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Abstract: 
The performance of a novel three-phase four-leg fault-tolerant T-Type inverter topology is 
presented in this paper, which significantly improves the inverter's fault-tolerant capability 
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regarding device switch faults. In this new modular inverter topology, only the redundant leg is 
composed of Silicon Carbide (SiC) power devices and all other phase legs are constituted by 
Silicon (Si) devices. The addition of the redundant leg, not only provides fault-tolerant solution to 
switch faults that could occur in the T-Type inverter, but also can share load current with other 
phase legs. Moreover, quasi zero-voltage switching (ZVS) and zero-current switching (ZCS) in the 
Si Insulated-Gate Bipolar Transistors (IGBTs) of the main phase legs can be achieved with the 
assistance of SiC Metal-Oxide Semiconductor Field-Effect Transistors (MOSFETs) in the redundant 
leg. Simulation and experimental results are given to verify the efficacy and merits of this high-
performance fault-tolerant inverter topology. 

SECTION I. Introduction 
T-Type neutral-point-clamped (NPC) multilevel converters have been regarded as a very 
promising breed of highperformance power converters in industrial applications. This is because 
of the relatively lower number of switching devices utilized in their circuit topology and higher 
efficiency compared with the conventional I-Type NPC converters [1] [2]. However, like other types 
of multilevel converters, T-Type NPC inverters are not immune to semiconductor device faults. 
For instance, IGBT open-circuit or short-circuit faults, could potentially cause catastrophic system 
failures in industrial fields if no fault diagnostic and fault-tolerant solutions are provided. 
Particularly, the availability of fault-tolerant solutions becomes more critical when such inverters 
are applied in safety-critical applications, such as Electric Vehicles (EVs), Uninterruptable Power 
Supplies (UPSs), wind and solar energy conversions, and the like. Although the T-Type NPC 
inverter has certain inherent fault-tolerant capability due to its unique topology, as reported in [3], 
the output voltage and linear operating range have to be significantly reduced during fault-
tolerant operation, which is not preferred in certain applications (e.g., UPSs, EVs, etc.) where rated 
output voltage and output power are the stringent requirements. Therefore, it would be of great 
significance to improve the inverter topology with improved fault-tolerant characteristics, to 
guarantee full output voltages under post-fault conditions. The existing solutions for the fault-
tolerant operation of T-Type inverters are mainly achieved by paralleling multiple redundant 
inverter legs, such as the topology detailed in [4], which achieves full output voltage under inverter 
fault-tolerant condition, but at a much higher system cost with decreased inverter efficiency due 
to a large number of redundant semiconductor devices involved in the circuit. As a matter of fact, 
most of the redundant semiconductor devices in the existing fault-tolerant topology simply idle in 
the circuit without contribution to system performance improvement under healthy conditions, 
which in turn decrease the inverter efficiency due to the associated device losses. 

Unlike these existing solutions proposed in the literature [3] [4], a novel three-phase four-leg T-Type 
inverter topology has been introduced in [5] [6]. This improved topology can not only enhance the 
fault-tolerant capability of the inverter under faulty conditions, but also can increase the inverter 
thermal overload capacity as well as achieving soft switching in the IGBT devices. As an extension 
of [5] [6], this paper will further investigate the three-phase four-leg T-Type inverter with more 
simulation results and experimental verifications. The remainder content of this paper is 
organized as follows. In Section II, the fault-tolerant operation characteristics of this new T-Type 
inverter will be presented for various fault scenarios. In Section III, the soft-switching of the 
proposed T-Type inverter will be explained. In Section IV and Section V, simulation and 
experimental results will be demonstrated, respectively, to verify the fault-tolerant operation and 
the soft-switching capability of the presented T-Type inverter. Finally, conclusions will be given 
in Section VI. 



SECTION II. The Proposed Fault-Tolerant T-Type Inverter 
The conventional three-phase three-leg T-Type inverter topology and the proposed four-leg T-
Type inverter topology are shown in Fig. 1and Fig. 2, respectively. As can be seen, there is one 
redundant leg added between the dc bus capacitors and the original T-Type inverter package in 
the proposed three-phase four-leg inverter as shown in Fig. 2. In this paper, the redundant leg is 
composed of four SiC MOSFETs, while the original three-leg T-Type inverter package consists of Si 
IGBT modules. Under normal healthy condition, this redundant leg, marked in yellow shaded area 
in Fig. 2, outputs zero voltage by keeping the MOSFETs S2 and S3 in turn-on state, and shares load 
current with other phase legs by using the top device (S1) and bottom device (S4). Under faulty 
condition of the inverter, for instance, an open-circuit fault in IGBT Sa1, the redundant leg will be 
utilized to replace the faulty Phase-A leg during fault-tolerant operation. Thus, the whole inverter 
can still output three-phase voltages without any deratings in the modulation index or voltage 
amplitude. 
 

 
Fig. 1 Conventional three-phase three-level T-type inverter topology. 

 
Fig. 2 The proposed fault-fault three-level T-type inverter topology. 
 
Considering the circuit symmetry of the four-leg T-Type inverter, only six cases of device faults are 
analyzed here to represent all the possible switch fault scenarios that could happen in such a four-
leg T-Type inverter. In this paper, only a single device fault is considered for the inverter, and 
multiple simultaneous device faults is out of the scope here. Although the fault scenario analysis 
and fault-tolerant solutions discussed below only focus on IGBT devices in the T-Type inverter, 
they are also applicable for the faults in the related free-wheeling diodes. The fault-tolerant 
strategy for each fault scenario of the developed T-Type inverter will be detailed next. 

A. Case I: Open-Circuit Fault in IGBT Sa1 
Once an open-circuit fault in IGBT Sa1 is identified, Phase-A leg of the T-Type inverter will not be 
able to produce a positive voltage. Under such scenario, IGBT Sa1 will be replaced by SiC 
MOSFET S1 from the redundant phase leg through turning on IGBTs Sa2 and Sa3, while all other SiC 
MOSFETs (S2 and S3) on the redundant leg are turned off, as illustrated in Fig. 3(a). As can be seen, 
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during such fault-tolerant operation, the three-phase inverter can still output rated voltage, but 
will have to be modulated as a two-level inverter. Similar fault-tolerant solutions can be applied 
for open-circuit faults in other IGBTs Sx1 (where x=b or c) and Sx4 (where x = a, b, and c). There is 
no derating required for the modulation index or the output voltages. 

 
Fig. 3 Current flow during fault-tolerant operation when (a) IGBT Sa1 has an open-circuit fault (b) 
IGBT Sa2 has an open-circuit fault (the devices in grey color refer to turn-off state). 
 
B. Case II: Open-Circuit Fault in IGBT Sa2 
If an open-circuit fault happens in IGBT Sa2, the related faulty leg can only output positive voltage 
and negative voltage by only using Sa1 and Sa4 for fault-tolerant operation (the same as the 
conventional two-level inverter leg), which is due to the loss of the bi-directional switch 
(constituted by Sa2 and Sa3) accessing the dc-bus middle point for the faulty phase. Under such 
situation, Sa3 will be turned off, thus the output of Phase-A leg will be isolated from the dc-bus 
middle point. However, the other healthy phase legs, namely, Phase-B and Phase-C legs in this 
case, can still be operated as normal three-level inverter legs. As a result, the line-to-line voltages 
of the inverter can still exhibit three-level staircase waveforms. There is no derating for the 
modulation index or voltage output during post-fault operation in this case. Similar fault-tolerant 
solutions can be applied for open-circuit faults in other IGBTs Sx2/Sx3 in Phase-B and Phase-C legs. 
 
C. Case III: Open-Circuit Fault in the Redudant SiC Leg 
It is possible that an open-circuit fault may occur in one of the devices in the redundant SiC phase 
leg. If the upper/lower SiC MOSFET, S1 or S4 has an open-circuit fault, there is no impact on the 
normal operation of the conventional T-Type inverter. In other words, the original three-phase 
three-leg T-Type can be still operated as a normal three-level inverter. However, if the middle SiC 
MOSFETs, S2 or S3, have an open-circuit fault, the T-Type inverter has to be modulated as a 
conventional two-level inverter, which is due to the loss of access to the dc-bus neutral point 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7835398/7854636/7854678/7854678-fig-3-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7835398/7854636/7854678/7854678-fig-3-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7835398/7854636/7854678/7854678-fig-3-source-large.gif


through S2 and S3. Nevertheless, under such fault condition, no deratings are required on the 
output voltages. 
 
D. Case IV: Short-Circuit Fault in IGBT Sa2 
If a short-circuit fault in IGBT Sa2 is determined, its complimentary switch Sa3 has to be switched 
off due to the loss of reverse blocking capability. Accordingly, all the switches in the redundant 
phase leg should be turned off. Under such scenario, the three-level T-Type inverter will be 
operated as a conventional two-level inverter by only using Sx1 and Sx4 for the post-fault 
operation. A similar fault-tolerant strategy can be applied for short-circuit faults in IGBTs Sx2 
(where, 𝑥𝑥 = 𝑏𝑏 or c) and Sx3 (where, x = a, b, or c). 
 
E. Case V: Short-Circuit Fault in the Redundant SiC Leg 
If there is any single short-circuit fault occurring in the redundant SiC phase leg, all the other SiC 
MOSFETs in the redundant leg have to be switched off in case of shorting the dc-bus capacitors. 
For instance, if S1 or S4 has a short-circuit fault, the middle SiC switches (S2 and S3) have to be 
turned off immediately. Correspondingly, the T-Type inverter has to be modulated as a two-level 
inverter due to the loss of access to the dc-bus middle point. However, if the SiC MOSFET, S2, or S3, 
has a short-circuit fault, there is no impact on the normal operation of the inverter, since access to 
the dc-bus neutral point is still available. However, under such scenario, S1 and S2 should be 
turned off in case of shorting the dc bus capacitors. 
 
In summary, this developed T-Type inverter can tolerate any open-circuit faults and certain short-
circuit faults that could occur in the devices of the inverter. For any of the aforementioned device 
faults, there is no derating required for the modulation index or output voltage during the fault-
tolerant operating region of the inverter. However, such an inverter has to be modulated as a two-
level one under some of these fault conditions, which implies a slightly higher harmonic distortion 
in the output currents and voltages compared to those under three-level healthy operation. 

SECTION III. Quasi ZVS and ZCS Soft Switching 
Almost all of the existing fault-tolerant converter topologies in the literature achieve the fault-
tolerant capability at the cost of decreased efficiency due to commutation of many redundant 
switching devices. However, one unique feature of the fault-tolerant topology presented in this 
paper is the soft- switching characteristics for IGBT devices assisted by the SiC devices in the 
redundant leg. Specifically, the presence of the redundant SiC leg (shown in Fig. 2), provides a 
quasi-ZVS and ZCS switching strategy for the IGBT switching in the original T-Type inverter, which 
will be elaborated as follows. 

 
Fig. 4 Quasi ZVS and ZCS switching strategy during positive output voltage of the phase-A leg of 
the T-type inverter at positive output current condition. 
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Fig. 5 Quasi ZVS and ZCS switching strategy during negative output voltage of the phase-A leg of 
the T-type inverter at negative output current condition. 
 
It is well known that SiC MOSFETs have much lower switching losses than their counterpart Si 
IGBTs. Therefore, when the redundant SiC leg is assigned to share the overload current with other 
main legs, the SiC MOSFETs S1/S4 and the bi-directional Si IGBTs (Sx2/Sx3) are switched on prior 
to the turn-on of the upper/lower Si IGBTs (Sx1/Sx4), in order to provide a very low on-state 
voltage for the subsequent switching-on (i.e., quasi-ZVS) of the Si IGBTs (Sx1/Sx4). However, 
during the turning-on of SiC S1/S4 and Si Sx2/Sx3 devices, Sx2/Sx3 should be turned on first at zero 
switching current (ZCS), and the SiC S1/S4 will be turned on later after a short delay to withstand 
the switching losses. Similarly, regarding the switching-off of the parallel legs, the upper/lower 
switches Si Sx1/Sx4 are turned off prior to the redundant switches SiC MOSFETs (S1/S4) and bi-
directional switches Si IGBTs (Sx2/Sx3) for achieving quasi-ZVS soft switching. Then, during the 
switching off of the MOSFETs (S1/S4) and bi-directional switches IGBTs (Sx2/Sx3), SiC 
MOSFETs (S1/S4) are switched off first to interrupt the large load current, and accordingly the 
subsequent switching-off of the Si IGBTs (Sx2/Sx3) will experience a ZCS switching. Such ZCS and 
ZVS switching sequence is illustrated in Fig. 4 and Fig. 5, which would significantly reduce the 
IGBT switching losses in the T-Type inverter. More details about the ZVS switching pattern were 
introduced in [5]–[6][7][8][9]. 

SECTION IV. Simulation Results 
In this section, simulation results on the fault-tolerant operation of the new three-phase four-leg 
T-Type inverter will be given under various fault scenarios. Also, the simulation analysis on the 
soft-switching operation of the IGBT devices assisted by the SiC MOSFETs in the redundant phase 
leg will be provided as well. 

A. PWM Strategy 
In this paper, the PWM strategy used for the developed fault-tolerant T-Type inverter is SVPWM, 
which is implemented by injecting a zero-sequence signal into the sinusoidal reference signals. 
Assuming that the duty ratio for each phase of the T-Type inverter can be written as follows: 

�
da = macos (𝜃𝜃)

db = macos (𝜃𝜃 − 2𝜋𝜋/3)
dc = macos (𝜃𝜃 − 4𝜋𝜋/3)

  (1) 

where, 𝑚𝑚𝑎𝑎, is the amplitude modulation index, and 𝜃𝜃 is the initial phase angle. It follows that the 
instantaneous maximum and minimum duty ratio will be: 
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𝑑𝑑𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑥𝑥(da, db, dc)
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚(da, db, dc)  (2)(3) 

The injected zero-sequence signal is defined as: 

𝑑𝑑0 = −(𝑑𝑑𝑚𝑚𝑎𝑎𝑚𝑚 + 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚)/2 (4) 

With the injection of such a zero-sequence signal, the duty ratio for each phase of the T-Type 
inverter under SVPWM can be written as: 

{
da,SV = macos (𝜃𝜃) + d0

db,SV = macos (𝜃𝜃 − 2𝜋𝜋/3) + d0
dc,SV = macos (𝜃𝜃 − 4𝜋𝜋/3) + d0

 (5) 

B. Fault-Tolerant Operation 
Simulations for different fault scenarios and their associated fault-tolerant operation are carried 
out in PLECS software environment, and the simulation results are given in Figs. 6(a)–(d). In Fig. 
6(a), the three-phase currents and line-to-line voltage (𝑉𝑉𝑎𝑎𝑎𝑎) waveforms under healthy 
condition, Sa1 open-circuit faulty condition, and the related fault-tolerant operation are 
demonstrated, which is consistent with the analysis in Case I of Section II. As can be seen, during 
the open-circuit faulty operation of the inverter (between 𝑡𝑡 = 0.05 sec and 𝑡𝑡 = 0.1 sec), the line-
to-line voltage 𝑉𝑉𝑎𝑎𝑎𝑎 and the Phase-A current ia lose part of the positive cycle, which is due to the 
open-circuit fault occurring in Sa1 resulting in no access to the positive dc-bus at positive current 
for Phase-A leg. However, as mentioned in Case I of Section II, the faulty device Sa1 can be replaced 
by the upper device S1 in the redundant leg to achieve fault-tolerant operation, as shown in the 
simulation results between 𝑡𝑡 = 0.1 sec and 𝑡𝑡 = 0.15 sec in Fig. 6(a). It can be observed that the 
harmonic distortion in the phase currents during fault-tolerant operation is slightly higher 
compared to that in normal healthy stage, which is caused by the two-level voltage output of the 
inverter. 
 
The phase currents and line-to-line voltage waveforms under Sa2open-circuit faulty condition are 
shown in Fig. 6(b). It can be observed that the line-to-line voltage (𝑉𝑉𝑎𝑎𝑎𝑎) still exhibits three-level 
waveform during fault-tolerant operation (between t=0.1 sec and t=0.15 sec), as analyzed in Case 
II of Section II. The simulation results for S2 open-circuit and Sa2 short-circuit fault scenarios are 
shown in Fig 6(c) and (d), respectively, which are consistent with the analysis in Case-III and 
Case-IV of Section II. It can be seen that the developed fault-tolerant T-Type inverter can output 
full voltage and current during post-fault operation for any of the device open-circuit faults and 
certain short-circuit faults. 
 
C. Quasi ZVS and ZCS Operation 
Simulation results that demonstrate the ZVS operation of the IGBT Sa1 in Phase-A leg of the T-Type 
inverter are given in Fig. 7. As can been seen, if the IGBT Sa1 is switched off prior to the SiC 
MOSFET S1, a quasi ZVS operation will be achieved for Sa1 due to the near-zero voltage across Sa1. 
The low turn-off voltage value of the Sa1 is determined by the on-state voltages of three devices, 
namely, S1, Sa3and Da2 (anti-parallel diode of Sa2), which can be expressed as follows: 
 

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚−𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠𝑎𝑎1) = 𝑉𝑉𝑜𝑜𝑚𝑚(𝑆𝑆1) + 𝑉𝑉𝑜𝑜𝑚𝑚(𝑆𝑆𝑎𝑎3) + 𝑉𝑉𝑜𝑜𝑚𝑚(𝐷𝐷𝑎𝑎2) (6) 



where, 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚−𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠𝑎𝑎1) refers to the turn-off voltage across Sa1, which is typically several 
volts. 𝑉𝑉𝑜𝑜𝑚𝑚(𝑆𝑆1),𝑉𝑉𝑜𝑜𝑚𝑚(𝑆𝑆𝑎𝑎3), and 𝑉𝑉𝑜𝑜𝑚𝑚(𝐷𝐷𝑎𝑎2) refer to the on-state voltage of the SiC MOSFET S1, and 
IGBT Sa3, and the free-wheeling diode Da2, respectively. 
 
Also, the load current sharing between the Phase-A leg and the redundant leg under normal 
conduction mode is also depicted in Fig. 7. Specifically, the current sharing ratio 
between S1 and Sa1 is determined by the resultant on-state resistance of the two conduction paths. 
If defining the current through S1 and Sa1 as 𝐼𝐼𝑠𝑠1 and 𝐼𝐼𝑠𝑠𝑎𝑎1, respectively, the current sharing in-
between can be expressed as follows: 
 

𝐼𝐼𝑆𝑆1
𝐼𝐼𝑠𝑠𝑠𝑠1

= 𝑅𝑅𝑜𝑜𝑜𝑜(𝑆𝑆𝑠𝑠1)

𝑅𝑅𝑜𝑜𝑜𝑜(𝑆𝑆1)+𝑅𝑅𝑜𝑜𝑜𝑜(𝑆𝑆𝑠𝑠3)+𝑅𝑅𝑜𝑜𝑜𝑜(𝐷𝐷𝑠𝑠2)
 (7) 

where, 𝑅𝑅𝑜𝑜𝑚𝑚(𝑆𝑆𝑎𝑎1),𝑅𝑅𝑜𝑜𝑚𝑚(𝑆𝑆1),𝑅𝑅𝑜𝑜𝑚𝑚(𝑆𝑆𝑎𝑎3) and 𝑅𝑅𝑜𝑜𝑚𝑚(𝐷𝐷𝑎𝑎2) refer to the on-state resistance of devices Sa1, S1, Sa3, 
and Da2, respectively. 
 

 
Fig. 6 Simulated three-phase currents (𝑚𝑚𝑎𝑎, 𝑚𝑚𝑎𝑎, and 𝑚𝑚𝑐𝑐) and line-to-line voltage (𝑉𝑉𝑎𝑎𝑎𝑎)during normal 
operation, faulty operation, and fault-tolerant operation under the conditions of (a) open-circuit 
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fault in Sa1, (b) open-circuit fault in Sa2, (c) open-circuit fault in S2 of the redundant leg and (d) 
short-circuit fault in Sa2 of the phase-A leg. 

 
Fig. 7 Current sharing and ZVS switching between SiC MOSFET (S1) and IGBT (Sa2) under positive 
output voltage and positive output current condition of the T-type inverter. 
 

SECTION V. Experimental Verifications 
In order to verify the fault-tolerant operation characteristics, soft switching, and the load current 
sharing of this developed three-phase four-leg T-Type inverter, a 20-kW adjustable speed drive 
(ASD) based on this novel inverter topology has been implemented in the laboratory, as shown 
in Fig. 8. A Fuji T-Type IGBT module (12-in-one package) 12MBI50VX-120-50 (1200V/50A) is 
used in the prototype to constitute the conventional 3-phase 3-level T-Type inverter. The 
redundant SiC phase leg is built based on using the SiC MOSFET devices from Wolfspeed 
C2M0025120D (1200V/60A), with an external anti-parallel SiC Schottky diode connected. All the 
main operating parameters of the ASD prototype are given in Table-I. 

In the experiments, the inverter was connected to a wye-type three-phase resistive-inductive (RL) 
load. The output fundamental frequency is 60 Hz, and the switching frequency of the inverter is 
set as 5 kHz. Open-circuit faults are emulated by disabling the PWM signals of the switching 
devices. The experimental results given in Fig. 9(a)–(d) verified the fault-tolerant capability of this 
three-phase four-leg T-Type inverter for four representative fault scenarios, namely, open-circuit 
fault in Sa1, open-circuit fault in Sa2, open-circuit fault in S2, and short-circuit fault in Sa2. In these 
test results the first three cycles refer to the normal/healthy operation, the following three cycles 
exhibit the open-switch faulty operation with distorted currents and voltages, and the last three 
cycles demonstrate the fault-tolerant operation under the assistance of the redundant leg. It can 
be seen that the there is no magnitude derating in the output voltages and currents during the 
fault-tolerant operation stages. Also, it can be observed that the total harmonic distortion (THD) 
in the phase currents under fault-tolerant operation is slightly higher than these under healthy 
condition, which is due to the two-level voltage output in the faulty phase leg. All the experimental 
results given in Fig. 9(a)–(d) are consistent with the simulation results provided in Fig. 6(a)–(d). 
 
Table I System parameters of the 20-kW adjustable speed drive prototype based on the proposed 
T-type inverter 

Parameter Value 
DC-bus voltage 600V 
Rated power 20kW 
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Seitching Frequency 5kHz 
Output Fundamental Frequency 60Hz 
Modulation Index 0.8 
Load Resistance Per Phase 10Ω 
Load Inductance Per Phase 500μH 

 
 

 
 
Fig. 8 A 20-kW three-phase ASD prototype based on the proposed three-phase four-leg T-type 
inverter topology with Si and SiC hybrid phase legs. 
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Fig. 9 Measured three-phase currents (𝑚𝑚𝑎𝑎, 𝑚𝑚𝑎𝑎, and 𝑚𝑚𝑐𝑐) and line-to-line voltage (𝑉𝑉𝑎𝑎𝑎𝑎) during normal 
operation, faulty operation, and fault-tolerant operation under the conditions of (a) open-circuit 
fault in Sa1, (b) open-circuit fault in Sa2, (c) open-circuit fault in S2 of the redundant leg and (d) 
short-circuit fault in Sa2 of the phase-A leg. 
 

 
Fig. 10 Measured switching waveforms of SiC MOSFET S4 and Si IGBT Sa4 during negative load 
current. 
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Fig. 11 Measured SiC MOSFET gate voltage and drain current as well as the phase-A output load 
current waveforms of the proposed fault-tolerant T-type inverter. 
 

SECTION VI. Conclusions 
This paper introduced a fault-tolerant high-efficiency three-phase three-level inverter topology 
based on a conventional T-Type inverter. According to the analysis, simulation and experimental 
results presented above, a few conclusions can be drawn as follows: 

1. The presented fault-tolerant inverter topology provides improved fault-tolerant solutions 
to device open-circuit and short-circuit faults in the T-Type inverters. During post-fault 
operation of any of the aforementioned device faults, the inverter is still able to output the 
same maximum and rated voltage/power as that under normal operation. In other words, 
no derating is required during fault-tolerant operation. Although the harmonic distortions 
in the phase currents are slightly increased during some of the fault-tolerant operation 
mode due to the two-level modulation, the reliability improvement of the T-Type inverter 
are much more preferred, especially in safety-critical applications. 

2. By adopting a quasi-ZVS and ZCS strategy through the utilization of the SiC MOSFETs in the 
redundant phase leg, the pronounced switching losses in the IGBTs of the original T-Type 
inverter can be significantly reduced. 

3. Under normal healthy condition, the redundant SiC inverter leg helps share the load 
current with the original T-Type inverter legs, and therefore can enhance the inverter 
thermal overload capability. Since a normal T-Type inverter exhibits the waveforms of the 
output voltages as a conventional two-level inverter under low modulation indices (Ma ≤
0.5), there is no penalty in harmonic distortion in the output voltages under such scenario. 
Moreover, the redundant leg can also be utilized for load current sharing at high 
modulation indices (Ma ≤ 0.5) to relieve large thermal stress on main switches (Sx1/Sx4), 
but the harmonic distortion in the output voltages will be slightly higher compared to these 
voltage output from a three-level modulation. 

4. This three-phase four-leg fault-tolerant T-Type inverter has a very modular structure, and 
therefore very suitable for power module packaging and manufacturing, which will make 
the commercialization of such power modules more feasible. 
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