

Model-based Development of Enhanced Ground Proximity Warning

System for Heterogeneous Multi-Core Architectures

Umut Durak
1
, David Müller

1
, Jürgen Becker

2
, Nikolaos S. Voros

3
, Panayiotis Alefragis

3
, Timo Stripf

2
,

Pierre‐Aimé Agnel
4
, Gerard Rauwerda

5,
Kim Sunesen

5

1
DLR Institute of Flight Systems

2
Karlsruhe Institute of Technology

3
Technological Educational Institute of Western Greece

4
Scilab Enterprises
5
Recore Systems

umut.durak@dlr.de

The aerospace domain, very much similar to other cyber-physical systems domains such as automotive or

automation, is demanding new methodologies and approaches for increasing performance and reducing cost,

while maintaining safety levels and programmability. While the heterogeneous multi-core architectures seem

promising, apart from certification issues, there is a solid necessity for complex toolchains and programming

processes for exploiting their full potential. The ARGO (WCET-Aware PaRallelization of Model-Based Ap-

plications for HeteroGeneOus Parallel Systems) project is addressing this challenge by providing an inte-

grated toolchain that realizes an innovative holistic approach for programming heterogeneous multi-core sys-

tems in a model-based workflow. Model-based design elevates systems modeling and promotes simulation

with the executing these models for verification and validation of the design decisions. As a case study, the

ARGO toolchain and workflow will be applied to a model-based Enhanced Ground Proximity Warning Sys-

tem (EGPWS) development. EGPWS is a readily available system in current aircraft which provides alerts

and warnings for obstacles and terrain along the flight path utilizing high resolution terrain databases, Global

Positioning System and other sensors-. After a gentle introduction to the model-based development approach

of the ARGO project for the heterogeneous multi-core architectures, the EGPWS and the EGPWS systems

modelling will be presented.

1 Introduction

The trend in avionics architectures is shifting towards

more central computing platforms which are catego-

rized as Integrated Modular Avionics (IMA) [1].

Rather than decentralized and dedicated computing

cards, in IMA, multiple applications utilize the same

computing card [2]. The operating system allows the

operation of independent application software in

partitions in order to address safety requirements.

Partitions are defined as isolated execution environ-

ments with separate sets of resources that guarantee

resource availability and timing. Furthermore, there

are some recent efforts that target parallelization and

utilization of multi-core architectures in IMA.

In 2012, Nowatsch and Paulitsch from EADS Innova-

tion Works examined the utilization of multi-core

systems in partitioned environments like IMA for

running applications of different safety-criticality [3].

In 2013, Karray and Paulitsch from EADS Innovation

Works with Koppenhöfer and Geiger from CASSID-

IAN presented the non-functional requirements for

the application of multi-core architectures for a de-

graded vision landing system for a helicopter [4]. In

2015, Koppenhöfer and Geiger presented a Helicop-

ter Terrain Awareness and Warning System (HTAWS)

as a sample application of their demonstrator [5].

They aim at providing a comprehensive, map based

overview of a helicopter’s surroundings to prevent

avoidable collision with ground or obstacles.

In parallel with these efforts, Agrou and colleagues

from THALES presented design principles of pre-

dictable and efficient multi-core systems to meet

embedded computer requirements in avionics [6]. In

2014, Löfwenmark from Saab Aeronautics and

Nadjm-Tehrani from Linköping University presented

challenges and described research directions to ad-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/77231158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Model-based Development of Enhanced Ground Proximity Warning System for Heterogeneous Multi-Core
Architectures

dress guaranteeing determinism for avionic applica-

tions running on multiple cores and interacting

through shared memory [7].

While these efforts reported initial results of parallel-

ization in flight systems development using multi-

core architectures, they do concentrate on the ap-

plicability regarding the safety constraints of the

avionics domain. Nevertheless, there is no reported

effort that attacks the development methodology for

avionics application using multi-core architectures.

The aerospace domain is thus demanding complex

toolchains and programming processes for exploiting

the full potential of these next generation heterogene-

ous parallel platforms.

The rise of model-based approaches has been phe-

nomenal. System architecture is defined as the struc-

ture of system components, relationships and rules

governing their design and evolution over time [8]. In

model-based approaches the models of system archi-

tectures, namely system models, are placed in the

center of the development process. Simulation is

utilized with executing system models as the native

mechanisms to address measures of performance and

measures of effectiveness throughout conceptual

design, development and later life cycle phases [9].

The productivity is boosted with generation of sys-

tems development artefacts including software code

through transformations and stepwise refinement of

system models [10].

The ARGO (WCET-Aware PaRallelization of Mod-

el-Based Applications for HeteroGeneOus Parallel

Systems) project is addressing the development of

heterogeneous multi-core systems by providing an

integrated toolchain that realizes a model-based

workflow.

The ARGO toolchain and workflow will be validated

with a model-based Enhanced Ground Proximity

Warning System (EGPWS) development case study.

EGPWS is selected due to its feature set that is suita-

ble for parallelization. It can benefit a lot from multi-

core architectures for performance and feature en-

hancement. In the following sections, the model-

based development approach of the ARGO project

will gently be introduced. Then the EGPWS and the

EGPWS systems modelling will be presented.

Application Test
Cases

Xcos / Scilab
Application Models

Cross-layer
Programming Interface

Fe
ed

b
ac

k
&

 C
o

n
tr

o
l

Scheduling and High-Level
Decisions

Code Transformations for
Predictability
 Enhancement

Data Management,
Synchronization and Code

Generation

Code-Level WCET
System-Level WCET

CPU

CPU CPU

CPU

Multicore
ArchitecturesIterative

Optimization

Front-End Tools

ADL Description

int m, n, p, q, c, d, k, sum = 0;

int first[10][10], second[10][10],

multiply[10][10];

for (c = 0; c < m; c++) {

 for (d = 0; d < q; d++) {

 for (k = 0; k < p; k++) {

 sum = sum + first[c][k]*second[k][d];

 }

 multiply[c][d] = sum;

 sum = 0;

 }

}

Figure 1: ARGO Workflow and Toolchain

Model-based Development of Enhanced Ground Proximity Warning System for Heterogeneous Multi-Core
Architectures

2 Model-based Development Approach

for Heterogeneous Multi-Core Archi-

tectures

Model-based approaches propose the development of

models and generation of executable software entities

through successive model-to-model and model-to-text

transformations [11]. The model-based development

is a model-based approach that is characterized by the

seamless use of executable and graphical data flow

oriented block diagram models and state machines for

system specification, design and implementation,

employing modeling and simulation tools such as

Scilab/Xcos or MATLAB/Simulink [12].

The objective of the model-based development ap-

proach (Figure 1) of the ARGO project is to design,

implement and deploy hard real-time applications on

multi-core targets through parallel code generation

with top-notch Worst Case Execution Time (WCET)

analysis in a programming environment that will

guarantee efficiency and productivity. The approach

extends previous work to cover real-time applications

[13].

The model-based development environment allows

engineers to design a system from a high-level point

of view. Design models specify executable system

architecture. Model-in-the-Loop (MIL) simulations

are used for the early validation of the systems de-

sign. Code generation and code transformations are

performed with a strong objective of keeping the code

base predictable or warning the user as early as pos-

sible of possible problems in WCET estimation in the

current design. The targeted architecture, defined with

an Architecture Description Language (ADL), and

specific low level transformations ensure paralleliza-

tion with WCET constraints as tight as possible. Tar-

gets include any hardware platform with a parallel

programming model that can express time-predictable

computation and communication. Software-in-the-

Loop (SIL) simulations that also exploit target speci-

fications are used to advance the validation of the

design. In the ARGO project the approach will be

evaluated on the multi-core platform of Recore Sys-

tems, a specialist in flexible multi-core platforms and

subsystems IP [14]. Hardware-in-the-Loop (HIL)

simulations will be used to validate the performance

of the system.

Constant feedback is provided to the user at each

step. The possibility to select the transformations and

perform them in an interactive manner results in a

semi-automatic, guided process. The models are en-

riched with the results of the code generation, the real

time constraints analysis and x-in-the-loop simula-

tions, thus tracing and controlling the results of an

iteration of the process for early verification and

validation.

3 Enhanced Ground Proximity Warn-

ing System

EGPWS is a name that is used for current Terrain

Awareness and Warning Systems (TAWS) which aim

to prevent controlled flight into the terrain. There are

various TAWS options available in the market for

various platforms in various configurations. Exam-

ples may include EGPWS from Honeywell [15],

T2CAS from ACSS [16], LANDMARK™ from L3

[17] and TAWS from Universal Avionics [18]. A brief

comparison of these systems and more can be found

in [19].

The core feature set of EGPWS is to create visual and

aural warnings in order to avoid controlled flight into

the terrain. These warnings are categorized in 5

modes:

Mode 1: Excessive Descent Rate provides alerts for

excessive descent rates for all phases of flight.

Mode 2: Excessive Terrain Closure Rate provides

alerts to protect the aircraft from impacting the

ground when terrain is rising rapidly with respect to

the aircraft.

Mode 3: Altitude Loss After Take-off provides alerts

when a significant altitude loss is detected after take-

off or during a low altitude go around.

Mode 4: Unsafe Terrain Clearance provides alerts

when there is no sufficient terrain clearance regarding

the phase of the flight, aircraft configuration and

speed.

Mode 5: Excessive Deviation Below Glideslope pro-

vides alerts when the aircraft descends below the

glideslope.

The modes 1 to 5 are regarded as suitable for coarse

grain parallelization.

Additionally, an EGPWS provides some enhanced

functions based on a terrain database. These functions

are:

Terrain Awareness Display (TAD) provides an image

of the surrounding terrain represented in various

Model-based Development of Enhanced Ground Proximity Warning System for Heterogeneous Multi-Core
Architectures

colors on the Navigation Display as well as the warn-

ings and cautions regarding the terrain interactions.

Terrain Clearance Floor (TCF) provides a low ter-

rain warning during landing and thus enhances the

basic functions with alerts for the descent below a

predefined “Terrain Clearance Floor” disregarding the

aircraft configuration.

The terrain processing and particularly collision de-

tection algorithms that are required for TAD and TCF

are regarded as candidates for fine grain paralleliza-

tion.

Figure 2: Top Level EGPWS Model

4 EGPWS Systems Modeling

Figure 2 shows the top level of the ARGO EGPWS

prototype model. The model is being developed using

the graphical modeling environment Scilab/Xcos

[20].

The ARGO EGPWS will be designed based on a

commercial system as it is deployed in DLR’s Ad-

vanced Technology Research Aircraft (ATRA).

Therefore, the development refers to the EGPWS

description in the A320’s Flight Crew Operating

Manual (FCOM; section 1.34.70 in [21]). ATRA’s

EGPWS is supplied by Honeywell.

4.1 EGPWS Modes 1 to 5

Figure 3: EGPWS Mode 1 Boundaries

In the FCOM, the functionalities of the modes 1 to 5

are described using graphs (Figure 3) that show the

limit altitudes (the reference being the radio altitude)

Model-based Development of Enhanced Ground Proximity Warning System for Heterogeneous Multi-Core
Architectures

associated with each mode as functions of other pa-

rameters like airspeed or rate of descent.

By using Xcos’ “Interpolation” blocks, those graphs

are modeled for the ARGO EGPWS. For an example

see Figure 4. An Interpolation block needs to be pro-

vided with two vectors for parametrization, one con-

taining a selection of input and the other a corre-

sponding number of output data points of the function

that has to be modeled. It is between these points that

the output matching a given input can then be inter-

polated.

Figure 4: Xcos Model of EGPWS Mode 1

Figure 4 shows the implementation of Mode 1 as a

model in Xcos. Mode 1 focuses on the aircraft’s Rate

Of Descend (ROD) within a medium proximity to the

terrain. For every ROD value, there is a limit altitude

associated to it. In this way, two different boundaries

are formed for Mode 1, each triggering a vocal alert

and illumination of a designated GPWS warning

lamp in the cockpit. When penetrated by sinking

below the limit altitude, the first boundary causes a

repetitive “SINK RATE!”, while the second one trig-

gers a more demanding “PULL UP!”. This alert is

also repeated until the aircraft climbs above the limit

altitude or reduces its ROD.

Each of the two boundaries is modeled using an In-

terpolation block, as can be seen in Figure 4. The

input, namely the aircraft’s ROD, is taken from a

signal vector (which simulates a data bus called

ADIRS1 - Air Data Inertial Reference System - in the

real A320) by utilizing an “Extractor” block. This

block allows extracting a single signal out of a bus or

multiplex signal.

The altitude limit obtained through the interpolation

is then compared to the aircraft’s actual radio altitude.

This is the signal from input port 1 in Figure 4. If its

value is lower than the computed limit, the signals

“ROD_warning” or “ROD_intense_warning” are set

to the value 1, which acts as a trigger to the associat-

ed vocal alert and the warning lamp.

The radio altitude signal runs through a “Saturation”

block which imposes limit values on a signal. It is

used here to make sure that Mode 1 does not give out

warnings when the aircraft is on ground. This is done

by limiting the signal value to 10 ft above ground

level and above.

4.2 Terrain Awareness Display and Terrain

Clearance Floor

The Terrain Awareness Display and Terrain Clearance

Floor features of an EGPWS need a terrain database

from which they can gather information about the

terrain surrounding the aircraft’s current position

during flight.

The 3D representation of the terrain is referred to as

Digital Elevation Model (DEM) [22]. It is available

as elevation data organized in the form of a matrix.

Regarding the increasing demand for DEMs with

global coverage, the Shuttle Radar Topography Mis-

sion (SRTM) provided global high quality DEMs at

resolution levels of 1 arc second (∼30 m) or 3 arc

second (∼90 m)[23]. The ARGO EGPWS terrain

databases are created using SRTM 3 arc second data.

Two-phase processing, namely broad phase and nar-

row phase, is a common approach in collision detec-

tion algorithms [24]. While the broad phase is used to

identify the particular terrain database segments to be

used, narrow phase uses these segments for calculat-

ing colors and their densities in the TAD as well as

the TAD and TCF warnings and cautions.

In broad phase, spatial partitioning techniques are

utilized for identifying the segments of the terrain

database to be processed. Uniform grids are used to

divide the terrain into equally sized regions that are

associated to a database segment. This way, an easy

and fast terrain data access mechanism is developed

for the given coordinates of the airplane. While the

initial grid size is selected as 1 degree, it will be fur-

ther tuned for optimizing the overall performance.

The TAD terrain picture and TCF are straight-forward

computation of the narrow phase in which the eleva-

tion of terrain data points is compared to the aircraft

as a point, either for collision as in TCF or for color

mapping as in the TAD terrain picture. However, the

warnings and cautions from the TAD algorithm re-

quire a relatively complex collision detection pro-

cessing: the vertical and horizontal terrain caution

and warning envelopes define two polygons. The

intersection of these polygons and the terrain is used

Model-based Development of Enhanced Ground Proximity Warning System for Heterogeneous Multi-Core
Architectures

to trigger the related caution and warning messages.

The narrow phase is responsible for the collision

detection between caution and warning envelopes and

the terrain. A comprehensive survey of collision de-

tection algorithms can be found in [25]. Image-based

algorithms have been employed for making use of the

processing power of graphics cards [26]. The inter-

ference test is conducted based on a depth map and is

maintained in an image buffer which is generated by

projecting the object on a plane. In the ARGO

EGPWS vertical ray casting is employed in points of

the terrain database and the depth map of the terrain

caution and warning envelopes is then compared to

the elevation data of the particular point to identify

the collision (Figure 5).

Figure 5: Collision Detection Approach

As opposed to the model elements that represent the

ARGO EGPWS modes, which are purely Xcos based,

the TAD and TCF algorithms are being developed

using Scilab scripts and are integrated to the Xcos

model as a user defined block.

4.3 Output Data Management

According to the current system architecture, the

modes 1 to 5 as well as the terrain functions TAD and

TCF reside in separate Xcos blocks. In addition, there

is a block containing the Output Data Management,

which evaluates its inputs in order to create triggers

for the appropriate visual and aural warnings.

The core of the Output Data Management is an algo-

rithm that applies a priority list to the trigger signals.

This is done to avoid several alerts being active at the

same time in the case of more than one trigger signal

having the value 1.

The entire trigger signals being used in the ARGO

EGPWS and the modes to which they belong are

listed in Table 1. Although the modes are designed to

detect different critical situations, the pilot’s task is

always the same: avoid impacting the terrain, either

by a change of course or, especially after urgent

warnings, by pulling up and gaining altitude. For this

reason, some of the vocal cues are the same and can

thus share the same level of priority, making the algo-

rithm less complex.

Table 1: Names of trigger signals in the ARGO EGPWS and their respective vocal cues

Nr. Mode name of trigger signal vocal cue situation priority

1.
1

ERD_warning Sink rate! always 2

2. ERD_intense_warning Pull up! always 1

3.

2

ETCRa_warning Terrain! always 6

4. ETCRb_warning Terrain! always 6

5. ETCR_intense_warning Pull up! always 1

6. 3 ALAT_warning Don't sink! take-off 7

7.

4

UTCa_warning Too low, terrain! cruise/approach 5

8. UTCa_gear_warning Too low, gear! cruise/approach 4

9. UTCb_warning Too low, terrain! cruise/approach 5

10. UTCb_flaps_warning Too low, flaps! cruise/approach 4

11. UTCc_warning Too low, terrain! take-off 3

12.
5

DBG_warning Glideslope! approach 8

13. DBG_intense_warning GLIDESLOPE! approach 7

14.
TAD

TAD_caution Terrain ahead! always 5

15. TAD_warning Terrain ahead, pull up! always 1

16. TCF TCF_warning Too low, terrain! cruise/approach 5

Model-based Development of Enhanced Ground Proximity Warning System for Heterogeneous Multi-Core
Architectures

Table 2: Priority rating of signals in Table 1and assignment to the main phases of flight

situation: take-off / missed approach cruise approach / landing

priority:

 1 ETCR_intense_warning ETCR_intense_warning ETCR_intense_warning

 ERD_intense_warning ERD_intense_warning ERD_intense_warning

 TAD_warning TAD_warning TAD_warning

2 ERD_warning ERD_warning ERD_warning

3 UTCc_warning

4 UTCb_flaps_warning UTCb_flaps_warning UTCb_flaps_warning

 UTCa_gear_warning UTCa_gear_warning UTCa_gear_warning

5 UTCb_warning UTCb_warning UTCb_warning

 UTCa_warning UTCa_warning UTCa_warning

 TCF_warning TCF_warning TCF_warning

 TAD_caution TAD_caution TAD_caution

6 ETCRa_warning ETCRa_warning ETCRa_warning

 ETCRb_warning ETCRb_warning ETCRb_warning

7

DBG_intense_warning

 ALAT_warning

8

DBG_warning

Table 3: Abbreviations in signal names in Table 1 and Table 2

Abbreviation Explanation Abbreviation Explanation

ALAT Altitude Loss After Take-Off TAD Terrain Awareness Display

DBG Deviation Below Glideslope TCF Terrain Clearance Floor

ERD Excessive Rate of Descent UTC Unsafe Terrain Clearance

ETCR Excessive Terrain Closure Rate

Table 2 lists the trigger signals again, organized by

their level of priority and assigned to the phases of

flight in which they are relevant. This serves to point

out that the warnings of Mode 3 (Altitude Loss After

Take-off) and Mode 5 (Excessive Deviation Below

Glideslope), which are designed specifically for take-

off and approach, respectively, are considered less

urgent in the ARGO EGPWS than the warnings de-

signed for the whole flight envelope. Furthermore,

the highest priorities are given to the warnings that

directly demand the pilot to pull up.

Table 3 presents the explanations for the abbrevia-

tions used in the signal names in Table 1 and Table 2.

The algorithm will also handle additional influences

on the triggering of alerts, such as pushbuttons in the

cockpit that allow the pilot to alter the EGPWS set-

tings to his needs. For example, there are two buttons

in the overhead panel which are labeled “SYS –

OFF” and “G/S MODE – OFF”. Their purpose is to

disable all of the EGPWS Modes or just Mode 5,

respectively. Other buttons may inhibit the use of

aural alerts, leaving only the optical cues to catch the

pilot’s attention.

The logic that is represented in the tables will be

modeled using state machines which are implemented

in Scilab/Xcos as Automata (finite-state machine)

block [27].

Conclusion

After introducing the recent advance on heterogene-

ous multi-core architectures in avionics, the paper

gently presents the model-based development ap-

proach of the ARGO project. This approach is being

exercised in the development of ARGO Enhanced

Ground Proximity Warning System due the suitability

of its feature set for parallelization.

In the modeling, modes and Output Data Manage-

ment are developed using Xcos, while Scilab script-

ing is used for the Terrain Awareness Display and

Terrain Clearance Floor calculations. Thereby we aim

Model-based Development of Enhanced Ground Proximity Warning System for Heterogeneous Multi-Core
Architectures

at evaluating diverse model-based parallel application

development capabilities of the ARGO approach.

As the initial prototype of the system model has been

constructed, the future work will include x-in-the-

loop testing. The first step will be from model-in-the-

loop testing which will be eventually followed by

software-in-the loop and hardware-in-the loop testing

with the utilization of the ARGO toolchain for code

generation.

5 Acknowledgement

This work was supported in part by the European

Union’s Horizon 2020 Research and Innovation Pro-

gramme under grant agreement No 688131 — AR-

GO.Action. www.argo-project.eu

6 References

[1] P. J. Prisaznuk. Integrated modular avionics.

Proceedings of the IEEE 1992 National Aero-

space and Electronics Conference, pp.39-45,

1992.

[2] C. B. Watkins, and Randy Walter. Transition-

ing from federated avionics architectures to in-

tegrated modular avionics. IEEE/AIAA 26th

Digital Avionics Systems Conference, pp. 2-A,

2007.

[3] J. Nowotsch and M. Paulitsch. Leveraging

multi-core computing architectures in avion-

ics. 9
th

 European Dependable Computing

Conference (EDCC), pp. 132-143, 2012.

[4] H. Karray, M. Paulitsch, B. Koppenhöfer, and

D. Geiger. Design and implementation of a

degraded vision landing aid application on a

multicore processor architecture for safety-

critical application. 16th International Sympo-

sium on Object/Component/Service-Oriented

Real-Time Distributed Computing (ISORC),

pp. 1-8, 2013

[5] B. Koppenhöfer, and D. Geiger. EMC2 Use

Case:Hybrid Avionics Integrated Architecture

Demonstrator. HiPEAC, Workshop EMC²,

2016.

[6] H. Agrou , P. Sainrat, M. Gatti, and P. Toillon.

Mastering the behavior of multi-core systems

to match avionics requirements. AIAA 31st

Digital Avionics Systems Conference (DASC),

pp.6E5-1, 2012.

[7] A. Löfwenmark, and S. Nadjm-Tehrani. Chal-

lenges in future avionic systems on multi-core

platforms. International Symposium on Soft-

ware Reliability Engineering Workshops

(ISSREW).pp.115-119, 2014.

[8] A. Tolk, and T.K. Hughes. Systems engineer-

ing, architecture, and simulation. In: Modeling

and Simulation-based Systems Engineering

Handbook, Editors: D. Gianni, A. D'Ambro-

gio, and A. Tolk. CRC Press, pp. 11-41, 2014.

[9] INCOSE, Vision 2020. No. INCOSE-TP-2004-

004-02, INCOSE, 2007.

[10] C. Atkinson and T. Kühne. Model-driven de-

velopment: a metamodeling foundation. IEEE

Software, Vol. 20, No. 5, pp. 36-41, 2003.

[11] D. Gasevic, D. Djuric, and V. Devedic. Model

driven engineering and ontology development.

Springer Science & Business Media, 2009.

[12] I. Stürmer, M. Conrad, I Fey and H Dörr. Ex-

periences with model and autocode reviews in

model-based software development. Proceed-

ings of the 2006 International Workshop on

Software Engineering for Automotive Sys-

tems, pp. 45-52, 2006.

[13] T. Stripf, O. Oey, T Bruckschloegl, J. Becker,

G. Rauwerda, K. Sunesen, G. Goulas, P.

Alefragis, N.S. Voros, S. Derrien, and O.

Sentieys. Compiling Scilab to high perfor-

mance embedded multicore systems. Micro-

processors and Microsystems, Vol.37, No. 8,

pp.1033-1049, 2013.

[14] L. Berrojo, R. Moreno, R. Regada, E. Garcia,

R. Trautner, G. Rauwerda, K. Sunesen, Y. He,

S. Redant, G. Thys, and J. Andersson. Scalable

sensor data processor: a multi-core payload

data processor ASIC. The international Space

System Engineering Conference DASIA, in

Barcelona, Spain, 2015.

[15] Honeywell. Terrain and Traffic Awareness.

Retrieved March 16, 2016 from

https://aerospace.honeywell.com/en/product-

listing/terrain-and-traffic-awareness

[16] ACSS. T2CAS. Retrieved March 16, 2016

from www.acss.com/products/t2cas/

[17] L3. LANDMARK™ Terrain Awareness &

Warning Systems. Retrieved March 16, 2016

Model-based Development of Enhanced Ground Proximity Warning System for Heterogeneous Multi-Core
Architectures

from www.l-

3avionics.com/products/landmark/

[18] Universal Avionics. TAWS | Terrain Awareness

and Warning System. Retrieved March 16,

2016 from

www.uasc.com/home/shop/avionics/taws

[19] D. Smith. Traffic Alert Collision Avoidance

Systems—TCAS Buyer’s Guide. Pilot’s Guide

to Avionics 2005, pp. 34-41, 2005.

[20] S.L. Campbell, J.P. Chancelier, and R. Nikou-

khah. Modeling and Simulation in Scil-

ab/Scicos. Springer New York, 2006.

[21] Airbus Industries S.A.S., A320 Flight Crew

Operating Manual, System Description 1;

REV 24, AI Toulose.

[22] Z. Li, C. Zhu, and C. Gold. Digital terrain

modeling: principles and methodology. CRC

Press, 2004.

[23] B. Rabus, M. Eineder, A. Roth, and R. Bamler.

The shuttle radar topography mission—a new

class of digital elevation models acquired by

spaceborne radar. ISPRS Journal of Photo-

grammetry and Remote Sensing, Vol.57, No.4,

pp.241-262, 2003.

[24] C. Ericson. Real-time collision detection. CRC

Press, 2004.

[25] M. Lin, and S. Gottschalk. Collision detection

between geometric models: A survey. Proceed-

ings of IMA Conference on Mathematics of

Surfaces Vol. 1, pp. 602-608, 1998.

[26] G. Baciu, W.S.K. Wong. Image-based Colli-

sion Detection, In: Integrated Image and

Graphics Technologies, Springer, 75-94, 2006.

[27] M. Najafi, and R. Nikoukhah. Implementation

of hybrid automata in Scicos. 2007 IEEE In-

ternational Conference on Control Applica-

tions, pp. 819-824, 2007.

