift duration are shown in Table 4.4. The preferences are numbered from 1 to 6, 6

being the most preferred start time and shift duration, and 1 being the least preferred. The

interpretation of feasible shifts with preferences for dataset 2 (Table 4.5) is similar to that

of dataset 1.

67

3.1.2 Objective Functions and Constraints
Based on the given data, the objectives and constraints for the two datasets are described

below.

Objectives

Based on the given data, the objective is to build a shift schedule that:

1) Maximize the preference of physicians.

2) Minimize the average waiting time for patients.

Constraints

1) There is no overtime i.e. the shift schedule should not exceed the maximum

physician hours per day.

2) At least one physician is available every hour.

3) Shifts can start only at times shown in the preference matrix (Table 4.4 and Table

4.5).

Since it is a multiobjective optimization problem, weights (penalties) are assigned to each

objective and weighted sum is used to calculate the objective function value. Noon et

al.(2007) had a mathematical formulation for the given problem and this formulation has

been modified to suit our problem definition. The mathematical formulation for the

problem is described in Section 3.1.3.

3.1.3 Mathematical Formulation

Indexed Sets:

 � � ��@A BAC�D' �CD@ 1 … . F, HIACA F �J 24 IDLCJ � � JI��� �*'AM �CD@ 1 … . N , HIACA N �J �IA �D�)O *L@PAC D� BD�A*��)O JI���J F� � FD�)O J�@LO)��D* CL* ��@A �, �)CA �*�AQACJ

Parameters:

 $ � JACR�SA C)�A �SD*J�)*�, AMBD*A*��)O '�J�C�PL��D*� T� �)CC�R)O C)�A �DC ��@A BAC�D' � '	 � 'LC)��D* D� A)SI JI��� � �	 � �CA�ACA*SA D� JI��� �

68

U � @)M�@L@)R)�O)POA JACRAC�BIVJ�S�)*� IDLCJ W3 � HA�QI�)JJDS�)�A' H��I)RAC)QA B)��A*� H)�� ��@A WX � HA�QI�)JJDS�)�A' H��I JI��� BCA�ACA*SA BA*)O�V P�	 � Y1 , �� JI��� � �J)JJ�Q*A' �D ��@A �0 , D�IACH�JA <

Decision Variables:

 J� � *L@PAC D� JACRACJ �BIVJ�S�)*J�)R)�O)POA)� ��@A BAC�D' � M	 � *L@PAC D� JACRACJ �BIVJ�S�)*J� �* JI��� �

Accounting Variables (Calculated from decision variables and discrete event

simulation):

 H� � �D�)O)RAC)QA B)��A*� H)�� ��@A �DC ��@A BAC�D' �

Objective: Z � [�\�W3 ∑ H� - WX ∑ ��] M	?	̂_̀� ? (4.1)

Constraints:

1) Total physician hours is ≤ H (maximum physician hours/day)

 ∑ �'] M	� 6 U	̂ (4.2)

2) The number of physicians in each shift must be equal to number of

physicians every hour

 ∑ �P�	�] � M	�	̂ � J� a � (4.3)

3) At least one physician every hour

 J� b 1, �*�AQAC a � (4.4)

4) Number of physicians in a given shift

 M	 b 0, �*�AQAC a � (4.5)
Solve for: H� � ��T�, μ, J��): (Average patient waiting time function from discrete event

simulation). The discrete event simulation module is an integral part of the proposed

Genetic Algorithm to evaluate average patient wait times for each feasible shift schedule.

69

3.2 Genetic Algorithm Approach

Genetic algorithms are population based search algorithms to solve combinatorial

optimization problems. It was first proposed by John Holland (1989). In these

algorithms the search space (population) of a problem is represented as a collection of

individuals (chromosomes) and these individuals are evaluated based on the fitness

function. Genetic algorithms generate solutions for optimization problem based on theory

of evolution using concepts such as reproduction, crossover and mutation. The

fundamental concept of a genetic algorithm states a set of conditions to achieve global

optima. These conditions describe the reproduction process and ensure that better

solution remain in future generations and weaker solutions be eliminated from future

generations. This is similar to the Darwin’s survival of fittest concept in the theory of

evolution. A typical genetic algorithm consists of the following steps (1989):

Step 1: Generate an initial population of N solutions.

Step 2: Evaluate each solution of the initial population using a fitness

function/objective function.

Step 3: Select solutions as parents for the new generation based on probability

or randomness. The best solutions (in terms of fitness or objective) have

a higher probability of being selected than poor solutions.

Step 4: Use the parent solutions from Step 3 to produce the next generation

(called offspring). This process is called as crossover. The offspring are

placed in the initial set of solutions replacing the weaker solutions.

Step 5: Randomly alter the new generation by mutation. Usually this is done

using a mutation probability.

Step 6: Repeat Steps 2 through 5 until a stopping criteria is met.

Due to the constraints of this problem, it is not possible to directly use genetic algorithm

in the way it is described above. In particular, after crossover, there may be solutions

which do not satisfy the constraints. Hence, to obtain a feasible set of offspring, we may

need to modify the way crossover is done or another possibility is to remove infeasible

solutions after mutation and replace them with the solutions having higher fitness value

70

in the old population (2002b) or complete the new population with a schedule heuristics.

In our approach, if an infeasible solution exists for future generation, we randomly select

new shift schedules from the initial population. The genetic algorithm approach for

dataset 1 is explained below.

Solution Encoding

In Dataset 1, the queuing system is stable (calculated from given data) and a maximum of

48 physician hours is available per day. Hence, we simply make decisions on shifts by

generating random shift schedule and evaluating its fitness function. The randomly

generated shift schedules will define how many servers we have on at each hour. The

fitness function will determine how well the capacity handled the demand or whether

there would be large queues. We have three shift durations of 8, 10 or 12 hours. Hence,

the maximum number of shift required would be simply the available number of

physician hours (48 hours) divided by the least shift duration (i.e., 8 hours). Hence we

require a maximum of 6 shifts.

As we have 15 preferences, each preference index in the preference matrix (Table 4.6) is

numbered from 0 to 14 row wise. For example, index 0 is a 7AM shift with shift duration

of 8 hours and index 14 is an 11PM shift with duration of 12 hours. A no schedule is

assigned the number 15.

Table 4.6: Shift index (Shift preference) matrix (Dataset 1)

Shift index

(preferences)

 Shift

duration

(hours)

Hour of the day 8 10 12

7:00 AM 0(6) 1(5) 2(3)
11:00 AM 3(6) 4(3) 5(4)
3:00 PM 6(6) 7(3) 8(1)
7:00 PM 9(4) 10(4) 11(2)

11:00 PM 12(2) 13(3) 14(3)
No schedule 15

71

Step 1: Initial Population

For the initial population, I first randomly generate 2000 shift schedules of size 6

(maximum number of shifts). For example, one shift schedule may be [0,3,4,5,14,15]

and an another shift sequence may be [4,15,4,9,10,11]. Then each of the 2000 randomly

generated shift schedule is evaluated to verify if there is at least one physician available

every hour and there is no overtime in the shift schedule (maximum of 48 physician

hours per day). If a randomly generated shift schedule has at least one physician every

hour and there is no overtime, this shift schedule is added to the initial population. This

process continues until a predetermined number of initial population is generated which

in our case is set to 500.

Step 2: Evaluation of the fitness function

It involves two steps as shown below:

1) Validity of the shift sequence:

 This is done to verify if there is at least one physician available every hour

and there is no overtime in the shift schedule (maximum of 48 physician

hours per day). If a randomly generated shift schedule has at least one

physician every hour and there is no overtime, this shift schedule is added

to the population.

2) Evaluation of Fitness Function:

 For every shift schedule in the population, its fitness function is calculated

based on 2 objectives 1) Maximize physician preference and 2) Minimize

the average patient wait time.

• Maximize physician preference: A penalty of (6- preference for that

particular shift) is imposed. For example, for a 7AM, 8 hour shift, the

penalty is 6 -6 = 0.

• Minimize the average patient wait time: A 2400 hour (100 days *

24 hours/day) discrete event simulation is implemented for each of the

shift schedules based on patient arrival rate and availability of

physicians per hour.

72

• Then the convex combination of weights (penalty) for each of the

above two objectives is used to evaluate the fitness function.

Step 3: Selection

The randomly generated shift schedules are sorted accordingly to the lowest fitness value.

The top 100 shift sequences are then selected for future generation.

Step 4: Crossover

• Elitism: The top 5 shift schedules from the selection step are always

added to the future generation.

• Parent Selection: From the selection pool of shift schedules, 2 parents are

randomly selected and two children of shift sequences are generated using

one-point crossover for the new generation.

• The crossover probability is set to 1.

• There is no mutation.

• If feasible schedules cannot be found, I randomly add feasible schedules to

the new generation until the population size of 100 is reached.

 Step 5: Terminating condition

Then step 2, 3 and 4 is repeated for a fixed number of generations (terminating

condition), which in our problem is set to 150.

The genetic algorithm flowchart for dataset 1 is shown in Figure 4.1 below:

73

Figure 4.1: Genetic Algorithm Flowchart (Dataset 1)

For Dataset 2, the queuing system is stable (calculated from given data) and maximum of

68 physician hours is available per day. Hence, the maximum number of shift required

would be simply the available physician hours (68 hours) divided by the least shift

duration (i.e., 8 hours). Hence we require a maximum of 9 shifts. As we have 70

preferences wherein each preference index in the preference matrix (Table 4.7) is

numbered from 0 to 69 row wise. A no schedule is assigned the index 70. Besides the

solution encoding, the genetic algorithm approach for dataset 2 is similar to that of

dataset 1. Due to the problem size, the genetic algorithm parameters such as population

size, number of generations etc were increased by a factor of 3 for dataset 2 as compared

to dataset 1. Also, please note that the genetic algorithm parameters such as population

size, terminating condition etc. were all set during pilot- testing.

Step 1: Generate initial population of 500 from feasible
random shift sequences.

Step 2: Evaluate the fitness function for each solution
using the objective function

Step 3: Generate 100 shift sequences for future
generation by maintaining elitism

Step 4: Crossover

Step 5: Repeat step 2 to step 5 until the terminating
condition (150 generations) is reached

Step 6: Print the best shift schedule

Step 0: Generate 2000 random shift sequences and
evaluate validity of each shift sequence

74

Table 4.7: Shift index (Shift preference) matrix (Dataset 2)

Shift

index(preference)

Shift duration (hours)

Hour of the day 8 9 10 11 12

7:00 AM 0(4) 1(6) 2(6) 3(3) 4(2)
8:00 AM 5(4) 6(6) 7(6) 8(3) 9(2)
9:00 AM 10(4) 11(6) 12(6) 13(4) 14(2)
10:00 AM 15(4) 16(6) 17(6) 18(4) 19(2)
11:00 AM 20(4) 21(6) 22(6) 23(4) 24(2)
12:00 PM 25(5) 26(5) 27(5) 28(3) 29(2)
1:00 PM 30(5) 31(6) 32(5) 33(4) 34(2)
2:00 PM 35(5) 36(6) 37(5) 38(4) 39(2)
3:00 PM 40(5) 41(5) 42(5) 43(4) 44(2)
4:00 PM 45(6) 46(5) 47(5) 48(3) 49(2)
5:00 PM 50(6) 51(5) 52(3) 53(3) 54(2)
6:00 PM 55(3)
9:00 PM 56(2) 57(3) 58(3) 59(3)

10:00 PM 60(3) 61(6) 62(6) 63(4) 64(2)
11:00 PM 65(3) 66(5) 67(5) 68(3) 69(2)

No schedule 70

4. Results, Conclusions, and Future Work

4.1 Results

The genetic algorithm for this study was coded in Java on a Windows7, Intel i5 2.4 Ghz,

4 GB RAM computer. The discrete event simulation module to evaluate average patient

wait time was also coded in Java and was integrated with the genetic algorithm to

generate shift schedules. The algorithm was run for convex combination of weights for

the objective functions. Due to its simplicity, a weighted sum approach was used to

calculate the objective function (Abdullah et al. (2006). The results for a convex

combination of weights ranging from 0 to 1 for dataset 1 and dataset 2 are shown in

Table 4.8 and Table 4.9 respectively.

75

Table 4.8: Weighted sum approach results (Dataset 1)

Case

Preference

Weight

Average

patient wait

time

Weight

GA

Time(sec)

Total

Preference

Violation

Average

patient wait

time(min)

Total physician

hours

Shift Schedule

1 1 0 340.964 3 37.94 44 [0, 6, 14, 15, 0, 6]

2 0.9 0.1 116.315 3 20.89 44 [14, 0, 3, 6, 15, 6]

3 0.8 0.2 116.923 3 20.89 44 [6, 15, 14, 6, 3, 0]

4 0.7 0.3 118.778 4 15.31 48 [6, 0, 6, 0, 12, 3]

5 0.6 0.4 118.633 4 15.31 48 [12, 3, 6, 0, 0, 6]

6 0.5 0.5 118.827 4 15.31 48 [3, 12, 6, 0, 0, 6]

7 0.4 0.6 119.131 5 15.31 48 [14, 0, 5, 15, 3, 6]

8 0.3 0.7 118.623 4 15.31 48 [3, 6, 12, 6, 0, 0]

9 0.2 0.8 119.079 8 13.88 48 [11, 0, 1, 15, 4, 6]

10 0.1 0.9 119.995 8 13.88 48 [1, 15, 11, 0, 4, 6]

11 0 1 119.41 8 13.88 48 [6, 1, 11, 15, 4, 0]

76

Table 4.9: Weighted sum approach results (Dataset 2)

Case

Preference

Weight

Average

patient

wait time

Weight

 GA

Time(sec)

Total

Preference

Violation

Average patient

wait time

(min)

Total

Physician

hours

Shift Schedule

1 1 0 1170.017 0 35.95 64 [21, 1, 70, 36, 45, 1, 22, 62, 70]

2 0.9 0.1 1101.017 0 35.68 65 [17, 2, 7, 45, 36, 70, 70, 61, 11]

3 0.8 0.2 1145.259 2 35.46 64 [45, 12, 70, 7, 30, 6, 22, 66, 70]

4 0.7 0.3 1092.167 2 34.39 66 [21, 2, 32, 70, 11, 61, 12, 70, 51]

5 0.6 0.4 1122.037 3 31.21 66 [1, 12, 70, 7, 30, 17, 42, 70, 66]

6 0.5 0.5 899.491 3 30.94 67 [2, 62, 1, 70, 70, 21, 32, 50, 13]

7 0.4 0.6 917.144 6 30.27 67 [21, 11, 70, 33, 36, 70, 68, 1, 26]

8 0.3 0.7 910.54 12 27.28 68 [69, 30, 2, 16, 70, 70, 24, 21, 55]

9 0.2 0.8 926.297 10 26.88 68 [68, 31, 27, 70, 46, 3, 0, 12, 70]

10 0.1 0.9 907.925 13 26.38 67 [45, 10, 19, 70, 70, 8, 27, 5, 67]

11 0 1 885.737 16 25.58 67 [5, 70, 16, 19, 68, 70, 23, 55, 5]

77

As you can see from Table 4.8 and Table 4.9 above, for dataset 1 and dataset 2, a zero

weight to the average patient wait time objective function results in an average patient

time of 37.94 minutes and 35.95 minutes respectively, and when no weight is assigned to

preferences of the physicians, the average patient weight time is 13.88 minutes and 25.58

minutes respectively. Also, as the preference weight decreases from 1 to 0 and average

patient wait time weight increases from 0 to 1, the total preference violation increases and

the average patient wait time decreases for the two datasets. The computational time for

the genetic algorithm is shown in the fourth column (GA Time (sec)). As you can see for

dataset 1 in Table 4.8, for the first 3 cases, wherein the physician preference has more

weight, the total physician hours used is only 44 hours as compared to the maximum of

48 hours available each day. Whereas for dataset 2 in Table 4.9, there are only two

instances (case #8 and case #9) wherein the maximum available physician hours of 68

hours is completely used.

The shift schedules for each convex combination of weights are shown in the last column

in Table 4.8 and Table 4.9. For example, for case #2 in dataset 1, the best shift schedule

is [14,0,3,6,15,6]. Using Table 4.6, the shift schedule is as follows:

• 14 � Start shift at 11PM for 12 hours

• 0 � Start shift at 7AM for 8 hours

• 3 � Start shift at 11AM for 8 hours

• 6 � Start shift at 3PM for 8 hours

• 15 � No schedule

• 6 � Start shift at 3PM for 8 hours

A similar interpretation can be done for all the cases in the two datasets. The plot of total

preference violation v/s. average patient wait time for all convex combinations of weight

for dataset 1 and dataset 2 is shown in Figure 4.2 and Figure 4.3 respectively.

78

Figure 4.2: Total preference violation v/s Average patient wait time (min)(Dataset 1)

Figure 4.3: Total preference violation v/s Average patient wait time (min)(Dataset 2)

79

For Case #2, Case #6 and Case #11 in dataset 1, the number of doctors available per hour

and the “number of patients of capacity” is shown in Table 4.10 and a plot showing how

the shift schedule handles the patient arrivals each hour in shown in Figure 4.4(A), Figure

4.4(B) and Figure 4.4(C) respectively. The “number of patients of capacity” shows the

amount of patients that can be served by physicians every hour for each shift schedule.

80

Table 4.10: Number of patients of capacity (Dataset 1)

 Case # 2 Case # 6 Case # 11

Hour of the

day

Average

number of

patient

arrivals/hr

Available

physicians/hr

Number of

patients of

capacity

Available

physicians/h

r

Number of

patients of

capacity

Available

physicians/hr

Number of

patients of

capacity

12:00 AM 3.690616 1 4 1 4 1 4

1:00 AM 2.911858 1 4 1 4 1 4

2:00 AM 2.293054 1 4 1 4 1 4

3:00 AM 2.017725 1 4 1 4 1 4

4:00 AM 1.831175 1 4 1 4 1 4

5:00 AM 1.856022 1 4 1 4 1 4

6:00 AM 2.251625 1 4 1 4 1 4

7:00 AM 3.803911 2 8 2 8 2 8

8:00 AM 5.446445 2 8 2 8 2 8

9:00 AM 7.066014 2 8 2 8 2 8

10:00 AM 7.939452 2 8 2 8 2 8

11:00 AM 8.493820 2 8 3 12 3 12

12:00 PM 8.178273 2 8 3 12 3 12

1:00 PM 7.794890 2 8 3 12 3 12

2:00 PM 7.792522 2 8 3 12 3 12

3:00 PM 8.053659 3 12 3 12 3 12

4:00 PM 7.983501 3 12 3 12 3 12

5:00 PM 7.969416 3 12 3 12 2 8

6:00 PM 8.282366 3 12 3 12 2 8

7:00 PM 7.664413 2 8 2 8 3 12

8:00 PM 7.238266 2 8 2 8 3 12

9:00 PM 6.578026 2 8 2 8 2 8

10:00 PM 5.526836 2 8 2 8 2 8

11:00 PM 4.336112 1 4 1 4 1 4

81

Figure 4.4(A): Number of patients of capacity plot (Case # 2, Dataset 1)

Figure 4.4(B): Number of patients of capacity plot (Case # 6, Dataset 1)

82

Figure 4.4(C): Number of patients of capacity plot (Case # 11, Dataset 1)

The columns in the plots above represent average patient arrival rate for every hour and

the lines represent the physicians’ capacity to serve the patients. As you can see from the

three plots above, when the weights are more towards reducing the patient average wait

time as compared to physicians’ preference (Figure 4.4(C)), the genetic algorithm

generates shift schedules that tend to add capacity during peak patient arrival hours as

compared to Case # 2 , wherein the physicians’ preference have more weight. Hence, the

addition of extra capacity results in less patient average wait time (Case # 11) as

compared to Case # 2.

Similarly, for Case #2, Case #6 and Case #11 in dataset 2, the number of doctors

available per hour and the “number of patients of capacity” is shown in Table 4.11 and a

plot showing how the shift schedule handles the patient arrivals each hour in shown in

Figure 4.5(A), Figure 4.5(B) and Figure 4.5(C) respectively. The plots for these cases can

be interpreted in the same manner in which they were interpreted for Dataset 1.

83

Table 4.11: Number of patients of capacity (Dataset 2)

 Case # 2 Case # 6 Case # 11

Hour of the

day

Average

number of

patient

arrivals/hr

Available

physicians/hr

Number of

patients of

capacity

Available

physicians/hr

Number of

patients of

capacity

Available

physicians/h

r

Number

of patients

of

capacity

12:00 AM 2.621795 1 1.82 2 3.64 2 3.64
1:00 AM 1.916667 1 1.82 1 1.82 2 3.64
2:00 AM 1.448718 1 1.82 1 1.82 1 1.82
3:00 AM 1.294872 1 1.82 1 1.82 1 1.82
4:00 AM 1.403846 1 1.82 1 1.82 1 1.82
5:00 AM 1.378205 1 1.82 1 1.82 1 1.82
6:00 AM 1.839744 1 1.82 1 1.82 1 1.82
7:00 AM 2.858974 1 1.82 3 5.46 1 1.82
8:00 AM 4.288462 2 3.64 2 3.64 3 5.46
9:00 AM 5.769231 3 5.45 3 5.46 3 5.46

10:00 AM 6.769231 4 7.27 3 5.46 4 7.28
11:00 AM 7.038462 4 7.27 4 7.28 5 9.1
12:00 PM 7.083333 4 7.27 4 7.28 5 9.1
1:00 PM 6.826923 4 7.27 5 9.10 5 9.1
2:00 PM 6.557692 5 9.09 5 9.10 5 9.1
3:00 PM 6.570513 5 9.09 5 9.10 5 9.1
4:00 PM 6.076923 6 10.91 4 7.28 3 5.46
5:00 PM 6.512821 5 9.09 4 7.28 3 5.46
6:00 PM 6.730769 3 5.45 4 7.28 4 7.28
7:00 PM 6.750000 3 5.45 4 7.28 3 5.46
8:00 PM 6.064103 2 3.64 2 3.64 3 5.46
9:00 PM 5.384615 2 3.64 2 3.64 3 5.46
10:00 PM 4.339744 3 5.45 3 5.46 1 1.82
11:00 PM 3.147436 2 3.64 2 3.64 2 3.64

84

Figure 4.5(A): Number of patients of capacity plot (Case # 2, Dataset 2)

Figure 4.5(B): Number of patients of capacity plot (Case # 6, Dataset 2)

85

Figure 4.5(C): Number of patients of capacity plot (Case # 11, Dataset 2)

4.2 Conclusions and Future Work

This paper provides a genetic algorithm approach to solve the staff scheduling problem.

As noted by Michalewicz (1995a), the results of a genetic algorithm are very problem

specific and the proposed genetic algorithm is also very specific to the problem. Also,

discrete event simulation was embedded in the genetic algorithm to evaluate the patient

average wait time. One of the main drawbacks of using weighted sum approach is that the

objective function is very sensitive to weights. Hence, in future, I would like to use an

alternate approach proposed by Hajela and Lin (1992), in which multiple solutions can be

obtained in a single run. Also, this problem only considers an overall physician schedule.

In future, I would like to modify my genetic algorithm in such a way that it can generate

schedules for every individual physician.

5. References

Aickelin, U., & Dowsland, K. (2004). An Indirect Genetic Algorithm for a Nurse

Scheduling Problem. Computers & Operations Research, 31(5),761-778.

Azzaro-Pantel, C., Bernal-Haro, L., Baudet, P., Domenech, S., & Pibouleau, L.,.(1998c).

86

A two-stage methodology for short-term batch plant scheduling: discrete-event

simulation and genetic algorithm, Computers & Chemical Engineering,

22(10), 1461-1481.

Brunner, J, & Edenharter. G.(2011), Long term staff scheduling of physicians with

different experience levels in hospitals using column generation, Health Care

Management Science, 14(2), 189-202.

Brusco, M., & Jacobs, L. (1993). A simulated annealing approach to the cyclic staff-

scheduling problem. Naval Research Logistics, 40(1), 69-84.

Burke, E.K., Cowling, P., De Causmaecker, P.D., & Berghe, G. V. (2001). A Memetic

Approach to the Nurse Rostering Problem. Applied Intelligence, 15(3), 199-214.

Burke, E.K., Causmaecker, P.D, & Berghe, G. V. (1998b). A Hybrid Tabu Search

Algorithm for the Nurse Rostering Problem. Paper presented at the Second Asia-

Pacific Conference on Simulated Evolution and Learning,187-194.

Burke, E.K., Curtois, T., Qu, R. & Berghe, G. V. (2009a). A Scatter Search Methodology

For The Nurse Rostering Problem. Journal of the Operational Research Society,

61, 1667-1679.

Cai, X., & Li, K. N. (2000a). A genetic algorithm for scheduling staff of mixed skills

under multi-criteria. European Journal of Operational Research, 125, 359-369.

Cordeau, J. F., Gendreau, M., Laporte, G., & Potvin, J.-Y. (2002b). A guide to vehicle

routing heuristics. Journal of the Operational Research Society, 53, 512-522.

Dean, J. S. (2008a). Staff Scheduling by a Genetic Algorithm with a Two-Dimensional

Chromosome Structure. Paper presented at the 7th Conference on the Practice and

Theory of Automated Timetabling, Montreal,Canada.

Dias, T. M., Ferber, D.F., Souza, C.C., & Moura, A. V. (2003b). Constructing nurse

schedules at large hospitals. International Transactions in Operational Research,

10(3), 245-265.

Downsland, K. A. (1998a). Nurse scheduling with tabu search and strategic oscillation.

European Journal of Operational Research, 393-407.

87

Ernst, A.T., Jiang, H., Krishnamoorthy, M., Owens, B., & Sier, D. (2004a). An

Annotated Bibliography of Personnel Scheduling and Rostering. Annals of

Operations Research, 127, 21-144.

Fukunaga, A.E., Fama, J., Andre, D., Matan, O., & Nourbakhsh, I. (2002a). Staff

Scheduling for Inbound Call Centers and Customer Contact Centers. Paper

presented at the Eighteenth National Conference on Artificial intelligence, 822-

829.

Gendreau, M. , Ferland, J. , Gendron, B. , Hail, N. , Jaumard, B. , Lapierre, S. , Pesant, S.

, & Soriano, P. (2007a). Physician scheduling in emergency rooms, Proceedings

of the 6th international conference on Practice and theory of automated

timetabling VI, , Brno, Czech Republic, 53-67.

Goldberg. (1989). Gentic Algorithms in Search, Optimization and Machine Learning.,

MA: Addison-Wesley.

Hajela, P. & Lin, Y. (1992). Genetic search strategies in multicriterion optimal design

Structural Optimization, 4(2), 99-107.

Inoue, T., Furuhashi, T., Maeda, H., & Takaba, M. (2003c). A Proposal of Combined

Method of Evolutionary Algorithm and Heuristics for Nurse Scheduling Support

System. IEEE Transactions on Industrial Electronics, 50(5), 833-838.

Jacobson, S.H., Hall, S.N., Swisher, J.R. (2006a). Discrete-Event Simulation of Health

Care Systems, International Series in Operations Research & Management

Science, 91, 211-252.

Jan, A., Yamamoto, M., & Ohuchi, A. (2000b). Evolutionary Algorithms for Nurse

Scheduling Problem. Paper presented at the Proceedings of the 2000 Congress on

Evolutionary Computation. , San Diego, California, USA,196-203.

Jun, J.B., Jacobson, S.H., Swisher, J.R. (1999a). Application of discrete-event simulation

in health care clinics: a survey. J Oper Res Soc 50, 109–123

Konak, A., Coit, D.W., & Smith, A.E., (2006). Multi-objective optimization using

genetic algorithms: A tutorial. Reliability Engineering and System Safety, 91,

992–1007.

Kumar, A., & Kapur, A. (1989a). Discrete Simulation Application - Scheduling Staff for

88

the Emergency Room, Winter Simulation Conference Proceedings, ed. E.A.

MacNair, K.J. Musselman, and P. Heidelberger, IEEE, Washington, DC, 1112-1120.

Laskowski, M., McLeod, R.D., Friesen, M.R., Podaima, B.W., & Alfa,

A.S. (2009c) Models of Emergency Departments for Reducing Patient Waiting

Times. PLoS ONE,4(7).

Mansour, N., & Easton, F. F. (1999). A distributed genetic algorithm for deterministic

and stochastic labor scheduling problems. European Journal of Operational

Research, 118, 505-523.

Michalewicz, Z. (1995a). A Survey of Constraint Handling Techniques in Evolutionary

Computation Methods. Paper presented at the 4th Annual Conference on

Evolutionary Programming,135-155.

Noon, C., Clay, A., & Crane, J. (2007). Determining Shift Schedules for 24-hour

Queuing Systems with Varying Arrival Rates.

Ohki, M.,Uneme, S. & Kawano, H. (2008b). Parallel Processing of Cooperative Genetic

Algorithm for Nurse Scheduling. Paper presented at the 4th International IEEE

Conference "Intelligent Systems",2,10-36 – 10-41.

Özcan, E. (2005). Memetic Algorithms for Nurse Rostering. Paper presented at the The

20th International Symposium on Computer and Information Sciences,482-492.

Paul, S.A., Reddy, M.C., & Deflitch, C.J.(2010), A Systematic Review of Simulation

Studies Investigating Emergency Department Overcrowding, Simulation, 86(8-9),

559-571.

Puente, J., Gómez, A., Fernández, I. & Priore, P. (2009b). Medical doctor rostering

problem in a hospital emergency department by means of genetic algorithms.

Computers & Industrial Engineering, 56(4), 1232-1242.

Rossetti, M.D., Trzcinski, G. F., & Syverud, S.A. (1999b). Emergency department

simulation and determination of optimal attending physician staffing schedules,

Proceedings of the 31st conference on Winter simulation: Simulation---a bridge to

the future, Phoenix, Arizona, United States, (2), 1532-1540

89

Tanomaru, J. (1995b). Staff scheduling by a genetic algorithm with heuristic operators.

Paper presented at the Proceedings of the IEEE Conference on Evolutionary

Computation, 1,456.

Weng,S., Wu, T., Mackulak,G.T., & William A. Verdin.(2012). A multi–tool integrated

methodology for distributed resource allocation in healthcare, International

Journal of Industrial and Systems Engineering,11(4),428-452.

Xiao, Junchao and Osterweil, Leon J. and Wang, Qing.(2010a). Dynamic scheduling of

emergency department resources, Proceedings of the 1st ACM International

Health Informatics Symposium, Arlington, VA, USA,590-599.

Yeh, J., & Lin, W.(2007b). Using simulation technique and genetic algorithm to improve

the quality care of a hospital emergency department, Expert Systems with

Applications, 32(4), 1073-1083.

90

CHAPTER V

CONCLUSION

91

1. Chapter Abstract

In this dissertation, genetic algorithm and ant colony optimization was applied to solve

combinatorial optimization problems in the field of logistics and healthcare staff

scheduling. In particular, two chapters focus on solving SDVRP using genetic algorithms

and ant colony optimization. Another chapter applied genetic algorithm to solve a real

world emergency department staff scheduling problem.

2. Chapter Highlights

The highlights of each chapter are as follows:

Chapter 2: Ant Colony Optimization for the Split Delivery Vehicle Routing Problem

• For the first time ever, Ant Colony Optimization was applied to the Split Delivery

Vehicle Routing Problem.

• The ACO algorithm found competitive solutions for two benchmark problem sets.

• In some instances, ACO found the best ever solution for the test problem.

• Candidate list size plays a key role in the first ever application of ACO to

SDVRP.

Chapter 3: A hybrid Genetic Algorithm approach to solve the Split Delivery vehicle

routing problem

• A hybrid genetic algorithm consisting of genetic algorithm, heuristics and ant

colony optimization was developed to solve the SDVRP.

• The hybrid genetic algorithm found competitive solutions for two benchmark

problem sets.

Chapter 4: A Genetic Algorithm approach to solve the physician scheduling

problem

• A genetic algorithm was developed to solve a real world physician schedule

problem.

92

• The problem was a multi objective optimization problem wherein the physicians’

shifts were scheduled based on their preferences of shift start time and duration

,no overtime and in patients’ point of view, reduce their average wait time.

• The average wait time for patients were calculated using a discrete event

simulation module and was part of the genetic algorithm.

3. Future Directions

The GA and ACO work shown in this dissertation for the SDVRP could be applied to

other VRP variants with some modification to account for additional constraints, likewise

additional study of the candidate list issues could be explored. Finally, using GA and

ACO in conjunction with an exact method (e.g., column generation) could be explored to

find both an integer feasible solution and a dual solution (to raise the lower bound) in

order to solve to optimality.

The GA procedure for the physician scheduling was specific to that problem; however, it

could be extended to schedule multiple physicians across multiple facilities (e.g., hospital

systems with more than one site). It could also be used in conjunction with scheduling

other resources (e.g., nurses and physicians), where the decisions is further convoluted by

having nurse and provider schedules that are dependent.

93

VITA

Gautham P. Rajappa was born in Puttur, Karnataka, India. He completed his high school

from K.V.NAL, Bangalore in 2000. In 2004, he got his Bachelor of Engineering (B.E.)

degree in Mechanical Engineering from the National Institute of Engineering (NIE),

Mysore, India (affiliated to VTU, Belgaum, India). He then got his M.S. from University

of Wisconsin-Madison in December 2007 and Ph.D. from University of Tennessee,

Knoxville in August 2012.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	8-2012

	Solving Combinatorial Optimization Problems Using Genetic Algorithms and Ant Colony Optimization
	Gautham Puttur Rajappa
	Recommended Citation

	Microsoft Word - 306229-text.native.1343758942.docx

