12,584 research outputs found

    On Evidence-based Risk Management in Requirements Engineering

    Full text link
    Background: The sensitivity of Requirements Engineering (RE) to the context makes it difficult to efficiently control problems therein, thus, hampering an effective risk management devoted to allow for early corrective or even preventive measures. Problem: There is still little empirical knowledge about context-specific RE phenomena which would be necessary for an effective context- sensitive risk management in RE. Goal: We propose and validate an evidence-based approach to assess risks in RE using cross-company data about problems, causes and effects. Research Method: We use survey data from 228 companies and build a probabilistic network that supports the forecast of context-specific RE phenomena. We implement this approach using spreadsheets to support a light-weight risk assessment. Results: Our results from an initial validation in 6 companies strengthen our confidence that the approach increases the awareness for individual risk factors in RE, and the feedback further allows for disseminating our approach into practice.Comment: 20 pages, submitted to 10th Software Quality Days conference, 201

    GTTC Future of Ground Testing Meta-Analysis of 20 Documents

    Get PDF
    National research, development, test, and evaluation ground testing capabilities in the United States are at risk. There is a lack of vision and consensus on what is and will be needed, contributing to a significant threat that ground test capabilities may not be able to meet the national security and industrial needs of the future. To support future decisions, the AIAA Ground Testing Technical Committees (GTTC) Future of Ground Test (FoGT) Working Group selected and reviewed 20 seminal documents related to the application and direction of ground testing. Each document was reviewed, with the content main points collected and organized into sections in the form of a gap analysis current state, future state, major challenges/gaps, and recommendations. This paper includes key findings and selected commentary by an editing team

    Software Evolution for Industrial Automation Systems. Literature Overview

    Get PDF

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security
    • …
    corecore