
The General Combinatorial Optimisation
Problem: Towards Automated Algorithm

Design
Rong Qu, School of Computer Science, University of Nottingham, Nottingham, UK

Graham Kendall, University of Nottingham, Nottingham, UK; University of Nottingham
Malaysia, Selangor, Malaysia

Nelishia Pillay, University of Pretoria, South Africa

Abstract—This paper defines a new combinatorial
optimisation problem, namely General Combinato-
rial Optimisation Problem (GCOP), whose decision
variables are a set of parametric algorithmic compo-
nents, i.e. algorithm design decisions. The solutions of
GCOP, i.e. compositions of algorithmic components,
thus represent different generic search algorithms.
The objective of GCOP is to find the optimal algo-
rithmic compositions for solving the given optimisa-
tion problems. Solving the GCOP is thus equivalent
to automatically designing the best algorithms for
optimisation problems. Despite recent advances, the
evolutionary computation and optimisation research
communities are yet to embrace formal standards that
underpin automated algorithm design. In this position
paper, we establish GCOP as a new standard to
define different search algorithms within one unified
model. We demonstrate the new GCOP model to
standardise various search algorithms as well as
selection hyper-heuristics. A taxonomy is defined to
distinguish several widely used terminologies in auto-
mated algorithm design, namely automated algorithm
composition, configuration and selection. We would
like to encourage a new line of exciting research direc-
tions addressing several challenging research issues
including algorithm generality, algorithm reusability,
and automated algorithm design.

I. INTRODUCTION

Along with advances in optimisation research, a
rich set of Combinatorial Optimisation Problems
(COPs) has been established. COPs represent a
subset of operational research [1]. They consist
of, subject to given constraints, assigning discrete
domain values to a finite set of decision variables,
so as to optimise an objective function which
evaluates the solutions. The well-established
benchmark COPs (e.g. the OR Library [2] at
http://people.brunel.ac.uk/∼mastjjb/jeb/info.html)
have promoted the design of effective algorithms
in evolutionary computation and computational
intelligence. Problems addressed include job
shop scheduling, knapsack problem, personnel

Corresponding author: Rong Qu (rong.qu@nottingham.ac.uk)

scheduling, timetabling and traveling salesman
problem, as well as many others and their
extensions with various real-world constraints and
features.

In optimisation research, computational intelligence
and evolutionary computation are two of the recent
advances in automated algorithm design. That is, to
automatically design search algorithms or solvers
which are able to solve COPs or problem instances
without extensive domain knowledge from human
involvement. In the scientific literature, several
terminologies have emerged in different contexts,
sometimes being used interchangeably without a
clear definition.

In this paper we formally define a taxonomy of
automated algorithm design as follows.

• Automated algorithm configuration: to auto-
matically configure the parameters of pre-
defined target algorithm(s) upon a given set
of training problem instances.

• Automated algorithm selection: to automati-
cally select from a portfolio of chosen algo-
rithms with their associated parameters upon
a set of training problem instances.

• Automated algorithm composition: to
automatically generate general algorithms by
composing heuristics or components of some
algorithms to solve problems.

Automated algorithm configuration has been well
studied. The most studied algorithms include
SAT solvers [3], [4], multi-objective ant colony
optimisation [5], [6] and stochastic local search [7]
for flow shop scheduling problems and traveling
salesman problem, and mixed integer programming
solvers for traveling salesman problem and vehicle
routing problems with time windows [8]. The
automated configuration of parameters is usually
conducted offline upon a set of training instances.
A number of frameworks have been built to
search the configuration space of parameters for

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@Nottingham

https://core.ac.uk/display/288430219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the target algorithms, achieving highly promising
results which are superior to manually configured
algorithms. These include ParamILS [3] which
uses iterated local search, F-Race [5] which uses
a racing mechanism, and the extended framework
irace [9].

In automated algorithm selection, the portfolio
of algorithms includes different parametric SAT
solvers [10] and evolutionary algorithms [11],
[12]. One important research issue concerns
the clustering of training instances according to
their features, thus to select the best algorithms
or solvers for unseen test instances of similar
clusters [10]. Frameworks developed include
Population-based Algorithm Portfolios (PAP) [11]
and Hydra [13] (based on extended ParamILS) for
optimisation functions [11], Boolean satisfiability
problem and traveling salesman problems [10].

In automated algorithm composition, a set of
components or heuristics are automatically
combined online to generate new generic
algorithms. Some research concerns components
for a type of target algorithms, e.g. evolutionary
algorithms [14], [15]. Another line of research
on hyper-heuristics [16] decides at a higher level
which low-level heuristics to apply [17]. By
searching the given low-level heuristics, multiple
COPs can be solved online with the same or
adaptive heuristic compositions. Frameworks
developed include HyFlex [18] and EvoHyp [19],
supporting automatic composition of general
algorithms across multiple COPs [16].

The fundamental difference between the three
lines of research in automated algorithm
design is on the decision spaces. Automated
algorithm configuration concerns a decision
space of parameters within a template of target
algorithm(s), rather than freely composing the
algorithm components themselves. The resulting
algorithms, which are likely variants of the same
target algorithms, are best configured for solving
the training and unseen testing instances offline.
Automated algorithm selection explores a decision
space with a family of given target algorithms,
which are grouped against some features of training
instances for solving similar testing instances
offline. Automated algorithm composition explores
a decision space of components or heuristics to
flexibly compose or combine them. The resulting
algorithms generated are new and generic for
solving different unseen COPs.

The three lines of research are different ways
automating algorithm design. Automated
configuration and selection take a top-down

approach to configure within given algorithm
templates and select from a portfolio of target
algorithms, respectively, resulting in variants of
the same family of target algorithms. Automated
algorithm composition takes a bottom-up approach,
working with algorithm components, to flexibly
compose and generate new algorithms.

In current automated algorithm design research,
however, still requires some human expertise and
empirical studies to manually select parameters,
target algorithms/solvers, or heuristics/components.
Challenges remain to gain the insights for effective
algorithms to underpin automated algorithm
design [20]. Such advances require models and
standards to conduct systematic investigations
within coherent frameworks.

In this paper, a new model, namely General
Combinatorial Optimisation Problem (GCOP),
is defined to model the problem of algorithm
design itself as a COP, solutions of which are new
algorithms automatically generated to solve cross-
domain COPs. By optimising the compositions of
basic algorithmic components as decision variables
in GCOP, new generic search algorithms can be
automatically generated.

The major aim of GCOP is to establish a standard
in algorithm design to model various search
algorithms in one framework with the most basic
algorithmic components. It is not our intention to
model all existing algorithms with GCOP. Other
common and user-defined algorithmic components
could be added to GCOP to design new algorithms
addressing COPs as well as other optimisation
problems. To our knowledge, there is no existing
standard in the literature which formally models
the problem of designing search algorithms.
Further studies can potentially provide additiuonal
insights on how various algorithms work with
the new standard, and thus underpin automated
algorithm design.

In the rest of the paper, Section II presents the
formal definition and search spaces of the new
GCOP model. With the most basic algorithmic
components, Section III demonstrates the applica-
tion of GCOP as a standard to define various se-
lection hyper-heuristics in the literature for solving
two COPs. Section IV discusses research issues
and future directions, followed by conclusions in
Section V.

II. THE GENERAL COMBINATORIAL
OPTIMISATION PROBLEM

A. Definition of the GCOP

Definition 1: The General Combinatorial
Optimisation Problem (GCOP) is a combinatorial
optimisation problem with decision variables taking
domain values from a finite set A of algorithmic
components a ∈ A. The solution space of GCOP,
C, consists of algorithmic compositions c upon
the given a. The objective function of GCOP,
F (c)→ R, c ∈ C, measures the performance of c
for solving p, the optimisation problem(s) under
consideration.

In problem p, the decision variables take values
from a finite set of problem-specific values.
The solution space S of p consists of the direct
solutions s, each obtained by a corresponding
algorithmic composition c, i.e. c → s. The
objective function f(s) → R evaluates s ∈ S
for p. In this paper we consider COPs as p. This
could be extended to other optimisation problems
as discussed in Section IV.

Let M be a mapping function M : f(s) → F (c).
The objective of GCOP is to search for the optimal
c∗ ∈ C which produces the optimal s∗ ∈ S for p,
so that F (c∗) is optimised, as defined in Objective
(1). Without loss of generality, we assume p is a
minimisation problem in this paper.

F (c∗|c∗ → s∗)← f(s∗) = min(f(s)). (1)

The following terminologies are defined in GCOP.

• Problem GCOP: a COP, whose decision vari-
ables take discrete values from a finite domain
A of algorithmic components a, a ∈ A.

• Domain A for decision variables in GCOP: al-
gorithmic components a ∈ A, including basic
operators with heuristics, parameter settings,
and acceptance criteria, etc. A can be extended
with user-defined components. Examples of
the most common basic a in the literature are
defined in Table I.

• Solution space C of GCOP: consists of solu-
tions c for GCOP, i.e. algorithmic composi-
tions c upon a ∈ A. Each c is used to produce
a solution s for problem p, i.e. c→ s.

• Objective function F for GCOP: F (c) → R
measures GCOP solutions c ∈ C. The objec-
tive is to find the optimal c∗ which produces
optimal s∗ for p, i.e. c∗ → s∗.

• Problem p: the optimisation problem(s) under
consideration, whose decision variables are
problem-specific.

• Solution space S of p: consists of solutions s
for p.

• Objective function f for p: f(s) → R evalu-
ates solutions s for p, s ∈ S are obtained by
using algorithmic compositions c ∈ C.

• Mapping function M : F (c) ← f(s): maps
each algorithmic composition c for GCOP
to a solution s for p, i.e. c → s, thus the
generation of s reflects the performance of c.

In [20], it has been suggested that the optimisa-
tion research community should adopt a certain
standard. The GCOP provides such a standard
to define the design of search algorithms with a
unified model. In the current research on automated
algorithm composition, the search space is upon
manually defined heuristics or components in a spe-
cific type of algorithm(s). For example, in hyper-
heuristics [16], the low-level heuristics are often
manually determined, and fixed with pre-defined
parameter values. GCOP significantly extends the
search space to concern the most basic elementary
algorithmic components, thus requires no human
involvement. Methods finding the optimal compo-
sition of a for GCOP thus automatically design new
generic search algorithms.

B. Decision Variables of GCOP

In Table I, we establish GCOP1.0 with a domain
A1.0 of a set of most basic and elementary
algorithmic components a. The underlying idea of
the GCOP standard is to modularise the existing
widely used basic components a ∈ A1.0 which
are grouped into two categories, namely operators
A1.0_o and acceptance criteria A1.0_a, each with
their associated heuristic and parametric settings.
This categorisation has been widely used in the
literature, although quite often manually "hard-
wired" into integrated or compound operators or
heuristics. Note that acceptance criteria a ∈ A1.0_a
are general for any problems, and are applicable
with any a ∈ A1.0_o. Different heuristic strategies
and parameter settings can be associated with
a ∈ A1.0_o to define different components.

With the sets of basic generic components A1.0_o
and A1.0_a, GCOP proposes a new standard which
defines a large number of different algorithms
in one common model. For example, Tabu
Search variants can be defined by implementing
oxchg(k,m,h1tw) associated with an acceptance
criteria atabu(n,l), where l (tabu length), n
(number of neighbors sampled), and k,m (number
of decision variables selected) could be set as fixed
or variable values. Associated with agd(n,t,r) and
aoi(n), variants of Great Deluge and greedy search
can instead be defined, respectively. Section III
demonstrates that with the basic A1.0 and some
problem-specific components Ap, most selection
hyper-heuristics for two widely studied COPs in

Table I
DOMAIN a ∈ A1.0 OF DECISION VARIABLES FOR GCOP1.0

Domain a with heuristics h1, h2
A1.0_o h1tw/h1tb (h1rw/h1rb): tournament

(roulette wheel) selection of the
worst/best of u randomly chosen
decision variables si,j ∈ s, u ∈
{0...s};
h2tw/h2tb (h2rw/h2rb): tournament
(roulette wheel) selection of the
worst/best two of v randomly chosen
solutions s ∈ P , v ∈ {0...|P |}. P :
an archive of s. h1/h2: random
strategies if u, v = 0.

oasg(k,h1w ,h1b) Use h1tb or h1rb to assign values to
k decision variables selected by h1tw
or h1rw .

orm(k,h1w) Remove values of k decision
variables selected by h1tw or h1rw .

ochg(k,h1w ,h1b) Use h1tb or h1rb to change the values
of k decision variables selected by
h1tw or h1rw .

oxchg(k,m,h1w) Swap k and m decision variables
chosen by h1tw or h1rw .
oinxchg /obwxchg : decision variables are
from the same/different routes.

oins(k,h1w ,h1b) Insert k decision variables chosen
by h1tw or h1rw to other positions
selected by h1tb or h1rb . oinins/obwins:
si,j are from the same/different i.

orr(k,h1w ,h1b) Use h1tb or h1rb to reassign values
of k decision variables selected by
h1tw or h1rw .

oxo(k,m,h2b) Swap k and m randomly chosen
decision variables between two
solutions in P chosen by h2tb/h2rb .

Domain a with parameters n, t, r. neighbor
A1.0_a s′ of s is produced by o ∈ A1.0_o.

n: number neighbors sampled.
aall Accept all, Naïve accept: s′ is always

accepted, i.e. random strategy.
aoi(n) Only improving: better s′ is accepted.
aie(n) Improve and equal: a better or equal

s′ is accepted.
alate(q) Late acceptance: a s′ better than the

last q visited s is accepted.
atabu(n,l) Tabu: the best s′ not in a tabu list of

length l is accepted.
agd(n,t,r) Great Deluge: a worse s′ is accepted

by a probability p = e−|f(s
′)−f(s)|.

Better s′ is always accepted.
amc(n,t,r) Monte Carlo: a worse s′ is accepted

by a threshold t, t is decreased by r.
Better s′ is always accepted.

asa(n,t,r) Simulated annealing: a worse s′ is
accepted by p = e−|f(s

′)−f(s)|/t,
t is decreased by r. Better s′ is
always accepted.

the literature can be defined with the GCOP model.

With GCOP, the newly generated generic
algorithms are likely to be highly different
from those manually designed algorithms, which
are likely subsets of GCOP solutions c ∈ C.
These newly generated potentially introduce new
coherent knowledge in algorithm design with the
GCOP model.

The underlying idea of GCOP is to decompose
algorithms into elementary algorithmic
components, which can then be composed
and optimised in a much more flexible way, and
thus design new generic algorithms automatically.
This is different from automated selection from
a portfolio of target algorithms and automated
configuration of target algorithm(s), where the
resulting new algorithms usually belong to
the same family or are variants of the target
algorithm(s). The decomposition of algorithms
into the most basic components allows the most
flexibility and provides a much larger scope to
design new generic algorithms.

The basic a when composed and configured in
different ways can define either new or existing
search algorithms. GCOP1.0 can be seen as a
problem instance of the GCOP model, with a small
domain of only the basic a. It is not possible,
also not intended, to model in GCOP exclusively
all algorithmic components in the literature. We
aim to establish the GCOP standard step by
step to explore new effective algorithms that are
automatically designed.

Other GCOP instances can be built with extended A
consisting of more general or user-defined problem-
specific Ap to design new algorithms addressing
new COPs. With extended A, the solution space
of GCOP increases exponentially, leading to
many more new potentially effective algorithms
which have been designed automatically. Note that
problem-specific features and solution structures
are left with users who are familiar with p. The
automated algorithm design is handled at a higher
level by solving GCOP.

In [21], a unified mathematical formulation for
hyper-heuristics is proposed as a high-level con-
troller. Elements of heuristic design compete for
resources within a shared repository workspace to
configure better heuristics. Heuristics interoperate
based on information shared from other heuristics.
GCOP presents a more general and coherent model
and standard with which a set of algorithmic com-
ponents as the domain of a COP is formally defined
and automatically composed.

C. Objective Function of GCOP

With GCOP, new algorithms generated
automatically may cater for multiple p with
improved level of generality. The newly evolved
algorithms c may also reflect a certain level
of reusability for other p, saving algorithm
development costs.

In GCOP, Objective (1) defines the performance
measure F (c) on c for solving p. When addressing
multiple p, GCOP can be seen as a multi-objective
optimisation problem where c∗ is automatically
composed to simultaneously optimise the objective
function fi for each pi, i = 1, ..., I , I is the
number of p under consideration. Note that the
same c∗ is used to solve all p, rather than configured
individually or manually to solve each p, respec-
tively, i.e. each p acts as a specific problem instance
for c∗. Objective (2) can be defined to measure
performance Fm(c) of c for solving multiple p.

Fm(c∗)← min{f1, f2, ..., fI}T . (2)

In Objective (1) and Objective (2), F could be
the same as f , which reflects direct evaluation of
s ∈ S for p. F (c) could also be different measures
of c producing the corresponding s. For example,
in hyper-heuristics, rewards or aggregated scores
have been used to assess the performance of low-
level heuristics during the search. Such rewards,
rather than direct solution evaluation f(s), can be
used in F (c) to provide informed search for GCOP.

In addition to solution quality as the evaluation
Fm(c) in Objective (2), further extensions and
variants could be defined to evaluate different as-
pects of the automatically designed c, details dis-
cussed in Section IV on future research directions.

D. Search Spaces of GCOP

The search space C for GCOP presents some
interesting and unique characteristics compared to
that of S for p, see Table II. They can be defined
based on the following three factors:

• Solution encoding: represents all solutions
based on some finite alphabet for the decision
variables. The encoding of c ∈ C is highly
different from that of s ∈ S, leading to
different upper bounds of C for GCOP and
S for p.

• Successor operator: modifies values of the
decision variables thus defines connections of
the encoded solutions in the search space. The
successor operators in C and S operate upon
c and s of different encodings.

• Objective function: evaluates the solutions. In
GCOP, F (c) assesses the performance of c,
which produces s ∈ S. F (c) thus depends on
f (s), however, may potentially be different
from f (s), see the examples in Section III.

In solving GCOP, assume c for the decision
variables are encoded as one-dimensional strings
of a ∈ A in Table I. With the simple encoding
c for GCOP, it is possible and highly useful to
analyse the landscape of C, whose spatial structure

Table II
CHARACTERISTICS OF SEARCH SPACES: GCOP VS. p

C of GCOP S of p
Encoding Compositions c Direct solutions s

upon a ∈ A for p
Operator Any methods Search operators

combining a on s ∈ S
Upper Depends on |A| Depends on the
Bound and parameters no. of variables

of a in s
Objective Performance of c Quality measure
Function that produces s of s for p

can be measured using a simple distance metric
D on c. It is shown to be very difficult, if not
impossible, to analyse the landscape of S for many
complex p with d-dimensional solution encodings,
d ≥ 2, see the example COPs in Section III.

In [22], the concept of two search spaces, namely
high-level heuristic space and low-level solution
space in hyper-heuristics, has been introduced into
the scientific literature of search algorithms. Fitness
landscape analysis on local optimal solutions in the
heuristic space revealed interesting findings [22],
[23]. The search space of selection constructive
hyper-heuristics has also been analysed in [24] to
reveal common landscape features of this type of
algorithms.

III. EXAMPLE METHODS FOR GCOP

With the GCOP model, a large number of
algorithms could be defined with a subset of
a ∈ A1.0 in Table I. Furthermore, GCOP provides
a standard towards automated algorithm design.
With a ∈ A, different high-level methods, e.g.
local search, tools, rules or models could be used
to compose a flexibly and design new algorithms
automatically in a bottom-up way. Hyper-heuristics
can be seen as one type of GCOP implementation
which combine low-level heuristics, which are
defined and integrated based on a subset of basic
a ∈ A1.0 in Table I, to design new algorithms
automatically. That is, the low-level heuristics are
"hard-wired" with the basic a thus requiring a
certain level of human knowledge.

This section presents how GCOP with a ∈ A1.0 in
Table I defines various selection hyper-heuristics.
Two representative COPs, namely the Vehicle Rout-
ing Problem (VRP) [25] in Section III-A, and Nurse
Rostering Problems (NRP) [26] in Section III-B
are selected as the p in GCOP. The aim is not to
provide an exclusive review on all existing selection
hyper-heuristics, but to demonstrate the modelling
of various search algorithms in one GCOP standard
towards automated algorithm design.

Table III
OPERATORS FOR VRP MODELED AS a ∈ A1.0 IN GCOP

a ∈ A1.0 in GCOP for VRP
h1w , h1b: selection criteria/heuristics

oins(k,h1w ,h1b) greedy, insertion [30]: insert k nodes
chosen by h1w to a route chosen by
h1b.

ochg(k,h1w ,h1b) shift [31]: use h1b to change k nodes
selected by h1w .

oxchg(k,m,h1w) k-opt [31], interchange, Van Breedam
[32]: swap k and m nodes selected
by h1w .

oxo(k,m,h2b) crossover: exchange sub-routes of k
and m nodes between two solutions
chosen by h2b.

orr(k,h1w ,h1b) destroy and repair: remove k nodes
chosen by h1w , and re-assign them
using h1b.

A. GCOP Methods for Vehicle Routing Problems

As one of the most studied COPs, VRP and its
variants have been used to model a range of
real-world applications, e.g. transport logistics
in supply chain with different constraints. The
basic VRP involves constructing a set of closed
routes from and to a depot, each route delivering
the required demands to an ordered list of
customers by a vehicle of limited capacity. The
objective is to minimise the total costs (e.g.
distance and/or vehicles), whilst satisfying the
capacity constraints. Evolutionary algorithms and
computational intelligence techniques have been
extensively studied for VRP variants with complex
constraints [25], [27], [28], [29].

In GCOP, c upon the configured a operates on
s for VRP. In the most commonly used solution
encoding in the VRP literature, customers or tasks
are modeled as nodes (i.e. decision variables si,j
for p) in a directed routing network. A large
number of operators in VRP algorithms can be
modeled using the basic generic a ∈ A1.0, as
shown in Table III. For example, swap, interchange
or k-opt) can be defined by oinxchg(k,m,h1w) or
obwxchg(k,m,h1w) in Table I to swap values between
k and m decision variables within the same route
or between different routes, respectively.

In Table IV, various selection hyper-heuristics
can be defined using the GCOP standard with
subsets of a ∈ A1.0 in Table III for different
p, e.g. capacitated VRP (CVRP), distance based
VRP (DbVRP), dynamic VRP (DVRP), open VRP
(OVRP), and VRP with time windows (VRPTW).
Some frameworks, e.g. HyFlex [33], POEMS [34]
and ALNS [35], have been adopted to develop the
hyper-heuristics, i.e. GCOP composition methods.
A number of problem-specific components (e.g.
saving, sweep, λ-opt, 2-opt* and GENI) in the
VRP literature can be defined as a plug-in Avrp in

Table IV
SELECTION HYPER-HEURISTICS DEFINED AS GCOP

METHODS FOR VRP.

A1.0 GCOP methods, F , p
orr(k,h1rw ,h1rb) Adaptive large neighborhood search
asa(n,t,r) [36]. F : score of o. p: VRP variants.
oasg(1) Evolutionary approach [32], h1:
oins(k,h1w ,h1b) ordering heuristics [31].
obwxchg(k,m,h1w) F = f (s). p: DVRP
oasg(1,h1w ,h1b) Coalition-based metaheuristic [37]
orr(k,h1rw ,h1rb) with learning mechanisms.
obwins(1,h1w ,h1b) F : credit/reward from learning.
obwxchg(1,1,h1w) p: DbVRP, CVRP
obwins(2,h1w ,h1b)
obwxchg(2,2,h1w)
oins(k,h1w ,h1b) Evolutionary-based search [38] in
oasg(1,h1w ,h1b) POEMS, h1: ordering heuristics.
oxchg(k,m,h1w) F = f (s). p: CVRP
oxchg(k,m,h1w ,h1b) Classifier trained by apprenticeship
orr(k,h1rw ,h1rb) learning [39] in HyFlex. Various
oins(k,h1w ,h1b) h1 used with o.
ochg(1,h1w ,h1b) F : change of f (s). p: VRPTW
oxo(k,m,h2b)
aoi(n)
amc(n) Multi-armed-bandit mechanism
ochg(2,h1w) [40], h1: random selection.
oinxchg(1,1,h1w) F : accumulated reward for o.
obwxchg(1,1,h1w) p: VRPTW
amc(n)
oinxchg(1,1,h1w) Cooperation coevolution approach
obwins(1,h1w ,h1b) [41], h1; greedy strategy.
obwxchg(1,1,h1w) F = f (s). p: real VRP
asa(n,t,r)
oxchg(k,m,h1w ,h1b) Adaptive iterated local search [42]
orr(k,h1rw ,h1rb) in HyFlex.
oins(k,h1w ,h1b) F : performance score of o.
ochg(1,h1w ,h1b) p: VRPTW
oxo(k,m,h2b)
aoi(n)
oxchg(k,m,h1w ,h1b) Time delay neural network classifier
oins(k,h1w ,h1b) [43] in HyFlex.
ochg(1,h1w ,h1b) F : performance of o. p: OVRP
orr(k,h1rw ,h1rb)
oxo(k,m,h2b)
aall
oxchg(k,m,h1w ,h1b) Iterated local search with dynamic
oins(k,h1w ,h1b) multi-armed bandits [44] in HyFlex.
ochg(1,h1w ,h1b) h1: location/time based heuristics.
aall oxo(k,m,h2b) F : extreme value credit assignment

to o. p: VRPTW
VRP a ∈ Avrp VRP a in GCOP methods
λ-opt [45] Exchange λ edges in a route [32].
sweep [38] Cluster nodes from the depot, each
[46], [47] solved as a TSP to form one route

[32], [37].
2-opt∗ [48] obwxchg(1,h1w) [40], [42], [43], [44]
saving [31] Merge two routes into one based on

saved costs [32], [38], [40], [44]
GENI obwins(1,h1w ,h1b) followed by a re-

optimisation [38], [39], [42], [44].

Table IV in the extended GCOP.

In Table IV, the GCOP composition methods in
selection hyper-heuristics for VRP range from
various search methods to classifiers trained using
machine learning. Of particular interest is the
research on c for different COPs developed in the

HyFlex framework with a set of built-in low-level
heuristics. With the consistent GCOP standard,
further investigations on c composed more flexibly
with the automatically selected a ∈ A1.0 could gain
useful insights on the effectiveness of complicated
as well as simple c for various COPs.

In Table IV, in addition to using the direct
evaluation on s for p, i.e. f (s), F (c) for GCOP has
also used various assessment metrics to evaluate
the effectiveness of a in c. Instead of assessing
the final solution, such measurements reflect the
short-term performance of a in c during problem
solving, thus providing more informed decision
making composing a into the generated algorithm
c.

Some of the components in Table IV can be seen
as compound operators, integrating more than one
a in Table I. For example, oxchg can be seen
as applying oasg twice, and orr can be seen as
applying orm followed by oasg . A large number
of heuristics h1 and h2 have been used in the
literature. For example, in [36], seven different
removal criteria have been used to remove requests
(nodes) from the routes using different measures
(e.g. time-oriented, history-based, cluster, worst,
and related removals). Two insertion criteria (i.e.
greedy and regret) are also used to re-assign
requests back to routes.

In the literature, some decisions of algorithm design
(e.g. the acceptance criteria A1.0a , or the number
of n neighbors explored) are not always provided
or take some default settings. This leads to some
ambiguity in reproducing the published algorithms.
With A1.0 defined with consistent parametric and
heuristic settings within the GCOP standard, these
details can be clearly defined with a, thus support-
ing consistent research in the literature.

B. GCOP Methods for Nurse Rostering Problems

The NRP has received extensive research attention
in the last five decades [26] due to the high
demands of quality healthcare, limited resources,
and various legislation around the world. The
problem consists of assigning a set of nurses
of different skills to a set of different shifts
on each day of a scheduling period. A set of
hard constraints must be satisfied, including the
legislation (e.g. maximum consecutive shifts)
and coverage (i.e. all demands must be covered).
The objective is to minimise the violations of
soft constraints, e.g. personal preferences, free
weekend, and preferred shift patterns. Algorithms
investigated include exact methods, evolutionary
algorithms and hyper-heuristics, and many more

Table V
LOW-LEVEL HEURISTICS IN HYPER-HEURISTICS FOR NRP

MODELED AS BASIC a ∈ A1.0 IN GCOP

a ∈ A1.0 a in GCOP for solving NRP
h1w: selection criteria such as the
cost of constraint violations, shift type
balance, etc.

ochg(k,h1w ,h1b) change shift: use h1b to change the
shift type of k nurses chosen by h1w .

obwxchg(k, k,h1w) swap shifts: swap k shifts between
two nurses chosen by h1w .

orr(k,h1w ,h1b) ruin and recreate: use h1b to reassign
all k shifts of a set of nurses chosen
by h1w .

[26].

With the GCOP standard, most of the low-level
heuristics in hyper-heuristics and components in
other algorithms in the NRP literature can be
modelled as a ∈ A1.0 in Table V. They all operate
on shifts assigned to selected nurses working on
particular days (i.e. decision variables in p). For
example, obwxchg(k, k, h1w) swaps k shifts of two
nurses selected by h1w. If shifts of one of the
nurses are empty (no shift assigned), it defines the
move shift operator in the NRP literature.

The GCOP composition methods in Table VI
employed various local search algorithms and
different techniques for NRP. As for VRP, F in
GCOP for NRP measures either the quality of the
resulting s or the performance of a. Compared
to VRP, there are not many problem-specific a in
NRP, i.e. most of the a in Table V are in A1.0.
Also, various acceptance criteria have been studied
for NRP, which is not the case for VRP. Note
that most widely used acceptance criteria in A1.0

are not problem-specific, and can be used across
different COPs.

Only three benchmark datasets (i.e. the INRC2010
competition [56], Nottingham and UK [55]
datasets) have been widely tested in NRP, the first
two with extensive NRP variants. An interesting
study on INRC2010 [52] focuses on choosing a
compact set of low-level heuristics. The methods
developed showed to be highly effective on the
benchmark as well as two real-world scheduling
problems. Such analysis can also be conducted
automatically with the GCOP model. In [22], it
is found that simple configuration methods work
as effective as complicated algorithms on effective
low-level heuristics. Such studies provide useful
insights on a ∈ A1.0 for further research in GCOP.

In this paper, we define the most basic a ∈ A1.0

across COPs, aiming to establish the fundamentals
of the GCOP standard. More advanced research

Table VI
SELECTION HYPER-HEURISTICS DEFINED AS GCOP

METHODS FOR NRP.

A1.0 GCOP methods, F , p
ochg(1,h1w ,h1b) Choice function [49]. F : score of
obwxchg(1,1,h1w) o. p: UK dataset
aoi(1)
ochg(1,h1w ,h1b) Tabu search [50]. F = f (s)
obwxchg(1,1,h1w) measures the feasibility and
aoi(1) aall balanced shifts. p: UK dataset
ochg(1,h1w ,h1b) Simulated annealing [51].
obwxchg(1,1,h1w) F : measures constraint violations.
aall aoi(1) p: UK dataset
obwxchg(1,1,h1w) Random, choice function,
agd(n) aoi(n) dynamic strategy [52]. F : scores
aie(n) of o. p: INRC2010
orr(k,h1w ,h1b) aoi(n) Adaptive dynamic method [53].
asa(n) alate(n) Various heuristics with o.
obwxchg(k,m,h1w) F : performance metric.
aie(n) aall agd(n) p: INRC2010 dataset
orr(k,h1w ,h1b) aall Iterated local search within a four-
obwxchg(k,m,h1w ,h1b) stage approach based on
oins(k,h1w ,h1b) tensor analysis [54].
ochg(1,h1w ,h1b) F = f (s). p: Nottingham dataset
oxo(k,m,h2b) aie(n)
NRP a ∈ Anrp NRP a in GCOP methods
o upon pre-defined Bayesian network [55] learns to
shift patterns for select a set of good shift patterns
specific p for p. p: UK dataset

will be conducted as discussed in Section IV,
and also strongly encouraged from the research
communities, to further enhance the GCOP stan-
dard towards automated algorithm design. Follow-
ing the recommended good practice in OR [20],
updates of extensions and resources on GCOP will
be provided at a dedicated GCOP web site at
https://sites.google.com/view/general-cop.

IV. DISCUSSIONS AND FUTURE DIRECTIONS

As a fast emerging topic in computational
intelligence, evolutionary computation and
optimisation research, automated algorithm design
has recently attracted increasing research attention.
In this paper, GCOP is formally established as a
new standard to define various search algorithms
in one model, providing the fundamentals and
opening a number of potential new research
directions in automated algorithm design.

New knowledge towards automated algorithm
design: The new GCOP model provides a standard
for systematic analysis on the basic a of different
behaviors in the optimised c. Some studies in
hyper-heuristics identified a compact subset
of effective low-level heuristics and revealed
synergy among them, enabling effective methods
to be built [53]. In [57], a runtime analysis on
a selection hyper-heuristic shows that online
reinforcement learning for configuring operators
may perform poorer than a fixed distribution of
operators. These analyses could also be conducted

within the consistent GCOP model. The balanced
intensification and diversification may be modeled
in c considering synergy among a. New findings on
new effective algorithms with different categories
of algorithmic components may also lead to new
knowledge and deeper understanding in algorithm
design and introduce new effective algorithms to
the literature.

Generality and reusability of algorithms: In
GCOP, the automatically designed new algorithms
evolve to perform well for solving different p, thus
may cater for similar types of new p with a certain
level of generality and reusability. Recent research
has made some progress on the generality of al-
gorithms. However, the reusability of algorithms
remains under-explored. With the GCOP standard,
the optimised components may be analysed to
derive new knowledge potentially transferable to
solve unseen p. GCOP may contribute to addressing
the challenging research issue of generality and
reusability of algorithms.

• Generality: Recent hyper-heuristics where
shown to be able to address cross-domain
COPs [58]. There is to our knowledge, how-
ever, not yet a formal definition of algorithm
generality in the literature. In [59], a new
assessment method has been proposed to eval-
uate hyper-heuristics against four levels of
generality, in terms of solving different prob-
lem domains, problems, problem instances and
benchmarks, respectively. The automatically
generated new algorithms with GCOP can be
evaluated against these four levels of gener-
ality for solving different p. Note that the
assessment of algorithm optimality is different
from that of algorithm generality. The latter
may also measure the robustness and speed,
in addition to solution quality for multiple
problems/domains.

• Reusability: Recent research has made some
progress on reusing algorithms, although the
main research focus may not be exactly on
reusability. For example, the automatically
selected algorithms on training instances [10],
[11] could be reused to solve testing instances
of certain similar features. In generation
hyper-heuristics [60], new heuristics can be
automatically generated by using genetic
programming based on problem state features
[61], [62], thus could be potentially reusable
for problems of similar features. However,
the problem of code bloat may lead to the
issues of readability and interpretability [63].

Fundamentals of GCOP: Advanced theoretical
investigations are needed to underpin the funda-
mentals of the new GCOP model in operational

research.
• Evaluation of GCOP: In solving GCOP, the

objective function can be extended with multi-
ple objectives including generality, reusability
and computational time. The new performance
measure in [59] can be adopted in the ob-
jective function to measure different levels of
generality. In GCOP, instead of designing al-
gorithms using human expertise, as happens in
most of the research, the time is spent on auto-
matically searching for, or composing the op-
timal c∗ for p. The trade-off between solving a
number of p and the increased computational
time presents another interesting research is-
sue. The c for each p can be further evaluated
in F to assess its convergence, the number of
operations and number of fitness evaluations
used, using different statistical measures as
shown in [64].

• No Free Lunch Theorem (NFL): Another in-
teresting research issue is how NFL applies
in solving GCOP, that is to explore the scope
of generality for the generated new c. In [65],
the conditions under which the NFL applies to
hyper-heuristics are discussed. It is concluded
that there may be a free lunch developing
general methods for a set of problems with
fitness functions which are not closed under
permutation.

• Landscape analysis: Interesting features of
the GCOP search space may reveal more
findings for automated algorithm design. A
theoretical study on selection constructive
hyper-heuristics for COPs [24] revealed there
were often large plateau and high correlation
between local and global optimal heuristic
combinations in the heuristic landscapes.
In GCOP, each of the generated c leads to
a different S for p. Solving GCOP is thus
equivalent to exploring multiple S compared
to traditional search algorithms employing
manually fixed a for solving p. It is interesting
to investigate the increased exploration ability
and effectiveness of GCOP exploring multiple
c.

Extensions of GCOP: GCOP facilitates automated
algorithm design, aiming to reduce the development
costs and barriers of expertise required for design-
ing algorithms. Researchers and practitioners can
focus on establishing and exchanging a better un-
derstanding of algorithm developments to address
different p.

• Extensions of A: Based on more findings in
evolutionary computation, A1.0 could be ex-
tended with more effective common a. Those
a used in the literature (Table III for VRP and
Table V for NRP) represent only a subset of

A1.0 in Table I. The library of general and
basic a can be easily extended with problem-
specific Ap and is portable to solve a wider
range of p. Such efforts are highly valuable
and strongly encouraged to promote future
advances of automated algorithm design. Re-
sources will be updated at the GCOP web site.

• Other optimisation problems: Recent re-
search has developed effective selection hyper-
heuristics for continuous optimisation prob-
lems [66], [67]. The GCOP model can also be
extended to solve other optimisation problems
in addition to COPs.

V. CONCLUSIONS

This position paper introduces the General
Combinatorial Optimisation Problem (GCOP) as a
new standard for algorithm design. The objective
of GCOP is to optimise the compositions of
basic algorithmic components, i.e. the decision
variables, to automatically design new algorithms
for solving different optimisation problems. A
taxonomy of automated algorithm design, i.e.
automated algorithm configuration, automated
algorithm selection and automated algorithm
composition, has been formally defined. GCOP
which standardises various search algorithms
within one model underpins the fundamentals of
automated algorithm design.

With the new GCOP model, we define a set
A1.0 of the mostly used basic elementary
algorithmic components for widely studied
combinatorial optimisation problems in the
literature. This set can be extended to include
more common components, as well as user-
defined problem-specific components Ap for
different optimisation problems. With the new
standard, we also demonstrate the application
of the GCOP model with A1.0 and Ap to
formally define a large number of selection hyper-
heuristics for solving two benchmark combinatorial
optimisation problems, namely vehicle routing
and nurse rostering problems. This can be seen
as the implementation of the GCOP standard,
demonstrating its effectiveness for modeling a large
number of existing algorithms. To our knowledge,
this is the first standard in the literature defining a
large number of search algorithms in one common
model.

The established new GCOP opens a new line
of interesting research directions in optimisation
research. Further studies will investigate theoretical
issues including landscape analysis on the
search spaces of GCOP. The objective function
can be extended to measure the generality,
reusability and computational time of the newly

generated algorithms. The new automatically
designed algorithms introduced to the literature
brings new knowledge which can be used to
design new effective algorithms, and reused
for solving other optimisation problems. In
addition to combinatorial optimisation problems,
continuous optimisation problems and multi-
objective optimisation problems could also be
addressed with extended GCOP models.

With the new GCOP standard, this position paper
calls for further investigations on the emerging
topic of automated algorithm design to stimulate
more advances in evolutionary computation and op-
timisation research. We strongly encourage future
research in the research communities to adopt and
extend the GCOP standard. Resources and latest
developments will be continuously updated at the
GCOP web site.

REFERENCES

[1] C. Papadimitriou and K. Steiglitz, Combinatorial Opti-
mization: Algorithms and Complexity. Dover Publications
Inc., 1982.

[2] J. Beasley, “OR-library: Distributing test problems by
electronic mail,” Journal of Operational Research Society,
vol. 41, no. 11, pp. 1069–1072, Nov. 1990.

[3] F. Hutter, H. Hoos, and T. Stützle, “Automatic algorithm
configuration based on local search,” in Proc. National
Conf. on Artificial Intelligence, Vancouver, July 22-26,
2007, pp. 1152–1157.

[4] F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle,
“ParamILS: An automatic algorithm configuration frame-
work,” Journal of Artificial Intelligence Research, vol. 36,
pp. 267–306, Oct. 2009.

[5] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, “F-
race and iterated F-race: An overview,” in Experimental
Methods for the Analysis of Optimization Algorithms, Oct.
2010, pp. 311–336.

[6] M. López-Ibáñez and T. Stützle, “The automatic design of
multi-objective ant colony optimization algorithms,” IEEE
Trans. on Evolutionary Computation, vol. 16, no. 6, pp.
861–875, Feb. 2012.

[7] F. Pagnozzi and T. Stützle, “Automatic design of hy-
brid stochastic local search algorithms for permutation
flowshop problems,” European Journal of Operational
Research, vol. 276, p. 409–421, Jul. 2019.

[8] T. Adamo, G. Ghiani, A. Grieco, E. Guerriero, and
E. Manni, “MIP neighborhood synthesis through semantic
feature extraction and automatic algorithm configuration,”
Computers & Operations Research, vol. 83, pp. 106–119,
Jul. 2017.

[9] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres,
T. Stützle, and M. Birattari, “The irace package: Iterated
racing for automatic algorithm configuration,” Operations
Research Perspectives, vol. 3, pp. 43–58, Sept. 2016.

[10] S. Liu, K. Tang, and X. Yao, “Automatic construction of
parallel portfolios via explicit instance grouping,” in Proc.
of AAAI Conf. on Artificial Intelligence, New Orleans,
February 2–7, 2018.

[11] K. Tang, F. Peng, G. Chen, and X. Yao, “Population-based
algorithm portfolios with automated constituent algorithms
selection,” Information Sciences, vol. 279, pp. 94–104,
Sept. 2014.

[12] R. Akay, A. Basturk, A. Kalinli, and X. Yao, “Paral-
lel population-based algorithm portfolios: An empirical
study,” Neurocomputing, vol. 247, pp. 115–125, Jul. 2017.

[13] L. Xu, H. Hoos, and K. Leyton-Brown, “Hydra: Automati-
cally configuring algorithms for portfolio-based selection,”
in Proc. of AAAI Conf. on Artificial Intelligence, Atlanta,
July 11–15, 2010.

[14] L. Bezerra, M. Lòpez-Ibáñez, and T. Stützle, “Automatic
design of evolutionary algorithms for multi-objective com-
binatorial optimization,” in Proc. of Parallel Problem
Solving from Nature, Ljubljana, September 13-17, 2014,
pp. 508–517.

[15] M. Oltean, “Evolving evolutionary algorithms using linear
genetic programming,” Evolutionary Computation, vol. 13,
no. 3, pp. 387–410, Sept. 2005.

[16] N. Pillay and R. Qu, Hyper-heuristics: Theory and Appli-
cations. Springer Nature, 2019.

[17] E. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa,
E. Özcan, and R. Qu, “Hyper-heuristics: A survey of the
state of the art,” Journal of the Operational Research
Society, vol. 64, pp. 1695–1724, Jul. 2010.

[18] E. Burke, M. Gendreau, M. Hyde, G. Kendall, B. Mc-
Collum, G. Ochoa, A. J. Parkes, and S. Petrovic, “The
cross-domain heuristic search challenge - An international
research competition,” in Proc. of Intelligent Conf. Learn-
ing and Intelligent Optimization, Rome, January 17-21,
2011, pp. 631–634.

[19] N. Pillay and D. Beckedahl, “EvoHyp - A Java toolkit for
evolutionary algorithm hyper-heuristics,” in Proc. of IEEE
Congress on Evolutionary Computation, San Sebastian,
June 5-8, 2017, pp. 2707–2713.

[20] G. Kendall, R. Bai, J. Blazewicz, P. D. Causmaecker,
M. Gendreau, R. John, J. Li, B. McCollum, E. Pesch,
R. Qu, N. Sabar, G. V. Berghe, and A. Yee, “Good
laboratory practice for optimization research,” Journal of
Operational Research Society, vol. 67, no. 4, pp. 676–689,
Apr. 2016.

[21] J. Swan, J. Woodward, E. Özcan, G. Kendall, and
E. Burke, “Searching the hyper-heuristic design space,”
Cognitive Computation, vol. 6, no. 1, pp. 66–73, 2014.

[22] R. Qu and E. Burke, “Hybridisations withing a graph based
hyper-heuristic framework for university timetabling prob-
lems,” Journal of Operational Research Society, vol. 60,
pp. 1273–1285, Sept. 2009.

[23] G. Ochoa, R. Qu, and E. Burke, “Analyzing the landscape
of a graph based hyper-heuristic for timetabling problems,”
in Proc. of Genetic and Evolutionary Computation Con-
ference, Montreal, July 8-12, 2009, pp. 341–348.

[24] R. Qu, N. Pillay, and D. Beckedahl, “A fundamental study
on selection constructive hyper-heuristics,” IEEE Trans. on
Evolutionary Computation, under review, 2019.

[25] P. Toth and D. Vigo, “An overview of vehicle routing
problems,” in The Vehicle Rrouting Problem, 2002, pp.
1–26.

[26] E. Burke, P. D. Causmaecker, G. Berghe, and H. Lan-
deghem, “The state of the art of nurse rostering,” Journal
of Scheduling, vol. 7, no. 6, pp. 441–499, Nov. 2004.

[27] O. Bräysy and M. Gendreau, “Vehicle routing problem
with time windows, part II: Metaheuristics,” Transporta-
tion Science, vol. 39, no. 1, pp. 119–139, Feb. 2005.

[28] M. Gendreau, G. Laporte, and J.-Y. Potvin, “Metaheuris-
tics for the capacitated VRP,” in The Vehicle Routing
Problem. SIAM Monographs on Discrete Mathematics
and Applications, 2002, pp. 129–154.

[29] U. Ritzinger, J. Puchinger, and R. Hartl, “A survey on
dynamic and stochastic vehicle routing problems,” Inter-
national Journal of Production Research, vol. 54, no. 1,
pp. 215–231, Jan. 2016.

[30] R. Mole and S. Jameson, “A sequential route-building
algorithm employing a generalised savings criterion,” Op-
erational Research Quarterly, vol. 27, no. 2, pp. 503–511,
Jun. 1976.

[31] G. Laporte, M. Gendreau, J. Potvin, and F. Semet, “Classi-
cal and modern heuristics for the vehicle routing problem,”
International Trans. Operational Research, vol. 7, no. 4-5,
pp. 285–300, Sept. 2000.

[32] P. Garrido and M. Riff, “DVRP: A hard dynamic combi-
natorial optimisation problem tackled by an evolutionary
hyper-heuristic,” Journal of Heuristics, vol. 16, no. 6, pp.
795–834, Dec. 2010.

[33] G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez,
J. Walker, M. Gendreau, G. Kendall, B. McCollum,
A. Parkes, S. Petrovi, and E. Burke, “HyFlex: A bench-
mark framework for cross-domain heuristic search,” in

Proc. of Evolutionary Computational Combinatorial Op-
timization, Málaga, April 11-13, 2012, pp. 136–147.

[34] J. Kubalik and J. Faigl, “Iterative prototype optimisation
with evolved improvement steps,” in Proc. of European
Conf. on Genetic Programming, Budapest, April 10-12,
2006, p. 154–165.

[35] S. Ropke and D. Pisinger, “An adaptive large neighborhood
search heuristic for the pickup and delivery problem with
time windows,” Transportation Science, vol. 40, no. 4, pp.
455–472, Nov, 2006.

[36] D. Pisinger and S. Ropke, “A general heuristic for vehicle
routing problems,” Computers & Operations Research,
vol. 34, no. 8, pp. 2403–2435, Aug. 2007.

[37] D. Meignan, A. Koukam, and J. Créput, “Coalition-based
metaheuristic: A self-adaptive metaheuristic using rein-
forcement learning and mimetism,” Journal of Heuristics,
vol. 16, no. 6, p. 859–879, Dec. 2010.

[38] J. Mlejnek and J. Kubalik, “Evolutionary hyperheuristic
for capacitated vehicle routing problem,” in Proc. of
Annual Conf. on Genetic and Evolutionary Computation,
Amsterdam, July 6-10, 2013, pp. 219–220.

[39] S. Asta and E. Özcan, “An apprenticeship learning hyper-
heuristic for vehicle routing in HyFlex,” pp. 1474–1481,
December 9-12 2014.

[40] N. Sabar, X. Zhang, and A. Song, “A math-hyper-heuristic
approach for large-scale vehicle routing problems with
time windows,” in IEEE Congress on Evolutionary Com-
putation, Sendai, May 25-28, 2015.

[41] P.-Y. Yin, S.-R. Lyu, and Y.-L. Chuang, “Cooperative
coevolutionary approach for integrated vehicle routing
and scheduling using cross-dock buffering,” Engineering
Applications of Artificial Intelligence, no. 52, pp. 40–53,
Jun. 2016.

[42] J. Walker, G. Ochoa, M. Gendreau, and E. Burke, “Vehi-
cle routing and adaptive iterated local search within the
HyFlex hyper-heuristic framework,” in Proc. of Interna-
tional Conf. on Learning and Intelligent Optimization,
Paris, January 16-20, 2012, pp. 265–276.

[43] R. Tyasnurita, E. Özcan, and R. John, “Learning heuristic
selection using a time delay neural network for open
vehicle routing,” in Proc. of IEEE Congress Evolutionary
Computation, San Sebastian, June 5-8, 2017, pp. 1474–
1481.

[44] J. Soria-Alcaraz, G. Ochoa, M. Sotelo-Figeroa, and
E. Burke, “A methodology for determining an effective
subset of heuristics in selection hyper-heuristics,” Euro-
pean Journal of Operational Research, vol. 260, no. 3,
pp. 972–983, Aug. 2017.

[45] S. Lin, “Computer solutions of the traveling salesman
problem,” Bell Labs Technical Journal, vol. 44, no. 10,
pp. 2245–2269, Dec. 1965.

[46] B. Gillett and L. Miller, “A heuristic algorithm for the
vehicle dispatch problem,” Operations Research, vol. 22,
no. 2, pp. 340–349, Apr. 1974.

[47] A. Wren and A. Holliday, “Computer scheduling of vehi-
cles from one or more depots to a number of delivery
points,” Journal of the Operational Research Society,
vol. 3, no. 23, p. 333–344, Sept. 1972.

[48] G. Clarke and J. Wright, “Scheduling of vehicles from a
central depot to a number of delivery points,” Operations
Research, vol. 12, no. 4, pp. 568–581, Jul.-Aug. 1964.

[49] P. Cowling, G. Kendall, and E. Soubeiga, “Hyper-
heuristics: A robust optimization method applied to nurse
scheduling,” in Proc. of Parallel Problem Solving from
Nature, Granada, September 7–11, 2002, pp. 851–860.

[50] E. Burke, G. Kendall, and E. Soubeiga, “A tabu-search
hyperheuristic for timetabling and rostering,” Journal of
Heuristics, vol. 9, no. 6, pp. 451–470, Dec. 2003.

[51] R. Bai, E. Burke, G. Kendall, J. Li, and B. McCollum, “A
hybrid evolutionary approach to the nurse rostering prob-
lem,” IEEE Trans. on Evolutionary Computation, vol. 14,
no. 4, pp. 580–590, Jul. 2011.

[52] B. Bilgin, P. Demeester, M. Misir, W. Vancroonenburg,
and G. Berghe, “One hyper-heuristic approach to two
timetabling problems in health care,” Journal of Heuristics,
vol. 18, no. 3, pp. 401–434, Jun. 2012.

[53] M. Misir, K. Verbeeck, P. D. Causmaecker, and G. Berghe,
“An investigation on the generality level of selection hyper-
heuristics under different empirical conditions,” Applied
Soft Computing, vol. 13, no. 7, pp. 3335–3353, Jul. 2013.

[54] A. Shahriar, E. Özcan, and T. Curtois, “A tensor based
hyper-heuristic for nurse rostering,” Knowledge-Based Sys-
tems, vol. 98, no. 1, pp. 185–199, Apr. 2016.

[55] U. Aickelin and J. Li, “An estimation of distribution algo-
rithm for nurse scheduling,” Annals Operations Research,
vol. 155, no. 4, pp. 289–309, Jul. 2007.

[56] S. Haspeslagh, P. D. Causmaecker, A. Schaerf, and
M. Stlevik, “The first international nurse rostering com-
petition 2010,” Annals of Operations Research, vol. 218,
no. 1, pp. 221–236, Jul. 2014.

[57] P. Lehre and E. Özcan, “A runtime analysis of simple
hyper-heuristics: To mix or not to mix operators,” in
Proc. of Workshop on Foundations of Genetic Algorithms,
Adelaide, January 16-20, 2013, pp. 97–104.

[58] G. K. R. Q. N.R. Sabar, M. Ayob, “A dynamic multiarmed
bandit-gene expression programming hyper-heuristic for
combinatorial optimization problems,” IEEE Trans. on
Cybernetics, vol. 45, no. 2, pp. 217–228, Feb. 2015.

[59] N. Pillay and R. Qu, “Assessing hyper-heuristic perfor-
mance,” European Journal of Operational Research, under
review, 2019.

[60] E. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan,
and J. Woodward, “A classification of hyper-heuristic
approaches,” in Handbook of metaheuristics, 2010, pp.
449–468.

[61] M. Bader-El-Den, R. Poli, and S. Fatima, “Evolving
timetabling heuristics using a grammar-based genetic pro-
gramming hyper-heuristic framework,” Memetic Comput-
ing, vol. 1, pp. 205–219, Nov. 2009.

[62] E. Burke, M. Hyde, G. Kendall, and J. Woodward, “A ge-
netic programming hyper-heuristic approach for evolving
two dimensional strip packing heuristics,” IEEE Trans. on
Evolutionary Computation, vol. 14, no. 6, pp. 942–958,
Jun. 2010.

[63] W. Banzhaf, P. Nordin, R. Keller, and F. Francone, Genetic
Programming: An Introduction On the Automatic Evolu-
tion of Computer Programs and Its Applications. Morgan
Kaufmann Publishers, 1998.

[64] K. Sörensen, “Metaheuristics - the metaphor exposed,” In-
ternational Transaction in Operational Research, vol. 22,
no. 1, pp. 3–18, Jan. 2015.

[65] R. Poli and M. Graff, “There is a free lunch for hyper-
heuristics, genetic programming and computer scientists,”
in European Conf. on Genetic Programming, Tubingen,
April 15-17, 2009, pp. 195–207.

[66] M. Maashi, G. Kendall, and E. Özcan, “Choice function
based hyper-heuristics for multi-objective optimization,”
Applied Soft Computing, vol. 28, pp. 312–326, Mar. 2015.

[67] D. Walker and E. Keedwell, “Multi-objective optimisation
with a sequence-based selection hyper-heuristic,” in Proc.
of Conf. on Genetic and Evolutionary Computation, Den-
ver, July 20-24, 2016, pp. 81–82.

	Introduction
	The General Combinatorial Optimisation Problem
	Definition of the GCOP
	Decision Variables of GCOP
	Objective Function of GCOP
	Search Spaces of GCOP

	Example Methods for GCOP
	GCOP Methods for Vehicle Routing Problems
	GCOP Methods for Nurse Rostering Problems

	Discussions and Future Directions
	Conclusions
	References

