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Abstract 

The completion of the human genome project in the last decade has generated a strong demand in computational analysis 
techniques in order to fully exploit the acquired human genome database. The human genome project generated a perplexing 
mass of genetic data which necessitates automatic genome annotation. There is a growing interest in the process of gene finding 
and gene recognition from DNA sequences. In genetics, a promoter is a segment of a DNA that marks the starting point of 
transcription of a particular gene. Therefore, recognizing promoters is a one step towards gene finding in DNA sequences. 
Promoters also play a fundamental role in many other vital cellular processes. Aberrant promoters can cause a wide range of 
diseases including cancers. This paper describes a state-of-the-art machine learning based approach called weightily averaged 
one-dependence estimators to tackle the problem of recognizing promoters in genetic sequences.  To lower the computational 
complexity and to increase the generalization capability of the system, we employ an entropy-based feature extraction approach 
to select relevant nucleotides that are directly responsible for promoter recognition. We carried out experiments on a dataset 
extracted from the biological literature for a proof-of-concept. The proposed system has achieved an accuracy of 97.17 % in 
classifying promoters.  The experimental results demonstrate the efficacy of our framework and encourage us to extend the 
framework to recognize promoter sequences in various species of higher eukaryotes. 
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1. Introduction 

The human genome project, which was completed in the last decade, generated a perplexing mass of genetic data. 
Because manually analyzing genomic data is a tedious process, which resembles the process of looking for a needle 
in a haystack, there is a growing interest in the process of gene finding and gene recognition from DNA sequences 
using computational techniques. Virtually every cell in a normal eukaryote contains the same DNA. Gene 
expression regulation is a very important mechanism because it dictates which cells in an organism at a particular 
instant express which genes, out of thousands of genes contained in the DNA.  Such regulation is vital for normal 
functioning of cells in an organism. A central regulatory region of the DNA in gene expression is the promoter 
region. A promoter is a segment of a DNA that marks the starting point of transcription of a particular gene. An 
enzyme called RNA polymerase II binds with a promoter to undergo transcription1 wherein DNA is transcribed to 
become an RNA, which is then spliced to become an mRNA, which is in turn translated to come a protein as shown 
in Figure 1. Promoters also play a fundamental role in many other vital cellular processes. Aberrant promoters can 
cause a wide range of diseases including cancers. Therefore, recognizing promoters is one small step towards a giant 
leap in gene finding in DNA sequences2-4.   

There have been a number of attempts to perform promoter recognition using computational techniques. Altschul 
et al.5 proposed a approach to measure similarity between two genetic sequences by a search algorithm called basic 
local alignment search tool (BLAST). To perform promoter recognition, one would need to store a sufficient number 
of examples of promoters and non-promoters. Given a novel DNA sequence, k-nearest neighbor classification would 
have to be performed where the unknown DNA sequence would be matched against all the examples in the database 
in pairs using the basic local alignment search. Thompson et al.6 extended the idea to  
perform alignment search in multiple sequences rather than in pairs. However, the fundamental problems with these 
similarity-based approaches are that they require a wide range of examples to be stored in the database and that they 
are exceedingly computationally expensive. Many other computational strategies have also been proposed to 

Fig. 1. Transcription in gene expression. 
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recognize promoters2-4,7. However, a vast majority of these approaches do not produce satisfactory accuracy rates in
promoter recognition. Machine learning approaches have also been used to predict promoter sequences. For 
instance, neural networks8-14 have been commonly used in promoter recognition. Dynamic Bayesian networks and
their derivatives such as hidden Markov models (HMMs)15 have also been used to model promoter sequences. Most
of the existing approaches in the literature have high generalization errors and high computational complexity. This
paper describes a state-of-ff the-art Bayesian approach called weightily averaged one-dependence estimators to tackle
the problem of recognizing promoters from genetic sequences.

2. Promoter recognition algorithm

The goal of promoter recognition is to predict, given a sequence of nucleotides, whether or not the sequence 
belongs to a promoter. We propose a two-layered framework which consists of nucleotide selection and sequence
classification as shown in Figure 2. The complexity of any machine learning classifier depends upon the
dimensionality of the input data16. There is also a phenomenon known as t
with high dimensional input data17. In the case of genetic sequence classification, not all the nucleotides in a genetic
sequence might be responsible for discriminating between promoter and non-promoter. Therefore, we employ a
nucleotide selection process to select relevant nucleotides from a given genetic sequence in an unsupervised manner.
Section 2.1 describes the process of nucleotide selection. After selecting relevant nucleotides, we perform sequence 
classification using the weightily averaged one-dependence estimators (WAODE).  Section 2.2 describes the process
of classification.

Fig. 2. High-level flow diagram of promoter recognition framework.

2.1. Entropy-based nucleotide selection

The complexity of any machine learning classifier depends upon the dimensionality of the input data16.
Generally, the lower the complexity of a classifier, the more robust it is. Moreover, classifiers with low complexity 
have less variance, which means that they vary less depending on the particulars of a sample, including noise,
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outliers, etc. 16 In the case of genetic sequence classification, not all the nucleotides in a genetic sequence might be 
responsible for discriminating promoters from non-promoters. Therefore, we need to have a nucleotide selection 
method that chooses a subset of relevant nucleotides that can discriminate promoters from non-promoters, while 
pruning the rest of the nucleotides in the input genetic sequence.   

We are interested in finding the best subset of the set of nucleotides that can sufficiently discriminate promoters. 
Ideally, we have to choose the best subset that contains the least number of nucleotides that most contribute to the 
classification accuracy, while discarding the rest of the nucleotides. There are 2n possible subsets that can arise from 
an n-nucleotide long genetic sequence. In essence, we have to choose the best subset out of 2n possible subsets. 
Because performing an exhaustive sequential search over all possible subsets is computationally expensive, we need 
to employ heuristics to find a reasonably good subset that can sufficiently discriminate promoters. There are 
generally two common techniques: forward selection and backward selection16. In forward selection, we start with 
an empty subset and add a nucleotide (that increases the classification accuracy the most) in each iteration until any 
further addition of a nucleotide does not increase the classification accuracy. In backward selection, we start with 
the full set of nucleotides and remove a nucleotide (that increases the classification accuracy the most) in each 
iteration until any further removal of a nucleotide does not increase the classification accuracy. There are also other 
types of heuristics such as scatter search18 and variable neighborhood search19.  However, search-based nucleotide 
selection techniques do not necessarily produce the best subset of the nucleotides. 

We employ a nucleotide selection process based on an information-theoretic concept of entropy. Given a set of 
nucleotides X and  which represents the probability of the ith nucleotide, then the entropy of nucleotides, which 

 
 

 
 (1) 

 
Entropy is a non-negative number.  is 0 when X is absolutely certain to be predicted. The conditional entropy 
of class label Y given the nucleotides is defined by: 
 
 
 

 (2) 

 
The information gain (IG) of the nucleotides from the class label Y is defined to be: 
 

 
  (3) 

 
 
The gain ratio (GR) between the nucleotides and the class label Y is defined to be: 
 

 
 

 (4) 

 
The GR of a nucleotide is a number between 0 and 
the nucleotide in discriminating promoters. A GR of 0 roughly indicates that the corresponding individual nucleotide 
has no significance in promoter recognition while a GR of 1 roughly indicates that the nucleotide is significant in 
promoter recognition. During the training phase, the GR for each nucleotide is calculated according to (4). All the 
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nucleotides are then sorted by their GRs. Nucleotides whose GRs are higher than a certain threshold value are 
selected as discriminating nucleotides while the rest are discarded. Training needs to be carried out only once. 
During the recognition phase, the selected nucleotides are carried forward to classification. 
 

2.2. Classification 

Probabilistic classifiers are widely used by researchers to analyze sequences. Naive Bayes (NB) is a well-known 
classifier in the machine learning community owning to its simplicity, efficiency and efficacy20-23.  NBs and their 
derivatives have been frequently used by researchers24. Unfortunately, NB is built on the strong independence 
assumption. NB performs fairly accurate classification. The only limitation to its classification accuracy is the 
accuracy of the process of estimation of the base conditional probabilities. One clear drawback is its strong 
independence assumption which assumes that attributes are independent of each other in a dataset. In the field of 
genetic sequence classification, NB assumes that nucleotides are independent of each other in a genetic sequence 
despite the fact that there are apparent dependencies among individual nucleotides. Semi-naive Bayesian classifiers 
attempt to preserve the numerous strengths of NB while reducing error by relaxing the attribute independence 
assumption24. Researchers have proposed various semi-naive techniques such as one-dependence estimators 
(ODEs)25 and super parent one-dependence estimators (SPODEs)26 to ease the attribute independence assumption. 
In fact, these approaches alleviate the independence assumption at the expense of computational complexity and a 
new set of assumptions. Webb20 proposed a semi-naive approach called averaged one-dependence estimators 
(AODEs) in order to weaken the attribute independence assumption by averaging all of a constrained class of 
classifiers without introduction of new assumptions. The AODE has been shown to outperform other Bayesian 
classifiers with substantially improved computational efficiency20. The AODE essentially achieves very high 
classification accuracy by averaging several semi-naive Bayes models that have slightly weaker independence 
assumptions than a pure NB. The AODE algorithm is effective, efficient and offers highly accurate classification. 
The AODE algorithm uses the following formula for classification24: 

 
 

 (6) 

 
Jiang and Zhang27 proposed an extension of the AODE algorithm. In AODE, a special probability tree, in which 

each attribute is the parent of all other attributes, is built in order to augment NB. AODE essentially takes a simple 
average of all the nodes of this special probability tree. During classification, each node of the probability tree is 
treated equally. This implies that each nucleotide in a genetic sequence would be treated equally in the task of 
genetic sequence classification. However, in genetic sequence classification, some nucleotides in a sequence may 
have more influence over the others. As a result, a more natural way would be to treat each node of the probability 

 nucleotide 
by measuring the mutual information between the nucleotide (X) and the output class (Y) as follows: 

 
 

 
 (7) 

 
This improvement on AODE using variable weights for attributes is called the weightily averaged one-dependence 
estimators (WAODE)27. Note that we can also use GR or any other estimators to estimate weights for the probability 
tree nodes. Because the WAODE has a very weak independence assumption, it is very suitable for classification of 
genetic sequences. Therefore, we employ WAODE to recognize promoters in genetic sequences.        
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3. Experiments 

We tested our proposed system using a dataset extracted from the biological literature28. The dataset contains 106 
samples, where 50% of the samples represent promoters and the remaining 50% of the samples represent non-
promoters. The positive promoter samples were taken from a compilation produced by Hawley and McClure29. The 
negative examples were derived by extracting contiguous substrings from a 1.5 kilobase sequence from a fragment 
from Escherichia coli bacteriophage T7 isolated with the restriction enzyme HaeIII28. Each sample in the dataset 
contains a 57 nucleotide- -
the sample represents. We performed the entropy-based nucleotide selection process on this dataset. The following 8 
nucleotides were found to have the highest GRs and were consequently selected as discriminating nucleotides: 6th, 
15th, 16th, 17th, 18th,  20th,  39th,  and 41st (counting from left to right).  

We carried out a leave-one-out cross-validation where one sample was held out as the validation data while the 
remaining records served as training data. The whole process was repeated multiple times such that each sample got 
held out exactly once as the validation data. The results were then averaged to produce an estimator to the accuracy 
of the proposed promoter recognition system.  

Table 1 lists the summary of the leave-one-out cross-validation results. The system correctly classified a total of 
103 instances out of 106 instances with an accuracy rate of 97.17% and an error rate of 2.83%. Kappa coefficient, 
which measures inter-rater agreement of predicted values with the true values over all the trials of the leave-one-out 
cross-validation, was found to be 0.9434. It means that the individual predictions are quite consistent in multiple 
trials and that the proposed system is robust. MAE and RMSE were found to be 0.0682 and 0.1608 respectively, 
which were small. RAE and RRSE were found to be significantly large. However, the RAE and RRSE metrics are 
not very meaningful in the task of classification. Table 2 displays the detailed results by output class. One thing 
interesting to note is that both true positive (TP) rate and false positive (FP) rate for promoter are lower than those 
for non-promoter. This implies that the system produces more negative predictions than positive predictions.  This is 
confirmed by a lower precision score for non-promoter. 

 

Table 1. Cross-validation results summary. 

Metric Value 

Correctly classified instances 103           (97.1698 %) 

Incorrectly classified instances 3               (2.8302 %) 

Kappa coefficient 0.9434 

Mean absolute error (MAE) 0.0682 

Root mean squared error (RMSE) 0.1608 

Relative absolute error (RAE) 13.5224 % 

Root relative squared error (RRSE) 31.8582 % 

Total number of instances 106     

Table 2. Detailed results by output class. 

Class TP Rate FP Rate Precision Recall F-Score ROC Area 

Promoter 0.962 0.019 0.981 0.962 0.971 0.992 

Non-promoter 0.981 0.038 0.963 0.981 0.972 0.992 
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Table 3 compares the accuracy of the proposed system with other machine learning models and promoter 
recognition techniques. The proposed system, WAODE with an entropy-based nucleotide selection process 
produced an average error rate of 2.83%. To find out the significance of the entropy-based nucleotide selection 
process, we used WAODE without a nucleotide selection process to predict all the samples from the same dataset. 
The WAODE alone produced an error rate of 7.55%. It implies that the entropy-based nucleotide selection process 
does improve the overall accuracy of the system. It also implies that 8 out of 57 nucleotides are enough to 
discriminate promoters from non-promoters in this dataset. The error rate of the proposed promoter recognition 
system using the WAODE with the entropy-based nucleotide selection process seems to be lower than those of other 
classification systems as shown in Table 3. The results also demonstrate that WAODE outperforms AODE in 
genetic sequence classification. It implies that using variable weights in the probability tree does help improve 
classification accuracy in genetic sequence classification.  

Table 3. Performance benchmark. 

Technique Avg. Error Rate (%) 

WAODE with GA-based nucleotide selection 2.83 

AODE20 with GA-based nucleotide selection 3.77 

KBANN28 3.77 

SMO 6.60  

WAODE without GA-based nucleotide selection 7.55 

AODE20 without GA-based nucleotide selection 10.4 

RBF network 10.4 

ID330 11.1 
31-32 12.1 

J48 tree 17.0 

4. Conclusion 

Recognizing promoters is a one step towards gene finding in DNA sequences. We have presented a machine 
learning based approach to recognize promoters in nucleotide sequences. NB classifiers are widely used in machine 
learning due to their efficiency and simplicity. However, they cannot accurately recognize nucleotide sequences 
because of their unrealistic assumption that forbids dependencies among individual nucleotides. We employ a state-
of-the-art machine learning approach called the weightily averaged one-dependence estimators to tackle the problem 
of recognizing promoters in genetic sequences. Given a sequence of nucleotides, the system predicts whether the 
sequence belongs to a promoter. To lower the computational complexity and to increase the generalization 
capability of the system, we employ an entropy-based feature extraction approach to select relevant nucleotides that 
are directly responsible for promoter recognition. We have carried out experiments on a dataset extracted from the 
biological literature for a proof-of-concept. We found 8 nucleotides that were responsible for promoter recognition. 
This proposed system has achieved an accuracy of 97.17% in promoter recognition over this dataset.  The error rate 
of the proposed system was found to be lower than those of other machine learning classifiers. The experimental 
results are quite promising. As future work, we would like to extend this framework to recognize promoter 
sequences in various species of higher eukaryotes. We also would like to test this framework on a wide range of 
datasets.  
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