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Abstract 

The development of new automotive Human-Machine Interface (HMI) technologies must 

consider the competing and often conflicting demands of commercial value, User Experience 

(UX) and safety. Technology innovation offers manufacturers the opportunity to gain 

commercial advantage in a competitive and crowded marketplace, leading to an increase in 

the features and functionality available to the driver. User response to technology influences 

the perception of the brand as a whole, so it is important that in-vehicle systems provide a 

high-quality user experience. However, introducing new technologies into the car can also 

increase accident risk. The demands of usability and UX must therefore be balanced against 

the requirement for driver safety.  

Adopting a technology-focused business strategy carries a degree of risk, as most innovations 

fail before they reach the market. Obtaining clear and relevant information on the UX and 

safety of new technologies early in their development can help to inform and support robust 

product development (PD) decision making, improving product outcomes. In order to achieve 

this, manufacturers need processes and tools to evaluate new technologies, providing 

customer-focused data to drive development.  

This work details the development of an Evaluation Toolset for automotive HMI technologies 

encompassing safety-related functional metrics and UX measures. The Toolset consists of four 

elements: an evaluation protocol, based on methods identified from the Human Factors, UX 

and Sensory Science literature; a fixed-base driving simulator providing a context-rich, 

configurable evaluation environment, supporting both hardware and software-based 

technologies; a standardised simulation scenario providing a repeatable basis for technology 

evaluations, allowing comparisons across multiple technologies and studies; and a technology 

scorecard that collates and presents evaluation data to support PD decision making processes.  

The Evaluation Toolset was applied in three technology evaluation case studies, conducted in 

conjunction with the industrial partner, Jaguar Land Rover. All three were live technology 

development projects, representing hardware and software concepts with different technology 

readiness levels. Case study 1 evaluated a software-based voice messaging system with 

reference to industry guidelines, confirming its performance and identifying potential UX 

improvements. Case study 2 compared three touchscreen technologies, identifying user 

preference and highlighting specific usability issues that would not have been found though 

analytical means. Case study 3 evaluated autostereoscopic 3D displays, assessing the 

effectiveness of 3D information while highlighting design considerations for long-term use 

and defining a design space for 3D content.  
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Findings from the case studies, along with learning from visits to research facilities in the UK 

and USA, was used to validate and improve the toolset, with recommendations made for 

implementation into the PD workflow. The driving simulator received significant upgrades as 

part of a new interdisciplinary research collaboration with the Department of Psychology to 

support future research activity.  

Findings from the case studies also directly supported their respective technology 

development projects; the main outcome from the research therefore is an Evaluation Toolset 

that has been demonstrated, through application to live technology development projects, to 

provide valid, relevant and detailed information on holistic evaluations of early-phase HMI 

technologies, thus adding value to the PD process.  
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1. Introduction 

The development of new automotive Human-Machine Interface (HMI) technologies offers 

manufacturers the opportunity to gain commercial advantage in a competitive and crowded 

marketplace, leading to an increase in the features and functionality available to the driver. 

User response to technology influences the perception of the brand as a whole, so it is 

important that in-vehicle systems provide a high-quality user experience. However, 

introducing new technologies into the car can also increase accident risk. The demands of 

usability and user experience must therefore be balanced against the requirement for driver 

safety.  

Adopting a technology-focused business strategy carries a degree of risk, as most new 

products fail before they reach the market. One of the key factors for the success for new 

products is a robust New Product Development (NPD) process requiring clear information on 

product performance and customer perception. For the development of new in-vehicle 

technologies, it is critical that manufacturers are able to obtain clear and relevant information 

on user experience and safety to support development decisions.  

This document describes the work conducted under an Engineering Doctorate project to create 

a toolset for the evaluation of early-stage automotive technology concepts. The project was 

funded by the European Physical Sciences Research Council (EPSRC) and supported by 

Jaguar Land Rover (JLR).  

1.1. Research Question 

The project focuses on the use of driving simulators to provide a context-rich environment in 

which novel technologies can be evaluated. The evaluation process must take into account the 

issues of user experience and driver safety. The research question adopted therefore is as 

follows: 

“How can simulation tools be used to support advanced product 

development processes to deliver HMI solutions that optimise the user 

experience while minimizing safety risk?” 

1.2. Objectives and Research Design 

The objectives for the project are: 

1. Determine the key objective performance indicators for driver behaviour 

2. Develop a context-rich environment to enable evaluation of novel HMI technologies 
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3. Identify and evaluate methods for capturing the User Experience of in-car technology 

4. Create and test a protocol for the evaluation of technologies from the perspectives of 

User Experience and driver safety 

5. Determine how the evaluation protocol can be integrated into the up-front NPD 

process for in-vehicle technology 

The research design is illustrated in Figure 1. The research consists of three phases, described 

below: 

 Phase 1 focuses on development and validation of evaluation tools, encompassing 

hardware and software tools along with data gathering and analysis methods. This 

includes development of the evaluation protocol and selection of appropriate methods, 

as outlined in chapter 10 of submission 2.  

 Phase 2 consists of a series of technology case studies conducted on concepts from 

the JLR advanced product creation processes, representing technologies at different 

technology readiness levels and requiring different degrees of maturation and 

differing outputs.  

 Phase 3 applies the learning from the case studies conducted within phase 2 to revise 

the toolset, which will then be validated and integrated into the NPD process. 

 

Figure 1 ‐ Research design 
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1.3. Structure of Portfolio 

The structure of the portfolio reflects the research design shown in Figure 1 above. Note that 

submissions 1, 5 and 6 were submitted to the portfolio at an earlier date and hence do not 

feature the revised project title.  

Submission 1: Definition – this document provides the background to the project, including 

literature review in the areas of automotive HMI and driver safety, along with an overview of 

JLR’s HMI development processes and an outline of the project methodology. 

Submission 2: Toolset Definition – this document provides additional literature review in the 

areas of NPD and User Experience (UX), along with an updated methodology. This document 

also provides the basis for the creation of the Evaluation Toolset.  

Submission 3: Evaluation Environment – this document details the development and testing 

of the driving simulator facility at the core of the Evaluation Toolset. 

Submission 4: Case Study 1 – Voice Dictation – this is the first of three technology case 

studies that utilise the Evaluation Toolset, and focuses on a novel voice interaction interface 

concept.  

Submission 5: Case Study 2 – Touchscreen Technology – the second case study involving 

the evaluation of three touchscreen technology concepts.  

Submission 6: Case Study 3 – 3D Displays – the third and final case study focuses on the 

use of autostereoscopic 3D displays in the instrument cluster.  

Innovation Report (this document) – provides an overall summary of the project, discusses 

the findings from the case studies and their application, and details the work from phase 3 of 

the project. 

International Placement report – details a trip to the USA in 2015, visiting research 

establishments and presenting at SAE World Congress.  

Personal Profile – details how the competencies required for the EngD have been satisfied.  

1.4. Structure of Innovation Report 

The Innovation Report includes an overview of the work from the submissions, along with a 

discussion of outcomes, application and impact. The document is structured as follows: 

Chapter 1 gives an introduction to the Innovation Report and the project as a whole. Chapters 

2 to 4 present a summary of literature in the areas of Technology in the Automotive Industry, 

Customer Acceptance of Technology and Automotive Human-Machine Interface. Figure 2 
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illustrates how these topics relate to the project. Chapter 5 provides the rationale for the 

development of the Evaluation Toolset, while chapter 6 outlines the research methodology.  

Chapter 7 details the definition of the Evaluation Toolset, with chapters 8 and 9 describing 

the development of the evaluation protocol and driving simulator respectively.  

Chapters 10 to 12 present summaries of the technology case studies, with the outcomes 

discussed in chapter 13.  

Chapter 14 outlines how the Toolset could be applied to the NPD process, with chapter 15 

detailing the impact from the project. Finally, chapter 16 presents the conclusions, limitations 

and further work.  

 

 

Figure 2 – Literature review diagram 

 

  

Technology in the 
Automotive Industry 

Customer Acceptance 
of Technology 

Automotive Human‐Machine 
Interface (HMI) 

HMI technology 
development 

User‐Centred 
Design 

User Experience of 
Automotive HMI 

Evaluating HMI in 
the Technology 
Development 

Process 



5 

2. Technology in the Automotive Industry 

The effective application of technology is a critical factor in the success of modern 

organisations. Companies face challenges in how to manage new technologies in line with 

existing business practices (Probert et al., 2000); this is especially relevant in the automotive 

industry where new technologies can provide a significant commercial advantage. This 

chapter presents a summary of the literature detailed in submissions 1 and 2, providing an 

overview of technology strategy and innovation within the automotive industry, with a focus 

on the strategic importance of in-vehicle technology to customer satisfaction.  

Successful technology management approaches require fluent communication between the 

technical and business aspects of the company in order to ensure that both technology and 

market-driver opportunities are realised. This in turn requires a clear understanding of both 

internal factors, such as business aims and culture; and external factors, such as market 

conditions (Phaal et al., 2013). Within the automotive industry, continuing introduction of 

new technologies is a vital means of differentiating products in a crowded and competitive 

market (Maniak et al., 2014). Global automotive market trends show that technologies, 

particularly Advanced Driver Assistance Systems (ADAS) and connectivity features, are 

highly sought after by potential vehicle purchasers and contribute strongly to purchase 

intention (IHS Markit, 2016). It is vital therefore that automotive manufacturers employ robust 

product innovation management processes to ensure successful product outcomes.  

2.1. Technology Innovation in the Automotive Industry 

The automotive industry is highly competitive and highly technical, with slim profit margins 

and significant Research and Development (R&D) spend requirements (Darveight, 2010). 

Companies wishing to attain or maintain a market-leading position in a high-technology field 

must be willing to commit significant levels of funding to R&D activities (Trott, 2012), 

requiring that the technology development strategy receives support from the highest levels 

within the organisation. The Association des Constructeurs Européens d’Automobiles 

(ACEA) states that €53.8bn was invested in R&D within the EU in 2016, making automotive 

the third-ranked sector by R&D spend (ACEA, 2018). An innovation-targeted strategy is not 

without risk: a study by management consultancy Oliver Wyman (Oliver Wyman, 2007) 

found that only 20% of automotive R&D investment results in profitable innovation with 40% 

either failing to reach market or failing to gain customer acceptance, 20% allocated to serial 

development and the remaining 20% required to meet legal requirements. A failure to 

understand customer requirements and to place emphasis on marketing innovations was found 

to contribute to failure in the marketplace, with only one in six innovations offered at the point 
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of sale being accepted by the customer, as shown in Figure 3. Of the profitable 20% of 

innovations, only half of these have the potential to create a significant change in the market, 

and it is these technologies which carry the largest innovation risk.  

 

Figure 3 ‐ Uptake of innovations in the automotive industry (Oliver Wyman, 2007) 

Disconnects between manufacturers and customers are acknowledged as a limiting factor in 

developing successful products (Trott, 2012) and alignment with the needs of the customer is 

therefore vital to drive user acceptance and ensure the success of the innovation in the 

marketplace. In order to achieve this, the ‘voice of the customer’ must be integrated into the 

new product development process(Cooper, 2011, 1998, 1996), requiring the application of 

appropriate tools and processes; however, existing tools to enable this approach are often 

under-utilised (Yeh et al., 2010).  

2.2. Automotive Product Development Processes 

This section discusses product development processes as they relate to the development of 

automotive products and technologies. Examples are based on generic processes from the 

literature, with reference to JLR processes. Specifics of these processes are discussed in 

submission 1, chapter 5 and submission 2, section 3.2. The structure of the various HMI 

development capabilities are discussed in submission 1, section 5.3.1.  
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2.2.1. Mainstream Product Development Processes 

JLR’s main new product introduction process follows a ‘stage-gate’ methodology, featuring a 

series of decision points along the development path (‘gates’) at which the progress of the 

project is assessed against defined criteria. Gates also function as quality control points for the 

product development process, allowing underperforming projects to be terminated before 

excessive resources are committed, thus maintaining the quality of the project portfolio 

(Cooper et al., 2002b, Cooper, 2011). However, accurate and relevant information must be 

available to gateway decision makers in order to ensure that the correct conclusions are 

reached.  

Successful product development processes feature a pre-development ‘discovery’ phase 

(Cooper et al., 2002a, Cooper, 2011). An example of a generic stage-gate model with a pre-

development phase is shown in Figure 4. 

 

Figure 4 ‐ Generic stage‐gate product development model with pre‐development phase 

(adapted from Cooper et al., 2002a) 

The purpose of this phase is to translate high-level strategic plans into a concept plan and 

objectives that can be taken forward into development by the programme teams. The checks 

and reviews which occur in the pre-development phase serve to ensure that only the most 

viable ideas are taken forward into the mainstream development process (Cooper, 1988, 

2011).  

Stage-gate processes support the creation of successful products by placing emphasis on the 

work conducted in the planning and development phases. This allows product requirements 

to be clearly defined and aligned with market requirements, improving customer satisfaction. 

Furthermore, by clearly defining the criteria required for a project to pass a gateway, decisions 
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on the viability of a project can be made more objectively and from a business-wide viewpoint, 

reducing development time and increasing profitability (Schilling, 2010).  

Next-generation Idea-to-Launch systems integrate ‘Agile’ project management practices to 

create an Agile Stage-Gate Hybrid model (Cooper, 2016, 2014). A key characteristic of this 

model is multiple iterative ‘spiral’ development paths that occur throughout the development 

timescale, as shown in Figure 4. This creates multiple points of contact with the ‘customer’ 

whereby feedback is used to refine and improve the product definition. By initiating this 

activity early in development, technical issues can be identified up-front and the cost of 

making changes to the product is minimised (Cooper, 2016). Furthermore, this approach 

overcomes one of the key criticisms of traditional stage-gate processes: that they are too rigid 

and do not manage uncertainty well (Cooper, 2017). The Agile Stage-Gate Hybrid model 

allows projects to progress even when project requirements are incomplete or unclear, relying 

on the experimental nature of the development loops to add definition (Cooper, 2016).  

 

Figure 5 – Next‐generation idea‐to‐launch process (Cooper, 2014) 

2.2.2. ‘Up‐Front’ Technology Development Processes 

As product life cycles become shorter and the market becomes more competitive, the need to 

quickly and successfully integrate new technologies into innovative products and processes 

that meet the demands of customers becomes increasingly apparent. The development of 

innovative products is however characterised by high levels of uncertainty, especially in the 

early stages (Jahn and Binz, 2007). The inherent risk in NPD can be mitigated by concentration 

of development effort at the start of the process, known as ‘front-loading’. Thomke & 

Fujimoto (2000) define front-loading problem solving as “a strategy that seeks to improve 

development performance by shifting the identification and solving of [design] problems to 

earlier phases of a product development process”. Up-front NPD activities include thorough 
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competitive and market analysis, assessments of in-house capability and project feasibility, 

research into customer wants and needs, and financial analysis (Bhuiyan, 2011). The fuzzy 

front end of the NPD process can require up to 50% of the total product development time. It 

is in this phase that the scope of the project is set, with commitments to major resource 

allocations (Morse and Babcock, 2010) 

The risks associated with the development of high-technology products can be further 

mitigated by employing a strategy of ‘up-front’ technology development. This encompasses 

work done to create, evaluate and mature specific technologies prior to their introduction to 

the main product development process, ranging from new idea generation to the point at which 

the idea is either moved forward into the main product development process, or development 

is ceased (Murphy and Kumar, 1997). This helps to ensure that a large proportion of problems 

are identified and resolved before mainstream development is initiated.  

Figure 6 shows a typical stage-gate NPD process with an up-front technology development 

path (Cooper et al., 2002a). The up-front ‘discovery’ phase takes the form of a separate, offline 

development process with its own stages and gateways, providing a development framework 

which allows technical feasibility and market opportunity to be robustly assessed. If the 

project meets the pre-determined success criteria at the application path gate it is then fed into 

the main stage-gate process at the appropriate point, as determined by the relative maturity of 

the technology. 

 

Figure 6 ‐ Offline technology development in the NPD process (Cooper et al., 2002a) 
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In the case of automotive Product Development (PD) processes, this is the phase in which 

innovative components and systems are developed prior to allocation and integration into a 

vehicle programme (Jahn and Binz, 2007). An example may be a new driver assistance system, 

which will have dedicated hardware and software but must also be integrated into the existing 

vehicle systems. The up-front technology development process allows the core functionality 

of the new technology to be matured to the extent whereby feasibility is established, before 

expending additional development resource in integration and final maturation. Technology 

development within the automotive industry is discussed further in submission 2, section 2.2.  

JLR utilise two types of advanced product creation processes: Milestone and Technology 

Creation Delivery System (TCDS), which are summarised below; see submission 1 section 

5.3 and submission 2 section 3.2 for further details. Milestone projects have a long-term 

outlook, being used to develop knowledge and technologies which may be applied to 

production vehicles in the medium- to long-term. A project with a successful outcome may be 

passed on to mainstream development teams who will mature the technology for inclusion on 

a vehicle programme.  

TCDS is a formal advanced development process, which exists in parallel to the mainstream 

PD process. It exists to facilitate rapid maturation of technologies which can then be 

transferred directly onto vehicle development programmes on the mainstream process. The 

main aim of TCDS is to reduce failure rates by early identification and rectification of failure 

modes, as illustrated in Figure 7. Potential issues which are identified in the research phase at 

the beginning of the development process are easier to rectify, although may be more difficult 

to identify. Conversely, once the product has reached the manufacturing phase its faults 

become clearer, but significantly harder and more costly to fix. It is clearly beneficial to fix 

problems at the earliest stages of development, which is aided by the application of a robust 

advanced development process.  

As a strategy, TCDS helps to mitigate these risks by focusing effort on the early stages of 

development, placing emphasis on product definition and technical feasibility. One of the key 

benefits of this approach is that it prevents allocation of development resource to technology 

projects which have limited change of success. Making robust product concept selection 

decisions helps to ensure that PD effort is directed towards candidate technologies that have 

the best chance of market success. However, given the emotive nature of these decisions 

(Trott, 2012) selection must be supported by user-derived usability and UX data in order to 

justify the decision and to maximise the potential benefits of the technology in terms of 

customer satisfaction.  
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Figure 7 ‐ Managing failure modes through TCDS 

2.3. Summary 

The introduction of new technologies to the market carries significant risk, but is necessary to 

achieve and maintain competitive advantage, especially in high-technology industries such as 

automotive. With recent developments in driver assistance systems, low-carbon drivetrains 

and connectivity, the pressure on vehicle manufacturers to introduce innovative technologies, 

both in terms of technology push and customer demands (market pull), has never been greater. 

The constant demand for new technologies places significant emphasis on product 

development processes. The key aim of any product development process is to apply rigour 

to the activities associated with bringing a product concept to market. Stage-gate processes 

provide a series of checkpoints at which the feasibility of the project can be assessed, based 

on criteria determined at earlier stages of the project. In order to be effective however, the gate 

decisions must be a) based on valid data; and b) enforced objectively and rigorously.  

Up-front technology development processes apply stage-gate methodology to the 

development of new technology concepts, allowing feasibility assessment and rapid 

maturation to occur offline from the main PD process. The aim here is to minimise the risk 

associated with the introduction of new technologies before they are integrated into a final 

product. The application of user-derived data in up-front development activities can ensure 

that the technology is correctly aligned with customer needs and that major UX pitfalls are 

avoided. This requires that there are processes in place for gathering relevant customer data 

in order to support the decision-making process.  
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3. Customer Acceptance of Technology 

A user’s intention to use a new technology is governed by how its intrinsic attributes are 

judged by the user, highlighting the influence of the individual on the outcome of the 

interaction. This chapter introduces and discusses fundamental concepts in the formation of 

product quality judgements, including usability, mental workload and User Experience.  

The Technology Acceptance Model (TAM) (Davis, 1989), illustrated in Figure 8, shows that 

a user's intention to use a system is ultimately determined by the user’s perception of the ease-

of-use and usefulness of the system under test. Note that Perceived Usefulness is in itself 

influenced by Perceived Ease of Use; the user’s view ability of the system to successfully 

achieve its designed function is in part determined by how easy the user finds task completion. 

The definition and evaluation of usability is discussed in section 3.1.  

 

Figure 8 ‐ Technology Acceptance Model (Davis et al., 1989) 

Venkatesh (2000) proposed an expanded model that outlined the determinants of perceived 

ease-of-use, in order to integrate the concepts of control, intrinsic motivation and emotion into 

TAM (Figure 9). This featured two sets of influencing factors: Anchors and Adjustments. 

Anchors relate to the user’s self-perceptions surrounding their relationship with technology, 

including their personal anxiety with using computers and their perceptions of external 

control. Adjustments included perceived enjoyment: the extent to which the act of using the 

system is enjoyable in its own right, regardless of the outcome; and objective usability: a 

measure of the actual (rather than perceived) effort required to complete a task. Objective 

usability is related to the concept of workload, discussed in section 4.3.1.  

It is clear from these models that the expectations, experiences and biases of the user shape 

their view of the technology under consideration, along with their 'perceived enjoyment', an 

affective construct, thus clearly establishing a link between a positive product experience and 

intention to use. These concepts are reflected in the User Experience literature, discussed in 

section 3.2.  
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Figure 9 ‐ Model of Determinants of Perceived Ease of Use (Venkatesh, 2000) 

3.1. Usability 

The importance of designing and testing for usability when developing interactive products is 

well established. Products with good usability can help users reach their goals more effectively 

and with greater satisfaction, while poor usability can seriously harm the overall perception 

of a product. Good usability is a key factor is ensuring strong market performance and 

competitive advantage.  

The study of usability originates from the field of Human-Computer Interaction, with the term 

first used in relation to visual displays (van Kuijk et al., 2006). The traditional view of usability 

focusses largely on the functional aspects of product interaction, as reflected in the definition 

in ISO 9241-11 (ISO, 1998): 

"The extent to which a product can be used by specified users to achieve 

specified goals with effectiveness, efficiency and satisfaction in a specified 

context of use" 

The ISO usability framework reflects the User-Centred Design (UCD) framework highlighted 

in section 3.3 in that it emphasises the importance of the context of use to both the goals and 

outcome of interaction with a product. Clearly, it is important that the context of use is 

reflected in usability evaluation. At the highest level, usability studies can be either summative 

or formative (Tullis and Albert, 2008, Lewis, 2012). 

The aim of formative usability studies is to improve design and as such, an iterative approach 

is adopted whereby design flaws identified through testing are remedied and the product re-

tested. This clearly requires that formative usability testing must occur before the design is 
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finalised, in order to allow the design flexibility required by the process. It is important 

therefore to recognise where there is no scope to improve a design before instigating in-depth 

formative studies, such as not to waste time and resources (Tullis and Albert, 2008).  

Summative usability studies are used to evaluate a design once it is finalised and to determine 

the extent to which it meets its design objectives. This may include evaluating the product 

relative to previous versions in order to determine the degree of improvement; and relative to 

current competitors. Summative usability is focused on the measurement of task performance 

and the completion of task goals (Sauro and Lewis, 2012).  

Usability, as a construct, cannot be measured directly; however different aspects of what 

comprises usability can be measured (Hornbæk, 2006). The ISO framework does not however 

specify which usability measures should be used in a given situation, leading to a reliance on 

guidance from the literature. Sections 5.2 to 5.5 of submission 2 detail a range of usability 

evaluation methods in four categories: instrumental methods, analytical methods, 

questionnaire-based methods and interviews. Instrumental methods involve the objective 

measurement of task performance metrics, such as task completion time and error rate. 

Questionnaire-based methods rely on subjective self-reporting by the user to obtain a 

qualitative measure of usability. Analytical methods use models of task performance to 

calculate completion times and critical paths, generally requiring expert application. 

Interviews can be used to obtain rich, qualitative data about usability issues that can provide 

significant insight, but requires additional effort to interpret.  

The appropriate methods to apply will depend upon the technology under test and its level of 

development. While analytical methods are less costly to administer and can be applied to 

very early-stage prototypes with minimal functionality, they lack the ability to capture the 

subjective nature of the user experience, potentially missing key usability issues that may only 

become apparent though actual use. The use of experimental methods, supplemented with 

qualitative data captured though post-evaluation interviews can ensure that a comprehensive 

picture of critical usability issues is obtained. 
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3.2. User Experience 

Delivering products that offer a high-quality experience for the user requires a focus on the 

needs of the user throughout the product development process. The question raised therefore 

is: ‘how can a high-quality user experience be consistently delivered?’ Establishing processes 

and methodologies to address this question requires an understanding of the key drivers of 

UX, approaches to designing for UX, how companies select technologies for development and 

what makes specific technologies acceptable to the user. This section explores the foundations 

of UX, outlining definitions, key models and design approaches to delivering products with 

high levels of customer satisfaction. 

3.2.1. Definition of User Experience 

Multiple definitions of UX exist, as discussed in submission 2, section 4.1. From these, a 

number of key themes can be identified: 

 UX is determined by the user’s total experience of a product, service or company, 

from before they interact with the product to beyond the point at which the user’s goal 

is reached 

 UX is subjective and determined by the perceived quality of a user’s interaction with 

a product, service or company 

 UX is shaped by the personal beliefs, expectations, experiences and biases of the user 

 UX is based on an assessment of the functional attributes of the product (e.g. how 

well it works, how easy it is to use), combined with the user’s emotional response to 

the product 

This holistic approach to understanding users’ interactions with products represents a 

significant shift from a largely functional view of usability, usefulness and satisfaction. UX 

encompasses all aspects of the end-user's interaction with the company, its services, and its 

products, from marketing through to after-sales service (Nielsen and Norman, n.d.). The user’s 

evaluation of UX is influenced by the entirety of this interaction, beyond the bounds of 

physical interaction with a product, framed by user’s prior expectations of the experience. 

These expectations may in turn be formed through prior interaction with a product or brand; 

the user’s mental model of what a particular product should be is determined by their response 

to previous product interactions, both positive and negative. 

The degree to which a user enjoys using a new product can also have a significant impact on 

their continued use intentions. Igbaria et al. (1994) showed that identified that both acceptance 

and satisfaction in a new software product increased when users enjoyed using it. Indeed, the 
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study found that the effect of enjoyment as perceived by the user was of a similar magnitude 

to that of perceived usefulness.  

The Kano model, discussed in section 0, illustrates how user expectation is key to UX. For a 

‘Must-be’ attribute, whereby the user expects a certain minimum level of performance, a 

failure to adequately deliver is seriously detrimental to the overall perception of product 

quality. Conversely, by identifying and leveraging ‘Attractive’ attributes, which may not be 

needs voiced by the user, it is possible to create a significant positive effect on UX. 

3.2.2. Models of User Experience 

As definitions of UX vary, there are a number of models that seek to portray the relationship 

between the customer, the product and the experience. Submission 2, section 4.2 details four 

key models: firstly, the Nielsen-Norman Group model of User Experience (nnGroup 2008; in 

Nilsson, 2010), shown in Figure 10, depicts how the overall UX extends from the fundamental 

ability of the product to meet the needs of the user, through their sensory and affective 

experience of the product, ultimately shaping their judgements about both the product and the 

brand. The model effectively demonstrates the holistic view of interaction with a product 

offering that underpins UX, encompassing factors beyond the functional usability of the 

product and integrating the emotional response of the user.  

 

Figure 10 ‐ Usability vs. UX (nnGroup 2008; image from Nilsson, 2010) 
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Secondly, Hassenzahl’s Model of Ergonomic and Hedonic Quality (Hassenzahl, 2001) 

demonstrates how perceptions of the functional (ergonomic quality) and emotional (hedonic 

quality) combine to form judgements of appealingness, driving subsequent behavioural and 

emotional consequences. Hassenzahl’s later Model of User Experience (Hassenzahl, 2004b), 

shown in Figure 11, elaborates upon the differing perspective of the designer and user, and 

how it relates to the intended characteristics of the product. The model highlights the 

importance of context in product evaluation, showing that the circumstances in which a user 

interacts with a product may strongly influence the outcomes. 

 

Figure 11 ‐ Hassenzahl's model of User Experience (Hassenzahl, 2004b, image from Fredheim, 

2011) 

Finally, Desmet and Hekkert’s Framework of Product Experience (Desmet and Hekkert, 

2007) describe how a user’s emotional experience of a product is driven by their sensory 

interactions and the meaning that they attach to the product, based on their interpretations and 

associations. As with Hassenzahl’s model, both the situation and the individual are key to the 

emotional outcome: the same stimulus (i.e. product interaction) may elicit a different 

emotional response in an alternate situation. Therefore, it is essential to carefully consider the 

context of interaction when attempting to understand the UX of a given product.  
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3.3. Designing for User Experience 

A focus on UX necessitates a User-Centred Design (UCD) approach, representing a shift away 

from the traditional, functional view of product quality to one that views the end-user's 

perception as the main determinant of quality. Consequently, processes to design for UX also 

require consideration of these factors. It is important therefore that product development is led 

by an understanding of the user and their needs, such that the attributes of the product can be 

tailored to ensure that these needs will be met. UCD is discussed in detail in submission 2 

section 4.3 and summarised below.  

Vrendenburg et al. (2001) outlined the key differences between a traditional and a UCD 

process, illustrated in Figure 12. The clearest difference between the two approaches is extent 

to which customers are involved in the process: a traditional PD approach is centred on the 

functional attributes of the product, with the involvement of customers limited to the collection 

of requirements at the beginning of the project. This tends to lead to a focus on the technology 

under development rather than the specific needs of the user.  

In contrast, the UCD approach has the wants and needs of the customer at its core, with a 

consistent focus on the customer throughout the development process. Ideally, this focus on 

the user extends beyond the point of manufacture of the product into all aspects of the product 

offering, including marketing and aftersales service. It is important however that the focus on 

the user also extends beyond the existing customer base to encompass the target market in its 

entirety. A UCD approach necessitates that the intended product character is designed first 

with the required product functionality subsequently defined.  

 

Figure 12 ‐ Contrasting the traditional approach to design with UCD (Vredenburg et al., 2001) 
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A UCD approach also determines a shift in the quality paradigm. In a functional approach, 

quality can be seen as the lack of technical defects that affect the reliability of the product. A 

focus on quality defined in these terms however neglects problems encountered by the user. 

In contrast, a UCD-based definition views the quality of the user experience as the prime 

determinant of product quality. This ensures both that the product meets the requirements of 

the user, and that a suitable level of product reliability is attained (Vredenburg et al., 2001). 

Furthermore, the involvement of users throughout the PD process allows the product to be 

validated at various stages of development, ensuring that at launch the final product is fully 

aligned with user requirements; a lack of user validation within the PD process can lead to 

problems only being discovered once the product is in the marketplace, increasing the cost 

and complexity of resolving them (Cooper, 2011, Owens and Davies, 2000).  

ISO 9241-210 (ISO, 2010a) provides a generic framework for the application of UCD, which 

can be tailored to specific products, illustrated in Figure 13 below.  

 

Figure 13 ‐ ISO 9241‐210 User‐Centred Design process (ISO, 2010a) 

The first step within this process is to specify the context of use; indeed, the process as a whole 

flows from the establishment of the context of use, acknowledging the extent to which this 

influences identification of goals and subsequent judgement of product quality (Bevan, 1995). 

Clearly, the context of use must also be considered in the evaluation phase, such that user 

feedback accurately reflects the conditions in which the product will be used once in the 

market.  

Successful application of a UCD approach is dependent on obtaining high-quality data from 

perspective users, thus requiring appropriate evaluation methods. While traditional usability 

approaches often focus on instrumental measurements of the functional attributes of the 

product (e.g. task completion time, error rate), information derived from UCD evaluations is 

likely to be subjective in nature, requiring a range of qualitative and quantitative methods to 
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build a full picture of the quality of interaction in order to inform and support the development 

process.  

3.4. Summary 

The processes that drive customers’ acceptance of new technologies are complex and multi-

faceted, incorporating both intrinsic and extrinsic product attributes along with personal 

beliefs, goals and motivations. The literature discussed in this chapter identifies how the user’s 

perceptions of a product are built from core capability in terms of product utility and usability: 

products that are effective and easy to use will be perceived more positively; conversely, 

products that are difficult to use are likely to be perceived more negatively. User Experience, 

however, moves beyond this purely functional view, encompassing emotional responses and 

expectations based on prior experience.  

In order to understand UX therefore it is necessary to address both functional and hedonic 

aspects of the product interaction. It is important to note that the perspective of the designer is 

often quite different from that of the user: the former can influence the character of the product 

but the consequences experienced by the latter are determined by situation of the interaction. 

Hence the situation, i.e. the context of use, must be reflected in evaluating the quality of the 

experience.  

This broader view of product quality prescribes a revised approach to product design to one 

that views the end-user's perception as the main determinant of quality. User-Centred Design 

practices utilise iterative evaluations of product concepts to ensure that the ‘voice of the 

customer’ is reflected in the product from the earliest stages. Key to this approach is an 

effective methodology for gathering contextual, customer-derived data.  

The implication therefore is that the design and manufacturing processes for in-vehicle 

technologies must consider the quality of the user experience as a success factor, alongside 

traditional product performance metrics. Consequently, there must be an effective mechanism 

by which elements of UX can be evaluated, and that information fed back into the product 

development process to improve the product.  
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4. Automotive Human Machine Interface 

The Human Machine Interface (HMI) can be defined simply as “the point at which the user 

and the technology meet” (IEC, 2007). The interface facilitates the flow of information from 

the user to the system under control and vice versa (ISO, 2006). While often used to refer to 

graphical user interfaces (GUIs), the term applies in general to the medium by which a user 

interacts with a system, tangible or intangible, encompassing the means through which tasks 

are accomplished when using a product (Raskin, 2000). 

In the context of the automobile, HMI can be considered to be the controls and displays 

required to control the speed and direction of the vehicle, operate secondary functions such as 

the turn signals and windscreen wipers; and to interact with information and entertainment 

functions which may improve the driver’s experience, but do not influence control of the 

vehicle (Tönnis et al., 2006). However, the paradigm for primary vehicle control has changed 

little over the past 100 years (Frawley, 2012), with all modern vehicles using variations of the 

ubiquitous pedal/steering wheel arrangement. HMI is therefore currently used more readily to 

refer to the interface with technology within the vehicle: the secondary and tertiary systems 

with which the driver interacts in the course of driving but which are not the core means of 

affecting the primary driving task.  

As the levels of in-vehicle technology and its associated information increase, functionality 

has become more centralised, characterised by a main multi-function display with a 

corresponding multi-function control mechanism to facilitate inputs. More recently, multi-

function displays have become common in the dash cluster, with the trend moving towards 

configurable displays replacing traditional physical instruments. These developments increase 

the flexibility of information display, but also have the potential to increase driver distraction.  

4.1. Strategic Importance of In‐Vehicle Technology & HMI 

In-vehicle technology represents a specific priority for vehicle manufacturers, especially in 

the premium sector (Güttner and Sommer-Dittrich, 2008). With relative parity across the 

market for functional attributes such as build quality or fuel economy, technology can be the 

factor that drives a customer’s purchase (Heaps, 2010). Recent market data shows that in 

vehicle-technology, specifically ADAS and connectivity features, strongly contribute to 

purchase intention (IHS Markit, 2016). This desire for technology features is spreading from 

established to emerging markets and is expected to grow in lower-priced segments as well as 

premium (Robbins, 2012).  

Within the domain of in-vehicle technology, the infotainment system, comprising audio, 

communications and navigation functionality, holds particular significance. Bob Joyce, Group 
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Engineering Director at Jaguar Land Rover, identifies infotainment as a critical area of focus 

for research and development activity, highlighting a recent significant expansion in capability 

(Hibbert, 2013). The complexity of modern infotainment systems is outlined by the fact that 

current generation vehicles feature up to 10 million lines of code in infotainment-related 

systems, double the amount required for engine management functions. Joyce states that the 

importance of in-vehicle technology will continue to increase: 

“Cars have become more connected but, trust me, we are only just on the 

wave of the next generation. Touchscreens, phones, the cloud, telematics 

and the connected world are going to transform the cars we drive” 

This trend is reflected in the emergence of mobile device integration solutions. Google Auto 

& Apple CarPlay were estimated to be available in 46% of new vehicles in Europe and 52% 

in the US in 2018 (Canalys, 2018). These solutions offer integration of smartphone capability 

through an installed in-vehicle display, allowing access to app functionality while constraining 

the extent of user interaction to reduce driver distraction. Both systems incorporate cloud-

based ‘smart assistant’ voice interaction (Apple Siri & Google Assistant) bringing naturalistic 

voice interaction to the car and reducing visual-manual distraction.  

Advances in naturalistic interaction are furthered with the advent of gesture recognition, 

providing non-contact interaction with the aim of improving ergonomics and reducing eyes-

off-road time. VW’s ‘Discover Pro’ infotainment system (Volkswagen, 2016), offers gesture 

control in addition to a centre-console touchscreen. Mercedes’ ‘MBUX Interior Assistant’ 

provides voice interaction, gesture control and augmented reality navigation (Mercedes-Benz, 

2018). BMW’s ‘Natural Interaction’ system combines gesture control, voice command and 

gaze recognition to provide multimodal interaction options, and is expected to be available in 

2021 (BMW, 2019).  

The advent of autonomous vehicles will see a seismic shift in the way in which we interact 

with our vehicles, with the focus moving away from the primary driving task and towards 

non-driving activities; and the role of the driver shifting from control to monitoring. This 

change brings many challenges in terms of HMI, with the nature of interaction with the vehicle 

varying significantly from the current norm. Key issues of interest include how to manage 

driver re-engagement (Cunningham and Regan, 2015), what types of information should be 

displayed (and how) (Debernard et al., 2016); and how to build trust in automated systems 

(Naujoks et al., 2019).  
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4.2. Customer Satisfaction and HMI 

It is clear that in-vehicle technology is highly important to both the customer and the 

manufacturer. However, it is necessary to consider how users’ interactions with the technology 

will affect their perceptions of the product. Kano’s model of Attractive Quality (‘The Kano 

Model’) (CQM, 1993, Kano et al., 1984) describes the relationship between the delivery of 

product attributes and user satisfaction based on the nature of the attribute, and is shown in 

Figure 14. Attributes are viewed as belonging to one of three categories: ‘attractive quality’, 

‘one-dimensional quality’ or ‘must-be quality’, each having a different function of delivery to 

satisfaction.  

‘One-dimensional’ quality attributes have a linear relationship between delivery and 

satisfaction: the more the attribute is delivered, the greater the satisfaction. An automotive 

example would be fuel economy: more is always better, and less is always worse. One-

dimensional attributes can produce incremental improvements or decrements and do not 

support step-changes in customer satisfaction.  

 

Figure 14 ‐ Kano's model of Attractive Quality 

‘Must-be’ quality attributes have a non-linear relationship between delivery and satisfaction, 

such that a lack of delivery causes a significant decrease in satisfaction. An automotive 

example may simply be basic reliability, which is largely taken for granted in modern vehicles. 

These attributes represent features that the customer expects, and as such significant increases 

in delivery will not produce increases in satisfaction.  
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‘Attractive’ attributes, also known as ‘delight features’, represent the elements of the product 

that go beyond the customer’s expectations of quality; as such, a lack of delivery of attractive 

attributes does not significantly harm the perception of quality. However, it is the delivery of 

delight features that can drive the overall response to the product, providing significant 

increases in the perception of quality. 

The Kano model indicates that it is possible to create significant increases in satisfaction by 

providing product attributes that exceed the expectations of the customer, but that failing to 

deliver basic requirements can conversely damage the perception of quality. Indeed, it is 

necessary to establish the basis of functionality and usability (and arguably safety) before a 

product can provide a pleasurable user experience (Jordan, 2000). Section 3.3.3 in submission 

1 details a case study relating to Ford’s ‘MyFord Touch’ infotainment system which 

experienced significant usability, reliability and safety issues when launched, creating a 

strongly negative customer reaction and causing significant damage to brand value. This 

illustrated the risks inherent in a technology-focused innovation strategy and emphasised that 

manufacturers must seek to optimise the user experience of in-vehicle technology before the 

vehicle reaches the market.  

4.3. Driver Distraction 

The use of technology in the car is a major source of driver distraction. The act of driving a 

car on a public road carries a degree of accident risk, due to a range of factors relating to the 

vehicle and its occupants (internal risks); and the environment and other road users (external 

risks). Data derived from real-world observation of driver behaviour indicates that 

approximately 80% of accidents are related to driver inattention (Klauer et al., 2006), 

indicating that human factors play a major role in driving accidents. Vehicle manufacturers 

face a challenge in how to enhance and promote the safety of their vehicles, with safety-related 

innovations forming a large part of certain manufacturers’ marketing strategy.  

Driver distraction refers to the diversion of the driver’s attention away from the primary task 

of vehicle control. A full discussion of driver inattention, its causes and effects is given in 

submission 1, chapter 4; key points are summarised here. 

Young et al. (2003) define four main types of distraction: 

 Visual distraction – Visual attention is of primary importance when driving 

(Wierwille, 1993). Visual distraction can occur when the driver’s view is blocked by 

objects, when the driver’s gaze is diverted away from the roadway by other visual 

targets (either inside or outside the vehicle); or when the driver’s visual attentiveness 

is lost, i.e. the driver “does not see” a hazard.  
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 Auditory distraction – Auditory distraction is analogous to the second type of visual 

distraction, where the driver’s attention is diverted away by signals not originating 

from the road environment. An obvious example of this is mobile phone use, which 

has been shown to have significant correlation to increased accident risk (Klauer et 

al., 2006, Yee, 2007).  

 Physical distraction – Physical distraction occurs when the driver moves their hands 

from the primary driving controls in order to engage in another task. This can include 

operating other controls within the vehicle (e.g. heating and infotainment controls), 

or non-driving related tasks such as eating and drinking.  

 Cognitive distraction – Cognitive distraction occurs when the driver’s mental 

attention is diverted away from the driving task. This often manifests as an increase 

in reaction time. Again, an example is holding a conversation on a mobile phone while 

driving, which imposes both cognitive and auditory workload (as well as potential 

manual and visual workload in holding/operating and looking at the device).  

Regan et al. (2011) seek to differentiate driver distraction from other forms of inattention, 

applying the term ‘Driver Diverted Attention’ to driving-related and non-driving-related 

sources of distraction. This taxonomy effectively segregates technology-based distraction 

from environmental and biological factors by acknowledging the division of driver attention 

as an element of the larger issue of inattention as a whole. As such, Regan et al. adopt the 

following definition of driver inattention: 

“Driver Inattention means insufficient or no attention to activities 

critical for safe driving” 

Driver distraction can arise from a variety of sources, both internal and external to the vehicle. 

Figure 15 shows the calculated odds ratios for in-vehicle activities, based on naturalistic 

driving data. The figures represent the relative probability of being involved in an accident 

while undertaking one of the listed activities compared to driving alone; for example, dialling 

a hand-held device increases accident risk by a factor of 2.8.  

The continuing proliferation of in-vehicle technology increases the potential for the driver to 

be distracted from the primary task of vehicle control (Stutts et al., 2001). New technologies 

bring with them new sources of information that must be monitored and managed by the 

driver. OEM devices afford the manufacturer a degree of control over the presentation of 

information to the driver and can potentially make use of contextual information provided by 

other vehicle systems to mitigate distraction by limiting information display. Mobile devices 

such as smartphones present further challenges, although there are initiatives to integrate this 

functionality into vehicles, such as Android Auto and Apple CarPlay as mentioned previously.  
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Figure 15 ‐ Risk odds ratios for in‐vehicle activities (NHTSA 2013) 

Finally, there are a range of HMI issues relating uniquely to low-carbon electric vehicles, 

which may have an effect on driver attention. Most important of these is ‘range anxiety’: the 

driver’s anxiety about the car’s ability to cover the required distance before it must be 

recharged (Woodcock et al., 2012). As low-carbon vehicles become more prevalent, the 

number of ‘naive’ users will increase, hence accurate and reliable information must be relayed 

to the driver taking into account environmental factors and driving style, in order to minimise 

range anxiety issues.  

4.3.1. Mental Workload 

The assessment of mental workload is also highly important in understanding the impact that 

technologies have on the user. The concept of mental workload is widely studied within 

Human Factors research (Young et al., 2015), but is considered difficult to precisely define 

(Mehler et al., 2012, Miller, 2001, de Waard, 1996). Young and Stanton (2005) state that: 

“mental workload of a task represents the level of attentional resources required to meet both 

objective and subjective performance criteria, which may be mediated by task demands, 

external support and past experience”. This emphasises the influence of the user’s own 

conditions on the perception of workload while drawing a clear distinction between objective 

and subjective measures; it is easy to envisage a situation whereby a user perceives a high 

workload for a task which is objectively relatively simple, because the necessary workflow 

does not meet their expectation of how the task should be completed. Furthermore, perceived 
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workload is influenced not only by the demands of the task within the context of interaction, 

but by the user’s own motivations and coping strategies (Mehler et al., 2012).  

Exceeding the limits of resource capacity will generally result in a reduction in the subject’s 

ability to perform a given task (i.e. a performance degradation)(Wickens et al., 2013). As 

technology levels increase and systems become more complex, the workload demands placed 

on operators are also increased. For in-vehicle technologies, interaction tasks that impart 

workload onto the driver will potentially degrade the driver’s primary task performance; that 

is: to reduce their ability to safely control the vehicle. The assessment of workload is therefore 

highly important during the design of complex systems (Stanton et al., 2013), such as new in-

vehicle technologies.  

Mental workload assessment techniques can be placed in three main categories: physiological, 

subjective and performance-based (Miller, 2001). Physiological measurement involves 

monitoring changes in a subject’s physical condition in response to changes in resource 

demand, such as heart rate, eye movement and brain activity (Stanton et al., 2013). Subjective 

techniques involve the use of scales or rankings to determine the self-reported subjective 

workload experienced by a user. Performance-based workload techniques involve examining 

the capacity of a user to through the application of a primary or secondary task. By measuring 

the performance of the task(s) and observing how that performance varies under increased 

workload, an estimate of the mental workload experienced by the user is obtained (Miller, 

2001). Performance-based and subjective approaches are discussed in detail in submission 2, 

sections 6.1 and 6.2.  

4.4. Industry Guidelines for Minimising Driver Distraction 

A number of organisations have been involved in the development of guidelines and standards 

aimed at reducing distraction from automotive HMI. Within Europe, the Commission of the 

European Communities Statement of Principles on Human Machine Interface (HMI) for In-

Vehicle Information and Communication Systems (European Commission, 1999, updated 

2007) provide a series of design goals and installation principles for HMI designers which aim 

to limit distraction caused by in-vehicle systems, with examples of good and bad practice for 

each. The Statement of Principles references a number of ISO standards relating to ergonomics 

and the assessment of driver distraction (see submission 1 section 4.3.2 for details). From 

Japan, the Japan Automobile Manufacturers Association (JAMA) Guidelines for In-Vehicle 

Display Systems, version 3.0 (2004) outline limitations on information display. In addition, 

complex interaction tasks, such as inputting phone numbers and map scrolling, are prohibited 

when the vehicle is in motion. The guidelines also make reference to ISO standards for 

measuring glance behaviour. 
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In the USA, the National Highway Traffic Safety Administration (NHTSA) published the 

Visual-Manual NHTSA Driver Distraction Guidelines for In-Vehicle Electronic Devices 

(NHTSA, 2013); these are discussed in detail in submission 1 section 4.3.3. The guidelines 

were developed in recognition of the fact that the most distracting in-vehicle activities are 

visual-manual in nature, and incorporate the latest driver distraction research with a sole focus 

on safety. The publication draws heavily from previous works, in particular the Alliance of 

Automobile Manufacturers (AAM) Statement of Principles, Criteria and Verification 

Procedures on Driver Interactions with Advanced In-Vehicle Information and Communication 

Systems (2006), and aims to provide standardised test procedures that will help to minimise 

variation across tests and allow easier comparisons across tasks and systems.  

One of the key features of the Visual-Manual distraction guidelines is the recommendation for 

‘lock-outs’: the forced disabling of specific tasks while the vehicle is being driven, based on 

performance criteria. Acceptance criteria are applied on the basis of visual glance time, with 

limits on mean glance duration and total glance time for a given task. In addition, a range of 

tasks are recommended as ‘per se’ lock outs that will be disabled under driving conditions at 

all times, on the basis that they are either not appropriate for use while driving, or that they 

are not suited to the proposed assessment methods.  

The focus of the phase 1 guidelines is on visual-manual distraction for installed (OEM) 

systems only; phase 2 guidelines relating to visual-manual interactions with 

aftermarket/portable devices were released in 2016 (NHTSA, 2016) and forthcoming 

publications will extend the scope to auditory-vocal interactions. While the guidelines are not 

legally binding, NHTSA state that they expect vehicles manufactured by AAM members and 

launched 2 years following the publication of the guidelines to be fully compliant.  
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4.5. Summary 

In-vehicle technology has become a major point of focus for vehicle manufacturers as they 

compete to win market share by offering the latest functionality. While the potential for 

competitive advantage is apparent, it is vital that the impact of new technologies of the 

experience of the user is well understood. Many of the new systems introduced will have a 

tangible interface with which the driver can interact, potentially providing new sources and 

types of information. As the main means by which the user interacts with the vehicle, the 

Human-Machine Interface has a major impact on the quality of the User Experience. When 

implemented poorly, the effect on the overall perception of the quality of the brand can be 

significant.  

The influence of in-vehicle technology on driver safety is clear, with a proven link between 

driver distraction and accident risk. Current guidelines and standards outline a range of 

approaches for evaluating the distraction potential of HMI solutions, with recent publications 

moving towards establishing acceptability criteria for task time and visual workload along 

with standardised testing procedures, while complementary guidelines for auditory-vocal 

interfaces are currently under development. Emerging technologies will continue to create 

challenges for designers and engineers as new functionality is added to the vehicle and mobile 

device integration standards are matured.  

The previous chapter identified the importance of evaluating the UX on in-vehicle 

technologies as part of a user-centred design process. However, HMI design must also be 

carefully considered in terms of minimising the impact on the driver’s ability to concentrate 

on the primary driving task. An effective technology evaluation processes must therefore 

address both areas in parallel, as part of a holistic approach.  
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5. Making the Case for a New Evaluation Toolset 

The preceding chapters have identified the strategic importance of in-vehicle technology, in 

terms of commercial advantage, driver safety and customer satisfaction. As noted, levels of 

in-vehicle technology are continually increasing as manufacturers seek competitive advantage 

for their products, bringing new sources and types of information into the vehicle that the 

driver must process, representing an increased potential for driver distraction. Manufacturers 

also face significant pressure to provide innovative features at low cost and within short design 

cycles (Bhise et al., 2003). The increase in technology level invariably brings an increase in 

usability issues which are more likely to occur with complex systems that feature high levels 

of functionality (Harvey et al., 2011a).  

It the integration of user-derived information into the NPD process is therefore vital to support 

the development of new technology concepts. This chapter presents a precis of the rationale 

given in submission 2, chapter 7 for the development of a new evaluation toolset to facilitate 

the holistic evaluation of in-vehicle technology concepts.  

Broström, Bengtsson & Axelsson (2011) identify a distinction between research approaches 

employed in the evaluation of IVIS. Firstly, a formative approach is often employed to 

evaluate safety characteristics though driver behaviour studies. This type of evaluation is 

typically conducted by universities and research institutions. Vehicle manufacturers, however, 

tend to employ summative approaches to customer satisfaction and technology acceptance 

though user trials.  

In the majority of these cases the focus is very much on the functional performance of the 

technology, rather than the user’s experience of interacting with it. In other studies however, 

a combination of performance and usability metrics is often utilised. For example: Sumie et 

al. (1998) investigated the usability of menu-based interfaces, using objective measures along 

with subjective ratings of task difficulty, design preference and perceived safety. Döring et 

al.(2011) applied subjective ratings of ease of use, self-reported distraction and liking to the 

LCT-based evaluation of a steering wheel gesture input surface. Harvey et al. (2011b) 

performed simulator-based comparisons of touchscreen and rotary controller interfaces, using 

driving performance and secondary task performance metrics alongside subjective usability 

measures; and Rydström et al. (2005) and Broström et al. (2011) combined secondary task 

completion measures with expert heuristic usability evaluation in the assessment of IVIS 

interfaces.  

Analytical approaches are also apparent: Manes & Green (Manes, 1997) compared task 

completion times for button and knob controls against a GOMS (Goals, Operators, Methods 
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& Selection) model. Pettitt et al. (2007) applied the Keystroke Level Model (part of the GOMS 

family of methods) to predict the visual demand of IVIS interaction, to provide a comparison 

to the occlusion method; and Harvey & Stanton (2012) applied Hierarchical Task Analysis 

and multimodal Critical Path Analysis to the evaluation of a touchscreen interface.  

UX-centric examples focus more heavily on static evaluation of design features. Wellings et 

al. (2008, 2010, 2012) utilised the semantic differential technique, factor analysis and content 

analysis to determine key parameters for automotive switch feel quality. Gaspar et al. (2014) 

employed a similar approach to the evaluation of automotive audio interfaces; and Park et al. 

(2013) applied a magnitude estimation technique to create a model of UX for a mobile device, 

including dimensions of usability, user value and affect.  

The importance of the user’s experience of in-vehicle technology is clear, with a failure to 

meet the user’s expectations shown to have a negative effect on the perception of quality of 

the product. It is therefore important to engage the user in the design process such that the 

product can be aligned with their needs. By engaging users at the earliest stages, i.e. in the 

discovery phase of the NPD process, the benefits of user engagement can be maximised. 

Failure to meet the needs of the user in the marketplace can have a detrimental effect on 

perception of both the product and the brand as a whole.  

This focus on up-front development activities is highly significant for JLR, who as a company 

have adopted a development strategy with in-vehicle technology at its core. The UX literature 

discussed in section 3.2 identifies that the user’s experience of interaction with automotive 

HMI extends beyond the functional into the emotional, hence evaluation methods must 

consider measures of affect alongside ease of use (Edmunds and Dorn, 2012). Traditional 

usability engineering approaches do not adequately consider the hedonic aspects of the 

experience and their relationship to utility and usability (Hassenzahl et al., 2001).  

Hassenzahl (2004b) encapsulates the dilemma facing the designers of in-vehicle technologies 

for modern automobiles: if the major design goal is the efficiency and/or effectiveness of the 

product (as might be expected for a system designed to minimise driver attention 

requirements), then objective measures of task performance are most appropriate. Conversely, 

if the core goal of the designer is to create a rich user experience, then the focus of evaluation 

should be on the perceptions of the product by the user, requiring tools that can capture users’ 

subjective impressions.  

The UX of automotive HMI is, as with all products, also dependent on the user and the context 

of use (Burnett, 2008) and this must also be reflected in product evaluations conducted to 

support product development. Hence evaluation processes must consider aspects of affective 
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response to the product alongside functional usability and safety, and that the conditions under 

which product are tested must reflect their intended usage in the field.  

While examples of technology evaluation approaches exist in the literature as identified above, 

there is often a lack of detailed description of the evaluation methodology, or discussion of 

why particular methods or approaches were selected. Submission 2, section 7.1 describes four 

evaluation frameworks, designed for the aeronautical and automotive sectors, which include 

a cross-section of the usability and workload methods described in submission 2 chapters 5 

and 6. These encompass both analytical and experimental methods, generating both qualitative 

and quantitative data, representing a diverse range of tools that can be applied at appropriate 

stages of product development.  

It is clear however that both functional, safety-related aspects and User Experience are critical 

to the success of in-vehicle technology and should be represented within the technology 

evaluation process. Simply put: there is no point developing an in-vehicle technology that 

provides a compelling user experience if it heavily distracts the driver in use; nor is there 

marketing value in a product that minimises distraction but is unappealing to the user. Given 

also that usability issues which remain unidentified until late in development can significantly 

increase costs and risk adding delay to the development timeline, it is essential that these issues 

are addressed in parallel throughout the product development process.  

Jander, Borgval & Ramberg (2012) defined a set of requirements that must be met in order for 

an HMI evaluation toolset to be considered fit for purpose; these are discussed further in 

submission 2 section 9.1 and are summarised below: 

1. The ability to diagnose specific problems or weaknesses in design  

2. The ability to benchmark different design solutions  

3. The ability to support holistic system evaluations 

4. The ability to distinguish if a system can be HMI approved or not  

5. The ability to be utilized for simulator evaluations  

6. The ability to perform evaluations iteratively 

7. Low to moderate complexity 

8. User-centred  

An effective evaluation toolset must facilitate the gathering of data on both functional and 

affective aspects of users’ interactions with a range of technologies, whilst reflecting the 

context of evaluation. In addition, the toolset must assist practitioners in conducting studies, 

while generating clear findings that can be used to support product development decisions. 
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However, none of the frameworks identified in submission 2 chapter 7 fully meet the 

evaluation toolset criteria. There is therefore an apparent need for an evaluation toolset that 

addresses these concerns. This must integrate appropriate methods to create a holistic view of 

the relative merits of candidate technologies, while representing the context of use. 

5.1. Summary 

The importance of integrating the ‘voice of the customer’ into the NPD process is well 

established and has specific relevance to in-vehicle technology. Obtaining relevant and 

accurate information requires an evaluation toolset that can something encompass all key 

quality and performance metrics while reflecting the context of use of the concept under test. 

Traditionally, HMI evaluation has focused on functional, objective measures which, while 

important, do not fully reflect the experience of the user. As identified in earlier chapters, the 

subjective aspects of UX are also important and hence should be included in the assessment 

process.  

The methodologies and toolsets identified in the literature do not adequately meet identified 

requirements, indicating the need for a new technology evaluation toolset, designed to provide 

a holistic view of the user’s experience of interaction. Data gathered using the toolset will be 

used to support NPD decision-making processes, in turn supporting the technology-focused 

strategic goals of the company. 
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6. Research Methodology 

The preceding chapters outlined the basis for the research, both from the literature and from 

an industrial perspective. This chapter outlines the research question, objectives and 

methodology for the project, including a discussion of the research philosophy.  

The research methodology was revised early in the project to place greater emphasis on the 

development of UX-based technology evaluation tools to support decision making in the up-

front NPD process. The original methodology is described in submission 1 chapter 6, while 

the revisions are explained in submission 2, chapter 8. Presented here is a summary of the 

revised methodology, supported by relevant justification from the earlier work. Issues relating 

to validity and reliability are discussed in submission 1, section 6.6.  

6.1. Research Question 

The project focuses on the use of driving simulators to provide a context-rich environment in 

which novel technologies can be evaluated. The evaluation process must take into account the 

issues of user experience and driver safety as previously discussed. The research question 

adopted therefore is as follows: 

“How can simulation tools be used to support advanced product 

development processes to deliver HMI solutions that optimise the user 

experience while minimizing safety risk?” 

The main research themes and sub-questions are identified in table 5, section 6.2 of submission 

1.  

6.2. Objectives 

The objectives for the project are derived from the research question and themes: 

1. Determine the key objective performance indicators for driver behaviour 

2. Develop a context-rich environment to enable evaluation of novel HMI technologies 

3. Identify and evaluate methods for capturing the User Experience of in-car technology 

4. Create and test a protocol for the evaluation of technologies from the perspectives of 

UX and driver safety 

5. Determine how the evaluation protocol can be integrated into the up-front NPD 

process for in-vehicle technology 
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The objectives of the research are be addressed through a combination of theoretical and 

empirical approaches. While the underlying research philosophy remains unchanged, the 

revised research design is described below.  

6.3. Research Design 

The research design is illustrated in Figure 16. The research consists of three phases, described 

below: 

 Phase 1 focuses on development and validation of evaluation tools, encompassing 

hardware and software tools along with data gathering and analysis methods. This 

includes development of the evaluation protocol and selection of appropriate methods, 

as outlined in chapter 10 of submission 2.  

 Phase 2 consists of a series of technology case studies conducted on concepts from 

both the Milestone and TCDS advanced product creation processes, representing 

technologies at different technology readiness levels and requiring different degrees 

of maturation and differing outputs.  

 Phase 3 applies the learning from the case studies conducted within phase 2 to revise 

the toolset, which will then be validated and integrated into the NPD process. The 

work from this phase is detailed in the Innovation Report (this document).  

 

Figure 16 ‐ Revised research design 
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The technologies selected for the case studies are shown in Table 1 below.  

Table 1 – Technologies selected for case studies 

Case 
Study Technology Format PD Process 

Modality 

Input Output 

1 Voice dictation system Software Milestone Vocal/Manual Auditory/Visual 

2 Touchscreen (Capacitive/Infra-
Red/Resistive) Hardware Milestone Manual Visual/Manual 

3 Autostereoscopic 3D display Hardware TCDS - Visual 

      

For the toolset to be viable it must be applicable to the wide range of technologies likely to be 

investigated by JLR’s HMI research team. As such, the technologies selected for the case 

studies feature a range of input/output modalities, include both software and hardware 

solutions, and have different technology-readiness timescales, aligned to both the Milestone 

and TCDS development processes. The outputs from these case studies will enable refinement 

of the evaluation toolset, with a view to its incorporation into the development workflow as a 

new business process.  

6.4. Research Philosophy 

The research philosophy, describing the research paradigm and the epistemological and 

ontological assumptions made by the researcher is summarised below. For a full description 

see submission 1, section 6.4.  

The research deals in the observation, measurement and interpretation of human behaviour 

(Tidwell, 2006), therefore an empirical approach is employed. Empiricism typically implies a 

positivist paradigm, with an emphasis on qualitative methods and numerical analysis. 

However, the user-centred nature of this research requires the integration of more descriptive 

approaches in order to understand the nature of user experience. Therefore the overall 

methodology can be considered a mixed-methods design, incorporating both qualitative and 

quantitative methods to provide a detailed understanding of the research problem (Teddlie and 

Tashakkori, 2009, Creswell, 2006, Johnson and Onwuegbuzie, 2006). Adoption of this 

strategy represents a shift in philosophy towards post-positivism, a step away from the purely 

objective positivist perspective (Teddlie and Tashakkori, 2009). This acknowledges the 

element of uncertainty that exists in human-centred enquiry and the value of subjective 

knowledge, while retaining a neutral stance in order to avoid bias. A post-positivist approach 

is appropriate for the investigation of user experience due to the inherent influence of context 
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and users’ expectations on their perception of product interactions: in effect, their ‘reality’ is 

personal to them and will differ from that experienced by another user. 

6.5. Summary 

Following the revisions to the research methodology defined above, the focus of the project is 

now centred on the development and testing of a toolset that will support the holistic 

evaluation of early-phase prototype technologies. The toolset was developed based on 

methods identified in the literature and tested through application to three technology 

evaluation case studies. The technologies chosen for the study reflect a range of concept 

readiness, architecture and development timescales, in accordance with the design parameters 

for the toolset discussed in the following chapter.  
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7. Evaluation Toolset Development 

This chapter summarises the proposed evaluation toolset and protocol, which is described in 

detail in submission 2, chapters 9 and 10.  

7.1. Toolset Definition  

Chapter 5 provided a justification for the development of a new technology evaluation toolset, 

based on needs and requirements identified in the literature. These requirements form the basis 

of the design of the toolset. This section provides an outline of the methods and approaches 

selected; a detailed justification can be found in submission 2, section 9.2.  

Jander et al. (2012)’s requirements explicitly identify the important of a user-centred 

approach. Given the importance of customer input into the NPD process and the subjective 

nature of the user experience, a user-centred experimental approach is preferred. An 

experimental approach is chosen over analytical methods due to the relevance of the data and 

depth of insight obtained (Stanton et al., 2013).  

As previously identified, replicating the context of use becomes highly important when 

conducting user trials. A driving simulator-based approach was therefore adopted. The 

simulator allows technology solutions to be evaluated in a safe but realistic context, with 

environmental and workload conditions approximating those found in a real-world driving 

exercise (Godley, 2001, Reed, 1999, Hoyes, 1997).  

Driving simulators are increasingly used in research, largely due to their ability to provide a 

consistent environment for evaluations (Kaptein et al., 1996). Driving simulation offers a 

number of benefits: firstly, it allows evaluations to be conducted under repeatable conditions, 

with close control over intrinsic and extrinsic factors such as traffic and weather conditions. 

Secondly, the use of simulation minimises the risk in the evaluation of conditions under which 

vehicle control may be significantly compromised, such as high levels of workload or 

distraction (Bach et al., 2009). Finally, it enables the use of key objective methods to measure 

driving performance as a means of evaluating the impact of the system under test.  

The primary requirement for a technology evaluation toolset is that it is effective, i.e. that is 

can be successfully used to differentiate between different solutions and to identify design 

issues. This will be achieved through the use of established methods with proven sensitivity, 

reliability and validity. A mixture of objective and subjective methods are used in order to 

reflect actual performance levels as well as users’ opinions of IVIS under test (Harvey et al., 

2011c) and triangulation of methods will ensure that findings are not skewed by data 

anomalies. To minimise the complexity of the toolset, standardised test scenarios are 
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employed; this will also assist in drawing comparisons between technologies by ensuring a 

consistent evaluation platform with a known context in order to give a ‘baseline’ for system 

performance.  

Also discussed in chapter 5 is the importance of considering UX in parallel to safety. A holistic 

evaluation approach is achieved through the application of subjective UX methods alongside 

performance, usability, and workload measures. This integrated approach is absent from the 

evaluation frameworks identified in the literature.  

The ability to distinguish if a system can be HMI approved is determined through comparison 

of system performance to appropriate pre-determined pass-fail criteria. Harvey et al.’s 

framework requires that evaluation goals are determined at the start of each evaluation cycle. 

However, the safety criteria to be met by final products are determined by industry guidelines 

(such as the NHTSA Guidelines discussed in section 4.4) and are consistent across systems, 

being based on safety limits. Acceptability criteria for subjective measures can be determined 

with relative to one or more reference system; or on a statistical basis (e.g. requiring a 

minimum percentile rating to pass). Acceptance criteria are discussed in section 14.2.  

Jander et al. state that the toolset should support the iterative evaluation of technology 

concepts. Simulator-based user evaluation necessitates a certain level of functionality in order 

to support user interaction, hence cannot be used at the very earliest stages of product 

development. However, the evaluation toolset can be developed to support the product 

development workflow such that evaluations can be implemented at the earliest possible 

phase; this places specific demands on the design of the driving simulator (see section 8.1 for 

discussion).  

7.2. Toolset Applicability 

Blandford & Green (2008) identify that: “Evaluation methods can be broadly classed on three 

dimensions: 1) With or without the active involvement of users; 2) With or without a running 

system; 3) with or without a realistic context of use. Most methods fit within this three-

dimensional space.” 

Using Blandford & Green’s taxonomy, the methods selected for the evaluation toolset all fit 

within the ‘with users’/‘with system running’/‘with context’ category, as illustrated in Figure 

17. The user is at the heart of the proposed toolset; while analytical methods can be used to 

evaluate interface concepts earlier in the design phase, the aim of the toolset is to derive user-

based information to identify UX issues and inform the ongoing PD process. As identified 

above, this necessitates a minimum level of interactive functionality from the system under 

test.  
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Figure 17 ‐ Technology applicability for evaluation toolset  

The minimum technology development level required negates some of the perceived 

advantages of desktop analytical methods, which are well suited to low-cost evaluation of very 

early stage prototypes, before any significant functionality is developed. Furthermore, 

analytical methods are not appropriate for the evaluations required in case studies 2 and 3 (see 

Table 1, section 6.3), whereby it is the fundamental underlying performance of a display 

technology that is under test rather than a graphical user interface.  

The tasks to be evaluated will be determined in large part by the level of functionality of the 

system under test: while ideally these should reflect the full range of a product’s attributes of 

interest, this may not be possible for early prototypes. It should be noted that the level of 

prototype fidelity can vary widely based on the product type and development stage 

(McClelland, 1995), and this will affect the validity of the results of the evaluation (Sauer and 

Sonderegger, 2009, Sauer et al., 2010).  

7.3. Dependent Variables and Data 

A holistic evaluation approach requires that a range of measures are applied in order to create 

a full picture of the user’s experience of interaction with the system. Employing multiple 

methods, both objective and subjective, also allows triangulation of data, providing greater 

confidence in the validity of the outcomes.  

Firstly, objective performance measures, relating to both the driving and technology tasks are 

used. Performance measures generate quantitative data that are captured in software or derived 

from video analysis.  

Lateral vehicle control is measured using the standard deviation of lane position (SDLP), 

while longitudinal control is determined through the measurement of headway to a leading 
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vehicle, in terms of distance or time. These metrics are specified in the NHTSA Visual-Manual 

distraction guidelines (NHTSA, 2013). 

Task performance is measured through task completion time and error rate (e.g. incorrect 

button presses, unsuccessful completion). This may be achieved through software logging of 

user inputs (where possible), or through video capture and coding post-evaluation.  

Participants’ visual behaviour is also captured. This may be achieved using video, allowing 

for the coding of glance events and calculation of eyes off road time (EORT) and glance 

frequency. However, conducting this type of analysis manually is arduous and time 

consuming, therefore it is preferable where possible to utilise automated eye tracking 

equipment to determine gaze vectors and calculate visual metrics.  

Secondly, quantitative subjective usability, workload and UX data are collected post-task 

using a questionnaire approach.  

Usability is assessed using the System Usability Scale (SUS) (Brooke, 1996, 2013). SUS is 

simple to apply and to understand, exhibits favourable reliability (Bangor et al., 2008, Lewis 

and Sauro, 2009) and is shown to be sensitive to differences between interface solutions 

(Bangor et al., 2008).  

Task workload is assessed using the Raw Task Load Index (Byers et al., 1989) variant of the 

NASA Task Load Index (TLX) (Hart and Staveland, 1988, Hart, 2008). This approach 

benefits from extensive evidence of validity while offering benefits in ease of application over 

the original NASA-TLX method.  

The user’s affective response to the product is measured using the Hedonic Rating Scale 

(Peryam and Pilgrim, 1957, Stone and Sidel, 2004) - This is a simple rating of liking, derived 

from sensory evaluation techniques; the simplicity of the scale means that it is easy for both 

researchers and participants to use (Lim, 2011), and that it is well suited for integration into a 

questionnaire-based approach as part of a wider suite of measures. The method has previously 

been successfully applied by the author in the evaluation of automotive technologies (Pitts et 

al., 2012b, Pitts et al., 2012a).  

In addition to the hedonic rating data, a post-trial interview is conducted with each participant. 

This approach can provide deep insight into the issues that drive preference, adding qualitative 

detail to the quantitative measures accrued. The interviews are semi-structured, leading with 

a focus on the user’s affective response to the technologies under test, with follow-up 

questions seeking to identify the main reasons behind that judgement. This approach will also 

allow the derivation of preference ranking of the candidate technologies. The interview 

approach is described in submission 2, section 10.2. 
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7.4. Summary 

This chapter provided an outline of the approach, environment and methods that form that 

toolset, identifying how each element of the toolset addresses key requirements derived from 

the literature.  

In summary, the key features of the toolset are: 

 A User-Centred, Experimental evaluation approach 

 Uses a Driving Simulator to provide a context-enhanced evaluation environment 

 Is based on a Standardised Evaluation Protocol to minimise bias and variability 

 Employs a combination of Qualitative and Quantitative evaluation methods 

 Utilises triangulation of data from Driving Metrics, Usability, Workload and UX 

measures 

The tools described here are applied through the evaluation protocol defined in Chapter 9.  
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8. Driving Simulator Development 

As identified in section 7.1, driving simulators are widely used in research settings due to the 

repeatability and safety benefits offered. Simulators also place the participant in the context 

of driving, recreating aspects of the user experience and approximating the workload 

conditions of a real-world driving task. Furthermore, a virtual driving environment supports 

the use of driving-related metrics to measure performance. It must be remembered however 

that a driving simulator is an approximation of the real-world activity; the researcher must 

always use caution when seeking to generalise the findings of their work to the wider world 

and be aware of the limitations of their system.  

The original basis for the WMG simulator resulted from the HMI workstream of the Low 

Carbon Vehicle Technology Project (LCVTP). LCVTP was a collaborate project between a 

number of industry and academic partners, funded by the European Regional Development 

Fund and Advantage West Midlands. The HMI workstream was led by WMG and supported 

by JLR, Tata Motors European Technical Centre (TMETC) and Coventry University. Work 

conducted under this project set the initial specification for the simulator, including the budget, 

software selection, hardware procurement and visualisation design.  

This chapter provides a summary of the key work undertaken to develop the WMG driving 

simulator from that basis to fit the requirements of the evaluation toolset. The development of 

the simulator is covered in detail in Submission 3.  

8.1. Simulator Specification 

The term ‘driving simulator’ can be used to describe a wide range of solutions, from a desktop 

system featuring a single monitor and a gaming wheel/pedals, to a fully-immersive system 

offering six degrees of motion and costing multiple millions of pounds. The exact design and 

specification of a given system will be largely determined by its intended use and by the 

available budget.  

Generally speaking, increased realism demands increased cost and complexity. For example, 

a wrap-round display will provide greater immersion, but will require additional projectors, 

graphics cards and PCs; and potentially additional hardware/software for warping and 

blending graphics card outputs to create a coherent image. Similarly, including a motion 

platform will replicate some of the kinaesthetic cues that are absent from a fixed-base system, 

but adds increased cost and complexity. 
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The WMG simulator is shown in Figure 18. It was designed to minimise system complexity 

where possible while providing an immersive experience and observing budgetary constraints. 

The system therefore utilises a fixed-base architecture with no vehicle cabin motion. The 

system runs OKTAL SCANeR Studio software on a network of four PCs, described in section 

8.1.1. Visualisation is provided via three flat projection displays to the front of the vehicle, 

described in section 8.1.2.  

 

Figure 18 – WMG driving simulator 

The context of use is highly important to the overall perception of a product and should be 

reflected in the evaluation process. Changes to the vehicle cabin interior were minimised such 

as to maintain as much of the original vehicle context as possible while providing the 

connectivity required to integrate the vehicle cabin into the virtual environment (see section 

8.1.3). The primary driving controls were modified to interface them with the simulator PC 

hardware and allow participants to drive the virtual vehicle, described in section 8.1.4.  

A key design requirement was that the simulator must support evaluations of different types 

of technologies in differing stages of development, including third-party software and 

hardware concepts (such as the case study technologies identified in section 6.3). In addition, 

the simulator should be compatible with the HMI development tools and workflows identified 

in submission 1, section 5.4, such that concepts can be quickly deployed onto the simulator 

for evaluation. This required modifications to the vehicle’s controls and displays, described in 

section 8.1.5.  
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8.1.1. Software 

The virtual environment is generated using OKTAL SCANeR Studio1 software. This is a 

dedicated driving simulation package with a range of features that make it suitable for this 

application. SCANeR Studio is designed to be run across a network of PCs, with different 

software modules allocated to different machines on the network. In this way, processing 

workload is distributed across the network, ensuring that performance limitations are not 

encountered.  

The software includes tools for terrain creation, allowing experimenters to create and apply 

their own simulated environments. The software is compatible with standard 3D model 

formats, allowing externally-created objects to be imported into the virtual environment. 

SCANeR Studio also features native scripting functionality, allowing creation of detailed 

scenarios featuring interactive events based on trigger conditions. This includes control of 

traffic vehicles and environmental conditions such as lighting and weather. In addition, a 

comprehensive API supports integration of 3rd party software and hardware, allowing real-

time dynamic data exchange with the simulation; the dash model described in section 8.1.5 is 

an example of this capability.  

The simulator must support the collection of all relevant metrics for the evaluation methods 

selected, including objective data relating to lateral and longitudinal control of the virtual 

vehicle. SCANeR Studio supports the collection and output of a wide range of parameters 

relating to the virtual vehicle and its position within the virtual environment. Data can be easily 

exported for analysis in standard ASCII format. Data can also be imported and written to the 

recording file across the network using custom data channels.  

8.1.2. Visualisation 

The visualisation system for the simulator consists of three flat projection displays positioned 

in front of the vehicle cabin, with the centre display perpendicular to the centreline of the 

vehicle and the side displays angled forwards by 45°. The use of flat screens simplifies the 

projection setup as no image warping or blending is required. The display hardware was 

designed and supplied by Holovis International Ltd. Figure 19 shows images from the original 

CAD.  

                                                      
1 https://www.avsimulation.fr/solutions/ 
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Figure 19 ‐ Visualisation system CAD images 

Each display surface measures 3.00m x 2.25m (4:3 aspect ratio), producing a viewing angle 

of 135°. Images are produced using three Sony VPL-FE40 projectors suspended from the 

frame above the vehicle cabin. These operate in SXGA+ resolution (1400x1050px), creating 

a total display resolution of 4200x1050px. Each projector is fed from its own visual server, 

connected to the SCANeR network.  

A 5.1 channel surround sound system provides immersive audio from the virtual environment. 

This includes engine, wind and road noise from the driven vehicle, along with sounds from 

traffic vehicles. The positioning of the surround channels ensures that passing traffic vehicles 

provides an immersive effect. The subwoofer is positioned under the vehicle cabin to emulate 

the source position of low frequency engine and road noise.  

8.1.3. Simulator Cabin 

The basis for the simulator is the cabin of a 2009 Jaguar XJ premium saloon car, supplied by 

JLR. The powertrain of the original vehicle was removed and the body was cut rearward of 

the B-pillar, retaining the full front section of body including the full interior and the main 

section of the headlining. This ensures that the simulator retains the ‘feel’ of the original 

vehicle, providing a context-rich environment to facilitate the evaluation of in-vehicle 

technologies. The cabin sits on its original front wheels and is mounted to a rigid frame at the 

rear; the simulator is therefore a fixed-base configuration with no cabin motion. 

The original seats are retained, with the ECUs modified by JLR engineers to allow operation 

of the original adjustment controls with an external 12V supply while disconnected from the 

main loom. Again, this helps to maintain the feel of the original vehicle. Care was taken to 

ensure that cabling was not visible from the driving position.  

8.1.4. Primary Driving Controls 

The primary driving controls of the vehicle are connected to the simulation software, allowing 

users to drive the vehicle within the virtual environment. The original steering wheel is 

retained, with the airbag removed and trim replaced. The steering column is connected to a 



47 

force feedback system from OKTAL, providing realistic steering force and vibration playback 

from the virtual environment. The system communicates with the simulation PC over a 

dedicated LAN interface.  

The original pedal set was removed and replaced with the pedals from a Logitech G25 gaming 

wheel, inverse mounted on a custom bracket; this was connected via USB to the simulation 

PC, identifying in Windows as a gaming controller. The simplicity of this setup ensured 

compatibility and reliability, while allowing easy calibration of pedal position using built-in 

tools.  

Given that the virtual vehicle model features an automatic transmission and the simulation 

scenario involves steady-state driving, there is little requirement for the driver to change gear. 

For simplicity, the gearshift is therefore operated by the experimenter via a USB control pad. 

For future applications, a more interactive gearshift mechanism may be developed. The engine 

start button is connected to a dedicated USB interface designed for simulator use, identifying 

as a game controller in Windows. This is configured using built-in tools to engage the ignition 

in the virtual vehicle model when pressed.  

8.1.5. Additional Controls and Displays 

The simulator is designed to be flexible to support the evaluation of a range of interface and 

technology concepts. A number of modifications have therefore been made to support the 

integration and operation of both hardware and software concepts.  

The production XJ features a TFT configurable dash display which displays context-specific 

information to the driver. This includes secondary displays, such as the speedometer and rev 

counter; and tertiary information such as navigation instructions and media information. The 

display features an embedded controller that receives signals from other nodes across the CAN 

bus and displays pre-determined information accordingly. For the purposes of the simulator 

however, additional flexibility is required to support the display of novel interface concepts. 

The standard display unit was therefore replaced with a development unit supplied by Visteon 

Corporation, based on the same display panel, but with the embedded display controller 

replaced with a DVI-LVDS converter. This allows the dash display to be connected to the 

simulator PC as an additional monitor, registering in Windows as an extended desktop, and 

allows the experimenter to display a wide range of graphical content to the driver.  

To replace the dash interface, a virtual dash model was developed. This was built as a 

SCANeR Studio module using NI LabVIEW to access the SCANeR API. The model accesses 

engine speed, vehicle road speed and gear engaged data, and displays them on a simple GUI 

featuring a gear indicator, rev counter and speedometer. The GUI was based on graphics 
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extracted from a JLR-produced Adobe Flash model of the original dash application, retaining 

some of the authentic look. The display and dash model are shown in Figure 20.  

 

Figure 20 ‐ Configurable dash display showing LabVIEW dash model 

The centre console touchscreen unit (HLDF) features the electronics for the audio and 

navigation systems. Again for flexibility, this was removed and replaced with an 8” resistive 

USB touchscreen monitor. As with the dash display, this can be simply connected over 

VGA/HDMI to any PC, allowing any graphical content to be displayed. The touchscreen 

element connects via USB and acts as a Human Interface Device (HID), similar to a standard 

mouse. The display and its installation is shown in Figure 21.  

  
Figure 21 ‐ Centre console USB touchscreen installation 

To complement the central touchscreen, the steering wheel controls were also modified to 

allow them to interface with HMI concepts. Normally, these switchpacks would communicate 

with the dash module over LIN; however, the dash module was removed in the display 

modifications described above. The switches were therefore modified to allow them to be 

connected to a second wireless USB control pad mounted inside the steering wheel in the 

airbag cavity. This interface provided up to 16 discrete button inputs which can be configured 

in software using built-in tools. The interface installation is shown in Figure 22.  
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Figure 22 ‐ Steering wheel control interface installation 

8.2. Driving Environment and Scenario 

The driving environment and scenario were developed to present the participant with a simple 

driving task with relatively low workload requirements that would require a minimal amount 

of learning to achieve consistent performance. Given that the core aim of the scenario is to 

derive information relating to the driver’s interactions with in-vehicle technologies, it was 

important to ensure that the participant was afforded ‘space’ in their resource to allow them 

to engage with the technologies under test. A challenging driving environment would demand 

a much higher proportion of the participant’s attention, either limiting their ability to conduct 

secondary tasks or causing catastrophic failures in primary vehicle control when their attention 

is diverted away. A simple driving scenario also helps to minimise the occurrence of simulator 

sickness.  

A motorway environment was therefore designed, utilising a lead vehicle to provide a 

reference for longitudinal control variation. The environment was developed using the terrain 

creation and scenario authoring tools within SCANeR Studio. Tijerina (1996) identifies that 

steady motorway driving represents the conditions under which drivers are most likely to 

divert their attention to secondary tasks  

The vehicle model used in the scenario is a ‘Large Executive Car’, the closest approximation 

to the Jaguar XJ donor vehicle available in the software. The roadway features three driving 

lanes plus a hard shoulder in each driving direction, separated by a central reservation. Armco-

style barriers and street lights are positioned along the central axis of the road. The ground 

outside the paved roadway rises to form high banking, reducing the visible distance. A 

screenshot from the environment is shown in Figure 23.  
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Figure 23 – Simulator scenario screenshot 

The roadway follows a curved trajectory, featuring a series of alternating clockwise and 

counter-clockwise bends with 3000m radius. This ensures that lateral position must be 

attended to constantly; any degradation in lateral tracking will be emphasised. The use of a 

curved trajectory is in contrast to the recommended straight layout featured in the NHTSA 

guidelines (NHTSA, 2013); however in this situation the driver could experience significant 

levels of distraction from the primary driving task without an increase in lateral deviation. 

Road curvature and lane widths are based on UK motorway specifications, while road marking 

comply with the Traffic Signs Manual 2003, chapter 5 section 4.  

The driving task itself is simple: participants were required instructed to follow a lead vehicle 

travelling at a constant speed of 70mph, at what they perceived to be a safe distance. The lead 

vehicle is constrained to the inside lane; additional automated vehicles are included for context 

but the scenario does not require negotiation of traffic nor are there any reaction events from 

the lead vehicle such as emergency braking. After a stabilisation period, the secondary tasks 

are introduced and completed by the participant. When all tasks are complete the participant 

is asked to pull over to the hard shoulder and stop the car, signifying the end of the drive.  
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8.3. Summary 

The WMG driving simulator, commissioned under LCVTP, has been developed under this 

project to meet the requirements of the evaluation toolset identified in the preceding chapters. 

Starting with the vehicle cabin, visualisation hardware and simulation software delivered 

under LCVTP, additional developments to controls and displays have been applied to support 

the integration of early-stage technology concepts into the vehicle, in both hardware and 

software.  

A bespoke virtual environment and evaluation scenario were created, based on UK motorway 

specifications. These were designed to provide a consistent driving workload, encouraging 

participants to engage with the technologies under test, while capturing variations in their 

driving behaviour. Data from the simulation can be exported and objective performance 

metrics calculated, forming one facet of the holistic evaluation approach previously defined.  
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9. Evaluation Protocol 

This chapter outlines the protocol that forms the basis of the technology evaluation approach, 

determining how the case studies will be conducted. Figure 24 illustrates the workflow for the 

evaluation studies. The protocol is based on the approaches defined by Stanton et al (2013), 

Harvey et al. (2011c), McClelland (1995) and Bhise et al. (2003), and is described in detail in 

submission 2, chapter 10.  

The protocol consists of three main sections: Pre-trial, Trial and Post-Trial. The earliest 

activities in the pre-trial phase are the selection of the candidate technology/technologies; and 

definition of the research question. It is important to have a clear research question for the 

study such that the aims and objectives can be clearly defined and communicated. Once the 

research question is established, the use cases and tasks to be performed can be defined, 

reflecting the range of functionality of interest for the given technology. The final step of the 

pre-trial phase is to identify and recruit appropriate participants.  

The Trial phase forms the body of the workflow. Each participant in the sample begins with 

an induction, during which the study is explained and consent is obtained (see section 9.2 for 

a discussion of ethics issues). Pre-study questionnaires are then completed, obtaining 

background data and a baseline reference for simulator sickness by completing the Simulator 

Sickness Questionnaire (SSQ) (see section 9.2.3). Once complete, the participant undertakes 

a practice/baseline drive in order to familiarise them with the simulator and obtain a reference 

for their driving behaviour. Baseline drives are conducted in the single-task condition, i.e. 

driving only.  

The remainder of the trial phase follows an iterative process. The protocol employs a within-

subjects experiment design, in which each participant experiences all of the technologies 

under test, discussed in section 9.1. For each of the technologies, the participant will be trained 

on the tasks to be conducted, then will begin a trial drive in the dual-task condition. The 

assessment of whether the participant is trained to an adequate level to undertake the trial drive 

is subjective and made by the experimenter. Tasks will be completed and data recorded until 

the tasks are exhausted. At the end of the drive the participant completes a post-task 

questionnaire, including the hedonic rating, workload and usability measures. The process is 

then repeated for each of the remaining technologies under test. Once all technologies have 

been tested, a post-study SSQ is completed and the post-study interview is conducted. The 

trial phase is then repeated for each of the remaining participants.  

The Post-Trial phase involves the collation and analysis of the data from the study. Qualitative 

and quantitative data collected throughout the study (as shown on the right of the diagram) are 
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brought together to form the metrics defined in section 7.3. Comparison between the single- 

and dual-task conditions will provide an indication of the effect of the in-vehicle technology 

on driver performance, using the statistical methods described in section 9.1.3.  

 

Figure 24 ‐ Evaluation study workflow 
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9.1. Experiment Design 

A within-subjects experiment design is employed, whereby participants complete a number 

of measured drives, corresponding to the number of levels in the variable under test (normally 

2-4 drives), therefore each participant experiences all of the experimental conditions. As an 

example, an earlier study (Pitts et al., 2012a) focused on the evaluation of haptic feedback 

touchscreens, with haptic feedback states as the independent variable; participants completed 

one practice and two experimental drives, corresponding to the two haptic feedback 

conditions.  

Participants are provided with training on both the driving task and the technology task prior 

to conducting dual-task drives. It is important to ensure that participants are accustomed to 

driving in the simulator and that their driving performance has stabilised before data collection 

commences. Similarly, participants must be allowed time to practice technology use cases in 

order to form a mental model of the operation of the system that will allow them to complete 

tasks efficiently (Bengler, 2007). The experiment design is balanced for presentation order to 

avoid bias. Instructions to participants are discussed in section 9.1.1 below.  

Driving sessions are limited in duration to around 15 minutes in order to reduce the risk of 

simulator sickness. Allowing for introductory procedures, training rest time between drives 

and data collection; total involvement time for each participant should be no more than two 

hours.  

9.1.1. Instructions to Participants 

At the start of the trial phase, participants are briefed on the purpose of the study and the tasks 

that they will undertake, both in terms of the primary driving task and the secondary 

technology interaction task. For the primary task (described in section 8.2), participants are 

instructed to follow the lead vehicle “at what they perceive to be a safe distance”, encouraging 

them to adopt their normal driving behaviour. A combined practice/baseline drive is then 

undertaken: the baseline is taken from a stable section of the data once the driving performance 

had stabilised. There were no specific criteria for ‘stable’ driving performance.  

Participants are then given training on the secondary tasks in a single-task condition (i.e. non-

driving). Participants are instructed on each of the tasks to be conducted and allowed to ask 

questions. Once training was complete, the trial drives are undertaken, one for each treatment 

in the within-subjects experiment design. No specific instructions are given in terms of 

prioritising either the driving or secondary task. No training/practice is conducted in the dual-

task condition prior to the trial drives.  
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9.1.2. Data Collection 

As discussed in section 7.3, objective data is recorded from the simulation software or derived 

from video recording. Subjective rating data is collected using a questionnaire administered 

after each evaluation drive; an example questionnaire is included in submission 2, appendix 

2. Once all experimental conditions have been completed, a semi-structured interview is 

conducted, based on the reasons for the participant’s preferences for the technologies tested. 

The interview is recorded (audio or video) with notes taken by the experimenter. The forced-

choice preference assessment also supports a ranking of the technology options as a quick-

glance indicator of relative performance.  

9.1.3. Data Analysis 

Objective data collected is analysed using parametric statistical methods, such as within-

subjects ANOVA, allowing a clear indication of difference between experimental conditions. 

Subjective questionnaires data yielding ordinal data are analysed using non-parametric 

methods, including Friedman’s test (non-parametric ANOVA), Wilcoxon’s Signed Ranks test 

and contingency table approaches. Analysis is performed using Microsoft Excel, IBM SPSS 

and Mathworks MATLAB.  

The post-evaluation interviews are transcribed and subjected to thematic analysis. This 

provides an understanding of the key themes that drive users’ perceptions and preferences 

which is highly valuable in compiling a complete picture of the interaction experience.  

9.1.4. Participants 

The sample size required for the study is determined by the demands of objective data analysis, 

with a larger sample likely to improve statistical confidence in the findings. A sample size of 

24 is recommended for simulator-based evaluations of in-car technology by the NHTSA 

guidelines on visual-manual driver distraction (NHTSA, 2013). Power calculations detailed 

in submission 2 section 10.4 indicate that this sample size will provide statistical power of 

greater than 0.9 when using a paired test (as would be used with a within-subjects experiment 

design) at α = 0.05; a sample size of between 20 and 30 will therefore provide statistically 

significant results.  

Participants should be adults aged between 18 and 65; 18 is the minimum age recommended 

in NHTSA guidelines, and participants over 65 years of age have an increased risk of simulator 

sickness (see section 9.2.3) (Brooks et al., 2010). Cacciabue & Carsten (2010) identify driving 

experience as a factor influencing intended speed and error propensity. Furthermore, as the 

evaluation environment will be based on UK road characteristics and to avoid variance in 

training levels arising from international driver training programmes, participants will be 
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required to have a minimum of one year experience of driving in the UK. Health-based 

constraints on participant recruitment are described in section 9.2.3. 

9.2. Ethical Considerations 

There are three main ethical considerations relating to this study: informed consent, data 

protection and simulator sickness. A description of each issue and plans for mitigation are 

detailed in turn below. Ethical approval was granted by the University’s Biomedical Science 

Research Ethics Committee (BSREC); copies of the application form and approval letter are 

in submission 2, appendix 5.  

9.2.1. Informed Consent 

The issue of consent to participate in the research will be addressed through the use of 

information sheets and consent forms. The information sheet is provided to the participant 

prior to the user trial and details the purpose, requirements, duration and risks of the study, 

along with contact details for the researchers. The participant will be free to cease their 

involvement in the study at any time without penalty.  

The consent form must be signed by the participant before the start of their involvement, 

confirming that the participant has understood the requirements of the study and the associated 

risks. Examples of the information sheet and consent form are included in submission 2 

appendix 3.  

9.2.2. Data Protection 

Information recorded during the course of the user trials will be used solely for the purposes 

of the research. Personal data recorded from participants (e.g. name/age) is limited to the 

consent form, with an ID number allocated to each participant which is then associated with 

study data. No personal information will be used in publication of findings from the study. No 

video footage or still images from the study will enter the public domain without the express 

permission of the participant featured.  

Hard copy forms and questionnaires are securely stored in a locked cabinet in accordance with 

University of Warwick data protection policies, while electronic data are securely stored on 

the WMG file server in an anonymised form. Access to raw versions of both hard copy and 

electronic data is restricted to the researcher and principal investigator. Data will be retained 

for the duration of the EngD project, at which time electronic and hard copies will be 

destroyed. 
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9.2.3. Simulator Sickness 

While the demands of operating the driving simulator are not significantly different to those 

experienced in everyday driving activities, some participants may experience the symptoms 

of motion sickness while operating the simulator. Symptoms include headache, sweating, 

nausea, dizziness and drowsiness (Brooks et al., 2010). Simulator sickness is believed to be 

caused primarily by sensory disparity between the visual and vestibular systems, whereby 

visual cues indicate movement while the body remains stationary (Zaychik and Cardullo, 

2003). The symptoms of simulator sickness are temporary and subside with time once the 

participant is removed from the virtual environment (Cobb et al., 1999). 

The risk of simulator sickness is mitigated using a multi-stage approach. Firstly, potential 

participants are screened during the recruitment process to exclude those who may be more 

susceptible. Applicants who report susceptibility to migraine, epilepsy, motion sickness, 

vertigo, postural instability, blurred vision are not allowed to take part in the study. As an extra 

precaution pregnant applicants and those with heart conditions are also excluded. Prior to 

commencing the study and obtaining consent, the researcher must ensure that the participant 

is in their normal state of health (i.e. not suffering from any illness), that they are aware of the 

risk factors and again confirm that they suitable to take part.  

Secondly, each participant must complete a Simulator Sickness Questionnaire (Kennedy et 

al., 1993a), before and after they participate in the study. The purpose of this is twofold: to 

make the participant aware of the potential symptoms such that they can stop if they feel 

unwell; and to monitor the health effects of interaction with the driving simulator. An example 

of the simulator sickness questionnaire is included in appendix 4. Participants will be asked 

to sign the questionnaires to confirm their condition.  

As duration of exposure is known to increase the risk of simulator sickness (Kennedy et al., 

2000), the duration of each drive is minimised and rest periods provided between each drive. 

During the user trials, the experimenter monitors the condition of the participant for signs of 

discomfort or distress, such as sweating, burping or yawning. Should such signs become 

apparent the researcher will cease the trial. All participants are also instructed to avoid driving 

their own vehicles or operating heavy machinery for a period of at least 30 minutes following 

their participation in the study, to ensure that any possible symptoms have subsided; Cobb et 

al. (1999) identified that symptoms generally subsided within 10 minutes of removal from the 

virtual environment.  

It is important to note that in a previous study which made use of the precautions listed above 

(Pitts et al., 2012a), no problems with simulator sickness were encountered.  
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In the instance that a participant does suffer from a degree of simulator sickness, a number of 

contingency measures may be implemented, following the recommendations of Brooks et al. 

(2010). Firstly, participants will be removed from the simulation environment to a quiet 

location where they can recover. Drinking water and light snacks will be made available, and 

cleaning equipment will be on hand. The researcher will ensure that the department First Aider 

is aware of the potential risk and is available to assist in case of any issues. The participant 

will be encouraged to remain for a minimum of 1 hour to allow symptoms to subside before 

leaving, and the researcher will follow-up with the affected participant to check on their 

condition.  

9.3. Summary 

The evaluation protocol outlined above defines the process for conducting technology 

evaluations in a simulated driving environment, describing how the data collection measures 

defined in chapter 7 will be implemented. A within-subjects experiment design is employed, 

with subjective data collected at the end of each drive and at the end of the study. Data 

collected will be statistically analysed using appropriate parametric and non-parametric 

methods.  

The protocol includes an assessment and treatment of the ethical concerns and risks of the 

study approach, including factors to mitigate the risk of simulator sickness. The protocol was 

reviewed by the University’s Biomedical Science Research Ethics Committee (BSREC) and 

approved.  

9.4. Introduction to Case Studies 

The following chapters describe the findings of the three case studies identified in Table 1 (pg. 

36). For each case study, a brief summary of the background is given along with the major 

findings for each of the key measures. The three case studies represent technologies on both 

the Milestones and TCDS development pathways and hence have different times-to-market, 

as illustrated in Figure 25 below; note that specific timings will depend on the scope of the 

programme.  

Case study 1 details the evaluation of a software-based voice dictation system for sending text 

messages. This initial application of the toolset used the evaluation protocol outlined in 

chapter 9 and trialled video capture of eye glance behaviour with manual post-study coding 

of glance events. Case study 2 was structured as a comparative study between three different 

touchscreen technologies. Here, the focus was on the relative performance of the devices; in 

this case eye glance data was not collected as all three systems used the same graphical 
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interface (discussed in section 11.2). Both of these projects were conducted under the 

Milestones technology development process. Case studies 1 and 2 are described in full in 

submissions 4 and 5 respectively.  

 

Figure 25 – Representative time‐to‐market for case study technologies 

Case study 3 concerns the application of 3D displays to the automotive cockpit, and differs in 

approach to the previous case studies. The activities discussed here were conducted as part of 

a TCDS project, with the overall aim of effectively defining the design space in which 3D 

graphics could be applied in an instrument display, in terms of the depth of the 3D content. 

This required a more acute focus on specific aspects of human interaction, including stereopsis 

(the ability to perceive 3D images), depth perception and fatigue effects.  

Case study 3 was conducted in three parts: the first focused on objective measures of 

performance, using the driving simulator to impose representative visual, cognitive and 

manual workload. This study offered an opportunity to trial an eye-tracking system for glance 

data collection. The second and third studies focused on users’ responses to 3D stimuli and 

were conducted in a static condition using the simulator to provide context, utilising an 

alternative experimental approach. The three studies are reported in submission 6 and 

summarised in this chapter.  

Chapter 13 presents a discussion of the case study findings in the context of the evaluation 

toolset, including revisions made to the protocol and the simulator.  
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10. Case Study 1 – Voice Dictation System 

With smartphone use widespread, consumers are seeking to extend their connected lifestyle 

into the automotive environment. The use of mobile communication devices while driving is 

known to increase accident risk, with the sending of text messages shown to be the highest 

risk activity (Dingus et al., 2006), and UK legislation has made using a handheld mobile 

device while driving a specific criminal offence2. Vehicle manufactures are seeking to mitigate 

this issue by integrating smartphone functionality into the vehicle’s in-built IVIS through 

standards including Apple CarPlay3 and Android Auto4, providing a degree of control over 

the quality of experience and the functionality available to the user. However, recent industry 

guidelines (NHTSA, 2013) seek to limit the extent of visual-manual interaction for non-

driving tasks, in order to reduce distraction risk.  

This poses challenges to vehicle manufacturers in terms of how to manage users’ behaviour 

while providing desirable functionality and an enjoyable user experience. While SMS use in 

the UK peaked in 2012, text-based mobile communication has grown rapidly with the 

introduction of instant messaging apps such as Facebook Messenger and WhatsApp, with the 

latter handling 30 billion messages per day in 2015, compared to 20 billion sent by SMS 

(Sparkes, 2015).  

Research has identified that visual tasks cause more interference with driving than auditory 

tasks (e.g. Dingus et al., 2011, Collet et al., 2010), and that manual interfaces cause more 

interference than auditory interfaces (e.g. Shutko and Tijerina, 2011, Dingus et al., 2011), 

especially those requiring visual feedback for data entry tasks (Wickens et al., 2013). Clearly, 

a visual/manual approach to text entry carries a high distraction risk. A potential solution 

therefore is to engage the auditory/vocal modality in the text messaging process. The Multiple 

Resource Theory (Wickens, 2008) indicates that separate processing resources exist for spatial 

and verbal tasks; and for visual and auditory modalities. Thus, by transferring the workload 

of text messaging tasks to the verbal/auditory domain, there is a reduced risk of interference 

with the predominantly spatial/visual driving task.  

  

                                                      
2 The Road Vehicles (Construction and Use) (Amendment) (No 4) Regulations 2003, Regulation 110, 
(1) & (2).  
3 https://www.apple.com/uk/ios/carplay/ 
4 https://www.android.com/intl/en_uk/auto/ 
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10.1. Description of Technology 

The case study focuses on a novel concept for editing and sending text-based messages while 

driving through voice interaction. This took the form of a functional early-stage software 

concept developed by JLR and deployed in a Windows PC environment. The key aim of the 

system is to minimise the visual and cognitive workload associated with text messaging. As 

such, the interface is designed to comply with draft NHTSA guidelines for Visual-Manual 

distraction with regards to the display of text, requiring that messages are limited to a 

maximum of 30 characters at a time and that scrolling text is prohibited. The concept splits 

messages into chunks of no more than 30 characters and uses text-to-speech to play back the 

content. A combination of auditory-vocal and visual-manual interactions are then used by the 

driver to manipulate the message content. A screenshot from the interface is shown in Figure 

26 and a full description of system functionality is provided in submission 4, section 3.1.  

 

Figure 26 ‐ Voice dictation system concept screenshot 

Given that the study was not intended as a test of voice recognition software per se, a ‘Wizard 

of Oz’ approach was taken whereby the system’s responses were pre-programmed and 

initiated manually by the experimenters, thus removing any variability in the performance of 

the voice recognition software.  
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10.2. Study Methodology 

The research questions for the study were as follows: 

1. What is the effect of message formation and dictation on driving performance? 

2. What is the effect of message error correction activity on driving performance and eye 

glance behaviour? 

3. What is the effect of message content on message correction performance and eye 

glance behaviour? 

4. What is the effect of error position on message correction performance and eye glance 

behaviour? 

5. What are the relative workload requirements of message dictation and correction? 

In order to address these research questions the study was structured such as to disassociate 

the content creation and message correction aspects of the messaging activity. This was 

achieved by participants completing two experiment drives, one performing a content creation 

task and one performing a message correction task. For the creation task, participants were 

asked a series of simple questions regarding aspects of their daily lives that would elicit brief 

answers. The aim was to engage a degree of cognitive demand through memory recall. Users 

were asked 12 questions in total.  

For the message correction task, the participant was presented with one of three pre-

determined messages, shown in Table 2. The message was separated in to three sections of 30 

characters or less and played back audibly using text-to-speech. An error was introduced into 

one of the message sections, requiring the user to correct the error and send the message using 

a combination of voice commands and button inputs, using the steering wheel buttons via the 

USB interface described in section 8.1.5. Participants completed twelve tasks: three error and 

one no-error condition for each of the three messages. The tasks are described in more detail 

in submission 4, section 4.3.2.  

Table 2 ‐ Message content and error locations 

Correct message (Error locations shown in red) Length Error 1 Error 2 Error 3 

There are sixty minutes in an hour, twenty-four hours in a day and 
seven days in a week 85 fifty houses years 

The speed limit on most motorways in Great Britain is seventy 
miles per hour 

74 weight brain meters 

The Latin alphabet has twenty six letters, starting with A and 
ending with Z 

74 elephant D H 
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A total of 32 participants were recruited for the study, with one data set lost due to technical 

issues. The remaining participants were aged between 20 and 59 years (mean = 37.3 years, 

SD = 12.2 years). All participants were UK drivers with a minimum of 1 year experience; 

nearly all (28) users had experience of using integrated and/or mobile infotainment 

(communications, media and navigation) devices in their cars. The majority of participants 

(24) were recruited from a database of existing participants within JLR. Approximately two-

thirds (21) of the participants worked in a technical role.  

The study was conducted using the protocol described in chapter 9.  

10.3. Results 

Task completion data indicates that sending a message containing an error took approximately 

2.6 times as long as sending a message without an error (27.9s vs. 10.4s). A one-way ANOVA 

shows this result to be significant (F(3,87) = 100.8, p<0.001). The message itself did not have 

a significant effect on task time (F(2,58) = 2.276, p=0.12). A post-hoc Tukey HSD test 

indicated that when an error was present, its position did not have a significant effect on task 

completion time, illustrated in Figure 27.  

 

Figure 27 ‐ Task completion time for correction task 

For the correction tasks, the mean individual glance duration was 0.82s, with only 0.2% of 

glances exceeding 2.00s. Messages containing errors required approximately 3 times the total 

glance time (TGT) of messages without errors, but the message itself did not have a significant 

effect on the total glance time per task, as shown in Figure 28. When an error was present, its 

position did not have a significant effect on TGT per task.  
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Figure 28 ‐ Glance time per task for correction task 

Figure 29 shows a comparison of SDLP measured in the baseline, dictation and correction 

conditions. A within-subjects ANOVA indicates a difference across the group (F(2,27) = 5.18, 

p<0.01); a post-hoc Tukey HSD test indicates that conducting both the driving and correction 

tasks did not significantly increase SDLP compared to the baseline measure, but there was a 

small but significant increase in SDLP for correction compared to dictation (mean 0.230 vs. 

0.194 respectively). There was no significant increase in headway variation (F(2,27) = 1.096, 

p=0.34) or mean speed (F(2,27) = 0.491, p=0.61). Mean distance headway however increased 

significantly between the baseline and correction conditions (94.55m to 112.83m, p<0.01); 

this suggests an increase in cognitive workload imposed by the correction task.  

 

Figure 29 ‐ Comparison of SDLP, case study 1 
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The overall NASA-RTLX workload measure was increased for both dictation (+19.5%) and 

correction (+44.3%) tasks relative to the baseline condition. Similar patterns of variation are 

observed for the individual subscale items, except performance and effort, which showed no 

significant difference to the baseline condition. The median hedonic rating was 7, 

corresponding to ‘moderate’ liking. The mean SUS score was 76.6 (SD = 12.8), with 100 

indicating perfect usability.  

The post-task interview revealed some valuable qualitative insights into the user experience 

of the concept. Users requested greater flexibility in their vocal inputs to the system, for 

example by allowing synonyms of key command words for a more naturalistic interaction. 

Some users were frustrated by the controlled flow through the correction task, citing issues 

with latency between the message segments and frustration with speed of message playback. 

Users identified three approaches that could improve this: 1) being able to interrupt the system 

with a verbal command; 2) swiping the scroll bar on the touchscreen to move through the 

message; and 3) being able to ‘wrap round’ from the end to the beginning of the message with 

a single (forward) button press. Users also suggested changes to the design of the interaction 

modalities: having the correction ‘pick list’ augmented with auditory feedback and allowing 

messages to be sent with a button press rather than a verbal command.  

10.4. Study Conclusions 

The study identified that using the message correction concept induced a degree of workload 

which was reflected in driving behaviour and identified in the subjective workload measures. 

Glance time data shows that visual workload is also relatively low, with almost all glances 

less than 2 seconds in duration. The hedonic rating and SUS scores indicate user acceptance 

of the system while qualitative findings suggest a number of design changes that may further 

improve the user experience.  
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11. Case Study 2 – Touchscreen Technologies 

The touchscreen interface has become part of our daily technology experience, driven largely 

by the prevalence of the technology in smartphone and tablet devices. It was estimated that 

97% of all smartphones would feature touchscreen interfaces by 2016 (ABI Research, 2011), 

with annual smartphone sales topping one billion units per annum in 2014 (IDC, 2014). This 

prevalence has driven an increase in automotive touchscreen applications, with shipments 

exceeding 50 million units in 2017 (IHS Markit, 2017).  

Touchscreen interfaces offer a number potential usability benefits (Sears et al., 1992). Firstly, 

the flexibility of the interface allows multiple functions to be controlled with a single physical 

configuration. Input is direct as the display and input elements of the interface are co-located, 

enabling an intuitive mode of interaction that is easy to learn even for novice users (Wu et al., 

2011). Touchscreen interfaces also provide the opportunity for vehicle designers to reduce the 

number of physical controls visible in the vehicle interior, creating a cleaner and less cluttered 

design, with the Tesla S providing a recent example.  

The increased prevalence of touchscreen devices raises questions relating to the use of 

touchscreens in automotive applications, where the market is largely dominated by resistive 

touchscreens, an incumbent but arguably outdated technology. The aim of this study is to 

investigate the relative merits of resistive, capacitive and infra-red touchscreens in terms of 

their user experience.  

11.1. Description of Technology 

The study utilised three technology evaluator touchscreen devices developed by Continental 

AG. The devices consisted of a screen unit mounted in a common bezel, connected to a display 

controller driven by an embedded Linux device running a custom GUI application. This was 

designed to emulate a typical automotive user interface and featured a range of functionality 

commonly found in modern vehicles, including navigation, audio, telephone and text message 

functions; the tasks are discussed further below. The menu screen for the interface is shown 

in Figure 30.  
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Figure 30 ‐ GUI menu screen 

The devices were designed to be visually identical, each with the same bezel and running the 

same user interface, with display brightness levels normalised. The display units were 

mounted in the centre console of the simulator vehicle cabin in the horizontal and vertical 

position of the original touchscreen; due to the size of the display bezel and the mounting 

arrangement, the touchscreen protruded slightly when fitted, as shown in Figure 31.  

 

Figure 31 ‐ Touchscreen installed in simulator cabin 

11.2. Study Methodology 

The study aimed to address the following research questions: 

1. Can drivers differentiate between different types of touchscreen technology in use? 

2. Do drivers display a preference for touchscreen technology types? 

3. Is the performance of touchscreen tasks influenced by interface technology? 

4. What are the key aspects of user experience for touchscreens in an automotive context? 

The study utilised a 3x10 within-subjects experiment design, with display type and task type 

as the independent variables. Participants completed a baseline drive with no secondary tasks, 
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followed by three evaluation drives using one of the displays per drive. The experiment design 

was counterbalanced for display presentation order. The average duration of each drive was 

approximately 10 minutes.  

Participants completed a total of ten touchscreen tasks per drive involving phone, audio, 

navigation and messaging functions. The tasks are described in detail in submission 5, section 

4.3. Tasks were initiated by the experimenter via verbal instruction. Tasks were varied slightly 

across the three displays to avoid repetition but retaining the same number of inputs to 

complete (e.g. button presses).  

A total of 20 participants were recruited for the study, 17 male and 3 female. Two male 

participants withdrew from the study due to the effects of simulator sickness. For the 

remaining 18, age ranged from 21 to 60 years (mean = 39.4 years, SD = 13.6 years). All 

participants were UK drivers with a minimum of 1 year experience; all had experience of 

using touchscreen devices and owned touchscreen-based smartphones, with 8 being regular 

users of factory-installed in-car touchscreen systems.  

The study was conducted using the protocol described in chapter 9. Data from an earlier 

touchscreen-based study (Pitts et al., 2012a) indicated that touchscreen task completion time 

was directly correlated with glance time (r=0.70; p<0.001), indicating that visual workload 

will be reflected in the total task time. Given that the user interface, embedded hardware and 

task demands were identical for each device under test, visual workload was expected to be 

the same for each test condition; hence visual metrics are not reported.  

11.3. Results 

Due to a technical failure of the resistive display part way through the study, the data are 

effectively split into two sets, with twelve participants having experienced all three displays 

and six participants having experienced the capacitive and infra-red (IR) displays only. While 

this split must be enforced for all subjective data, it is legitimate to consider objective task 

completion time data across all 18 participants when comparing the capacitive and IR displays, 

as it is assumed that task performance using one device does not influence subsequent 

performance using another. The findings are therefore presented below with this structure in 

place.  

Figure 32 shows the mean task completion time per task for the three displays experienced by 

twelve participants. Mean task time ranged from 9.1s (radio preset task, resistive display) to 

60.9s (handwriting text entry task, IR display). A two-way within-subjects ANOVA showed 

that while interaction was significant (F(18,198) = 1.93, p<0.05), main effect for task did show 

significant differences (F(9,99) = 58.34, p < 0.001), but main effect for display type was not 
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significant (F(2,22) = 0.35, p = 0.71). Again, this is expected as the UI and tasks were identical 

across all three devices.  

 

Figure 32 ‐ Mean task completion time (3 displays, 12 participants) 

Figure 33 shows the mean Standard Deviation of Lane Position (SDLP) for the baseline and 

task conditions. SDLP increased by 78% from 0.21m to 0.40m when users were performing 

touchscreen tasks while driving (F(30,3) = 15.828, p<0.001); however post-hoc paired t-tests 

indicate that no significant difference was observed between the different touchscreen types 

(p > 0.3 for all pairs).  

 

Figure 33 – Standard deviation of lane position (3 displays, 12 participants) 

A similar pattern was observed for longitudinal control, as shown in Figure 34: mean time 

headway increased by 73% from 2.2s to 3.7s when touchscreen tasks were introduced, 

compared to the baseline driving condition (F(30,3) = 8.673, p<0.001). This is a reflection of 

the cognitive workload required to complete the tasks while driving, with the increase in 

headway to the lead vehicle serving as a coping mechanism for the user. As with SDLP, no 

significant difference in headway was observed between the touchscreen types. It is notable 
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that there is large variance in the data, as shown by the error bars in Figure 34. This is partly 

due to the small sample size (only 12 participants experienced all three displays), but may also 

be due to variations in vehicle following strategy between participants.  

 

Figure 34 ‐ Mean time headway (3 displays, 12 participants) 

Preference data indicates that the resistive screen is clearly least preferred, with no significant 

difference between the IR and capacitive screens. Hedonic rating data shows a significant 

difference between all three displays, with a mean rating of 5.7 versus 3.0, where a score of 6 

equals 'like moderately' and 3 equals 'Dislike slightly'. No significant difference was found 

across the displays in the SUS scores (F(2,11) = 2.20, p = 0.124). The mean SUS score was 

80.83, 73.33 and 62.50 for the capacitive, IR and resistive displays respectively.  

Figure 35 shows the subjective overall workload and frustration scale data for all three 

displays across 12 participants, with the reported workload for the baseline drive included as 

a fourth variable level. While workload was significantly increased by the introduction of 

touchscreen tasks relative to the baseline (F(3,33) = 21.20, p<0.001) there was no significant 

difference in workload across the display types. Post-hoc analysis of the ‘frustration’ sub-scale 

of the NASA-TLX questionnaire using the Tukey HSD test shows that using the resistive 

display was significantly more frustrating than the capacitive (W = 1.5, p<0.005).  

Analysis of the qualitative data confirmed the preference findings shown above: the resistive 

display was strongly disliked, with users citing a lack of sensitivity and perceived latency in 

response. The resistive display required a higher input force compared to the other two, which 

affected the experience of scrolling tasks - in particular, there was a tendency for a list scroll 

gesture to result in an inadvertent selection of the list item under the user’s finger. In addition, 

the resistive display featured a different surface feel, which was described as ‘papery’ and 

‘cheap’. 
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Figure 35 – Subjective ratings of overall workload and frustration (3 displays, 12 participants) 

The comparison between the capacitive and IR displays was less distinct, with 5 of the 12 

users that experienced all three displays stating that they could not identify a clear difference 

between the two. Users cited an increase in responsiveness leading to improved confidence in 

the system and a perceived decrease in response time relative to the resistive display.  

However, 11 of the total 18 users believed that the IR display was less responsive than the 

capacitive. Specifically, buttons in the lower-right corner of the display frequently failed to 

register inputs as expected. Indeed, while there were no strong reasons for disliking the 

capacitive display, the IR display was identified by some users as lacking sensitivity, with 

some tasks requiring multiple repeat button presses to complete. One user identified a potential 

increase in driver distraction arising from the additional attentional demands; and another 

found the display ‘frustrating’, comparing it to an inexpensive aftermarket navigation system.  

11.4. Study Conclusions 

The study identified that the resistive touchscreen technology widely used in current vehicles 

does not meet users’ expectations for User Experience. The main issue was a lack of 

responsiveness from the display which was both interpreted as added latency, and caused 

repeated errors for tasks that involved ‘drag’ gestures, such as playlist and contact list 

scrolling. Both infra-red and capacitive displays offer significant improvements over resistive; 

however, it is the capacitive display that provides the best performance in terms of 

responsiveness and affective response, with the IR display exhibiting some specific usability 

flaws. The findings suggest that the ubiquity of touchscreen interfaces has led to users’ 

expectations of touchscreen behaviour to be driven by their experience of mobile devices, and 
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that touchscreen usability has become a ‘must-be’ attribute. Given the importance of in-

vehicle technology to the perception of quality of the vehicle, manufactures must carefully 

consider the display technology employed for future vehicles.  

The task completion data showed that there was no significant difference between the three 

displays in terms of task workload. This is not unexpected, due to the underlying similarities 

between the systems. As stated in section 11.2, the assumption was made that these similarities 

would also negate differences in the visual workload. While the task completion data would 

support this assumption, it is not possible to state for certain that differences do not exist 

without analysis of glance behaviour. The absence of this data is a limitation of this case study; 

it is recommended therefore that glance data is collected for all future studies.  

The findings from this study also illustrate how the qualitative data can substantiate effects 

identified by the qualitative measures. While differences were observed in the hedonic rating 

and workload measures that suggested preference, the nature of these differences was 

characterised though the interview responses of the participants, highlighting issues with 

perceived responsiveness, confidence and even sensory quality that would not have been 

identified though purely instrumental or analytical approaches.   
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12. Case Study 3 – 3D Displays 

Stereoscopic 3D displays have become more prevalent over recent years as the market for 3D 

televisions has developed. The gaming industry has also seen a growth in 3D display devices 

and content, with improvements in graphic processing capability allowing stereoscopic 

gaming at previously unavailable resolutions and frame rates. Recently, new virtual reality 

devices such as Oculus Rift have provided developers with new tools to create immersive 3D 

experiences. Beyond the entertainment sector there are numerous applications in which 

stereoscopic displays have proven benefits. Examples include flight simulation, medical 

imaging, remote inspection of hazardous environments and design visualisation (IJsselsteijn 

et al., 2005). The use of 3D displays for IVIS in road cars however is a developing field. It is 

important to understand how users will respond to new in-vehicle technologies and to 

determine the design space within which developers can work to provide a high-quality user 

experience.  

12.1. Case Study 3a – 3D Display Effectiveness 

As discussed in section 9.4 three discrete studies were conducted into 3D display technologies. 

The first of these was designed to provide a validation of the potential for the use of 3D 

displays within a vehicle environment and was conducted in accordance with the protocol 

described in chapter 9 

12.1.1. Description of Technology 

The 3D display used for study 1 was a 10.1” parallax barrier autostereoscopic demonstrator 

unit. This was mounted in front of the driver, in the approximate location of the standard 

instrument cluster. Figure 36 shows the position of the 3D display mounted in the simulator 

cabin. The display device features an embedded Android controller which is used to drive the 

display and serve graphical content. The display of images was controlled by the experimenter 

from a remote PC over Wi-Fi using a custom application written by a JLR developer in C++.  

Visual glance data was collected using a Dikablis head-mounted eye tracker5 , worn by 

participants during the trial drive. The coded targets seen in Figure 36 are used to calibrate the 

eye tracker.  

 

                                                      
5 http://www.ergoneers.com/en/hardware/eye-tracking/ 
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Figure 36 ‐ 3D display mounted in simulator cabin 

12.1.2. Study Methodology 

There are multiple applications where image depth can be used to convey information to the 

driver, such as navigation and hazard perception. Study 3a was designed to determine users’ 

ability to identify depth-encoded target images when presented in forced-perspective 2D 

(known as 2.5D (McIntire et al., 2014)) and stereoscopic 3D formats. The hypothesis was 

formed that 3D presentation would assist the user in the identification task.  

The research question for study 3a was: 

“Can autostereoscopic displays relay depth-encoded information more 

effectively than a 2D display, in the driving context?” 

Participants were shown an image consisting of three toroidal objects arranged on a vertical 

plane at zero parallax and labelled A to C, shown in Figure 37 – note that target C is displaced 

in positive parallax. The images were created by a JLR developer using a 3D modelling 

graphics package and then exported in raster format. In the test condition, one of the objects 

was displaced from the others in positive parallax, i.e. away from the driver. The participant 

was then asked to identify which, if any, object was displaced. Two levels of parallax offset 

were used (low/high), with each object offset once at each level; a zero offset condition was 

also included. It addition, the images were rendered in both stereoscopic 3D and 2.5D. In total, 

14 experimental conditions were used; a randomised complete block experiment design was 

utilised whereby all participants experienced each condition once.  
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Figure 37 ‐ Target identification task screen shot 

The display tasks were completed while engaged in the simulated driving task. Measurements 

of task completion time, correct response rate and glance time were collected.  

27 participants were recruited for the study, 24 male and 3 female. All participants were UK 

drivers with a minimum of 1 year experience and had normal or normal-corrected vision.  

12.1.3. Results 

The driving data was compared using a paired t-test (2-tailed) between the baseline and task 

conditions. No significant differences were observed for SDLP (t(21) = 1.137; p=0.26), mean 

distance headway (t(21) = 1.642; p=0.12), or distance headway variation (t(21) = 0.073; 

p=0.15). Comparisons of the 2D and 3D task sections of the driving data similarly showed no 

significant differences (SDLP: t(21) = 1.23; p=0.23; mean headway: t(21) = 0.140; p=0.89; 

headway variation: t(21) = 1.525; p=0.14).  

The findings identified differences in the correct response rate between the different 

experimental conditions. A two-way within subjects ANOVA analysis was performed: 

interaction between render type and target depth offset was significant (F(2,52) = 12.48, p < 

0.001), with significant main effects for both factors (F(1,26) = 12.235, p < 0.005; F(2,52) = 

16.649, p < 0.001 respectively). Simple main effects analysis shows that significant 

differences exist only at the ‘low’ depth offset level (F(1,26) = 25.490, p < 0.001), with mean 

correct response rates of 0.48 and 0.85 for 2D and 3D respectively. These findings are 

illustrated in Figure 38 below. 
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Figure 38 ‐ Correct response rates for target identification task. 

The total glance time per task, defined as the sum of the durations of individual glances to the 

3D display, was calculated and the data analysed using two-way ANOVA. Interaction was 

again significant (F(2,52) = 6.059, p < 0.005), as was the simple main effect for image depth 

for the 3D condition (F(2,52) = 12.055, p < 0.001). A post-hoc Tukey’s HSD test showed that 

the low and high parallax 3D images required over 1 second shorter TGT per task than the 

zero-parallax images (mean 1.43s vs. 2.45s). These results are illustrated in Figure 39.  

 

Figure 39 ‐ Total glance time per task. 

The task completion time data indicated that only the main effect for image depth was 

significant for the 3D condition F(2,52) = 12.113, p < 0.001), with post-hoc tests indicating a 

difference between overall mean task completion time for the high and zero parallax images 

(1.92 vs. 3.23s).  
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12.1.4. Study Conclusions 

The findings indicate that content certain levels of depth-encoded information can be 

interpreted more accurately when rendered as stereoscopic representations, compared to 2.5D 

rendering. Furthermore, 3D-rendered content which extended beyond the convergence plane 

was identified with less eyes-off-the-road time than zero-parallax content. This indicates that 

stereoscopic displays have potential safety benefits by assisting drivers in processing depth 

information for critical applications. Participants were also able to more accurately identify 

content with ‘low’ levels of parallax offset when presented in the 3D condition, indicating that 

the ability to discern fine details in depth information is assisted by stereoscopic presentation. 

It is important however to undertake further studies to determine how image perception is 

affected by changes in parallax offset levels.  

12.2. Case Study 3b – 3D Display Depth Limits 

The level of depth featured in stereoscopic content is related to the quality of the perceived 

image and to the degree of visual discomfort experienced by the viewer. Most people are able 

to comfortably view stereo 3D content at low levels of parallax without negative effect. 

However, as the level of parallax offset increases, the viewer’s visual system has to work 

harder to maintain the sharpness and fusion of the stereoscopic image, creating a trade-off 

between image quality and discomfort. At higher levels of parallax, the viewer will experience 

a blurred image, a loss of fusion resulting in double vision, or both (Lambooij et al., 2009).  

Lambooij et al. define visual fatigue as “physiological strain or stress resulting from exertion 

of the visual system”; and continue to identify that, while the terms ‘visual fatigue’ and ‘visual 

discomfort’ are used interchangeably in the literature, the former refers to the degradation of 

performance of the visual system which can be measured objectively, while the latter is the 

subjective perceptual effect experienced by the subject. It is assumed therefore that subjective 

measurements of visual discomfort will serve as an analogue for objective measurements of 

visual fatigue.  

The aim of this study was to establish limits of acceptability for image parallax offset, based 

both on image quality and visual discomfort. An alternative experiment protocol was used, 

applied in a static (non-driving) condition, using the simulator cabin for context.  
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12.2.1. Equipment 

The display used for the study was a 13.3” lenticular lens-type autostereoscopic display unit 

from SeeFront6. This display utilises a built-in tracking system to identify the position of the 

viewer and adjust the display parameters to optimise the 3D effect at the viewing position; 

this provides a 3D viewing distance range of 310mm. The display was mounted in driving 

simulator cabin in front of the driver, as per study 3a. The display was connected to a laptop 

which output the image content over DVI.  

12.2.2. Participants 

A total of 22 participants were recruited for the study, 19 male and 3 female. As previously, 

all participants were UK drivers with a minimum of 1 year experience and had normal or 

normal-corrected vision. Five participants owned 3D TVs at home and one used a gaming 

device with an autostereoscopic display (Nintendo 3DS).  

12.2.3. Study Methodology 

The research question for study 3b was:  

“At what depth level can 3D content be presented without compromising 

image quality and viewer comfort?” 

Lambooij et al. (2009) identify that users compensate for image disparity through the 

accommodation-vergence system, with higher levels of accommodation effort related to 

higher levels of visual discomfort; and that discomfort is increased with prolonged viewing, 

i.e. for autostereoscopic 3D images there is a trade-off between image quality and visual effort. 

Users can ‘force’ convergence of a 3D image by applying more effort over a longer time, with 

a resultant increase in discomfort. To exclude images that could not be resolved within a 

typical glance in an automotive use case, the experiment constrained users’ glance durations 

using occlusion spectacles (see submission 6 section 4.1.3 for more details). Shutter open time, 

the duration for which the participant can see the 3D display, was set to 1.5 seconds per image 

in accordance with SAE J2364 and ISO 16673:2007 (SAE, 2004, ISO, 2007).  

The study was conducted in the driving simulator cabin as per study 3a, but in a static (non-

driving) condition. Participants were shown a series of images created by a JLR developer, 

consisting of two instrument dials with the left-hand dial set at zero parallax and the right-

hand dial offset in the positive or negative direction. Participants received a verbal notification 

of image onset by the experimenter then the occlusion shutters were opened for the set period. 

Participants were then asked to indicate whether the right-hand dial was located closer in space 

                                                      
6 http://www.seefront.com 
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(negative parallax) or further away (positive parallax) than the left-hand reference dial. An 

example image is shown in Figure 40; note that the two halves of the image representing the 

left and right-eye views are divided and scaled by the 3D display to provide full-screen 

stereoscopic content with 16:9 aspect ratio.  

 

Figure 40 ‐ Example image from Study 3b 

A total of 31 images were used: 15 each of positive and negative parallax offset. Parallax 

offset was defined in percentage of convergence plane distance (%CPD); where the CPD is 

the distance from the viewer to the zero parallax plane, i.e. the screen surface. For example, 

at a viewing distance of 50cm, -10% CPD would see an image appear 5cm in front of the zero 

parallax plane. The images used in the study ranged from -15.0 to +22.5 %CPD, spanning a 

range that extended beyond the boundaries of comfortable viewing, including a zero parallax 

condition. Image presentation order was randomised and reverse balanced, such that each 

image was seen twice.  

Participants were asked to provide a rating of visual discomfort after the presentation of each 

image. As the rating would be conducted in-task, a simple approach was adopted based on the 

wording of the Simulator Sickness Questionnaire (SSQ) (Kennedy et al., 1993b). Bouchard et 

al. (2007) determined that seven of the sixteen sub-scale items of the SSQ form an underlying 

factor relating to oculomotor performance: fatigue, headache, eyestrain, difficulty focusing, 

difficulty concentrating, fullness of head and blurred vision. As it was not practical to rate 

these items individually during the experiment, participants were instructed to rate ‘overall 

visual discomfort’, encompassing all of the above aspects. The rating scale used in shown in 

Table 3.  
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Table 3 ‐Visual discomfort rating scale 

Adjective rating Rating score 

None 0 

Slight 1 

Moderate 2 

Severe 3 

Participants also provided a rating of image quality for each task, comparing the right-hand 

(offset) dial to the left. The quality rating scale was based on the adjectival categorical 

judgement method for stimulus comparisons defined in section 6.2 of ITU-R BT.500-13 

(International Telecommunication Union, 2012), with slight modifications to the wording to 

emulate the wording of the SSQ-derived visual discomfort scale described above. The image 

quality rating scale wording is shown in Table 4.  

Table 4 ‐ Image quality rating scale 

Adjective rating Rating score 

Much Worse -3 

Moderately Worse -2 

Slightly Worse -1 

The Same 0 

Slightly Better +1 

Moderately Better +2 

Much Better +3 

 

12.2.4. Results 

Figure 41 shows the median image quality ratings for each parallax offset position. Median 

image quality degrades as parallax level increases in both the positive and negative directions. 

A non-parametric Kruskal-Wallis test was applied to the data which indicated that the 

difference across all measurements was significant (χ2(30) = 495.5, p < 0.001). Post-hoc 

Wilcoxon signed ranks tests with Bonferroni correction identified that a full point of median 

quality degradation was observed at -4.0 and +4.5% CPD. In general, negative parallax images 

were subject to a greater degree of degradation than positive parallax images. Order effects 

across the data set were shown to be non-significant (χ2(61) = 60.9, p = 0.48).  
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Figure 41 ‐ Median image quality ratings by parallax offset level 

84% of all reports of visual discomfort were ‘slight’; while reports of higher levels of 

discomfort did occur for images at higher parallax offset levels, these were not statistically 

significant. However, regression analysis showed a weak but significant trend for increased 

frequency of reported discomfort with increased exposure (F(1,61) = 115.6, p < 0.001).  

Finally, the number of times participants reported zero image offset was calculated. While 

some participants were not able to perceive the 3D effect at low parallax levels, this effect was 

not statistically significant.  

12.2.5. Study Conclusions 

The findings of study 2 clearly show that users will see a reduction in image quality as the 

level of 3D offset is increased, even for relatively small offset values. The limits identified in 

this study were carried forward into the design for study 3c.  

The trend identified in visual discomfort rating provides evidence of an important issue for 

implementation of 3D technology in vehicles. While real-world use cases would likely feature 

both a lower frequency of exposure and less ‘demanding’ 3D content, i.e. lower parallax 

levels, OEMs must be aware of the potential for cumulative effects of viewing 3D content 

over prolonged periods of time. Indications were also present of a threshold effect for 

perception of depth in 3D images. While not statistically significant in this study, further 

investigation is warranted.  
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12.3. Case Study 3c – 3D Display Depth Resolution 

The final study conducted was designed to investigate the minimum levels of parallax offset 

required to create a perceptible 3D effect. As described above, evidence was found in study 

3b of a perception threshold effect; it is important therefore to understand where the lower 

limits of the design space are. Two hypotheses were formed: that there is a relationship 

between the positions of objects in depth and the amount of offset required to create a 

discernible depth difference; and that this effect would vary based on the type of image object. 

The study was designed to test these hypotheses using representative automotive graphical 

content.  

12.3.1. Equipment 

The experimental setup for study 3c was the same as for study 3b, with the display mounted 

in the driving simulator cabin in the position of the instrument cluster and the participant’s 

vision constrained using occlusion glasses, with shutter open time set to 1.5s per image.  

12.3.2. Participants 

30 participants were recruited for the final study. 5 data sets were rejected due to data quality 

and 1 participant was withdrawn due to technical issues. Of the remaining 24, 18 were male 

and 6 female. Again, all participants were UK drivers with a minimum of 1 year experience 

and had normal or normal-corrected vision.  

12.3.3. Study Methodology 

The research questions for study 3c were:  

“What is the minimum difference in 3D position between two objects 

required to perceive a difference in depth between them?” 

“Does the minimum difference required vary with starting position and 

object type?” 

Participants were shown a series of images created by a JLR developer, based on one of three 

image types: dials, icons or text; examples of these are shown in Figure 42. Note that for icon 

and text images, the dummy dials shown were fixed at zero parallax. As in study 3b, each 

image consisted of a pair of objects. In this case however, both objects were set to a nominal 

parallax level, in a range that extended just beyond the image quality limits determined in 

study 3b.  
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Figure 42 ‐ Study 3 image examples: a) dials; b) icons; c) text 

An additional parallax offset of up to ±1.5% CPD was applied to the right-hand image in the 

direction of the nominal offset; 1.5% CPD was experimentally determined to be a clearly-

perceptible offset level. Both positive and negative offsets were applied from zero nominal 

parallax, hence inclusion of both +0.0 and -0.0 categories.  

The experiment utilised a ‘staircase’ approach to determine the minimum required depth 

offset, whereby for each nominal condition, participants were shown a sequence of five images 

from a set of 16 starting at either zero or maximum parallax offset. Participants were required 

to state whether the right-hand object was nearer, the same or further away than the left-hand 

object. The next image presented was determined by the participant’s response: offset was 

either increased or decreased until the minimum perceptible offset was identified. In this way, 

the image type and nominal parallax form the independent variables, while the minimum 

offset forms the dependent variable.  

8 nominal parallax levels between were applied for each of the three image types, giving 24 

conditions. Presentation order of conditions was determined using a counterbalanced 24x24 

Latin Square design and initial offset direction was balanced across all participants.  
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12.3.4. Results 

Minimum offset data for each nominal parallax position and image type were collated. 

Responses were ignored where participants stated that they could see an offset when none 

existed, or that they could not see an offset when the maximum level was applied; this 

comprised 29 of 576 responses (5%). Figure 43 shows the outputs from the study, in terms of 

the minimum parallax offsets required at each nominal parallax position to create a perceptible 

3D depth difference between two objects, for each of the three object types tested. Error bars 

indicate 95% confidence interval. 

A linear mixed model analysis approach was implemented using SPSS. This indicated that the 

relationship between nominal parallax and minimum perceptible offset varies across image 

types: interaction between nominal parallax and image type is significant (F(14,523) = 2.983, 

p < 0.001). Differences across nominal parallax levels are significant (F(7,523) = 7.700, p < 

0.001), as are differences across image type (F(2,523) = 13.052, p < 0.001). However, post-

hoc pairwise comparisons of image type indicate that there is no difference between icons and 

text (mean = 0.50, p = 0.75), with dials being significantly different (mean = 0.38, p < 0.05). 

Hence, we can consider the image types in terms of ‘large’ and ‘small’ objects. 

 

Figure 43‐ Minimum parallax offset levels to perceive 3D effect 

The notable difference at +0.0 suggests an effect due to the design of the image stimuli. As 

show in Figure 42, the dial images featured two large objects presented in close proximity 

with a common nominal parallax. Icons and text however featured two small objects presented 

in proximity at the horizontal centre of the display and at a common nominal parallax, with 

dummy dial objects positioned on the left and right of the display at zero parallax. In the +0.0 

condition, the left-hand text/icon image sits level with the larger objects; it is possible therefore 
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that in this case attention is drawn back to the reference plane, making it more difficult to 

identify when the smaller objects were offset in positive parallax.  

Figure 44 below simplifies the findings from study 3c as reported in Figure 43. The data are 

consolidated into two series for ‘large’ and ‘small’ objects, as discussed above. The values are 

then normalised across the series where no statistical differences exist. In addition, the 

findings from study 3b are applied to create quality degradation zones, whereby the median 

quality difference from the zero parallax condition is greater than one scale point; i.e. a ‘more 

than slight’ degradation in image quality.  

It can be seen from this figure that the minimum parallax offset for object differentiation varies 

for large and small objects, and for positive and negative parallax. Large objects require at 

between +0.25% and +0.43% CPD to create a 3D offset in positive parallax; and between -

0.40% and -0.47% CPD to create an offset in negative parallax. Similarly, small objects 

require between +0.25% and +0.75% CPD to create an offset in positive parallax; and between 

-0.47% and -0.59% CPD to create an offset in negative parallax. Parallax offsets outside the 

range –5.0 ≤ x ≤ +6.0% CPD will result in a notable degradation of image quality.  

 

Figure 44‐ Design parameters for acceptable image quality and minimum offset for small and 

large object types. 

12.3.5. Study Conclusions 

The findings of study 3c confirm that the levels of parallax offset required to create a 

perceptible 3D depth difference between two objects is related to their position in the 3D 

space, the size of the object and its proximity to other objects that may serve a reference. In 

general, a lower degree of offset is required for large objects such as dials, compared to small 

icons or text. However, there is an apparent interaction between large and small objects when 

they are aligned on the same plane, an important consideration for interface design. By 

combining these findings with the results from study 3b the upper and lower limits of the 
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design space have been defined in terms of 3D effect perception and image quality, for both 

large and small objects.  

Designers must consider the compatibility of 3D display technologies with their customer 

base. Between 5 and 10% of adults are affected by stereoblindness, which would render the 

display ineffective. Visual abilities will also degrade with age, meaning that older adults will 

be less sensitive to stereoscopic depth cues (IJsselsteijn et al., 2005). The display system could 

therefore be designed to include a degree of control over the 3D depth of the content, including 

the option to disable it. While it may not be able to replicate the UX of a 3D interface in 2D, 

it is important that a lack of 3D content does not adversely affect the safety of the system.  

The methodology applied to studies 3b and 3c was designed to answer questions relating to 

specific aspects of the user-centred performance of the technology. While differing from the 

protocol outlined in chapter 9 and applied to case studies 1 and 2, certain elements were carried 

forward; specifically: the use of the simulator cabin to provide a context-specific evaluation 

environment and the derivation of the visual discomfort scale from the SSQ.  
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13. Discussion of Findings 

The case studies presented in the preceding chapters provided valuable insights that illustrated 

the performance of the technology concepts from the users’ perspective, while addressing key 

functional capability questions. The three technologies investigated varied in terms of their 

architecture, technology readiness and development timescale, encompassing both hardware 

and software-based concepts. In each case, the evaluation toolset was shown to be suitably 

flexible to support the evaluation, producing high-quality data. This chapter discusses the 

findings of the case studies, in terms of the application of the toolset, data quality, qualitative 

learning and revisions to the toolset.  

13.1. Differences in Toolset Application between Case Studies 

As noted in section 9.4, the evaluation and analysis approach varied across the three case 

studies. While case studies 1, 2 and 3a largely followed the toolset protocol, the specific 

requirements of the technology development project required that an alternative approach was 

taken to studies 3b and 3c. Here, the aim was to define the design space for 3D content, 

determined by users’ ability to perceive content clearly and without discomfort and required 

an abstracted approach that negated the use of the dual-task simulator-based approach earlier 

defined.  

The question remains, however, of how well the 3D display technology may be received by 

the user in a final product. Image clarity and visual discomfort will have an obvious effect on 

the UX of the system; additional testing conducted once representative content and tasks are 

available would again provide the detailed and valuable insights into the 3D display 

technology that are necessary to determine user acceptance. In this case, the evaluation toolset 

could be successfully applied; clearly then, there are limits to the applicability of the toolset 

based on technology readiness. This also demonstrates the value of an iterative evaluation 

approach whereby evaluation outcomes are used to further improve the concept.  

Case study 2 provided comparisons across three candidate technologies that have potential to 

be used on a vehicle programme within a 1-3 year time frame. The findings from this study, 

that the incumbent (and most cost-effective) technology provided significantly poorer UX 

compared to the other candidates, provide clear and concise evidence to support product 

development decisions. Furthermore, the identification of specific usability differences 

between the remaining two candidates justifies the inclusion of the qualitative data element; 

without it, these subtle differences would have been lost.  

There were also differences in application with respect to eye glance measurement. Case study 

1 used a manual coding approach to identify eye glance events from video captured during the 
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study. While effective, this approach is labour-intensive and prone to variability. For 

repeatability, multiple, skilled coders should be involved in the process: this reflects the 

practice observed at MIT AgeLab, where a pool of part-time workers (mainly postgraduate 

students) are employed to manually code video from simulator and instrumented vehicle 

studies. Conversely, case study 3a employed automated glance identification using an eye-

tracking system. While this simplifies the analysis, the system employed in this case required 

the user to wear tracking glasses, which can be intrusive and may affect the behaviour of the 

user during the study. The approach taken at University of Michigan Transportation Research 

Institute (UMTRI) was to use a remote eye-tracking system permanently installed in the 

simulator cabin – this is less intrusive to the user but requires careful setup and calibration to 

ensure data quality. Both eye-tracking systems also carry a significant associated cost for the 

hardware and software.  

13.2. Data Quality 

To act as an effective research tool, a questionnaire must exhibit both reliability and validity 

(Adams and Cox, 2008). Reliability relates to the consistency of the measure and validity 

relates to the ability of the instrument to measure the phenomenon that it is designed to 

measure (Nunnally and Bernstein, 1994). The subjective measures selected for inclusion into 

the toolset have all been tested for reliability and validity in the course of their development, 

but it is important to evaluate them as applied within the case studies. In addition, the 

consistency of the driving data from the simulator should be reviewed. This section addresses 

the reliability, validity and consistency of the data acquired by the toolset.  

13.2.1. Usability and Workload Measures 

The validity of both the NASA-TLX workload and SUS usability rating scales is well 

established in literature, forming a strong part of the rationale for their inclusion in the toolset. 

Reliability is commonly tested using Chronbach’s Alpha (Cortina, 1993, Nunnally and 

Bernstein, 1994). Chronbach’s Alpha is a measure of internal consistency, and ranges from 0 

to 1, where 1 indicates perfect reliability. Typically quoted ‘acceptable’ values for 

Chronbach’s Alpha range from 0.7 to 0.95 (Tavakol and Dennick, 2011).  

Chronbach’s Alpha is a function of the number of test items and the average inter-correlation 

among the items for a given scale: 

𝛼 =
𝑁𝑐̅

�̅� + (𝑁 − 1)𝑐̅
 

Where 𝑁 is the number of items in the scale, 𝑐̅ is the average inter-item covariance amongst 

the items and �̅� is the average variance of the items.  
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Table 5 shows the Chronbach’s Alpha coefficients for the SUS data collected in case studies 

1 and 2, calculated using SPSS. The overall mean value of 0.826 shows acceptable reliability, 

as expected. This both verifies earlier reliability values reported in the literature and confirms 

that the instrument was correctly applied in the case studies.  

Table 5 – Chronbach’s Alpha coefficients for SUS scores 

 Experimental condition  

Study Baseline Condition 1 Condition 2 Condition 3 Mean 

Voice dictation - - - .763 0.763 

Touchscreen - 0.923 0.883 .862 0.889 

    Overall mean 0.826 

Table 6 shows the Chronbach’s Alpha coefficients for NASA-RTLX workload scores. Again, 

the overall mean of 0.848 indicates acceptable reliability.  

Table 6 – Chronbach’s Alpha coefficients for NASA‐RTLX scores 

 Experimental condition  

Study Baseline Condition 1 Condition 2 Condition 3 Mean 

Voice dictation 0.837 0.853 0.809 - 0.833 

Touchscreen 0.886 0.854 0.917 0.797 0.864 

    Overall mean 0.848 

13.2.2. Hedonic Rating 

As a single-item scale, the reliability of the Hedonic Rating Scale cannot be verified using 

Chronbach’s Alpha. However, Wanous & Reichers (1996) outline a method for determining 

the reliability of a single-item scale through correlation to another variable of known 

reliability, using the formula outlined by Nunnally (Nunnally and Bernstein, 1994): 

�̂� =
𝑟

𝑟 𝑟
 

Where 𝑟  is the correlation between variables x and y; 𝑟  is the reliability of variable x, 𝑟  

is the reliability of variable y, and �̂�  is the assumed true underlying correlation between x 

and y if both were measured perfectly, i.e. there is no measurement error.  

Rearranging to solve for 𝑟  gives:  
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𝑟 =
𝑟

𝑟   𝑟
 

Table 7 shows the correlations between the overall SUS scores and the Hedonic Rating scores 

for case studies 1 and 2. All correlations were significant at the α = 0.05 level. From these and 

the Chronbach’s Alpha scores given in Table 5, the reliability of the Hedonic Rating scale can 

be estimated.  

Table 7 – Spearman's rho correlations between overall SUS and Hedonic Rating Scale scores 

 Experimental condition  

Study Condition 1 Condition 2 Condition 3 Mean 

Voice dictation - - .397 0.397 

Touchscreen 0.881 0.616 .838 0.778 

   Overall mean 0.588 

The correlation between the SUS and Hedonic Rating scores was lower for the single voice 

dictation study condition (0.397) than for the three touchscreen study conditions (mean = 

0.778). This may be due to the nature of the technology: all of the participants in case study 2 

were familiar with touchscreen interfaces while fewer were familiar with voice interfaces in 

case study 1, which may have affected their perception of the system.  

Table 8 provides two estimates of the reliability of the scale, based on the two observed 

correlation mean values. A value of 0.90 is applied for the estimated true correlation, as 

suggested by Wanous & Reichers (1996). Taking the overall mean of these values provides a 

reliability estimate of between 0.516, improving to 0.841 if only the touchscreen study 

correlations are applied.  

Table 8 ‐ Estimated reliability of Hedonic Rating Scale 

Observed correlation Estimated reliability 

Overall 0.516 

Touchscreen study only  0.841 

Estimated true correlation 0.90 

  

Although lower than the ‘minimum’ 0.70 value prescribed in the literature, the lower estimate 

of 0.516 provides positive indications for the reliability of the scale. At the higher estimate, 

scale reliability is comparable and exceeds the minimum ‘acceptable’ value identified in the 
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literature. Additional data points would lead to an increased confidence in the estimate, which 

would be achieved by observing the correlations from later applications of the toolset.  

13.2.3. Driving Metrics 

The design intent of the evaluation toolset was to provide a consistent and repeatable platform 

on which technology evaluation studies could be conducted. A key aspect of this is the 

repeatability of the driving environment. In order to draw comparisons across studies, the 

nominal driving behaviour of each participant group, characterised by the driving metrics 

measured in the baseline (single-task) driving condition should not differ significantly. Mean 

values for three key driving metrics: SDLP, mean distance headway and standard deviation of 

distance headway (‘headway variation’) were calculated for case studies 1, 2 and 3a, and 

compared using one-way ANOVA.  

Both SDLP (F(2,67) = 3.08, p>0.05) and mean distance headway (F(2,67) = 1.88, p>0.05) did 

not vary significantly across studies. Headway variation showed a greater degree of variation 

(±20%) but did not reach significance at α = 0.05 (F(2,67) = 3.08, p>0.05). These findings 

show that the simulator system was capable of delivering consistent driving performance 

measures across multiple groups, providing evidence of its reliability.  

13.3. Qualitative Learning from Evaluation Studies 

Qualitative feedback obtained from users during the studies provided positive evidence of 

behavioural validity of the simulator setup. Users were able to engage in the driving task in a 

realistic way, with many requesting to fit their seatbelt when driving, and use their mirrors 

and turn signals when setting off. This however highlighted a limitation of the original setup: 

the lack of rear-view displays meant that the sense of immersion was ‘broken’ when users 

looked to their mirrors and saw a blank wall. This was exacerbated by the space in which the 

simulator was located: hard surfaces and light colours led to significant light scatter from the 

projectors, and isolation from exterior noise was insufficient.  

While engaged in the driving task, some users commented on specific aspects of the control 

setup within the vehicle cabin. The use of gaming pedals compromised pedal position and 

feel. While this took a short time to acclimatise to, it was not perceived as an issue during the 

driving task. Users also found the steering feel to be lighter than expected, which may have 

affected their control of the vehicle.  

A number of users commented on the perception of speed in the simulator, stating that it felt 

like they were travelling more slowly than the indicated speed. The fixed-base architecture 

leads to a lack of the kinaesthetic cues that a driver would normally experience, in terms of 
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whole-body accelerations and transients. Perception is further impaired by the lack of 

vibrotactile stimuli that would normally be associated with engine and road surface vibration.  

Later studies were beset by recruitment issues, with multiple cancellations and no-shows 

leading to smaller sample sizes and/or time overrun. In part, this may be due to the lack of a 

defined incentive to compensate participants for their time. A more reliable source of 

participants would be highly beneficial to future studies.  

13.4. Simulator Revisions 

Based on the experiences highlighted above, a series of upgrades to the driving simulator were 

performed. These changes were made following collection of the data for the case studies, 

ensuring consistency of the evaluation environment throughout the project, but providing 

improved capabilities for future research. Key among these was the relocation of the simulator 

to a dedicated space within the University’s Department of Psychology, as part of a new 

collaborative venture titled the Interdisciplinary Driver Behaviour Research Group (IDBRG). 

This involved the renovation of a room within the Psychology Extension building to 

specifications defined by the author based on learning from visits to other simulator facilities, 

and described in detail in submission 3, chapter 7.  

The relocation allowed the issues identified above to be addressed. Interior walls were painted 

matt black to reduce light reflection, complemented with matt black suspended ceiling tiles, 

blackout curtains and dark floor tiles. The location of the room also significantly reduced 

external noise issues. As with the original space, air conditioning was fitted to ensure 

participant comfort. Figure 45 shows the revised simulator installed in its new location.  

 

Figure 45 ‐ Revised simulator installed in new location 
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The original display framework was re-installed with an upgraded visualisation package from 

Holovis. This included additional display panels to the rear of the vehicle utilising short-throw 

projectors, providing discrete views to each of the rear-view mirrors and significantly 

improving the level of immersion experienced by the driver, as shown in Figure 46.  

The additional display channels required updated hardware, consisting of new i7-based PCs 

with NVIDIA GTX780 graphics cards. These were significantly quieter than the original 

visual servers while offering improved graphics performance. The visual configuration was 

updated in SCANeR Studio to encompass the new displays, as described in submission 3, 

section 7.2. In addition, a new supervisor PC was procured providing improved processing 

performance and an update of SCANeR Studio to version 1.4 was installed, providing an 

increase in visual rendering performance.  

 

Figure 46 ‐ Driver's‐eye view of revised simulator showing mirror views 

Issues with the placement and feel of the vehicle controls were also addressed. Steering feel 

was improved through mechanical adjustment and re-configuration, with subjective 

comparison to a real Jaguar XJ. The original brake and throttle pedals were modified to install 

sensors and connect them to the existing USB interface before replacing them into the car, 

providing the driver with accurate ergonomics. The pedal inputs were calibrated in software 

to set correct pre-travel and endpoint.  

Finally, two changes were made to address the speed perception issue. Firstly, a vibration 

shaker was installed to the underside of the chassis below the driver’s seat. This was driven 

from the LFE channel of the simulator audio, emulating engine and road vibration. Secondly, 

additional static objects (trees) were added to the virtual environment to give additional 

motion cues. This is shown in Figure 47 below, providing a comparison of the original and 

modified environment.  
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Original Modified 

Figure 47 ‐ Comparison of virtual environment before and after modification 

13.5. Protocol Revisions 

Learning from the case studies was also applied to the evaluation protocol. Recruitment issues 

experienced highlighted the need for a more reliable source of participants. Notably, all three 

of the driving research facilities visited during the international placement (UMTRI, NADS 

and MIT AgeLab) had an established participant database and recruitment process that was 

constantly maintained. This allowed them to quickly access groups of participants that met 

specific study criteria. The collaboration with the Department of Psychology opened up access 

to the SONA participant database, jointly maintained by Psychology and Warwick Business 

School. Future academic studies will be able to benefit from this access, however it is expected 

that participants will be incentivised to participate in studies using SONA, hence this cost must 

be included in the study plan.  

The evaluation protocol uses a single-task baseline condition as a basis for establishing the 

effect of the technologies under test on driving performance. This requires the assumption that 

the driver is at the top of the ‘learning curve’ for the driving task before undertaking the dual-

task drive; given the simplicity of the driving task this is not an onerous assumption. However, 

a check could be performed by including a single-task segment at the beginning and end of 

each dual-task drive, providing a longitudinal view of driving performance and balancing any 

learning effects.  

Case studies 1 and 3 featured the application of eye glance measures. Eye glance duration and 

frequency is a core acceptance measure for the NHTSA Visual-Manual distraction guidelines 

and should therefore be included in technology evaluation studies wherever possible. The 

manual coding approach employed in case study 1 was effective and low-cost but labour-

intensive. For future studies, coding could be outsourced to temporary employees (following 

the MIT AgeLab approach), although this would have a cost implication for the project. An 

alternative would be to invest in an eye-tracking system that could be integrated into the 

simulator; this would have the benefit of allowing eye glance data to be synchronised with the 

simulator data (subject to software licensing).  
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Another area of learning from MIT AgeLab was their standardisation of experimental 

protocol. This was achieved through the use of an experiment control/data acquisition system 

that scripted and automated many of the instructions to the participant, thus minimising 

potential bias from the experimenter. While this project goes some way towards creating a 

standardised experimental approach, further consideration could be given to scripting 

instructions to participants prior to trials to ensure that consistency is maintained. 

13.6. Summary 

The evaluation toolset was applied to three distinct technologies across three case studies. The 

outcomes demonstrated that the evaluation toolset could be applied effectively and generate 

valuable, reliable and consistent data. Quantitative data provided clear indications of 

technology performance and user acceptance, while qualitative data identified key UX factors 

that enriched the quantitative findings.  

The three case studies were conducted with slightly different goals in mind. Case study 1 

demonstrated the acceptability of the system based on industry guidelines. Case study 2 

compared three competing technologies based on their UX. Case study 3a provided evidence 

of user acceptance of the technology, while studies 3b and 3c addressed more fundamental 

aspects of user interaction. The latter case both served as an indication of the boundaries of 

the capability of the toolset, and a demonstration of the need to adopt an iterative, user-centred 

technology development approach.  

Learning from the case studies was applied to improve the evaluation toolset. Changes to the 

simulator installation, hardware, software and virtual environment address shortcomings 

identified by users and offer improve immersion. Recommended protocol changes, based on 

experience from the case studies and learning from the international placement, will assist 

participant recruitment, simplify data analysis and reduce experimenter bias.  
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14. Application of Toolset to Technology Development 

The toolset is designed to enable evaluation of a range of technologies through established 

methods, providing a ‘level playing field’ across which data sets can be compared. In order 

for the evaluation toolset to add value to JLR, it needs to be capable of providing clear and 

relevant information that can be used to support decision making in the PD process. This 

chapter explains how the toolset fits into the development process and it can be used to support 

data-led decision making.  

14.1. Applicability to Technology Readiness Levels (TRLs) 

As defined in section 7.2, the toolset was designed to be applied to technologies that feature a 

minimum level of interactive functionality and are evaluated by users in-context. For case 

study 1, the technology under test was the interface itself, with the software concept developed 

to a point at which user interaction was possible, but the appearance and workflow were not 

production-ready. Conversely, in case studies 2 and 3a it was the display hardware that was 

under test, utilising a sample interface to enable evaluation.  

Following an interactive UCD approach, users should be engaged from the earliest stages of 

development, allowing UX issues to be identified and corrected at relatively low cost. 

Towards the end of the development cycle and as the product nears production, user interface 

elements should be well developed and the emphasis should shift to the validation and tuning 

of the production-intent design. By this point, it is difficult and expensive to make significant 

changes to the usability, workload and UX of a system (see Figure 7, pg. 11). Hence, there is 

a ‘window’ in the development timeline within which the evaluation toolset will be most 

effective.  

Figure 48 illustrates this with reference to the Technology Readiness Levels, using the 

definition provided by the Automotive Council UK (2011) and included in Appendix 1. At 

TRL1-2, the technology is not sufficiently mature to support interactive evaluation - at this 

early stage, analytical evaluation may be applied to a virtual concept. At TRL 3, experimental 

studies and simulations are feasible and the toolset is suitable for use. At TRL 7 the technology 

is considered ready to apply to specific vehicle programmes, with performance validated at 

TRL 8 and vehicle launch at TRL 9. 
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Figure 48 ‐ Applicability of the Evaluation Toolset to TRLs 

The apparent lengthening of TRL 8 in the diagram represents the transition from the 

technology development to product development process. The TRLs relate to the maturity of 

the specific technology under development; this will continue to mature as it is integrated into 

the target vehicle, but the timescale for doing so is now determined by the overall product 

maturity of the vehicle as a whole. This encompasses the work required to integrate the 

technology with other vehicle systems.  

14.2. Determination of Pass/Fail Criteria 

One of the key issues identified with evaluation approaches defined in the literature (see 

chapter 5) was the lack of specific pass/fail criteria against which technologies could be 

compared and verified. The Toolset addresses this issue by identifying pass/fail thresholds for 

each of the key performance metrics, described below. In addition, the toolset adopts the 

‘Traffic light’ grading system applied by Jander, Borgval & Ramberg (2012): 

 Green: Sufficient; does not lead to redesign recommendations 

 Yellow: Further investigation is required; some re-design efforts should be performed 

 Red: Severe; redesign efforts must be performed.  

For each metric, a ‘Green’ grading indicates that the system meets the defined performance 

criteria in its current state of development. ‘Yellow’ criteria are less stringent and represent 

an inferior level of performance; this adjustment takes into account the early development 

stage and anticipates a ‘glidepath’ toward improved final performance, with incremental 

improvements as the technology matures. ‘Red’ criteria identify potentially significant issues 

with usability, workload or liking that raise questions over the suitability of the technology for 

automotive use. The criteria are summarised in Table 9 below, and explained in the following 

sections.   
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Table 9 – Pass/Fail criteria for Evaluation Toolset 

Metric Criteria 
Grading bands 

Green Yellow Red 

Eye glance % of glances > 2.0s duration ≤ 15   ≥ 18 

Eye glance Mean glance duration, s  ≤ 2.0s   > 2.4s 

Eye glance Total eyes off road time, s ≤ 12.0   > 14.4s 

Driving 
Performance SDLP (absolute), m ≤ 0.30   > 0.40 

Driving 
Performance 

SDLP (relative), % change from 
baseline ≤ +30   > +50 

Driving 
Performance 

Mean Headway (relative), % 
change from baseline ≤ +30   > +50 

Workload NASA-RTLX (absolute) ≤ 35   > 45 

Workload NASA-RTLX (relative), % change 
from baseline 

≤ +50   > +150 

Usability Mean overall SUS score  ≥ 70   < 50 

Hedonic rating Median hedonic rating  ≥ 6   < 4 

     

14.2.1. Eye Glance Metrics 

Eye glance criteria are derived from the NHTSA guidelines (NHTSA, 2013). For a given 

secondary task:  

a) No more than 15% of glance durations may be greater than 2.0 seconds 

b) Mean single glance duration must not be greater than 2.0s 

c) Total eyes-off-road time must not exceed 12.0 seconds 

These criteria form the ‘Green’ thresholds for eye glance metrics. NHTSA’s criteria are based 

on a series of studies that evaluated manual radio tuning, a common task with known accident 

risk. Criterion c) represents the 85th percentile of total glance time from simulator and road 

studies. At the 95th percentile, total glance time and mean glance duration are increased by 

approximately 20%, with the percentage of long glances (>2s) reaching 29%. Adopting this 

for the toolset criteria, the ‘Red’ grading is set at the above values +20%.  

Note that these metrics are calculated per-task, whereas the other metrics are evaluated across 

the whole interaction. Hence, the number of tasks that sit in each pass/fail category must also 

be reported. This will help to differentiate between a system which is inherently distracting 

(i.e. all tasks fail to meet the criteria) and one in which a single task does not pass.  
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14.2.2. Workload metrics 

Table 10 shows the subjective workload reported for case studies 1 and 2. Baseline and 

maximum figures are given, along with the percentage increase from the baseline.  

Table 10 – Percentage increase from baseline for workload metrics 

 Case study 

Metric 1 2 3 

Baseline 20.4 16.0 - 

Maximum RTLX 29.4 48.9 - 

Change from Baseline % +44.3% +206.3% - 

    
The value for case study 1 was taken from the ‘correction’ condition, in which the voice 

dictation interface was evaluated. Eye glance measures from this study showed that the 

interface complied with NHTSA guidelines indicating acceptable workload level. Case study 

2 included some tasks with long completion times that would be locked out under the NHTSA 

guidelines – this level of workload is likely to be unacceptable. In addition to the case study 

data, Reimer et al. (2013) found that a manual radio tuning task attracted a score of 

approximately 3.2 out of 10 on a self-reported workload scale, analogous to a TLX score of 

32. Grier (2015) identified that the median TLX score for driving-related activities was 41.5, 

with the 75th percentile at 51.7. Based on these figures, the ‘Green’ threshold is set at 35, and 

the ‘Red’ threshold set at 45. 

To account for differences in baseline workload perception, and acknowledging that all 

secondary tasks will see an increase in workload, a relative criterion is also applied: the 

‘Green’ threshold is at ≤ +50% from baseline, while the ‘Red’ threshold is set to > +150%.  

14.2.3. Usability metrics 

The distribution of SUS scores is shown to be negatively-skewed, with a greater proportion of 

scores above 50 (the halfway point of the scale). Figure 49 (Bangor et al., 2009) shows the 

numeric scores compared to adjective ratings, grade scales and acceptability ranges, derived 

from multiple studies. The SUS scores applied for the toolset are based on these, with the 

‘Red’ threshold set at 50 (the lower end of acceptability and just below ‘OK’) and the ‘Green’ 

threshold set at 70, approximating to a usability rating of ‘Good’.  
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Figure 49 ‐ Comparison of the adjective ratings, acceptability scores, and school grading scales, 

in relation to the average SUS score (Bangor et al., 2009) 

14.2.4. Hedonic Rating 

As a discrete scale, the hedonic rating produces ordinal data. It is therefore appropriate to 

consider the median (rather than the mean) as the measure of central tendency. Any technology 

introduced into a production vehicle should add to the user experience; i.e. have positive 

affect. The fail criterion is therefore set to a median score of less than 4 (based on a 0-8 scale) 

where 4 is the middle of the scale (‘neither like nor dislike’), indicating a negative response. 

A score of ≥ 6 (‘like moderately’) signifies the ‘Green’ threshold.  

14.2.5. Driving Metrics 

As discussed in submission 2 section 9.3.1, lateral and longitudinal vehicle control are affected 

by visual and cognitive workload. In this way, variation in these parameters can be used to 

assess the level of workload imposed by a device. Table 11 shows the percentage increase 

from baseline for SDLP and mean distance headway, for each of the case studies. The largest 

effect on driving behaviour was observed in case study 2, which involved visual-manual tasks 

using a display mounted away from the driver’s eye line.  

Table 11 – Percentage increase from baseline for driving metrics 

 Case study 

Metric 1 2 3 

Baseline SDLP, m 0.20 0.21 0.26 

Max SDLP, m 0.23 0.42 0.27 

Change from Baseline, % +9.5 +95.5 +4.5 

Baseline mean Headway, m 94.6 67.0 71.1 

Max mean Headway, m 112.8 118.0 88.5 

Increase from baseline, % +19.3 +76.1 +24.4 
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Based on the dimensions of the vehicle and roadway, and assuming that lateral deviations are 

normally distributed, the SDLP measured in case study 2 would see the car exceeding lane 

limits at least 5% of the time, i.e. for 50 meters from each kilometre. This is a clearly 

unacceptable level, therefore the ‘Green’ threshold is set at 0.30m and red at 0.40m. To 

account for variations in the baseline relative thresholds are set at +30% and +50%.  

No absolute target for headway is set, due to potential differences in starting position relative 

to the lead car. Unlike lateral variation, there is an inverse relationship between accident risk 

and distance headway, as increasing the distance to the car ahead gives the driver more time 

to react. However, given that headway is indicative of cognitive distraction (Engstrom et al., 

2005), relative thresholds are set at +30% and +50%.  

14.3. Technology Scorecard 

To support clear communication of findings, data should be presented in a way that minimises 

ambiguity while maximising information content. Cooper at al. (2002b) discuss the use of a 

‘project scorecard’ to determine the merits of the project based on key criteria: 

 Strategic alignment and importance 

 Product advantage 

 Market attractiveness 

 Synergies with core competencies 

 Technical feasibility 

 Risk vs. return 

Within this list, certain criteria, such as strategic alignment and likelihood of technical 

feasibility are considered ‘Must meet’; that is, the project will be stopped if it fails to meet the 

required standard. For a given technology development project, strategic alignment and 

synergies are determined at a higher level by the business and technology strategy. Technical 

feasibility and product advantage can be illustrated through the technology evaluation process.  

A scorecard is a visual data display used in a strategic performance measurement system to 

compare performance against targets and thresholds (Eckerson, 2010). It provides snapshots 

of performance at a given time through combinations of images and text (Kerzner, 2011). This 

allows managers to view all data relevant to project performance in one place, and to chart 

progress over time.  

This concept can be adapted to the evaluation process to create a ‘technology scorecard’ that 

collates the data from a technology evaluation and puts it into a clear, concise and common 

format that can be easily interpreted by project stakeholders. Keyes (2011) identifies that 
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within a successful project management measurement system, “Performance measurement 

systems must provide intelligence for decision makers, not just compile data”, with 

performance measures relating directly to core strategic objectives. With the Technology 

Scorecard, performance is assessed against the pre-determined pass/fail criteria discussed 

above, providing a direct representation relative to global measures.  

The completed Technology Scorecard is shown in Figure 50 below. This version is based on 

the data from case study 2, with the addition of dummy data for glance time, based on task 

completion data. The Scorecard is designed to be printed onto an A3 sheet; a reduced version 

is included in appendix 2.  

 

Figure 50 – Technology Scorecard 

The Scorecard is designed using Gestalt principles of similarity and proximity, along with pre-

attentive processing attributes of colour and enclosure to group the different elements of the 

data, allowing the user to quickly identify and read the relevant data (Eckerson, 2010). The 

tables to the right of each graphical data element contain the Green/Yellow/Red performance 

indicators, providing an instant indication of the performance of the technology for each 

metric.  

The top section of the scorecard consists of three elements: the project information box, the 

evaluation stage indicator and the project description. The information box (Figure 51) 

contains relevant data about the project including name, owner and report date. In addition, it 

contains information about each of the data sets included in the report: the name and ID of the 
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technology under test, the evaluation date and the sample size for the data. This makes it clear 

to the user what information is displayed when it was acquired.  

 

Figure 51 – Project information box 

The evaluation stage indicator gives a visual indication of the point along the development 

path for the project at which the report was generated, giving a snapshot of the maturity of the 

technology. The description box contains text providing details of the project.  

The middle section of the Scorecard presents the objective data from the study. Data is 

presented in graphical form, accompanied by a table containing the performance indicators. 

The glance time section is shown in Figure 52 below; the driving metrics, lateral and 

longitudinal deviation, are also presented in this section.  

 

Figure 52 ‐ Objective data element from Scorecard 

The graphical data is presented at the device level to allow comparison between the 

technologies. However, 10 different tasks were performed in this study with differing levels 

of workload. To account for this, the status table on the right also includes a count of the ‘Red’ 

tasks, i.e. those that failed to meet the minimum threshold. A technology is graded ‘Red’ if 

any of the tasks fail.  

The third section contains the subjective data, including graphical representations of usability, 

hedonic rating and workload with their respective status tables. In addition, this section 

features a ranking of user preference, along with a text box for key UX considerations. This 

TECHNOLOGY SCORECARD

Project title: TS-0001 Touchscreen Technology

Owner: A. Person CDSID: aperson

Report date: 01/01/2017

Data Set Supplier ID Eval date Sample Size

Capacitive TS Supplier 1 12345 01/11/16 18

Resistive TS Supplier 2 23456 01/11/16 18

Infra-red TS Supplier 3 34567 01/11/16 18
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contains observations and/or verbatims that reflect issues identified by the users. This data 

provides context and explanation to the graphical data, so it is important that all appropriate 

comments are included.  

14.4. Knowledge Capture 

In order to achieve maximum benefit from the Evaluation Toolset approach, outputs from each 

study must be captured for future reference and comparison to other technologies. Cooper et 

al. (2002a) advocate the application of a ‘capture and handling’ system to manage ideas that 

pass the initial screen in a stage-gate process. Data from technology evaluations should be 

logged to a central ‘Knowledge Store’ that can be accessed by managers and engineers. The 

availability of such a database of results will help to provide justifications for development 

decisions by providing evidence of the relative performance of technologies, and by 

demonstrating improvement in performance through the PD process. Figure 53 below 

illustrates the information flow for a hypothetical knowledge capture system. 

 

Figure 53 ‐ Knowledge Capture of Evaluation Data 

14.5. Recommendations for Toolset Implementation 

The previous sections identified how the Evaluation Toolset might fit into the established 

development workflow. This section identifies specific provisions that are recommended for 

implementation of the Toolset methodology.  

As discussed in section 13.5, the driving research facilities visited during the international 

placement all had an established participant database and recruitment process that was 

constantly maintained. Having experienced some recruitment issues in the earlier case studies, 

access to the University’s SONA participant recruitment system was obtained. It is unlikely 

however that long-term access to this resource will be available, especially for non-academic 

projects; also industrial studies may have more specific requirements for participants. It is 

therefore recommended that a participant recruitment system is established, preferably with a 

database of participants from a non-engineering background. Harvey et al (2011c) note that 
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the availability of participants can influence designers’ decision to conduct evaluations; hence 

a participant database will support evaluation activity.  

As discussed in section 9.1.4, NHTSA guidelines recommend a minimum sample size of 24 

for technology evaluations. Data from case study 2 showed large variance which was due in 

part to the reduced sample size. A sample size of 30 is therefore recommended which, along 

with improvements in participant instructions detailed below, will help to ensure that the 

measures applied have optimum sensitivity. The minimum sample size should be set to 24 in 

line with the NHTSA guidelines. Issues experienced with participant recruitment would be 

alleviated with the application of a participant recruitment system, as described above.  

Providing participants with clearer instructions and additional practice time may help to 

reduce the variability of the data. While the instructions currently provided largely meet with 

ISO guidance (ISO, 2010b), there are some areas which could be improved. Firstly, 

participants should be instructed to regain their nominal follow distance to the lead vehicle 

after the completion of each task. This could assisted in the simulation scenario by moderating 

the speed of the lead vehicle until an appropriate follow position is established. Secondly, 

although no significant difference was seen in baseline driving performance across the studies, 

establishing acceptance criteria for the baseline drive would help to ensure a minimum level 

of performance and may help to identify unsuitable participants. Participants should be 

instructed to balance the performance of the primary and secondary tasks to avoid excessive 

focus on one or the other. Finally, participants should be given a separate dual-task practice 

scenario to prepare them for the task drives; this would of course increase the duration of the 

study which may have practical implications for the intended scope.  

The evaluation protocol was subject to approval by BSREC, involving a detailed examination 

of the ethical implications of the study. The application process was lengthy but rigorous, 

ensuring that academic standards for ethics were maintained. In translating the toolset to an 

industrial environment, the risks to participants remain the same, but the academic framework 

is removed. Ideally, a group should be established within JLR to oversee research ethics and 

all studies should be approved before commencing, using academic ethical approval processes 

as a model. This will ensure that both participants and experimenters are aware of potential 

risks and minimise any disconnect between industrial and academic partners.  

The toolset is designed to produce repeatable, reliable measurements across technologies and 

experimenters. Even so, it is important that experimenters receive appropriate training in the 

application of the methods, such that variability is minimised. Training should also cover 

research integrity and ethics to ensure that new experimenters are familiar with the established 

practice.  



106 

As the toolset incorporates objective and subjective metrics, it is necessary to consider the 

relative importance of these in different scenarios. Firstly, certain HMI features may be safety-

critical (e.g. warnings, ADAS functions), whereby interaction occurs over a short time period. 

The objective eye glance and driving metrics reflect the safe operation of the vehicle, while 

the subjective usability and hedonic rating metrics give some measure of the User Experience. 

For safety-critical systems, the design goal may be oriented towards safe operation of the 

vehicle, with less consideration given to the creation of an engaging user experience. In these 

cases, priority may be given to the objective data in the overall evaluation. However, in 

situations where interaction is more sustained are there is greater opportunity for an 

'experience' to be formed, the subjective measures become more relevant, reflecting the design 

goal of the system. Clearly, the performance measures still apply, effectively determining the 

limits of acceptable deviation from the baseline.  

While it would normally be expected to see a positive correlation between hedonic rating and 

usability (as seen in section 13.2.2), it is possible that these measures may disagree. In such 

cases, the qualitative data may provide insights into the reasons for this. Ultimately, the 

decision on the value of a given technology rests with the judgement of the engineer; the 

evaluation toolset provides a framework for capturing and presenting the relevant information 

to support that judgement.  

Conducting user-focused research clearly has a direct cost implication for the project and 

budget may not be initially available. This is offset however by reduced costs in development 

as issues are identified earlier. A shift of emphasis (and resource) to up-front activities requires 

high-level management support, both in terms of allocating budget and implementing 

findings. In presenting clear evidence of the performance of technology concepts, the toolset 

supports data-led decision making which will help to justify research expenditure.  

Finally, it is important that the pass/fail criteria are reviewed periodically, to ensure alignment 

with the latest industry guidelines and to reflect customer expectations. Improvements in UX 

throughout the development process should also be monitored to confirm that the anticipated 

improvements (‘glidepath’) are realised, and criteria thresholds adjusted as necessary.  
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14.6. Toolset Strengths and Limitations 

The Evaluation Toolset has been shown to be effective in the context of the case studies 

conducted under this project; however, as discussed in section 14.1, the toolset has limitations 

that must be acknowledged. Strengths and limitations are compared in Table 12 below.  

With respect to reference tasks: the Alliance of Automobile Manufacturers (AAM) specifies 

a radio tuning task as reference for an ‘acceptable’ activity to be conducted while driving 

(Alliance of Automobile Manufacturers, 2006). It is unclear as to whether performance of this 

task would meet the pass/fail criteria established above. 

Resource required for data analysis is identified as a limitation but could be a) delegated to a 

pool of trained part-time assessors (as per the approach adopted by MIT AgeLab); or b) 

automated, through the use of eye tracking systems and analysis scripts. Examples of such 

tools were developed in the course of the project including pro-forma Excel workbooks and 

MATLAB scripts; these help to reduce variability between analysts and minimise error but 

care must be taken to ensure that automation does not lose oversight of data quality. There is 

a cost implication for either solution that must be weighed against potential time savings.  

Table 12 – Strengths and Limitations of Evaluation Toolset 

Strengths Limitations 

Toolset provides rich information derived from 

users on their experience of the technology 

concept in context, highlighting UX issues that 

would not be identified by an analytical 

approach.  

User-focused testing is more costly and time 

consuming than analytical approaches; however 

analytical approaches are not appropriate in 

some cases (e.g. evaluating display technology) 

Standardised approach minimises set up time 

for studies and ensures a ‘level playing field’ on 

which technologies can be compared. 

Comparisons can be between technologies in a 

single study, between different technologies 

across studies, and between a single technology 

evaluated at different stages of development.  

As identified in case study 3, there are situations 

in which more in-depth investigation of 

fundamental factors is required, in which case 

the standardised approach is not appropriate. In 

such cases, the experimental protocol must be 

tailored to the specific case. 

Provides direct comparison to pass/fail criteria 

derived from industry guidelines and study data, 

allowing a quick indication of the potential 

performance of the technology from both a 

safety and UX perspective.  

Toolset does not currently specify a default 

reference task that might serve as a baseline 

comparison for driving performance, eye glance 

behaviour and workload.  
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Utilises simple motorway driving scenario, 

reducing participant acclimatisation time. Low 

driving workload creates ideal conditions for 

users to allocate attention to the technology 

concept. Driving task designed to be sensitive to 

both lateral and longitudinal variations.  

The scenario may not be suitable for specific 

features such as auto parking, reverse 

sensor/camera systems, pedestrian protection, or 

off-road technology. Flexibility of the simulator 

hardware allows new environments to be 

created.  

Toolset generates data across a range of metrics 

to provide a complete picture of performance. 

Triangulation of data sources increases 

confidence in findings. 

Toolset creates a considerable amount of data, 

requiring resource for analysis, with associated 

cost/time implications. Could be remedied by a) 

using trained assessors; b) automating process 

(e.g. using eye-tracking kit, analysis scripts) 

Toolset employs simple, easy to understand 

subjective measures that can be completed by 

novice users and minimise time required 

compared to complex questionnaires. 

Hedonic rating scale provides a limited measure 

of product emotion. Multi-dimensional 

approaches such as AttrakDiff (Hassenzahl, 

2004a, Hassenzahl et al., 2015) or PED 

(Edmunds and Dorn, 2012) may provide a more 

comprehensive indication of the emotions 

experienced by the user; however these all 

require longer responses from participants and 

would impair the usability of the toolset itself.  

Technology scorecard provides clear and 

concise representation of evaluation outcomes 

to support development decision making. Data 

is presented it in a standardised format with 

clear indications of performance relative to 

pass/fail criteria. 

Subjective ratings applied post-task are global 

and cannot discriminate between specific tasks. 

Tasks can be differentiated using eye 

glance/task completion data.  

Evaluation data is collected using a Knowledge 

Capture process and stored for future reference, 

allowing comparisons against benchmark data 

or longitudinal references. 
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14.7. Summary 

This chapter discussed how the Evaluation Toolset fits into the technology development 

workflow. The toolset is suitable for use on concepts with a Technology Readiness Level 

between TRL 3 and TRL 8, signifying the range between interactive concept and production-

intent.  

One of the key benefits of the Toolset is that it provides direct indications of the acceptability 

of a technology. Industry guidance and case study outcomes were used to define pass/fail 

criteria against which technology performance would be graded, using a ‘traffic light’ system. 

This allows engineers and managers to quickly determine the suitability of a concept for 

further development.  

Outputs from evaluations are collated and presented in a Technology Scorecard: a one-page 

summary of key findings that includes both objective and subjective information. Results are 

displayed clearly in a logical and structured manner, supporting data-led decision making. The 

application of a knowledge capture system allows direct comparisons between technologies, 

studies and baseline data to provide clear indications of relative performance.  

Finally, while the Toolset has many strengths there are also limitations, some of which can be 

resolved in application through the provisions recommended, which are based on learning 

from the implementation of the case studies and the international placement. 
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15. Impact and Added Value 

The previous chapters set out the background, rationale and approach to the project, detailing 

the development of the Evaluation Toolset and application to the case studies. Findings from 

the studies were discussed with reference to application to the technology development 

process. This chapter outlines the impact created by the project, both in the industrial and 

academic sectors.  

15.1. Industrial Impact 

The industrial impact of the project is discussed in three sections: Direct impact, based on 

application of the Toolset to the case studies; Process impact, based on the derivation of the 

evaluation protocol and Technology Scorecard; and Capability impact, based on the 

development of the evaluation environment and opportunities for future application.  

15.1.1. Direct Impact 

The project had direct impact into three JLR technology projects (as featured in the case 

studies), providing detailed, relevant and reliable data on objective performance and user 

perception of novel technology concepts. This data was reported into JLR and provided data-

led evidence to support the development decision-making process. Specifically: 

 Case study 1 confirmed the potential of the prototype voice dictation interface, 

highlighting potential usability improvements. As an early-phase software concept 

changes carry little cost and risk, providing maximum benefit and reducing the 

number of changes further down the development path.  

 Case study 2 demonstrated strong user preference for capacitive touchscreens over 

the incumbent resistive technology and confirmed the link from users’ experiences of 

touchscreen mobile devices to their expectations for in-car touchscreens. While there 

appeared to be little objective difference between the capacitive and infra-red 

displays, qualitative data highlighted some specific usability issues with the latter; this 

finding supports the selection of the capacitive display for future vehicles.  

 Case study 3 determined feasibility for the use of 3D displays in the instrument cluster 

(Figure 54), highlighting potential issues relating to image quality and visual 

discomfort with longer-term use that will require further investigation during product 

development. Left uninvestigated, this issue has the potential to cause major issues 

once the product is in the market; however early identification allows for robust 

testing and design activity to alleviate the problem.  
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Figure 54 ‐ Evaluating the 3D display 

“Working with WMG on the 3D Displays project provided valuable 

information to support the development process. Using the driving 

simulator allowed us to test the 3D displays with users and assess their 

response to a novel technology in a realistic context.” 

 Elvir Hasedžić, JLR Research Lead Engineer 

15.1.2. Process Impact 

The Evaluation Toolset protocol is designed to provide a standardised approach to technology 

evaluation that effectively ensures a ‘level playing field’ on which technology concepts can 

be evaluated and compared. The process reduces variability between studies and 

experimenters; also minimises setup cost through standardisation of test procedure. As shown 

above, when applied to early-stage concepts, the approach yields valuable data to support 

further development.  

The Technology Scorecard (Figure 55) collates evaluation data and presents it in a clear and 

easy-to-understand format to support the product development decision-making process. 

Technologies can be compared within a test set, against a benchmark or longitudinally to 

illustrate development over time. As a tool, this helps to illustrate the relative performance of 

candidate technologies and ensure that all relevant metrics are taken into consideration.  
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Figure 55 – Technology Scorecard 

It is difficult to directly assess the financial value of the Evaluation Toolset until a product 

that has been through it reaches the market. However, while there is an inherent cost is 

undertaking customer-focused studies such as those discussed, there is also cost associated 

with releasing products that do not meet customer expectations. Figure 56 shows the 

‘Prevention, Appraisal, Failure’ (PAF) cost of quality model, illustrating the ‘Cost of Good 

Quality’ and the ‘Cost of Poor Quality’ (Farr, 2011). A high-quality product requires high 

prevention and inspection costs to ensure that the product reaches market without defects. 

Conversely, a low quality product has low prevention and inspection costs, but incurs high 

costs due to failure. These costs may be internal, such as scrappage or rework; or external, 

such as warranty cost and damage to brand value.  

 

Figure 56 ‐ Cost of Quality (Farr, 2011) 
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The quality literature indicates that costs incurred though the process will be outweighed by 

savings achieved through identifying issues up-front. The ‘1-10-100 rule’ (Omachonu and 

Ross, 2004, Ross, 1999, Labovitz et al., 1992) states that cost escalates by a factor of ten with 

each step in product readiness: a problem that requires correction will cost ten times more than 

one prevented at the design stage, whereas a product failure in the market will cost ten times 

more to rectify than a corrective action. The implication is that there are considerable benefits 

to identifying and rectifying issues early in the design phase.  

The UX of automotive technologies can have a significant impact on the brand value of an 

OEM if serious issues become apparent once the product is in the market. Submission 1 

featured the example of MyFord Touch, which launched to market while suffering significant 

usability and reliability issues. This caused major damage to the Ford brand, with a drop from 

5th to 27th in the JD Power IQS ranking in just two years, a position that has taken a further 5 

years and a completely new system architecture (SYNC 3, launched in 2016) to rectify 

(Martinez, 2017). Currently, Ford still face a class action law suit over the issues with MyFord 

Touch7. The cost of rectification and the damage to the value of the brand represent a ‘cost of 

poor quality’ as defined by the PAF model above, which may have been avoided by early 

identification and correction of usability and UX issues. Figure 57 illustrates this with 

reference to the application of the Evaluation Toolset.  

 

Figure 57 ‐ Cost implications for identification of issues during development 

  

                                                      
7 https://www.hbsslaw.com/cases/ford---myford-touch 
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15.1.3. Capability Impact 

The WMG driving simulator developed under this project provides JLR with an additional 

research partner for conducting simulator-based research. The simulator was specifically 

designed with flexibility in mind, supporting the integration of both hardware and software 

concepts encompassing commonly-used HMI development tools, as demonstrated by the case 

studies. This makes it suitable for use in a wide range of in-vehicle technology evaluations.  

Collaborative research ensures that academic standards of research ethics and data integrity 

are retained, while the proximity of the simulator facility and team to JLR’s Research & 

Technology functions supports close co-ordination of research activity. In addition, the 

simulator team are able to support demonstrations and scoping studies for JLR and partners.  

The collaboration with the Department of Psychology (see section 15.2.2) and relocation of 

the simulator has led to improvements in the simulator fidelity and experience. In addition, 

this relationship broadens research capability through access to additional expertise (including 

physiological measurement, visual attention and risk behaviour analysis), adding expert 

insight into driver behaviour that will benefit JLR in future research activity.  

“The simulator that is proposed for relocation within Psychology is an 

important part of our portfolio of facilities… I welcome the collaboration 

with the Psychology Department” 

Letter of support (extract) from Lee Skrypchuk,  

JLR HMI Technical Specialist  

15.2. Academic Impact 

The project also generated academic impact through publications, research collaborations and 

funding calls. These are detailed below: 

15.2.1. Publications 

Three peer-reviewed conference and journal papers were published during the course of the 

project, two as lead author and one as co-author.  

 Comparing the User Experience of Touchscreen Technologies in an Automotive 

Application (Pitts et al., 2014); conference paper based on case study 2 and presented 

at Automotive UI 2014 in Seattle, WA, USA.  

 Adding Depth: Establishing 3D Display Fundamentals for Automotive Applications 

(Pitts et al., 2015); SAE Technical Paper based on Case Study 3 and presented at SAE 

World Congress 2015 in Detroit, MI, USA.  
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 Cross-cultural differences in automotive HMI design: a comparative study between 

UK and Indian users' design preferences (Khan et al., 2016); journal paper as co-

author. My contribution related to UX, Kano model, experimental methods, statistics 

and editing.  

15.2.2. Collaboration with Department of Psychology 

A key outcome from the project has been the formation of a new interdisciplinary 

collaborative relationship with the Department of Psychology, which saw the simulator re-

installed in a dedicated space in the Psychology building. The collaboration opens access to 

wider expertise for both parties, with potential to broaden the range of research opportunities.  

As an example: a detailed research proposal was created for a project looking at driver fatigue, 

in collaboration between WMG and the Sleep Lab at the Department of Psychology. This was 

enabled by the formation of the partnership and the installation of the simulator.  

The simulator is currently in use on a JLR-supported PhD project involving Psychology and 

Computer Science; this would not have been possible without the facility in place. In addition, 

the simulator supports undergraduate projects, with the first to use the facility attracting the 

departmental prize for best 3rd year project.  

“The WMG/Psychology driving simulator collaboration has enabled us to 

engage in road safety related Behavioral Science research in a way that 

was not previously possible. The facility has proved to be a great asset to 

the Department and has helped to generate interest from current and 

prospective students as well as from external partners and the general 

public. Working with WMG has also provided unique and extremely 

valuable access to technical expertise and automotive experience that 

complements our own research expertise and broadens greatly the reach 

of our research capabilities.” 

 Derrick Watson, Deputy Head, Department of Psychology, 

University of Warwick 
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15.2.3. Funding 

The simulator facility has enabled and supported a number of funding applications over the 

course of the project. Aside from the initial budget for hardware & software under LCVTP, 

the following funding opportunities have been realised: 

 EPSRC Robotics and Autonomous Systems grant (£50k): visualisation & software 

upgrades 

 University of Warwick Central Capital Expenditure grant (£85k): development of 

Psychology facility 

 Warwick Behavioural Science GRP award (£2.6k): funding for pilot study into risky 

driving behaviour 

 EPSRC Towards Autonomy - Smart and Connected Control PhD studentship (£220k): 

in collaboration with JLR, Psychology and Computer Science 

 Innovate UK Better Interactions Between People and Machines feasibility study 

(£50k total award): Gesture Recognition for Automotive Applications (GRAAppl) 

In addition to the above, additional research bids were compiled for a study into driver fatigue 

in collaboration with the Psychology Sleep Lab, and a mobile phone distraction project for a 

UK-based insurance company. Additional expressions of interest have been received from 

Highways England, Dorset & Gloucestershire Police forces and Optis, a developer of lighting 

simulation software.  

15.3. Summary 

The project has succeeded in delivering both industrial and academic impact. The case study 

findings directly supported three JLR technology projects, while the Evaluation Toolset 

provides a basis for evaluations going forward. The development of the driving simulator and 

collaboration with the Department of Psychology provides JLR with an academic research 

capability co-located with the Research & Technology team, allowing close co-ordination of 

research activity.  

The Psychology collaboration also creates new opportunities for interdisciplinary research. 

Creating a bespoke facility for the simulator provided the opportunity to improve its capability 

and integrate new functionality, leading to improved research outcomes for future studies. The 

simulator facility has been instrumental in supporting a number of successful funding bids, 

with additional interest suggesting the potential for future funded studies.  
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16. Conclusions 

The development of new automotive HMI technologies offers manufacturers the opportunity 

to gain commercial advantage in a competitive and crowded marketplace. User response to 

technology influences the perception of the brand as a whole, so it is important that in-vehicle 

systems provide a high-quality user experience. However, the demands of usability and user 

experience must be balanced against the requirement for driver safety. It is critical therefore 

that manufacturers are able to obtain clear and relevant information on user experience and 

safety when developing new technology products.  

The aim of the project was to develop an Evaluation Toolset that would support the 

development of automotive HMI concepts through a User Experience-based approach. 

Following a thorough review of the literature, industry guidelines and research practice, an 

evaluation protocol was devised to provide a standardised evaluation approach for early-stage 

concepts. The protocol encompasses key objective measures of driving and task performance, 

along with subjective ratings of workload, usability and hedonic rating. These quantitative 

measures are supported by qualitative data, providing detail and context to the evaluation 

outcomes.  

The second element of the Toolset is the evaluation environment: the driving simulator. This 

was developed to support the integration of hardware and software concepts, allowing early-

phase prototypes to be evaluated in a realistic driving context. A basic driving environment 

was designed to minimise participant training time and allow users to engage with the 

technology concepts under test. Further developments of the simulator offer improved 

performance and experience, providing an excellent platform for future research projects.  

The Evaluation Toolset was applied to three case study technologies, representing both 

hardware and software concepts at differing technology readiness levels. The outcomes from 

the case studies confirmed its effectiveness, producing valuable data on usability and User 

Experience. However, the specific requirements of case study 3 highlighted the limitations of 

the approach. Recommendations for revisions to the toolset were made based on the case study 

findings.  

In order for the Toolset to fully support development decisions, clear and concise data must 

be presented. A Technology Scorecard was developed which collates all of the key metrics 

defined under the evaluation protocol with reference to pre-defined pass/fail criteria, allowing 

at-a-glance indication of technology performance. A proposed knowledge capture system 

would collate study findings and create a database of results for future reference.  
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16.1. Achievement of Objectives 

Five objectives were defined under the project methodology. These are discussed below: 

Determine the key objective performance indicators for driver behaviour – a review of 

the literature and current HMI guidelines identified a number of objective metrics to 

characterise driver behaviour. In assessing primary vehicle control, lateral and longitudinal 

position variation are key measures. Lateral variation is measured by Standard Deviation of 

Lane Positon (SDLP), which determines deviation from an arbitrary mean lane position. 

Longitudinal variation is measured relative to a lead vehicle as Headway, the spatial or 

temporal distance between the two vehicles. Visual distraction tasks will generally see an 

increase in lateral variation as the driver diverts their attention from lane tracking. Cognitive 

distraction will generally see an increase in headway as the driver subconsciously creates more 

space as a coping strategy.  

In addition to the vehicle control metrics, eye glance behaviour is an important indicator of 

distraction. Diverting visual attention from the forward roadway is known to be correlated 

with accident risk, with individual glances of over 2 seconds linked to a significant increase 

in risk. Visual distraction will see an increase in glances away from the forward roadway; 

however cognitive distractions will see an increased focus on the forward roadway, albeit with 

a decrease in glances to mirrors and a reduction in peripheral awareness. This ‘tunnel vision’ 

effect decreases the driver’s ability to identify potential hazards in the environment.  

Develop a context-rich environment to enable evaluation of novel HMI technologies – the 

usability and UX literature both highlighted the importance of context of use on the user’s 

overall perception of the product. The context of use must therefore be incorporated into the 

evaluation process to ensure that data collected accurately reflects how the product is likely to 

be received by the user. In addition, the evaluation environment must support the range of 

metrics required to produce a complete picture of the interaction experience. Given the 

specific nature of the in-car environment, the decision was taken to develop a driving simulator 

to serve as the evaluation environment. The simulated driving task emulates the workload 

characteristics of real-world driving, while the vehicle cabin maintains the ergonomics and 

ambiance of the real vehicle.  

The case studies served to demonstrate that the simulator could successfully be used to test a 

range of in-vehicle technologies, including both hardware and software concepts. The driving 

metrics captured from the simulator data during the studies identified the influence of 

secondary task completion on driver behavior, serving as an indicator of driver distraction.  
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While indicators of behavioural validity observed during the case studies were encouraging, 

a number of issues were highlighted that reduced the fidelity of the simulator. A programme 

of improvements was undertaken which included moving the simulator to a new, bespoke 

space, reinstating the original pedal set and adding rear displays. These changes enhance the 

capability of the simulator for future research.  

Identify and evaluate methods for capturing the User Experience of in-car technology – 

Review of the literature identified key models of UX that describe how the user’s perception 

of a product is formed. Utility and usability is at the core of UX, in that it is fundamental that 

a product can effectively complete its design function in order for higher level experiences to 

be created. Hence, usability measures form a core aspect of assessing UX. Models also 

indicate that perceived quality has a hedonic aspect, a key into the emotional response of the 

user. The toolset therefore employs the hedonic rating scale, adopted from the sensory 

sciences, as a measure of overall liking of the product under test. Finally, key qualitative 

observations relating to product preference are captured using a semi-structured interview 

technique, yielding valuable insights into product performance and user behavior that can be 

used to shape future generations of product.  

Create and test a protocol for the evaluation of technologies from the perspectives of UX 

and driver safety – The wide range of product evaluation methods identified in the literature 

can be applied at different stages of the development programme to technologies of different 

technology readiness level. The toolset described here seeks to reduce the variability in the 

application of these methods by a) restricting candidate technologies to those that have some 

interactive functionality, and b) by specifying a standardised evaluation approach that can be 

consistently applied across technologies and by different experimenters, ensuring a ‘level 

playing field’ when making judgements about the relative merit of different concepts. The 

toolset incorporates both objective and subjective quantitative measures, alongside qualitative 

data relating to the quality of the user experience. In this way, a full picture of the impact of 

the technology can be obtained, encompassing UX and driver safety.  

Determine how the evaluation protocol can be integrated into the up-front NPD process 

for in-vehicle technology – The integration of customer data into the NPD process is 

identified as a critical success factor for new products. Applying user-centred evaluations 

early in the NPD process can help to identify and rectify issues at a point where it is relatively 

inexpensive and simple to make changes to the product, thus reducing the risk inherent in new 

technology projects. The key aim of the Evaluation Toolset is to support the strategic decision-

making process by providing clear and accurate data on product performance. To achieve this, 

a Technology Scorecard is created for each project, outlining the relative performance of each 
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of the technologies under test and key drivers of UX. This can form part of a larger project 

scorecard, incorporating factors such as financials and strategic fit.  

16.2. Limitations of the Research and Further Work 

The main limitation of the research is that the application of the Evaluation Toolset has not 

been monitored in full from the beginning to the end of a technology development programme. 

While improvements to the protocol were made throughout the project, there was no structured 

review process undertaken with stakeholders. Undertaking a ‘Build-Test-Feedback-Revise’ 

approach analogous to the ‘spiral’ development phases discussed in section 0 may have helped 

to ensure that the toolset was fully aligned with the requirements of the OEM, ready for 

application to live development projects. The design of the Technology Scorecard would also 

benefit from this iterative approach, with improvements made based on stakeholder feedback. 

Using the methodology in a full programme would provide direct evidence of its effectiveness 

and provide data to evaluate the choice of metrics and validate the pass/fail criteria. 

Application to a full programme would also allow the long-term monitoring of the technology 

as it moves through the development process, providing an indication of value added.  

The application of software tools would help to improve the Toolset. Electronic questionnaires 

could be developed for use in the evaluations to reduce data entry workload and minimise 

paper use. Database and reporting software could also automate the creation of the Technology 

Scorecard, allowing rapid comparisons across evaluation studies.  

There are a number of ways in which the driving simulator could be developed to increase its 

functionality. As discussed, the capture of eye glance behaviour provides an important 

measure of driver distraction. The integration of an eye tracking system into the simulator 

would allow automated capture of eye glance data, minimising analysis time. In addition, a 

Detection-Response Task (DRT) system would provide an additional measure of driver 

attention while engaged in the driving and technology tasks. The estimated cost for this 

capability is approximately £4,000 for the DRT system and up to £40,000 for a multi-camera 

research-grade eye tracker.  

The simple driving environment developed allows users to easily learn and perform the 

driving task. While effective, it is missing some of the cues that drivers may find familiar 

while driving; adding additional objects such as signage and bridges may help to improve the 

realism of the environment. It is also noted that the motorway-based, steady-state nature of 

the driving task is not suited to certain types of technology, such as reverse parking aids or 

pedestrian avoidance systems. The simulation software provides the flexibility to create new 
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environments tailored to specific requirements; an appropriate environment for this type of 

test (e.g. an urban environment) could be developed if required. 

Improvements could also be made to the audio and vibration systems in the simulator. 

Separation of internal (engine) and external (wind, noise, tyres, traffic) noise sources would 

help to improve the level of immersion. Modelling of vibration signals based on road 

conditions would also provide a more realistic stimulus to the driver.  
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 Appendix 1 Automotive Technology and Manufacturing 

Readiness Level Definitions 
Source: “Automotive Technology and Manufacturing Readiness Levels: A guide to 

recognised stages of development within the Automotive Industry”, Automotive Council UK, 

January 2011.  

TRL Technology Readiness MRL Manufacturing Readiness 

1 

 Basic Principles have been observed 
and reported 

 Scientific research undertaken. 

 Scientific research is beginning to 
be translated into applied research 
and development. 

 Paper studies and scientific 
experiments have taken place. 

 Performance has been predicted 

 

 

2 

 Speculative applications have been 
identified. 

 Exploration into key principles is 
ongoing. 

 Application specific simulations or 
experiments have been undertaken. 

 Performance predictions have been 
refined 

 

 A high level assessment of 
manufacturing opportunities has 
been made. 

3 

 Analytical and experimental 
assessments have identified critical 
functionality and/or characteristics. 

 Analytical and laboratory studies 
have physically validated predictions 
of separate elements of the 
technology or components that are 
not yet integrated or representative. 

 Performance investigation using 
analytical experimentation and/or 
simulations is underway 

1 

 Basic Manufacturing Implications 
have been identified. 

 Materials for manufacturing have 
been characterised and assessed. 
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4 

 The technology component and/or 
basic subsystem have been 
validated in the laboratory or test 
house environment. 

 The basic concept has been 
observed in other industry sectors 
(e.g. Space, Aerospace). 

 Requirements and interactions with 
relevant vehicle systems have been 
determined 

2 

 Manufacturing concepts and 
feasibility have been determined 
and processes have been identified. 

 Producibility assessments are 
underway and include advanced 
design for manufacturing 
considerations. 

5 

 The technology component and/or 
basic subsystem have been 
validated in relevant environment, 
potentially through a mule or 
adapted current production vehicle. 

 Basic technological components are 
integrated with reasonably realistic 
supporting elements so that the 
technology can be tested with 
equipment that can simulate and 
validate all system specifications 
within a laboratory, test house or 
test track setting with integrated 
components 

 Design rules have been established. 

 Performance results demonstrate 
the viability of the technology and 
confidence to select it for new 
vehicle programme consideration. 

3 

 A manufacturing proof-of-concept 
has been developed 

 Analytical or laboratory experiments 
validate paper studies. 

 Experimental hardware or processes 
have been created, but are not yet 
integrated or representative. 

 Materials and/or processes have 
been characterised for 
manufacturability and availability. 

 Initial manufacturing cost 
projections have been made. 

 Supply chain requirements have 
been determined. 

6 

 A model or prototype of the 
technology system or subsystem 
has been demonstrated as part of a 
vehicle that can simulate and 
validate all system specifications 
within a test house, test track or 
similar operational environment. 

 Performance results validate the 
technology’s viability for a specific 
vehicle class. 

4 

 Capability exists to produce the 
technology in a laboratory or 
prototype environment. 

 Series production requirements, 
such as in manufacturing 
technology development, have been 
identified. 

 Processes to ensure 
manufacturability, producibility and 
quality are in place and are 
sufficient to produce demonstrators. 

 Manufacturing risks have been 
identified for prototype build. 

 Cost drivers have been confirmed. 

 Design concepts have been 
optimised for production. 

 APQP processes have been scoped 
and are initiated. 



138 

7 

 Multiple prototypes have been 
demonstrated in an operational, on-
vehicle environment. 

 The technology performs as 
required. 

 Limit testing and ultimate 
performance characteristics are now 
determined. 

 The technology is suitable to be 
incorporated into specific vehicle 
platform development programmes. 

5 

 Capability exists to produce 
prototype components in a 
production relevant environment. 

 Critical technologies and 
components have been identified. 

 Prototype materials, tooling and 
test equipment, as well as 
personnel skills have been 
demonstrated with components in a 
production relevant environment. 

 FMEA and DFMA have been 
initiated. 

8 

 Test and demonstration phases 
have been completed to customer’s 
satisfaction. 

 The technology has been proven to 
work in its final form and under 
expected conditions. 

 Performance has been validated, 
and confirmed 

6 

 Capability exists to produce 
integrated system or subsystem in a 
production relevant environment.  

 The majority of manufacturing 
processes have been defined and 
characterised. 

 Preliminary design of critical 
components has been completed. 

 Prototype materials, tooling and 
test equipment, as well as 
personnel skills have been 
demonstrated on subsystems/ 
systems in a production relevant 
environment. 

 Detailed cost analyses include 
design trades. 

 Cost targets are allocated and 
approved as viable. 

 Producibility considerations are 
shaping system development plans. 

 Long lead and key supply chain 
elements have been identified. 
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9 

 The actual technology system has 
been qualified through operational 
experience. 

 The technology has been applied in 
its final form and under real-world 
conditions. 

 Real-world performance of the 
technology is a success. 

 The vehicle or product has been 
launched into the market place. 

 Scaled up/down technology is in 
development for other classes of 
vehicle. 

7 

 Capability exists to produce 
systems, subsystems or 
components in a production 
representative environment. 

 Material specifications are 
approved. 

 Materials are available to meet 
planned pilot line build schedule. 

 Pilot line capability has been 
demonstrated including run at rate 
capability. 

 Unit cost reduction efforts are 
underway. 

 Supply chain and supplier Quality 
Assurances have been assessed. 

 Long lead procurement plans are in 
place. 

 Production tooling and test 
equipment design & development 
has been initiated 

 FMEA and DFMA have been 
completed. 

8 

 Initial production is underway 

 Manufacturing and quality 
processes and procedures have 
been proven in production 
environment. 

 An early supply chain is established 
and stable. 

 Manufacturing processes have been 
validated. 

9 

 Full/volume rate production 
capability has been demonstrated. 

 Major system design features are 
stable and proven in test and 
evaluation. 

 Materials are available to meet 
planned rate production schedules. 

 Manufacturing processes and 
procedures are established and 
controlled to three-sigma or some 
other appropriate quality level to 
meet design characteristic 
tolerances in a low rate production 
environment. 

 Manufacturing control processes are 
validated. 

 Actual cost model has been 
developed for full rate production. 
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10 

 The technology is successfully in 
service in multiple application 
forms, vehicle platforms and 
geographic regions. In-service and 
life-time warranty data is available, 
confirming actual market life, time 
performance and reliability 

10 

 Full Rate Production is 
demonstrated 

 Lean production practices are in 
place and continuous process 
improvements are on-going. 

 Engineering/design changes are 
limited to quality and cost 
improvements. 

 System, components or other items 
are in rate production and meet all 
engineering, performance, quality 
and reliability requirements. 

 All materials, manufacturing 
processes and procedures, 
inspection and test equipment are 
in production and controlled to six-
sigma or some other appropriate 
quality level. 

 Unit costs are at target levels and 
are applicable to multiple markets. 

 The manufacturing capability is 
globally deployable 
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