1,144 research outputs found

    A Fault-Tolerant T-Type Multilevel Inverter Topology with Soft-Switching Capability Based on Si and SiC Hybrid Phase Legs

    Get PDF
    The performance of a novel three-phase four-leg fault-tolerant T-Type inverter topology is presented in this paper, which significantly improves the inverter\u27s fault-tolerant capability regarding device switch faults. In this new modular inverter topology, only the redundant leg is composed of Silicon Carbide (SiC) power devices and all other phase legs are constituted by Silicon (Si) devices. The addition of the redundant leg, not only provides fault-tolerant solution to switch faults that could occur in the T-Type inverter, but also can share load current with other phase legs. Moreover, quasi zero-voltage switching (ZVS) and zero-current switching (ZCS) in the Si Insulated-Gate Bipolar Transistors (IGBTs) of the main phase legs can be achieved with the assistance of SiC Metal-Oxide Semiconductor Field-Effect Transistors (MOSFETs) in the redundant leg. Simulation and experimental results are given to verify the efficacy and merits of this high-performance fault-tolerant inverter topology

    Low Power AC-DC and DC-DC Multilevel Converters

    Get PDF
    AC-DC power electronic converters are widely used for electrical power conversion in many industrial applications such as for telecom equipment, information technology equipment, electric vehicles, space power systems and power systems based on renewable energy resources. Conventional AC-DC converters generally have two conversion stages – an AC-DC front-end stage that operates with some sort of power factor correction to ensure good power quality at the input, and a DC-DC conversion stage that takes the DC output of the front-end converter and converts it to the desired output DC voltage. Due to the cost of having two separate and independent converters, there has been considerable research on so-called single-stage converters – converters that can simultaneously perform AC-DC and DC-DC conversion with only a single converter stage. In spite of the research that has been done on AC-DC single-stage, there is still a need for further research to improve their performance. The main focus of this thesis is on development of new and improved AC-DC single-stage converters that are based on multilevel circuit structures (topologies) and principles instead of conventional two-level ones. The development of a new DC-DC multilevel converter is a secondary focus of this thesis. In this thesis, a literature survey of state of the art AC-DC and DC-DC converters is performed and the drawbacks of previous proposed converters are reviewed. A variety of new power electronic converters including new single-phase and three-phase converters and a new DC-DC converter are then proposed. The steady-state characteristics of each new converter is determined by mathematical analysis, and, once determined, these characteristics are used to develop a procedure for the design of key converter components. The feasibility of all new converters is confirmed by experimental results obtained from proof-of-concept prototype converters. Finally, the contents of the thesis are summarized and conclusions about the effectiveness of using multilevel converter principles to improve the performance of AC-DC and DC-DC converters are made

    A Fault-Tolerant T-Type Multilevel Inverter Topology With Increased Overload Capability and Soft-Switching Characteristics

    Get PDF
    he performance of a novel three-phase four-leg fault-tolerant T-type inverter topology is introduced in this paper. This inverter topology provides a fault-tolerant solution to any open-circuit and certain short-circuit switching faults in the power devices. During any of the fault-tolerant operation modes for these device faults, there is no derating required in the inverter output voltage or output power. In addition, overload capability is increased in this new T-type inverter compared to that in the conventional three-level T-type inverter. Such increase in inverter overload capability is due to the utilization of the redundant leg for overload current sharing with other main phase legs under healthy condition. Moreover, if the redundant phase leg is composed of silicon carbide metal-oxide-semiconductor field-effect transistors, quasi-zero-voltage switching, and zero-current switching of the silicon insulated-gate bipolar transistors (IGBTs) in the conventional main phase legs can be achieved at certain switching states, which can significantly relieve the thermal stress on the outer IGBTs and improve the whole inverter efficiency. Simulation and experimental results are given to verify the efficacy and merits of this high-performance fault-tolerant T-type inverter topology

    A NEW REDUCED SWITCH ZVS-PWM THREE-PHASE INVERTER

    Get PDF
    Dc-ac inverters convert a dc input voltage into a desired ac output voltage and are widely used in many industrial applications, including utility grid interfaces, motor drives, and wind energy systems. Because of their widespread use, there has been considerable interest to try to make them more efficient to conserve energy. One way of doing so is to reduce the losses that are generated by the switching of the inverter devices as they help convert the dc input voltage into an ac output. As a result, there has been considerable research into implementing inverters with so-called soft-switching - zero-voltage and zero-current switching techniques that make either the voltage across a switch or the current through it zero at the time of a switching transition (from on to off or off to on). Since the power dissipated in a switch is related to the amount of overlap of voltage and current during a switching transition, making either the switch voltage or switch current zero at this time can result in a significant reduction in switching losses. A new, reduced switch, zero-voltage switching (ZVS), three-phase dc-ac inverter is proposed in this thesis. The proposed inverter does not have the drawbacks that other previously proposed ZVS-PWM inverters have such as cost, increased conduction losses, the appearance of distortion in the output waveforms, and the lack of bidirectional operation capability. In the thesis, an extensive literature review of previously proposed soft-switched inverters is performed. The new inverter is then presented and its operation is explained in detail. The steady-state operation of the new inverter is analyzed and the results of the analysis are used to determine the converter\u27s steady-state characteristics. Based on these characteristics, a procedure for the design of the inverter is developed and then demonstrated with an example. Finally, the feasibility of the proposed converter and the validity of the analysis are confirmed with simulation results obtained from PSIM, a widely used, commercially available software simulation package for power electronic

    Three-level (TL) based isolated DC/DC converters with improved performances

    Get PDF

    Soft-Switching DC-DC Converters

    Get PDF
    Power electronics converters are implemented with switching devices that turn on and off while power is being converted from one form to another. They operate with high switching frequencies to reduce the size of the converters\u27 inductors, transformers and capacitors. Such high switching frequency operation, however, increases the amount of power that is lost due to switching losses and thus reduces power converter efficiency. Switching losses are caused by the overlap of switch voltage and switch current during a switching transition. If, however, either the voltage across or the current flowing through a switch is zero during a switching transition, then there is no overlap of switch voltage and switch current so in theory, there are no switching losses. Techniques that ensure that this happens are referred to as soft-switching techniques in the power electronics literature and there are two types: zero-voltage switching (ZVS) and zero-current switching (ZCS). For pulse-width modulated (PWM) Dc-Dc converters, both ZVS and ZCS are typically implemented with auxiliary circuits that help the main power switches operate with soft-switching. Although these auxiliary circuits do help improve the efficiency of the converters, they increase their cost. There is, therefore, motivation to try to make these auxiliary circuits as simple and as inexpensive as possible. Three new soft-switching Dc-Dc PWM converters are proposed in this thesis. For each converter, a very simple auxiliary circuit that consists of only a single active switching device and a few passive components is used to reduce the switching losses in the main power switches. The outstanding feature of each converter is the simplicity of its auxiliary circuit, which unlike most other previously proposed converters of similar type, avoids the use of multiple active auxiliary switches. In this thesis, the operation of each proposed converter is explained, analyzed, and the results of the analysis are used to develop a design procedure to select key component values. This design procedure is demonstrated with an example that was used in the implementation of an experimental prototype. The feasibility of each proposed converter is confirmed with experimental result obtained from a prototype converter

    PWM Half-Bridge Converter with Dual-Equally Adjustable Control Signal Dead-Time

    Get PDF
    A method and system of controlling half-bridge DC--DC converters to achieve Zero Voltage Switching (ZVS) for at least one of the switches. The soft-switching half-bridge DC--DC converter system includes soft-switching for all switches by adding an additional branch with a switch and a diode across the primary side of an isolation transformer and by applying a Duty-Cycle Shifted PWM Control

    Low Voltage Regulator Modules and Single Stage Front-end Converters

    Get PDF
    Evolution in microprocessor technology poses new challenges for supplying power to these devices. To meet demands for faster and more efficient data processing, modem microprocessors are being designed with lower voltage implementations. More devices will be packed on a single processor chip and the processors will operate at higher frequencies, exceeding 1GHz. New high-performance microprocessors may require from 40 to 80 watts of power for the CPU alone. Load current must be supplied with up to 30A/µs slew rate while keeping the output voltage within tight regulation and response time tolerances. Therefore, special power supplies and Voltage Regulator Modules (VRMs) are needed to provide lower voltage with higher current and fast response. In the part one (chapter 2,3,4) of this dissertation, several low-voltage high-current VRM technologies are proposed for future generation microprocessors and ICs. The developed VRMs with these new technologies have advantages over conventional ones in terms of efficiency, transient response and cost. In most cases, the VRMs draw currents from DC bus for which front-end converters are used as a DC source. As the use of AC/DC frond-end converters continues to increase, more distorted mains current is drawn from the line, resulting in lower power factor and high total harmonic distortion. As a branch of active Power factor correction (PFC) techniques, the single-stage technique receives particular attention because of its low cost implementation. Moreover, with continuously demands for even higher power density, switching mode power supply operating at high-frequency is required because at high switching frequency, the size and weight of circuit components can be remarkably reduced. To boost the switching frequency, the soft-switching technique was introduced to alleviate the switching losses. The part two (chapter 5,6) of the dissertation presents several topologies for this front-end application. The design considerations, simulation results and experimental verification are discussed

    Zero-voltage-switching buck converter with low-voltage stress using coupled inductor

    Get PDF
    This study presents a new zero-voltage-switching (ZVS) buck converter. The proposed converter utilises a coupled inductor to implement the output filter inductor as well as the auxiliary inductor which is commonly employed to realise ZVS for switches. Additional magnetic core for the auxiliary inductor in traditional ZVS converters is eliminated and hence reduced cost is achieved. Moreover, thanks to the series connection between the input and output, the switch voltage stress in the steady state is reduced and thus the ZVS operation can be easier achieved. Then the leakage inductor current circulating in the auxiliary switch is decreased, contributing to reduced conduction losses. In particular, low-voltage rating devices with low on-state resistance can be adopted to further improve efficiency in applications with non-zero output voltage all the time, such as the battery charger. Furthermore, the reverse-recovery problem of the diode is significantly alleviated by the leakage inductor of coupled inductor. In the study, operation principle and steady-state analysis of the proposed converter are presented in detail. Meanwhile, design considerations are given to obtain circuit parameters. Finally, simulations and experiments on a 200 W prototype circuit validate the advantages and effectiveness of the proposed converter

    Assessment of novel power electronic converters for drives applications

    Get PDF
    Phd ThesisIn the last twenty years, industrial and academic research has produced over one hundred new converter topologies for drives applications. Regrettably, most of the published work has been directed towards a single topology, giving an overall impression of a large number of unconnected, competing techniques. To provide insight into this wide ranging subject area, an overview of converter topologies is presented. Each topology is classified according to its mode of operation and a family tree is derived encompassing all converter types. Selected converters in each class are analysed, simulated and key operational characteristics identified. Issues associated with the practical implementation of analysed topologies are discussed in detail. Of all AC-AC conversion techniques, it is concluded that softswitching converter topologies offer the most attractive alternative to the standard hard switched converter in the power range up to 100kW because of their high performance to cost ratio. Of the softswitching converters, resonant dc-link topologies are shown to produce the poorest output performance although they offer the cheapest solution. Auxiliary pole commutated inverters, on the other hand, can achieve levels of performance approaching those of the hard switched topology while retaining the benefits of softswitching. It is concluded that the auxiliary commutated resonant pole inverter (ACPI) topology offers the greatest potential for exploitation in spite of its relatively high capital cost. Experimental results are presented for a 20kW hard switched inverter and an equivalent 20kW ACPI. In each case the converter controller is implanted using a digital signal processor. For the ACPI, a new control scheme, which eliminates the need for switch current and voltage sensors, is implemented. Results show that the ACPI produces lower overall losses when compared to its hardswitching counterpart. In addition, device voltage stress, output dv/dt and levels of high frequency output harmonics are all reduced. Finally, it is concluded that modularisation of the active devices, optimisation of semiconductor design and a reduction in the number of additional sensors through the use of novel control methods, such as those presented, will all play a part in the realisation of an economically viable system.Research Committee of the University of Newcastle upon Tyn
    • …
    corecore