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Abstract—This paper presents a multi-rate fractional-order 

repetitive control (MRFORC) scheme for three-phase shunt 
active power filter (APF). The proposed APF control scheme 
includes an inner proportional-integral (PI) control loop with a 
sampling rate identical to switching frequency and an external 
plug-in RC loop with a reduced sampling rate. The MRFORC 
loop is implemented in dq-frame with interleaving for the 
reduction of computational burden in each control cycle. 
Moreover, in order to deal with the harmonics in the presence of 
wide grid frequency variations, FORC, which replaces the 
fractional-order elements with the Lagrange-interpolation based 
finite impulse response (FIR) filter, is adopted instead of the 
conventional RC. The synthesis, stability analysis and parameters 
tuning criteria of the MRFORC system are derived in detail. A 
step by step design example of the proposed controller is also 
given in the paper. Finally, experiments are performed to validate 
the feasibility and effectiveness of the proposed scheme.  
 

Index Terms—Microgrid, active power filter, multi-rate 
repetitive control, fractional repetitive control.  

I. INTRODUCTION 
HE existence of nonlinear loads and power electronic 
equipment has caused severe harmonic pollution in 

electrical systems. Harmonic currents increase losses, 
deteriorate the quality of the voltage waveform, cause metering 
devices malfunction, and may cause resonances and 
interferences. Active power filters (APFs) that operate as 
controllable power sources, which have the capability of 
offering fast response to dynamic load changes are widely used 
to eliminate power harmonics[1], [2]. Shunt APF is proved to 
be the most widely used equipment to compensate load current 
harmonics due to its simplicity, effectiveness and harmonic 
compensation capabilities[2].  

Since the performance of shunt APFs is highly dependent on 
current control strategy, numerous current control schemes 
have been proposed in the literature [3]–[12], such as hysteresis 
control [3], proportional-integral (PI) control [4], [5], 
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proportional resonant (PR) control [6], and deadbeat (DB) 
control [10], [11]. However, hysteresis control suffers from 
random switching frequency, DB control is sensitive to 
parameters change, PI and PR controllers suffer from poor 
performance in dealing with multiple harmonic currents. 
Multiple resonant control can achieve zero steady-state 
tracking error of sinusoidal signals at selected harmonic 
frequencies[7], [8], [13]. However, a large number of paralleled 
resonant controllers might cause heavy parallel computation 
burden and high tuning complexity. Based on the internal 
model principle[14], repetitive control (RC) [12], [15]–[25] can 
achieve zero steady-state tracking error for any periodic signal 
with a known period due to the induced high gains at interested 
harmonic frequencies. It provides a simple but effective 
solution for shunt APFs to compensate harmonics.  

Conventional digital RC has a simple structures formulated 
by N delay elements, where N is the number of samples in one 
fundamental period of the repetitive signal. It is well known 
that digital RC requires N to be an integer for implementation, 
but this is not always true in the presence of grid frequency 
variations, especially under certain circumstances, such as 
off-grid and remote area condition, the grid frequency may 
have considerable variation [26]. Variable sampling rate 
approach enables RC to keep N to be an integer for proper 
harmonics rejection [22], [27]. However, variable-sampling- 
rate implies changes of the system dynamics and, particularly 
the plant model, which more or less increase the difficulty when 
analyzing the system stability[21]. An alternative way to 
address this problem is to approximate the fractional part of N 
by using an interpolation based finite impulse response (FIR) 
filter [20] or a Lagrange-interpolation-based FIR filter [23], 
[25], [28]. The fractional delay filter applied in the RC scheme 
only requires a few multiplications and additions for coefficient 
updating, and thus, it is suitable for fast online tuning of the 
fractional-order controller.  

Digital control systems which involve more than one 
sampling frequency are called multi-rate control systems. 
Compared with single rate control systems, multi-rate control 
systems have the advantage of appropriate sampling frequency 
selection, computation saving, and memory reduction. Thus, it 
can offer a cost-effective solution for converter control systems. 
Besides, with reduction of sampling rate and computational 
time, there can be more room for reducing the interruption 
period and increasing switching frequency, so as to improve the 
dynamic performance of the converter [29]. Multi-rate RC with 
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down/up-sampling scheme has been applied in areas of motion 
control [30]. A down-sampled multi-rate scheme for constant 
voltage constant frequency(CVCF) PWM converters has been 
investigated in [29]. However, multi-rate frequency-adaptive 
FORC for APFs has not yet been investigated. 

In view of this, in this paper a multi-rate fractional-order 
repetitive control (MRFORC) scheme is proposed for 
enhancing APF performance. The MRFORC is proposed to 
simultaneously address the frequency adaptive issue and to 
reduce the computation burden. The synthesis, stability 
analysis and parameters tuning criteria of MRFORC system are 
developed in Section II. In Section III, experiment test bed is 
briefly introduced firstly and then a step by step design example 
of the proposed controller for the given power stage parameters 
is given. Then the experimental results are provided in Section 
IV to verify the effectiveness of the proposed MRFORC. 
Finally, Section V presents the conclusions of the paper.  

II. SYNTHESIS OF MRFORC 
Since the mathematic model of MRFORC is derived from 

conventional RC, thus the single-rate RC and FORC will be 
reviewed firstly. Then the equivalent single-rate closed-loop 
system, stability analysis and controller design criteria for 
MRFORC are developed.  

A. Single-Rate Repetitive Control 
Fig. 1 shows the typical closed-loop control system for a 

plug-in single-rate RC. The inner PI control loop includes Gp(z), 
and PI(z), which represent the transfer function of the control 
plant and the PI controller, respectively. The inherent unit delay 
of the digital implementation is modeled in the control plant. 
Besides, R(z) is the reference input, Y(z) is the output, E(z) = 
R(z)−Y(z) is the tracking error, and D(z) is the disturbance.  

Transfer function of the RC shown in Fig. 1 can be expressed 
as 
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)(1)(
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where N = fs / f with f being the fundamental frequency of R(z) 
and/or D(z), fs being the sampling rate, and the order of RC is N. 
Ur(z) is the output of RC, S(z) is a compensation function to 
stabilize the overall closed-loop system, and Q(z) = a1z + a0 + 
a1z-1 with 2a1 + a0 = 1 is a low-pass filter (LPF) to improve the 
robustness of the system [15]. 

If Q(z) = 1 and N is an integer, RC can provide zero 
steady-state error tracking of all harmonic components below 
the Nyquist frequency [23]. However, in an islanded microgrid 

(MG) the grid frequency f may be time-varying within a certain 
range [26]. Therefore, the order N would normally be fractional 
with a fixed sampling rate fs. The conventional RC with the 
order N being the nearest integer to its real value cannot exactly 
track fractional period signals, since high control gains shift 
away from interested harmonic frequencies. 

B. Single-Rate Fractional Order Repetitive Control  
The fractional order repetitive control (FORC) scheme [31], 

which is based on the fractional delay filter design theory in 
digital signal processing [32] is suitable for both integer and 
non-integer period application. Fractional N can be divided into 
an integer part Ni = int[N] and a fractional part F = N - Ni. The 
transfer function of an ideal delay element for the fractional 
part can be written as  

F
i zzH −=)(  (2) 
The above function can be approximated by a Lagrange 

interpolation polynomial FIR filter as follows [23], [25], [28].  


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where n is the order of FIR filter, and the coefficients h(k) can 
be obtained as  

∏
≠= −
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n
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Substituting (3) into (1), transfer function of FORC can be 
derived as  
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When F = 0 the transfer function of FORC shown in (5) will 
be identical to that of RC shown in (1). FORC provides a 
general approach for tracking and/or eliminating of any 
periodic signal with arbitrary fundamental frequency. Its block 
diagram is shown in Fig. 2, where Gr(z) in Fig. 1 is replaced by 
FORC Gfr(z). 

C. Multi-Rate Fractional-Order Repetitive Control  
Fig. 3 shows the structure of the MRFORC system in 

z-domain, where OP(z) represents the system z-domain 
open-loop transfer function for the inner PI control loop. It can 
be derived as (6). Note that the inner PI control loop has a 
feedback rate with a sampling period of Ts = 1 / fs. 

)()()( zGzPIzOP p=  (6) 

Fig. 1.  Plug-in single-rate repetitive control system. 
 

Fig. 2.  Block diagram of single-rate fractional-order repetitive controller. 
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The MRFORC Gfr(zm) has a reduced feedback rate with a 
sampling period of Tm = mTs, and m should be an integer. When 
m = 1, MRFORC becomes single-rate FORC. In the FORC 
block, E(zm) is the down-sampled error signal. And Ur(zm) is the 
output of FORC, which is interpolated by a zero order holder 
(ZOH). The relationship between the two sampling rates can be 
expressed as  

ms sTm
m

sT
sm ezzezmTT ==== ,,  (7) 

The transfer function of MRFORC Gfr(zm) can be derived 
from (5) as  
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C.1 Equivalent closed-loop system  

To analyze the MRFORC system shown in Fig. 3, it is first 
transformed to an equivalent system with its sampling rate 
equals to the FORC rate. Block diagram of the equivalent 
system is shown in Fig. 4, where OP(zm)  represents the 
equivalent FORC rate open loop transfer function of inner PI 
control loop. Since only the closed loop transfer function will 
be used in FORC design, the equivalent closed loop transfer 
function of inner PI control loop will be developed hereafter. 

On the basis of the open-loop transfer function for the inner 
PI control loop (6), the closed-loop transfer function of inner 
feedback control loop can be expressed as  

[ ])(1/)()( zOPzOPzCP +=  (9) 
Then, CP(z) can be rewritten in the state-space form as 

follows.  
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where xf, uf, yf, and vf are the state variables, input, output, and 
disturbance, respectively, k denotes discrete time index with 
sampling period Ts.  

Since the FORC rate is m times slower than the inner 
feedback loop rate, the FORC will use the previous ‘m’ outputs 
and the current input to produce an output at the current time 
instant. Denotes the discrete time index corresponding to the 

FORC rate by K. For (10), k = mK+ i (i = 1,2, . . . m), the state 
equations in an FORC rate are [30], [29]. 
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Then, by down-sampling, its slow-rate state equation is  



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where AS=Af
m, BS=(Af

m-1Bf + Af
m-2Bf + ⋯ + AfBf + Bf), Cs = Cf  

and Ds = Df. The equivalent FORC rate closed loop transfer 
function of inner PI control loop is  

ssmsm BAIzCzCP 1)()( −−=  (13) 

C.2 Stability analysis 

According to Fig.4, the error of the overall system can be 
derived as  
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With further manipulation on (14), the tracking error dynamics 
is expressed as  
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Assuming )()()()( mmmm zCPzSzQzT −= , it can be observed 
that the tracking error Eഥ(zm) is bounded if 

)()()()( mmm
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where ω ∈ (0, π/T௠), and π/Tm is the Nyquist frequency.  
The stability criteria can be interpreted geometrically [33] as 

shown in Fig. 5. The arrowed lines shown in Fig. 5 represent 
the vectors for Q(ejωTm), S(ejωTm)CP(ejωTm) and T(ejωTm ) at a 
specific frequency, respectively. In fact, the vectors for 
Q(ejωTm)  and S(ejωTm)CP(ejωTm)  should start from (0, 0). 
However, for the convenience of stability analysis and 
parameter design criteria developing, the ends of the vectors for 
both Q(ejωTm) is fixed at (1, 0), the other vectors are moved 
along the real axis, such that the readability of the figure can be 
improved. Note that the relationship among the vectors remains 
unchanged. In case that the vector for T(ejωTm) never goes out 
the unity circle centred at (1, 0) in the whole angular frequency 
range, the stability condition is held , which is shown in Fig. 
5(a). By contrast, Fig. 5(b) represents an unstable case, in 
which the vector for T(ejωTm) goes out of unit circle at high 
frequencies. The trajectory of the vector for T(ejωTm) with ω 

Fig. 3.  The structure of the plug-in MRFORC system.  

Fig. 4.  Equivalent single-rate FORC system. 
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increasing from zero to the Nyquist frequency represents 
Nyquist curve of T(zm). Thus, the system stability is guaranteed 
only when the Nyquist curve of T(zm) does not exceeds the 
unity circle. 

It can be inferred from Fig. 5 that with the same magnitude of 
S(ejωTm)CP(ejωTm), the larger phase lag of it makes vectors for 
T(ejωTm) more easily to go out of the unit circle, therefore one 
parameter design criteria for FORC is to try to keep 
S(ejωTm)CP(ejωTm)  with small phase lag at low and middle 
frequency range. 

C.3 Design of S(zm)  

Considering that steady-state tracking error is another key 
criterion to evaluate a controller’s performance, it is derived in 
(17) by simplifying (14). Note that in steady-state the tracking 

error is periodic and zm
-Ni / mH(zm) ≈ 1.  
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where หE2(ejωTm)ห represents the steady-state error for reference 
tracking and disturbance rejection with the inner PI control loop. 
It can be seen from (17) that the system steady-state error with 

MRFORC embedded becomes หE1(ejωTm)ห  times smaller, 
compared with that of the PI controlled system. Magnitude of หE1(ejωTm)ห indicates the harmonic rejection capability of the 
MRFORC, i.e., หQ(ejωTm)ห  close to 1 and/or large 
S(ejωTm)CP(ejωTm)  can ensure small error. Thus, another 
parameter design criteria for MRFORC is to try to keep 
S(ejωTm)CP(ejωTm) with enough magnitude at low and middle 
frequency range.  

As illustrated in C.2, small phase lag of S(ejωTm)CP(ejωTm) 
makes the system to have larger stability margin, i.e., to achieve 
the same stability margin, S(ejωTm)CP(ejωTm) with small phase 
lag can have larger magnitude. S(zm) can be chosen as inverse of 
the closed-loop system transfer function 1 / CP(zm)  [15], 
which leads to perfect phase lag compensation. However, it 
makes S(zm) exhibits as a high-pass filter, which may amplify 
the high frequency component, and therefore worsen the 
system stability. An alternative way is choosing S(zm) with the 
following form[16]:  

d
mmrm zzFKzS ⋅⋅= )()( 2  (18) 

where, Kr is the FORC gain, F2(zm) is a second-order digital 
filter and zm

d  is a pure leading element. F2(zm) is used to depress 
the gain in high frequency range for enhancing the stability, and 
zm

d  is used to compensate the delay of F2(zm) as well as CP(zm).  

III. CASE DESIGN  
To evaluate the performance of the proposed MRFORC 

scheme for APF, a three-phase compact islanded MG test bed is 
built in the laboratory and the corresponding block diagram is 
shown in Fig. 6. The experimental test bed consists of two 
converters connected to a common AC bus through LCL filters. 
One of them serves as grid forming inverter while the other one 

Fig. 6.  Equivalent single-line diagram of the built three-phase MG in the
laboratory.  

 
Fig. 5.  Geometric illustration of the sufficient condition of stability. 
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acts as APF with the proposed MRFORC scheme implemented 
in dq-frame. The control of APF includes phase locked loop 
(PLL), harmonic calculation, DC voltage control, current 
control and active damping. 

An array of resonant filters [34], [35] is utilized to selectively 
extract the harmonic components of load current, since 
selective harmonic compensation strategy brings many 
advantages, such as reduction of the filter rating and the 
current-control bandwidth, less possibility of dangerous 
interactions with system resonances [9]. In addition, to improve 
the frequency adaptability of the resonant filters, the central 
frequencies of each resonant filter is online calculated by using 
a PLL [36] with bandwidth equal to 62.8 rad/s. Moreover, to 
further enhance the harmonic detection accuracy, the 
interference among each harmonics was canceled by adding a 
decoupling loop, in which the irrelevant fundamental/harmonic 
component is subtracted before being fed to the relevant 
resonant filter. The implementation of resonant filters based 
frequency adaptive selective harmonic detection block is 
illustrated in Fig. 7, where the transfer function of resonant 
filter can be expressed in z-domain as. 

)1)2cos(

])2cos([
)( 2

2

+−

−
=

znfTbza

znfTzK
zBPF

pllsnn

pllsn
n

π

π . (19) 

where Kn = KinTs, an = 1 + Kn, and bn = 2 + Kn, Kn is the integral 
coefficient, Ts is the sampling period and n represents harmonic 
order. 

Fig.8 shows the experimental setup. Two 2.2-kW Danfoss 
inverters are adopted as grid forming converter and APF, 
respectively. The control algorithm is applied by using a 
DS1006 dSPACE system with a 10-kHz sampling frequency. 
The power stage parameters are illustrated in Table I. Based on 
these parameters and design criteria derived in the above 
section, the controller will be elaborately designed hereafter. It 
should be mentioned that the study case is on the basis of the 
built three-phase MG in the laboratory. However, the power 
stage parameters of the built three-phase MG are not 

specialized for APF, the resonance frequency of LCL filter is 
about 1 kHz, which should be commonly designed larger than 3 
kHz in APF applications [8]–[13]. The value of main circuit 
parameters limits the bandwidth of current loop, and thus only 
dominating harmonic components (5th, 7th, 11th, 13th) of the 
nonlinear load can be selectively compensated here in the 
experiment to verify the proposed control scheme.  

A. Model of control plant and active damping compensator 
By neglecting the parasitic parameters of the LCL filter of 

the APF system depicted in Fig. 6, the power plant model is 
illustrated in Fig. 9, then the s-domain transfer function from 
inverter output voltage UI to grid side inductor current Io is 
shown in (20). Note that capacitor-current-feedback based 
active damping [37], [38] is adopted to stabilized the system. 

)2(
11

)(
)()( 22

21 resresI

o
p

ssCsLLsU
sIsG

ωξω ++
⋅==  (20) 

where ωres = ඥ(L1 + L2) / (L1L2C), ξ = KD / [2ඥL1(L1 + L2) / (L2C)], 

Fig. 7.  Implementation of resonant filters based frequency adaptive selective
harmonic detection.  

Fig. 9.  Plant model of APF.  

 
Fig. 8.  Hardware picture for the inverters and the control platform.  

TABLE I 
CIRCUIT  PARAMETERS 

 Symbol Quantity Value 

Inverters 

L1 Converter side inductor 1.8mH

R1 parasitic resistance of L1 0.2Ω 

L2 Grid side inductor 1.8mH

R2 parasitic resistance of L1 0.2Ω 

C Capacitor of LCL-filter 27uF 

Linear load RL2 Load resistance 115Ω 

Nonlinear 
load 

LL1 DC-link inductor 100uH

CL1 DC-link Capacitor 235uF

RL1 Load resistance 115Ω 
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KD denotes the gain along capacitor-current-feedback path. In 
this study, ξ is set to 0.4, then KD = 9. 

To accurately derive the z-domain transfer function of the 
plant of APF for further MRFORC parameters design, both the 
sampling delay and the inherent unit delay of the digital 
controller were considered. The discretized plant of APF was 
shown in Fig. 10, where, z-1 represents the unit delay and 
zero-order holder (ZOH) stands for the sampling delay. The 
equivalent z-domain transfer function of the plant, which is 
from PI output UPI to grid side inductor current Io, can be 
regarded as two cascaded parts: from converter output voltage 
to capacitor current and from capacitor current to grid current. 
The corresponding z-domain transfer functions were given in 
(21) and (22). It is worth noting that (21) is discretized from its 
s-domain transfer function with ZOH transformation, while (22) 
with impulse-invariant (IMP) transformation. More detail can 
be found in [39]. 
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Based on (21) and (22), the equivalent z-domain transfer 
function of the plant can be derived as 
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Substituting the parameters illustrated in Table I in to (23), 
Gp(z) can be derived as 

0.47871.95743.08112.6024
0.0107)( 234 +−+−

=
zzzz

zzG p . (24) 

B. B. Inner PI control parameter design  
The PI controller was designed by approximate the LCL filter 

as a L filter [40], then the PI controller gains can be set as 
follows:  

)11()(
sT

KsPI
i

p +=  (25) 

)()( 2121 RRLLTi ++=  (26) 
)( 21 LLK cp += ω  (27) 

where ωc is the crossover angular frequency. Set ωc = 1570 
rad/s, then Kp = 5.65 and Ti = 0.018. Applying Tustin 
transformation to (25), PI(z) in z-domain can be obtained. Then 
substituting PI(z) into (6) and (9), the system open-loop and 
closed-loop transfer functions can be obtained in z-domain . 
Bode plots of the open-loop and closed-loop system transfer 
functions OP(z) and CP(z) are given in Fig. 11. It can be 
concluded from the figure that although the inner PI control 

loop is very robust due to large phase margin of 90º, the 
harmonic tracking ability is very limited because of large phase 
lag of CP(z) at high frequencies, e.g. 90º phase lag at 500 Hz. In 
order to enhance harmonic tracking capability, the MRFORC is 
added.  

C. C. MRFORC parameters design 
Before design the parameters of S(zm), the equivalent closed 

loop transfer function CPതതതത(z) with different sampling rates (m = 
1, 2, 4) for the above CP(z) were developed. Firstly, the before 
transfer function CP(z) was transferred into states equation in 
MATLAB. Afterwards, (12) can be used to calculate the 
equivalent FORC rate closed-loop system states equations. 
Finally, the state equations were transferred back to transfer 
function for MRFORC parameter design. Bode plot of the 
equivalent closed loop transfer function CPതതതത(z) with different 
sampling rates were illustrated in Fig. 12, where the magnitude 
characteristics are almost the same for m = 1, 2, 4 at all 
frequency range, while the phase characteristics only 
overlapped at frequencies lower than 100 Hz. For frequencies 
higher than 100 Hz, the phase lag will increase as the sampling 
rate decrease (bigger m value). Thus, the compensation 
function S(zm) should be separately designed by take this phase 
lag into consideration.  

Fig. 10.  Discretized plant model of APF.  

Fig. 11.  Bode plots of open-loop and closed-loop transfer functions.  

Fig. 12.  Bode plots of equivalent closed loop transfer function with different
sampling rates.  
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According to (18), S(zm) concludes a FORC gain, a 
second-order filter and a pure leading element. Note that the 
FORC gain ranges from 0 to 2 theoretically [15]. A larger value 
of the FORC gain means higher tracking precision with smaller 
stability margin and vice versa. The second-order filter and 
leading element is usually tuned by using trial and error method 
[16]. The tuned S(zm) is given in (28), where the angular 
frequency of the second-order digital filter is set to 15625 rad/s 
and damping ratio is set to 0.707 for all m values (m=1, 2, 4), 
while the orders of leading elements are set to 6, 3 and 2 for 
different m equlas to 1, 2, and 4, respectively.  
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Fig. 13 illustrates Bode phase plot of S(zm)CP(zm) at different 
FORC sampling rates. It can be seen from Fig. 13 that S(zm) 

compensates the phase delay of CP(zm) for different m values, 
which complied well with the design guide. At frequencies 
below 100Hz, the phase characteristic of S(zm)CP(zm) for all m 
values are the same, which implies the same control 
performance at low frequencies. However, the phase 
characteristic deviates with each other at frequencies above 
100Hz. For the system with m =1, its phase response is more 
approaching zero, which implies it has the best harmonic 
reference tracking capability among the three systems. 
Meanwhile, for system with m =4, lowest harmonic reference 
tracking performance is obtained, since it has the largest phase 
deviation.  

Fig. 14 illustrates the Nyquist curves of T(ejωTm ) with 
different m values when kr equals to 1. The Nyquist curves are 
all inside the unit circle, thus the system stability is guaranteed 
for all m values.  

IV. EXPERIMENTAL RESULTS 
 To verify the feasibility of multi-rate scheme and the 

frequency adaptability of MRFORC, the control algorithms are 
programmed in Matlab/Simulink and compiled to a dSPACE 
controller board (DS1006) to control both grid forming 
converter and APF. The experimental data are all saved by 
dSPACE ControlDesk and then plotted in Matlab. 

A.  Current reference tracking performance at different FORC 
sampling rate 

The evidence of the MRFORC scheme is first given in Fig. 
15. It can be seen from the figure that the MRFORC need to be 
implemented at every sampling cycle when m=1 (sampling rate 
of MRFORC equals to 10 kHz), while it only needs to be 
executed once in two/four sampling cycles when m=2/4 
(sampling rate of FORC reduced to 5 kHz/2.5kHz). It also can 
be seen that the FORC output signals are updated with the 
interleaved mode under dq-frame because of the interleaved 
conducting of FORC, consequently, the computation burden is 
reduced per sampling cycle. And the memory space needed for 
fundamental period delay element in FORC is also reduced to 
50% and 25% for m=2, and 4, respectively. 

Fig. 16 illustrates the steady-state current tracking 
performance with different FORC sampling rate. In Fig. 16, 

Fig. 13.  Phase-frequency response characteristic curves of )()( mm zCPzS

with different m values.  

 
Fig. 14.  Nyquist curves of )( mTjeT ω  with different m values. 

 
Fig. 15.  Waveforms of FORC output signals at different sampling rate.  
(a) m=1, (b) m=2, (c) m=4 
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load and grid currents, current reference, output current and 
tacking error of APF are presented. As shown in the figure, 
when m = 1 the peak value of the tracking error is about 0.27A 
and relative error to current reference (about 6A) is around 
4.5%. When m = 2, the peak value of current tracking error is 
increases to about 0.77A and relative error to current reference 
(about 6A) is around 12.8%. And when m = 4, the peak value of 
current reference tracking error is enlarged to about 1.3A and 
relative error to current reference (about 4.5A) is around 28.9%. 
It can also been seen that the smaller current reference tracking 
error the better harmonic compensation performance. It can be 
concluded from above that the benefit of multi-rate scheme is 
achieved at the expense of performance degradation, which 
agrees with the theoretical analysis presented in section III C.  

The tradeoff between the performance degradation and 
sampling rate reduction should be made depending on the 
requirement in different applications. For the system with 
higher control/switching frequency, it may have a faster inner 
feedback PI loop with less digital system delay. However, 
higher execution frequency is not necessary for the FORC 

aimed at improving the steady-state performance. Considering 
that the system with higher control/switching frequency has 
shorter interruption time, the importance of the multi-rate 
technique in saving computation time becomes more 
meaningful. FORC loop with 5kHz execution frequency may 
have similar steady state performance with that of a system 
with 10 kHz or 20 kHz control/switching frequency. 
Meanwhile, FORC only need to be implemented once in 
two/four control cycles with 10 kHz or 20 kHz 
control/switching frequency, thus computation time is 
significantly reduced.  

B. Current reference tracking performance under wide grid 
frequency variation (m = 2) 

To evaluate the frequency adaptivity of the MRFORC, 
experiments are carried out with the FORC sampling rate 
equals to 5 kHz (m = 2). Fig. 17 illustrates the steady-state 
current reference tracking performance at different grid 
frequencies. The current reference tracking error is about 0.75 
A at grid frequency equals to 55 Hz and 0.73 A at 45Hz, as 
shown in Fig. 17 (a) and (b), respectively. Although the 
approximation accuracy of the FIR filter in the FORC for the 
ideal fractional delay element was changed along with the 
variation of grid frequency, which may has an effect on current 
reference tracking performance, the effect is really small and 
often has been neglected [23].  

Fig. 18 shows the transient response of current tracking error 
during grid frequency steps. It should be noted that the grid 
frequency is obtained from PLL. Fig. 18(a) illustrates the 
waveforms when grid frequency steps up from 50 Hz to 55 Hz, 
while Fig. 18(b) depicts the waveforms of grid frequency steps 
down from 50Hz to 45Hz. The regulation time is about 0.15s 
and 0.05s for grid frequency step up and step down, 
respectively. The dynamic error for frequency step up is 
smaller than the one for frequency step down. This difference is 
likely depended on the difference of the change in the internal 
mode of the MRFORC during grid frequency step up and step 
down process. The relationship of the internal mode to the 
MFORC is similar with that of the integrator to the PI controller. 
It takes more responsibility for zero steady-state error tracking 
and determining dynamic regulation time. Although the 
existence of different response time, it can be concluded that 

 
Fig. 16.  Steady-state current reference tracking performance with different
FORC sampling rate. (a) m = 1, (b) m = 2, (c) m = 4 

 
Fig. 17.  Steady-state current reference tracking error under different grid
frequency. (a) 55Hz, (b) 45Hz 
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the proposed MRFORC has good frequency adaptivity.  

C. Performance evaluation for APF with MRFOC 
Steady-state current waveforms of the APF and its frequency 

spectrum are illustrated in Fig. 19 to evaluate the steady 
performance of APF with MRFORC. In Fig. 19 (a), from up to 
bottom are ‘Load current’, ‘APF output current’, and ‘Grid 
current’, respectively. Fig. 19 (b) illustrates the frequency 
spectrums of load and grid currents. As mentioned in Section 
III, due to the limit of the main circuit parameters, only 
dominating harmonic components of the nonlinear load have 
been considered and selectively compensated. It can be seen 
that the high order harmonics of load current are really small, 
and dominant harmonics are low order harmonics, which have 
been greatly reduced.  

The transient current waveforms of the APF are illustrated in 
Fig. 20 to evaluate the dynamic performance of MRFORC. 
From up to bottom are ‘Load and grid currents’, ‘Reference and 
APF output currents’, and ‘Residual dominant harmonics (5th, 
7th, 11th, 13th) in grid current’, respectively. It can be seen that 
before APF activation grid side current is distorted by the 
nonlinear load, while after that, the selected main harmonic 
current components of load are compensated, consequently, the 
harmonic distortion of grid side current is reduced obviously. 
Note that it takes about 0.2s for the APF to reach the 
steady-state.  

V. CONCLUSION 
This paper proposes a MRFORC scheme for a three-phase 

shunt APF. The synthesis, stability analysis and parameters 
tuning criteria of the MRFORC system are given in detail. The 
MRFORC is able to provide high tracking accuracy for 
harmonic reference even in the presence of wide grid frequency 
variations. It has also been demonstrated that both the 
computational burden and the memory space are reduced at the 
cost of the performance degradation to some extent. The 
laboratory tests of a compact island three-phase MG are carried 
out to validate the feasibility and effectiveness of the proposed 
scheme. Besides, the proposed approach is not only suitable for 
APF, but also can be applied in distributed generation (DG) 
inverters for the purpose of providing harmonic compensation 
functions to realize a cost-effective and flexible operation of 
DG units. 
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