1,283 research outputs found

    Universal fractional-order design of linear phase lead compensation multirate repetitive control for PWM inverters

    Get PDF
    Repetitive control (RC) with linear phase lead compensation provides a simple but very effective control solution for any periodic signal with a known period. Multirate repetitive control (MRC) with a downsampling rate can reduce the need of memory size and computational cost, and then leads to a more feasible design of the plug-in repetitive control systems in practical applications. However, with fixed sampling rate, both MRC and its linear phase lead compensator are sensitive to the ratio of the sampling frequency to the frequency of interested periodic signals: (1) MRC might fails to exactly compensate the periodic signal in the case of a fractional ratio; (2) linear phase lead compensation might fail to enable MRC to achieve satisfactory performance in the case of a low ratio. In this paper, a universal fractional-order design of linear phase lead compensation MRC is proposed to tackle periodic signals with high accuracy, fast dynamic response, good robustness, and cost-effective implementation regardless of the frequency ratio, which offers a unified framework for housing various RC schemes in extensive engineering application. An application example of programmable AC power supply is explored to comprehensively testify the effectiveness of the proposed control scheme

    Frequency adaptive repetitive control of grid-connected inverters

    Get PDF
    Grid-connected inverters (GCI) are widely used to feed power from renewable energy distributed generators into smarter grids. Repetitive control (RC) enables such inverters to inject high quality fundamental-frequency sinusoidal currents into the grid. However, digital RC which can get approximately zero tracking error of any periodic signal with known integer period in steady-state, cannot exactly track or reject periodic signal of frequency variations. Thus digital RC would lead to a significant power quality degradation of GCIs when grid frequency varies and causes periodic signal with non-integer periods. In this research paper a frequency adaptive repetitive control scheme (FARC) at a predefined sampling rate is proposed to deal with all types of periodic signal of variable frequency. A fractional delay filter which is based on Lagrange interpolation is used to estimate the fractional period terms in RC. This proposed FARC controller offers the fast, during process modification of fractional delay and fast revise of filter parameters, and then provides GCIs with a simple but very accurate real-time frequency adaptive control solution to the injection of high quality sinusoidal current under grid frequency variations. A case study a three-phase GCI is conducted to testify the validity of the proposed strategy

    AC voltage regulation of a bidirectional high-frequency link converter using a deadbeat controller

    Get PDF
    This paper presents a digital controller for AC voltage regulation of a bidirectional high-frequency link (BHFL) inverter using Deadbeat control. The proposed controller consists of inner current loop, outer voltage loop and a feed-forward controller, which imposes a gain scheduling effect according to the reference signal to compensate the steady-state error of the system. The main property of the proposed controller is that the current- and the voltage-loop controllers have the same structure, and use the same sampling period. This simplifies the design and implementation processes. To improve the overall performance of the system, additional disturbance decoupling networks are employed. This takes into account the model discretization effect. Therefore, accurate disturbance decoupling can be achieved, and the system robustness towards load variations is increased. To avoid transformer saturation due to low frequency voltage envelopes, an equalized pulse width modulation (PWM) technique has been introduced. The proposed controller has been realized using the DS1104 digital signal processor (DSP) from dSPACE. Its performances have been tested on a one kVA prototype inverter. Experimental results showed that the proposed controller has very fast dynamic and good steady-state responses even under highly nonlinear loads

    Fractional Order and Virtual Variable Sampling Design of Repetitive Control for Power Converters

    Get PDF
    With the growth of electricity demand and renewable energy power source, power converter becomes a more and more significant component in electrical power systems. The requirement of the power converter controller is to produce an accurate and low-distorted voltage or current under different load conditions. Although the conventional controller can meet the requirement of some applications, it requires accurate knowledge of the system model and cannot provide a satisfactory result especially under nonlinear loads or sudden load change. Repetitive control (RC) presents an attractive solution to achieve excellent steady-state tracking error and low total harmonic distortion for periodic signals, and it is increasingly applied to power converter systems. However, there are still some limitations or requirements of RC when it is applied to power electronics system: first, RC requires the system sampling frequency is a fixed value and needs to be an integral multiple of the reference frequency; second, low controller sampling frequency results in low phase lead compensation resolution in RC, which leads to control inaccuracy; third, conventional RC does not have frequency adaptability to reference frequency fluctuation, and even a small reference frequency fluctuation can lead to severe performance degradation. To overcome the conventional RC limitations, two advanced design methods are proposed in the thesis: fractional order delay and virtual variable sampling. The method of fractional order delay approximates the non-integer delay part by building a finite impulse response filter. This improved method is not only able to be applied on a period delay unit but also on phase-lead compensation. The accurate period delay and phase lead compensation show a noticeable improvement in RC performance. Although fractional order delay can meet the requirement on most of the applications, it also has a minimal adjustable range on the reference frequency. To achieve an essential solution to this problem, the virtual variable sampling (VVS) method is developed. The VVS approximates a variable sampling unit instead of the fixed system unit for RC and its filters, in which RC is able to be frequency adaptive. Comparing with the method of fractional order delay, the VVS method can provide a much more extensive adjustable range on the reference frequency. Based on the system performance under the conventional controller, power converter always has uneven distortion distribution. To further improve the stability and eliminate harmonic distortions efficiently, two selective harmonic RC schemes are introduced - nk ± m order harmonic RC and DFT-based selective harmonic RC. However, these selective RC schemes also suffer from the particular requirement of system sampling frequency and low reference frequency adaptability. Applying VVS methods on these two schemes can effectively present an improvement on their frequency adaptability. To verify the proposed methods’ effectiveness, a complete series of power electronics applications are carried out. These applications include single-phase and three-phase DC/AC power converter, single-phase AC/DC power converter, and single-phase grid-connected power converter. The detailed system modeling and the proposed RC schemes are presented for each power electronics application

    Load-adaptive zero-phase-shift direct repetitive control for stand-alone four-leg VSI

    Get PDF
    This paper deals with a dedicated load adaptive phase compensation algorithm to be used in Repetitive Control based stand-alone 4-leg VSI. The plant model is achieved, its inherent modifications according to the operating point are highlighted and used to properly adapt the Repetitive Control structure. Modification of the repetitive control parameters is described to obtain the desired phase compensation capabilities achieving a Zero-Phase-Shift condition at each harmonic. This allows to increase the gain of the Repetitive Controller at high order harmonics thus yielding a better VSI output voltages with strongly reduced THD and faster dynamic response. As a consequence, the VSI output voltages are almost independent from the loads to be fed and the 4-leg VSI with the proposed Zero-Phase-Shift Direct Repetitive Control is an ideal candidate to supply sensitive loads in microgrid, in particular for stand-alone applications
    corecore