3,301 research outputs found

    A Semantic-Based Information Management System to Support Innovative Product Design

    Get PDF
    International competition and the rapidly global economy, unified by improved communication and transportation, offer to the consumers an enormous choice of goods and services. The result is that companies now require quality, value, time to market and innovation to be successful in order to win the increasing competition. In the engineering sector this is traduced in need of optimization of the design process and in maximization of re-use of data and knowledge already existing in the company. The “SIMI-Pro” (Semantic Information Management system for Innovative Product design) system addresses specific deficiencies in the conceptual phase of product design when knowledge management, if applied, is often sectorial. Its main contribution is in allowing easy, fast and centralized collection of data from multiple sources and in supporting the retrieval and re-use of a wide range of data that will help stylists and engineers shortening the production cycle. SIMI-Pro will be one of the first prototypes to base its information management and its knowledge sharing system on process ontology and it will demonstrate how the use of centralized network systems, coupled with Semantic Web technologies, can improve inter-working activities and interdisciplinary knowledge sharing

    New relationship between Visual Communication Design and Interaction Design

    Get PDF
    In the future of interaction design relies on movement recongnition rather than haptic/vocal/muscle/brain interfaces, how will visual communication be able to guide people to perform tasks? Researchers and teachers have a very complex challenge ahead of them: on the one hand, they must follow continous and daily updates to acquire and give a proper overview about the state of the art and future scenarios; on the other hand, the university must re-think design guidelines from a holistic viewpoint, avoiding fractures between product design, visual communication design and interaction design

    Gesturing on the steering wheel, a comparison with speech and touch interaction modalities

    Get PDF
    This paper compares an emergent interaction modality for the In-Vehicle Infotainment System (IVIS), i.e., gesturing on the steering wheel, with two more popular modalities in modern cars: touch and speech. We conducted a betweensubjects experiment with 20 participants for each modality to assess the interaction performance with the IVIS and the impact on the driving performance. Moreover, we compared the three modalities in terms of usability, subjective workload and emotional response. The results showed no statically significant differences between the three interaction modalities regarding the various indicators for the driving task performance, while significant differences were found in measures of IVIS interaction performance: users performed less interactions to complete the secondary tasks with the speech modality, while, in average, a lower task completion time was registered with the touch modality. The three interfaces were comparable in all the subjective metrics

    The role of speech technology in biometrics, forensics and man-machine interface

    Get PDF
    Day by day Optimism is growing that in the near future our society will witness the Man-Machine Interface (MMI) using voice technology. Computer manufacturers are building voice recognition sub-systems in their new product lines. Although, speech technology based MMI technique is widely used before, needs to gather and apply the deep knowledge of spoken language and performance during the electronic machine-based interaction. Biometric recognition refers to a system that is able to identify individuals based on their own behavior and biological characteristics. Fingerprint success in forensic science and law enforcement applications with growing concerns relating to border control, banking access fraud, machine access control and IT security, there has been great interest in the use of fingerprints and other biological symptoms for the automatic recognition. It is not surprising to see that the application of biometric systems is playing an important role in all areas of our society. Biometric applications include access to smartphone security, mobile payment, the international border, national citizen register and reserve facilities. The use of MMI by speech technology, which includes automated speech/speaker recognition and natural language processing, has the significant impact on all existing businesses based on personal computer applications. With the help of powerful and affordable microprocessors and artificial intelligence algorithms, the human being can talk to the machine to drive and control all computer-based applications. Today's applications show a small preview of a rich future for MMI based on voice technology, which will ultimately replace the keyboard and mouse with the microphone for easy access and make the machine more intelligent

    On driver behavior recognition for increased safety:A roadmap

    Get PDF
    Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced

    The Adaptive Automation Design

    Get PDF

    A user experience‐based toolset for automotive human‐machine interface technology development

    Get PDF
    The development of new automotive Human-Machine Interface (HMI) technologies must consider the competing and often conflicting demands of commercial value, User Experience (UX) and safety. Technology innovation offers manufacturers the opportunity to gain commercial advantage in a competitive and crowded marketplace, leading to an increase in the features and functionality available to the driver. User response to technology influences the perception of the brand as a whole, so it is important that in-vehicle systems provide a high-quality user experience. However, introducing new technologies into the car can also increase accident risk. The demands of usability and UX must therefore be balanced against the requirement for driver safety. Adopting a technology-focused business strategy carries a degree of risk, as most innovations fail before they reach the market. Obtaining clear and relevant information on the UX and safety of new technologies early in their development can help to inform and support robust product development (PD) decision making, improving product outcomes. In order to achieve this, manufacturers need processes and tools to evaluate new technologies, providing customer-focused data to drive development. This work details the development of an Evaluation Toolset for automotive HMI technologies encompassing safety-related functional metrics and UX measures. The Toolset consists of four elements: an evaluation protocol, based on methods identified from the Human Factors, UX and Sensory Science literature; a fixed-base driving simulator providing a context-rich, configurable evaluation environment, supporting both hardware and software-based technologies; a standardised simulation scenario providing a repeatable basis for technology evaluations, allowing comparisons across multiple technologies and studies; and a technology scorecard that collates and presents evaluation data to support PD decision making processes

    Model-based Development of Enhanced Ground Proximity Warning System for Heterogeneous Multi-Core Architectures

    Get PDF
    The aerospace domain, very much similar to other cyber-physical systems domains such as automotive or automation, is demanding new methodologies and approaches for increasing performance and reducing cost, while maintaining safety levels and programmability. While the heterogeneous multi-core architectures seem promising, apart from certification issues, there is a solid necessity for complex toolchains and programming processes for exploiting their full potential. The ARGO (WCET-Aware PaRallelization of Model-Based Ap-plications for HeteroGeneOus Parallel Systems) project is addressing this challenge by providing an inte-grated toolchain that realizes an innovative holistic approach for programming heterogeneous multi-core sys-tems in a model-based workflow. Model-based design elevates systems modeling and promotes simulation with the executing these models for verification and validation of the design decisions. As a case study, the ARGO toolchain and workflow will be applied to a model-based Enhanced Ground Proximity Warning System (EGPWS) development. EGPWS is a readily available system in current aircraft which provides alerts and warnings for obstacles and terrain along the flight path utilizing high resolution terrain databases, Global Positioning System and other sensors-. After a gentle introduction to the model-based development approach of the ARGO project for the heterogeneous multi-core architectures, the EGPWS and the EGPWS systems modelling will be presented
    corecore