KUOPION YLIOPISTON JULKAISUJA H. INFORMAATIOTEKNOLOGIA JA KAUPPATIETEET 15
KUOPIO UNIVERSITY PUBLICATIONS H. BUSINESS AND INFORMATION TECHNOLOGY 15

TANJA TOROI
Testing Component-Based Systems

Towards Conformance Testing
and Better Interoperability

Doctoral dissertation

To be presented by permission of the Faculty of Business and Information Technology of
the University of Kuopio for public examination in Auditorium L22,

Snellmania building, University of Kuopio,

on Friday 17" April 2009, at 12 noon

Department of Computer Science

University of Kuopio

ﬁ

KUOPION YLIOPISTO

KUOPIO 2009

Distributor: Kuopio University Library

P.O. Box 1627
FI-7021 1 KUOPIO
FINLAND

Tel. +358 40 355 3430
Fax +358 17 163 410
www.uku.fi/kirjasto/julkaisutoiminta/julkmyyn.shtml

Series Editors: Professor Markku Nihtild, D.Sc.
Department of Mathematics and Statistics

Professor Hannu Tanninen, D.Sc. (Econ)
Department of Business and Management

Author’s address: Department of Computer Science
University of Kuopio
P.O. Box 1627
FI-70211 KUOPIO
FINLAND
Tel. +358 40 355 2374
Fax +358 17 162 595
E-mail: Tanja. Toroi@uku.fi

Supervisors: Professor Anne Eerola, Ph.D.
Department of Computer Science
University of Kuopio

Professor Martti Penttonen, Ph.D.
Department of Computer Science
University of Kuopio

Reviewers: Professor Cem Kaner, Ph.D., |.D.
Department of Computer Sciences
Florida Institute of Technology, USA

Professor Markku Sakkinen, Ph.D.
Department of Computer Science and Information Systems
University of Jyvaskyld

Opponent: Adjunct Professor Ville Leppédnen, Ph.D.
Department of Information Technology
University of Turku

ISBN 978-951-781-994-7
ISBN 978-951-27-0113-1 (PDF)
ISSN 1459-7586

Kopijyva
Kuopio 2009
Finland

Toroi, Tanja. Testing Component-Based Systems - Towards Conformance Testing and Better
Interoperability. Kuopio University Publications H. Business and Information Technology 15.
2009. 59 p.

ISBN 978-951-781-994-7

ISBN 978-951-27-0113-1 (PDF)

ISSN 1459-7586

ABSTRACT

Interoperability between applications is extremely important within organizations and
in networks of organizations. In addition, critical systems require high quality and
reliability. Nowadays applications do not interoperate properly and their quality is
often poor. There are frequent reports in the media about software systems crashing
and damages occurring due to software errors. One reason for this is that there are
many software testing methods and techniques but they are often non-practical and
difficult to use. In addition, in networks of organizations it is often impossible to test
unforeseeable side effects of the systems. Interoperability can be improved by
standards and conformance testing. However, standards are often inadequate for
software testing purposes.

The aim of the study was to improve existing testing methods and their practicality
especially from the integrator viewpoint. The objective was to improve
interoperability between applications, and familiarize software companies and their
customers with conformance testing. This thesis examines component-based system
testing from the integrator viewpoint. In component-based system development,
components of different granularities must be tested. We give examples of UML-
based test cases for components of different granularities. To ease the integrator’s
work, a conformance testing model was developed. The model was evaluated in
software companies and their customer organizations. We noticed that more testable
specifications are needed in order to make testing as automatic as possible, so
testability requirements for the interface specifications are proposed. In addition, we
make recommendations for the organizations about how to improve their testing
processes. Recommendations are also made for improving the quality of applications,
the interoperability between applications, and conformance testing activities.

The main contributions of the thesis are: 1) a systematic component-based system
testing model for the integrator; 2) a rapid conformance testing model to test
applications against interface specifications; 3) a list of testability improvements for
the interface specifications; and 4) recommendations for the organizations about how
they can improve the quality of the applications, and compliance to interoperability
standards. These contributions can be used by software companies and integrators to
improve their testing processes and the quality of the applications, and by software
customers and authorities to contribute to software quality and interoperability.

Universal Decimal Classification: 004.05, 004.415.5, 004.415.53, 004.422

Inspect Thesaurus: software quality; software reliability; conformance testing; program
testing; integrated software; software standards; information systems; software process
improvement; software engineering; medical information systems

Acknowledgements

This thesis is the result of research carried out in the Department of Computer Science
at the University of Kuopio. The preparation of the thesis was financially supported
by the Department of Computer Science at the University of Kuopio, and the Finnish
Funding Agency for Technology and Innovation TEKES together with software
companies and healthcare organizations who have participated in the PluglT,
OpenTE, and SerAPI projects. In addition, the work was supported by the Finnish
Concordia Fund. | would like to thank all these organizations for the financial support.

I would like to thank my supervisors, Professor Anne Eerola and Professor Martti
Penttonen for their guidance and support during the preparation of this thesis. Without
their support this work would not have come into the world.

I would like to thank the reviewers, Professor Cem Kaner and Professor Markku
Sakkinen for their valuable comments on the manuscript. | am grateful to Vivian
Paganuzzi for editing the language.

I am grateful to the whole staff of the Department of Computer Science at the
University of Kuopio for their support during this work. Special thanks belong to
Marika and Irmeli (nowadays at the IT Centre) for the valuable discussions | had with
them. Additionally, | would like to thank my co-authors, Anne, Marko and Juha, for
their contribution to this thesis.

| also thank my friend Maarit for her encouragement and support, and for our
discussions.

My warmest thanks belong to my mother Terttu, and my father Pentti who believed
in me and encouraged me through the project. Finally, my dearest thanks | owe to my
husband Mika, and my children Valtteri and Veera for they love and patience.

Kuopio, March 2009

Tanja Toroi

List of the original publications

This thesis is based on the following articles, which are referred to in the text by the
Roman numerals I-V:

Toroi T, Jantti M, Mykkénen J, Eerola A. Testing component-based systems -
the integrator viewpoint. In: Proceedings of the IRIS 27, Information Systems
Research Seminar in Scandinavia, Falkenberg, Sweden, August 14-17, 2004,

Toroi T, Mykkénen J, Eerola A. Conformance Testing of Open Interfaces in
Healthcare Applications - Case Context Management. In: Konstantas D.,
Bourriéres J.-P., Léonard M., Boudjlida N., eds. Interoperability of Enterprise
Software and Applications, p. 433-444. Springer-Verlag, 2006.

Toroi T, Eerola A. Requirements for the testable specifications and test case
derivation in conformance testing. In: Dasso A, Funes A, eds. Verification,
Validation and Testing in Software Engineering, p. 118-135. Hershey: ldea
Group Publishing, 2006.

Toroi T, Eerola A, Mykkénen J. Conformance Testing of Interoperability in
Health Information Systems in Finland. In: Kuhn K, Warren J, Leong T-Y, eds.
Medinfo 2007, Brisbane, Australia, August 20-24, 2007, p. 127-131. Amsterdam:
I0S Press, 2007.

Toroi T. Improving software test processes. In: Fujita H, Mejri M, eds. New
Trends in Software Methodologies, Tools and Techniques. Proceedings of the
fifth SoMeT_06, Québec, Canada, October 25-27, 2006, p. 462-473. Amsterdam:
IOS Press, 2006. Vol. 147.

Author's Contribution

For all the articles, the author of the thesis was the corresponding author and she
wrote most of each article.

In Paper 1, the method of level by level testing of software components from the
lowest to the highest granularity is presented. The testing process is analogous at each
level. Paper | emphasizes the role of the component integrator in component-based
software testing and gives a method for the integrator to test component-based
systems. In addition, examples of test cases of different granularities are given. The
author of the thesis designed and wrote the paper. Examples were elaborated jointly
with the co-authors.

In Paper Il, a conformance testing model of open interfaces is presented. The
model was developed and evaluated with the co-operation of software companies and
healthcare districts. The author of the thesis outlined the paper and researched the
background theory in the literature. The elaboration and evaluation of the testing
model and conformance testing were performed jointly in the PluglT project.

Paper 111 proposes new testability requirements for the interface specifications used
in conformance testing. In addition, test case derivation from different kinds of
specifications is considered. The author of the thesis researched the background
theory of the testability of the systems and conformance testing. In addition, she
outlined the way test cases are generated from different specifications. New testability
requirements were elaborated jointly with the co-author.

In Paper 1V, findings of a survey of conformance testing are presented. The idea of
a survey study came from the OpenTE research group. The author of the thesis
organized the survey and analyzed the results. The two other authors commented on
the paper and contributed the healthcare viewpoint to it.

In Paper V, test process improvement is considered based on the models in the
theory and on the results of the survey. The idea of the paper originated with the
author of the thesis and the results were elaborated by her.

Contents

R 101 1 oo [od [0 KA USSR URUPSRRPRN 13
1.1 ReSearch qQUESLIONSccuveiie i 15
1.2 ReSearch approachccooeiieiiiieiieie e 16
1.3 Structure of the theSIS.....ccoviieiiie e 17

2 General concepts in component-based software development.................. 19
2.1 SOftWAre QUANTYooveiiiiiieiciiciece e 19
2.2 MOAUIAIIEY weovieiie ettt sree 20
2.3 Object-oriented software engineeringccccvvveveeervevieeseesiee e e 20
2.4 Component-based software engingeringccoceeveereerenieeienieneeiennens 21
2.5 Standardization and interoperabilitycccoocviiiiiiiiininnecn e 23

3 Theoretical Background for Software Testingcccoceevvvrienienieniencenn, 25
3.1 What is SOTtWare teStiNG?........cccvieiirieiicieri e 25
3.2 Software testing in the development ProCess........ccvvvervriveiesieiieeiennens 28
3.3 Software testing teChNIQUEScoviiiiiiiii e 29
3.4 Testing component-based SYStEMS..........ccvveiiiiiiiiiiiie e 30
3.5 Regression tESHING ...ccveiiveiiiieiic e 31
3.6 Interoperability and conformance testing.........cccoccvevvevieerresieesie e, 33

3.6.1 GENEIAL ... s 33
3.6.2 Conformance testing in the healthcare domain..........c...ccccceeeevnennen. 34

4 EXPEriments iN PraCliCe.........ccooiiiiiiiiiiieiieie et 37
4.1 RESEAICH PrOJECES .ouveiiieieieie ettt 37
4.2 UMLESE MOGEloiiiiiiiiiic s 38
4.3 State of the art in software and conformance testingc.ccccvvvereenne. 39
4.4 TeSt process IMPrOVEMENL.......c.ccverieiieriieieeseeiesiesieeeesseessesaesseeseeanees 39

5 Summary of the PApers ... 41
5.1 Testing component-based systems - the integrator viewpoint................. 42
5.2 Conformance testing of open interfaces in healthcare applications......... 43
5.3 Requirements for testable specifications and test case derivation........... 44

5.4 Conformance testing of interoperability in health information systems..45

5.5 Improving SOftware teSt PrOCESSESuvvveiverieeieieeie e e
5.6 Summary 0f the reSUIS........ceoiiiiiie e
6 Conclusions and fUuture WOIrKccccoiiiiiiiiiie e
6.1 Contributions of the thesSiS...........cceiiiiiiiii e
6.2 FULUIE WOTK...cooiiiiii i e

Bibliography

1 Introduction

In the healthcare domain in Finland in the early years of this decade software systems
were mainly monolithic, the complexity of the systems was increasing, time-to-
market and efficiency were emphasized, and more test resources were needed (time,
money, testers, tools). However, schedules were often shortened and there was even
less time than before to plan extensive test cases and perform proper tests. All these
features caused many problems especially in software testing and maintenance.
Hence, monolithic systems were unpopular and systems modularity was promoted.
Modularity supports composability and reusability (Meyer, 1988, 11-26). This means
that different software parts can be changed without changing the rest of the system,
and they can be reused in new environments. When systems are composed of different
software parts, several new suppliers can offer their own software parts and customers
can select the most suitable ones.

Increased modularity enabled different testing roles to arise, such as integrators,
developers, and customers. It was usual that customers had business with several
suppliers. However, different suppliers supplied systems which were not necessarily
meant to be integrated with other systems. This caused integration and interoperability
problems. Furthermore, there was uncertainty about how integrated systems had to be
tested and who was responsible for it. Often, suppliers supposed that their customers
would perform more testing, while customers supposed that the systems had been
properly integrated and tested by the suppliers. These problems still exist.

At that time, software components with open interfaces started to became common
in healthcare applications. As the use of open interfaces increased, the need to check
that interfaces had been implemented according to the interface specification also
increased. Thus, interface testing and conformance testing activities were requested.
Additionally, evidence or brand was required to prove conformity to interface
specifications. However, interface specifications were not so exact and unambiguous
that conformity could be assured, so more accurate specifications were needed. All
these challenges in the software industry led to the need for more efficient software
testing methods and practices, and conformance testing activities had to be introduced
in the healthcare domain in Finland.

The experiences of the end users reflect the quality of the software systems. We
regularly read in the media about software systems crashing or software errors
causing huge damages. For example, in 1996 the maiden flight of the European
Ariane 5 launcher crashed about 40 seconds after takeoff (Jézéquel & Meyer, 1997) as
a result of a software error caused by a floating-point conversion error. Another
example relates to a software error found in the SAS check-in system in Helsinki-
Vantaa airport in August 2006, which delayed dozens of flights and affecting about
two thousand passengers. A third example relates to a defective emergency system
which almost caused a death in Kuopio, Finland, in 2007. A pleurodynia patient

13

14 1 Introduction

called the emergency number and asked for an ambulance, but the ambulance never
received the request because the German emergency system that was in use then did
not recognize Nordic characters. The system caused the request for an ambulance to
disappear from the screen but no error message was displayed.

The quality of software systems can also be inferred from comments made by
customers. The comments reveal a "seller's market" situation. For example, one
healthcare software customer said: "From time to time there is a "take it or leave it"
situation and testing does not help much. We know there are errors but we have no
other choice than to buy the product”. Another customer reported that "It is good that
the systems work at least this way". The user experiences and customers’ comments
result from the fact that exhaustive testing of even a small and simple software code is
impossible. Consequently, the end users’ usage profiles and workflows, and the
context of the resulting system, must be identified carefully when developing and
testing software systems.

Several software testing techniques and methods have been developed (see Section
3.3). Specification-based testing techniques (Offutt & Abdurazik, 1999), such as
finite-state machines, define test cases based on the system's specification. These
techniques require that specifications are accurate and have been updated.
Unfortunately, in most cases the specifications are not explicit. Code-based testing
techniques (Hutchins et al. 1994), such as all-definitions, define test cases based on
the source code. The problem with these techniques is that they do not verify code
based on the users' requirements. The code can be correct but the system does not do
what it is required to do. In addition, the persons involved, such as an integrator, do
not all have the source code available, so they cannot use code-based techniques.
Fault-based testing techniques, such as fault seeding and error guessing, try to
demonstrate that pre-specified faults are not found in a program (Morell, 1990).
Unfortunately, several of above techniques are so theoretical that testers cannot use
them (Bertolino, 2004), which is why they have not been used very much in industry.

In software testing theory, single code segments or state machines are often
studied, and the whole software system or dependencies between the systems are not
tested. In theoretical studies, the complexity and largeness of the systems in the real
world are not studied much. In this situation, it is not enough to just develop a new
testing method: other influencing aspects must also be considered, such as attitudes
towards testing, interface specifications, dependencies between components,
responsibilities of authorities, and the whole testing process as a part of the whole
software development process and software lifecycle.

There are many critical systems on which human lives depend in the healthcare
domain. Thus, software quality and reliability are even more important in this domain
than in the non-critical domains. The projects we have been working in concentrate on
health information system research and development. A health information system is
defined as one that is used in healthcare activities or organizations, with the aim of
supporting high-quality and efficient patient care (Haux, 2006). The special
characteristics in healthcare are high quality requirements, the safety criticalness of
the systems, and non-deterministic and non-predictable processes, which often exceed
organization borders. There are similar problems and a need for improvement in the
critical systems in other domains, as well. The methods presented in this thesis can
also be used in other domains, although not tested in the study.

1.1 Research questions 15

1.1 Research questions

The justification for this study is that software systems have to operate properly and
they must fit in the workflow of the customers. The thesis is meant for software
developers and integrators, their customers, and authorities. When this study started,
at the beginning of the millennium, component-based software development was quite
a new trend in Finland. Thus, a starting point for the study was software testing in the
component-based software development. When systems are composed of
components, different roles can be identified in software testing, such as software
developer, component integrator, and end user. The component industry made the
integrator role necessary but few studies of software testing examine the integrator
viewpoint in testing (e.g. Zheng et al. 2005). Therefore, there is a need for more
knowledge about how software testing performed by the integrator differs from
testing on the developer's side, and what kinds of methods the integrator needs when
testing.

One important issue in component-based software is the interoperability of the
components. In many organizations, huge amounts of information systems have to
interoperate. Application integration, better interoperability, and avoidance of extra
tailoring can be accomplished by common specifications and standards, open
interfaces, and conformance testing. If all the interfaces were implemented according
to the standards, the integration of systems into other systems could be performed
almost always in the same way, reducing the need for tailoring and extra work.
However, in many cases the standards are quite broad and open to various
interpretations. Thus, standards and the other specifications have to be improved and
conformance testing is needed to assure that implementations comply exactly with the
standards, and that all the obligatory features have been implemented. Specification
testability has been promoted by W3C and OASIS, for example (Rosenthal & Skall,
2002; W3C, 2005). Conformance testing has been studied and performed extensively
in the telecommunication domain, for example (ITU-T, 1996), but much less so in
healthcare, and it is particularly scarce in Finland (see Section 3.6). Therefore, in the
course of this study the emphasis moved towards interoperability of applications and
conformance testing.

Comparisons in software testing between small and large software companies have
rarely been made. Moreover, the study performed in the PluglT project (see Section
4.1), revealed that it was very important that customers perform more software
testing. Therefore, we studied testing methods in organizations of different kinds and
sizes, and the extent to which customers can influence conformity of the applications
they acquire. So far, the customers' perspective has not been studied much. However,
it is extremely valuable to take the customer’s viewpoint into account when
improving software testing methods. Customers need different kinds of testing
methods than developers because of the availability of testing materials and it is not
the customers' task to discover the secrets of software testing trends.

To address these challenges, we formulated the following research questions:

1. How can the software test processes and test process improvement models be
improved?

2. How does the granularity of software components influence software testing in
component-based software development?

16 1 Introduction

3. How is software and conformance testing performed in the healthcare domain
in Finland, and how can conformance testing and compliance to
interoperability standards be improved?

4. How can interface specifications be improved to help in testing the conformity
to specifications?

This thesis identifies the features influencing software testing in component-based
software development, with the aim of improving testing methods and their
practicality, especially from the integrator point of view. Another aim is to familiarize
software companies and their customers with conformance testing, and to provide
them and the authorities with guidelines for improving conformance testing activities
and the interoperability between applications. The ultimate goal is to improve the
quality of applications through improved testing methods, and help testers in their
work in the organizations of the software developers and their customers.

1.2 Research approach

Several research approaches can be used in software engineering research.
Approaches which study a part of reality can be categorized into conceptual-analytical
and empirical studies (Jarvinen & Jarvinen, 1995, 9). Conceptual-analytical studies
analyze constructs, examine existing theories, models and frameworks, and make
logical deductions. Empirical studies examine the present and the past states, or are
constructive studies. Studies examining the present or past states include theory-
testing and theory-creating studies. Theory-testing studies test whether a certain
theory, model, or framework, which has been selected after a competition, describe a
certain part of reality (Jarvinen, 2004, 36-65). Theory-creating studies investigate
what kind of theory, model, or framework best describes or explains a part of a reality
(J&rvinen, 2004, 66-97). Empirical studies in software engineering include several
approaches, such as observational studies, formal experiments, case studies, and
surveys (Kitchenham, et al. 2002). Case studies and survey research are used in this
thesis. Survey research is used to collect information to describe, compare and explain
knowledge, attributes and behavior (Pfleeger & Kitchenham, 2001). Surveys can be
either supervised (e.g. interviews), where one researcher is assigned to each
respondent, or unsupervised, such as mailed questionnaires. Our survey was
unsupervised with emailed questionnaires. A case study is an empirical inquiry where
a phenomenon is investigated and evaluated in a real-life context, especially when the
boundaries between the phenomenon and the context are not clearly evident (Yin,
2003). A case study can involve single or multiple cases. In constructive research the
aim is to develop new knowledge, methods, and tools based on the existing
information. New solutions to existing problems are constructed and then evaluated.
Constructive research can be performed with an action research emphasis (Jarvinen,
2004, 98). Action research simultaneously aims at solving an immediate problem
situation and expands scientific knowledge (Baskerville, 1999). It has two stages: a
diagnostic stage, which involves a collaborative analysis of the situation, and a
therapeutic stage, in which changes are introduced and effects analyzed. The action
research process is cyclical and has five phases: diagnosing, action planning, action
taking, evaluating, and specifying learning.

1.3 Structure of the thesis 17

We used both conceptual-analytical and empirical approaches during this study. At
the beginning, literary research was performed to find out what kinds of testing
methods exist, what are their characteristics, and where they have been applied.
Thereafter, empirical research and constructive research approaches were used in
Papers I-111. In Paper I, a method to test components of different granularities from
the component integrator viewpoint was introduced. In Paper 11, conformance testing
model was constructed and evaluated with several software companies and healthcare
districts. In Paper IlI, requirements for more testable interface specifications were
proposed. These were constructed and evaluated in workshops together with the
software companies participating in the OpenTE research project (see Section 4.1). In
Paper IV, survey research was used to find out the current state of the art in
conformance testing of interface specifications. Based on the survey results
recommendations were made for healthcare organizations, software companies, and
authorities to improve conformance testing activities and interoperability between
applications. In Paper V, constructive and action research approaches were used to
improve software test processes in a software company that was co-operating with us.

The main research results in this thesis are software testing methods and
recommendations. The results were evaluated in collaboration with software
companies participating in the research projects (see Section 4.1). At the beginning
and end of our study we performed a survey to clarify out the state of the art in
software and conformance testing in Finland.

1.3 Structure of the thesis

This thesis consists of five research Papers and the summary, which has 6 chapters.
Chapter 2 outlines the environment where component-based software systems are
developed. Chapter 3 presents the theoretical background for software and
conformance testing. Chapter 4 presents the practical experiments and conclusions
made during this study. Chapter 5 introduces and summarizes the research Papers and
their relationships. Finally, Chapter 6 summarizes the study and presents some future
work.

18

1 Introduction

2 General concepts in component-based
software development

In the following sections we define the concepts used in this thesis. First, we describe
software quality factors. Second, modularity and its sub-concepts are defined. Third,
the concepts used in object-oriented approach are examined. Fourth, component-based
software engineering and concepts related to it are described. Finally, we define
concepts related to standardization and interoperability.

2.1 Software quality

We mean by a software developer a software organization that develops software for
the use of end users. An integrator acquires software parts from the developers and
also develops his/her own components. The integrator integrates components into a
system and tests it as a whole before delivering it to a customer. A software customer
buys software from developers or integrators and carries out acceptance tests. An end
user (e.g. a physician) uses the system (e.g. electronic patient record) in his/her work.

The aim of software engineering is to find techniques to build quality software
(Meyer, 1988, 3). Software quality is quite a broad and vague concept, and objective
evaluation of software quality is not always possible. Therefore, the 1SO 9126
standard has been developed for the evaluation of software. The standard has four
parts, which address the following subjects: quality model, external metrics, internal
metrics, and quality in use metrics. Part one, 1ISO 9126-1 (ISO/IEC, 2001), is based on
work done by McCall et al. (1977), Boehm et al. (1978), and others who have defined
a set of software quality factors. The ISO 9126-1 standard identifies six key quality
factors (Pressman, 2005, 432-433): functionality, reliability, usability, efficiency,
maintainability, and portability. Functionality measures the degree to which the
software satisfies the needs and functional specifications. Functionality can be
described by the following sub-attributes: suitability, accuracy, interoperability,
compliance, and security. Reliability refers to the capability of the system to function
under defined conditions for periods of time. Its sub-attributes are maturity, fault
tolerance, and recovery. Usability refers to the ease of use of the system. Usability can
be divided into understandability, learnability, and operability. Efficiency can be
described by system resources (e.g. the amount of disk space, memory, and time)
used. Its sub-attributes are time behavior, and resource behavior. Maintainability
indicates how easy it is to identify and fix a fault in a system, and manage changes.
Maintainability includes the following sub-attributes: analyzability, changeability,
stability, and testability. Portability describes how easy it is to transport software from

19

20 2 General concepts in component-based software development

one environment to another. Its sub-attributes are adaptability, installability,
conformance, and replaceability. Some of these factors can be directly measured and
tested (e.g. functionality), while others can only be measured indirectly (e.g.
usability). Software testing is extensively discussed in Chapter 3.

2.2 Modularity

In the early days of programming, programs were constructed by creating a main
program to control a number of subroutines. To reduce programming efforts,
programmers in a project team reused subroutines during a project’s implementation
(Clements, 1995). Software reuse takes place when one or more software elements are
applied from one system to another so that development and maintenance cost and
effort can be reduced (Biggerstaff & Perlis, 1989). Reusable software elements
include architectural structures, requirements, design, code, documentation, test cases,
and so on. A prerequisite for software reuse is that reusable elements have been split
into small parts, such as modules. Modularity means that software is not monolithic
but divided into pieces (Meyer, 1988, 11-26). Modularity can be evaluated by the
following five criteria: decomposability, composability, understandability, continuity,
and protection. Decomposability indicates that a system can be divided into several
subsystems: it reduces complexity. Composability means that software elements can
be freely combined with each other to produce new systems: it promotes reusability.
Understandability means that modules must be separately understandable: it increases
maintainability. Continuity means that a small change to a system specification should
affect only individual modules. Protection means that the effects of an abnormal
condition occurring at run-time in a module will affect only that module. Parnas has
presented criteria for decomposing systems into modules (Parnas, 1972): system must
be divided into a number of modules with well-defined interfaces, modules must be
designed so that changes to one module affect other modules as few as possible, each
module must be comprehensible and simple enough, and it must be possible to
develop each module independently.

2.3 Object-oriented software engineering

In the 1980s the object-oriented approach became popular. The entities in that
approach were called objects and classes. An object can be defined as an entity which
has a state (information) and which offers a number of operations (behavior) to
examine or affect that state (Jacobson et al. 1992, 44-49). A class can be defined as a
set of objects that share a common structure and a common behavior (Booch, 1991).
In object-oriented design, the main goal is not to ask what the system does but to find
out what objects are needed to get work done (Meyer, 1988, 50). Objects model
reality, thus there is only a small semantic gap between reality and the system model
(Jacobson et al. 1992, 42-43). This increases the understandability of the system.
However, the object-oriented approach did not address the modularity problem very
well. Applications were developed in an object-oriented way but the end user still
received a monolithic application (Herzum & Sims, 2000, 12-18).

The object-oriented approach has different characteristics when compared with
procedural programs, such as inheritance, polymorphism, message passing, state-

2.4 Component-based software engineering 21

based behavior, encapsulation, and information hiding (Chen et al. 1998).
Furthermore, the execution order of the methods is not necessarily predefined, and the
structure of the object-oriented programs is different from that of procedural
programs. Understanding a single line of code may require tracing a chain of method
invocations through several object classes, and up and down the object hierarchy, to
find where the work is really done (Wilde and Huitt, 1992). This complicates both
testing and software maintenance. The dependencies in procedural and object-oriented
software also vary (Wilde & Huitt, 1992). Procedural software has the following
dependencies: data dependencies between two variables, calling dependencies
between two modules, functional dependencies between a module and the variables it
computes, and definitional dependencies between a variable and its type. In object-
oriented software, besides the above, the following dependencies also need to be
considered: class to class, class to method, class to message, class to variable, method
to variable, method to message, and method to method (Wilde & Huitt, 1992).

2.4 Component-based software engineering

Software complexity has dramatically increased since the mid-1980s (Gao et al. 2003,
5). Nowadays, new systems are seldom developed from scratch, so software
developers need cost-effective methods to construct complicated software systems.
The software business is moving increasingly towards component-based software
development (Brown & Wallnau, 1996). Component-based software engineering
(CBSE) shifts the emphasis from programming software to composing software
systems (Clements, 1995). In CBSE, complex systems are constructed by assembling
them from software components according to a software architecture. In CBSE it is
impossible to build a coherent system of interworking components without a
comprehensive architectural model (Klingler, 2000). The software architecture of a
system can consist of several structures of the system, and is composed of software
elements, the externally visible properties of those elements, and the relationships
between them (Bass et al. 2003, 21). Some of the most common architectural
structures of a system are decomposition, layered, process, deployment, and client-
server.

The advantages of a component-based approach are the possibility to master
development and deployment complexity, modularity, decreased time to market, the
quality and reusability of software and its components, the composed services of
components, and the scalability and adaptability of software systems (Herzum &
Sims, 2000, 21-23). Furthermore, software suppliers can specialize in their strategic
competitive edge and buy other properties as ready-made COTS (commercial-off-the-
shelf) components. The greatest challenges in component-based software
development are that suitable ready-made components cannot be easily found, and if
they are found, they are not necessarily of good quality (Vitharana et al. 2003). In
addition, components have different dependencies between them, source code is
seldom available, and the target context of the components is not known. Maxville et
al. have described a process to help an integrator to select the right components from a
huge amount of third party components (Maxville et al. 2003). The method has the
following phases: problem definition and requirements for the component (ideal
component specification), short-list creation of candidate components, test case
generation based on the ideal component specification, test adaptation, test execution,

22 2 General concepts in component-based software development

evaluation of results, candidates’ ranking based on the results and other suitability and
context information, and reporting on the results. It is a manual process but their aim
is to automate it as much as possible. The other method for component selection is
called a trusted third party, which requires different roles to support component-based
software development and each of these roles are responsible for the quality of the
component (Stafford & Wallnau, 2001). The basic roles are component technology
specifier, component technology implementer, reasoning framework developer,
component implementer, and system developer. Paper | considers software testing in
the CBSE approach.

One of the earliest definitions of a software component is that it is a cohesive
modaule, i.e. it denotes a single abstraction, and is loosely coupled (Booch, 1987, 7). A
more well-known and accepted definition is that of Szyperski (2002, 41): "A software
component is a unit of composition with contractually specified interfaces and context
dependencies only. A software component can be deployed independently and is
subject to composition by third parties." Thus, the components interoperate with each
other through interfaces. An interface defines the access points of the component and
allows other components to use services provided by the component (Szyperski, 2002,
42-43). Components can have different types of interfaces (Sametinger, 1997, 71-76):
a programming interface, a data interface, a user interface, and/or an interface to the
infrastructure. Testability requirements for the interface specifications are proposed in
Paper I11. To use the interfaces, contracts are needed. A contract states what the client
needs to do to use the interface and what the provider has to implement to meet the
services promised by the interface (Szyperski, 2002). Contracts can be divided into
four levels: basic or syntactic, behavioral, synchronization, and quality-of-service
(Beugnard et al. 1999). Basic contracts specify the operations that a component
performs, the input and output parameters each component requires, and the possible
exceptions that might be raised during operations. A behavioral contract specifies the
behavior of operations more precisely than a basic contract. It sets out preconditions,
post conditions, and class invariants. A precondition has to be met before the
execution of an operation. A post condition has to be met just after the completion of
an operation. A class invariant will always keep its truth value throughout a specific
sequence of operations: it constrains objects of a class and the state stored in an
object. A synchronization contract specifies the dependencies between the services
provided by a component. A quality-of-service contract specifies the quality features
the service will respect, such as maximum response delay, average response, and the
quality of the result. Contracts are discussed in Paper I.

Software components can be of different granularity levels (Herzum & Sims, 2000,
36-46). The most fine-grained software component, used in this thesis, is called a
lowest level component. It is normally based on a distributed component technology
(e.g., CORBA, J2EE, .NET) and has a well-defined build-time and run-time interface.
The component can be addressed over the network at run-time. Furthermore, it may
have dependency relationships to other components. A medium-grained software
component is called a business component (BC): it “consists of all the artifacts
necessary to represent, implement, and deploy a given business concept or business
process as an autonomous, reusable element of a larger distributed information
system”. The BC conforms to a layered architecture style including user interface,
business logic and resource level. The coarsest-grained software component is called
a component-based system (CBS): this is a component whose parts are business
components that constitute a viable system. Business components of the CBS can be

2.5 Standardization and interoperability 23

classified into functional layers such as, process, entity, and utility. The granularity of
components is further discussed in Paper I.

An implementation is a realization of a technical specification (e.g. interface) or
algorithm. Implementation can be realized by objects, components or services, for
example. OASIS has defined a service as “a mechanism to enable access to one or
more capabilities, where the access is provided using a prescribed interface and is
exercised consistent with constraints and policies as specified by the service
description” (OASIS, 2006).

2.5 Standardization and interoperability

The use of open interface specifications and information-exchange standards has
increased. Open interface is a published interface through which applications can
communicate. Features in the open interface are public but only the owner of the
interface can change them. The open interfaces are usually based on standards or
other specifications. Standardization is a process of developing common methods and
approaches. It helps to increase interoperability and security of the applications,
protect consumers and environment, and facilitate national and international trade.
Furthermore, standardization helps to reuse pre-built, standardized software
components in other contexts than those in which they were initially implemented.
Examples of standards in software engineering are IT Service Management ISO/IEC
20000, software quality standards ISO/IEC 25000 series, and UML (Unified
Modeling Language) ISO/IEC 19501.

In healthcare, new applications, measuring equipments, tools, and sensors, which
collect data from the patients, are constantly developed. The collected data must be
easily transferred to the electronic patient record. In order to manage this, open
standard-based interfaces have to be implemented. 1ISO (International Organization
for Standardization), IEC (International Electrotechnical Committee), CEN (The
European Committee for Standardization), and HL7 (Health Level 7) co-ordinate
standardization work of healthcare information systems. Examples of standardization
work of healthcare informatics are Health Card ISO/TR 21549, Electronic health
record ISO/IEC 20514, and Public Key Infrastructure (PKI) ISO/TS 17090. (SFS,
2008)

Standardization work is performed in working groups. 1ISO Health Informatics
working groups concentrate on data structures, data interchange, semantic content,
security, health cards, pharmacy and medicines business, devices, business
requirements for Electronic Health Records, and global health information
standardization. CEN Health informatics working groups study information models,
terminology and knowledge representation, security, safety and quality, and
technology for interoperability. (SFS, 2008)

Standardization increases interoperability. Interoperability means that a system is
capable of executing services to other systems and utilizing services from other
systems. Interoperability is defined by ISO/IEC as follows: the “capability to
communicate, execute programs, or transfer data among various functional units in a
manner that requires the user to have little or no knowledge of the unique
characteristics of those units” (ISO/IEC, 2003).

24 2 General concepts in component-based software development

Besides standardization, conformity assessment against standards is needed.
Conformance is defined by ISO/IEC as the fulfillment of a product, process or service
of specified requirements (ISO/IEC, 1996). It is usually performed by testing to see
whether an implementation meets the requirements of a standard (Gray et al. 2000).
Software testing can be performed against different criteria, such as performance,
behavior, functions and interoperability.

Conformance testing differs in one fundamental way from other testing: the
requirements or criteria for conformance must be specified in publicly available
standard or standard-like specification. In this thesis, we use the term specification to
mean standards and other standard-like specifications, not internal specifications
during software development. The criteria for conformance are usually specified in a
conformance clause section of a standard. A conformance clause is defined as a
section of the standard that states all the requirements or criteria that must be satisfied
to claim conformance. The conformance clause defines at a high-level, what is
required of implementers of the specification. It refers to other parts of the
specification or other specifications. It provides communication between the
specification's creators, implementers, and users as to what is required. If the criteria
for conformance are not specified, there can be no conformance testing. (W3C, 2005)

Interoperability testing and conformance testing are clarified in Section 3.6 and
more further in Papers II, 111, and V.

3 Theoretical Background for Software
Testing

3.1 What is software testing?

Software testing has been increasingly covered in books since 1972 (Gelperin &
Hetzel, 1988). The meaning of the term has changed from debugging-oriented to
evaluation and prevention-oriented testing. Myers defined software testing as a
process of executing a program with the intent of finding errors (1979, 5). He claims
that the testing process is destructive in that it tries to rip a program apart. Beizer has
presented five phases how attitudes have progressed in software testing (Beizer, 1990,
4-6):

Phase 0 thinking - There is no difference between testing and debugging. In this
phase there can be no effective testing, no quality assurance, and no quality. Phase 0
thinking is the greatest cultural barrier to good testing and quality software.

Phase 1 thinking - The software works. The purpose of testing is to show that the
software works. Phase 1 represents progress because testing and debugging are
distinguished. However, the objective is unachievable. You can not prove that
software works in every case.

Phase 2 thinking - The software doesn’t work. The purpose of testing is to show
that the software does not work. Compared to purpose of phase 1 this purpose leads to
strong and revealing tests. However, the trouble with phase 2 thinking is that you do
not know when to stop testing.

Phase 3 thinking - Test for risk reduction. The purpose of testing is not to prove
anything but to accept the principles of statistical quality control. The more you test,
the more confidence you have in the product. You can release when that confidence is
high enough.

Phase 4 thinking - A state of mind. In this phase testing is not an act but it is a
mental discipline that results in low-risk software. In this phase testability is the goal
because it reduces the labor of testing and testable code has fewer bugs than code that
is hard to test.

Kaner broadened the definition of software testing so that “software testing is an
empirical technical investigation conducted to provide stakeholders with information
about the quality of the product or service under test” (Kaner, 2004). Kaner has also
broadened the purposes of testing, such as to prevent damages, maximize the bug
count, block premature product releases, help managers make ship/no-ship decisions,
minimize technical support, assess conformance to specification, and assess quality. A

25

26 3 Theoretical Background for Software Testing

test case is usually defined as a set of test inputs, execution conditions, and expected
results developed for particular objective (Kruchten, 2003, 198-199). Similar test
cases, such as regression tests or certain specific functionality tests, can be grouped
together into a test suite. We define a test case of different granularities in component-
based systems in Paper I. In practice, it is not possible to test systems exhaustively, so
test cases must be diversified and they must be designed accurately. Moreover, testers
must know when test coverage is adequate. Coverage measures the extent to which a
certain criterion is satisfied. Different test coverage criteria, such as statement
coverage, branch coverage, path coverage, mutation adequacy, and interface-based
criteria, have been presented by Zhu et al. (1997).

Test phases can be divided into module (unit) testing, integration testing, system
testing, and acceptance testing. Module testing is a process of testing the individual
subprograms, subroutines or procedures in a program on the level of source code.
Module testing manages system complexity and efficiency, since attention is first
focused on smaller parts of the program. Modules can be built and tested
simultaneously and thereafter integrated into bigger units. Thus, module testing eases
the task of debugging because if errors exist, they are known to be in a particular
module.

In integration testing, modules tested in the previous phase are integrated into
bigger modules and then integration tested. The focus is on the co-operation of the
modules and their interfaces. Integration can be organized as a "big bang" by
combining all the modules together or to test modules incrementally either from
bottom-up or top-down. In incremental integration, drivers and stubs are needed. A
driver corresponds to a module which calls the particular module under test. A stub
corresponds to a module that is called by the module under test.

Binder has presented nine integration test patterns (Binder, 1999, 627-714): big
bang, bottom-up, top-down, collaboration, backbone, layer, client/server, distributed
services, and high-frequency integration. In big bang integration all components are
tested at the same time. Big bang integration is not recommended unless just a few
new components are added to a stable system. Bottom-up integration is the most
widely used technique. In bottom-up integration components are added to the system
under test in uses-dependency order so that components having the fewest
dependencies are added first. It works well for small to medium systems. In top-down
integration components are added to the system under test in control hierarchy order
so that the top-level control object is added first. Top-down integration works for
almost any architecture. In collaboration integration sets of components, which
include in a particular collaboration, are added to the system under test. Collaboration
integration works for almost any architecture, too. Backbone integration combines
elements of top-down integration, bottom-up integration, and big bang integration. It
aims to identify the components that support application control, the backbone, and
application subsystems. The sequence of testing is based on this analysis. Backbone
integration is especially suited to embedded applications. Layer integration verifies
interoperability in a system that can be modeled as a hierarchy. It applies to layered
architectures and combines elements of top-down and bottom-up integrations. In layer
integration interfaces between adjacent layers are tested. Client/server integration
tests interaction among clients and servers. Clients and servers are tested first with
stubs in isolation. Then pairs of clients are tested with the actual server or servers.
Distributed services integration is needed when the system under test includes many

3.1 What is software testing? 27

components that run concurrently with no single locus of control. Distributed services
integration is appropriate for decentralized networks. High-frequency integration is
useful when a stable baseline is available and new code is being frequently added,
such as in iterative and incremental development. High-frequency integration can be
applied at almost any architecture.

At the system testing level, the purpose is to compare the system to its original
objectives. System test cases are designed by analyzing the objectives and then
formulated by analyzing the user documentation. System testing covers different
forms of testing, such as performance testing, volume testing, stress testing, security
testing, and recovery testing. Acceptance testing tests whether the product meets
customers' and users' needs. Acceptance testing can be conducted by the end users of
the system in a real environment (beta testing) or at the developer's site (alpha testing)
(Myers, 1979).

Besides the above-mentioned testing phases, system integration testing has to be
performed when systems are integrated into the customer's environment. In the real
world, organizations have several different applications which have to interoperate.
System integration testing is needed to check the performance and interoperability of
all the applications. For example, in hospital, electronic patient records and different
clinical applications store customers’ demographic information separately. When
information (e.g. address) changes it should be changed into every application. This is
not cost-effective and it is hard to maintain. The clinical applications must retrieve
customers' information from one application through the open interfaces. If the
applications use common standards and implement open interfaces their
maintainability improves and application integration needs less local adaptation.

Kaner has reappraised some of the earlier views concerning software testing
(Kaner, 2004). The most salient ones are: document manual tests in full procedural
detain, specify the expected results for a test case, and design most tests early in
development. The first claim is that manual tests should be fully documented so that
they can be used by less experienced testers. Kaner calls this an industry worst
practice because it takes a long time to document and maintain the written procedures,
junior testers often miss suspicious behavior when they follow the test script like
robots, and there is no evidence that indicates that scripted practice is a good training
tool. According to Kaner, the problem with the second claim, that the expected results
should be defined for every test case, is that one expected result is not enough because
there can be different kinds of expected results, such as a program or system state,
monitored outputs, and impacts on connected devices. In addition, expected results do
not always exist, for example when testing memory leaks, or when the results cannot
be calculated by hand. The problems with the third claim, that most or all tests should
be designed early in development, are the following. Firstly, there are an infinite
number of possible test cases. At the beginning of the project, testers’ knowledge is at
its minimum. The better the testers understand the product and its risk, the more
wisely those few test cases can be selected. Secondly, at the start of the project the
testers cannot know what kind of mistakes the programmers will make when
programming. However, they will learn from experience which types of mistakes are
common in the project, with these languages and tools and these programmers. This is
valuable knowledge when designing test cases. Thirdly, almost always the program
changes during its development. If the test cases are designed at the start of the
project, extra work has to be done, which of course is a waste of time and money.

28 3 Theoretical Background for Software Testing

Defect management should be connected very closely to the lifecycle of testing.
The defect management process includes defect prevention, deliverable base lining,
defect discovery, defect resolution, process improvement, and management reporting
(Quality Assurance Institute, 1995). If defect management is combined with testing, it
becomes clear which test case found a certain error and which one did not even if it
should have (an erroneous test case). However, establishing an organization-wide
defect management process is a complicated task (Jantti et al. 2006). Bugzilla
(http://www.bugzilla.org/) and Testlog (http://www.testlog.com/) can be used
together, for example, so that a test case and the errors found by it can be recorded.

The following sections consider software development processes and how software
testing is included in those processes, software testing techniques, software testing in
component-based development, regression testing, and conformance testing.

3.2 Software testing in the development process

There are several software development process models, where software testing is a
part of a total software development process. The waterfall model was one of the first
software process models, where a number of independent steps are carried out in
sequence one after the other (Royce, 1970). The steps are system requirements,
software requirements, analysis, program design, coding, testing, and operations and
maintenance. Each of the stages produces a product, which is the input into the next
stage. There is no input from the final stage to the other stages. The problem with this
model is that testing comes at the end of the whole development process and customer
feedback is received too late.

The spiral model consists of iterative cycles in which the same phases (e.g.
requirements, design, prototyping, testing) are repeated at every cycle (Boehm, 1988).
The spiral model emphasizes especially risk analysis at every cycle. Software testing
has been especially noticed in the V-model (Forsberg et al. 2005, 109-116). In the V-
model, corresponding test plans are designed at every construction phase, i.e.
acceptance and system test plans in the requirement specification phase, integration
test plans in the architecture design phase, and module test plans in the module design
phase. In the testing phases, testing is carried out in reverse order to software
construction, and it verifies the software with respects to its test plan. The problem is
that testing is not performed until code has been generated, and in practice the testing
and development phases do not follow each other straightforwardly.

Nowadays software development processes are increasingly performed iteratively
and incrementally, so that a product is developed iteratively, enhancing and adding
new functionality with each release (Pfleeger, 2001, 56-57). The Rational Unified
Process (RUP) is one example of an iterative and incremental software development
process (Kruchten, 2003; Jacobson et al. 1999). RUP supports six best practices for
software development: develop software iteratively; manage requirements; use
component-based architectures; model software visually; verify software quality
continuously; and control changes to software. It uses the Unified Modeling Language
(UML) for modeling (Booch et al. 1998). In addition, there are models in which
software testing has been integrated into the software development process, such as
TSP (Test design Stages Processed) (Tsai et al. 1997). In the TSP model, iterative test
design stages are incorporated at each phase of the software development lifecycle.

3.3 Software testing techniques 29

When a development phase is completed, testing of the phase should also be
completed at that time.

3.3 Software testing techniques

Testers need different testing techniques at different test phases. Software testing
techniques can be divided into specification-, code-, fault-, and usage-based
techniques (Juristo et al. 2006). Specification-based testing techniques (or black-box
testing techniques) generate test cases from the specifications, and study whether the
software meets the requirements. They consider the program to be a black box into
which test inputs are entered, but do not tell anything about the path a certain input
traverses inside a program. Examples of specification-based techniques are
equivalence partitioning, boundary value analysis, and testing of finite-state machines.

e Equivalence partitioning means that the input domain of a program is
partitioned into classes such that a test case of a certain value of each class is
equivalent to a test case of any other value in that class. Test cases are selected
so that at least one test case is selected from each class (Myers, 1979, 44-50).

e In boundary-value analysis, test cases are selected from the boundaries of each
equivalence class (Myers, 1979, 50-55).

o A finite-state machine is used to model the behavior of a state-based system
(Wagner et al. 2006, 63-64). It is composed of a finite number of states,
transitions between those states, and performed actions. Test cases are
developed on the basis of different transitions between states.

The advantages of specification-based testing techniques are that the tester does
not need a source code for testing, and also the customer can use some of the
techniques (e.g. boundary value analysis). The problems with specifications-based
techniques are outdated and skeletal specifications, and uncovered code segments, i.e.
if the techniques are not properly applied, test cases may not cover the whole
functionality of the program.

Code-based testing techniques (or white-box testing techniques) study the source
code and describe the code coverage: for example, whether all the
statements/branches of the program are executed at least once. They do not tell
whether the program is doing what the requirement specification says it is supposed to
do. Code-based testing uses either control-flow criteria or data-flow criteria for test
case generation. Control-flow-based testing techniques select test cases on the basis of
the program's control flow. Examples of control-flow-based testing techniques are
sentence coverage, branch coverage, condition coverage, and path coverage. Data-
flow-based testing techniques explore the events related to the status of data objects
(variables) during the program's execution. The essential events are the assignments
of value and the uses of value, i.e. where the variables are defined and where they are
used. Examples of data-flow testing techniques are all-definitions, all-c-uses, all-p-
uses, and all-du-paths (¢ means computation, p predicate, and du definition-use pair).
However, these techniques are quite theoretical and complex to use in practice.
Furthermore, the customer and the integrator cannot usually use any of the code-based
testing techniques because the source code is not necessarily available and even if it
were there would be an enormous amount of code lines to go through.

30 3 Theoretical Background for Software Testing

Fault-based testing techniques can be divided into error guessing, fault seeding,
and mutation testing (Juristo et al. 2006). In error guessing, the generation of test
cases is guided by the tester's knowledge of what are the typical faults. This method
requires that a tester has a lot of experience of different kinds of faults and domains.
In fault seeding, errors are artificially introduced into a program to evaluate the
quality of the test suite. The total number of errors can be assessed from the errors
found. Fault seeding is quite risky because the seeded errors may stay in the program.
In addition, one cannot actually say anything about existing errors on the basis of the
seeded errors. We can find the same kind of errors as the seeded ones, but how can we
know whether there are novel errors as well? In mutation testing, the faults are seeded
into a program by creating many versions of the program, each of which contains one
fault (Offutt et al. 1996). Program variants (mutants) are generated by mutation
operators. Mutation operators represent the faults a program will likely contain. The
goal is to find such test cases that cause each faulty program to fail. These test cases
are the most useful. However, mutation testing is computationally expensive, which is
why different versions of mutation testing have been developed, such as weak
mutation and selective mutation. Furthermore, there are tools for different
programming languages (e.g. for Java and Ada) to help mutation testing. The problem
with mutation testing is that it is an indirect testing method. Testing can become
ineffective if the mutants are not generated extensively or testers do not have
knowledge of all the possible errors.

In usage-based testing (statistical testing), test cases are derived according to their
probability of occurring in actual operation, expectations of use, and criticality of
different functions. Usage-based testing can also be considered to be a black box
testing method (Kouchakdjian & Fietkiewicz, 2000). Operations that the user is more
likely to use during the execution or that are more critical than the others are tested
more. Usage-based testing can be cost effective if a tester knows the users' most
probable operations. Nonetheless, the other operations have to tested, too. If the
probability of the errors is known, the operations that have a bigger probability of
occurring should be tested more. However, if the users’ workflow changes, it may
happen that the new workflow has not been tested as properly as the old workflow and
errors remain. Moreover, the workflows of different users (e.g. novices and experts)
have to be tested equally.

It can be concluded that in order to test software properly, various software testing
techniques are needed; code-based or specification-based testing alone is not enough.
The existing testing methods do not necessarily fit in practice. The more critical and
complex the software, the more diversified must be the testing techniques used.

3.4 Testing component-based systems

A component-based system is not monolithic: it contains components of different
granularities (e.g. lowest level components, business components, and component-
based systems), which are integrated with other components and into legacy systems
with interfaces. In such situations, testing and documentation are even more important
than in conventional software projects with monolithic applications.

When moving from legacy systems to component-based systems, interfaces and
interface testing are needed. The components do not have to know each other's

3.5 Regression testing 31

implementation, only the content of the interfaces, i.e. syntax, semantics, and
instructions for using the interface. The components can be implemented by the
integrator or they can be acquired ready-made and then integrated into the one’s own
systems. If components are re-used in a new context, regression testing (see Section
3.5) is always needed (Weyuker, 1998). However, it is often forgotten that testing
activities depend on who is performing testing, and thus on the availability and quality
of the specifications and documentations. A tester may be a component developer, a
component integrator or a customer (end user). The component developer usually has
all the needed testing materials, so for the developer the component is a white box,
and code-based and specifications-based testing techniques can be used. The
integrator and customer seldom have a source code available. Thus, the component is
a black-box with interfaces, and test cases must be developed based on the other
available documents, such as design and interface specifications, user manuals, and
contracts. Integration has two parallel parts: on the one hand, user interface
components are integrated and tested, and on the other hand business logic and
resource components are integrated and tested. Furthermore, the components' external
interfaces have to be tested with operation calls, i.e. how the component behaves if it
is called outside the component. The different actors and viewpoints in component-
based testing are described in more detail in Paper I.

Dependencies between components can be controlled with the help of a
dependency graph, which shows the dependencies between the components of the
same granularity level, and assures that the whole functionality of the component has
been covered by test cases. Without the dependency graph, some critical paths may
remain non-executed. More details about dependency graphs and an example of
dependency graph creation can be found in (Toroi et al. 2002).

3.5 Regression testing

Regression testing means retesting a new version of a system after code changes.
According to earlier studies, at least 10% of software defects are due to code changes
(Collefello & Buck, 1987), so regression testing is an important part of software
maintenance. However, it is expensive, which is why only the modified parts and
those influenced by modifications directly or indirectly have to be retested, and test
cases should be selected as automatically as possible (Rothermel et al. 1997). This
raises the regression testing selection problem, i.e. how to select the right test cases
from the existing test suite. Trade-offs have to be made between the time required to
select and run regression test cases, and the fault detections ability of the test cases.
The following questions have to be answered (Graves et al. 2001): how do different
regression testing techniques differ in terms of their ability to reduce regression
testing costs and their ability to detect faults? What trade-offs exist between test suite
size reduction and fault detection ability? When is one technique more cost-effective
than another?

There exist several regression test selection techniques. Code-based regression test
selection techniques can be applied to regression testing at the unit level. The
technique is not suitable when large and complex components are tested, because it is
difficult to manage all the information obtained from the code, testers must read and
understand the code, and it is time-consuming. In addition, code-based regression

32 3 Theoretical Background for Software Testing

techniques are language-dependent, so more than one code-based regression
technique may be needed for regression testing (Chen et al. 2002).

Specification-based regression test selection techniques, in which test cases are
designed based on information obtained from program specifications, can be applied
to large and complex system regression testing (Chen et al. 2002). However, these
techniques also have problems, such as they may not be as exact as code-based
techniques, the specifications have to be up-to-date and accurate, in order to get good
test cases, all the complex dependencies between components are not necessarily
known, and all the modifications are not necessarily properly written down in the
specifications.

The other regression test selection techniques are retest all, which selects all the
available test cases for retesting, random techniques, which randomly selects n% of
the test cases from the test suite (e.g. random50 selects 50% of the test cases), and
risk-based techniques, which try to select test cases so that risks are minimized (Chen
et al. 2002; Graves et al. 2001).

The regression testing process in an industrial environment usually has the
following steps (adapted from Onoma et al. 1998).

Software artifact modification: Usually, the source code is changed but the
specifications or design can also be changed.

Test case selection and execution: Test cases must be selected from a test suite to
run regression testing. Different test selection techniques can be used here, or
sometimes all the test cases are reused. After test case selection, the test cases are run.
Test execution is worth automating since the number of test cases is often large.

Failure identification by examining test results: Test results must be examined to
see if the modified software behaves as expected. If the result is not as expected, the
code has to be examined to see if it has an error or if the test case is erroneous.
Furthermore, it is necessary to identify precisely which components, versions, and
modifications caused the failure (fault identification).

Fault mitigation: Once the components that caused the failure are identified, the
fault must be removed. After mitigation, new regression testing is needed to check
that the code has not been adversely affected by the changes, and caused any side
effects. However, if the fault is not serious it can be decided not to correct until next
version.

Test suite maintenance: In the maintenance step, outdated and duplicated test cases
are removed from the test suite.

The object-oriented paradigm introduces challenges in software regression testing.
The complex relationships between the object classes make it difficult to identify the
affected parts and the ripple effects when changes are made in object-oriented class
libraries or programs. Kung et al. (1994) have described a method for automatically
identifying the affected classes. The method is based on a reverse engineering
approach.

Onoma et al. (1998) claim that “regression testing is probably the most commonly
used software testing technique”. However, we discovered that very little regression
testing is performed in Finland (see Paper V): as many as 28% of the developers in
our study stated that they did not regression test applications. Moreover, 24% of the

3.6 Interoperability and conformance testing 33

IT customers did not acceptance test a new version of the application they acquired.
Thus, we recommended that the software organizations and their customer
organizations should increase their regression testing activities, and have a plan and
strategies (e.g. a test case selection strategy and an exit strategy for regression testing)
for regression testing (in Paper V). Furthermore, regression testing theory and practice
have to become closer, so that researchers see what is the problem with regression
testing (why applications are not regression tested) and organizations get directed
training in testing techniques.

3.6 Interoperability and conformance testing

In this section we define interoperability and conformance testing, and explain why
they are needed. Thereafter we describe what has been studied in conformance testing
in the healthcare domain and consider the state of the art in Finland.

3.6.1 General

Nowadays, organizations need to integrate their applications and processes into the
network of organizations. Too often, new systems are integrated into existing ones by
tailoring them separately by point-to-point integration. This is expensive and
inefficient in the long run. There is a need to agree about common standards and open
interfaces. If the systems have open standard-based interfaces, their interoperability
improves, introduction and integration become easier, and less local adaptation work
is needed. Interoperability testing is defined as the assessment of a product to
determine if it behaves as expected while interoperating with another product
(Kindrick et al. 1996). It should be borne in mind that interoperability testing only
assures that a previously tested set of systems are interoperating: it does not guarantee
that other systems interoperate with these systems. To get a higher level confidence
that the systems will successfully interoperate with other non-tested systems,
conformance testing is needed.

Conformance testing is necessary in accomplishing effective and rigorous
interoperability testing (Moseley et al. 2004). Conformance testing is a way to verify
the implementation of the standards to determine whether or not there are any
deviations from the standard (Rosenthal & Skall, 2002). It determines which areas of
the standard are implemented correctly, thus promoting portability and
interoperability. Conformance testing is always performed against publicly available
standard, such as ISO/IEC 20514 (Electronic health record). However, it can also be
performed against the standard-like official specifications, such as HL7
recommendations.

In conformance testing, software implementations are black boxes; only the
interfaces and their relationship to the specifications are examined. In other words,
when an interface receives a request, a test is carried out to see whether the interface
can handle the request and respond to it correctly. Conformance testing is always
performed against the specification, and testing is bound in scope by the specification.
All the features mentioned in the specification have to be implemented according to it,
and are tested (e.g. all the required interfaces exist, all their operations and parameters
have been implemented, and they are of the right type). However, nothing else is
tested. Conformance testing ensures the presence of the specified characteristics. The
internal structure of the system is not accessible and thus not the focus of testing.

34 3 Theoretical Background for Software Testing

Therefore, conformance testing does not guarantee 100% interoperability, but it
increases substantially our confidence in the system. In addition, conformance clauses
(or specifications) typically only cover some aspects of interoperability.
Implementation-specific features, such as infrastructure and techniques, are not
specified in the specification, which influence interoperability. On the other hand,
error and exception conditions cannot always be forced by interoperability testing
(Moseley, et al 2004). It can be concluded that interoperability and conformance
testing cannot be substituted for each other and both testing activities are needed.
Customers benefit from conformance testing when they make request for proposals
because applications become more interoperable, and comparison of the proposals
becomes easier.

Today, standardization and conformance testing of open interfaces are emphasized
at all levels, nationally and internationally. However, development is still in its
infancy. Conformance testing and integration efforts also provide feedback on
standardization (Chronaki & Chiarugi, 2006). If standards do not adequately address
the problems in practice, they can be further amended with standardization
organizations. The following Papers consider conformance testing: Paper Il describes
a conformance testing model of open interfaces, Paper Ill proposes a conformance
testing environment, and Paper IV presents the results of a survey of conformance
testing.

3.6.2 Conformance testing in the healthcare domain

Conformance testing has been performed extensively in the domains where
specifications are based on formal languages or protocols, such as in the
telecommunication domain (ITU-T, 1996) but the practice is not so well-established
in other domains. In the healthcare domain, problems with conformance testing and
the interoperability of healthcare applications have been noticed, for example, in the
USA (CCHIT), Britain (NHS), and Denmark (MedCom), and in various organizations
such as HL7 (Health Level 7) and IHE (Integrating the Healthcare Enterprise). The
mission of the Certification Commission for Healthcare Information Technology
(CCHIT) is to create an efficient, credible and sustainable product certification
program (CCHIT, 2007). Under the CCHIT certification program, many Ambulatory
EHR systems have already been certified against functionality, interoperability, and
security criteria.

The mission of the national strategic program for IT in the National Health Service
(NHS) is to deliver a robust infrastructure, including authentication, security, and
confidentiality, to enable electronic booking of appointments and electronic transfer
of prescriptions, and to deliver integrated care records services (NHS, 2002). One
important feature of the NHS is the shift to more corporate and national approaches.
This means that there is a national approach to procurement and implementation, and
services need to conform to national standards and must interoperate with emerging
national services.

MedCom was a long-term project (from 1995 to 2007) whose mission was to
contribute to the development, testing, dissemination, and quality assurance of
electronic communication and information in the healthcare sector (MedCom, 2005).
Its aim was to enhance test tools, and effort was put into self-service in testing.

Health Level 7 (HL7) Conformance SIG (Special Interest Group) improves the
interoperability and certification processes. HL7 provides a mechanism to specify

3.6 Interoperability and conformance testing 35

conformance for HL7 Version 2.X and HL7 Version 3 messages, and provides a
framework for facilitating interoperability using the HL7 standard. Besides standards,
HL7 support the development of national HL7 specifications.

Integrating the Healthcare Enterprise (ACC/HIMSS/RSNA, 2005) promotes the
use of standards by developing integration profiles. Integration profiles are at a more
accurate level than standards, so they help to implement the product according to
standards. The IHE acts worldwide, and several nations have national IHE initiatives.
At the moment, Finland does not belong to the IHE but HL7 Finland has established
IHE Special Interest Group (SIG) in the summer of 2008. HL7 Finland IHE SIG
disseminates information of the IHE integration profiles and IHE activities in Finland.
At the moment, the most important activity in IHE SIG is to find out what integration
profiles software companies and customers are interested in.

In Finland, conformance testing is considered to be very important and in need of
improvement, but there is a reluctance to use external interface testing services (see
Paper 1V). Conformance testing activities in the healthcare domain are quite low at
the moment, which is one reason why there are problems in the interoperability
between different applications. However, the selection of the Social Insurance
Institution as a national actor for health IT and the increased coordination by the
Ministry of Social Affairs and Health may alleviate the confusion related to standards
and conformance testing in Finland. Furthermore, to be able to test conformity more
thoroughly and more reliably, more accurate and varied specifications are also
needed. Each specification should focus on only certain aspects, such as interface,
technical, contextual, or concepts (see Paper IlI).

The question that usually arises is, when must conformity to standards be proved
officially, and when is the supplier's label of conformity enough (Rada, 1996)? In our
case study (see Paper I1) we examined the conformance testing process of context
management interface specification, and tried to improve the interoperability between
different applications. The examination revealed that more automated testing
processes and more accurate and diverse test cases are needed. Moreover, it became
clear that regulations by the competent authorities and demand by the market for
certified interfaces are needed to make conformance testing common.

36

3 Theoretical Background for Software Testing

4 Experiments in practice

There is a gap between software testing theory and practice (Bertolino, 2004). In
software testing theory, short pieces of software code or state machines are often
studied, but interoperability between large applications and entire software systems
are neglected. Furthermore, not enough attention is paid to the scope and complexity
of the applications in the real world.

In this chapter we first introduce the research projects in which the results of the
thesis have been developed and evaluated. Second, the practical experiments carried
out with the conclusions are presented. We define test cases based on the UML test
model and analyze the model, present the state of the art in software and conformance
testing in Finland, and describe how test process improvement models can be
improved. In all these cases, the viewpoint is complex systems operating in the
network of organizations.

4.1 Research projects

The results presented in this thesis were obtained in three national research and
development projects in Finland: the PluglT (Plug IT: Healthcare Applications
Integration) project, the OpenTE (Open Testing Environment) project, and the SerAPI
(Service-oriented Architecture and Web Services in Healthcare Application
Production and Integration) project. All the projects were funded by the Finnish
Funding Agency for Technology and Innovation, Tekes. In addition, PluglT was
funded by 15 software companies and eight healthcare organizations, OpenTE was
funded by seven software companies, two healthcare districts, and the Ministry of
Social Affairs and Health, and SerAPI was funded by 14 software companies and four
healthcare organizations.

PluglT (2001 - 2004) concentrated on healthcare application integration. The
objective was to contribute to better healthcare services through more interoperable
clusters of software applications. The project aimed at three kinds of results: 1)
practical solutions in the form of application program interface (API) specifications;
2) methods for further work beyond the project; and 3) a long-term centre of expertise
for healthcare software companies and their customers. In the PluglT project, a survey
focusing on software engineering in healthcare software companies and healthcare
organizations was conducted. The results of the survey imply that it is very important
that not only the developers but also the customers are responsible for testing. In
addition, there was a desire to increase the amount of conformance testing activities.

37

38 4 Experiments in practice

Individual applications and regional information systems need testing
environments for their interfaces and integration. In the OpenTE project (2004 -
2006), conformance and interoperability testing methodologies were studied, the
architecture of testing environments for web service-based implementations was
specified, and reference implementations were developed. A testing environment
gives feedback for software developers and developers of specifications, and increases
the probability that products are implemented correctly.

In the SerAPI project (2004 - 2007), the integration approach developed in the
PluglT project was specialized with a more focused approach towards service-
oriented architecture and Web Service technologies. In the project, open interfaces
and software services were defined, and methods, reference implementations and
modeling examples were developed. The project was also involved in national and
international standardization work.

4.2 UML test model

To experiment with a UML test model (Jacobson et al. 1999, 297), we arranged a case
study to test a healthcare application with UML diagrams (Paper | and Jéantti & Toroi,
2004). Our finding from the experiment is that using a test model together with
equivalence partitioning reveals several serious defects in the system. However, if the
documentation is poor, as it was in our case, establishing a UML test model for the
legacy system is a big challenge and requires a good experience of UML modeling
and enough domain knowledge. Quite similar results have been reported in a user
survey and industry case study (Lange et al. 2006). However, Lange et al. claim that
the large community of UML users is the evidence of the usefulness of UML.

We found the following advantages in using the UML test model. 1) Use cases
(Schneider & Winters, 2006) provide a way to divide the system under test into
smaller functional units, and test cases can be organized by use cases. Therefore,
software testing becomes more systematic with a test model. 2) Well-organized test
case documents increase the quality of the software product, and a project customer is
able to see whether the system meets the requirements and how it has been tested. 3)
Use case scenarios include descriptions of exceptional and alternative flows, which
are often sources of defects. 4) Visual modeling helps testers to understand the
structure and behavior of the system in a shorter time than without models. 5) States
of the concepts and test cases can be easily identified from the UML state diagram
and the state transition table, and transition coverage can be used to measure test
coverage. 6) Activity diagrams show the different action flows that a tester must go
through in testing.

Besides the advantages, some problems were found. 1) Unfortunately, often no
system documentation or related UML diagrams are available. Software testers do not
have time to draw UML diagrams in a testing phase. Even if they did, the diagrams
would not measure the realization of the requirements. 2) Even if documentation
exists, UML diagrams are often too abstract and simple for testing purposes, or they
have not been maintained when the requirements changed. In many cases, the textual
description of diagrams is a better source of supporting information of testing. 3) A
test model should focus on behavioral diagrams, such as use cases, activity diagrams,
and state diagrams because the dynamic (behavioral) defects are discovered in testing.

4.3 State of the art in software and conformance testing 39

4) Testers often consider that establishing a UML test model for a legacy system is
less exciting than establishing a test model for new software; building and testing
something new sounds more attractive.

4.3 State of the art in software and conformance testing

While the PluglT project was running, interoperability problems were recognized but
conformance testing was almost totally missing in the healthcare domain in Finland.
Therefore, we focused our study more on conformance testing, and a model for
conformance testing of open interfaces was developed. A clinical context
management interface specification was used here as an example (see Paper I1I).

It seems that only a few studies are based on software testing practices (Torkar &
Mankefors, 2003; Ng et al. 2004; Groves et al. 2000; Runeson, 2006), or conformance
testing in the healthcare domain (Chronaki et al. 2006; Chronaki et al. 2005). There
are no studies in which both parties, i.e. software companies and their customers, are
involved. We conducted a survey of software and conformance testing practices of
healthcare software companies and of their customers in Finland in 2006 (see Papers
IV and V). The aim of the survey was twofold: to study the state of conformance
testing of the interface specifications and the use of standards, and to find out how
software testing and test process improvement is performed in practice.

It was surprising that there were significant differences in conformance testing
activities in different organizations. In some organizations the system and its
specifications conformed to required standards, while in others it was only tested
whether two particular applications could be integrated. However, standards were
widely used in healthcare applications. In addition, increasing the use of standards and
official specifications was considered to be very important. Interestingly, there was a
big difference between small and large software companies in test case
documentation. In small companies (fewer than 50 employees), the amount of
documented test cases is not even a half of the amount of documented test cases in
large companies (more than 250 employees). Furthermore, software customers had
invested more in testing and used more rigorous methods than did small companies.
The most interesting result was that component regression testing was performed
rather rarely before the re-use of the component. The results of the conformance
testing part of the survey are discussed in Paper IV, and the practice in software
testing is discussed in Paper V.

4.4 Test process improvement

There are several software process improvement models which can be applied from
the software testing viewpoint, such as TPl (Test Process Improvement Model), TIM
(Test Improvement Model), and TMM (Testing Maturity Model) (Koomen & Pol,
1999; Ericson et al. 1997; Burnstein et al. 1996; Swinkels, 2000). The problem with
most of the models is that they are too cursory and theoretical, so they cannot be used
properly in practice. Consequently, the models are not widely used in software test
process improvement (see Paper V). We performed test process improvement with the
TPI model in a small software company in the telecommunication domain. The TPI
model examines the test process from 20 different key areas in two to four levels.

40 4 Experiments in practice

Examples of the key areas are Test strategy, Estimating and planning, Metrics, Test
tools, Reporting, and Test process management. In our case study, more flexibility
was needed in the Moment of involvement, Metrics, and Communication key areas.

The moment of involvement key area requires that testing is started as early as
possible in the software development lifecycle. In our case the object of testing
consisted of several separate parts, such as subsystems, software and hardware
platforms, software versions, language versions, and constraints by the domain of the
product. If one part changes, all the ready-made test plans may have to be discarded.
Therefore, it is not always best to start testing (planning test cases) as early as possible
if the system under test consists of several frequently changing parts. However, this
influences the maturity score of many TPI key areas.

In the Metrics key area, the resources used and activities performed are measured
in hours. In our case, a customer did not pay for elapsed time on software
development but for the quality of the product. Thus, it was not considered necessary
to record in hours the time spent in performing activities. The company used other
metrics to find out how much the quality costs (e.g. the number of errors found and
the number of changes implemented).

The Communication key area measures the internal communication of the test team
and communication within the organization about the quality of the test processes. In
our case, the communication key area did not reach a good maturity level because the
information from the other teams that was passed to the test team (e.g. changes in the
implementation or delivery date) caused a lowering of the maturity score of the testing
process. Even if internal communication within and outside the test team worked, a
good maturity level cannot be reached if other teams/units do not share the
information which influences the test team as well. Thus, the point is not the
immaturity of the test process, but that of the general software development process.

Test process improvement is further discussed in Paper V.

5 Summary of the Papers

This chapter summarizes and reviews the original Papers, illustrates their relationships
and presents their contributions. The Papers and their relationships are shown in
Figure 1. The study started by examining the software testing of component-based
systems (Paper). Paper | shows how component-based systems can be tested, from
components of the lowest granularity to those of the highest. Component-based
system testing can be performed from different viewpoints. We examined testing from
the integrator viewpoint because component-based development highlighted problems
in application integration and testing. In addition, software testing has been studied
extensively from the developer and end user viewpoints but rarely from the integrator
viewpoint. Integration and testing can be made easier with open interfaces and
common standards. Besides standards, conformance testing practices are needed. We
developed a conformance testing model, applied it to conformance testing of context
management interface, and evaluated it in Paper Il. However, conformance testing
cannot be performed efficiently if interface specifications are not defined clearly and
unambiguously. We found that more testable specifications are needed, and we
propose new requirements for open interface specifications in Paper I11. The results of
the survey of conformance testing showed that the interoperability of applications and
conformance testing must be improved. Therefore, we give recommendations on how
to improve them (Paper 1V). However, improving conformance testing activities is not
enough if the whole software testing process is performed badly. We study and
analyze test process improvement models in Paper V.

| Testing component-
based systems -
integrator viewpoint

Il Conformance testing of
open interfaces - case
context management

V Improving
software test
processes Il Requirements IV Conformance
for testable testing of
specifications interoperability

Figure 1: The Papers and their relationships to each other

41

42 5 Summary of the Papers

5.1 Testing component-based systems - the integrator
viewpoint

Different actors (roles) perform software testing at different phases of the software
development process, i.e. software developers, component integrators, and customers
(or end users). Test methods must be selected on the basis of the testing roles. The
selection is influenced by whether the source code is available (developer), whether
the application is integrated into existing system (integrator) or whether acceptance
testing is based on workflow (customer). Paper | outlines how component-based
systems are tested step by step, especially form the integrator viewpoint, and gives
examples of test cases of different granularities based on UML diagrams.

We utilize and modify the business component approach introduced by Herzum
and Sims (2000), and describe components of different granularities, i.e. a lowest
level component, a business component, and a business component system. The
granularity hierarchy means that a component-based system is a composition of
business components, which in turn are compositions of the lowest level components.
In the testing approach, white box testing and black box testing occur alternately at
each level, utilizing test cases of different granularities and dependency graphs.

Figure 2 shows components of different granularities from the integrator
viewpoint. The lowest level components (2a) are those that the integrator acquires or
builds. If the integrator acquires components, they must have been tested by the
component developer. The developer performs white-box testing and creates a test
report. The test report should be enclosed with the component when the integrator
acquires it. After the acquisition, the integrator acceptance tests the component as a
black box. For the acquired components, only the interfaces are available, not the
inner implementation of the component. The integrator has to evaluate the quality of
the components with the help of the available test documents and user manuals
through black box testing methods. The functionality and high quality requirements of
the component influence the level and thoroughness of the evaluation. If the integrator
develops his/her own components then the testing technique is the traditional white-
box testing. Business components (2b) are those which the integrator usually builds
from the lowest level components. The business component can be seen as a white
box which contains several black boxes (components). The integrator integrates the
lowest level components and performs integration testing, where the relationships
between components are tested. Thereafter, the external interfaces of the business
component are tested. A component-based system (2c) is the assembled application
that the integrator deploys to the customer. The integrator integrates self-made and
acquired business components into a business component system and tests their
relationships, then the external interfaces are tested. The integrator has to use various
testing methods at all different component levels. This incurs challenges to testing.
The customer who acquires a component-based system performs acceptance testing
for it. This is performed using black-box testing methods.

5.2 Conformance testing of open interfaces in healthcare applications 43

Interface

a) Lowest level component oIl

¢) Business component system

-

b) Business component
Figure 2: Components of different granularities from the integrator viewpoint

Since the components are of different granularities, the test cases must also be at
different granularity levels. We give examples of test cases of different granularities
based on our case studies with UML diagrams. The test case is a set of test input and
expected result pairs, and execution conditions at every granularity level. Execution
conditions contain environmental needs, preconditions, post conditions, and
invariants. An ordered sequence of test input and expected result pairs is:

e an action flow between co-operating users and business components at the
component-based system level.

e an operation flow between one user and the lowest level components at the
business component level.

e a method flow between object classes inside the component at the lowest
component level.

Nowadays, information systems are seldom made from scratch: they are usually
assembled piece by piece into an existing system. Then the testing process differs
from the one, where the module testing phase precedes integration testing, followed
by the system testing phase. Thus, it is valuable to consider the integrator viewpoint in
software testing and give him/her tools to test systems in practice in the software
industry.

5.2 Conformance testing of open interfaces in healthcare
applications

Application integration is often a combination of problems, where each organization
has its own set of issues which must be dealt with (Mykkénen et al. 2004). In this
study the research problem was, how can we ease the workload of the integrator and
reduce the extra work without sacrificing software functionality and quality? In order
to integrate different software applications without too much extra local adaptation
work, open standard-based interfaces and conformance testing are needed. We
propose a conformance testing model, developed and evaluated with the co-operation
of software companies and healthcare districts. The model consists of four phases: an

44 5 Summary of the Papers

initial phase, testing performed by the developer, testing performed by the testing lab,
and certificate (brand) issuing. In the initial phase, a software customer asks
developers to append the certificate or brand of interoperability to the request for
proposals. Developers make their proposals and the customer selects and approves the
best one. The developer develops an application and applies for the brand for the
application. The testing lab performs conformance testing and issues the brand if the
application meets the requirements.

The following challenges were faced during the conformance testing process. 1)
Software product versions are introduced in rapid cycles, so the brand has to be
renewed often and re-evaluation has to be performed automatically using, for
example, web-based testing services. However, software companies are not very keen
on public conformance testing, maybe because of the fear of revealing the testing
results. Thus, regulation by the authorities or demand by the market for certified
interfaces are the only effective ways to make certification and interface "branding"
common. 2) Integration specifications must contain enough information about the
requirements for the solutions, in addition to mere interface signatures. Integration
specifications and standards should be developed to express clearly which options are
implementation-specific or optional. In addition, specifications should provide
guidance on how implementation-specific features should be documented and used. 3)
Customers need advice when gathering and setting their requirements. Interface
specifications do not currently contain all the information needed, including basic
requirements, conformance levels, and different types of parameters which must be
conformed to. 4) Some parameters are static for a given environment, but several are
specific to the applications used or to the implementation or infrastructure of the
server. A standard way to identify and classify this sort of parameters for test case
definitions is needed.

During the conformance testing process the most important finding was that
interface specifications have to be improved so that they are more accurate, more
understandable, and more testable before conformance testing can be performed
efficiently.

5.3 Requirements for testable specifications and test case
derivation

In this study we propose new testability requirements for interface specifications and
evaluate test case derivation from different specifications. In addition, one research
problem was how to develop a reliable conformance testing environment for
healthcare applications. The environment should be applicable in the software
industry and healthcare organizations.

The specifications have to be defined so that testability and conformance are taken
into consideration early in the specification lifecycle. W3C and OASIS have given
guidance on how specifications should be written (Rosenthal & Skall, 2002; W3C,
2005). We propose the following additional aspects which the specification must
address. Architecture description describes in which context the specification is being
used and all the dependencies on the other specifications. Specifications have to be
divided into levels so that functional, conceptual and technical details are
distinguished from each other. All the issues concerning software interoperability

5.4 Conformance testing of interoperability in health information systems 45

have to be mentioned in the specification. Also, the quality requirements (e.g.
continuous operating time, execution time, robustness, usability, response time) must
be stated. In the specification we must describe how different wversions of
implementation, specification, and test suites affect conformance, that is, in which
situations re-evaluation of conformity is needed. Key words are used to specify
requirements in the specification. Requirements can be mandatory (MUST), optional
(MAY), or recommended (SHOULD) (Rosenthal & Skall, 2002). However, the key
word SHOULD must be avoided because it is confusing and causes interoperability
problems.

There are several formats of interface specifications, such as formal languages,
semiformal languages and natural languages. The more formal the format, the more
automatically test cases can be derived. However, the most formal specifications are
not the best formats in practice because both developers and customers consider them
too complex to use and understand. Semiformal languages are the most suitable for
the healthcare domain because their notation is more understandable and they are
easier to use and interpret than formal languages. In addition, they are more precise
than natural languages.

5.4 Conformance testing of interoperability in health
information systems

Conformance testing has been studied extensively in the telecommunication domain
(ITU-T, 1996) but the practice is not well-established in other domains. Only a few
studies on conformance testing in the healthcare domain (e.g. Chronaki & Chiarugi,
2006; Chronaki, et al. 2005) have been reported. No empirical studies on the level of
conformance testing in software companies and in their customers' organizations in
healthcare have been reported. Therefore, we conducted a survey to find out how
much and how often conformance testing is performed in relation to the interface
specifications in the healthcare domain in Finland. We also wanted to find out how
customers perform testing in their organizations, and how they can influence the
conformance of the software they acquire. Based on the survey results, we make the
following recommendations for healthcare organizations, software companies, and
authorities to improve conformance testing and compliance to interoperability
standards.

Perform interoperability conformance testing more rigorously. Various
conformance testing activities must be performed and they must be more diversified
and disciplined than previously.

Utilize open interfaces and use interface testing services. The developers can use
interface testing services before the interface release, while the customers can use
them during the software acquisition and introduction. Proper interface testing
services promote cost-effective interoperability testing. A well-established testing
service allows everyone to select the needed counterparts of the application interfaces
and their correct versions, and interoperability testing can be performed against them.

Provide proper skills and knowledge. Developers must be provided with
knowledge of conformance testing through open seminars and training. In addition,
customers must be provided with knowledge and skills to demand standard-based
interfaces and certified software products, and the knowledge to test them.

46 5 Summary of the Papers

Recommendations must be enforced by the authorities. Official recommendations
and laws are needed to promote interoperability and the quality of the applications.
Therefore, recommendations made by the authorities have to be introduced and
enforced more actively. In addition, it is important to support and supervise the
implementation of the recommendations, and facilitate it with tools.

Organize autonomous and unbiased interface testing services. Conformance
testing must be unbiased and as automatic as possible. To accomplish this, studies and
projects are needed in which interface testing services are organized objectively and
independently from software companies.

Reuse testing experiences and information. Testing experiences and information
should be transferred between similar customer organizations. One feasible idea is a
mentor activity, in which the introduction of the applications has been distributed
between different hospital districts and the experiences from one district are utilized
in another.

Improve the testability of specifications and standards. Utilizing standards
successfully and testing against standards requires accurate guidelines and constraints
to generic standards, such as HL7 specifications. One way is to complement
specifications with IHE (Integrating the Healthcare Enterprise) integration profiles.

Unfortunately, we had quite a small number of software companies in our survey.
The questionnaire was sent to all the hospital districts (customers) in Finland and all
the software companies (developers) belonging to a Health and Welfare IT R&D
cluster in Finland. We obtained responses from 15 hospital districts (75% of all
districts) and 14 software companies (52% of the number of companies in the cluster).
However, it can be concluded that there are many problems to be solved before the
applications in the healthcare domain interoperate appropriately and conform to
standards. It heavily seems that laws and regulations are required in order to motivate
the software providers to improve software testing and the interoperability.

5.5 Improving software test processes

The whole software testing process must be considered when interoperability is to be
improved. Test process improvement was ranked as the most important issue in
software testing research (Taipale, 2007). In this study, we introduce and analyze
three of the best known test process improvement models (TMM (Burnstein et al.
1996), TIM (Ericson et al. 1997) and TPl (Koomen & Pol, 1999)). We investigated
whether the models are dependent on domains, how well they are suited to practice,
and whether there is any need to improve them. The TPl model is more practical than
the other two. It appears that the models are applicable to different domains, such as
telecommunication and healthcare. However, we noticed that there are some
difficulties to apply the models in the small organizations. Quite similar results with
large and small organizations have been reported in Dyba (2003).

Based on the results of the survey presented in Section 5.4, we found that test
process improvement is considered to be very important. However, the maturity of the
test processes is still surprisingly low. The most troublesome issues hindering
software testing are lack of resources, especially time and knowledge, lack of
documentation, such as proper requirement specifications and test case specifications,
proper testing methods (test culture), insufficient test environments, attitude problems

5.6 Summary of the results 47

(testing is undervalued), and rush to deliver incomplete applications to the customers.
We make the following recommendations for organizations which want to overcome
these barriers in software testing. 1) Test case documentation has to be increased and
the organizations have to take a more positive attitude towards test case
documentation. 2) More regression testing must be performed. The organizations have
to plan regression testing and have a regression test strategy. 3) The level of training
in testing must be improved. Training organizations have to study what kind of
competence software organizations need, and plan their courses utilizing this
information. 4) The clarity and unambiguity of the specifications have to be
improved, and testers must participate in this phase. When developing specifications,
people from different domains have to be involved. Furthermore, test case
development simultaneously with the development of the specifications is extremely
important. 5) Information and guidance about test process improvement models must
be shared. We have good experiences of test improvement in cooperation with
engineers, researchers, and customers.

Usually, the test improvement models do not cover all the software testing aspects
that are important from the testing process improvement viewpoint in component-
based software development. Therefore, we suggest new aspects and aspects that must
be considered more deeply when improving test processes: interoperability testing,
conformance testing, connections between test processes and service management
(e.g. Information Technology Infrastructure Library, ITIL), regression testing,
specifications, and the architecture of the applications.

5.6 Summary of the results

Here we consider how the research results answer the research questions presented in
Section 1.1. The first research question was: How can the software test processes and
test process improvement models be improved? Software quality has been studied
extensively and there are many software testing methods and techniques which can be
used in quality assurance in the software test process. However, the methods are often
theoretical and difficult to apply to practice in the software industry and in customer
organizations. That is one reason why software quality is often poor. A brand-new
testing method is not needed but we need to examine existing methods and
techniques, adopt suitable ones and adapt them to our own process. We gave
organizations several recommendations to improve their testing methods. One
recommendation is that testers must get training in testing, especially in UML-based
test cases. In addition, those responsible for education should tailor their training
programs to make them suitable for hands-on testers. In order to improve software
quality, all the stakeholders (e.g. developers, customer, managers) must be committed
to the testing process. Furthermore, a test team must introduce a test process
improvement model and check its own test process against it regularly. After the
evaluation, plans must be generated specifying the level to which the team will aspire.
One important issue in increasing software quality is regression testing: more is
needed, and test teams must have a strategy for regression testing.

In general, the test process improvement models do not cover software testing
aspects that are important in the component-based development. Therefore, we
suggested aspects that should be considered more deeply when improving test

48 5 Summary of the Papers

processes, such as interoperability testing, conformance testing, testing of open
interfaces, certification, and the authorities’ requirements and their test cases.

The second research question relates to the granularity of software components and
how it influences software testing in component-based software development. The
proliferation of software components of different granularities enabled the integrator
role to arise. Integrators need different kinds of testing methods than developers,
because source code is not necessarily available to them. Therefore, testing methods
are usually based on black-box testing. We developed a component-based system
testing model with which the integrator can test systems piece by piece. The
developer tests the finest-grained components, while the integrator usually tests the
medium-grained (business component) and coarsest-grained components (component-
based system). The finest-grained components are tested on the basis of a method
flow between object classes inside a component. The medium-grained components are
tested on the basis of an operation flow between the lowest level components
belonging to the business component. The coarsest-grained component and the
relationships between its inner business components are tested on the basis of an
action flow which can be derived from an activity diagram, a use case diagram or a
sequence diagram. There are several dependencies between components. The
dependencies can be tested with a dependency graph. The granularity of the software
components improves modularity, facilitates software testing, and assists software
quality management.

The third research question relates to software and conformance testing in the
healthcare domain in Finland. We studied how software and conformance testing is
performed at the moment and how conformance testing and compliance to
interoperability standards can be improved. Fortunately, we found that software
testing is considered the most important technique in quality assurance. However, the
level of software and conformance testing vary very much in different organizations.
In some software companies, software testing is really diversified, while in others
applications are not tested properly. It is usual that too little time is scheduled for
testing both within software companies and in the customer organizations but nothing
is being done to improve the situation. Furthermore, small and large software
companies document their test cases differently. In small software companies test
cases are not documented so often. However, defects are documented quite well and
they are compared with the defect statistics of the previous versions of the
applications. With the help of defect statistics, software testing can be focused on the
most error-prone areas in the next software versions.

It appears that there are various problems to be solved before application
conformity to standards and interoperability can be tested properly. The term
conformance testing is not understood by all stakeholders. Some developers muddled
the term up with traditional software testing. We developed a rapid conformance
testing model to ease the conformance testing process. Based on the model,
specifications for an open testing service, which acts as a counterpart in interface
testing, were developed. However, we found that requirements issued by the
authorities, laws, and sanctions are needed to get testing services into use and to
ensure interoperable systems. Therefore, we made several recommendations for
organizations to improve conformance testing and compliance to interoperability
standards. Conformance testing can be performed against any kind of specifications,
such as interoperability standards, process descriptions, or generic requirements for

5.6 Summary of the results 49

the structure of the system. Thus, application interoperability requires various
conformance testing activities. Conformance testing requires standard-based
applications, customer demand, and investments in testing improvement. In addition,
customers must be instructed to demand standard-based applications in their requests
for proposals.

The fourth research question relates to interface specifications and especially, how
specifications can be improved to help testing of conformity? The form of the
specifications ranges from formal specifications to natural language statements. We
examined their suitability in the healthcare domain and compared the ability to
generate test cases of them. The more formal the specification, the more testable it is.
On the other hand, when formality increases, understandability decreases. Test case
generation based on natural language specifications is awkward, even impossible.
However, the specifications used in conformance testing in the healthcare domain are
often natural language specifications because customers and end users understand
them better and can use them in requests for proposals and negotiations for an
agreement. Thus, the development of the specifications has to be invested in, too, and
testers must participate in this phase. We proposed several important issues that the
specifications must address. The testability of the specifications has to be taken into
consideration early in the specification's life cycle. Architecture description,
interoperability factors, the conformity re-evaluation strategy, and special key words
must be added to the specifications to assist in the testing process.

50

5 Summary of the Papers

6 Conclusions and future work

The aim of the study was to improve existing testing methods and their practicality
especially from the integrator point of view, to improve the interoperability between
applications, and to familiarize software companies and their customers with
conformance testing. We developed a component-based system testing model, with
which the integrator can integrate and test systems piece by piece, and a conformance
testing model, which demonstrates how applications can be tested against interface
specifications. The conformance testing model was developed and evaluated in
healthcare software companies and hospital districts. In addition, we made
recommendations for the software companies and the relevant authorities about how
to improve interface specifications, interoperability, and the quality of the
applications.

6.1 Contributions of the thesis

The main contributions of the thesis can be considered through the research questions.
The first research question was: How can the software test processes and test process
improvement models be improved? We found that there are many theories of different
software testing methods but still software quality is often poor. The existing methods
are often theoretical and difficult to apply to practice. Practical solutions and
recommendations are needed in the software industry and in customer organizations.
We gave organizations various recommendations to improve their software processes
and software quality, including recommendations for test case documentation and for
regression testing. Furthermore, software testing has to be considered as a part of
continuous software process improvement.

The second research question relates to a granularity of software components and
how it influences software testing in component-based software development. We
noticed that granularity helps software testing because it promotes modularity. The
granularity of software components led to different roles being created. We highlight
the integrator and customer roles in software testing because their viewpoints have not
been extensively studied, and we developed a systematic component-based testing
model for the integrator. A component-based viewpoint also created a need for
granular test cases. Test cases are formed from an input flow which may be at user
action level, operation level, or method level. We give examples of input flows of
different granularity levels.

The third research question concerns software and conformance testing. We
developed a rapid conformance testing model with the co-operation of several

51

52 6 Conclusions and future work

software companies and hospital districts. During the evaluation, the organizations
tested their application conformity to HL7 clinical context management interface
specification. On the basis of the model, specifications for an open interface testing
service were developed. Thereafter, a survey to discover how software and
conformance testing is performed at the moment in Finland was conducted. On the
basis of the survey results we made several recommendations about how to improve
conformance testing and compliance to interoperability standards. The
recommendations are meant for organizations and the authorities who aim to improve
conformance testing and the interoperability between applications. They concern open
interface utilization, enforcement of official recommendations and laws, interface
testing service organization, the testability of the specifications and standards, and the
reuse of testing experiences, for example.

The fourth research question concerns interface specifications and how they can be
improved to help testing of conformity. We found that the existing interface
specifications in the healthcare domain are often insufficient and testing cannot be
performed against them. We identified several issues that the specifications must
address, such as the target architecture of the system, specification levels,
interoperability features, and re-evaluation strategy. In addition, we examined test
case derivation from the specification, especially in the healthcare context.
Specifications of formal languages, semiformal languages and natural language were
studied. We considered their suitability in the healthcare context, and compared how
easy it is to generate test cases automatically from them.

Based on the results of this thesis, we make the following concluding remarks:

1. The integrator and customer roles must be considered in the software testing
process. They both need different kinds of testing methods than developers.
The existing testing methods are often so theoretical that they cannot be
utilized in practice.

2. We found that most software companies do not devote resources to conformity
assessment voluntarily. The quality of the software and interoperability
improves only by increasing the number of requirements issued by the
authorities. Common rules are needed and responsibilities must be clearly
defined. In addition, customers must demand standard-based applications more
often.

3. Interoperability conformance testing needs good quality specifications. Without
proper specifications, conformity cannot be tested so that interoperability can
be assured. At the moment, specifications in the healthcare domain are not
suitable for interoperability testing purpose.

4. Continuous improvement of the test process is important. When test processes
are improved, organizations have to pay attention to not only the actual test
processes, but also to test case documentation, regression testing, and the level
of training in testing.

There are some limitations to this study. Firstly, the number of software companies
in our survey was quite small. This affects the generalizability of the results. It
appears that test cases are documented in small software companies only half of that
in large companies. However, no statistical conclusions can be made. Secondly, the
results of the study were obtained in the healthcare domain, which has many critical

6.2 Future work 53

systems. Therefore, the results can be generalized to domains where software quality
and reliability are prioritized.

6.2 Future work

This thesis investigates software testing using a component-based approach. In future,
it is important to expand the method to cover service-oriented approach and its new
requirements. We emphasized the integrator and customer viewpoints in testing in the
software industry and in customer organizations, but the service provider viewpoint
with problem management must also be studied. Additionally, more research is
needed to discover how business knowledge influences testing. In future, how test
process improvement models can be applied in small and large software companies,
must be studied. In addition, it would be valuable to survey how the proposed
recommendations have been utilized in practice and how well they are suited to
different organizations in different domains. A lot of research relating to software and
conformance testing has been done. However, practical viewpoints in theory are
needed so that theory can be efficiently applied in practice.

54

6 Conclusions and future work

Bibliography

ACC/HIMSS/RSNA. (2005). IHE IT Infrastructure Technical Framework, Volume
1, Integration Profiles Revision 2.0, Retrieved June 9, 2008, http://www.ihe-

Baskerville, R. (1999). Investigating information systems with action research.
Communications of the Association for Information Systems, 2(19).

Bass, L., Clements, P. and Kazman, R. (2003). Software Architecture in Practice.
Addison-Wesley.

Beizer, B. (1990). Software Testing Techniques. Second Edition. Van Nostrand
Reinhold.

Bertolino, A. The (Im)maturity Level of Software Testing. (2004). ACM SIGSOFT
Software Engineering Notes, 29(5), 1-4.

Beugnard, A., Jézequel, J-M., Plouzeau, N. and Watkins, D. (1999). Making
Components Contract Aware. Computer, 32(7), 38-45.

Biggerstaff, T. and Perlis, A. eds. (1989). Software Reusability, Volume I, Concepts
and Models. ACM Press.

Binder, R. (1999). Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison Wesley.

Boehm, B. (1988). A Spiral Model of Software Development and Enhancement.
Computer, 21(5), 61-72.

Boehm, B., Brown, J.R., Kaspar, H., Lipow, M., McLeod, G. and Merrit. M. (1978).
Characteristics of Software Quality. North Holland.

Booch, G. (1987). Software Components with Ada: Structures, Tools, and
Subsystems. Addison-Wesley.

Booch, G. (1991). Object oriented design with applications. The
Benjamin/Cummings Publishing Company.

Booch, G., Rumbaugh, J. and Jacobson, I. (1998). The Unified Modeling Language
User Guide. The Benjamin/Cummings Publishing Company, Inc.

Brown, A. and Wallnau, K. (1996). Engineering of Component-Based Systems. In
Proceedings of Second IEEE International Conference on Engineering of Complex
Computer Systems, 414-422.

Burnstein, 1., Suwannasart, T. and Carlson, C.R. (1996). Developing a Testing
Maturity Model: Parts | and 11, Illinois Institute of Technology.

CCHIT. (2007). Physician’s Guide to Certification for Ambulatory Electronic Health
Records, Retrieved May 22, 2008, from
http://www.cchit.org/files/CCHITPhysiciansGuide2007.pdf.

Chen, H.Y., Tse, T.H., Chan, F.T. and Chen, T.Y. (1998). In Black and White: An
Integrated Approach to Class-Level Testing of Object-Oriented Programs. ACM

55

56 Bibliography

Transactions on Software Engineering and Methodology, 7(3), 250-295.

Chen, Y., Probert, R. and Sims, D.P. (2002). Specification-based regression test
selection with risk analysis. In Proceedings of the 2002 conference of the Centre
for Advanced Studies on Collaborative research.

Chronaki, C.E. and Chiarugi, F. (2006). OpenECG: Testing conformance to CEN/EN
1064 standard. 5th European Symposium on BioMedical Engineering. Patras, Ellas.

Chronaki, C.E., Chiarugi, F., Sfakianakis, S. and Zywietz, C. (2005). A web service
for conformance testing of ECG records to the SCP-ECG standard. Computers in
Cardiology, 32, 961-964.

Clements, P.C. (1995). From Subroutines to Subsystems: Component-Based
Software Development. The American Programmer, 8(11).

Collefello, J. S. and Buck, J. J. (1987). Software Quality Assurance for Maintenance.
IEEE Software, 4(5), 46-51.

Dybd, T. (2003). Factors of Software Process Improvement Success in Small and
Large Organizations: An Empirical Study in the Scandinavian Context. In
European Software Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering, 148-157.

Ericson, T., Subotic, A. and Ursing, S. (1997). TIM - Test Improvement Model.
Software Testing, Verification and Reliability, vol. 7, 229-246.

Forsberg, K., Mooz, H. and Cotterman, H. (2005). Visualizing Project Management:
Models and Frameworks for Mastering Complex Systems. John Wiley & Sons.

Gao, J.,, Tsao, H-S. and Wu, Y. (2003). Testing and Quality Assurance for
Component-Based Software. Artech House.

Gelperin, D. and Hetzel, B. (1988). The growth of software testing. Communications
of the ACM, 31(6), 687-695.

Graves, T., Harrold, M.J., Kim J-M., Porter, A. and Rothermel, G. (2001). An
Empirical study of Regression Test Selection Techniques. ACM Transactions on
Software Engineering and Methodology, 10(2), 184-208.

Gray, M., Goldfine, A., Rosenthal, L. and Carnahan, L. (2000). Conformance
Testing. In XML General Articles and Papers: Surveys, Overviews, Presentations,
Introductions, ~ Announcements. Retrieved April 25, 2008, from
http://xml.coverpages.org/conform20000112.html.

Groves, L. and Nickson, R. (2000). A Survey of Software Development Practices in
the New Zealand Software Industry. In Proceedings of IEEE Australian Software
Engineering Conference, 189-

Haux, R. (2006). Health information systems - past, present, future. International
Journal of Medical Informatics, 75(3-4), 268-281.

Herzum, P. and Sims, O. (2000). Business Component Factory. Wiley Computer
Publishing.

Hutchins, M. Foster, H., Goradia, T. & Ostrand, T. (1994). Experiments of the
effectiveness of dataflow- and controlflow-based test adequacy criteria. In
Proceedings of the 16th international conference on Software engineering, IEEE,
191-200.

ISO/IEC. (1996). Guide 2: Standardization and Related Activities: General
Vocabulary.

ISO/IEC JTC1 SC36. (2003). Information Technology for Learning, Education, and
Training. Working draft.

ISO/IEC 9126-1. (2001). Software engineering - Product quality - Part 1. Quality
model.

ITU-T Recommendation X.290. (1996). OSI Conformance Testing Methodology and

Bibliography 57

Framework for Protocol Recommendations for ITU-T Applications - General
Concepts.

Jacobson, 1., Booch, G. and Rumbaugh, J. (1999). The Unified Software
Development Process. Addison-Wesley.

Jacobson, 1., Christerson, M., Jonsson, P. and Overgaard, G. (1992). Object-Oriented
Software Engineering. A Use Case Driven Approach. Addison-Wesley.

Jantti, M. and Toroi, T. (2004). UML-based testing: a case study. In: Koskimies K,
Kuzniarz L, Lilius J, Porres I, eds. Proceedings of NWUML'2004. 2nd Nordic
Workshop on the Unified Modeling Language, 33-44. TUCS General Publication
35.

Jantti, M., Toroi, T. and Eerola, A. (2006). Difficulties in Establishing a Defect
Management Process: A Case Study. In Minch J. and Vierimaa M. eds.
Proceedings of PROFES 2006, Springer-Verlag, Lecture Notes in Computer
Science, 142-150.

Jarvinen, P. (2004). On research methods. Opinpajan Kirja.

Jérvinen, P. and Jarvinen, A. (1995). Tutkimustydn metodeista. Opinpaja Oy.

Jézéquel, J-M.and Meyer, B. (1997). Design by Contract: The Lessons of Ariane.
IEEE Computer, 30(1), 129-130.

Juristo, N., Moreno, A., Vegas, S. and Solari, M. (2006). In Search of What We
Experimentally Know about Unit Testing. IEEE Software, Nov/Dec, 72-80.

Kaner, C. (2004). The Ongoing Revolution in Software Testing. In Proceedings of
Software Test & Performance Conference.

Kindrick, J., Sauter, J. and Matthews, R. (1996). Improving Conformance and
Interoperability Testing. StandardView, 4(1).

Kitchenham, B., Pfleeger, S.L., Hoaglin, D., Emam, K. and Rosenberg, J. (2002).
Preliminary Guidelines for Empirical Research in Software Engineering. IEEE
Transactions on Software Engineering, 28(8), 721-734.

Klingler, A. (2000). An open, Component-based Architecture for Healthcare
Information Systems. In Hasman A. et al. eds. Medical Infobahn for Europe. 10S
Press.

Koomen, T. and Pol, M. (1999). Test Process Improvement, a practical step-by-step
guide to structured testing. Addison-Wesley.

Kouchakdjian, A. and Fietkiewicz. R. (2000). Improving a product with usage-based
testing. Information and Software Technology, 42(12), 809-814.

Kruchten, P. (2003). The Rational Unified Process: An Introduction. Addison-
Wesley.

Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima, Y. and Chen, C. (1994). Change
Impact Identification in Object Oriented Software Maintenance. In Proceedings of
IEEE International Conference on Software Maintenance, 202-211.

Lange, C.F.J., Chaudron, M.R.V. and Muskens, J. (2006). In Practice: UML
Software Architecture and Design Description, IEEE Software, March/April, 40-
46.

Maxville, V., Lam, C. and Armarego, J. (2003). Selecting Components: a Process for
Context-Driven Evaluation. In Proceedings of the Tenth Asia-Pacific Software
Engineering Conference, IEEE.

McCall, J., Richards, P. and Walters, G. (1977). Factors in Software Quality. Volume
I. Concepts and Definitions of Software Quality. Technical report, AD-A049 014/4.

MedCom. (2005). MedCom IV - how it turned out. The Danish Healthcare Data
Network / December 2005. Retrieved June 13, 2007, from
http://www.medcom.dk/dwn404.

58 Bibliography

Meyer, B. (1988). Object-oriented Software Construction. Prentice Hall.

Morell, LJ. (1990). A Theory of Fault-Based Testing. IEEE Transactions on
Software Engineering, 16(8), 844 - 857.

Moseley, S., Randall S. and Wiles, A. (2004). In Pursuit of Interoperability.
International Journal of IT Standards and Standardization Research, 2(2), 34-48.

Myers, G. (1979). The art of software testing. John Wiley & Sons.

Mykkénen, J. et al. (2004). Integration Models in Health Information Systems:
Experience from the PluglT project. In Fieschi M, Coiera E, Li Y-C J, eds.
MEDINFO 2004. Proceedings of the 11th World Congress on Medical Informatics,
1219-1222. Amsterdam: 10S Press.

Ng, S.P., Murname, T., Reed, K., Grant, D. and Chen, T.Y. (2004). A Preliminary
Survey on Software Testing Practices in Australia. In Proceedings of the 2004
Australian Software Engineering Conference, 116-

NHS. (2002). Delivering 21st Century IT Support for the NHS, National
Specification for Integrated Care Records Service, Consultation Draft. Retrieved
May 7, 2008, from http://www.prorec.it/documenti/EPR_EHR/ICRS-
specs_12d.pdf.

OASIS. (2006). Reference Model for Service Oriented Architecture 1.0, OASIS
Standard, 12 October 2006.

Offutt, J. and Abdurazik, A. (1999). Generating Tests from UML Specifications. In
Second International Conference on Unified Modeling Language.

Offutt, J., Lee, A., Rothermel, G., Untch, R.H. and Zapf, C. (1996). An Experimental
Determination of Sufficient Mutant Operators. ACM Transactions on Software
Engineering Methodology, 5(2), 99-118.

Onoma, A., Tsai, W-T., Poonawala, M. and Suganuma, H. (1998). Regression
Testing in an Industrial Environment. Communication of the ACM, 41(5), 81-86.

Parnas, D.L. (1972). On the Criteria To Be Used in Decomposing Systems into
Modules. Communications of the ACM, 15(12), 1053-1058.

Pfleeger, S.L. (2001). Software engineering theory and practice. Prentice Hall.

Pfleeger, S.L. and Kitchenham, B. (2001). Principles of Survey Research. Part 1:
Turning Lemons into Lemonade. Software Engineering Notes, 26(6), 16-18.

Pressman, R. (2005). Software Engineering, A Practitioner's Approach. McGraw-
Hill.

QAI, Quality Assurance Institute. (1995). Establishing a software defect management
process. Research Report number 8.

Rada, R. (1996). Who will test conformance? Communications of the ACM, 39(1),
19-22.

Rosenthal, L. and Skall, M. eds. (2002). Conformance Requirements for
Specifications v1.0. Retrieved February 16, 2007, from http://www.oasis-
open.org/committees/download.php/305/conformance_requirements-v1.pdf.

Rothermel, G. and Harrold, J.M. (1997). A safe, efficient regression test selection
technique. ACM Transactions on Software Engineering and Methodology, 6(2),
173-210.

Royce, W. (1970). Managing the development of large software systems. In
Proceedings of IEEE WESCON, 1-9.

Runeson, P. (2006). A Survey of Unit Testing Practices. IEEE Software,
July/August, 22-29.

Sametinger, J. (1997). Software Engineering with Reusable Components. Springer-
Verlag.

Schneider, G. and Winters, J.P. (2006). Applying Use Cases, Second Edition. A

Bibliography 59

Practical Guide. Addison-Wesley.

SFS, The Finnish Standards Association. (2008). Retrieved December 16, 2008, from
http://www.sfs.fi/it/aihealueet/terveydenhuolto/kansainvalinen/.

Stafford, J. and Wallnau, K. (2001). Is Third Party Certification Necessary? In
Proceedings of 4th ICSE Workshop on Component-Based Software Engineering,
Component Certification and System Prediction, On-line proceedings:
http://www.sei.cmu.edu/pacc/CBSE4-Proceedings.html.

Swinkels, R. (2000). A Comparison of TMM and Other Test Process Improvement
Models. Frits Philips Institute. Technical Report. Retrieved February 22, 2007,
from http://wwwbruegge.informatik.tu-muenchen.de/static/contribute/Lehrstuhl/
documents/12-4-1-FPdef.pdf.

Szyperski, C. (2002). Component Software - Beyond Object-Oriented Programming.
Second Edition, Addison-Wesley.

Taipale, O. (2007). Observations on Software Testing Practice. Dissertation.
Lappeenranta University of Technology.

Torkar, R. and Mankefors, S. (2003). A Survey on Testing and Reuse. In
Proceedings of IEEE International Conference on Software - Science, Technology
& Engineering, 164-

Toroi, T., Eerola, A. and Mykkénen, J. (2002). Testing Business Component
Systems. University of Kuopio, Department of Computer Science and Applied
Mathematics, Report A-2002-1. 12 p.

Tsai, B-Y, Stobart, S., Parrington, N. and Thompson, B. (1997) Iterative design and
testing within the software development life cycle. Software Quality Journal, 6,
295-3009.

Vitharana, P., Zahedi, F. and Jain, H. (2003). Design, Retrieval, and Assembly in
Component-based Software Development. Communications of the ACM, 46(11),
97-102.

W3C. (2005). QA Framework: Specification Guidelines. W3C Recommendation 17
August 2005. Retrieved March 22, 2007 from http://www.w3.0org/TR/gaframe-
spec/.

Wagner, F., Schmuki, R., Wagner T. and Wolstenholme, P. (2006). Modeling
Software with Finite State Machines: A Practical Approach. CRC Press.

Weyuker, E. (1998) Testing Component-Based Software: A Cautionary Tale. IEEE
Software, 15(5), 54-59.

Wilde, N. and Huitt, R. (1992). Maintenance Support for Object-Oriented Programs.
IEEE Transactions on Software Engineering, 18(12), 1038-1044.

Yin, R. (2003). Case Study Research: Design and Methods. Third Edition, Applied
Social Research Methods Series, vol. 5, Sage Publishing.

Zheng, J., Robinson, B., Williams, L. and Smiley, K. (2005). A Process for
Identifying Changes When Source Code is Not Available. In Proceedings of the
second international workshop on models and processes for the evaluation of off-
the-shelf components MPEC '05.

Zhu, H., Hall, P. and May, J. (1997). Software Unit Test Coverage and Adequacy.
ACM Computing Surveys, 29(4), 366-427.

Kuopio University Publications H. Business and Information technology

H 1. Pasanen, Mika. In Search of Factors Affecting SME Performance: The Case of Eastern Finland.
2003. 338 p. Acad. Diss.

H 2. Leinonen, Paula. Automation of document structure transformations.
2004. 68 p. Acad. Diss.

H 3. Kaikkonen, Virpi. Essays on the entrepreneurial process in rural micro firms.
2005. 130 p. Acad. Diss.

H 4. Honkanen, Risto. Towards Optical Communication in Parallel Computing.
2006. 80 p. Acad. Diss.

H 5. Laukkanen, Tommi. Consumer Value Drivers in Electronic Banking.
2006. 115 p. Acad. Diss.

H 6. Mykkinen, Juha. Specification of reusable integration solutions in health information systems.
2006. 88 p. Acad. Diss.

H 7. Huovinen, Jari. Tapayrittajyys — tilannetekijat toiminnan taustalla ja yrittajakokemuksen
merkitys yritystoiminnassa.
2007. 277 p. Acad. Diss.

H 8. Pdivinen, Niina. Scale-free Clustering: A Quest for the Hidden Knowledge.
2007. 57 p. Acad. Diss.

H 9. Koponen, Timo. Evaluation of maintenance processes in open source software projects
through defect and version management systems.
2007. 92 p. Acad. Diss.

H 10. Hassinen, Marko. Studies in mobile security.
2007. 58 p. Acad. Diss.

H 11. Jantti, Marko. Difficulties in managing software problems and defects.
2008. 61 p. Acad. Diss.

H 12. Tihula, Sanna. Management teams in managing succession: learning in the context of
family-owned SMEs.
2008. 237 p. Acad. Diss.

	Introduction
	paper1
	paper2
	paper3
	paper4
	paper5

