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  Abstract—When faced with distorted grid voltage, more 

harmonics will appear in the output currents of the grid-

connected inverters. The grid voltage feedforward strategy, 

as the most direct solution to compensate the harmonics, 

however, is seriously affected by the errors in the grid 

voltage feedforward loop, such as delays. This issue is more 

significant for high power inverters where the switching 

frequency is relatively low (<5kHz), and the grid-interface 

inductance is small (<0.5mH). The errors mainly include the 

signal distortion caused by the conditioning circuits, the 

control delay of the digital controller, and the zero-order 

hold (ZOH) characteristic of pulse width modulation 

(PWM). In this paper, several improvements have been 

made to reduce the signal distortion and compensate the 

delays. A second-order Butterworth low-pass filter in the 

conditioning circuit is carefully designed with the maximum 

flat magnitude response and the almost linear phase 

response to avoid distorting the measured grid voltage. 

Further, based on the conventional repetitive predictor, an 

open-loop simplified repetitive predictor is proposed to 

compensate the delays in the grid voltage feedforward loop. 

Three predictive steps are achieved by the open-loop 

simplified repetitive predictor to compensate the delays: one 

step for the delay caused by the conditioning circuit, the 

second step for the control delay of the digital controller, and 

the third step for the ZOH characteristic of PWM. The 

effectiveness of the improved grid voltage feedforward 

strategy are experimentally validated on a 250kVA solar 

power generation system, where the current harmonics are 

effectively attenuated. In addition, the inverter starting 

current is suppressed. 

 

  Index Terms—Delay compensation, distorted grid voltage, 

grid voltage feedforward, open-loop simplified repetitive 

predictor, three-phase grid-connected inverters. 

 

I. INTRODUCTION 

  Nowadays, nonlinear loads based on power electronic 

converters are widely used, which introduces harmonic 

distortion in the grid voltage especially when the grid is not 

strong enough (weak or remote systems) [1], [2]. Although the 

IEEE standard 1547-2003 has defined the total harmonic 

distortion (THD) of the grid voltage to be below 5.0%, the grid-

connected inverters, especially high power inverters with 

relatively low switching frequency and small filtering 

inductance, are seriously affected by the grid voltage distortion, 

resulting in more harmonics in the output current. Furthermore, 

if a large amount of current harmonics are injected into the grid, 

the grid voltage distortion will be further intensified [1]. As a 

key equipment in renewable power generation systems, the 

grid-connected inverters must be optimized to cope with the 

voltage harmonics. 

  There are many factors contributing to the output current 

harmonics of grid-connected inverters, such as grid voltage 

distortion, sampling precision and other factors as detailed in 

Fig. 1, where this paper will focus on the compensation of grid 

voltage distortion (harmonics). The current harmonics can be 

divided into high-frequency (switching frequency) harmonics 

and low-frequency (multiples of fundamental frequency) 

harmonics. The high-frequency current harmonics caused by 

the device switching can be effectively minimized by the output 

filters, e.g. L or LCL filters. The low-frequency current 

harmonics, however, if attenuated by passive output filters, the 

filters will be bulky and costly [3]. Hence, using control 

strategies to attenuate the low-frequency current harmonics is a 

method widely adopted. 
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Fig. 1.  Factors contributing to the output current harmonics of grid-connected 
inverters. 
 

  There have already been several methods to attenuate the 

low-frequency current harmonics due to the grid voltage 

harmonic distortion. They can be grouped into two categories: 

methods using special current controllers to obtain high gains at 

harmonic frequencies, and methods feeding forward specific 

terms to the control loop. For the conventional inverters 

controlled in the synchronous frame with proportional-integral 

(PI) controllers, simply increasing the proportional or integral 

gain can attenuate the output current harmonics to some extent. 

However, the cost is the reduced stability and noise immunity 

of the system [3], [4]. In [5], several PI controllers are adopted 

based on multiple synchronous frames to attenuate each 
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individual harmonics and the computational burden is 

significant. Given PI controllers’ drawback of low gains at 

harmonic frequencies, alternatively, controllers such as resonant 

(R) controllers [6] and vector-proportional-integral (VPI) 

controllers [7], [8] can be adopted, which have extremely high 

gain at their resonant frequencies. In combination with the 

proportional controller or PI controller, further PR controllers 

[9], PI-R controllers [10] and PI-VPI controllers [11] are 

proposed, where good current harmonics minimization 

capability, as well as satisfying dynamic and steady-state 

performance can be obtained. However, with one resonant or 

VPI controller, only a pair of negative and positive harmonic 

components can be regulated. If several current harmonic 

components need to be eliminated, more controllers should be 

added, which increases the complexity of the control system 

[12]. Further, the system becomes unstable if the resonant 

frequencies of the added resonant controllers are outside the 

bandwidth of the current control loop [2], [8]. Several literatures 

have proved that the repetitive controller serves as a bank of 

resonant controllers, and it is capable of regulating a series of 

harmonic components [13], [14]. However, the repetitive 

controller deeply relies on the former input values, which limits 

the dynamic response of the current control loop.  

  Feedforward methods have been widely used in control 

applications to lower the output current harmonics and increase 

the dynamic response of the system [15]-[24]. The proportional 

feedforward of the output currents [15]-[17] can only 

compensate the current harmonics caused by nonlinear loads, 

but incapable of suppressing the current harmonics caused by 

the grid voltage distortion. With the aim of suppressing the 

impact of the distorted grid voltage, the grid voltage 

feedforward strategy is the most direct solution which 

incorporates the measured grid voltage in the control loop 

through an additional feedforward path. The grid voltage full-

feedforward strategy for single-phase LCL based grid-

connected inverters is proposed in [18] dealing with the 

distorted grid voltage conditions. [19] and [20] extend the grid 

voltage full-feedforward strategy to the three-phase inverters. 

Besides the grid voltage, the full-feedforward strategy also 

requires the feedforward of another two derivative terms, which 

are sensitive to high-frequency noises, making it hard for 

practical implementation [21], [22]. As a further extension, an 

improved grid-voltage estimator is proposed in [21] to solve this 

derivative problem. But the errors in the feedforward loop, 

which affect the feedforward precision, are still not addressed 

in detail. Theoretically, the simple proportional grid-voltage 

feedforward strategy can effectively suppress the impact of the 

distorted grid voltage on the system. However in practice, due 

to the lack of feedforward precision, the grid voltage 

feedforward term cannot sufficiently cancel the distorted grid 

voltage leading to a non-ideal performance. Regarding the grid 

voltage feedforward strategy adopted in [23], only one control 

step is predicted by the consecutive voltage samples, and in [24], 

only the delay caused by the conditioning circuits is considered, 

which will limit the capability of cancelling the harmonics in 

grid voltage. There is lack of systematic analysis of how various 

factors, e.g. sampling errors, control delay, and the zero-order 

hold (ZOH) characteristic of pulse width modulation (PWM), 

affect the grid voltage feedforward strategy. While these factors 

may be acceptable for high-switching-frequency low-power 

systems, it can however be a serious issue for high-power 

systems with low-switching-frequency (<5kHz) and low 

inductance (<0.5mH). 

  In this paper, the study of how to lower the current harmonics 

with the distorted grid voltage is based on the conventional grid 

voltage feedforward strategy. The errors in the feedforward loop 

which affect the performance of the conventional grid voltage 

feedforward strategy are investigated in detail, drawing to the 

conclusion that the errors in the feedforward loop mainly 

include the signal distortion caused by the conditioning circuit, 

the control delay of the digital controller, and the ZOH 

characteristic of PWM. 

  The amplitude errors of the grid voltage feedforward loop can 

be adjusted by regulating the gain of feedforward loop. 

However, the compensation of the phase delay of the 

feedforward voltage is challenging. Since the fundamental and 

harmonic components of the grid voltage are repetitive every 

cycle when the grid is stable, the repetitive predictor [25]-[27] 

is adopted in this paper to compensate the delays in the grid 

voltage feedforward loop. And based on the conventional 

closed-loop repetitive predictor [25], an open-loop simplified 

repetitive predictor is proposed with reduced computational and 

design complexity, and the elimination of stability issues. 

Considering the limited dynamic response of the repetitive 

predictor, the hysteresis error of the open-loop simplified 

repetitive predictor is analyzed and presented in this paper.  

  In the grid voltage feedforward loop, the commonly used 2nd 

order Butterworth low-pass filter [28], [29] in the conditioning 

circuit may distort the measured grid voltage and degrade the 

feedforward performance. Meanwhile, the open-loop simplified 

repetitive predictor implemented by the digital controller can 

only predict the signal certain steps ahead, i.e. the predictor has 

a linear phase characteristic. To cooperate with the linear phase 

characteristic of the repetitive predictor and enhance the grid 

voltage feedforward performance, the 2nd order Butterworth 

low-pass filter is carefully designed with the maximally flat 

magnitude response and the almost linear phase response. With 

the designed 2nd order Butterworth low-pass filter and the open-

loop simplified repetitive predictor, the delay in the feedforward 

loop is compensated effectively. Further, the delay-

compensation states indicated by the harmonic admittances 

have been classified into three cases: the partial compensation 

state, the full compensation state, and the over compensation 

state.  

  This paper is structured as follows. In Section II, the errors 

between the digital controller and the power circuit of the 

inverter systems are listed and analyzed. Section III analytically 

derives the impact of the errors in feedforward loop on the grid 

voltage feedforward strategy. Then, an open-loop simplified 

repetitive predictor is proposed with its hysteresis error derived 

numerically in Section IV. The conditioning circuit is carefully 

designed in Section V to obtain the maximally flat magnitude 

response and the almost linear phase response. In Section VI, 

using the improved grid voltage feedforward strategy based on 

the simplified repetitive predictor, with the delays in the current 

loop considered, the current control loop is designed and the 

delay-compensation states of the grid voltage feedforward loop 

are classified. Lastly, the correctness of the analysis and the 

effectiveness of the improved grid voltage feedforward strategy 

are experimentally validated on a 250kVA solar power 

generation system in Section VII. 
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II. ERRORS BETWEEN THE DIGITAL CONTROLLER AND THE 

POWER CIRCUIT OF THE INVERTER SYSTEMS 

  The diagram of a three-phase transformerless grid-connected 

photovoltaic (PV) inverters is shown in Fig. 2. L1, L2, Rf and Cf 

are the inverter-side inductance, the grid-side inductance, the 

damping resistance, and the capacitance of the LCL filter, 

respectively. And Cdc is the dc-link capacitance. 
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Fig. 2.  Power circuit of three-phase tansformerless grid-connected PV 

inverters. 

 

  For the convenience of later analysis, the mathematical model 

of the PV inverter system is derived in the synchronous rotating 

(d-q) coordinate. Given the well-damped LCL filter in Fig. 2 can 

be treated as an equivalent L filter at low frequencies [30], the 

average mathematical model for voltage and power can be 

expressed as [31]-[33] 
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, (1) 

 
dc dc

3
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2
d d q qv i v i u i   (2) 

where R is the line equivalent resistance; ω1 is the angular line-

frequency; L is the equivalent inductance which includes the 

inverter-side inductance L1 and the grid-side inductance L2. The 

other variables are transformed from the variables denoted in 

Fig. 2.  

  As shown in (1), there are strong couplings between the d-

axis and q-axis. With the commonly-used dual closed-loop 

control strategy based on the feedforward decoupling and the PI 

controller, the inner current loop and the outer dc-link voltage 

loop can be given by 
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 vi
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K
i K u u

s

     (4) 

where Kp, Ki, Kvp, and Kvi are the proportional and integral gain 

of the current loop and the dc-link voltage loop, respectively; id
* 

and iq
* are the reference current of d-axis and q-axis; udc

* is the 

dc-link reference voltage. With the grid voltage feedforward 

term (ed and eq), the dynamic response of the system is enhanced 

[24], and theoretically, the current harmonics caused by the 

distorted grid voltage can be totally eliminated through the 

feedforward voltage compensation. However, in digital control 

systems, id, iq, ed, eq, and udc are not the real values but the 

measured (sampled) values from the power circuit; vd and vq are 

not the output voltages of the inverter but the reference voltages 

given to the PWM. There are errors between these variables and 

their real values. Taking these errors into account, (3) and (4) 

should be expressed as 
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* i
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, (5) 

 vi

vp dc dcM( )( )d

K
i K u u

s

     (6) 

where idM, iqM, edM, eqM, and udcM are the measured values; vd
* 

and vq
* are the reference voltage given to the PWM. The 

expressions between the real values and the measured values 

can be given by 
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 (7) 

where idE, iqE, edE, eqE, and udcE are the measurement errors; vdE 

and vqE are the output voltage errors. With these errors taken into 

account, the feedforward decoupling method can be illustrated 

in Fig. 3. 
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Fig. 3.  Feedforward decoupling method with the errors taken into account. 

 

  With (1), (5), and (7), the output currents of the inverter can 

be derived as  
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  As seen in (8), the errors between the digital controller and 

the power circuit have a negative impact on the output currents 

of the inverter. And the terms edE – vdE and eqE – vqE will 

determine the grid voltage feedforward precision. The detailed 

discussion about the errors in the grid voltage feedforward loop 

concerned in this paper is given as follows. 

  The ac voltage measurement errors edE and eqE mainly come 

from sensors, signal conditioning circuits and A/D chips. With 

the fast response and high precision of Hall sensors [34], and 

the fast throughput 16-bit A/D chip AD7656 adopted in this 

paper, the errors caused by the Hall sensors and A/D chips can 

be ignored. However, the conditioning circuits may distort the 

measured signals and need to be carefully designed. 

  One of the factors leading to the output voltage errors vdE and 

vqE is the ZOH characteristic of PWM [35], [36]. The transfer 

function of PWM in the frequency (s) domain can be expressed 

as 

 
PWM

PWM PWM

1
( )

T s
e

G s K
s




  (9) 

where KPWM and TPWM are the gain and period of PWM, 

respectively. It is complicated to discretize (9) in z domain when 

the control period Tc of the controller and the period of PWM 

are the same [23], [35]. Ideally, the discrete form of (9) should 

be z-0.5 (discrete time Tc=TPWM) since the fundamental 

component of the inverter output voltage is delayed by TPWM/2 

due to the ZOH characteristic [35], [36]. However, the discrete 

term z-0.5 can’t be realized by the digital controller due to the 

minimum unit of discretization is based on the control period of 

the digital controller. In this paper, a control frequency of 10kHz 

and a switching frequency of 5kHz (TPWM doubles Tc) are 

adopted, so that the PWM term can be discretized as z-1 (discrete 

time Tc= TPWM/2). And with higher control frequency, better 

control accuracy and dynamic performance can also be 

achieved [37]. Besides the aforementioned ZOH characteristic 

of PWM, several other elements, e.g. the dead-time of PWM, 

the device turn-on and turn-off delays, and the device voltage 

drop can also cause the output voltage errors [38]. This portion 

of errors can be minimized by the dead-time compensation to 

some extent and will not be considered in this paper.  

  In addition, in a digital control system, the reference voltage 

given to the PWM must be calculated before the PWM update. 

Therefore, one control period delay in the digital controller 

before the PWM update is indispensable from the control 

perspective [23]. 

  In summary, the ac-voltage measurement errors (edE and eqE) 

due to the conditioning circuit, the output voltage errors (vdE and 

vqE) due to the ZOH characteristic of PWM, and the control 

delay of the digital controller for PWM update (digital control) 

together decide the grid voltage feedforward precision which 

can directly affect the performance of the grid voltage 

feedforward control. And how these errors affect the 

performance of the conventional grid voltage feedforward 

strategy is analyzed in detail as follows. 

 

III. IMPACT OF THE ERRORS IN FEEDFORWARD LOOP ON THE 

GRID VOLTAGE FEEDFORWARD STRATEGY 

  In order to simplify the analysis how the errors in the 

feedforward loop affect the grid voltage feedforward strategy, 

premises are assumed as follows: 1) Only a single harmonic 

exists in the grid voltage; 2) The grid is in stable operation, i.e. 

no transient conditions are taken into account. 

  Given the fundamental frequency is ω1, the hth order grid 

voltage harmonic can be expressed as  

 1( ) cos( )h h he t E h t    (10) 

where Eh, hω1, and φh are the amplitude, angle frequency, and 

phase angle of the hth order grid voltage harmonic. 

  Assume the feedforward term lags the real grid voltage by td 

(td<0). Correspondingly, the phase delay φdh of the hth order grid 

voltage harmonic can be expressed as φdh=hω1td, φdh<0. It 

should be noted that td is not related to h, but φdh is. And the 

amplitude error is εhEh (-1<εh<1). With the errors in the grid 

voltage feedforward loop, the feedforward grid voltage can be 

expressed as 

 1 d( ) (1 ) cos( )h h h h hv t E h t       . (11) 

  With the grid voltage feedforward compensation, the remnant 

voltage harmonic can be derived from (10) and (11) as 

2
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. 

  Define the amplitude ratio of the remnant voltage harmonic 

to the original grid voltage harmonic as the grid voltage 

harmonic residual rate η, which can be given by (13) derived 

from (12). 

 2

d= 1 (1 ) 2(1 )cos 100%h h h        . (13) 

  Here, the amplitude error and phase delay are analyzed 

separately: 

  1) When φdh=0, (13) can be transformed to  

 2= 1 (1 ) 2(1 ) 100%= 100%h h h         . (14) 

  As seen in (14), when there is no phase delay, η is equal to εh. 

Among the errors in the grid voltage feedforward loop, the 

control delay of the digital controller and the ZOH characteristic 

of PWM won’t affect amplitude of the harmonics. And with the 

maximally flat magnitude response of the conditioning circuit 

designed latter in Section V, the low order harmonics will 

approximately have the same the amplitude errors εh. Hence, the 

amplitude errors can be minimized by adjusting the gains of the 

sampled signals in software within an acceptable range.  

  2) When εh=0, (13) can be transformed to 

 d 1 d= 2 2cos 100% 2 2cos( ) 100%h h t       . (15) 

  As seen in (15), when there is no amplitude errors, η is the 

function of h and td. The relation among η, h, and td given in (15) 

can be illustrated in Fig. 4(a) where only curves with h=1, 3, 5, 

7 are plotted to make the figure clear. As seen, for the hth order 

harmonic, when φdh is even times of π, η becomes zero; when 

φdh is odd times of π, η values the maximum 200%. It is 

indicated that if phase delays exist in the grid voltage 

feedforward loop, the feedforward term can even intensify the 

impact of grid voltage harmonics on the system. In practice, the 
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delay time in the grid voltage feedforward loop is smaller than 

500µs, and the relation among η, h, and td is illustrated in Fig. 

4(b). As seen, if td equals zero, the conventional grid voltage 

feedforward control can totally cancel the grid voltage 

harmonics to eliminate its impact on the system. However, the 

errors caused by the conditioning circuit, the digital control, and 

PWM lead to the delay in the grid voltage feedforward loop, e.g. 

in the high-power inverters with a low switching frequency of 

2kHz, the delay can be more than 250µs. Consequently, the 

performance of the conventional grid voltage feedforward 

control is greatly degraded. In this paper, an open-loop 

simplified repetitive predictor is proposed to compensate the 

delay in the grid voltage feedforward loop, and the performance 

of the grid voltage feedforward strategy is effectively improved. 
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Fig. 4.  The variation of η with h and td (h =1, 3, 5, 7): (a) |td| form 0s to 0.02s, 

(b) |td| form 0s to 500µs. 

 

 

IV. OPEN-LOOP SIMPLIFIED REPETITIVE PREDICTOR AND ITS 

HYSTERESIS ERROR ANALYSIS 

  As the fundamental and harmonic components of grid voltage 

are repetitive every cycle when the grid is stable, it is very 

suitable to use the repetitive predictor to predict the grid voltage 

feedforward term several steps ahead, which can compensate 

the delays and enhance the precision of the grid voltage 

feedforward [25]-[27]. In this section, based on the 

conventional closed-loop repetitive predictor [25], an open-loop 

simplified repetitive predictor is proposed with unchanged 

steady-state and dynamic performance. The computational and 

design complexity is reduced and there is no stability issue with 

the simplified predictor. The hysteresis error is analyzed 

accounting for the grid voltage dip. 

 

A. A Simple Hysteresis Repetitive Predictor 

  Take each control period Tc as a step, and in a fundamental 

cycle there are N steps in total. Due to the periodic grid voltage, 

the sampled grid voltage of the former cycle can be taken as the 

predicted values of the current cycle, which makes it possible to 

predict the grid voltage feedforward term for any p (0≤p≤N) 

steps ahead. This method can be taken as a simple hysteresis 

repetitive predictor illustrated in Fig. 5, where y(k) is the current 

value; y(k+p-N) is the past sampled value with N-p steps 

hysteresis; ˆ( )y k p is the predictive value ahead p steps. In a 

digital control system, it is easy to store the sampled grid voltage 

of the former cycle, which makes it possible to implement this 

simple hysteresis repetitive predictor. 

 

( )y k ˆ( ) ( )y k p y k p N   p Nz 

 
Fig. 5.  Simple hysteresis repetitive predictor. 

 

  Fig. 6 shows the performance of the simple hysteresis 

repetitive predictor in an extreme situation, using a sine wave 

with an abrupt change to zero at 0.06s. In the steady state, the 

input signal is predicted by p steps ahead as expected; However 

in the dynamic state, the N-p steps hysteresis error appears. The 

phenomenon is due to the fact that the simple hysteresis 

repetitive predictor takes the N-p steps hysteresis as an 

equivalent prediction with p steps ahead. If the simple hysteresis 

repetitive predictor is used to predict the grid voltage 

feedforward term by p steps ahead, it may lead to over currents 

of the system and potential devices failure when the grid voltage 

dip occurs. The simple hysteresis repetitive predictor is not 

directly applicable as the capability of low voltage ride through 

(LVRT) is generally required in a renewable power system [39]. 
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Fig. 6.  Performance of the simple hysteresis repetitive predictor (p=5 and 
N=200). 

 

B. Conventional Closed-Loop Repetitive Predictor 

  The typical scheme of the closed-loop repetitive predictor 

comprises a repetitive controller, a compensator, and a 

proportional term, as shown in Fig. 7. When the predicted signal 

is periodic every cycle, the error between the current value and 

the predictive value also appears as a fixed periodic waveform. 

The closed-loop repetitive predictor adds the repetitive error 
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extracted by the repetitive controller to the current value 

through a closed-loop feedback path to obtain the predictive 

value. Each part of the closed-loop repetitive predictor is 

discussed as follows: 

  (1) Repetitive controller. As shown in Fig. 7, Q(z)z-N is the 

internal model of the repetitive controller. With Q(z)=1, like the 

general integral achieving a zero steady-state error for 

harmonics [6], the repetitive controller has an infinite gain and 

zero phase shift at the fundamental frequency and its multiple 

frequencies [13], [14]. However, the poles of the open-loop 

transfer function which exist on unit circle may lead to 

instability [27]. In practice, considering both control accuracy 

and stability, Q(z) is selected as less but close to one to make the 

repetitive controller behave like an integrator.  

  (2) Compensator. The compensator zp makes it possible to 

predict the signal ahead p steps. And to be implemented in a 

digital controller, the hysteresis term z-N must be added. 

  (3) Proportional term. The proportional term kr determines 

the influence of the compensation term yc(k+p-N) on the closed-

loop repetitive predictor to keep a balance between stability and 

convergence speed [25]. 

 

+ +

+

( )y k
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ˆ( )y k

+
+

Repetitive controller

ˆ( ) ( )y k p y k N p   

c ( )y k

( ) NQ z z

Nz

pz

c ( )y k p N 

rkpz

Compensator Proportional term

.
.

 
Fig. 7.  Conventional closed-loop repetitive predictor. 

 

  In Fig. 7, ˆ( )y k is the prediction of current value,

ˆ ˆ( )= ( + ) py k y k p z ; e(k) is the predictive error between y(k) and

ˆ( )y k ; yc(k) is the integral of e(k) by the repetitive controller. 

With yc(k) ahead p steps (the zp term), delayed by N steps (the  

z-N term), and then multiplied by kr, the compensation term 

yc(k+p-N) can be calculated. By adding this compensation term 

to the current value, y(k+p-N) is obtained which can be taken as 

the predictive value ˆ( + )y k p during the steady state. 
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Fig. 8.  Performance of the closed-loop repetitive predictor (p=5, N=200, 
Q(z)=0.95, and kr=0.98). 

 

  The repetitive predictor obtains the predictive value by 

adding the compensation term certain steps ahead to the current 

value. It has better dynamic performance compared to the 

simple hysteresis repetitive predictor which obtains the 

predictive value directly from the former cycle. Fig. 8 shows the 

performance of the closed-loop repetitive predictor in an 

extreme situation. As seen, in the steady state, the input signal 

is predicted by p steps ahead; and in the dynamic state, the N-p 

steps hysteresis error appears as the simple hysteresis repetitive 

predictor. In contrast to the hysteresis error of the simple 

hysteresis repetitive predictor shown in Fig. 6, this hysteresis 

error have been effectively reduced, whose maximum value is 

related to Q(z) and kr. 

 

C. Open-Loop Simplified Repetitive Predictor 

  Although the above mentioned closed-loop repetitive 

predictor can predict the periodic signals p steps ahead and 

decrease the hysteresis error, the closed-loop structure and 

several terms existing in the predictor make the control scheme 

complicated. Further, the stability of the control loop need to be 

carefully considered. To overcome these issues, an open-loop 

simplified repetitive predictor is proposed.  

  The transfer function of the closed-loop repetitive predictor 

shown in Fig. 7 can be expressed as 

 
r

CR

r

ˆ 1 ( )( )
( )

( ) 1 ( )

N p N

N N

Q z z k zy k p
G z

y k Q z z k z

 

 

 
 

 
. (16) 

  Let Q(z)=1 and kr=1, (16) can be simplified as  

 OR

ˆ( )
( ) 1

( )

N p Ny k p
G z z z

y k

 
    . (17) 

  The predictor shown in (17) can be taken as an open-loop 

simplified repetitive predictor which has a clear physical 

meaning. For better comprehension, the open-loop simplified 

repetitive predictor shown in Fig. 9 is analyzed from the 

viewpoint of steady-state and dynamic performances, 

respectively. 
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eN(k) 
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Fig. 9.  Open-loop simplified repetitive predictor. 

 

  From the viewpoint of steady-state performance, the error 

eN(k) between y(k) and y(k-N) is zero due to the waveform of the 

periodic signal is repetitive every cycle. In this situation, the 

open-loop simplified repetitive predictor takes the N-p steps 

hysteresis signal as the prediction p steps ahead, like the simple 

hysteresis repetitive predictor shown in Fig. 5. 

  From the viewpoint of dynamic performance, the error epN(k) 

between y(k-N) and y(k+p-N), which plays the same role as the 

compensation term yc(k+p-N) in the closed-loop repetitive 

predictor, is added to the current value to obtain the predictive 

value. Good dynamic performances of the open-loop simplified 

repetitive predictor and the closed-loop repetitive predictor are 

based on that they both obtain the predictive value by adding 

the compensation term ahead certain steps to the current value. 
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  Compared to the performance of the closed-loop repetitive 

predictor shown in Fig. 8, similar steady-state and dynamic 

performance of the open-loop simplified repetitive predictor 

given in (17) is shown in Fig. 10 with the maximum hysteresis 

error exactly valued 15.68% (p=5). Due to the elimination of the 

repetitive controller and proportional term of the closed-loop 

predictor, the computational complexity of the open-loop 

simplified repetitive predictor is reduced. Further, given its 

open-loop structure without any integrator or differentiator, the 

instability problem does not exist.  

 
1.5

1.0

0.5

0

-0.5

-1.0

-1.5
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

M
ag

n
it

u
d
e

t/s

ˆ( )y k p( )y k

c( )N p T
cpT

The maximum hysteresis 

error is 15.68%.

 
Fig. 10.  Performance of the open-loop simplified repetitive predictor (p=5 and 

N=200). 

 

In addition, without the limitation of the parameters (Q(z) and 

kr) for stability consideration, the precision of the open-loop 

simplified repetitive predictor is better than that of the 

conventional closed-loop repetitive predictor. The small 

difference between the output of the conventional predictor 

(Q(z)=0.95, kr=0.98) and the simplified predictor is shown in 

Fig. 11. As seen, the difference between the two predictors is 

less than 0.008 at both steady and dynamic states. When Q(z)=1 

and kr=1, the difference will become zero. 
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Fig. 11.  Difference between the output of the conventional repetitive predictor 

(Q(z)=0.95, kr=0.98) and the simplified repetitive predictor. 

 

D. Analysis on Hysteresis Error of the Open-Loop Simplified 

Repetitive Predictor 

  In practice, when the grid voltage dip occurs, only the 

fundamental grid voltage is concerned. Hence, assuming a 

fundamental sinusoidal signal y(k), with the open-loop 

simplified repetitive predictor, the differential equation in the 

steady state can be expressed as 

ˆ( ) ( ) ( ) ( ) ( ) ( )pNy k p y k y k N y k N p y k e k         .(18) 

  Assuming that the signal changes from y(k) to ζy(k) (0<ζ<1), 

the differential equation in the hysteresis N-p steps can be given 

by 

 ˆ( ) ( ) ( )N p pNy k p y k e k    . (19) 

  With the input signal ζy(k), the differential equation in the 

steady state is 

 ˆ( ) ( ) ( )pNy k p y k e k     . (20) 

  With (19) and (20), the hysteresis error eζ(k) of the open-loop 

simplified repetitive predictor can be derived as 

 ˆ ˆ( ) ( ) ( ) ( )(1 )N p pNe k y k p y k p e k         . (21) 

  As is seen in (21), eζ(k) is directly proportional to epN(k), and 

inversely proportional to ζ. Adopt the conclusion in (15) to (21), 

the maximum hysteresis error eζ can be derived as 

 1 c(1 ) 2 2cos( ) 100%e pT      . (22) 

  According to (22), eζ is plotted in Fig. 12 with ζ and p varying. 

With the development of the digital control system, the delay in 

the whole grid voltage feedforward loop is usually within 500µs, 

which makes p a small integer. Thereupon, even with a sudden 

dip in grid voltage (ζ is small), eζ will be small and acceptable. 

For example, when p=3, the maximum hysteresis error will be 

always within 10%. This means the open-loop simplified 

repetitive predictor will hardly affect the LVRT performance. 
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Fig. 12.  eζ with ζ and p varying. 

 

 

V. DESIGN OF THE SIGNAL CONDITIONING CIRCUIT 

The conditioning circuits play an important role on the 

sampling path, and special attention should be paid to its design. 

A typical conditioning circuit with the commonly used 2nd order 

Butterworth low-pass filter [28], [29] is shown in Fig. 13. The 

output signal from the sensor in a current form is converted into 

the voltage signal by the precision sampling resistor rs. Through 

the voltage follower, the signal is buffered with the enhanced 

driving capability. Then by the 2nd order Butterworth low-pass 

filter, the high-frequency interference in the signal is eliminated, 
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and the signal is adjusted to satisfy the input range of the A/D 

chips. Lastly, the maximum amplitude of the signal is 

constrained by the clamping circuit. In this section, the 2nd order 

Butterworth low-pass filter which may cause the signal 

distortion is designed with the maximally flat magnitude 

response and the almost linear phase response. In addition, the 

relation between the delay time and the cutoff angular frequency 

of the 2nd order Butterworth low-pass filter is analyzed. 
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Fig. 13.  A typical conditioning circuit. 

 

A. Design of the Second Order Butterworth Low-Pass Filter 

The transfer function of the 2nd order Butterworth low-pass 

filter shown in Fig. 13 can be expressed as [28] 

 
Bpo

B 2

i Bp

( )
( )

( ) 1 (3 ) ( )

Gv s
G s

v s G rcs rcs
 

  
 (23) 

where, GBp is the gain of the filter, GBp=1+r2/r1. Only if GBp 

<3, the circuit will be stable, i.e. the coefficient of s in the 

denominator of (23) should be greater than zero. ωc is the 

cutoff angular frequency, ωc=1/rc. Define the quality factor 

Q=1/(3-GBp), and its physical meaning is the ratio of |GB(s)| to 

GBp when ω=ωc. Substituting the operator s with jω, (23) can 

be transformed to  

 

Bp

B
2

c c

( )
1

1 ( )

G
G

j
Q


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 



  
. (24) 

  With (24), the expression of the amplitude- and phase-

frequency responses of the 2nd order Butterworth low-pass filter 

can be respectively expressed as  

 

Bp

B
2 2

2

c c
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1
1 ( )

G
G

Q


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
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,  (25) 
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  The maximally flat magnitude response of the 2nd order 

Butterworth low-pass filter with Q=0.707 has been indicated in 

many literatures [28], [29], only a simple explanation is given 

here. Substitute Q=0.707 into (25), the amplitude response is 

transformed to 
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G
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
. (27) 

  When ω/ωc <<1, (ω/ωc)4≈0. |GB(s)| approximately equals to 

the constant GBp, which can be taken as a simple illustration to 

verify the maximally flat amplitude response of the 2nd order 

Butterworth low-pass filter. 
  The phase response curves expressed by (26) will cross the 

two points (0, 0) and (ωc, -π/2) as seen in Fig. 14. By joining the 

two points with a straight line, the expression of the standard 

linear phase response can be expressed as 

 
*

B

c

( )
2

G
 


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
   . (28) 

  As Q varies, the best-fit phase response curve of the standard 

linear phase response is verified by the least squares method 

[40]. In the interval ω/ωc∈[0, 1], define the fit degree M as 
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Fig. 14.  Frequency responses of second order Butterworth low-pass filter with 

different Q (Q=0.5, 0.707, 1). 

 

  Fig. 15 shows the variation of M with Q. As seen, when 

Q=0.671, M is minimum, i.e. the phase response ∠GB(ω) fits 

the standard linear-phase-response curve ∠GB(ω)* the best. 

Although Q valued 0.707 is not the best choice for the linear 

phase response, taking both the magnitude and phase response 

into account, Q is selected as 0.707 at last. As illustrated in Fig. 

14, compared to the responses with other Q values, the 2nd order 

Butterworth low-pass filter with Q=0.707 has the maximally flat 

magnitude response and the almost linear phase response below 

the cutoff angular frequency. 
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Fig. 15.  M-Q curve. 

 

 

 

B. Relation between the Delay Time and the Cutoff Angular 

Frequency of the Second Order Butterworth Low-Pass Filter 

  With the almost linear phase response of the 2nd order 

Butterworth low-pass filter, the delay phase of the hth harmonic 

can be approximatively expressed as  

 B

c

( )
2

h

hG






   . (30) 

  The proportional expression between the delay time and 

phase is given by 

 
Bd B ( )

2

h

h

t G

T






  (31) 

where tBd is the delayed time; Th is the period of the hth harmonic. 

With (30) and (31), the expression of the delay time and the 

cutoff angular frequency can be derived as 

 Bd

c

=
2

t





 (32) 

where the negative sign donates it is a delay time. 

  According to the analysis above, tBd is selected as 103μs, 

about one control period Tc (Tc=100μs), for ωc=15151.3rad/s 

(2411.4Hz), Q=0.707, r=3kΩ, and c=22nF. Selecting the delay 

time tBd as several times of Tc is out of the consideration that the 

open-loop simplified repetitive predictor adopted in this paper 

can only predict the feedforward term certain steps ahead, i.e. 

the delay time tBd can be exactly compensated by the predictor. 

 

 

VI. CURRENT CONTROL LOOP DESIGN AND DELAY-

COMPENSATION STATE OF THE GRID VOLTAGE FEEDFORWARD 

LOOP 

A. Design of the Current Loop 

  Considering the aforementioned errors, taking the d-axis 

current control loop for example, the current control loop based 

on the improved grid voltage feedforward strategy is shown in 

Fig. 16, where each term is denoted in Table I. The terms in 

Table I are discretized by the bilinear transform (also known as 

Tustin’s method,
c

2 1
=

1

z
s

T z





) which is commonly used in 

engineering applications [41]. 
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Fig. 16.  d-axis current control loop based on the improved grid voltage 

feedforward strategy. 

 

TABLE I 

DISCRETIZATION OF THE TERMS IN THE CURRENT CONTROL LOOP 

Symbol Term s domain z domain 

GPI(z) PI controller i

p

K
K

s
  

1

i c p i c p

1

2 ( 2 )

2 2

K T K K T K z

z





  


  

GC(z) Control delay — 1z
 

GPWM(z) 
ZOH characteristic  

of PWM 

PWM

PWM

1
T s

e
K

s




 
1

PWM c PWM, ( / 2)K z T T   

GPL(z) Plant 
1

sL R
 

1

c c

1

c c2 ( 2 )

T T z

RT L RT L z







  
 

GOR(z) 
Open-loop simplified 

repetitive predictor 
— 1p N p Nz z z     

GB(z) 
2nd order Butterworth 

low-pass filter 

Bp

2

Bp1 (3 ) ( )

G

G rcs rcs  
 

2 1 2

Bp c

2 2 2 2 2 2 1

c Bp c c

2 2 2 2

c Bp c

(1 2 )

2(3 ) 4 (2 8 )

[ 2(3 ) 4 ]

G T z z
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  Note that with Tc=TPWM/2 as mentioned in Section II, the 

PWM term is discretized as z-1. And to simplify the analysis, 

GOR(z) in (17) is simplified as an equivalence zp in steady state. 

  The closed-loop transfer function of the current loop shown 

in Fig. 16 can be given by 
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  And the admittance of output current to grid voltage can be 

derived as 
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. (34) 

  Comparing (33) with (34), they have the same closed-loop 

poles which can indicate whether the system is stable or not. 

Hence, as long as one of the two transfer functions is stable, the 

stability of the entire current loop is guaranteed. Regarding the 

PI controller in (33), controller gains can be selected as 

Kp/Ki=L/R to achieve the pole-zero cancellation [42]. The 

cancelled pole and zero on the root locus of the current loop are 

shown in Fig. 17(a) for L=0.4mH, R=0.01Ω. As also seen, when 

Kp<2.16, the closed-loop characteristic roots are within the unit 

circle, which indicates a stable current loop [43]. Kp is selected 

as 0.681 on the root locus to achieve the optimal damping ratio 

ξ of 0.707 decided by the dominant poles. Correspondingly, Ki 

=17 and the cutoff frequency of the current loop is 270Hz. With 

the selected Kp and Ki, the gain margin (GM) and the phase 

margin (PM) of the current loop are 16.4dB and 67.2°, 

respectively, which further indicates the current loop is stable 

[44]. And the step response of the current loop is shown in Fig. 

17(b) with desired specifications. Regarding the loop from ed to 

id, with the errors in the grid voltage feedforward loop is 

compensated by the simplified repetitive predictor, the grid 

voltage, which is usually taken as a perturbation, is well 

cancelled, making it have little influence on the output current 

id. In addition, the dc-link voltage loop is designed with a classic 

method according to [33]. Considering both dynamic response 

and stability, the parameters of the PI controller in dc-link 

voltage loop are selected as Kvp=10 and Kvi=800 with 

GM=29.8dB and PM=63.5°. 
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Fig. 17.  Design of current loop: (a) root locus of the current loop with Kp 
varying from 0 to infinite (b) step response of the current loop with Kp=0.681. 

 

 

B. Analysis of the Delay-Compensation State in the Grid 

Voltage Feedforward Loop 

  As seen in the numerator of (34), if GOR(z) can totally 

compensate the delays in GB(z), GC(z) and GPWM(z), the 

admittance of output current to grid voltage will be zero in the 

whole frequency range, i.e. all the harmonic admittances are 

zero so that the improved grid voltage feedforward strategy can 

effectively minimize the current harmonics caused by the 

distorted grid voltage. The admittance-frequency curves with p 

varying from 0 to 5 are shown in Fig. 18, where p is the number 

of steps predicted by the predictor. Due to the non-ideal 

frequency response of the 2nd order Butterworth low-pass filter, 

the admittance-frequency curves are not regular. However, in 

the low frequency range (below 1870Hz), the variation of 

harmonic admittances with p have clear patterns. The delay-

compensation state indicated by the harmonic admittances can 

be classified into three cases which are entitled the partial 

compensation state, the full compensation state, and the over 

compensation state. The detailed analysis is as follows:  

  The partial compensation state (p=1 and p=2). Although 

with p=1 or p=2, the open-loop simplified repetitive predictor 

can’t totally compensate the delay in the grid voltage 

feedforward loop, but compared with p=0, the harmonic 

admittances have been effectively reduced, i.e. the impact of 

distorted grid voltage can be minimized to some extent. And the 

predictor with p=2 can compensate more delay with better 

current harmonics minimization capability than that with p=1. 

  The full compensation state (p=3). When p=3, GOR(z) 

compensates almost the whole delay in the grid voltage 

feedforward loop with the minimum harmonic admittances, due 

to that there are approximately three steps delay in the grid 

voltage feedforward loop: about one step delay in GB(z) 

(analyzed in Section V), one in GC(z), and one in GPWM(z). In 

this case, the current harmonics caused by the distorted grid 

voltage is almost eliminated. 

  The over compensation state (p=4 or more). As the 

predictive step p becomes larger than 3, the admittance will 

increase again. The impact of the distorted grid voltage on the 
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current harmonics is intensified. It is because that the delayed 

phase error in the grid voltage feedforward loop is excessively 

compensated, leading to new advanced phase errors. 
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Fig. 18.  Admittance-frequency curves with p varying from 0 to 5. 

 

  In addition, as shown in Fig. 18, the admittance curve with 

p=1 is similar to that with p=5, due to they both differ from the 

full compensation state (p=3) by two steps, p=2 and p=4 as well 

by one step. Note that the whole delay in the grid voltage 

feedforward loop may be not the integral multiple of the control 

period Tc, which makes the full compensation state impossible 

in certain cases. The value of p making the system in or close to 

the full compensation state is therefore suggested in these cases. 

 

C. Influence of the Grid Frequency Variation on the Improved 

Grid Voltage Feedforward Strategy 

  The impact of grid frequency variation on the improved grid 

voltage feedforward strategy should be considered. The grid 

frequency variation will not affect the control delay of the 

digital controller and the ZOH characteristic of PWM, which 

are determined by the control period and the switching 

frequency, respectively. And as seen from the frequency 

responses of the designed conditioning circuit shown in Fig. 14 

(Q=0.707), a slight change in grid frequency has little influence 

on the phase shift caused by the conditioning circuit. In the grid 

voltage feedforward loop, the only term affected by the grid 

frequency variation is the open-loop simplified repetitive 

predictor, which needs to be further analyzed. 

  As with the conventional closed-loop repetitive 

controller/predictor, the open-loop simplified repetitive 

predictor is also susceptible to grid frequency variation. The 

predictive error will appear when the sampling frequency is not 

an integer multiple of the grid frequency. Several solutions used 

in the classic repetitive controller dealing with the grid 

frequency variation [45]-[47] can be directly applied to the 

open-loop simplified repetitive predictor. The common solution 

for this problem incorporates a real-time adaptive sampling 

frequency according to the grid frequency variation [45]. 

Therefore, assuming a situation in which the common solution 

is adopted and the sampling frequency is adjusted according to 

the grid frequency variation, the PWM frequency will also 

change correspondingly since the PWM frequency is half of the 

sampling frequency. However, the control delay, the delay 

caused by the ZOH characteristic of PWM, and the period of 

predictive step are all equal to the sampling period. The control 

delay and the delay caused by the ZOH characteristic of PWM 

can still be compensated precisely by the predictor. In addition, 

the compensation of the delay caused by the conditioning circuit 

can be comprehended from the perspective of phase shift. With 

the method of adaptive sampling frequency, the phase shift in 

one sampling (predictive) period will be a certain value, not 

varying with the grid frequency variation. Because the grid 

frequency variation has little influence on the phase shift of the 

conditioning circuit, the phase shift of the conditioning circuit 

can also be compensated exactly. 

  The above analysis shows it is feasible to adopt the existing 

adaptive sampling frequency method in the improved grid 

voltage feedforward strategy to deal with the grid frequency 

variation. It may however increase the computational burden 

and may lead to the system instability [45]. More detailed study 

on this issue can be the future work on the basis of this paper. 
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Fig. 19.  Scheme of the improved grid voltage feedforward strategy based on the open-loop simplified repetitive predictor. 
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VII. EXPERIMENTAL TEST AND RESULTS 

  In order to test the improved grid voltage feedforward 

strategy based on the open-loop simplified repetitive predictor, 

the conventional feedforward decoupling method shown in Fig. 

3 is modified to be as shown in Fig. 19. The open-loop 

simplified repetitive predictor has been inserted to compensate 

the delay in the grid voltage feedforward loop. Note that Fig. 19 

uses eα and eβ in αβ coordinate as the feedforward terms instead 

of ed and eq in dq coordinate (the measured values and the real 

values are not distinguished here). The advantage of using eα 

and eβ is that, this has avoided the use of the grid voltage phase 

angle θ obtained by the phase locked loop (PLL) [48]. The 

impact of the errors in θ on the feedforward strategy can be 

therefore eliminated, and one coordinate transformation can be 

saved. In the outer voltage loop, the dc-link reference voltage 

udc
* is obtained by maximum power point tracking (MPPT). 

  A 250kVA transformerless three-phase grid-connected PV 

inverter based on the control scheme in Fig. 19 is tested, as 

shown in Fig. 20. The power generated by the PV array on the 

two roofs is directly transferred to the grid via the inverter. The 

system parameters are given in Table II. Note that the MPPT 

shown in Fig. 19 is disabled and replaced with constant dc-link 

voltage references for a constant output power of the PV array. 

Before enabling the PWM when the inverter startups, the 

control program should run first for several fundamental cycles 

to obtain the stable grid voltage feedforward term by the open-

loop simplified repetitive predictor, as well as waiting for the 

PLL stable to generate the precision phase angle used for grid 

voltage oriented vector control. 

 

DC capacitors

Phase legs

PV array

Control board

LCL filter

 
Fig. 20.  250kVA transformerless three-phase grid-connected PV inverter 

system. 

TABLE II 

PARAMETERS OF THE TEST SYSTEM 

Symbol Parameter Value 

S Rated capacity 250kVA 

f1 Line frequency 50Hz 

fPWM Switching frequency 5kHz 

fs Sampling frequency 10kHz 

Tc Control period 100μs 

Cdc DC-link capacitance 20mF 

L1 Inverter-side inductance 0.22mH 

L2 Grid-side inductance 0.18mH 

Cf Capacitance of LCL filter 69μF 

Rf Damping resistor of LCL filter 1Ω 

Kp Proportional gain of current loop 0.681 

Ki Integral gain of current loop 17 

Kvp Proportional gain of dc-link voltage loop 10 

Kvi Integral gain of dc-link voltage loop 800 
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Fig. 21.  Delay in the conditioning circuit: (a) the test circuit, (b) measured 

signals, and (c) zoomed-in zero crossing. 
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  To observe the delay in the designed conditioning circuit, a 

circuit shown in Fig. 21(a) is tested. The measured ac voltage 

em, Signal A, and Signal B are shown in Fig. 21(b). And Fig. 

21(c) shows the zoomed-in zero crossing of Fig. 21(b). As seen, 

with the negligible delay in the Hall voltage sensor, the zero 

crossing of em almost overlaps that of the Signal A. The zero 

crossing of Signal B is delayed about 100µs (one step) 

compared to that of the Signal A, which verifies the correctness 

of the designed conditioning circuit in Section V. 

  Fig. 22 shows the program execution flag of 10kHz and the 

drive signals of 5kHz for IGBTs in Phase A. The flag is low 

when the digital controller is busy sampling and calculating, and 

switches to high when spare. The frequencies of the flag and the 

drive signals are determined by the two synchronous triangle 

waveforms shown in Fig. 22. The PWM delay of TPWM/2 due to 

the ZOH characteristic and the control delay Tc are clearly 

shown. And together with Fig. 21, the three-step delays in the 

grid voltage feedforward loop are verified. 
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Fig. 22.  The PWM delay and the control delay. 

 

 

  During the grid-connected experiments, the grid voltage is 

slightly distorted, and the harmonics and THD of the three-

phase grid voltage measured by the power quality analyzer 

Fluke 43B are shown in Table III. 

 

TABLE III 

HARMONICS AND THD OF THE THREE-PHASE VOLTAGE 

Three-phase voltage 
Harmonic order 

THD 
1 3 5 7 

ua 
Voltage value (V) 233.5 1.3 1.7 3.0 

1.9% 
% of fundamental 100% 0.6% 0.7% 1.3% 

ub 
Voltage value (V) 234.7 0.6 1.3 3.2 

1.7% 
% of fundamental 100% 0.3% 0.5% 1.4% 

uc 
Voltage value (V) 233.9 1.0 1.2 3.4 

1.9% 
% of fundamental 100% 0.4% 0.5% 1.4% 

 

  On the day of experiments, the open-circuit voltage of the PV 

array which heavily depends on the weather was about 720V. 

The dc-link voltage reference is set to be the open-circuit 

voltage of the PV array in order to make the grid side currents 

iga, igb, and igc zero, i.e. the system is at no-load state. As the 

grid-side currents equal zero, if the voltage drop on the LCL 

filter is neglected, the output voltage of the inverter should be 

exactly equal to the grid voltage. As seen in Fig. 19, the 

reference voltage given to PWM is composed of the 

feedforward grid voltage and the output of the inner current loop 

(eαPI and eβPI). At this time, eαPI and eβPI can be taken as the 

remnant voltage of the grid voltage feedforward loop as stated 

in Section III. The results of eαPI and eβPI with the grid voltage 

feedforward terms predicted different steps ahead is shown in 

Fig. 23. 
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Fig. 23.  Waveforms of eαPI and eβPI with the grid voltage feedforward terms 
predicted different steps ahead: (a) p=0, (b) p=1, (c) p=2, and (d) p=3. 

 

  As seen in Fig. 23(a), without the open-loop simplified 

repetitive predictor, eαPI and eβPI are heavily distorted with large 

amplitude, which will lead to harmonics in the output currents. 

Using the open-loop simplified repetitive predictor, the grid 

voltage feedforward terms are predicted with different steps 

ahead (p=1, p=2, and p=3). The results of eαPI and eβPI are shown 

from Fig. 23(b) to Fig. 23(d). As seen, the amplitude and 

distortion of eαPI and eβPI are gradually decreased with the 

increasing predictive steps. When p=3, the amplitude and 

distortion of eαPI and eβPI are the smallest. The results match well 

with the analysis in Section VI about the delay-compensation, 

and prove that with p=3, the grid voltage feedforward loop is in 

or close to the full compensation state in the test system. 

  Fig. 24 shows the experimental results with the conventional 

and the improved grid voltage feedforward strategies. The 

output power of the inverter is 28kW. As seen in Fig. 24(a), 

using the conventional grid voltage feedforward strategy, due to 

the heavily distorted remnant voltage shown in Fig. 23(a), the 

three-phase currents are distorted heavily due to harmonics. 

Under the same grid condition, the same control strategy has 

been applied on a 10kVA PV inverter with the filtering inductor 

of 2.7mH. In contrast, only slight distortion appears in the three-

phase currents. It is indicated that the high power inverters with 

smaller filtering inductor is more susceptible to the slightly-

distorted grid voltage. Fig. 24(b) shows the results when 

applying the improved grid voltage feedforward strategy with 

the feedforward term predicted 3 steps ahead, the quality of the 

three-phase currents are significantly improved. 
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Fig. 24.  Waveforms of the three-phase currents: (a) with the conventional grid 
voltage feedforward strategy, and (b) with the improved grid voltage 

feedforward strategy. 

 

  Table IV and Table V further show the harmonics and THD 

of the currents in Fig. 24. Comparing each order harmonic in 

the two tables, it is found that all the low order harmonics are 

minimized effectively with the improved grid voltage 

feedforward strategy. The results match well with the analysis 

of harmonic admittances shown in Fig. 18, which can be taken 

as the reflex of the current harmonics minimization capability.  

 

TABLE IV 

HARMONICS AND THD OF THE THREE-PHASE CURRENTS WITH 

CONVENTIONAL GRID VOLTAGE FEEDFORWARD STRATEGY 

Three-phase currents 
Harmonic order 

THD 
1 3 5 7 

iga 
Current value (A) 39.41 1.22 3.53 5.49 

17.6% 
% of fundamental 100% 3.1% 9.1% 14.1% 

igb 
Current value (A) 40.41 0.30 3.04 7.57 

21.1% 
% of fundamental 100% 0.8% 7.7% 19.1% 

igc 
Current value (A) 39.41 0.37 3.55 7.48 

19.5% 
% of fundamental 100% 1.0% 9.2% 16.7% 

 

TABLE V 

HARMONICS AND THD OF THE THREE-PHASE CURRENTS WITH 

IMPROVED GRID VOLTAGE FEEDFORWARD STRATEGY 

Three-phase currents 
Harmonic order 

THD 
1 3 5 7 

iga 
Current value (A) 38.66 0.68 0.61 0.76 

3.5% 
% of fundamental 100% 1.8% 1.6% 2.0% 

igb 
Current value (A) 39.79 0.18 0.64 0.75 

3.2% 
% of fundamental 100% 0.4% 1.6% 1.9% 

igc 
Current value (A) 38.66 0.15 0.86 0.93 

3.6% 
% of fundamental 100% 0.4% 1.7% 2.4% 

 

  Then, the output power of the inverter is increased to 44kW. 

With the two strategies, the voltage and current of Phase A are 

shown in Fig. 25. The THD of the currents are 8.5% and 2.8%, 

respectively. As seen in Fig. 25(a), with the increased output 

power, the current quality with the conventional grid voltage 

feedforward strategy is improved, but still unacceptable. In 
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contrast, the current in Fig. 25(b) with the improved grid voltage 

feedforward strategy is further improved and satisfying. 
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Fig. 25.  Waveforms of voltage and current in Phase A: (a) with the 

conventional grid voltage feedforward strategy, and (b) with the improved grid 

voltage feedforward strategy. 

   

  Another benefits of using the proposed improved 

feedforward strategy is the suppression of the starting currents, 

which may trigger the system protection or even damage the 

devices. In PV systems, to lower the starting currents, the dc-

link voltage is usually set to be the open-circuit voltage of the 

PV array when the inverter starts. And then by MPPT, the dc-

link voltage is regulated gradually to the maximum power point. 

Fig. 26 shows the comparison of the starting currents with the 

two feedforward strategies. As seen in Fig. 26(a), with the 

conventional grid voltage feedforward strategy, very large 

starting currents appear. After applying the improved grid 

voltage feedforward strategy, the starting currents in Fig. 26(b) 

almost disappear. This phenomenon can be explained as follows. 

Neglecting the voltage drop on LCL filter, ideally, the inverter 

output voltage should be exactly equal to the grid voltage at no-

load state. And it should be easy to realize with grid voltage 

feedforward. However, due to the errors in the grid voltage 

feedforward loop, there is large remnant voltage after the 

feedforward, as shown in Fig. 23(a). And the remnant voltage 

needs to be compensated by the PI controllers in current loops. 

Moreover, when the system starts, the initial outputs of the PI 

controllers in current loops are zero. It takes some time for the 

PI controllers to generate the large compensation voltage, 

leading to the large starting currents in Fig. 26(a). After 

applying the open-loop simplified repetitive controller, the 

remnant voltage is dramatically decreased, as seen in Fig. 23(d), 

which eases the burden on the PI controllers in current loops 

leading a smooth start. In addition, it should be noted that the 

currents before start in Fig. 26 are not zero, owing to that the 

grid voltage generates currents flowing through the capacitors 

of the LCL filter. 
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Fig. 26.  Starting currents: (a) with the conventional grid voltage feedforward 

strategy, and (b) with the improved grid voltage feedforward strategy. 

 

  The proposed strategy with the simplified predictor has also 

been tested under other non-ideal grid conditions. Regarding the 

unbalanced grid voltage, if only the fundamental voltage is 

considered, it can cause double frequency (e.g. 100Hz for 50Hz 

grid) power pulsation on both ac and dc side of the inverter. This 

issue is different from the delay problem concerned in this paper 

and therefore will not affect the design of the feedforward 

strategy. Through simulation it has been found that the 

improved grid voltage feedforward strategy works well under 

unbalanced grid voltage but it cannot help with the situation, e.g. 

attenuating the power ripple, etc.   

   Further, the simulation with a sudden dip of 10% in three-

phase grid voltage is carried out to test the performance of the 

proposed strategy under grid voltage perturbations, the three-

phase currents are shown in Fig. 27. As seen, with the 

conventional grid voltage feedforward strategy, current 

overshoot happens at the transient of voltage dip. Meanwhile, 

with the improved grid voltage feedforward strategy, besides 
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this current overshoot at the transient of voltage dip, another 

obvious current distortion appears after one fundamental period 

due to the fact that the repetitive predictor relies on the former 

input values. Given the improvement of the current waveforms 

in steady state, this transient current distortion caused by grid 

voltage dip can be acceptable. 
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Fig. 27.  Simulation results at grid voltage dip of 10%: (a) with the 

conventional grid voltage feedforward strategy, and (b) with the improved grid 

voltage feedforward strategy. 

 

 

VIII. CONCLUSIONS 

  Grid voltage feedforward strategy is the most direct solution 

for grid-connected inverters dealing with the condition of 

distorted grid voltage. However, its performance is dramatically 

decreased by the delays in the grid voltage feedforward loop, 

especially for high-power inverters with low switching 

frequency and low filtering inductance. The delays mainly 

include the phase shift caused by the conditioning circuit, the 

control delay of the digital controller, and the ZOH 

characteristic of PWM. An improved grid voltage feedforward 

strategy has been proposed with enhanced feedforward 

precision by the open-loop simplified repetitive predictor and 

the carefully designed conditioning circuit. The experimental 

results on a 250VA solar power generation system have 

validated that, with the predictive steps making the grid voltage 

feedforward loop in or close to the full compensation state, the 

improved grid voltage feedforward strategy can effectively 

attenuate the current harmonics caused by the distorted grid 

voltage as well as the starting currents. 

  Although the improved feedforward strategy is analyzed 

based on a PV inverter, it can also be applied to other grid-

connected converter control systems conveniently. 
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