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ENGLISH SUMMARY 

AC grids are widely used nowadays for the electrical distribution system. However, 

the clear merits including no frequency stability, no reactive power, and simple 

system control of DC grids make it become the promising solution for the future 

electrical distribution system. In DC grids, DC/DC converters are one of most 

important composed components. Generally, increasing DC bus voltage is 

effectively way to decrease transmission power loss in DC grids. Three-level (TL) 

based isolated DC/DC converters (TL-IDCs) are one of most attractive choices for 

DC grids of DC bus with medium voltage because voltage stress of power switches 

is half of input voltage. Accordingly, this project mainly focuses on unidirectional 

TL-IDCs for DC loads such as data centre, electric vehicle, and so on. 

The current research about TL-IDCs mainly includes following topics: 1) reducing 

switching noises; 2) increasing the converter’s efficiency; and 3) increasing the 

converter’s power density. However, only a few papers pay attentions on 

performances of TL-IDCs including input capacitor, power device, and transformer. 

Accordingly, this project investigates the control strategies to enhance the 

performances of input capacitor, power switch, and transformer in TL-IDCs. 

For improving the input capacitor performance, this project proposes a zero-voltage 

switching (ZVS) control strategy including a periodically swapping modulation 

(PSM) strategy for four-switch half-bridge three-level (FS-HBTL) DC/DC converter 

to balance two input capacitors’ currents, which would thus balance input 

capacitors’ thermal stress and lifetime. Additionally, input-parallel output-parallel 

(IPOP) TL isolated DC/DC converters are proposed in this project for balancing and 

minimizing currents among input capacitors, which would thus reduce input 

capacitor’s size or prolong input capacitor’s lifetime. 

For improving the power device performance, the proposed PSM strategy can be 

also utilized for TL-IDCs with asymmetrical control strategy to balance power 

devices’ currents in, which would thus balance the power devices’ thermal stress 

and power loss. 

For improving the isolated transformer performance in full-bridge (FB) diode-

clamped TL isolated DC/DC converter, this project proposes a new double phase-

shift (DPS) control strategy to decrease voltage changes on the transformer by 

generating the multi-level voltage, which would thus decrease voltage change stress 

and voltage change rate (dv/dt) on transformer. 

Finally, simulation results and experimental results both verify proposed strategies 

and topology. 
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DANSK RESUME 

AC grids are widely used nowadays for the electrical distribution system. Men, de 

klare meriter, herunder ikke frekvensstabilitet, ingen reaktiv kraft, og enkel 

systemkontroll av DC grids gjør det til en lovende løsning for fremtidens elektriske 

distribusjonssystem. In DC grids, DC/DC converters are one of the most important 

composed components. Generally, increasing DC bus voltage is the effective way to 

reduce transmission power loss in DC grids. Three-level (TL) based DC/DC 

converters (TL-IDCs) are one of most attractive choices for DC grids or DC bus 

with medium voltage because voltage stress or power switches are half or input 

voltage. Følgelig, dette projekt fokuserer hovedsakelig på unidirectional TL-IDCs 

for DC-belastninger som datasenter, elektrisk kjøretøy, og så videre. 

De huidige onderzoek over TL-IDC's omvat hoofdzakelijk volgende topics: 1) 

reducing switching noises; 2) increasing the converter's efficiency; and 3) increasing 

the converter's power density. Men, kun et par papirer betaler opmærksomheder på 

forestillinger eller TL-IDCs, inklusive input-kondensator, strømforsyning og 

transformer. Consequently, this project investigates the control strategies to enhance 

the performance of input capacitor, power switch, and transformer in TL-IDCs. 

For at forbedre indgangskondensatorens ydeevne foreslår dette projekt en 

nulspændingsomskifter (ZVS) kontrolstrategi, herunder en periodisk swapping 

modulation (PSM) strategi for fire-switch halv-bridge tre-niveau (FS-HBTL) 

DC/DC konverter til balance to indgangskondensatorer 'strømme, hvilket således vil 

balancere indgangskondensatorernes termiske stress og levetid. Derudover foreslås 

input parallelle output parallelle (IPOP) TL isolerede DC/DC omformere i dette 

projekt for at afbalancere og minimere strømninger mellem indgangskondensatorer, 

hvilket således reducerer indgangskondensatorens størrelse eller forlænger 

indgangskondensatorens levetid. 

For at forbedre effektenhedens ydeevne kan den foreslåede PSM-strategi udnyttes til 

TL-IDC'er med asymmetrisk kontrolstrategi for at afbalancere strømforsyningernes 

strømme i, hvilket således vil balancere strømforsyningsenhedernes termiske 

spænding og effekttab. 

For at forbedre den isolerede transformator ydeevne i fuldbro (FB) diode-clampede 

TL-isolerede DC/DC-omformer, foreslår dette projekt en ny styringsstrategi med 

dobbelt faseforskydning (DPS) for at reducere spændingsændringer på 

transformeren ved at generere multiniveauet spænding, hvilket således ville mindske 

spændingsændringsspændingen og spændingsændringshastigheden (dv/dt) på 

transformeren. 
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Endelig kontrollerer simuleringsresultater og eksperimentelle resultater både 

foreslåede strategier og topologi. 
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CHAPTER 1. INTRODUCTION 

1.1. BACKGROUND AND MOTIVATIONS 

The clear advantages of DC grids such as no frequency stability, no reactive power, 

and simple system control make DC grids become promising choice for future smart 

power distribution system [1-8] in comparison with AC grids [9-11]. Additionally, 

DC-based data centres are being developed quickly nowadays [12], [13]. The 

liberalization of energy market also drive the requirement for developing DC grids 

technology, which has resulted in installations of large scale clean energy as fuel 

cells, wind power, solar power, and so on. Moreover, DC interfaces have already 

been widely employed for end-use consumers at various applications. 

The general layout of DC grids is shown as Fig. 1-1. 

 

Figure 1-1 General DC grids architecture layout. 

Generally, performances of DC grids are highly determined by DC/DC converters 

since voltage grade conversion and power transmission in DC grids are highly 

depended on these DC/DC converters [14-16]. Therefore, DC grids desires for 

DC/DC converters with high performances. Accordingly, this Ph.D. project aims at 

improving performances of DC/DC converters in aspect of the converter’s 

reliability. 
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So far, literatures proposes many DC/DC converters which are mainly categorized 

into two types named non-isolated DC/DC converters [17-26] and isolated DC/DC 

converters (IDCs) [27-37]. Non-isolated converters cannot obtain galvanic isolation 

and high voltage conversion gain. Contrarily, IDCs can obtain high voltage gain, 

galvanic isolation due to isolated transformer and thus improve system safety. 

Accordingly, this project focuses on IDCs. Many IDCs have been proposed 

categorized into three kinds named two-level based IDCs, three-level based isolated 

DC/DC converters (TL-IDCs), and modular multilevel isolated DC/DC converters 

(MMC) [38] as presented in Fig. 1-2. 

The minimal numbers of power switches are needed in two-level based IDCs [39-

47] among these three kinds of converters. However, power switches’ voltage stress 

of two-level based IDCs is full input voltage, which would thus lead high dv/dt on 

transformer, high switching loss, large electromagnetic interference (EMI) [48], 

[49]. MMC [50-57] differentiate themselves from other converters with good power 

quality, low voltage stress of power devices, and small EMI. However, MMC needs 

more power switches and voltage transducers, and would thus lead to increasing cost 

and complex control algorithm (such as voltage balancing control of capacitor) [59-

62]. TL-IDCs [62-69] have merits of lower switch voltage stress, smaller output 

filter size, and lower EMI when comparing with two-level based IDCs. Comparing 

with MMC, TL-IDCs have advantages of fewer circuit components, lower cost, and 

easier control algorithm. 
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(c) 

Figure 1-2 Three basic kinds. (a) Two-level isolated DC/DC converter. (b) TL isolated 

DC/DC converter. (c) MMC. 

Comparison results between three basic kinds of DC/DC isolated converters are 

listed in Table 1-1. This Ph.D. project focuses on investigating unidirectional TL-

IDCs’ for DC loads such as data centre, electric vehicle in DC grids. 

Tabel 1-1 Comparison results about three basic kinds of converters 

Converter Topology Voltage of Switches 
Voltage Balance 

Control Complexity 
Cost 

Two-level based 

IDCs 
input voltage no low 

TL-IDCs half input voltage easy medium 

MMC 

less than or equal 

half input voltage 

based on the number 

of modules 

complex high 

 

1.2. LITERATURE REVIEW 

In 1992, a novel half-bridge TL (HBTL) isolated DC/DC converter presented in Fig. 

1-3(a) was first proposed [62] to reduce power devices’ voltage stress. Due to TL 

structure, power devices’ voltage stress is decreased to be half of input voltage, 

which would make power devices with low-voltage-rated applicable for TL-IDCs. 

Therefore, TL-IDCs can be utilized in DC grids with DC bus of medium voltage. 
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Besides HBTL isolated DC/DC converter in [62], there are also other basic 

topologies of TL-IDCs presented in Fig. 1-3. 

 

(a) 

 

(b) 

 

(c) 

Figure 1-3 Basic topologies of TL IDCs. (a) Diode clamped HBTL isolated DC/DC converter 

[62]. (b) Diode clamped HBTL isolated DC/DC converter with flying capacitor [63]. (c) FS-

HBTL isolated DC/DC converter [75]. 

A HBTL isolated DC/DC converter including an added flying capacitor presented in 

Fig. 1-3 (b) was proposed in [63], which makes phase-shift control applicable. 

Reference [75] proposed a FS-HBTL isolated DC/DC as shown in Fig. 1-3 (c). 
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Comparing with conventional diode clamped HBTL IDCs [62], [63], FS-HBTL 

DC/DC converter has less components due to removing two clamping diodes. 

So far, many studies have been done based on these basic topologies of TL-IDCs 

[70-97]. Based on investigation of these studies, there are mainly following three 

research topics: 

 Expanding load range of soft switching achievement of TL-IDCs [70-74]; 

 Simplifying the circuit structure of TL-IDCs [75-80]; 

 Reducing the circulating current of TL-IDCs [83-88]. 

1.3. RESEARCH OBJECTIVES 

Based on the above literature reviews, former studies about TL-IDCs mainly pay 

attention on aspects of reducing switching noises, increasing efficiency, and 

improving power density. However, only a few papers discuss about the reliability 

performances of TL-IDCs. Therefore, this Ph.D. project aims to investigate TL-

IDCs’ reliability to improve performances of TL-IDCs including input capacitor, 

power device, and transformer performance. 

1.3.1. INPUT CAPACITOR PERFORMANCE 

Capacitor is one of most important components in terms of failure rate in practical 

working operations of power electronic systems [89], [90]. Many working 

conditions (e.g. temperature, humidity, current, voltage) play important roles in the 

reliability of capacitors. For the power electronics field, the rating voltage and 

current on the capacitor are fundamental factors for selecting the capacitor. The 

universal methods in the power electronics field to improve the capacitor reliability 

are: 1) reducing capacitor’s voltage stress; 2) reducing capacitor’s current. Because 

more than one input capacitor is utilized in TL-IDCs, many studies pay attentions on 

how to balance input capacitors’ voltages. For instance, a voltage balancing control 

strategy was proposed in [91] to balance input capacitors’ voltages in FS-HBTL 

isolated DC/DC converter presented in Fig. 1-3(c). Reference [92] proposed a TL 

hybrid isolated DC/DC converter with balanced input capacitors’ voltage, whose 

circuit structure is presented in Fig. 1-4. Additionally, a FB TL-based isolated 

DC/DC converter was proposed in [93] as presented in Fig. 1-5, which has voltage 

auto-balance ability of input capacitors. 

However, few papers investigate input capacitors’ currents of TL-IDCs. Normally, 

capacitor temperature is mainly decided by capacitor current and ambient 

temperature around capacitor. More significantly, capacitor temperature would make 

a crucial influence on the capacitor’s lifetime. Accordingly, this project focuses on 
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reducing and balancing input capacitors’ currents of TL-IDCs, which can thus 

improve input capacitor reliability by reducing input capacitors’ thermal stress and 

balancing input capacitors’ lifetime. 

 

Figure 1-4 TL hybrid isolated DC/DC converter [92]. 

 

Figure 1-5 FB TL-based isolated DC/DC converter with voltage auto-balance ability of input 

capacitors [93]. 

A ZVS control strategy including a periodically swapping modulation (PSM) 

strategy is proposed in this project to balance input capacitors’ currents for FS-

HBTL isolated DC/DC converter, which can thus balance input capacitors’ thermal 

stress and lifetime. Additionally, IPOP TL IDCs are proposed in this project to 

reduce and balance input capacitors’ currents, which can thus prolong and balance 

input capacitors’ lifetime. 
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1.3.2. POWER DEVICE PERFORMANCE 

The power device is another one of most significant components in power electronic 

systems because power generation and output/input voltage (or output/input current) 

are controlled by adjusting power devices’ switching patterns. In addition, the cost 

of power devices normally occupies the dominant proportion in whole cost of power 

converter. Therefore, improving the reliability of power devices is significantly 

meaningful for enhancing the performances of converter. Normally, the temperature 

of power device is one of most significant parameters to judge whether the power 

switch operates reliably. Therefore, the thermal behaviors of power devices are quiet 

related to whole power electronic system’s reliability performance. 

Generally, current through the power device is one of key factors that decides power 

device’s power loss and thermal behavior. Asymmetrical modulation strategy is one 

of widely used modulation strategies for TL-IDCs [75], [94-96] as presented in Fig. 

1-3(c) and Fig. 1-6. 
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(c) 

Figure1-6 (a) Flying capacitor TL isolated DC/DC converter. (b) HBTL isolated DC/DC 

converter including two transformers. (c) Dual HBTL isolated DC/DC converter. 

Reference [94] proposed a flying capacitor based TL isolated DC/DC converter 

featuring with simple structure. Reference [95] proposed a TL isolated DC/DC 

converter including two transformers to reduce transformer windings’ current 

stresses. Reference [96] proposed a TL isolated DC/DC converter including two 

transformers and two half-bridge structures. Additionally, reference [75] proposed a 

FS-HBTL isolated DC/DC converter, which has less circuit components comparing 

with diode-clamped TL isolated DC/DC converter. But, there exists one significant 

issue caused by asymmetrical modulation strategy in these TL-IDCs [75], [94-96] 

that primary power devices’ currents are imbalanced, which would thus lead power 

devices’ power loss and thermal stress imbalance. Accordingly, the proposed PSM 

strategy are utilized for these TL-IDCs to balance primary power devices’ currents, 

which would thus improve converter’s reliability performance by balancing power 

devices’ power loss and thermal stress. 

1.3.3. TRANFORMER PERFORMANCE 

The transformer is also one of significant components in isolated power converters 

because the transformer not only can provide high voltage conversion gain but also 

can isolate the electronic connection from primary to secondary side. Accordingly, 

improving the performance of transformer is meaningful for enhancing the 

performances of isolated converters. Normally, dv/dt is one of important factors 

which can make influence on the transformer of TL-IDCs. Accordingly, 

transformer’s reliability can be improved by reducing dv/dt and voltage stress on 

transformer, which is helpful for improving converter’s electromagnetic interference 

(EMI). 

Chopping plus phase shift (CPS) and DPS control were proposed in [97] and [98] 

respectively for FB diode-clamped TL isolated DC/DC converter presented in 

Figure 1-7. However, high voltage change on transformer is caused by these control 

strategies, which would thus lead high dv/dt and electromagnetic interference (EMI). 

Therefore, a FB TL isolated DC/DC, as presented in Fig. 1-8, with a passive filter 

and a corresponding control strategy was proposed in [99], which can not only 
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decrease dv/dt but also balance input capacitors’ voltages. But, added passive filter 

decreases converter’s efficiency and voltage conversion gain. Therefore, this project 

proposes a new DPS control strategy for FB diode-clamped TL isolated DC/DC 

converter, which can decrease dv/dt and voltage stress on transformer. 

 

Figure 1-7 FB TL isolated DC/DC converter with flying capacitors. 

 

Figure 1-8 Improved FB TL isolated DC/DC converter [99]. 

1.4. THESIS OUTLINE 

The organization about this thesis is introduced as follows. 

Chapter 2 introduce a ZVS strategy including a PSM strategy for FS-HBTL isolated 
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input capacitors’ thermal stress and lifetime. In addition, this project proposes IPOP 

TL IDCs for balancing and minimizing input capacitors’ currents, which would thus 

prolong capacitors’ lifetime or reduce capacitors’ size. Published papers related to 

this chapter are J1, J2, C2, and C3. 
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unbalanced power loss and thermal stress of power devices. Accordingly, the 

proposed PSM strategy is utilized for these TL-IDCs to eliminate such current 

imbalance. Through using proposed strategy, power devices’ power loss and thermal 

stress would be balanced, which would thus increase the converter’s reliability. 

Published paper related to this chapter is J3. 

 

Chapter 4 introduces a new DPS control strategy for FB diode-clamped TL DC/DC 

converter. Because conventional control strategies causes the high dv/dt on isolated 

transformer, a new DPS strategy is proposed in this project to decrease dv/dt on 

transformer through generating multi-level voltage. Therefore, the proposed control 

strategy would decrease dv/dt and stress on transformer and is helpful for 

converter’s EMI. Published paper related to this chapter is C1. 

 

Chapter 5 concludes the works of this thesis and introduces future works. 

 

1.5. LIST OF PUBLICATIONS 

A list of publications is given below. There are three published journal papers and 

three published conference papers related to this thesis. Three journal papers are 

marked as J1 ~ J3 and three conference papers are marked as C1 ~ C3. 
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Emerging and Selected Topics in Power Electronics, vol. 5, no. 3, pp. 1122-

1132, Sep. 2017. 

J2. D. Liu, F. Deng, Q. Zhang, and Z. Chen, “Zero-voltage switching PWM strategy 

based capacitor current-balancing control for half-bridge three-level DC/DC 

converter”, in IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 357-

369, Jan. 2018. 

J3. D. Liu, F. Deng, Q. Zhang, and Z. Chen, “Periodically swapping modulation 
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CHAPTER 2. IMPROVING INPUT 

CAPCITOR PERFORMANCES 

This chapter aims at improving input capacitor performances of TL-IDCs. Firstly, a 

ZVS control strategy including a PSM strategy for FS-HBTL isolated DC/DC 

converter is proposed to balance input capacitors’ currents. Additionally, IPOP TL 

IDCs are proposed to balance and decrease input capacitors’ currents. Finally, 

summary is given. 

2.1. ZVS CONTROL STRATEGY WITH BALANCED INPUT 
CAPACITOR CURRENT 

2.1.1. INPUT CAPACITOR CURRENT IMBALANCE ISSUE 

Figure 2-1(a) presents the FS-HBTL isolated DC/DC converter [75]. In Figure 2-

1(a), Vin is input voltage; C1 and C2 are two input capacitors to split Vin into two 

voltages V1 and V2; S1 - S4 are power switches; D1 - D4 are power diodes; Tr is 

isolated transformer; Lr is leakage inductor of Tr; Cs1 - Cs4 are parasitic capacitors of 

S1 - S4; Cb is DC-blocking capacitor; Dr1 - Dr4 are four rectifier diodes; Lo is filter 

inductor; and Co is filter capacitor. Additionally, the input current is ii; currents 

flowing through C1 and C2 are ic1 and ic2; primary voltage and current on Tr are Vpri 

and ip; the current through Lo is iLo; the voltage on Cb is Vcb; the output current and 

voltage are io and Vo; voltage from point a to b is Vab; and transformer’s turns ratio is 

n. Figure 2-1(b) presents the operation principle of conventional control strategy 

[75], in which driving signals for S1 - S4 are drv1 - drv4 and d1, d2 are duty cycles 

during one switching time period Ts. Several assumptions are used to simplify 

following analysis: 1) Lo is regarded as a constant current source; 2) S1 - S4 are 

considered to be ideal, so impacts from parasitic capacitors can be ignored; 3) iin is 

regarded to be constant because of impact from total inductance of input power 

supply plus input line on iin. 
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(b) 

Figure 2-1 (a) Circuit structure. (b) Conventional control strategy [75]. 

Based on Figure 2-1(b), the expression of ic1 and ic2 can be given as 
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In addition, the expression of ip can be given as 
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Substituting (2.3) into (2.1) and (2.2), ic1 and ic2 can be rewritten as 
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Time periods [t2-t6] and [t9-t12] in Figure 2-1(b) are the same and obtained by 
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Based on (2.4) ~ (2.6), under conventional control strategy, root-mean-square 

(RMS) value of ic1, ic2 named ic1_rms_con, ic2_rms_con are obtained by (2.7) and (2.8). 
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Based on (2.7) and (2.8), the deviation between ic1_rms_con, ic2_rms_con named Δic_rms_con 

is (2.9). 
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In (2.7) and (2.8), ic1_rms_con and ic2_rms_con are imbalanced. 
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2.1.2. ZVS CONTROL STRATEGY 

Figure 2-2 presents proposed ZVS strategy for FS-HBTL isolated DC/DC converter. 

In Figure 2-2, drv1-drv4 are driving signals for S1-S4; d1 is duty cycle in one switching 

time period; and dloss is duty cycle loss. 

   

                                      (a)                                                                       (b) 

Figure 2-2 Proposed ZVS strategy. (a) Operation mode I. (b) Operation mode II. 

Under operation mode I, duty cycle of drv1, drv3 are 0.5, and duty cycle of drv2, drv4 

are d1. Contrarily, under operation mode II, duty cycle of drv2, drv4 are 0.5, and duty 

cycle of drv1, drv3 are d1. d1 should be smaller than 0.5. From Figure 2-2, it can be 

seen that ic1 and ic2 in two operation modes are just opposite. Furthermore, ic1 is 

bigger than ic2 under operation mode I, contrarily ic2 is bigger than ic1 under 

operation mode II. Therefore, major difference between two operation modes is two 

input capacitors’ currents. 

2.1.3. PSM STRATEGY 

Based on major difference of two operation modes, a PSM strategy is proposed to 

balance ic1 and ic2 through swapping two proposed operation modes in each switch 

time period (presented in Figure 2-3). Under proposed PSM strategy, operation 

mode I is utilized during first switching time period, and operation mode II is 

utilized during second switching time period. Therefore, proposed PSM strategy 

would balance ic1 and ic2 during every two switching time periods. 
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Figure 2-3 Proposed PSM strategy [100]. 

In Figure 2-3, ic1 and ic2 can be given as (2.10) and (2.11); ip can be given as (2.12). 
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ic1, ic2 are rewritten as (2.13) by substituting (2.12) into (2.10) and (2.11). 
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Time periods [t2 - t7] and [t16 - t21] in Figure 2-3 are the same as (2.15). 
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Based on (2.13) ~ (2.15), RMS value of ic1, ic2 under proposed strategy named 

ic1_rms_pro, ic2_rms_pro are 
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From Table 2-1, it could be obtained that: 1) under conventional strategy, ic1_rms_con, 

ic2_rms_con are unbalanced, and ic1_rms_con is smaller than ic2_rms_con because d2 is higher 

than d1 in normal operations; 2) in proposed strategy, ic1_rms_pro, ic2_rms_pro become the 

same, which means that proposed strategy can eliminate two input capacitors’ 

current imbalance. 

By substituting parameters in Table 2-2 into (2.7), (2.8), and (2.16), Figures 2-4 and 

2-5 can be obtained. Figure 2-4 presents calculated RMS value of ic1, ic2. Figure 2-5 

presents results about deviation Δic_rms_con calculated by (2.9). 

Tabel 2-1 Calculation formulas about RMS value of ic1, ic2 
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Figure 2-4 Calculated RMS value of ic1, ic2 (Vo = 50V). 
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Figure 2-5 Calculated deviations between RMS value of ic1, ic2 under the conventional control 

strategy (Vo = 50V). 

2.1.4. SIMULATION AND EXPERIMENTAL VERIFICATION 

A. Simulation verification 

Table 2-2 presents parameters of simulation model. Figure 2-6 presents simulation 

results. As marked in Figure 2-6(b), ic1, ic2 are same during every two switching time 

periods under proposed strategy. In Fig. 2-6, ic1_rms_con, ic2_rms_con are 3.05 A and 5.11 

A respectively, but ic1_rms_pro, ic2_rms_pro are both 4.2 A. 

   

                                    (a)                                                                        (b) 

Figure 2-6 Simulation results (Vin = 550 V, Vo = 50 V, Po = 1 kW). (a) Conventional strategy. 

(b) Proposed strategy. 

 

 

D
ifferen

ce (Δ
ic_

rm
s_

co
n ) (A

)

Input Voltage Increase

Vin = 450 V

Vin = 500 V

Vin = 550 V

Output Power (W)

Vin (V)

ic1 (A)

ic2 (A)

ip (A)

Vo (V)

io (A)

t ( 20us/div )

RMS Value = 3.05 A

RMS Value = 5.11 A

Vin (V)

ic1 (A)

ic2 (A)

ip (A)

Vo (V)

io (A)

t ( 20us/div )

RMS Value = 4.2 A

RMS Value = 4.2 A



CHAPTER 2. IMPROVING INPUT CAPCITOR PERFORMANCES 

39 

B. Experimental verification 

Table 2-2 presents parameters of established prototype; Figure 2-7 presents the 

hardware of established prototype (1 kW). 

 

Figure 2-7 Hardware of established prototype. 

Tabel 2-2 Parameters of simulation model and experimental prototype 

Description Parameter 

Power Switches S1 - S4  SPW47N60C3 

Rectifier Diodes Dr1 - Dr4 MBR40250TG 

Turns Ratio of Transformer Tr   25 : 8 

Leakage Inductance Lr (uH) 20.7 

Output Filter Capacitor Co (uF) 470 

Output Filter Inductor Lo (uH) 140 

Input Capacitors C1 and C2 (uF) 14.4 

DC-blocking Capacitor Cb (uF) 12 

Switching Frequency (kHz) 50 

Dead Time (ns) 400 

Input Inductance (uH) (Including the output inductance of the input 

power supply and inductance of the input line) 
60 

 

Figure 2-8 illustrates control block of proposed strategy. 

 

Figure 2-8 Control block of proposed PSM strategy. 
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Figures 2-9 and 2-10 show ZVS achievement performances in proposed control 

strategy, in which Vds_S1, Vds_S3 are drain-source voltage of S1, S3 and Vgs_S1, Vgs_S3 

are driving signal of S1, S3. 

 

(a) 

 

(b) 

Figure 2-9 ZVS performance of S1 (Vin = 550 V, Vo = 50 V). (a) Po = 500 W. (b) Po = 1 kW. 

 

(a) 

 

(b) 

Figure 2-10 ZVS performance of S3 (Vin = 550 V, Vo = 50 V). (a) Po = 500 W. (b) Po = 1 kW. 
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Figures 2-11 ~ 2-13 present experimental results. In Figure 2-13 (Po = 1 kW), 

ic1_rms_con, ic2_rms_con are 3.16 A and 5.18 A respectively; Δic_rms_con 2.02 A; but 

ic1_rms_pro, ic2_rms_pro are both 4.37 A, which validates that proposed PSM strategy can 

eliminate current imbalance among input capacitors caused by conventional 

strategy. 

   

                                    (a)                                                                        (b) 

Figure 2-11 Experimental results of Vin, Vo, io, and ip (Vin = 550 V, Vo = 50V, Po = 1 kW) 

[100]. (a) Conventional strategy. (b) Proposed strategy. 

   

                                     (a)                                                                       (b) 

Figure 2-12 Experimental results of V1, V2, Vcb, and ic2 (Vin = 550 V, Vo = 50V, Po = 1 kW) 

[100]. (a) Conventional strategy. (b) Proposed strategy. 

   

                                    (a)                                                                        (b) 

Figure 2-13 Experimental results of Vab, ic1, and ic2 (Vin = 550 V, Vo = 50V, Po = 1 kW) [100]. 

(a) Conventional strategy. (b) Proposed strategy. 
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Figure 2-14 demonstrates experimental RMS value about ic1, ic2. 

 

Figure 2-14 Experimental RMS value of ic1, ic2 (Vo = 50 V, Po = 1 kW). 

Figure 2-15 presnets the dynamic performance. 

 

Figure 2-15 Dynamic performances under load changes (1 kW to 500 W to 1 kW) (Vin = 550 

V Vo = 50 V). 

Figure 2-16 presents experimental efficiency results. It is noted that the efficiency 

results are calculated by (measured Vo × measured io) / (measured Vin × measured 

iin). 

 

Figure 2-16 Experimental efficiency results (Vo = 50 V). 
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2.2. IPOP TL ISOLATED DC/DC CONVERTERS 

2.2.1. CIRCUIT STRUCTURE 

Figure 2-17 presents the IPOP TL IDCs including dual FS-HBTL IDCs (named 

Module I and Module II). In Figure 2-17, Vin is input voltage; C1 and C2 are input 

capacitors to split Vin into two voltages V1 and V2; and Co is filter capacitor. In 

Module I, S1-S4 are power switches; D1-D4 are power diodes; Tr1 is isolated 

transformer; Lr1 is leakage inductance of Tr1; Cb1 is DC-blocking capacitor; Dr1-Dr4 

are four rectifier diodes; Lo1 is filter inductor. Module II is the same as Module I. In 

Figure 2-17, iin is input current; current through C1 and C2 are ic1 and ic2 respectively; 

primary current of Tr1 and Tr2 are ip1 and ip2; current on Lo1 and Lo2 are iLo1 and iLo2; 

voltage on Cb1 and Cb2 are Vcb1 and Vcb2; output voltage and current are Vo and io; 

voltage from point a to b is Vab; the voltage from point c to d is Vcd; turns ratios in 

Tr1 and Tr2 are n1 and n2. 

 

Figure 2-17 Circuit structure. 

2.2.2. WORKING PRINCIPLE 

Some assumptions are used to simplify following analysis: 1) Lo1 and Lo2 are the 

same and regarded as constant current sources; 2) S1 - S8 and D1 - D8 are ideal; 3) C1, 

C2, Cb1, and Cb2 are regarded as constant voltage sources and C1 = C2 = Cin, Cb1 = 

Cb2 = Cb, V1 = V2 = Vin/2, Vcb1 = Vcb2 = Vcb = Vin/2; 4) the parameters of Tr1 and Tr2 

are identical: n1 = n2 = n and Lr1 = Lr2 = Lr; 5) iin is regarded to be constant because 

of impact from inductance (input power supply’s output inductance plus input line 

inductance) on iin. 

Figure 2-18 presents working principle of proposed converters. In Figure 18, drv1-

drv8 are driving signals for S1-S8, d1-d2 are duty cycles during one switching time 

period. As drawn by color in Figure 2-18(a), ic1 and ic2 are unbalanced without 

interleaving control strategy. On contrary, under interleaving control strategy, ic1 and 

ic2 become much smaller and balanced. 
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(a) 

 

(b) 

Figure 2-18 (a) Without interleaving control strategy. (b) With interleaving control strategy. 

[101] 

 

drv1&drv5
t

drv2&drv6

d1Tsd2Ts

drv1&drv5

iin

0

1

t

ip1, ip2 t
|io/2n|

|io/2n|

t

Vin/2
t

Vin
Vab, Vcd

t
drv4&drv8

d1Ts

drv3&drv7 drv4&drv8
0

1
drv3&drv7

d2Ts

ic1 t

t0 t1 t2 t3 t4 t7 t8 t9 t10 t11 t12 t13t5 t6

|iin||iin|+|io/n|

|io/n|-|iin|

tic2

|iin|

|io/n|-|iin|

|iin|+|io/n|

Ts

drv1&drv7
t

drv2&drv8

d1Tsd2Ts

drv1&drv7

iin

0

1

t

t0 t1 t2 t3t4 t7 t8 t9 t10 t11 t13 t14t5t6

ip1 t
|io/2n|

tip2

Vcd t
Vin/2

Vin

|iin|

ic1, ic2 
t

|iin|+|io/2n|

|io/2n|-|iin|

Vin/2
t

Vin
Vab

t
drv4&drv6

d1Ts

drv3&drv5 drv4&drv6
0

1
drv3&drv5

d2Ts

t12

|io/2n|

|io/2n|

|io/2n|

Ts

Counteracting Area Counteracting Area Counteracting Area



CHAPTER 2. IMPROVING INPUT CAPCITOR PERFORMANCES 

45 

Equivalent circuits are presented in Figure 2-19 to explain proposed converters’ 

working process. 

   

                                    (a)                                                                        (b) 

   

                                    (c)                                                                        (d) 

   

                                    (e)                                                                        (f)  

 

(g) 

Figure 2-19 Equivalent circuits with interleaving control strategy [101]. (a) [t0-t1]. (b) [t1-t2]. 

(c) [t2-t3]. (d) [t3-t4]. (e) [t4-t5]. (f) [t5-t6]. (g) [t6-t7].  
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2.2.3. CURRENTS ON INPUT CAPACITORS 

Based on Figure 2-18(b), ic1 and ic2 can be expressed as 
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                  (2.18) 

Substituting (2.18) into (2.17), ic1 and ic2 are rewritten by 
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            (2.19) 

Time periods [t2-t6] and [t9-t13] in Figure 2-18(b) are the same and can be obtained 

by 
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                                           (2.20) 

According to (2.19) and (2.20), RMS value of ic1, ic2 under interleaving control 

strategy named ic1_rms_II, ic2_rms_II are 
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 (2.21) 

RMS value of ic1, ic2 without interleaving control strategy presented in Figure 2-

18(a) named ic1_rms_I, ic2_rms_I are 
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Based on (2.22) and (2.23), deviation between ic1_rms_I, ic2_rms_I named Δic_rms_I is  
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                      (2.24) 

Tabel 2-3 Calculation formulas about RMS value of ic1, ic2 

Control 

Strategy 

RMS 

Value 
Theoretical Calculation Formula 
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Through substituting parameters in Table 2-4 to calculation formulas in Table 2-3, 

calculation results of ic1_rms_I, ic2_rms_I, ic1_rms_II, and ic2_rms_II are obtained in Figure 2-

20. Fig. 2-20 demonstrates that: 1) ic1_rms_I, ic2_rms_I are different, but ic1_rms_II, ic2_rms_II 

are same; and 2) ic1_rms_II, ic2_rms_II are much smaller than ic1_rms_I, ic2_rms_I. 
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Figure 2-20 Calculation results about RMS value of ic1, ic2 (Vo = 50 V). 

2.2.4. SIMULATION AND EXPERIMENTAL VERIFICATION 

A. Simulation verification 

Table 2-4 presents parameters of simulation model. Figure 2-21 presents simulation 

results, in which 1) ic1_rms_I, ic2_rms_I are 5.8 A and 3.2 A respectively; and 2) ic1_rms_II, 

ic2_rms_II become the same and decrease to both 1.76 A. Therefore, simulation results 

verify that ic1, ic2 can be effectively balanced and greatly decreased. 

   

                                     (a)                                                                         (b) 

Figure 2-21 Simulation results (Vin = 550 V, Vo = 50 V, and Po = 1 kW). (a) Without 

interleaving control strategy. (b) With interleaving control strategy. [101] 
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B. Experimental verification 

Table 2-4 presents parameters of established prototype. Figure 2-22 presents built 

prototype’s hardware. 

 

Figure 2-22 Hardware of established prototype. 

Tabel 2-4 Parameters in simulation and experiments 

Description Parameter 

Power switches S1 - S8 SPW47N60C3 

Rectifier diodes Dr1 - Dr8 MBR20200CTG 

Turns Ratios of Tr1 and Tr2 38 : 13 

Leakage Inductances Lr1 and Lr2 (uH) 30 

Output Filter Capacitor Co (uF) 470 

Output Filter Inductors Lo1 and Lo2 (uH) 100 

Input Capacitors C1 and C2 (uF) 14.4 

DC-blocking Capacitors Cb1 and Cb2 (uF) 6 

Switching Frequency (kHz) 50 

Dead Time (ns) 400 

 

Figures 2-23 ~ 2-26 show experimental results. 

   

                                     (a)                                                                       (b) 

Figure 2-23 Experimental results of Vin, Vo, ip1, and ip2 under 500 W (Vin =550 V, Vo = 50 V) 

[101]. (a) Without interleaving control strategy. (b) With interleaving control strategy. 
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                                     (a)                                                                       (b) 

Figure 2-24 Experimental results of ic1, ic2, Vab, and Vcd under 500 W (Vin =550 V, Vo = 50 V) 

[101]. (a) Without interleaving control strategy. (b) With interleaving control strategy.  

   

                                     (a)                                                                       (b) 

Figure 2-25 Experimental results of Vin, Vo, ip1, and ip2 under 1 kW (Vin =550 V, Vo = 50 V) 

[101]. (a) Without interleaving control strategy. (b) With interleaving control strategy.  

   

                                     (a)                                                                       (b) 

Figure 2-26 Experimental results of ic1, ic2, Vab, and Vcd under 1 kW (Vin =550 V, Vo = 50 V) 

[101]. (a) Without interleaving control strategy. (b) With interleaving control strategy. 

When Po is 500 W in Figure 2-24, ic1_rms_I, ic2_rms_I are 3.2 A and 1.68 A respectively; 

contrarily ic1_rms_II, ic2_rms_II are almost the same and decrease to 0.978 A and 0.971 A 

respectively. When Po is 1 kW in Figure 2-26, ic1_rms_I, ic2_rms_I are 5.6 A and 3.19 A, 

so deviation between them is 2.41 A; contrarily ic1_rms_II, ic2_rms_II are almost same 

and reduce to 1.69 A and 1.68 A respectively. 
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Figure 2-27 presents experimental results and theoretical calculations of RMS value 

of ic1 and ic2, in which the differences between the theoretical calculation and 

experimental results are very slight. 

 

Figure 2-27 RMS value of ic1 and ic2 (Vo = 50 V and Po = 1 kW). 

2.3. SUMMARY 

Firstly, this chapter proposes a ZVS strategy including a PSM strategy for FS-HBTL 

isolated DC/DC converter to eliminate current imbalance among input capacitors, 

which can thus balance the two input capacitors’ thermal stress and lifetime. 

Simulation and experimental results both validate proposed ZVS strategy and 

modulation strategy. The papers related to these contents are J2 and C3. 

Secondly, this chapter proposes IPOP TL IDCs to balance and minimize two input 

capacitors’ currents, which can thus 1) reduce input capacitors’ size; and 2) balance 

two input capacitors’ thermal stress and lifetime. Simulation and experimental 
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The papers related to this chapter are J1 and C2. 
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CHAPTER 3. IMPROVING POWER 

DEVICE PERFORMANCE 

This chapter aims at improving power device performance of TL-IDCs. The 

proposed PSM strategy can be also utilized for TL-IDCs with asymmetrical 

modulation strategy to balance power devices’ currents. This chapter analyzes FS-

HBTL isolated DC/DC converter [75] as an instance to illustrate current imbalance 

issue and power devices’ currents under proposed PSM strategy. The analysis about 

current imbalance issue and working process under proposed PSM strategy of other 

TL-IDCs [94-96] (mentioned in Section 1.3.2) are similar. 

3.1. POWER DEVICE CURRENT IMBALANCE ISSUE 

Figure 3-1(a) presents the FS-HBTL isolated DC/DC converter’s circuit structure 

[75] and Figure 3-1(b) presents asymmetrical modulation strategy [75]. In Figure 3-

1(a), Vin is input voltage; C1 and C2 are two input capacitors to split Vin into two 

voltages V1 and V2; S1 - S4 and D1 - D4 are power switches and diodes; Tr is isolated 

transformer; Lr is the leakage inductance of Tr; Cs1 - Cs4 are parasitic capacitors of S1 

- S4; Cb is the DC-blocking capacitor; Dr1 - Dr4 are four output rectifier diodes; Lo is 

filter inductor; Co is filter capacitor. In Figure 3-1(a), input current is iin; primary 

current on Tr is ip; currents on (S1, D1), (S2, D2), (S3, D3), and (S4, D4) are i1, i2, i3, and 

i4; the currents on C1 and C2 are ic1 and ic2; the current on Lo is iLo; the voltage on Cb 

is Vcb; Vo is output voltage; io is output current; voltage from point a to b is Vab; and 

the turns ratio of Tr is n. In Figure 3-1(b), drv1 - drv4 are driving signals for S1 - S4; d1 

and d2 are duty cycles during one switching time period; d2 is 1 - d1 when ignoring 

dead-time. 

Some assumptions are used to simplify following analysis: 1) Lo is regared as a 

current source; 2) S1 - S4 and D1 - D4 are ideal; 3) C1, C2, and Cb are regarded as 

constant voltage sources (Vin/2). 
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(b) 

Figure 3-1 (a) Circuit Structure. (b) Asymmetrical modulation strategy [75]. 

In Figure 3-1(b), current pairs (i1, i3) and (i2, i4) are same during each switching time 

period. Therefore, only i1, i2 are given as 
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                                      (3.2) 

Time periods [t2 - t5] and [t8 - t11] are the same and can be calculated by 
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Based on (3.1) ~ (3.3), RMS value of i1, i2, i3, and i4 in asymmetrical modulation 

strategy named i1_rms_c, i2_rms_c, i3_rms_c, and i4_rms_c are 
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From (3.4) and (3.5), it can be observed that the current pairs (i1_rms_c, i3_rms_c) and 

(i2_rms_c, i4_rms_c) are imbalanced, which thus would cause the power devices’ power 

loss and thermal stress imbalance and undermine converter’s reliability. 

3.2. POWER DEVICES’ CURRENTS UNDER PSM STRATEGY 

Figure 3-2 shows power devices’ currents under proposed PSM strategy, in which 

drv1-drv4 are driving signals for S1-S4; d1 is duty cycle during one switching time 

period; dloss is duty cycle loss. 

 

Figure 3-2 Currents on power devices under proposed PSM strategy. 
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Figure 3-3 presents equivalent circuits to explain working process. 

   

                                      (a)                                                                        (b) 
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                                      (k)                                                                        (l) 

 

(m) 

Figure 3-3 Equivalent circuits [102]. (a) [before t2]. (b) [t2 - t3]. (c) [t3 - t5]. (d) [t5 - t6]. (e) 

[t6 - t7]. (f) [t7 - t8]. (g) [t8 - t9]. (h) [t9 - t10]. (i) [t10 - t12]. (j) [t12 - t13]. (k) [t13 - t14]. (l) [t14 - 

t15]. (m) [t15 - t16]. 

As presented in Figure 3-2, i1, i2, i3, and i4 are the same during every two switching 

time periods. Accordingly, only i1 is given as 
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In Figure 3-2, the time intervals [t2 - t6], [t9 - t13], [t16 - t20] and [t23 - t27] can be 

obtained by 
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Based on (3.6) and (3.7), RMS value of i1, i2, i3, and i4 under proposed strategy 

named i1_rms_p, i2_rms_p, i3_rms_p, and i4_rms_p are 
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Tabel 3-1 Calculation formulas about RMS value of i1 ~ i4 
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3.3. SIMULATION AND EXPERIMENTAL VERIFICATION 

A. Simulation verification 

Table 3-2 presents parameters of built simulation model. Figure 3-4 shows 

simulation results, in which 1) current pairs (i1_rms_c, i3_rms_c) and (i2_rms_c, i4_rms_c) are 

25.7 A are 49.3 A respectively; however, 2) i1_rms_p, i2_rms_p, i3_rms_p, and i4_rms_p are all 

39.3 A. 

Tabel 3-2 Parameters of established simulation model 

Description Parameter 

Input voltage Vin (kV) 4 

Output voltage Vo (V) 400 

Output current io (A) 100 

Turns Ratio of Transformer Tr 15 : 7 

Leakage Inductance Lr (uH) 300 

Output Filter Capacitor Co (uF) 4700 

Output Filter Inductor Lo (uH) 1500 

Input Capacitors C1 and C2 (uF) 4700 

DC-blocking Capacitor Cb (uF) 100 

Switching Frequency (kHz) 5 

Dead Time (us) 1 
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(a) 

 

(b) 

Figure 3-4 Simulation results (Vin = 4 kV, Vo = 400 V, io = 100 A). (a) Asymmetrical 

modulation strategy. (b) Proposed strategy. 

B. Experimental verification 

Table 3-3 presents parameters of established prototype. The hardware of established 

prototype and control block have already been presented in Figures 2-7 and 2-8 

respectively, which are not repeated here. 
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Tabel 3-3 Parameters of established prototype 

Description Parameter 

Power Switches S1 - S4  SPW47N60C3 

Rectifier Diodes Dr1 - Dr4 MBR40250TG 
Turns Ratio of Transformer Tr   25 : 8 

Leakage Inductance Lr of Tr (uH) 20.7 

Output Filter Capacitor Co (uF) 470 
Output Filter Inductor Lo (uH) 140 

Input Capacitors C1 and C2 (uF) 11 

DC-blocking Capacitor Cb (uF) 12 
Switching Frequency (kHz) 50 

Dead Time (ns) 400 

 

Figures 3-5 ~ 3-7 show the experimental results. In Figures 3-6(a) and 3-7(a), 

i1_rms_c, i2_rms_c, i3_rms_c, and i4_rms_c are 2.05 A, 3.10 A, 2.08 A, and 3.12 A under 500 

W and 3.86 A, 5.63 A, 3.79 A, and 5.59 A under 1 kW. After utilizing the proposed 

PSM strategy, i1_rms_p, i2_rms_p, i3_rms_p, and i4_rms_p are 2.57 A, 2.61 A, 2.58 A, and 

2.64 A under 500 W and 4.75 A, 4.76 A, 4.68 A, and 4.73 A under 1 kW as shown 

in Figures 3-6(b) and 3-7(b). 

   

                                     (a)                                                                        (b) 

Figure 3-5 Experimental results of Vab, Vo, io, and ip (Vin = 550 V, Vo = 50 V, Po = 1 kW) 

[102]. (a) Asymmetrical modulation strategy. (b) Proposed strategy. 
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(b) 

Figure 3-6 Experimental results of i1, i2, i3, and i4 (Vin = 550 V, Vo = 50 V, Po = 500 W) 

[102]. (a) Asymmetrical modulation strategy. (b) Proposed strategy. 

 

(a) 

 

(b) 

Figure 3-7 Experimental results of i1, i2, i3, and i4 (Vin = 550 V, Vo = 50 V, Po = 1 kW) [102]. 

(a) Asymmetrical modulation strategy. (b) Proposed strategy. 

Figure 3-8 presents experimental RMS value of i1, i2, i3, and i4. The experimental 

results in Figure 3-8 can verify that proposed strategy would effectively get rid of 

power devices’ current imbalance. 
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Figure 3-8 Experimental RMS value of i1, i2, i3, and i4 (Vo = 50 V, Po = 1 kW). 

Figure 3-9 shows comparison results about power devices’ thermal stresses between 

conventional and proposed strategy. From Figure 3-9, it can be observed that: 1) 

temperature of (S2, D2) and (S4, D4) are higher than that of (S1, D1) and (S3, D3) under 

conventional strategy; and 2) temperature of (S1, D1), (S2, D2), (S3, D3), and (S4, D4) 

are almost same by utilizing proposed strategy; 3) primary power devices’ 

maximum temperature can be reduced from 34.5 C to 29.3 C due to proposed 

strategy. 

     

                                         (a)                                                                 (b) 

Figure 3-9 Comparison results about power devices’ thermal stresses (Vin = 550 V, Vo = 50 

V, Po = 1 kW) [102]. (a) Asymmetrical modulation strategy. (b) Proposed strategy.  

3.4. SUMMARY 

In this chapter, the proposed PSM strategy is utilized for several TL IDCs with 

asymmetrical modulation strategy to balance power devices’ currents, which would 

thus effectively balance power devices’ power loss and thermal stress. Simulation 

results and experimental results both validate proposed strategy. The paper related to 

this chapter is J3. 
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CHAPTER 4. IMPROVING 

TRANSFORMER PERFORMANCE 

This chapter aims at improving transformer performance of FB diode-clamped TL 

isolated DC/DC converter. Therefore, a new DPS control strategy is proposed to 

decrease dv/dt on transformer. 

4.1. VOLTAGE CHANGES ON TRANSFORMER UNDER 
CONVENTIONAL CONTROL STRATEGY 

Figure 4-1 shows structure of FB diode-clamped TL isolated DC/DC converter and 

working principle under conventional control strategies. In Figure 4-1, Vin is input 

voltage; Ci1 and Ci2 are input capacitors to split Vin into V1 and V2; S1-S8 and D1-D8 

are power switches and diodes; C1 - C8 are junction capacitors of S1 - S8; Cs1 and Cs2 

are two flying capacitors; D9-D12 are clamped diodes; Tr is the isolated transformer; 

Lr is leakage inductance of Tr; Dr1-Dr4 are four rectifier diodes; Lo and Co are filter 

inductor and capacitor. Additionally, Vab is voltage from point a to b; ip is primary 

current of Tr; iLo is current on Lo; Vo and Io are the output voltage and current; and n 

is turns ratio in Tr. Figures 4-2 and 4-3 presents conventional control strategies 

named chopping plus phase shift (CPS) [97] and DPS control [98] for FB diode-

clamped TL isolated DC/DC converter. From Figures 4-2 and 4-3, it can be seen that 

maximum voltage change in these conventional control strategies are both from 0 to 

Vin or 0 to -Vin as marked by red color, which would thus cause high dv/dt. 

 

Figure 4-1 Circuit structure. 
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                                   (a)                                                                              (b) 

Figure 4-2 Chopping plus phase shift (CPS) control [97]. (a) Three-level mode. (b) Two-level 

mode. 

   

                                   (a)                                                                              (b) 

Figure 4-3 Double phase-shift (DPS) control [98]. (a) Three-level mode. (b) Two-level mode. 

4.2. PROPOSED DPS CONTROL STRATEGY 

Figure 4-4 presents working principle of proposed new DPS control strategy. In 

Figure 4-4, drv1-drv8 are driving signals for S1-S8; α1 and α2 are two time delays. 

Some assumptions are used to simplify following analysis: 1) S1 - S8 have same 

parasitic capacitors; 2) Ci1 and Ci2 are regarded to be constant voltage sources 

(Vin/2); 3) Cs1 and Cs2 are regarded to be constant voltage sources (Vin/2); and 4) Lo is 

regarded to be a constant current source. 
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Figure 4-4 Proposed strategy (Three level mode). 

Figure 4-5 presents equivalent circuits to explain working process. 

   

                                   (a)                                                                                 (b) 

   

                                   (c)                                                                                 (d)  
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                                   (e)                                                                                 (f)  

   

                                   (g)                                                                                 (h) 

   

                                   (i)                                                                                 (j)  

 

(k) 

Figure 4-5 Equivalent circuits [103]. (a) [t0-t1]. (b) [t1-t2]. (c) [t2-t3]. (d) [t3-t4]. (e) [t4-t5]. (f) 

[t5-t6]. (g) [t6-t7]. (h) [t7-t8]. (i) [t8-t9]. (j) [t9-t10]. (k) [t10-t11]. 
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4.3. SIMULATION VERIFICATION 

Table 4-1 presents parameters of built simulation model. In simulations, α2 is 5us; Vo 

is controlled by adjusting α1. 

Tabel 4-1 Parameters of established simulation model 

Component Description 

Turns Ratio of the Transformer Tr (n : 1) 4 : 1 

Input Capacitors C1 and C2 (uF) 4700 

Output Filter Inductor Lo (uH) 1000 

Output Filter Capacitor Co (uF) 4700 

Input Voltage Vin (kV) 4 

Output Voltage Vo (V) 800 

α2 (us) 5 

Output Power (kW) 64 

Switching Frequency (kHz) 5 

 

Figures 4-6 and 4-7 show simulation results. From comparison results between 

conventional strategies [97], [98] and proposed strategy, it can be seen that dv/dt on 

Vab is decreased after using the proposed strategy. Therefore, voltage stress of 

transformer would be decreased. 

 

Figure 4-6 Simulation results under proposed DPS strategy. 
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                                       (a)                                                                  (b) 

Figure 4-7 Comparison results. (a) Conventional strategies. (b) Proposed strategy. 

4.4. SUMMARY 

This chapter proposes a new DPS control strategy for FB diode-clamped TL isolated 

DC/DC converter to decrease voltage changes on transformer, which would decrease 

the dv/dt and voltage stress on transformer. Simulation results validate the proposed 

strategy. The paper related to this chapter is C1. 
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CHAPTER 5. CONCLUSIONS AND 

FUTURE WORKS 

This project proposes new topology and modulation strategies to improve reliability 

performances of input capacitors, power devices, and transformer in TL-IDCs. 

1) Improving input capacitor performances 

There exists an issue of input capacitor current imbalance in FS-HBTL isolated 

DC/DC converter when utilizing conventional strategy, which would lead input 

capacitors’ thermal stress and lifetime imbalance. Therefore, this project proposed a 

ZVS strategy including a PSM strategy to balance input capacitors’ currents, which 

would thus balance input capacitors’ thermal stress and lifetime. Additionally, this 

project proposes IPOP TL IDCs to balance and decrease input capacitors’ currents, 

which would thus reduce input capacitors’ size and prolong input capacitors’ 

lifetime. Simulation and experimental results both validate proposed control strategy 

and topology. 

2) Improving power device performance 

The power devices’ current imbalance issue exists in kinds of TL-IDCs with 

asymmetrical modulation. Accordingly, the proposed PSM strategy are utilized for 

these TL-IDCs to balance power devices’ currents, which would thus increase 

converter’s reliability through balancing power devices’ power loss and thermal 

stress. Simulation results and experimental results both validate proposed strategy. 

3) Improving transformer performance 

This project proposes a new DPS control strategy for FB diode-clamped TL isolated 

DC/DC converter. Comparing with conventional control strategies, dv/dt and 

voltage stress on transformer would be reduced by proposed control strategy, which 

would thus increase converter’s reliability. Simulation results validate proposed 

strategy. 

There are many works can be further proceeded in future based on this thesis. The 

future works include but are not limited to followings: 

 Investigate performances (currents on power devices, input capacitors, and 

flying capacitors) about FB diode-clamped TL IDCs; 

 Investigate performances (currents on power devices, input capacitors, and 

flying capacitors) about T-type TL IDCs; 
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 Expand proposed PSM strategy to other hybrid TL-IDCs or other types of 

converters. 
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