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The aerospace domain, very much similar to other cyber-physical systems domains such as automotive or 

automation, is demanding new methodologies and approaches for increasing performance and reducing cost, 

while maintaining safety levels and programmability. While the heterogeneous multi-core architectures seem 

promising, apart from certification issues, there is a solid necessity for complex toolchains and programming 

processes for exploiting their full potential. The ARGO (WCET-Aware PaRallelization of Model-Based Ap-

plications for HeteroGeneOus Parallel Systems) project is addressing this challenge by providing an inte-

grated toolchain that realizes an innovative holistic approach for programming heterogeneous multi-core sys-

tems in a model-based workflow. Model-based design elevates systems modeling and promotes simulation 

with the executing these models for verification and validation of the design decisions. As a case study, the 

ARGO toolchain and workflow will be applied to a model-based Enhanced Ground Proximity Warning Sys-

tem (EGPWS) development. EGPWS is a readily available system in current aircraft which provides alerts 

and warnings for obstacles and terrain along the flight path utilizing high resolution terrain databases, Global 

Positioning System and other sensors-. After a gentle introduction to the model-based development approach 

of the ARGO project for the heterogeneous multi-core architectures, the EGPWS and the EGPWS systems 

modelling will be presented. 

1 Introduction 

The trend in avionics architectures is shifting towards 

more central computing platforms which are catego-

rized as Integrated Modular Avionics (IMA) [1]. 

Rather than decentralized and dedicated computing 

cards, in IMA, multiple applications utilize the same 

computing card [2]. The operating system allows the 

operation of independent application software in 

partitions in order to address safety requirements. 

Partitions are defined as isolated execution environ-

ments with separate sets of resources that guarantee 

resource availability and timing. Furthermore, there 

are some recent efforts that target parallelization and 

utilization of multi-core architectures in IMA. 

In 2012, Nowatsch and Paulitsch from EADS Innova-

tion Works examined the utilization of multi-core 

systems in partitioned environments like IMA for 

running applications of different safety-criticality [3]. 

In 2013, Karray and Paulitsch from EADS Innovation 

Works with Koppenhöfer and Geiger from CASSID-

IAN presented the non-functional requirements for 

the application of multi-core architectures for a de-

graded vision landing system for a helicopter [4]. In 

2015, Koppenhöfer and Geiger presented a Helicop-

ter Terrain Awareness and Warning System (HTAWS) 

as a sample application of their demonstrator [5]. 

They aim at providing a comprehensive, map based 

overview of a helicopter’s surroundings to prevent 

avoidable collision with ground or obstacles. 

In parallel with these efforts, Agrou and colleagues 

from THALES presented design principles of pre-

dictable and efficient multi-core systems to meet 

embedded computer requirements in avionics [6]. In 

2014, Löfwenmark from Saab Aeronautics and 

Nadjm-Tehrani from Linköping University presented 

challenges and described research directions to ad-
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dress guaranteeing determinism for avionic applica-

tions running on multiple cores and interacting 

through shared memory [7]. 

While these efforts reported initial results of parallel-

ization in flight systems development using multi-

core architectures, they do concentrate on the ap-

plicability regarding the safety constraints of the 

avionics domain. Nevertheless, there is no reported 

effort that attacks the development methodology for 

avionics application using multi-core architectures. 

The aerospace domain is thus demanding complex 

toolchains and programming processes for exploiting 

the full potential of these next generation heterogene-

ous parallel platforms. 

The rise of model-based approaches has been phe-

nomenal. System architecture is defined as the struc-

ture of system components, relationships and rules 

governing their design and evolution over time [8]. In 

model-based approaches the models of system archi-

tectures, namely system models, are placed in the 

center of the development process. Simulation is 

utilized with executing system models as the native 

mechanisms to address measures of performance and 

measures of effectiveness throughout conceptual 

design, development and later life cycle phases [9]. 

The productivity is boosted with generation of sys-

tems development artefacts including software code 

through transformations and stepwise refinement of 

system models [10]. 

The ARGO (WCET-Aware PaRallelization of Mod-

el-Based Applications for HeteroGeneOus Parallel 

Systems) project is addressing the development of 

heterogeneous multi-core systems by providing an 

integrated toolchain that realizes a model-based 

workflow.  

The ARGO toolchain and workflow will be validated 

with a model-based Enhanced Ground Proximity 

Warning System (EGPWS) development case study. 

EGPWS is selected due to its feature set that is suita-

ble for parallelization. It can benefit a lot from multi-

core architectures for performance and feature en-

hancement. In the following sections, the model-

based development approach of the ARGO project 

will gently be introduced. Then the EGPWS and the 

EGPWS systems modelling will be presented. 
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int m, n, p, q, c, d, k, sum = 0;

int first[10][10], second[10][10], 

multiply[10][10];

    

for (c = 0; c < m; c++) {

  for (d = 0; d < q; d++) {

    for (k = 0; k < p; k++) {

      sum = sum + first[c][k]*second[k][d];

    }

    multiply[c][d] = sum;

    sum = 0;

  }

}

 

Figure 1: ARGO Workflow and Toolchain
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2 Model-based Development Approach 

for Heterogeneous Multi-Core Archi-

tectures 

Model-based approaches propose the development of 

models and generation of executable software entities 

through successive model-to-model and model-to-text 

transformations [11]. The model-based development 

is a model-based approach that is characterized by the 

seamless use of executable and graphical data flow 

oriented block diagram models and state machines for 

system specification, design and implementation, 

employing modeling and simulation tools such as 

Scilab/Xcos or MATLAB/Simulink [12]. 

The objective of the model-based development ap-

proach (Figure 1) of the ARGO project is to design, 

implement and deploy hard real-time applications on 

multi-core targets through parallel code generation 

with top-notch Worst Case Execution Time (WCET) 

analysis in a programming environment that will 

guarantee efficiency and productivity. The approach 

extends previous work to cover real-time applications 

[13]. 

The model-based development environment allows 

engineers to design a system from a high-level point 

of view. Design models specify executable system 

architecture. Model-in-the-Loop (MIL) simulations 

are used for the early validation of the systems de-

sign. Code generation and code transformations are 

performed with a strong objective of keeping the code 

base predictable or warning the user as early as pos-

sible of possible problems in WCET estimation in the 

current design. The targeted architecture, defined with 

an Architecture Description Language (ADL), and 

specific low level transformations ensure paralleliza-

tion with WCET constraints as tight as possible. Tar-

gets include any hardware platform with a parallel 

programming model that can express time-predictable 

computation and communication. Software-in-the-

Loop (SIL) simulations that also exploit target speci-

fications are used to advance the validation of the 

design. In the ARGO project the approach will be 

evaluated on the multi-core platform of Recore Sys-

tems, a specialist in flexible multi-core platforms and 

subsystems IP [14]. Hardware-in-the-Loop (HIL) 

simulations will be used to validate the performance 

of the system. 

Constant feedback is provided to the user at each 

step. The possibility to select the transformations and 

perform them in an interactive manner results in a 

semi-automatic, guided process. The models are en-

riched with the results of the code generation, the real 

time constraints analysis and x-in-the-loop simula-

tions, thus tracing and controlling the results of an 

iteration of the process for early verification and 

validation. 

3 Enhanced Ground Proximity Warn-

ing System  

EGPWS is a name that is used for current Terrain 

Awareness and Warning Systems (TAWS) which aim 

to prevent controlled flight into the terrain. There are 

various TAWS options available in the market for 

various platforms in various configurations. Exam-

ples may include EGPWS from Honeywell [15], 

T2CAS from ACSS [16], LANDMARK™ from L3 

[17] and TAWS from Universal Avionics [18]. A brief 

comparison of these systems and more can be found 

in [19]. 

The core feature set of EGPWS is to create visual and 

aural warnings in order to avoid controlled flight into 

the terrain. These warnings are categorized in 5 

modes:  

Mode 1: Excessive Descent Rate provides alerts for 

excessive descent rates for all phases of flight. 

Mode 2: Excessive Terrain Closure Rate provides 

alerts to protect the aircraft from impacting the 

ground when terrain is rising rapidly with respect to 

the aircraft. 

Mode 3: Altitude Loss After Take-off provides alerts 

when a significant altitude loss is detected after take-

off or during a low altitude go around. 

Mode 4: Unsafe Terrain Clearance provides alerts 

when there is no sufficient terrain clearance regarding 

the phase of the flight, aircraft configuration and 

speed. 

Mode 5: Excessive Deviation Below Glideslope pro-

vides alerts when the aircraft descends below the 

glideslope. 

The modes 1 to 5 are regarded as suitable for coarse 

grain parallelization. 

Additionally, an EGPWS provides some enhanced 

functions based on a terrain database. These functions 

are: 

Terrain Awareness Display (TAD) provides an image 

of the surrounding terrain represented in various 
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colors on the Navigation Display as well as the warn-

ings and cautions regarding the terrain interactions.  

Terrain Clearance Floor (TCF) provides a low ter-

rain warning during landing and thus enhances the 

basic functions with alerts for the descent below a 

predefined “Terrain Clearance Floor” disregarding the 

aircraft configuration. 

The terrain processing and particularly collision de-

tection algorithms that are required for TAD and TCF 

are regarded as candidates for fine grain paralleliza-

tion. 

 

Figure 2: Top Level EGPWS Model

4 EGPWS Systems Modeling 

Figure 2 shows the top level of the ARGO EGPWS 

prototype model. The model is being developed using 

the graphical modeling environment Scilab/Xcos 

[20]. 

The ARGO EGPWS will be designed based on a 

commercial system as it is deployed in DLR’s Ad-

vanced Technology Research Aircraft (ATRA). 

Therefore, the development refers to the EGPWS 

description in the A320’s Flight Crew Operating 

Manual (FCOM; section 1.34.70 in [21]). ATRA’s 

EGPWS is supplied by Honeywell. 

4.1 EGPWS Modes 1 to 5 

 

Figure 3: EGPWS Mode 1 Boundaries  

In the FCOM, the functionalities of the modes 1 to 5 

are described using graphs (Figure 3) that show the 

limit altitudes (the reference being the radio altitude) 
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associated with each mode as functions of other pa-

rameters like airspeed or rate of descent.  

By using Xcos’ “Interpolation” blocks, those graphs 

are modeled for the ARGO EGPWS. For an example 

see Figure 4. An Interpolation block needs to be pro-

vided with two vectors for parametrization, one con-

taining a selection of input and the other a corre-

sponding number of output data points of the function 

that has to be modeled. It is between these points that 

the output matching a given input can then be inter-

polated. 

 

Figure 4: Xcos Model of EGPWS Mode 1 

Figure 4 shows the implementation of Mode 1 as a 

model in Xcos. Mode 1 focuses on the aircraft’s Rate 

Of Descend (ROD) within a medium proximity to the 

terrain. For every ROD value, there is a limit altitude 

associated to it. In this way, two different boundaries 

are formed for Mode 1, each triggering a vocal alert 

and illumination of a designated GPWS warning 

lamp in the cockpit. When penetrated by sinking 

below the limit altitude, the first boundary causes a 

repetitive “SINK RATE!”, while the second one trig-

gers a more demanding “PULL UP!”. This alert is 

also repeated until the aircraft climbs above the limit 

altitude or reduces its ROD.  

Each of the two boundaries is modeled using an In-

terpolation block, as can be seen in Figure 4. The 

input, namely the aircraft’s ROD, is taken from a 

signal vector (which simulates a data bus called 

ADIRS1 - Air Data Inertial Reference System - in the 

real A320) by utilizing an “Extractor” block. This 

block allows extracting a single signal out of a bus or 

multiplex signal. 

The altitude limit obtained through the interpolation 

is then compared to the aircraft’s actual radio altitude. 

This is the signal from input port 1 in Figure 4. If its 

value is lower than the computed limit, the signals 

“ROD_warning” or “ROD_intense_warning” are set 

to the value 1, which acts as a trigger to the associat-

ed vocal alert and the warning lamp. 

The radio altitude signal runs through a “Saturation” 

block which imposes limit values on a signal. It is 

used here to make sure that Mode 1 does not give out 

warnings when the aircraft is on ground. This is done 

by limiting the signal value to 10 ft above ground 

level and above. 

4.2 Terrain Awareness Display and Terrain 

Clearance Floor 

The Terrain Awareness Display and Terrain Clearance 

Floor features of an EGPWS need a terrain database 

from which they can gather information about the 

terrain surrounding the aircraft’s current position 

during flight.  

The 3D representation of the terrain is referred to as 

Digital Elevation Model (DEM) [22]. It is available 

as elevation data organized in the form of a matrix. 

Regarding the increasing demand for DEMs with 

global coverage, the Shuttle Radar Topography Mis-

sion (SRTM) provided global high quality DEMs at 

resolution levels of 1 arc second (∼30 m) or 3 arc 

second (∼90 m)[23]. The ARGO EGPWS terrain 

databases are created using SRTM 3 arc second data. 

Two-phase processing, namely broad phase and nar-

row phase, is a common approach in collision detec-

tion algorithms [24]. While the broad phase is used to 

identify the particular terrain database segments to be 

used, narrow phase uses these segments for calculat-

ing colors and their densities in the TAD as well as 

the TAD and TCF warnings and cautions. 

In broad phase, spatial partitioning techniques are 

utilized for identifying the segments of the terrain 

database to be processed. Uniform grids are used to 

divide the terrain into equally sized regions that are 

associated to a database segment. This way, an easy 

and fast terrain data access mechanism is developed 

for the given coordinates of the airplane. While the 

initial grid size is selected as 1 degree, it will be fur-

ther tuned for optimizing the overall performance. 

The TAD terrain picture and TCF are straight-forward 

computation of the narrow phase in which the eleva-

tion of terrain data points is compared to the aircraft 

as a point, either for collision as in TCF or for color 

mapping as in the TAD terrain picture. However, the 

warnings and cautions from the TAD algorithm re-

quire a relatively complex collision detection pro-

cessing: the vertical and horizontal terrain caution 

and warning envelopes define two polygons. The 

intersection of these polygons and the terrain is used 
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to trigger the related caution and warning messages. 

The narrow phase is responsible for the collision 

detection between caution and warning envelopes and 

the terrain. A comprehensive survey of collision de-

tection algorithms can be found in [25]. Image-based 

algorithms have been employed for making use of the 

processing power of graphics cards [26]. The inter-

ference test is conducted based on a depth map and is 

maintained in an image buffer which is generated by 

projecting the object on a plane. In the ARGO 

EGPWS vertical ray casting is employed in points of 

the terrain database and the depth map of the terrain 

caution and warning envelopes is then compared to 

the elevation data of the particular point to identify 

the collision (Figure 5). 

 

Figure 5: Collision Detection Approach 

As opposed to the model elements that represent the 

ARGO EGPWS modes, which are purely Xcos based, 

the TAD and TCF algorithms are being developed 

using Scilab scripts and are integrated to the Xcos 

model as a user defined block. 

4.3 Output Data Management 

According to the current system architecture, the 

modes 1 to 5 as well as the terrain functions TAD and 

TCF reside in separate Xcos blocks. In addition, there 

is a block containing the Output Data Management, 

which evaluates its inputs in order to create triggers 

for the appropriate visual and aural warnings. 

The core of the Output Data Management is an algo-

rithm that applies a priority list to the trigger signals. 

This is done to avoid several alerts being active at the 

same time in the case of more than one trigger signal 

having the value 1. 

The entire trigger signals being used in the ARGO 

EGPWS and the modes to which they belong are 

listed in Table 1. Although the modes are designed to 

detect different critical situations, the pilot’s task is 

always the same: avoid impacting the terrain, either 

by a change of course or, especially after urgent 

warnings, by pulling up and gaining altitude. For this 

reason, some of the vocal cues are the same and can 

thus share the same level of priority, making the algo-

rithm less complex. 

 

Table 1: Names of trigger signals in the ARGO EGPWS and their respective vocal cues 

Nr. Mode name of trigger signal vocal cue situation priority 

1. 
1 

ERD_warning Sink rate! always 2 

2. ERD_intense_warning Pull up! always 1 

3. 

2 

ETCRa_warning Terrain! always 6 

4. ETCRb_warning Terrain! always 6 

5. ETCR_intense_warning Pull up! always 1 

6. 3 ALAT_warning Don't sink! take-off 7 

7. 

4 

UTCa_warning Too low, terrain! cruise/approach 5 

8. UTCa_gear_warning Too low, gear! cruise/approach 4 

9. UTCb_warning Too low, terrain! cruise/approach 5 

10. UTCb_flaps_warning Too low, flaps! cruise/approach 4 

11. UTCc_warning Too low, terrain! take-off 3 

12. 
5 

DBG_warning Glideslope! approach 8 

13. DBG_intense_warning GLIDESLOPE! approach 7 

14. 
TAD 

TAD_caution Terrain ahead! always 5 

15. TAD_warning Terrain ahead, pull up! always 1 

16. TCF TCF_warning Too low, terrain! cruise/approach 5 
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Table 2: Priority rating of signals in Table 1and assignment to the main phases of flight 

situation:   take-off / missed approach cruise approach / landing 

priority: 

   1 ETCR_intense_warning ETCR_intense_warning ETCR_intense_warning 

  ERD_intense_warning ERD_intense_warning ERD_intense_warning 

  TAD_warning TAD_warning TAD_warning 

2 ERD_warning ERD_warning ERD_warning 

3 UTCc_warning     

4 UTCb_flaps_warning UTCb_flaps_warning UTCb_flaps_warning 

  UTCa_gear_warning UTCa_gear_warning UTCa_gear_warning 

5 UTCb_warning UTCb_warning UTCb_warning 

  UTCa_warning UTCa_warning UTCa_warning 

  TCF_warning TCF_warning TCF_warning 

  TAD_caution TAD_caution TAD_caution 

6 ETCRa_warning ETCRa_warning ETCRa_warning 

  ETCRb_warning ETCRb_warning ETCRb_warning 

7 

  

DBG_intense_warning 

  ALAT_warning     

8 

  

DBG_warning 

 

Table 3: Abbreviations in signal names in Table 1 and Table 2 

Abbreviation   Explanation  Abbreviation Explanation 

ALAT Altitude Loss After Take-Off  TAD Terrain Awareness Display 

DBG Deviation Below Glideslope  TCF Terrain Clearance Floor 

ERD Excessive Rate of Descent  UTC Unsafe Terrain Clearance 

ETCR Excessive Terrain Closure Rate    

 

Table 2 lists the trigger signals again, organized by 

their level of priority and assigned to the phases of 

flight in which they are relevant. This serves to point 

out that the warnings of Mode 3 (Altitude Loss After 

Take-off) and Mode 5 (Excessive Deviation Below 

Glideslope), which are designed specifically for take-

off and approach, respectively, are considered less 

urgent in the ARGO EGPWS than the warnings de-

signed for the whole flight envelope. Furthermore, 

the highest priorities are given to the warnings that 

directly demand the pilot to pull up.  

Table 3 presents the explanations for the abbrevia-

tions used in the signal names in Table 1 and Table 2. 

The algorithm will also handle additional influences 

on the triggering of alerts, such as pushbuttons in the 

cockpit that allow the pilot to alter the EGPWS set-

tings to his needs. For example, there are two buttons 

in the overhead panel which are labeled “SYS – 

OFF” and “G/S MODE – OFF”. Their purpose is to 

disable all of the EGPWS Modes or just Mode 5, 

respectively. Other buttons may inhibit the use of 

aural alerts, leaving only the optical cues to catch the 

pilot’s attention. 

The logic that is represented in the tables will be 

modeled using state machines which are implemented 

in Scilab/Xcos as Automata (finite-state machine) 

block [27]. 

Conclusion 

After introducing the recent advance on heterogene-

ous multi-core architectures in avionics, the paper 

gently presents the model-based development ap-

proach of the ARGO project. This approach is being 

exercised in the development of ARGO Enhanced 

Ground Proximity Warning System due the suitability 

of its feature set for parallelization.  

In the modeling, modes and Output Data Manage-

ment are developed using Xcos, while Scilab script-

ing is used for the Terrain Awareness Display and 

Terrain Clearance Floor calculations. Thereby we aim 
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at evaluating diverse model-based parallel application 

development capabilities of the ARGO approach. 

As the initial prototype of the system model has been 

constructed, the future work will include x-in-the-

loop testing. The first step will be from model-in-the-

loop testing which will be eventually followed by 

software-in-the loop and hardware-in-the loop testing 

with the utilization of the ARGO toolchain for code 

generation.  
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