686 research outputs found

    Recognition of Promoters in DNA Sequences Using Weightily Averaged One-dependence Estimators

    Get PDF
    AbstractThe completion of the human genome project in the last decade has generated a strong demand in computational analysis techniques in order to fully exploit the acquired human genome database. The human genome project generated a perplexing mass of genetic data which necessitates automatic genome annotation. There is a growing interest in the process of gene finding and gene recognition from DNA sequences. In genetics, a promoter is a segment of a DNA that marks the starting point of transcription of a particular gene. Therefore, recognizing promoters is a one step towards gene finding in DNA sequences. Promoters also play a fundamental role in many other vital cellular processes. Aberrant promoters can cause a wide range of diseases including cancers. This paper describes a state-of-the-art machine learning based approach called weightily averaged one-dependence estimators to tackle the problem of recognizing promoters in genetic sequences. To lower the computational complexity and to increase the generalization capability of the system, we employ an entropy-based feature extraction approach to select relevant nucleotides that are directly responsible for promoter recognition. We carried out experiments on a dataset extracted from the biological literature for a proof-of-concept. The proposed system has achieved an accuracy of 97.17% in classifying promoters. The experimental results demonstrate the efficacy of our framework and encourage us to extend the framework to recognize promoter sequences in various species of higher eukaryotes

    Specificity Determination by paralogous winged helix-turn-helix transcription factors

    Get PDF
    Transcription factors (TFs) localize to regulatory regions throughout the genome, where they exert physical or enzymatic control over the transcriptional machinery and regulate expression of target genes. Despite the substantial diversity of TFs found across all kingdoms of life, most belong to a relatively small number of structural families characterized by homologous DNA-binding domains (DBDs). In homologous DBDs, highly-conserved DNA-contacting residues define a characteristic ‘recognition potential’, or the limited sequence space containing high-affinity binding sites. Specificity-determining residues (SDRs) alter DNA binding preferences to further delineate this sequence space between homologous TFs, enabling functional divergence through the recognition of distinct genomic binding sites. This thesis explores the divergent DNA-binding preferences among dimeric, winged helix-turn-helix (wHTH) TFs belonging to the OmpR sub-family. As the terminal effectors of orthogonal two-component signaling pathways in Escherichia coli, OmpR paralogs bind distinct genomic sequences and regulate the expression of largely non-overlapping gene networks. Using high-throughput SELEX, I discover multiple sources of variation in DNA-binding, including the spacing and orientation of monomer sites as well as a novel binding ‘mode’ with unique half-site preferences (but retaining dimeric architecture). Surprisingly, given the diversity of residues observed occupying positions in contact with DNA, there are only minor quantitative differences in sequence-specificity between OmpR paralogs. Combining phylogenetic, structural, and biological information, I then define a comprehensive set of putative SDRs, which, although distributed broadly across the protein:DNA interface, preferentially localize to the major groove of the DNA helix. Direct specificity profiling of SDR variants reveals that individual SDRs impact local base preferences as well as global structural properties of the protein:DNA complex. This study demonstrates clearly that OmpR family TFs possess multiple ‘axes of divergence’, including base recognition, dimeric architecture, and structural attributes of the protein:DNA complex. It also provides evidence for a common structural ‘code’ for DNA-binding by OmpR homologues, and demonstrates that surprisingly modest residue changes can enable recognition of highly divergent sequence motifs. Importantly, well-characterized genomic binding sites for many of the TFs in this study diverge substantially from the presented de novo models, and it is unclear how mutations may affect binding in more complex environments. Further analysis using native sequences is required to build combined models of cis- and trans-evolution of two-component regulatory networks

    Protein-DNA Recognition Models for the Homeodomain and C2H2 Zinc Finger Transcription Factor Families

    Get PDF
    Transcription factors: TFs) play a central role in the gene regulatory network of each cell. They can stimulate or inhibit transcription of their target genes by binding to short, degenerate DNA sequence motifs. The goal of this research is to build improved models of TF binding site recognition. This can facilitate the determination of regulatory networks and also allow for the prediction of binding site motifs based only on the TF protein sequence. Recent technological advances have rapidly expanded the amount of quantitative TF binding data available. PBMs: Protein Binding Microarrays) have recently been implemented in a format that allows all 10mers to be assayed in parallel. There is now PBM data available for hundreds of transcription factors. Another fairly recent technique for determining the binding preference of a TF is an in vivo bacterial one-hybrid assay: B1H). In this approach a TF is expressed in E. coli where it can be used to select strong binding sites from a library of randomized sites located upstream of a weak promoter, driving expression of a selectable gene. When coupled with high throughput sequencing and a newly developed analysis method, quantitative binding data can be obtained. In the last few years, the binding specificities of hundreds of TFs have been determined using B1H. The two largest eukaryotic transcription factor families are the zf-C2H2 and homeodomain TF families. Newly available PBM and B1H specificity models were used to develop recognition models for these two families, with the goal of being able to predict the binding specific of a TF from its protein sequence. We developed a feature selection method based on adjusted mutual information that automatically recovers nearly all of the known key residues for the homeodomain and zf-C2H2 families. Using those features we find that, for both families, random forest: RF) and support vector machine: SVM) based recognition models outperform the nearest neighbor method, which has previously been considered the best method

    Computational representation and discovery of transcription factor binding sites

    Get PDF
    Tesi per compendi de publicacions.The information about how, when, and where are produced the proteins has been one of the major challenge in molecular biology. The studies about the control of the gene expression are essential in order to have a better knowledge about the protein synthesis. The gene regulation is a highly controlled process that starts with the DNA transcription. This process operates at the gene level, hereditary basic units, which will be copied into primary ribonucleic acid (RNA). This first step is controlled by the binding of specific proteins, called as Transcription Factors (TF), with a sequence of the DNA (Deoxyribonucleic Acid) in the regulatory region of the gene. These DNA sequences are known as binding sites (BS). The binding sites motifs are usually very short (5 to 20 bp long) and highly degenerate. These sequences are expected to occur at random every few hundred base pairs. Besides, a TF can bind among different sites. Due to its highly variability, it is difficult to establish a consensus sequence. The study and identification binding sites is important to clarify the control of the gene expression. Due to the importance of identifying binding sites sequences, projects such as ENCODE (Encyclopedia of DNA elements), have dedicated efforts to map binding sites for large set of transcription factor to identify regulatory regions. In this thesis, we have approached the problem of the binding site detection from another angle. We have developed a set of toolkit for motif binding detection based on linear and non-linear models. First of all, we have been able to characterize binding sites using different approaches. The first one is based on the information that there is in each binding sites position. The second one is based on the covariance model of an aligned set of binding sites sequences. From these motif characterizations, we have proposed a new set of computational methods to detect binding sites. First, it was developed a new method based on parametric uncertainty measurement (Rényi entropy). This detection algorithm evaluates the variation on the total Rényi entropy of a set of sequences when a candidate sequence is assumed to be a true binding site belonging to the set. This method was found to perform especially well on transcription factors that the correlation among binding sites was null. The correlation among binding sites positions was considered through linear, Q-residuals, and non-linear models, alpha-Divergence and SIGMA. Q-residuals is a novel motif finding method which constructs a subspace based on the covariance of numerical DNA sequences. When the number of available sequences was small, The Q-residuals performance was significantly better and faster than all the others methodologies. Alpha-Divergence was based on the variation of the total parametric divergence in a set of aligned sequenced with binding evidence when a candidate sequence is added. Given an optimal q-value, the alpha-Divergence performance had a better behavior than the others methodologies in most of the studied transcription factor binding sites. And finally, a new computational tool, SIGMA, was developed as a trade-off between the good generalisation properties of pure entropy methods and the ability of position-dependency metrics to improve detection power. In approximately 70% of the cases considered, SIGMA exhibited better performance properties, at comparable levels of computational resources, than the methods which it was compared. This set of toolkits and the models for the detection of a set of transcription factor binding sites (TFBS) has been included in an R-package called MEET.La informació sobre com, quan i on es produeixen les proteïnes ha estat un dels majors reptes en la biologia molecular. Els estudis sobre el control de l'expressió gènica són essencials per conèixer millor el procés de síntesis d'una proteïna. La regulació gènica és un procés altament controlat que s'inicia amb la transcripció de l'ADN. En aquest procés, els gens, unitat bàsica d'herència, són copiats a àcid ribonucleic (RNA). El primer pas és controlat per la unió de proteïnes, anomenades factors de transcripció (TF), amb una seqüència d'ADN (àcid desoxiribonucleic) en la regió reguladora del gen. Aquestes seqüències s'anomenen punts d'unió i són específiques de cada proteïna. La unió dels factors de transcripció amb el seu corresponent punt d'unió és l'inici de la transcripció. Els punts d'unió són seqüències molt curtes (5 a 20 parells de bases de llargada) i altament degenerades. Aquestes seqüències poden succeir de forma aleatòria cada centenar de parells de bases. A més a més, un factor de transcripció pot unir-se a diferents punts. A conseqüència de l'alta variabilitat, és difícil establir una seqüència consensus. Per tant, l'estudi i la identificació del punts d'unió és important per entendre el control de l'expressió gènica. La importància d'identificar seqüències reguladores ha portat a projectes com l'ENCODE (Encyclopedia of DNA Elements) a dedicar grans esforços a mapejar les seqüències d'unió d'un gran conjunt de factors de transcripció per identificar regions reguladores. L'accés a seqüències genòmiques i els avanços en les tecnologies d'anàlisi de l'expressió gènica han permès també el desenvolupament dels mètodes computacionals per la recerca de motius. Gràcies aquests avenços, en els últims anys, un gran nombre de algorismes han sigut aplicats en la recerca de motius en organismes procariotes i eucariotes simples. Tot i la simplicitat dels organismes, l'índex de falsos positius és alt respecte als veritables positius. Per tant, per estudiar organismes més complexes és necessari mètodes amb més sensibilitat. En aquesta tesi ens hem apropat al problema de la detecció de les seqüències d'unió des de diferents angles. Concretament, hem desenvolupat un conjunt d'eines per la detecció de motius basats en models lineals i no-lineals. Les seqüències d'unió dels factors de transcripció han sigut caracteritzades mitjançant dues aproximacions. La primera està basada en la informació inherent continguda en cada posició de les seqüències d'unió. En canvi, la segona aproximació caracteritza la seqüència d'unió mitjançant un model de covariància. A partir d'ambdues caracteritzacions, hem proposat un nou conjunt de mètodes computacionals per la detecció de seqüències d'unió. Primer, es va desenvolupar un nou mètode basat en la mesura paramètrica de la incertesa (entropia de Rényi). Aquest algorisme de detecció avalua la variació total de l'entropia de Rényi d'un conjunt de seqüències d'unió quan una seqüència candidata és afegida al conjunt. Aquest mètode va obtenir un bon rendiment per aquells seqüències d'unió amb poca o nul.la correlació entre posicions. La correlació entre posicions fou considerada a través d'un model lineal, Qresiduals, i dos models no-lineals, alpha-Divergence i SIGMA. Q-residuals és una nova metodologia per la recerca de motius basada en la construcció d'un subespai a partir de la covariància de les seqüències d'ADN numèriques. Quan el nombre de seqüències disponible és petit, el rendiment de Q-residuals fou significant millor i més ràpid que en les metodologies comparades. Alpha-Divergence avalua la variació total de la divergència paramètrica en un conjunt de seqüències d'unió quan una seqüència candidata és afegida. Donat un q-valor òptim, alpha-Divergence va tenir un millor rendiment que les metodologies comparades en la majoria de seqüències d'unió dels factors de transcripció considerats. Finalment, un nou mètode computacional, SIGMA, va ser desenvolupat per tal millorar la potència de deteccióPostprint (published version

    Novel Sequence-Based Method for Identifying Transcription Factor Binding Sites in Prokaryotic Genomes

    Get PDF
    Computational techniques for microbial genomic sequence analysis are becoming increasingly important. With next–generation sequencing technology and the human microbiome project underway, current sequencing capacity is significantly greater than the speed at which organisms of interest can be experimentally probed. We have developed a method that will primarily use available sequence data in order to determine prokaryotic transcription factor binding specificities. The prototypical prokaryotic transcription factor: TF) contains a helix–turn–helix: HTH) fold and bind DNA as homodimers, leading to their palindromic motif specificities. The connection between the TF and its promoter is based on the autoregulation phenomenon noticed in E. coli. Approximately 55% of the TFs analyzed were estimated to be autoregulated. Our preliminary analysis using RegulonDB indicates that this value increases to 79% if one considers the neighboring operons. Given the TF family of interest, it is necessary to find the relevant TF proteins and their associated genomes. Due to the scale–free network topology of prokaryotic systems, many of the transcriptional regulators regulate only one or a few operons. Within a single genome, there would not be enough sequence–based signal to determine the binding site using standard computational methods. Therefore, multiple bacterial genomes are used to overcome this lack of signal within a single genome. We use a distance–based criteria to define the operon boundaries and their respective promoters. Several TF–DNA crystal structures are then used to determine the residues that interact with the DNA. These key residues are the basis for the TF comparison metric; the assumption being that similar residues should impart similar DNA binding specificities. After defining the sets of TF clusters using this metric, their respective promoters are used as input to a motif finding procedure. This method has currently been tested on the LacI and TetR TF families with successful results. On external validation sets, the specificity of prediction is ∼80%. These results are important in developing methods to define the DNA binding preferences of the TF protein residues, known as the “recognition code”. This “recognition code” would allow computational design and prediction of novel DNA–binding specificities, enabling protein-engineering and synthetic biology applications
    corecore