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ABSTRACT OF THE DISSERTATION 

Specificity determination by paralogous winged helix-turn-helix transcription factors 

by 

Adam Joyce 

Doctor of Philosophy in Biology and Biomedical Sciences 

Developmental Biology 
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Professor Timothy Schedl, Chair 

 

 Transcription factors (TFs) localize to regulatory regions throughout the genome, where 

they exert physical or enzymatic control over the transcriptional machinery and regulate 

expression of target genes. Despite the substantial diversity of TFs found across all kingdoms of 

life, most belong to a relatively small number of structural families characterized by homologous 

DNA-binding domains (DBDs). In homologous DBDs, highly-conserved DNA-contacting 

residues define a characteristic ‘recognition potential’, or the limited sequence space containing 

high-affinity binding sites. Specificity-determining residues (SDRs) alter DNA binding 

preferences to further delineate this sequence space between homologous TFs, enabling 

functional divergence through the recognition of distinct genomic binding sites. 

 This thesis explores the divergent DNA-binding preferences among dimeric, winged 

helix-turn-helix (wHTH) TFs belonging to the OmpR sub-family. As the terminal effectors of 

orthogonal two-component signaling pathways in Escherichia coli, OmpR paralogs bind distinct 

genomic sequences and regulate the expression of largely non-overlapping gene networks. Using 

high-throughput SELEX, I discover multiple sources of variation in DNA-binding, including the 
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spacing and orientation of monomer sites as well as a novel binding ‘mode’ with unique half-site 

preferences (but retaining dimeric architecture). Surprisingly, given the diversity of residues 

observed occupying positions in contact with DNA, there are only minor quantitative differences 

in sequence-specificity between OmpR paralogs. Combining phylogenetic, structural, and 

biological information, I then define a comprehensive set of putative SDRs, which, although 

distributed broadly across the protein:DNA interface, preferentially localize to the major groove 

of the DNA helix. Direct specificity profiling of SDR variants reveals that individual SDRs 

impact local base preferences as well as global structural properties of the protein:DNA complex. 

 This study demonstrates clearly that OmpR family TFs possess multiple ‘axes of 

divergence’, including base recognition, dimeric architecture, and structural attributes of the 

protein:DNA complex. It also provides evidence for a common structural ‘code’ for DNA-

binding by OmpR homologues, and demonstrates that surprisingly modest residue changes can 

enable recognition of highly divergent sequence motifs. Importantly, well-characterized genomic 

binding sites for many of the TFs in this study diverge substantially from the presented de novo 

models, and it is unclear how mutations may affect binding in more complex environments. 

Further analysis using native sequences is required to build combined models of cis- and trans-

evolution of two-component regulatory networks. 
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Chapter 1. Introduction 
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 All living organisms employ signal transduction systems that receive, interpret and 

ultimately determine the appropriate physiological response to environmental conditions, 

available metabolites, and real-time activity of other cells. In many ways, the architecture 

of signaling networks in eukaryotes and prokaryotes reflects their opposing evolutionary 

strategies. Eukaryotes (and other multicellular organism life) typically invest substantial 

energy in robust developmental processes that ensure a limited range of variation in the 

extracellular environment, which advantages complex pathways that integrate predictable 

sensory stimuli and robust developmental transitions [1]. Conversely, prokaryotes must 

adapt quickly and precisely to navigate the limitless spectrum of environmental 

conditions (e.g., medium osmolarity, 02 content, etc.), specific chemical compounds (e.g., 

antibiotics, carbon sources, etc.), and various states of cellular stress (e.g. protein 

unfolding, membrane disruption, etc.) to ensure survival and a competitive rate of 

replication. For example, the chemotactic behavior of E. coli is governed largely by rapid 

sensory responses to glucose gradients via the cheY system, which biases its otherwise 

random motions toward environments with ample food [2]; individual cells often contain 

dozens of such pathways, the sum total of which optimizes survival in the intended 

environmental niche [3]. 
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1.1 Two-component signaling pathway specificity 

 

 Most prokaryotic signaling inputs are transduced via a ‘two-component’ architecture, 

comprised of a transmembrane sensor histidine kinase (HK) and a cytoplasmic response 

regulator (RR). Typically, detection of an appropriate stimulus by extracellular ‘sensory’ 

domains of a HK stimulates the phosphorylation of a highly conserved aspartate residue 

in the ‘receiver’ domain of the cognate RR, altering its behavior [4].  

 The high degree of sequence and structural homology among two-component 

proteins operating in the same cellular space raises the potential for cross-talk between 

pathways, and multiple strategies have arisen to maintain the fidelity of signal 

transmission [3]. At each HK:RR interface, cognate components are selected by a subset 

of ‘specificity-determining residues’ (SDRs), which, if mutated (or transferred between 

HK:RR pairs), can re-wire two-component pathways [5; 6]. Additionally, the majority of 

HKs are bifunctional, displaying both kinase and phosphatase activity toward RRs [1], 

with strong “kinetic preference” toward their cognate partner. For example, the VanS HK 

exhibits a 104-fold preference (kcat/KM) in vitro for its cognate RR (VanR) in comparison 

to the non-cognate PhoB  [7]; thus, HKs can rapidly suppress any spurious RR 

phosphorylation (as well as maintain tight control over cognate RR activity). Due to the 

mild promiscuity of the HK:RR interface, active competition within the cellular RR pool 
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for HK-occupancy is unavoidable, and theoretical studies have shown that introducing 

multiple competing RRs reduces the pathway sensitivity [1].  

 Specificity mechanisms downstream of each two-component pathway are less clear, 

as there is no formal reason for pathways to maintain distinct outputs. The majority of 

RRs contain one or more ‘effector’ domains that serve a regulatory role in cellular 

processes. Most commonly, RRs contain DNA-binding domains (DBDs) belonging to the 

winged helix-turn-helix (wHTH) family [8]. These RRs are collectively defined by 

structural homology to the prototypical osmolarity response protein OmpR, and also 

share certain functional characteristics [9; 10]. 

Conventionally, phospho-activation of an OmpR-family RR shifts the 

monomer-dimer equilibrium toward a predominantly homodimeric state, which 

co-orients DBDs and promotes cooperative binding at tandem repeat sequences [11–13].  

Phosphorylation of OmpR family RRs may also stimulate the coordinated occupancy of 

multiple adjacent binding sites, often leading to complex regulatory outcomes. For 

example, E. coli ArcA was shown to target genomic regions containing the tandem repeat 

‘TGTTAN5TGTTA’ (distributed in phase with the DNA double helix), and individual 

repeats yield distinct effects on ArcA occupancy level, repressor activity, and 

responsiveness to pathway activation [14; 15]. Likewise, OmpR-dependent enhancers at 

multiple porin genes (e.g, ompF, ompC, ompS1, etc) exhibit distinct binding affinity and 

regulatory activity, and their unique, enhancer-specific sensitivity to OmpR mutations 

further suggests that the conformation of enhancer-bound OmpR is sequence-dependent 
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[16–18]. Binding studies of RRDBD show little evidence of direct (DBD:DBD) 

cooperativity [19], but flexible interactions between regulatory domains [20] and 

DNA-mediated allostery likely play a role [21–23]. 

 

1.2 Structural attributes of the OmpR family 

  

 Helix-turn-helix (HTH) protein domains are distributed throughout all kingdoms of 

life, wherein they most commonly mediate specific and non-specific DNA-binding in 

transcriptional regulation, DNA repair, and replication [24]. The HTH domain itself is a 

simple right-handed, tri-helical bundle, but many structural variations have emerged to 

carry out increasingly specific functions. In this work, I focus on the winged 

helix-turn-helix (wHTH); more specifically, the OmpR sub-family. 

 The basic topology of the wHTH domain consists of the HTH motif, a right-handed, 

tri-helical bundle that makes up both the hydrophobic core and bulk of the DNA interface, 

situated between an N-terminal, antiparallel β-sheet and C-terminal hairpin (or ‘wing’) [9; 

10]. OmpR family DBDs are distinguished from other wHTH domains by the presence of 

an N-terminal β-sheet, the extended HTH ‘turn’, and a somewhat long alpha α3-helix. 

Bound to DNA, the latter functions as an archetypical ‘probe helix’, and projects into the 

major groove orthogonal to the helical axis. Structural evidence suggests that this 

sub-family of RRs assembles in a head-to-tail orientation on the DNA, typically 

embedding the wing residues of one monomer into the intervening minor groove [13].
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   This chapter is adapted from the following provisionally accepted manuscript: 
‘Deciphering the protein-DNA code of bacterial winged helix-turn-helix transcription 
factors’	
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2.1	
  Context	
  and	
  motivation	
  for	
  research	
  

 

 Large-scale specificity profiling of large TF families can lead to many important 

insights in TF function and evolution; probably the clearest example of this is the 

homeodomain-containing class of TFs. Homeodomain TFs make up one of the largest 

classes of metazoan TFs, and regulate developmental gene networks essential to cellular 

differentiation [1], tissue patterning [2], and specification of the vertebrate body plan [3]. 

In two of the first large-scale efforts to profile a TF family, two groups simultaneously 

determined the DNA-binding specificities of homeodomain TFs in the Drosophila 

melanogaster [4] and Mus musculus [5] genomes, each identifying multiple 

sub-specificities within the class that could (1) be attributed structurally to specific 

DNA-contacting residues and (2) be applied to predict the specificities of homeodomain 

TFs with distant homology. In a follow-up analysis, Chu and colleagues [6] adopted a 

‘DNA-centric’ approach to identify mutant homeodomains that recognized specific 

sequences not observed in the naturally-occurring specificity profiles. Surprisingly, this 

analysis revealed a number of “novel combinations of specificity determinants that are 

uncommon or absent in extant HDs” with novel DNA-binding properties, suggesting that 

these determinants are disadvantageous or inaccessible to naturally evolving systems. 

Further profiling of the polymorphic (human) homeodomain TFs has since shown 

substantial effects on DNA-binding affinity and specificity, in many cases associated with 

Mendelian disorders [7]. As a result of the aforementioned studies (and many others not 
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mentioned), the function, evolution, and biochemistry of homeodomain TFs are, to some 

extent, ‘solved problems’, providing critical context for complex genomic analysis and 

biological studies. 

 Other than sharing a common ‘helix-turn-helix’ DNA-binding domain fold, the 

specific biology of the aforementioned homeodomain family is of little importance to this 

thesis. Rather, it is an example of the power of deep, broad analysis of DNA-binding 

specificity in TF families to reveal properties crucial for predicting phenotypic variation, 

understanding TF-related disease states, and decoding developmental gene regulatory 

networks. However, deep specificity profiling is, at the time of this writing, largely absent 

for prevalent prokaryotic TF families and DNA-binding domains. 

 There are many technical reasons for the intense focus on eukaryotic TFs (eTFs) and 

general avoidance of prokaryotic TFs (pTFs) in large-scale profiling efforts. First, the 

sequences bound by pTFs (10-20bp) are usually quite long compared to eukaryotic TFs 

(6-8bp), reflective of the alternative cis-regulatory strategies of eukaryotic and 

prokaryotic genomes. (A complete discussion of this topic is outside the scope of this 

thesis.) Popular specificity profiling technologies, such as protein-binding microarrays [8] 

(PBMs) and bacterial one-hybrid platforms [9], are limited in their coverage of long 

sequences. PBMs, for example, offer full coverage of all 10mer sequences, sufficient for 

the vast majority of eTFs but insufficient to describe the longer binding sites of pTFs. 

Secondly, it is standard in large-scale TF specificity profiling to remove accessory 

domains, which are assumed not to affect sequence-specific binding. Although this may 
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be a safe assumption for eTFs, pTFs often require structural domains outside the DBD for 

dimerization or assembly of the protein:DNA complex; often this process involves the 

transmission of a signal (e.g. phosphorylation) or the binding of a chemical ligand. It is 

difficult to produce, handle, and ‘activate’ such proteins; moreover, the complexity and 

diversity of DNA-binding mechanisms confounds systematic, large-scale analysis. 

Notably, recent and future advances in selection-based protocols (e.g. SELEX [10]) and 

targeted, EMSA-based library screening (e.g., Spec-seq [11; 12]) have and will continue 

to push these boundaries. Thirdly, and substantively, the motivation for understanding 

eTFs and pTFs are very different. Profiling eTFs is often aimed at decoding the 

combinatorial ‘regulatory grammar’ of biological processes - a research aim in itself - 

whereas the analysis of pTFs is often a utilitarian step in the identification of regulatory 

targets (for which there are more direct and reliable approaches than predictions based on 

specificity models [13]).  

 Speaking to the basic motivation behind pTF analysis, there are three main areas of 

research, in particular, that can benefit greatly from a more complete quantitative 

understanding of these protein families. First and foremost, pTFs harbor vast potential as 

tools for synthetic biology, particularly in the construction of artificial genetic circuits. 

For example, the TetR TF family was recently ‘genomically mined’ in vitro to identify 

orthogonal, or non-overlapping, sequence-specific binding activity; 16 distinct TFs were 

ultimately discovered and converted to separate ‘NOT/NOR’ logic gates (theoretically 

capable of 1054 circuit combinations) [14]. Secondly, the relative simplicity of 
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prokaryotic cellular systems (compared to eukaryotes) makes these organisms more 

amenable to top-down systems modeling; in fact, efforts are already underway to create 

an ‘in silico cell’, a theoretical, complete reconstruction of the metabolic and regulatory 

processes underlying cellular homeostasis, growth, and information processing [15]. With 

regard to whole-genome transcriptional regulatory models, projects such as the 

Transcription Factor Profiling of Escherichia Coli (https://shigen.nig.ac.jp/ecoli/tec/top/) 

show great promise in providing the foundational data to begin the prediction of 

regulatory networks and TF interactions [13]. Thirdly, the complexity of pTF binding can 

reveal biochemical properties of protein:DNA interactions that are not prominent in less 

sophisticated eTFs. For example, early structural analysis of the Trp repressor revealed a 

sequence-specific protein:DNA interface with no direct residue-base contacts; instead, 

specificity was mediated through DNA backbone, and base hydration [16]. Examples of 

DNA-binding specificity through DNA deformation [17], bending [18], and cooperative 

interactions[19] abound in prokaryotic systems, and will continue to inform models of 

complex TF:DNA interactions (e.g., multi-protein enhancer complexes). 

 In this work, I chose to generate a representative profile of DNA-binding specificity 

of the OmpR sub-family of wHTH TFs in E. coli for several reasons. First, as previously 

discussed, two-component signaling systems are heavily insulated from cross-talk 

between pathways, and I set out to understand how (or whether) that property was 

communicated to downstream regulatory networks [20]. Second, in contrast to many eTF 

families, bacterial response regulators function in the same cellular volume, imposing 
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unique and stringent constraints to prevent (or promote) cross-reactivity at the 

transcriptional level. Thirdly, few studies [21] have isolated and explored the role that 

intrinsic sequence recognition potential might play in sequence recognition in a synthetic 

environment, away from the influences of native genomic sequence or co-regulatory 

factors. Finally, despite its prevalence (>50%) in bacteria, the DNA-binding specificity of 

winged helix-turn-helix TFs is, in general, poorly understood.
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2.2	
  Introduction	
  

 

2.2.1 Modeling TF:DNA specificity 

TF binding specificity may be modeled in a variety of ways, each striking a balance 

between simplicity of representation and quantitative resolution for the chosen 

application [22; 23]. The earliest representation of sequence-specific TFs, for example, 

was the ‘consensus sequence,’ a string format in which DNA bases (A/C/G/T) at each 

position represents that most frequently observed in a set of aligned binding sites [24]. 

This form of model has significant quantitative shortcomings, as it equates the relative 

importance of any base in plurality; for example, consensus models will represent two 

positions as ‘T’ bases despite the magnitude of their plurality (40% T ~ 100% T). 

Modifications to the consensus approach include the establishment of arbitrary thresholds 

(i.e. setting a minimum threshold frequency for a position to contribute to the model) and 

the use of more complex IUPAC ambiguity codes representing multiple base identities 

(http://www.bioinformatics.org/sms/iupac.html). Despite the shortcomings of consensus 

and string-format specificity models, they can be highly useful in certain applications. For 

example, the most precise functional model of a TF with a single genomic binding site 

would, in fact be that single sequence; likewise, the genomic distribution of TFs with 

predominantly low-affinity binding sites can be more accurately predicted from simple 

consensus models. The most widespread class of TF:DNA recognition models is the 

position weight matrix (PWM); the functional form of these models is extensively 
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described elsewhere [25]. Similar to other approaches, PWMs are constructed from a 

pre-defined frequency matrix based on a set of aligned binding sites; observed base 

frequencies at each position in the binding site are log-transformed to yield weights that 

generally approximate true differences in binding energies [25]. From a functional 

standpoint, these models correct for background probabilities of different DNA bases, 

which is highly useful when binding sites are derived or predicted from skewed genomic 

sequences (e.g., A-rich promoters). PWMs may additionally accommodate more complex 

binding parameters, such as preferences for dinucleotide preferences [26], which may 

reflect DNA shape recognition [27], base- and base-step geometry [28], or bidentate 

contacts [29]. Many additional model types have been applied to represent TF binding 

specificity, including hidden Markov models [30], neural networks [31], and ranked lists 

[32], as well as structure-based biophysical models, which are the subject of Chapter 3.   

 

2.2.2 Sequence recognition by the OmpR family 

The sequence preferences of several OmpR family members are defined by 

consensus-based models using a small number of native operator sequences [33], while 

others have been generated from high-throughput functional assays [34]. Because native 

sequences are subject to multiple selective pressures, their utility for constructing 

quantitative specificity models is limited. For example, both CpxR and OmpR bind the 

ompF enhancer in porin gene regulation [35], and both factors can affect different 

regulatory outcomes depending on the sequence and architecture of binding sites [36] 
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[37]. Thus genomically-derived models will reflect this complex functional relationship. 

Models derived entirely in vitro, however, should accurately reflect only the intrinsic 

sequence preferences of a TF, and may provide significant regulatory insight. For 

example, Park and colleagues [34] have shown that arrayed ‘TGTTA’ repeats direct 

binding of E. coli ArcA in vivo, and a previous in vitro binding analysis produced a 

near-identical model for Shewanella ArcA [21]. In contrast, OmpR binding sites are 

highly divergent from the in vitro consensus, indicating that these two factors have 

evolved distinct, affinity-based strategies for target discrimination [38]. For other OmpR 

family proteins, it would appear that binding motifs derived in vitro and in vivo are 

completely inconsistent. PhoP, for example, has been shown to regulate distinct 

sub-populations of targets through different ‘submotifs’ with distinct evolutionary rates 

and species distribution, most of which exhibit the characteristic repeat architecture of the 

OmpR family [39]. However, a SELEX-derived model of Mycobactium tuberculosis 

PhoP revealed a novel sequence preference, unrelated to any previously reported for 

OmpR family RRs [40]. 

Since the initiation of this work, the Transcription Factor Profiling of E. coli Project 

(and affiliated groups) (TEC) have generated comprehensive catalogs of in vitro binding 

profiles using SELEX with fragmented genomic DNA. Depending on the method of 

analysis, this technique produces an set of enriched genomic regions with high affinity for 

the targeted TF; in particular, TEC utilizes an E. coli tiling array to measure genomic 

enrichments, thereby restricting the resolution of putative sites to >60bp (probe length). 
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More modern techniques based on high-throughput sequencing, such as the recently 

developed Chip-exo [41], stand to substantially improve the identification of TF target 

sites; however, significant experimental confirmation by both footprinting and functional 

assays has revealed a great deal about the binding of many TFs, including several OmpR 

family RRs. For example, BasR and QseB (of the metals-responsive BasRS and 

quorem-sensing QseBC systems, respectively) enriched only partially-overlapping sets of 

genomic sequences in phosphorylated and non-phosphorylated states. Footprinting 

analysis of 3 phospho-BasR target regions revealed a likely preference for ‘TTAA’ 

half-sites in tandem orientation. Similar analyses were performed for OmpR [38], CpxR 

[42], and YedW [43], all of which validate previous findings in vitro and in vivo findings. 

An important limitation of genomic SELEX is its inability to distinguish energetic 

preferences from functional constraints on naturally evolved binding sites; in the 

aforementioned example, is ‘TTAA’ the true, preferred half-site, or one selected for 

reduced affinity toward BasR or close paralogs? Additionally, compared to modern in 

vitro specificity profiling techniques, such as PBMs or HT-SELEX, naturally-occurring 

sequences limit the coverage of potential binding sites necessary for accurate biochemical 

models; as such genomic SELEX is best-suited to large-scale TF target identification. 

Despite their role in signaling pathways critical to bacterial homeostasis, disease 

processes, and bioengineering, sequence-specific DNA binding by the OmpR family 

remains poorly defined from a quantitative standpoint. Using a combination of techniques, 

we deeply characterize the recognition potential of ten OmpR homologues from E. coli, 
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and further identify specificity-determining residues both experimentally and 

computationally. We find that OmpR homologues are capable of multiple modes of 

sequence-specific DNA binding, and that the balance between these binding modes can 

be maintained by a single residue position.
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2.3	
  Results 

	
  

2.3.1	
  Variation in protein and DNA structure at wHTH:DNA interface  

Using the PFAM database [44], we identified 18 putative winged helix-turn-helix 

(wHTH) transcriptional regulators (PF00486) present in the E. coli K12 genome, 14 of 

which fall into the archetypical class of bipartite, signal-activated transcriptional response 

regulators (E. coli RR, or eRR). They exhibit high similarity at residue positions 

presented toward the domain core as well as those in contact with the DNA phosphate 

backbone, implying the preservation of both wHTH fold structure and DNA-binding 

ability (Figure 2.1a) anticipated from prior structural and functional studies of OmpR 

family proteins [45;	
  46]. The protein:DNA interface spans three structural elements 

within the wHTH domain (α1 N-terminus (α1-N), beta strands β6-7 (wing), and α3 

‘recognition helix’ (RH)), which contact different regions of the double helix (Figure 

2.1b). 

At the protein:DNA interface, highly conserved residues often interact 

non-specifically with DNA or make sequence-specific contacts important for ‘familial’ 

binding specificity [47], whereas narrowly conserved residues are more likely to act as 

specificity determinants between paralogous proteins. We identified 1925 

high-confidence orthologs (see Methods) for the 14 eRRs, which we further subdivided 

into four distinct lineages (LI-IV) based on protein sequence similarity (Figure S2.1). 

The consensus for each alignment closely matched its corresponding eRR sequence in all 
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cases except PhoP, which contains two atypical, non-conservative mutations in the RH 

(Figure 2.1c). We immediately observed multiple positions in the DNA-contacting 

sub-domains exhibiting patterns of variability consistent with paralog-specific functions, 

especially at the DNA-exposed surface of the RH. [For consistency, we will hereafter 

reference these positions by their domain context, numbered position, and (if applicable) 

residue identity (e.g., RH,(12)[R] ~ C-terminal Arg in RH).] For example, residue dyads 

Arg-Asp (LII, LIII, and LIV) and Asn-Glu (LI) were frequently observed at RH(2,5), 

indicating a coevolutionary relationship. Based on structural analysis, it is known that 

these residues interact directly at the protein:DNA interface, and RH(5)[D/E] serves is a 

hub of polar interactions between RH(2)[R/N], W(7)[Y], and certain backbone-proximal 

residues at the N-terminus of α2. Planar residues are commonly preferred at RH(7), with a 

strong His prevalence in LIV proteins as well as the LIII protein CpxR; non-valine 

residues at RH(6) appear additionally to co-occur with RH(7)[H]. RH(9-10) were typically 

conserved at lower levels than other DNA-contacting residues, but trends were apparent 

at the lineage level, such as the preference for RH(9) [S] in LIII. Overall, our evolutionary 

analysis validates the widely held assumption that DNA-contacting residues in the RH are 

the primary specificity determinants. 

Because multiple residues with paralog- and lineage-specific distributions are 

positioned to interact primarily with the DNA backbone, we performed a comparative 

structural study to investigate the role of shape-specificity in RR-DNA binding. As 

previously reported, the DNA minor groove narrowed substantially in the spacer region in 
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all five protein:DNA structures, favoring DNA curvature toward the bound face of the 

dimer [48], and we further observed that the DNA major groove expanded in the region 

occupied by the RH (Figure S2.2a). We then superimposed RHs to visualize the relative 

position of the DNA helix, and found that phosphate backbone trajectories diverge 

strand-specifically directly over the half-site (Figure S2.2b). For each RR, backbone 

trajectory was similar between upstream and downstream half-sites, leading us to 

conclude that structural variability is primarily dependent on protein binding, not 

underlying sequence (Figure S2.3). 



	
   23	
  

	
  

	
  

Figure 2.1: Diverse residue contacts and DNA shape at the protein-DNA interface for OmpR family 

response regulators.  A.  The results of a structural alignment of winged helix-turn-helix domains for E. 

coli K12 OmpR homologues are presented. Highly and moderately conserved residues are highlighted by 

black and grey boxes, respectively, and a histogram of relative entropy is plotted for each position (bottom) 

from a sampling of 1000 proteins from OmpR homologues identified previously [49]. Colored regions 

indicate structural sub-domains that contact DNA in representative co-crystal structures of OmpR 

homologues bound to target DNA sequences.  B.  DNA-contacting residues in the RH, W, and α1 are 

shown using the crystal structure of a single PhoB monomer bound to a high-affinity half-site (PDB code: 

1GXP [48]). Residues are rendered as sticks and colored in correspondence with the alignment in panel A; 
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DNA is shown in a grey surface representation.   C.  Residue conservation within the RH is displayed in 

sequence logo format, organized into lineages (I-IV) based on amino acid similarity over the full-length 

protein. 

	
  

2.3.2	
  Multi-specificity in sequence recognition by eRRs 

 To systematically explore the intrinsic sequence recognition potential of the OmpR 

family, we constructed a randomized (20N) library and performed high-throughput 

SELEX on phosphorylated and non-phosphorylated eRR. Binding motifs were identified 

de novo for five proteins (KdpE, BasR, QseB, BaeR, and OmpR) from three of the 

previously identified lineages, revealing two apparent ‘modes’ of binding (Figure 2.2). 

One mode, characterized by a half-site based on the consensus ‘GT-A’, was enriched 

following selection with CpxR (LIII), OmpR (LIII), and QseB (LI). The three 

‘GT-A’-binding eRR exhibited different responses to chemical phosphorylation. OmpR, 

for example, yielded near-identical binding motifs (i.e., same specificity) in both 

phosphorylation states; however, the overall representation of sequences in the selected 

pools was higher in the in the phosphorylated state. We can thus infer that 

phospho-OmpR bound its specific targets with greater affinity, as observed in many 

previous studies, resulting in a greater number of sequences stably bound (and selected) 

in each successive round. Phosphorylated and non-phosphorylated CpxR, by contrast, 

yielded de novo binding motifs consistent with direct and inverted repeat architectures, 

respectively. The recognition of inverted repeats has previously been suggested at 
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genomic binding sites for the copper-responsive RRs CusR and YedW ; however, there is 

currently no corroborating structural evidence. Additionally, because these assays cannot 

differentiate between complexes of distinct molecular weight, inverted repeat motifs for 

CpxR, CusR, and YedW are consistent with both (1) an inverted dimer  (! ") and (2) 

adjacently-bound dimers (!! "") exhibiting the standard, direct architecture. 

Surprisingly, a distinct sequence repeat containing a novel ‘GCT’ core was also enriched 

in selections using QseB, KdpE, and BaeR. Half-site recognition was asymmetric 

(‘ACGCTN4TTGCT’), with preferential specificity toward the upstream and downstream 

sites in the presence and absence of phosphodonor, respectively. 

 



	
   26	
  

 

 

Figure 2.2: Lineage-independent multi-specificity of eRRs.  DNA sequence logos are derived from de 

novo motif searching of SELEX pools. Binding motifs were discovered following selection of the indicated 

eRR in the presence (+P) or absence (-P) of phosphodonor, or are representative of the same motif 

identified in both conditions independently (+/-P). 

	
  

2.3.3	
  eRR vary in their preference for half-site sequence, spacing, and orientation 

The ‘GT-A’ repeat sequences identified through SELEX bore similarity to binding 

sequences previously derived from in vitro and in vivo analyses of OmpR 

(‘TGTAACAAAATGTTTC’) [19], CpxR (‘GTAA(N6)GTAA’) [50], RstA 

(‘GTA’/’GTAAC’) [51], PhoP (‘TGTTta’) [52], PhoB (TGTCA) [53], and ArcA 
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(‘TGTTA’) [21]. We expected that this could represent a familial mode of binding 

specific to the OmpR family. To explore the diversity of repeat sequence, spacing, and 

orientation in this mode of binding, we performed three rounds of SELEX on each 

paralog (+/- phosphodonor) using a partially randomized library flanked on one side by a 

synthetic half-site, (‘AGGTAA(N)20’). Binding motifs (each representing thousands of 

individual sequences) were identified de novo for eight eRRs in their phosphorylated and 

non-phosphorylated states (Figure 2.3a). Despite differences in sequence and regulatory 

function, the OmpR family overall displays a consistent preference for half-sites of the 

form ‘t(+1)GTnAn(+6)‘ (on the reverse strand, ‘n(-6)TnACa(-1)‘), hereafter referred to as the 

‘canonical’ mode (Figure 2.3b, left). In general, half-site sequences varied over the 

profiled TFs, but mainly at the weakly selective fourth and sixth positions. CreB was a 

notable exception, adopting a preference for a G (+4), highly similar to the ‘cre tag’ 

sequence previously observed in promoters of several CreBC TCSP targets [54] (Figure 

3B, center). Interestingly, there was evidence of a similar preference for G(+4) for PhoB, 

also an LIV protein, but the overall specificity was difficult to assign due to the 

palindromic structure of the half-site [55]. 

To investigate spacing and orientation preferences for each eRR, we asked whether 

‘hits’ to representative half-site position-weight matrices (PWMs) were over-represented 

at specific positions (in forward or reverse orientation) within the randomized region for 

the selected sequence pools. Overall, orientation of putative binding events suggested that 

recognition of direct repeats is a familial trait, and spacing preferences range only 
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narrowly from 9bp to 10bp center-to-center distance (ctcd). A few notable exceptions to 

this rule include 1) strong binding of CusR (L1) to a head-to-head inverted repeat, 2) a 

lack of spacing preference for the non-phosphorylated form of KdpE, and 3) an atypical 

pattern of spacing preference for CpxR. Importantly, these exceptions reflect known 

binding activities of these factors in vivo [43] [56] [57]. Overall, through in vitro SELEX 

we have observed a surprising similarity in DNA-binding (a ‘canonical mode’) by OmpR 

family proteins , and we have also identified non-ubiquitous binding characteristics for 

individual family members that explain variable behavior in vivo.  
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Figure 2.3: Variation in half-site recognition by OmpR family orthologs.  A.  Representative half-site 

sequence logos derive from selection of the ‘anchored’ GTAA-(20N) degenerate library are shown for nine 

eRR, with the names of eRR for which logos could not be obtained are in grey. Motifs obtained in the 

presence or absence of phosphodonor are indicated by +P and -P, respectively. The dendrogram reflects 

phylogenetic relatedness of the full-length consensus sequences, and distinct lineages (I-IV) correspond to 
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Figure 2.1c. For each motif, we display heat maps indicating the distribution of start sites for putative 

half-site binding events (top-scoring weight matrix hits) within the randomized region of the library. Note 

that longer motifs (for example those of PhoB) have fewer potential starting positions in the 20bp library, 

giving rise to a shorter heat map. Separate distributions are displayed by row in each heat map for putative 

binding events by phosphorylated and non-phosphorylated proteins (+P, -P) in either forward or reverse 

orientation (for, rev) relative to the ‘fixed ‘GTAA’ half-site, ordered as shown for CreB (bottom).  B.  

Full-length eRR motifs reflect alternative use of the fixed half-site and 20bp randomized region. 

	
  

2.3.4	
  LIII specificity determinants include sequence preference and complex 

assembly 

The LIII family members CpxR, OmpR, and RstA target overlapping and/or identical 

operators in the E. coli genome. However, they exhibited varied recognition of 

asymmetric binding sites and/or mechanisms of multi-meric assembly in a SELEX format 

suggesting they may have different affinities for their common genomic targets. To 

further interrogate specificity determinants within this lineage, we performed Spec-seq, a 

technique permitting the measurement of relative affinities toward thousands of 

individual sequences while visualizing protein:DNA assembly in an EMSA format [12;	
  

58]. We designed a partially randomized library based on the high-affinity OmpR site, 

which was similar to SELEX-derived consensus sequences for CpxR and RstA. Each 

base pair was biased towards the consensus during synthesis (85% native base, with each 

alternate base present at 5%) to produce a complex library of targeted variants (~5.4% 
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OmpR consensus, 4.7% single-mutants, and 1.7% double-variants); this design also 

permitted a broad sampling of sequences with greater similarity to the RstA or CpxR 

consensus, albeit at lower frequency in the pool. To reduce the prevalence of weak 

binders in each pool, we selected high-affinity binders over three rounds without 

replacement; as expected, average library affinity was reduced in each successive round 

(data not shown). For each TF, the three pools were combined in a 3:2:1 ratio, in 

ascending order of average affinity. 

Strikingly, we observed distinct banding patterns for all three proteins, indicating 

alternative mechanisms of assembly and/or complex structure. OmpR formed a single 

complex that migrated identically in both phosphorylation states, consistent with previous 

findings in vivo and in vitro that it minimally requires a homodimer – which is stabilized 

by phosphorylation - for target recognition (Figure 2.4d-e, upper). Phospho-CpxR failed 

to form discrete complexes, but rather shifted the population continuously in proportion 

to the total protein concentration, producing a prominent ‘smear,’ albeit one with distinct 

lower and upper bounds consistent with dimeric and tetrameric assembly states. 

Interestingly, non-phosphorylated CpxR also migrated continuously, but as a discrete 

band and at higher protein concentration (Figure 2.4a-b, upper). Phospho-RstA formed a 

distinct banding pattern composed of three closely separated micro-states (and a fourth 

high-molecular weight state), which depended on protein concentration (Figure 2.4c, 

upper). The upper two micro-states dispersed with increasing phospho-RstA levels, 

while the lowest band steadily increased in intensity.  
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 One major advantage of Spec-seq over other techniques is the ability to produce 

high-resolution binding models directly from relative affinity measurements; this 

contrasts with other techniques that may incur artefacts by inferring binding energies 

indirectly from other measurable properties [59]. In this experimental context, we saw no 

evidence of the asymmetric half-site recognition previously observed for RstA using 

SELEX (Figure 4C, lower). However, this complex may be represented in the high 

affinity micro-states, which unfortunately did not yield enough material for sequencing. 

CpxR produced a recognition model that was distinct from OmpR and RstA, and also 

from its own previously generated by SELEX (Figure 5A,B).  Strikingly, this novel 

mode of recognition specifically altered the recognition of the ‘GT-A’, resulting in a 

dramatic departure from the canonical model. Half-site recognition was asymmetric, with 

the downstream monomer adopting a highly specific ‘t(+1)gTGAa(+6)’ and an upstream 

binding motif undergoing a concentration-dependent shift from ‘t(+1)gTGAa(+6)’ to 

‘t(+1)tAAAn(+6)’. In summary, this analysis demonstrates unique binding properties and 

sequence recognition among three LIII family members, suggesting complex binding 

dynamics. 
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Figure 2.4: Determination of DNA binding specificity for CpxR, OmpR and RstA 

DNA-bound complexes of full-length, strep-tagged phospho-CpxR (A), CpxR (B), phospho-RstA (C), 

phospho-OmpR (D), and OmpR (E) were obtained by excising bands separated by gel electrophoresis. 

Proteins were incubated with pooled, partially degenerate DNA libraries based on the OmpR consensus 

binding sequence (N.P., no protein; ns, non-specific library). Asterisks indicate the lanes that were analyzed. 

Library members in bound and unbound bands were sequenced and analyzed using Spec-seq. Energy logos 

below the images represent observed relative affinities of single-variants to the consensus (see Methods). 
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2.4	
  Discussion  

 

In this chapter, I applied two different high-throughput techniques to profile 

specificity determinants in the OmpR sub-family of wHTH TFs, which constitute 

approximately 30% of downstream effectors in two-component signal transduction 

systems. Two-component signaling pathways (TCSPs) are a critical and predominant 

sensory modality in Bacteria, and are a classic system for the study of functional 

specificity of paralogous proteins and pathways. This work is notable for several reasons. 

First, in contrast to the simple mechanisms of DNA binding employed by most of the 

profiled eukaryotic TF families, OmpR family proteins bind as multi-mers in response to 

phosphorylation of a regulatory domain, greatly increasing the complexity of potential 

sequence interactions. Second, prokaryotic TFs are usually profiled individually with 

low-throughput methods, whereas we generated high-resolution specificity models from 

thousands of sequences for a representative majority of the OmpR family. Third, we 

utilized fully randomized, synthetic binding site libraries that allowed us to challenge 

OmpR family members with a more complex set of binding partners than they encounter 

in vivo. Our use of these in vitro libraries to identify binding motifs, rather than genomic 

DNA, further ensures that our results are unbiased by native sequence context. Fourth, 

using a recently developed technique known as Spec-seq, we were able to measure 

relative affinities toward thousands of sequences directly, while simultaneously 

visualizing the assembly of distinct protein:DNA complexes in an EMSA format. This 
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approach provided an unprecedented level of insight into the relationship between 

DNA-binding specificity and protein:DNA assembly, and added to our understanding of 

TF interactions important for gene regulation. 

A striking result of our initial SELEX experiment, which used a fully-randomized 

20N library, was the emergence of two binding motifs based on distinct ‘GT-A’ and 

‘(AC/TT)GCT’ sequences.  Interestingly, at least one protein (QseB) appears capable of 

binding in both modes. Multiple modes of binding specificity within a single structural 

family have been proposed before, although they have also been shown to arise 

artefactually from the models used to represent sequence-specific interactions [59]. 

Nevertheless, bona fide multi-specific binding has been observed for the eukaryotic FOX 

family of sequence-specific TFs, which notably also contain a DBD belonging to the 

winged helix-turn-helix class (although distinct in some structural attributes) [60]. 

Furthermore, the two most common binding motifs for the profiled Forkhead-domain TFs 

are of the consensus ‘GTAAAC’ and ‘ACGC,’ partial matches for two of the binding 

motifs shared by OmpR homologues in our SELEX experiment. The alternative ‘GCT’ 

motif also has a structure somewhat similar to a binding consensus previously generated 

by in vitro SELEX for Mycobacterium PhoP (GCTGTGA) [40]. Both Mycobacterium 

PhoP and Klebsiella PmrA (a BasR homolog) have been crystallized in complex with 

sequences containing ‘GCT’-like motifs occupying equivalent positions relative to the 

protein, with each overlapping at the canonically conserved T(+3) (‘GCT’ / ‘GT(+3)-A’). 

[61;	
  62]. 
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Based on a moderately sized collection of binding sites and representative crystal 

structures, it is often assumed that OmpR family TFs recognize sequence repeats in 

tandem with center-to-center distance of 9-10 bp. However, the binding models derived 

de novo in this work cast doubt on the ubiquity of the direct repeat model, as we observed 

the emergence of binding sites with both tail-to-tail and head-to-head architectures. In the 

case of CusR, inverted (head-to-head) binding was previously demonstrated in a native 

operator sequence [43]. Because the solution-state techniques employed in this work do 

not resolve complexes of different size, however, the discovery of an inverted architecture 

could also be explained through the adjacent binding of two dimers in the canonical 

tandem orientation. Additionally, many of the half-site motifs discovered through SELEX 

are themselves semi-palindromic (e.g., OmpR: ‘TGTAACA’, PhoB: ‘tGTgACa’), 

making it difficult to define site orientation with high confidence. Overall, we conclude 

that alternative dimeric architectures are possible (though not widespread), but future 

work is needed to confirm and explore the mechanism of their formation. 

This representative collection of high-resolution binding models provides significant 

insight into the regulatory logic of the OmpR family. For example, the closely related (in 

primary sequence) BasR and QseB proteins appear to diverge in two different dimensions: 

half site recognition (TGTAAA vs. TGTTAc) and center-to-center distance (10bp vs 9bp). 

It is possible that the two parameters are inter-related; that altering the spacing of 

monomers causes (or requires) changes in the presentation of identical residues to the 

DNA. Additionally, in this study, in vitro SELEX analysis showed that BasR recognizes 
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‘TGTTAc’ half-sites (an apparently canonical mode of binding); however, a previously 

defined in vivo sequence for BasR ( ‘cTTAAnnTTnncTTAAnnTT’) diverges 

substantially from that model (losing the ‘G’ base preference broadly conserved across 

the OmpR family) [63]. In the same study, Ogasawara and coworkers showed that BasR 

forms multiple distinct complexes (determined by EMSA) with its native operators and 

occupies regions of DNA far larger than a single homodimer, indicating that BasR 

operators are tuned to interact with multi-meric protein complexes. This apparent 

contradiction suggests that higher-order protein:DNA complexes may have a greater 

influence on target recognition in vivo than intrinsic sequence preferences for OmpR 

family proteins. 

In contrast to the ‘assembly-based’ mechanisms for specificity determination, some 

OmpR family RRs can be distinguished from other paralogs by highly unique site and 

sequence preferences. For example, CreB exhibited a highly unique variation of the 

canonical motif with a preference for ‘GTG-’-containing half-sites, which matches 

closely to the ‘cre-tag’ identified in promoters responsive to the CreBC two-component 

system [54]. Similarly, the paralog-specific head-to-head repeat preference observed for 

CusR matches precisely to recently characterized binding sites in several target promoters 

[43]. From an evolutionary standpoint, the emergence of a unique base preference would 

reduce the risk of cross-talk at paralog-specific operators, thereby reducing the need for 

an assembly-based strategy for operator discrimination. However, TFs with highly 

distinctive sequence preferences lose the ability to recognize common targets.
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2.5	
  Materials	
  and	
  Methods	
  

 

Cloning, expression, and purification 

Coding sequences of 14 response regulators (RRs) of the OmpR sub-family (ArcA, BaeR, 

BasR, CpxR, CreB, CusR, KdpE, OmpR, PhoB, PhoP, QseB, RstA, TorR, YedW) were 

amplified directly from E. coli MG1655 genomic DNA. Coding sequence for the 

StrepTagII affinity tag (WSHPQFEK) was added by PCR amplification along with 

upstream and downstream restriction sites for MfeI and XhoI, respectively. Strep-RR 

fusion protein sequences were sub-cloned into the pET-42a(+) expression vector in-frame 

with N-terminal GST and 6xHis purification tags and a thrombin protease cleavage site, 

generating triple-tagged constructs. Stock plasmids were stored, purified and handled 

using standard laboratory techniques. ArcticExpress (DE3) competent cells (Agilent) 

were chemically transformed with expression plasmids, and single colonies from 

selective (Kan) LB-agar plates were used to inoculate 5ml LB-Kan starter cultures. After 

6-8 hours growing at 37°C, starter cultures were scaled up to 400ml expression cultures in 

triple-baffled 4L flasks prepared with auto-induction media containing Kanamycin 

according to the Studier method [64]. Cultures were expanded at 37°C for 3-6 hours, then 

grown several hours past saturation (24-36 hours total growth time) at 20°C to achieve 

maximum protein yield. Bacterial pellets were harvested by centrifugation, sonicated, 

re-pelleted at high speed to remove cellular debris, and lysate (diluted with 1X PBS to 

reduce viscosity) was passed through a 0.45µm syringe-tip filter (MANUFAC) for 
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clarification. Lysate was passed over a HiTrap GST affinity column (1 ml capacity, GE 

Healthcare) and eluted under manufacturer-specified buffer conditions. Fusion protein 

was cleaved with 5U thrombin protease, and GST-6xHis was removed with two rounds of 

treatment with Ni-NTA resin (Thermo Scientific). Protein samples were cleared 

completely of resin by passage through 0.22 µm syringe-tip filters. Purity was assessed by 

both SDS-PAGE and size-exclusion chromatography, and protein concentration was 

determined by NanoDrop (Thermo Scientific). 

 

SELEX and Spec-seq library preparation 

DNA libraries were designed to contain flanking sequences to support PCR amplification 

and direct sequencing on the Illumina platform, and were obtained as a single-stranded, 

PAGE-purified oligonucleotides form Integrated DNA Technologies. For SELEX library 

construction, 250ng single-stranded DNA (ssDNA) were mixed with a reverse primer in 

two-fold molar excess in 1X NEBuffer 2 (50mM NaCl, 10mM Tris-HCl, 10mM MgCl2, 

1mM DTT, pH 7.9 at 25°C), heated to 85°C and slowly annealed to 30°C. Following the 

addition of 10U Klenow Fragment (NEB) and 1mM dNTPs, extension reactions were 

incubated at 37°C for 2 hours, and double-stranded DNA (dsDNA) libraries were 

subsequently purified using Qiaquick PCR Purification columns (Qiagen) and eluted in 

Qiagen EB (1omM Tris-C1, pH 8.5 at 25°C). Labeled dsDNA libraries for Spec-seq were 

generated by two-step PCR with Q5 High-Fidelity DNA Polymerase (NEB) using 

FAM-labeled primers and purified as described above. 
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SELEX 

Strep-tagged proteins were pre-incubated 1 hour at 32°C in binding buffer (10mM Tris-Cl, 

7.5; 200 mM KCl; 10 mM NaCl, 1 mM MgCl2), 2 µg polydI-dC, 0.1 mg/ml BSA, and 

either NH4Cl or ammonium phosphoramidate for non-phosphorylated and phosphorylated 

conditions, respectively. Incubated protein samples were aliquotted (40 µl) into PCR strip 

tubes containing 200 ng of the appropriate DNA library, and incubated an additional hour 

at 32°C. Binding reactions were mixed with a washed suspension of Strep-tactin magnetic 

beads (Qiagen) and placed on ice for 30 minutes; to prevent bead settling, reactions were 

mixed by gentle pipetting at 10 minute intervals. Beads were pelleted magnetically and 

supernatant was removed by gentle pipetting. Pellets were washed once (without 

disturbance) with a single volume of ice-cold binding buffer. Pellets were resuspended in 

20µl elution buffer (Qiagen TE + 150 mM NaCl) and incubated for 20 minutes at 80°C. 

Eluted DNA was amplified for subsequent selections in a two-step reaction using Phusion 

High-Fidelity DNA polymerase for 14-18 cycles, and purified using the MinElute PCR 

purification system (Qiagen). 

 

Spec-seq 

Binding reactions were prepared on ice in 12µl volumes containing 20ng FAM-labeled 

dsDNA library in 1X EMSA Buffer (25 mM Tris-Cl, 60 mM KCl, 140 mM NaCl, 1.5 

mM MgCl2, 0.2 mg/ml BSA, 5% glycerol, 10 ng/µl salmon sperm DNA, pH 8.3 at 8°C). 
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Reactions were incubated 2 hours at 32°C with 25mM ammonium phosphoramidate or 

ammonium chloride for binding of phosphorylated and non-phosphorylated response 

regulators, respectively. Bound and unbound DNA pools were separated by native PAGE 

(8% polyacrylamide, 0.8x TBE [72 mM Tris-borate, 1 mM EDTA]) at 8°C. Gels were 

visualized on a Typhoon FLA 9500 (GE Healthcare) biomolecular imager. Bands 

containing bound and unbound DNA were excised, and DNA was extracted by the crush 

and soak method in gel diffusion buffer (.3 M sodium acetate, 1 mM EDTA). Eluted 

DNA was concentrated using the Qiaex II gel extraction kit (Qiagen).
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2.6	
  Supplementary	
  Figures  

 

 

Figure S2.1: Phylogenetic tree of OmpR family represented in E. coli. A phylogenetic 

tree was constructed based on consensus representations of eRR ortholog groups. 

Categories I-IV correspond to Figure 2.1c. 
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Figure S2.2: DNA shape varies between OmpR family RRs  A.  Groove widths for 

DNA major (solid lines) and minor (dashed lines) are displayed for DNA sequences in 

complex with dimeric RR: RstA (PDB code: 4NHJ, magenta). KdpE (PDB code: 4KNY, 

green), PhoB (PDB code: 1GXP, cyan), PhoP (PDB code: 5ED4, orange), PmrA (PDB 

code: 4S05, gray). DNA half-site sequences were aligned based on a structural overlay of 

bound RR monomers (a gap was introduced in the linker region for RstA to account for 

its reduced half-site spacing). Horizontal, black lines display the average B-form width 

parameters for the major (upper, 11.7Å) and minor (lower, 5.7Å) grooves. Gray boxes 

indicate the central 3 bases of each half-site.  B.  Recognition helices for ‘upstream’ RR 

monomers were aligned in Pymol (solely by the recognition helix) to normalize angle of 

groove entry, and the resultant phosphate backbone trajectories are represented according 

to the color scheme described in (A). 
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Figure S2.3: Deviation of phosphate backbone induced by RR binding. Each 

structure presents an overlay of bound half-sites (colored) and a DNA structure 

corresponding to ideal B-form parameters (black). Half-sites were aligned using the RH, 

as in Figure 1D. DNA structures were taken from: RstA (PDB code: 4NHJ, magenta). 

KdpE (PDB code: 4KNY, green), PhoB (PDB code: 1GXP, cyan), PhoP (PDB code: 

5ED4, orange), PmrA (PDB code: 4S05, gray). 
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Figure S2.4: Binding orientation revealed by base preferences adjacent to fixed 

half-site sequence. Selected logos are the raw results of the de novo motif finding tool 

Bioprospector, oriented to place the synthetic anchor sequence (‘AGGTAA’) to the left of 

the sequence logo. 
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Chapter 3. Specificity-determining 
residues in DNA-binding by OmpR family 
TFs2
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3.1 Context and motivation for research3 

 

3.1.1 Structure-based modeling of protein:DNA interactions 

 Sequence-specific protein:DNA interactions are critical for proper cellular -

functioning; consequently, there is substantial interest in predicting and/or reengineering 

their specificity. Amino acid changes in DNA-binding proteins can act as driving 

alterations that lead to disease [1–3] or evolutionary adaptation [4]. Changes in the 

affinities of transcription factors for mutated binding sites can also alter the occupancy 

and identity of bound proteins in gene regulatory regions, resulting in phenotypic 

consequences that may fuel evolutionary change [5–8]. Scientists have applied tools from 

structural biology to achieve an atomic-level understanding of binding mechanisms for a 

number of protein:DNA complexes  [9]. The structures of these complexes have shed 

considerable light on the determinants of DNA sequence readout [10], effectively refuting 

the idea of a simple and general "code" for protein:DNA recognition [11] (Figure 3.1.1a), 

while at the same time enabling rational structure-guided engineering of DNA interaction 

specificity for certain families [12]. 

 Structure-based computational approaches to binding prediction seek to rationalize 

observed specificity patterns and predict new interactions; this approach contrasts with 

more widely applied probabilistic models, which instead seek to model the downstream 
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  This	
  section	
  is	
  adapted	
  from	
  the	
  following	
  published	
  manuscript:	
  Joyce,	
  A.P.,	
  Zhang,	
  
C.,	
   Bradley,	
   P.,	
   Havranek	
   J.J.	
   (2015)	
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   Modeling	
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   Protein:DNA	
  
Specificity.	
  Brief	
  Funct	
  Genomics.	
  14(1):39-­‐49.	
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effect of sequence recognition. Broadly speaking, structure-based approaches proceed by 

constructing three-dimensional models of protein:DNA complexes (Figure 3.1.1b) and 

deriving estimates of binding affinity and/or specificity from them. Structure-based 

approaches vary in their degree of computational and physical rigor, ranging from 

relatively low-resolution, statistically-based potentials to all-atom molecular dynamics 

simulation. In comparison, non-structural approaches are often far less computationally 

intensive, require little or no knowledge of physical interactions, and frequently yield 

models of equal or greater quality than state-of-the-art structure-based calculations when 

provided with sufficient experimental binding data for training. 

 Structural modeling of the protein:DNA interface can provide substantial information 

beyond predictions of binding specificity. First, the physical forces that govern 

protein:DNA interactions are generalizable to any protein:DNA complex; therefore 

advances in structure-based modeling can have immediate and significant impact on our 

ability to model thousands of individual genomic interactions. Second, structural models 

of protein:DNA complexes are highly useful to model secondary binding events, such as 

interactions with a protein cofactor or allosteric regulator. Third, structural models 

facilitate the in silico exploration of mutations or covalent modifications to protein or 

DNA (e.g. CpG methylation, DNA damage, or protein phosphorylation). Lastly, energy 

functions and sampling methods developed for binding site prediction have the potential 

to drive innovation in the engineering and design of genomic tools, such as synthetic 

transcription factors and site-specific nucleases [13–15] . 
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Figure 3.1.1. Atomically detailed structures of protein:DNA complexes illuminate the molecular 

mechanisms underlying sequence specific binding: the overall structure (with protein shown in cartoon 

representation, the DNA in sticks, zinc ions as spheres, and crystal waters as red crosses) (A) and 

per-position specificity-determining interactions (B) seen in the high-resolution crystal structure of the 

C2H2 zinc finger Zif268 bound to a high-affinity target site (PDB ID 1aay [16]; PWM data downloaded 

from the Uniprobe database [17]; structure figures generated in PyMOL [18]). 

 

3.1.2 Recent improvements in statistical potentials 

 The accuracy of structure-based binding predictions depends critically on the quality 

of the potential energy functions used to estimate binding affinities from modeled 

complexes. The potential energy functions that have been used for this purpose can be 

roughly classified as being either physics- or knowledge-based. The functional form of 

the energy terms in physics-based potentials is derived from a physicochemical model of 

the underlying interactions, and as a result these potentials can be quite sensitive to the 
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atomic coordinates: small changes in atomic position can lead to large changes in 

computed energy due to steric or electrostatic clashes. In knowledge-based statistical 

potentials, on the other hand, the interaction potentials are derived from experimentally 

determined protein:DNA structural information. The probabilities of observing different 

kinds of interactions in crystal structures are calculated and converted into potential 

energies, for example by using the inverse Boltzmann approach. Statistical potentials can 

model any previously observed behavior even if the underlying physical phenomena are 

poorly understood.  However, they cannot predict atomic interaction patterns absent 

from the training set of available protein:DNA structures [19; 20]. The resolution of 

statistical potentials can vary from atom-level to residue-level; in general they do not 

have the sensitivity of molecular mechanics potentials. 

 The moderate spatial resolution of statistical potentials makes them a good match for 

scoring the approximate structural models generated by homology modeling or by the 

docking of unbound structures (Figure 3.1.2).  In contrast, molecular mechanics 

potentials may be less forgiving in these cases, due to the steric clashes often present in 

these complexes. Chen et al. used structural alignment to generate synthetic protein:DNA 

complexes from structures of unbound proteins, and applied a statistical potential to 

predict position weight matrices (PWMs) for these proteins [21].  Although PWMs 

generated using this approach were less accurate than those generated from native 

complexes, results were comparable to those obtained from complexes generated by 

docking, and were better than those obtained from homologous complexes generated by 
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bound structural templates from the same protein family. Their analysis demonstrated the 

utility of statistical potentials for predicting PWMs given approximate models, and also 

indicated that correctly capturing the conformational changes of proteins upon binding 

DNA will be important for future improvements.  A number of alternate approaches exist 

for generating synthetic complexes, and it remains to be seen whether they yield 

improved models for predicting protein:DNA specificity [22].  

 Atomic resolution is usually preferred when using statistical potentials to predict 

protein:DNA binding specificity, yet atomistically detailed statistical potentials have very 

large numbers of parameters which can make them challenging to train robustly (for 

example, a pairwise atomic potential with 30 atom types and 10 distance bins has 4,650 

free parameters). Recently, improvements have been made to train the potentials more 

efficiently. Xu et al. developed an energy function that was trained to include the target 

structure templates themselves in recognizing transcription factor binding sites [23]. This 

development led to increased prediction accuracy and robustness compared to their 

previous potential, vcFIRE [24]. Their method also out-performed sequence-based 

approaches in prediction accuracy in cases for which limited experimental data was 

available. In another approach, the training incorporated experimentally determined 

PWMs. Traditionally, statistical potentials count the number of times a given interaction 

is observed across protein:DNA complexes and assume that each complex is equally 

likely. However, the occurrence frequencies can also be weighted proportionally to the 

binding affinity of the protein for different DNA sequences. AlQuraishi & McAdams 
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trained their potentials by weighting DNA sequences differently according to their 

experimental probability of occurrence specified by their corresponding PWMs [25]. 

Although this approach did not significantly improve PWM predictions, it was a novel 

step in the long-term goal of combining structural data with biochemical data for 

protein:DNA binding site prediction.  

 In contrast to atomistic potentials, coarse-grained residue-level potentials do not 

generally have sufficient resolution to make predictions for PWMs.  However, they are 

well-suited for generating protein:DNA complexes by docking unbound structures. 

Although residue-level potentials have far fewer parameters then atom-level potentials 

and require less computing power, docking with large decoy sets can still be 

computationally intensive. Parisien et al. applied machine-learning techniques to reduce 

the number of parameters required in their residue-level potential function to fifteen 

[26].  Their rigid body docking protocol performed well at rebuilding native 

protein:DNA contacts for both bound and unbound structures, although it was still a 

challenge to achieve RMSDs below 5 Å when using unbound structures as the starting 

point. Besides reducing parameters, efforts have been made to make statistical potentials 

more accurate. Most statistical potentials are distance-based and thus may benefit from 

including an angular term. Takeda et al. derived a novel orientation-dependent 

residue-level potential for protein:DNA docking [27]. Their potential performed 

significantly better than their previous multi-body potential in docking accuracy. Its 

binding affinity prediction was also greatly improved and was on par with some 
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atom-level statistical potentials, though it was still less accurate than others (e.g, vcFIRE). 

[24] 

 Finally, because statistical potentials usually require much less computational power 

than physics-based potentials, they can easily be adapted to run on web servers. Three 

web servers for predicting PWMs using protein:DNA complexes have been constructed 

in the past few years, making these statistical potentials easily accessible to researchers 

without a computational background:  3D-footprint [28], 3DTF [29], and PiDNA [30]. 
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Figure 3.1.2. Modeling protein:DNA complexes. The choice of protocol depends on the structural 

‘template’ available for constructing the model. If a bound structure is available for the protein of interest 

(‘Native complex’, top left), the modeling needed for binding predictions involves primarily base pair 

mutations (‘Gua!Ade’: template in cyan and model in yellow) and side chain rearrangements (grey arrow). 

Building a model using a homologous complex as a template will require protein (‘R!A’, ‘E!N’) as well 

as base pair mutations, and may require protein and DNA backbone relaxation. If the unbound structure of 

the native protein is known, a DNA-bound model can be constructed by superimposing this unbound 

structure onto the structure of a homologous factor in a bound structure (bottom left), or by de novo 

‘docking’ onto DNA (bottom right, multiple candidate docked conformations shown).  
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2.1.3 Modeling water in protein-DNA interfaces 

Modeling the role of water is likely to be more important for protein-DNA 

interfaces than for other macromolecular calculations. Biochemical and structural data 

indicate that water-mediated interactions play a key role in protein-DNA recognition 

(Figure 3.1.3a) [31; 32]. This is in contrast to the modeling tasks of protein folding and 

docking, which have achieved notable successes without incorporating explicit water 

molecules [33; 34]. In addition, the polyanionic nature of nucleic acids suggests that 

electrostatics, also commonly omitted from protein modeling, will figure prominently in 

any energetic description of protein:DNA complexes. Water plays an important role in 

quantitative models for electrostatic phenomena by virtue of its high dielectric 

constant. Finally, protein:DNA interfaces possess many polar and charged amino acids 

that are sequestered from bulk solvent, yet must still satisfy their hydrogen bonding 

potential. Water can serve this role by filling voids in the interface and providing 

hydrogen bond donors or acceptors for polar groups in both the protein and DNA. 

     The effects of water upon the energetics of a protein-DNA complex can be treated at 

several levels of detail. At one extreme is the complete neglect of explicit water 

molecules, perhaps partially compensated by the inclusion of an implicit solvation 

potential [35]. In one study, the ability of water to attenuate hydrogen bonds, but not to 

participate in them, was considered [36]. At the other end of the spectrum is the explicit 

treatment of water molecules that fully solvate a macromolecule or complex using 

molecular mechanics [37–39]. Computational protocols also differ in where and how 
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explicit water molecules are introduced into a model. For instance, water networks have 

been constructed en masse, with the goal of optimizing hydrogen bonding across an entire 

interface [40]. Water molecules have also been attached to polar groups in amino or 

nucleic acids at optimal geometries for hydrogen bonding, giving rise to the ‘solvated 

rotamer’ strategy [41]. In some approaches, the locations of water molecules are 

determined simultaneously along with the conformational sampling that optimizes the 

protein:DNA interface [42; 43]. The specific choices of how water molecules are 

modeled, and where and when they enter into the calculation, are based on trade-offs 

between the accuracy of the physical potential used, the scale of conformational sampling 

that is to be considered, and the computational resources that are available. 

Unsurprisingly, given the extra computational requirements and significant 

uncertainty in the optimal approach for modeling water in protein:DNA interfaces, few 

studies include water in the calculation of protein-DNA binding specificity. Nevertheless, 

some conclusions can be drawn regarding the impact of including explicit water. Van 

Dijk et al. incorporated explicit water into the protein:DNA docking capabilities of 

HADDOCK[43]. While they were not explicitly calculating DNA-binding preferences, 

the methods they describe are readily transferable to the protein:DNA homology 

modeling problem. Water molecules were first placed on unbound models for both 

protein and DNA based on the results of molecular dynamics simulations. During a 

subsequent docking step, water was removed or added from the developing complex 

using a Monte Carlo approach. The inclusion of water molecules led to modest but 
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significant improvements in the docked complex geometries. In particular, they were able 

to recover specific water-mediated hydrogen bonds in the Engrailed homeodomain:DNA 

interface [44]. They found most consistent success in those cases where the bound and 

unbound conformations of the protein were very similar, which is expected for the 

homology modeling calculations required to estimate PWMs. 

           Li and Bradley directly studied the effect of explicit water molecules on predicting 

protein:DNA recognition specificity [42]. Their method considered water molecules only 

at the consensus minor and major groove locations that have been determined from 

crystallographic studies [45]. Water occupancy at these locations was allowed to vary 

during the course of the structural optimization. Similar to Van Dijk et.al., they observed 

limited but significant improvement over a large test set of protein:DNA 

complexes. Notably, the inclusion of explicit water led to improvements in the 

description of water-mediated hydrogen bonds that are known to be important for the 

specificity of the EcoRI restriction enzyme (Figure 3.1.3b). Interestingly, neglecting 

explicit water molecules yielded a specificity profile consistent with EcoRI ‘star activity’. 

Star activity has been linked experimentally to the release of bound interfacial waters 

thought to participate in the formation of the cognate protein:DNA complex [46]. Of 

particular interest for the calculation of PWMs, their method was able to predict correctly 

that in the case of one experimentally determined protein:DNA complex, a higher affinity 

DNA sequence than the one in the crystal structure could be found. This demonstrates 

that it is possible for structure-based calculations to use an experimental structure as a 
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homology modeling template to accurately describe water-mediated protein:DNA 

interactions not found in the original complex. 

           In summary, the consideration of explicit water molecules can lead to a more 

faithful description of protein:DNA recognition specificity. The improvements have been 

found to be clear, if modest in effect [42; 43]. However, in certain cases key 

water-mediated interactions appear to be crucial for describing specificity, and 

approaches that neglect explicit water may not generate useful PWMs. In the near future, 

we are likely to witness improvements in the placement and scoring of water molecules 

and their interactions, as well as in the computational efficiency of calculating these 

effects. 
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Figure 3.1.3.  Water molecules at the protein:DNA interface participate in hydrogen bonding 

networks.  A.  The trp repressor protein achieves recognition of its operator sequence through multiple 

water mediated contacts, involving both protein sidechain and mainchain atoms.  B.  The EcoRI restriction 

enzyme interacts with its cognate cleavage site with both and water-mediated contacts.  Failure to model 

water molecules explicitly leads to a relaxed DNA specificity profile reminiscent of  ‘star activity’, which 

has been attributed to the loss of bound interfacial water. 

 

3.1.4 Flexibility at the protein:DNA interface          

The Protein Data Bank contains representative structures for the majority of 

known DNA-binding protein families in complex with DNA (~3000 total structures, with 

substantial redundancy) [47], and predictions based on these homologous “template” 

structures have the potential to expand our knowledge of sequence-specificity to 

thousands of uncharacterized proteins. However, homologous template complexes 

present a single, static conformation that is unique to the crystallized protein and DNA 
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molecules, and sequence changes to either partner often result in steric clashes or, 

conversely, novel low-energy states. In these cases, it is necessary to sample and evaluate 

any deviations from template coordinates within a set of allowable conformations 

reflecting the total “flexibility” of the protein backbone, amino acid side chains, bases or 

base pairs, and the sugar-phosphate backbone. Physically, flexibility is integral to the 

process of protein:DNA recognition. Within a single protein:DNA  complex, both inter- 

and intra-molecular contacts vary according to DNA sequence, and individual side-chains 

freely adopt alternative conformations in specific and non-specific binding modes 

[48].  Comparison of protein:DNA interfaces in the free and DNA-bound states has 

revealed greater intrinsic structural variation in protein:DNA interfaces than other surface 

areas [49–51]. Additionally, crystallographic studies have shown that extensive contact 

with proteins can induce significant deviation from the canonical B-form DNA backbone 

and standard base pair geometry [52]. Collectively, these findings demonstrate that both 

protein and DNA can exhibit conformational changes relative to their unbound structures. 

    The incorporation and conformational sampling of new side chains is essential for the 

prediction of sequence specificity using homologous proteins or unbound structures as 

templates. Typically, this search is discretized using libraries of torsionally rotamerized 

side chains [53; 54]. Using Monte Carlo optimization of rotamer selection, Havranek et al. 

demonstrated recovery of both identity and native conformation for DNA-contacting 

residues in the presence of DNA, with accuracy comparable to modeling of monomeric 

proteins [54]. This model was further extended to include a simplified representation of 
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DNA strain; however, compared to full conformational relaxation of both protein side 

chains and DNA in a single native complex, a “static model” allowing neither side chain 

nor DNA motion reproduced experimental PWMs more accurately in most cases [35]. In 

this study, conformational sampling was least accurate when water molecules were 

omitted from the structural templates. Parisien and colleagues also found that side chain 

reorganization in unbound structures significantly reduced the recovery of native 

protein:DNA contacts in 47 protein:DNA structures using the rigid-body docking tool 

FTDock [26]. Together, these studies illustrate that additional degrees of freedom in 

interfacial side chains, in the absence of appropriate constraints can reduce the accuracy 

of structural and specificity prediction. 

    Currently, most homology-based predictions of protein:DNA specificity rely on the 

assumption that the target and template structures possesses sufficiently similar, if not 

identical, backbone coordinates. Violations of this assumption can have dramatic 

functional consequences [55], and, given that increased backbone flexibility has been 

commonly observed in protein:DNA interfaces [49; 50], this assumption is likely to be 

inappropriate for modeling many DNA-binding proteins (Figure 3.1.4a). Moreover, polar 

amino acids with long side chains, which are enriched at protein:DNA interfaces, 

commonly form distance- and orientation-constrained contacts with specific DNA bases, 

and will experience large deviations in torsional sampling space following subtle 

backbone movements [56]. Correct backbone placement is therefore essential for an 

accurate depiction of protein:DNA contacts. Using a novel fragment insertion protocol to 
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improve backbone torsional sampling, Yanover and Bradley generated homology-models 

of C2H2 zinc fingers that recapitulated near-native docking conformations, base-specific 

contacts, and experimentally-generated models of sequence specificity [57]. Havranek 

and Baker introduced structure-guided backbone flexibility using a motif library of 

observed side chain:base contacts, termed "inverse rotamers” [56]. In this approach, after 

incorporating a motif into the DNA template, the adjacent protein backbone was allowed 

to sample nearby positions; changes were accepted if the backbone could accommodate 

the motif in an energetically favorable conformation.  

    The protein-bound DNA backbone frequently displays both local and global 

deformation from the standard B-form helix, and resultant changes in the positions of 

phosphate atoms and base parameters can substantially impact binding conformation and 

sequence recognition (Fig. 3.1.4b). Siggers and Honig developed a torsional sampling 

approach in which mutated base pairs were introduced with co-planarity to the template 

bases and subsequently conformationally diversified by means of small, compensating 

rotations about four DNA backbone torsion angles [22; 58]. This increase in DNA 

flexibility substantially improved specificity prediction, especially for templates with low 

similarity to the target structure. Yanover and Bradley introduced conformational 

diversity into both protein and DNA backbones simultaneously by insertion of fragments 

from multiple template structures of protein:DNA complexes [57]; the DNA backbone 

sampling procedure of Siggers and Honig was then applied to minimize the local impact 

of fragment insertion [22]. Full-atom simulation of bound and unbound DNA using 
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molecular mechanics force fields is another powerful, though computationally intensive 

approach to modeling DNA deformation [59]. Steady gains in computing power and 

optimization of nucleic acid force field parameters have improved the speed and accuracy 

of MD-based methods [60; 61], but the combinatorial challenge of minimizing all 

possible DNA sequences that a protein may bind has been a major barrier to the 

application of MD to specificity prediction. Using the ADAPT methodology, Deremble 

and colleagues developed a technique to sub-divide the DNA interface into overlapping 

pentanucleotide segments, which are independently evaluated and summed to yield the 

total, sequence-dependent energy of the protein:DNA complex [62]. The substantial 

reduction in computing time permitted the simultaneous conformational relaxation of 

both protein and DNA, and achieved accurate structural predictions for proteins bound to 

highly deformed DNA [63].  
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Figure 3.1.4.  Protein and DNA adopt diverse backbone conformations and orientations in 

complex.  A.  Variation in triplet-docking orientation of the protein backbone for eight zinc finger domains 

from Zif268 (1AAY, blue), Tramtrack (2DRP, yellow) and TFIIIA (1TF6, magenta) B.  The recognition 

element of PurR undergoes substantial deformation from the unbound state (1HQ7, magenta) upon protein 

binding in the minor groove (1QPZ, gray/green) (Left panel: top view. Right panel: side view) 

 

3.1.5 Evaluating improvements in protein:DNA modeling 

 A wealth of experimental data on protein:DNA interactions is now available for 

training and testing structure-based approaches. High-throughput in vitro [64–68] and in 

vivo [69] experimental methods have been developed that can produce rich binding 

affinity profiles for multiple DNA binding proteins relatively rapidly. These methods 

enable the mapping of affinity landscapes for individual DNA binding proteins with 
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unprecedented depth and resolution, facilitating the detection of subtle binding features 

such as secondary motifs [70], correlations between target site positions [68], 

higher-order binding interactions [65], and DNA-shape mediated readout [71]. In addition, 

these methods have been applied to survey large families of homologous factors, 

providing valuable data on the mapping between protein sequence and DNA binding 

specificity within families [72; 73]. 

 The standard approach to benchmarking a structure-based algorithm has been to 

reduce the reference experimental dataset to a position weight matrix (PWM), to similarly 

condense the output of the prediction algorithm, and then to assess the agreement between 

the two PWMs by aligning them and scoring the strength of the alignment using one of a 

number of established PWM comparison metrics [74; 75]. This approach ignores the 

richness of deep binding affinity datasets , and it also overlooks the potential of 

structure-based approaches to rationalize exactly those higher-order effects that are 

neglected by the PWM representation. Historically, it has been a challenge to recapitulate 

even the first order, position-independent binding profile, and this remains a valuable 

assessment for benchmarking, particularly in template-based approaches. We anticipate, 

however, that as structural modeling methods continue to improve it will be increasingly 

informative to directly compare predicted and experimentally measured relative affinities 

for large sets of full-length target site sequences (rather than PWM columns or consensus 

sequences), particularly for target proteins with a bound, high-resolution crystal structure. 

This comparison should be particularly enlightening when applied across families for 
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which multiple experimental binding profiles and co-crystal structures are available, 

giving insight into the origins of binding specificity divergence among related proteins. 

 

3.1.6 Prospects for the future of structure-based modeling  

 The structure-based prediction of protein:DNA specificity will be affected by several 

ongoing trends. First, we can expect that high-throughput experimental techniques will 

continue to provide a wealth of protein:DNA affinities useful in both training and testing 

the robustness of structure-based prediction algorithms. Second, the number of 

experimentally determined crystal structures of protein:DNA complexes will continue to 

grow. The availability of examples of additional structural families will expand the 

number of DNA-binding proteins that are amenable to structural modeling of specificity, 

and increased DNA sequence coverage for similar or identical proteins will provide 

additional examples of sequence-specific molecular contacts. The availability of 

complexes with different DNA sequence specificities, altered binding modes, and 

diversified backbone conformations will provide more appropriate starting templates for 

homology modeling, lessening the need to incorporate protein or DNA flexibility in 

modeling calculations. Examples of novel protein:DNA complexes will also add to the set 

of training data for statistical potentials. Finally, the steady increase in computing power 

will facilitate improvements in scoring potentials and conformational sampling 

previously described. Furthermore, the nature of specificity calculations (involving 

evaluations of a protein bound to multiple DNA sequences) make them an ideal fit for the 
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parallel architectures increasingly available to individual researchers at reasonable costs. 

 

3.1.7 Definition and detection of specificity-determining residues  

 While the quantitative prediction of protein:DNA specificity from structure-based 

calculations remains challenging, numerous statistical methods have been developed to 

identify positions in DNA-binding proteins with a role in specificity determination. For 

this purpose, ‘specificity-determining residues’ (SDRs) occur at positions that vary within 

protein families to diversify specific biochemical properties, such as ligand recognition or 

protein interactions; this is in contrast to highly conserved residues with an invariant role 

in these processes, such as (for TFs) establishing a global mode of DNA sequence 

recognition. A practical evolutionary framework for SDR identification was adapted by 

Mirny and Gelfand [76], relying on the assumption that SDRs would be conserved among 

orthologs, or proteins with similar function generated through a speciation event, and 

variable within paralogs, distinct proteins that stem from an duplication event and 

subsequently evolved divergent function through a period of relaxed selection. 

Presumably, over evolutionary scales, SDRs will leave a trace detectable through the 

analysis of residue covariation in large, well-sampled protein alignments. Applying a 

statistical metric based on mutual information, Mirny and Gelfand successfully identified 

SDRs within the LacI/PurR family, revealing two distinct clusters localized to the 

DNA-contacting surface as well as a region responsible both for binding chemical ligands 

and mediating homo-dimerization (a necessary step in its DNA-binding mechanism). In a 
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more recent analysis, Sloutsky and Naegle [77] developed a method to identify ‘partial 

SDRs’ (by their terminology, SDPs), which are residue positions that are 

‘heterogeneously conserved’ within distinct ortholog sets known as specificity groupings. 

This approach identified numerous putative SDRs localized to protein and DNA 

interfaces with greater sensitivity than existing tools, but experimental validation is 

necessary to explore the biochemical role of these residues. This and related techniques 

do potentially advance a concept highly relevant to the design of novel DNA-binding 

proteins: that the ultimate effect of SDRs can be highly scaffold-dependent. 

 SDR identification using evolutionary criteria is reliant on the selection and multiple 

alignment of protein sequence across many species, and great care must be taken to 

minimize faulty assumptions and data artefacts. Algorithms for the multiple alignment of 

protein sequences can be highly sensitive to various features of the dataset, including the 

number of sequences [78] as well as the upper and lower sequence similarity thresholds 

for inclusion of a particular protein in a set of homologous sequences [79; 80]. For 

example, phylogenetically distantly proteins may have diverged so substantially in 

sequence and biochemical activity as to contribute little information to a sequence-based 

alignment. This is especially problematic in the case of proteins with regions under low 

purifying selection, such as variable-length domain linkers and loops connecting elements 

of secondary structure. Phylogeny-aware alignment algorithms are specifically designed 

to incorporate the evolutionary history of protein sequences, potentially reducing the 

impact of substitution and gaps in poorly conserved regions, but these come at an 
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increased computational cost [81]. Incorporating large groups of highly similar sequences 

(i.e., low sampling depth) unavoidably introduces systematic bias toward the structural 

and functional properties of sub-groups [82]. In regard to the latter case, biological 

sequence repositories contain well-known imbalances due to the attention paid to certain 

clinically- or experimentally-common species and genera, but attempts have been made 

to reduce data redundancy [83]. Overall, a set of ‘best practices’ to guide sequence 

selection and increase alignment accuracy may include, but are certainly not limited to: 

incorporation of alternate sources of information (e.g., a well-curated structures	
  [84]), 

applying multiple algorithms [85], conducting hierarchical subalignments [77], or 

purging sequence outliers [86].  

 In addition to technical artefacts, the success of different approaches to SDR 

identification depends critically upon a number of biological and evolutionary 

assumptions that are especially relevant to two-component signaling systems. First, 

two-component systems vary widely between species in both number - known OmpR 

homologues per bacterial genome ranges between 0 and 41[79] - and pathway 

combinatorics, likely facilitated by their highly modular construction. Because a single 

pathway minimally includes a co-operonic response regulator and histidine kinase, one 

duplication event can generate a fully functionally redundant pathway. Paralogous 

systems are thus, with significant frequency, able to explore many novel evolutionary 

trajectories with relaxed selective constraint. Transcriptional regulatory networks under 

the control of two-component systems also evolve rapidly within and between lineages, 
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as different species are challenged by unique environmental conditions [87; 88]. 

Importantly, these characteristics reduce confidence in the assumption that 

sequence-similarity between homologous response regulators is a strong indicator of 

functional conservation, as, in any given species, the gain or loss of a single system can 

dramatically alter the evolutionary constraint on orthogonal pathways and their 

subordinate gene regulatory networks. In a telling example, the E. coli PhoB and OmpR 

share 37% sequence identity and govern completely distinct transcriptional programs; 

similarly, the evolutionarily distant, functionally divergent Bacillus subtilis Spo0F and 

Caulobacter crescentus DivK are more similar than known functionally conserved 

orthologs [79]. As previously observed, purely sequence-based annotation and ortholog 

assignment of response regulators must be undertaken with caution. 
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3.2 Introduction  

 Precise determination of protein:DNA specificity and crucial SDRs remains a 

challenging, unsolved problem in regulatory biology, hampering our ability to design 

proteins, predict disease-causing mutations, and decode phenotypic variation. 

Structure-based modeling, although entering a promising time, currently lacks the ability 

to describe the physicochemical complexity of the protein:DNA interface [89]. 

Phylogenetic and sequence-based prediction algorithms require careful sequence curation 

and accurate, large-scale alignments that may be challenging for certain systems; in 

contrast, a biophysical ‘protein-DNA code’ is theoretically applicable to any solved or 

modeled structure. Although technically possible, the complete experimental 

characterization of any putative SDRs is resource-intensive, and would require the 

development of novel high-throughput analytical techniques. Integrative solutions 

combining the strength of these three approaches have the potential to greatly accelerate 

SDR detection and validation. 

 Several DNA-binding attributes of OmpR family TFs complicate the identification of 

residues important for sequence recognition. First, there are ~20 residue positions (per 

monomer) oriented toward the DNA helix via the phosphate backbone and major or 

minor grooves. Many exhibit preferences in vivo for multi-meric binding	
  [90] and/or 

recognition of curved DNA [91], so a role for large-scale changes in shape or geometry 

may play an outsized role in target recognition. As demonstrated in the previous chapter, 

half-site specificity may also be asymmetric, suggesting that residues play multiple roles 
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depending on their position in the larger context of the DNA-bound homodimer (or 

higher-order complexes). In this chapter, I present a simple approach to predict, refine, 

and characterize putative DNA-binding SDRs in the OmpR family. Specific attention was 

paid to minimize the application of arbitrary statistical thresholds and complex 

evolutionary models; rather, a small amount of biological and structural data very 

effectively prioritized SDRs with strong indicators of function. Validated SDRs provide 

evidence for a generalized structural model of canonical wHTH:DNA interactions, and 

the overall prediction-validation strategy is potentially applicable to other families of 

DNA-binding response regulators. 
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3.3 Results  

 

3.3.1 Specificity-centric MI subnetwork distinguishes the RH as a SDR hub 

Capra and coworkers [92] previously conducted an analysis of mutual information 

(MI) between cognate HK:RR pairings to predict interfacial SDR pairs responsible for 

selective phosphotransfer, based on the assumption that such pairs would necessarily 

co-evolve. We hypothesized that this subset of receiver-SDRs would additionally co-vary 

with determinants of DNA-binding specificity due to the convergent evolutionary 

pressure to maintain overall TCSP-specificity (Figure 3.3.1a). As a first step toward 

building this broader ‘specificity-centric’ network, we generated a MI network based on 

our alignment of ~2000 OmpR family protein; in this approach, the cumulative MI (cMI) 

for each position represents MI contributions summed over all possible pairings over the 

full protein length, and is thus expected to increase at positions with many significant 

pairings (as might be expected at the DNA interface) [51]. Residues with high cMI 

localized to the HK:RR and DBD:DNA interfaces; however, high cMI values were also 

observed for a cluster of poorly-conserved, core-facing residues in the β1-4 region of the 

DBD (Figure 3.3.1b). We next isolated the first-order, cross-domain contact network 

centered on previously validated receiver-SDRs [46], and observed a strong enrichment 

for residues in the RH, trans-activation loop, and α2 regions (Figure 3.3.1c). Notably, 

β1-4 residues are absent from this sub-network, casting doubt on an active role in the 

maintenance of TCSP-specificity. Further, because receiver-SDRs are themselves highly 
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correlated, we expected each DBD-SDR to exhibit high MI with multiple receiver-SDRs, 

which was true for the RH, α2, and TA loop (Figure 3.3.1d). 
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Figure 3.3.1: Sequence- and structure-informed identification of specificity-determining residues at 

the protein-DNA interface.  A.  cMI scores were projected onto the structure of PhoP (PDB code: 5ED4) 

on a scale from minimum cMI (yellow) to maximum cMI (magenta).  B.  Non-interacting SDRs in 

distant regions of the protein may exhibit covariance due to their shared selective pressure against TCSP 

crosstalk.  C.  Network representation of MI between positions in full-length RR. Residues are ordered 

counter-clockwise by primary sequence in a circular layout with the start (N) and end (C) positions at 

bottom, and colored according to cMI [93]. Edges between positions separated by <10 residues were 

removed, and nodes with <3 edges were subsequently filtered. Edges in the top 10% of MI scores are 

shown as solid red lines. Nodes that constitute the first-order network of receiver SDRs have been shifted to 

an inner, concentric ring and are connected by solid black lines.  D.  First-order contact MI involving the 

wing (yellow), α2 (orange), transactivation loop (gray), recognition helix (blue), and α1 (red) is represented 

by gray lines, with MI magnitude proportional to thickness. Numbered nodes reflect the reference 

coordinates previously established for residues in the wing, recognition helix, and α1 regions. 
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3.3.2 SDRs alter different aspects of eRR-DNA specificity 

To functionally validate predicted SDRs, I performed an exchange of RH7,10 between 

OmpR and CpxR (Figure 3.3.2a), and analyzed the interface variants (Figure 3.3.2b,c) 

using Spec-seq. Strikingly, CpxR-RH7-10[QISR] underwent a complete conversion to an 

OmpR-like binding motif (Figure 3.3.2d); however, the reciprocal mutant 

OmpR-RH7-10[HISN] retained its original specificity with greatly reduced apparent 

affinity. I further examined the effect of the RH7-10[AISR] variants (RstA-like) in both 

backbone contexts, but found no substantial difference between RHs containing ‘AISR’ 

and ‘QISR’. This result shows that the RH(7)[Q] side chain fulfills no unique biochemical 

role in sequence recognition, and is in good agreement with the near-identical sequence 

preferences for wild-type OmpR and RstA (Figure 2.3.4c-e). 

From previous conservation analysis, OmpR-RH7[Q] and OmpR-RH7[H] are known 

to occur naturally at similar frequencies, while OmpR-RH10[R] is highly conserved 

(Figure 2.3.1c). Interestingly, the single OmpR-RH7[Q!H] variant lost canonical ‘GT-A’ 

preference; instead, OmpR- RH7[H] recognized an A/T-rich tract most similar to the 

model generated by phospho-CpxR at its highest concentration. Interestingly, although 

this variant lost the canonical preference for ‘G+2T’ it retained specificity against ‘C+2G’ 

at the same positions, highlighting that base preferences are the net reflection of affinity 

gains and losses due to distinct molecular interactions. Further, CpxR-RH7[Q], 

recognized a ‘hybrid’ motif, consisting of canonical binding in the 5’ portion of the 

half-site (‘tG+2T’) and CpxR-like base preferences in the 3’ segment (‘AAG+7AA’). In the 
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context of previous mutants, this suggests that RH10 independently governs base 

preferences in the 3’ segment of each half-site: RH10[R] ~> C+6  /  RH10[N] ~>  

‘AAG+7AA’. RH7 appears to play a role in specifying the canonical G+2. Overall, it 

appears that CpxR and OmpR are capable of specificity inter-conversion, although 

context does play a broader role. 
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Figure 3.3.2: Quantitative determination of binding specificity for recognition helix (RH) variants in 

the CpxR and OmpR proteins.  A.  An alignment is given for the primary RH sequences of OmpR, 

CpxR and RstA (corresponding to the blue shaded region in panel 1A). DNA sequences refer to the bases in 

the structural models of variants depicted in (B) and (C).  Bold positions in the amino acid alignment will 

be subject to mutation in (D).  B.  Structural model of a ‘HISN’-containing RH modeled using the crystal 

structure of the Klebsiella pneumoniae PmrA protein (native sequence: HIHN) (PDB code: 4S05	
   [94]) in 

complex with a TTAGG half-site sequence as a template.  C.  Structural model of ‘QISR’-containing RH, 

using the Klebsiella pneumoniae RstA protein in complex with a GTAAC half-site sequence as a template 

(PDB code: 4NHJ	
   [95]).  D.  Energy logos for RH variants were generated from Spec-seq experiments 

using phospho-proteins are displayed. The background protein context (CpxR or OmpR) for the indicated 

mutations are shown in the left of the panel, and the RH residues are shown above each energy logo. The Y 

axis is in units of –kT, and the grey bar on the side of each logo reflects the range from -1 to +1.
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3.4 Discussion 	
  

 

 In this chapter, I demonstrate that residue covariation analysis - typically applied 

across protein and protein:DNA interfaces – identifies SDRs effectively when combined 

with limited biological information. This approach yielded a subset of putative 

DNA-contacting SDRs with which to prioritize experimental validation. While 

structural information was never directly incorporated in SDR prediction, putative SDRs 

localized almost exclusively to the DNA interface and transactivation loop, hypothetical 

hubs of paralog-specific biochemical activities. Modest residue changes at two putative 

SDRs successfully converted the specificity of two paralogous OmpR family TFs, 

providing the first high-resolution, quantitative characterization of ‘portable’ SDRs in the 

OmpR family. 

We initially set out to expand a DNA-contacting network through a common 

application of mutual information, and were surprised to learn that it robustly identified a 

network of SDRs in the receiver domain involved in TCSP-specific phospho-transmission. 

It was novel, to our knowledge, to consider that SDRs important for many different, 

TCSP-specific functions might co-vary in a ‘specificity-centered’ network through a 

process of convergent evolution; in other analyses, in fact, such relationships may even be 

considered noise or random correlations arising due to shared phylogeny. One of the 

major benefits of this knowledge-based approach was that it required signal between 

completely non-interacting residue positions, implicitly controlling for statistical 
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correlations between residues adjacent in sequence and/or three-dimensional structure. 

Additionally, the approach required no structural input outside the fact that the two 

domain interfaces were non-interacting; as we used no explicit structural information, it 

was significant that the all high-ranking SDRs localized to regions of the protein in 

immediate contact with variable regions of the DNA half-site.  

 Structural analyses of OmpR family TFs have yielded substantial insight into the 

assembly of the protein:DNA complex, such as the orientation and potential contacts 

between bound monomers, providing context in which to interpret the role of individual 

side-chains on sequence recognition. A low-throughput, semi-quantitative analysis of RH 

residues in the Bacillus anthracis WalR protein (highly similar to ArcA) demonstrated 

that non-conservative mutations to RH2, RH5, RH6, RH9, and RH10 near-uniformly 

reduced binding affinity toward a native operator sequence 

(‘TGTAACATAACTGTAAC’); the single exception was RH5[D!R], which increased 

non-specific binding affinity [96]. In contrast, my Spec-seq experiment demonstrated that 

RH10 is definitively involved in sequence-specific recognition at G-5, a conclusion with 

strong structural support. Additionally, RH10 [R] appeared to increase the stability of the 

dimeric complex in both native and mutant contexts, with the slight exception of 

OmpR-RH7[H]. However, neither the stability (i.e., percent correctly-folded protein) nor 

the activity (i.e., percent phosphorylated protein) were quantified in these assays, so it is 

not formally possible to distinguish effects on DNA-binding affinity from cumulative 

protein ‘activity’. 
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 Previously, the E. coli OmpR variant RH6[V!M] was shown to selectively enhance 

binding affinity for the ompF enhancer sequences, while causing a reduction in affinity 

toward binding sites in the ompC promoter [97]. Conversion of a single base position in 

the ompC target to its ompF counterpart (‘GTTT+5C’ ! ‘GTTA+5C’) selectively restored 

wild-type binding levels, indicating a direct interaction between RH6 and the fifth base 

pair in the canonical half-site. Importantly, this residue was not identified as an SDR, 

indicating that it has not been a significant target of natural evolution to modify the 

specificity of sequence recognition by OmpR homologues. In the aforementioned study, it 

was also shown that RH6[V!M] affected OmpR phosphorylation via an undetermined 

mechanism; it follows that a complex, multi-functional role precludes modification of this 

residue. In the majority of OmpR family paralog groups (including OmpR itself), RH6[V] 

is moderately conserved; in CpxR, however, both Val and Met are equally represented at 

this position. This suggests that this residue may play a context-specific role in specificity 

determination, a concept that is supported both in this work and suggested in previous 

work using the LacI family [77]. 

 Overall, this work demonstrates that residues in the recognition helix exert significant 

(if not primary) control over sequence recognition, complex architecture, and, more 

speculatively, DNA-binding affinity. Although not examined in this work, 

DNA-contacting residues outside this region are predicted to play a role in specificity 

determination, and provide a resource for residues for future DNA-binding analysis, 

target prediction for newly discovered OmpR homologues, and the design of new 
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regulatory tools for synthetic biology. Further, this work provides a basis for the 

continued study of two-component system evolution, which will help to decipher the 

regulation of complex homeostatic, pathogenic, and industrially relevant bacterial 

processes. 
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3.5 Materials and Methods  

 

Residue covariation analysis 

OmpR family orthologs were identified using a reciprocal best-BLAST criterion from a 

previously curated list of OmpR family members spanning 896 bacterial genomes [79]. 

To qualify as orthologous, a conservative cutoff of 40% sequence identity was also 

imposed along with a 90% redundancy threshold within each group using CD-HIT [82], 

and the remaining sequences were aligned using M-Coffee [85]. A family-wide alignment 

was constructed using step-wise, progressive profile alignments in Clustal Omega [98] 

guided by a preliminary tree based on pairwse amino acid similarity. A mutual 

information network was constructed for this multiple alignment using the MISTIC web 

interface with default parameters (projected onto the PhoP:DNA complex structure, PDB 

Code: 5ED4) [93]. 

 

Construction of mutants 

All mutants were generated by site-directed mutagenesis of the appropriate wild-type 

plasmid construct by Gibson assembly method using Gibson Assembly Master Mix (New 

England Biolabs) [99]. Expression and purification were carried out as described for 

wild-type proteins. 
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Expression, and purification 

Coding sequences of 14 response regulators (RRs) of the OmpR sub-family (ArcA, BaeR, 

BasR, CpxR, CreB, CusR, KdpE, OmpR, PhoB, PhoP, QseB, RstA, TorR, YedW) were 

amplified directly from E. coli MG1655 genomic DNA. Coding sequence for the 

StrepTagII affinity tag (WSHPQFEK) was added by PCR amplification along with 

upstream and downstream restriction sites for MfeI and XhoI, respectively. Strep-RR 

fusion protein sequences were sub-cloned into the pET-42a(+) expression vector in-frame 

with N-terminal GST and 6xHis purification tags and a thrombin protease cleavage site, 

generating triple-tagged constructs. Stock plasmids were stored, purified and handled 

using standard laboratory techniques.  

ArcticExpress (DE3) competent cells (Agilent) were chemically transformed with 

expression plasmids, and single colonies from selective (Kan) LB-agar plates were used 

to inoculate 5ml LB-Kan starter cultures. After 6-8 hours growing at 37°C, starter 

cultures were scaled up to 400ml expression cultures in triple-baffled 4L flasks prepared 

with auto-induction media containing Kanamycin according to the Studier method [100]. 

Cultures were expanded at 37°C for 3-6 hours, then grown several hours past saturation 

(24-36 hours total growth time) to achieve maximum protein yield. Bacterial pellets were 

harvested by centrifugation, sonicated, re-pelleted at high speed to remove cellular debris, 

and lysate (diluted with 1X PBS to reduce viscosity) was passed through a 0.45µm 

syringe-tip filter for clarification. Lysate was passed over a HiTrap GST affinity column 

(1 ml capacity, GE Healthcare) and eluted under manufacturer-specified buffer conditions. 
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Fusion protein was cleaved with 5U thrombin protease, and GST-6xHis was removed 

with two rounds of treatment with Ni-NTA resin (Thermo Scientific). Protein samples 

were cleared completely of resin by passage through 0.22 µm syringe-tip filters 

(MANUFAC). Purity was assessed by both SDS-PAGE and size-exclusion 

chromatography, and protein concentration was determined by NanoDrop (Thermo 

Scientific). 

 

Spec-seq 

Binding reactions were prepared on ice in 12µl volumes containing 20ng FAM-labeled 

dsDNA library in 1X EMSA Buffer (25 mM Tris-Cl, 60 mM KCl, 140 mM NaCl, 1.5 

mM MgCl2, 0.2 mg/ml BSA, 5% glycerol, 10 ng/µl salmon sperm DNA, pH 8.3 at 8°C). 

Reactions were incubated 2 hours at 32°C with 25mM ammonium phosphoramidate or 

ammonium chloride for binding of phosphorylated and non-phosphorylated response 

regulators, respectively. Bound and unbound DNA pools were separated by native PAGE 

(8% polyacrylamide, 0.8x TBE [72 mM Tris-borate, 1 mM EDTA]) at 8°C. Gels were 

visualized on a Typhoon FLA 9500 (GE Healthcare) biomolecular imager. Bands 

containing bound and unbound DNA were excised, and DNA was extracted by the crush 

and soak method in gel diffusion buffer (.3 M sodium acetate, 1 mM EDTA). Eluted 

DNA was concentrated using the Qiaex II gel extraction kit (Qiagen). 
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   This thesis explores the sequence-specific binding of DNA by E. coli paralogs 

belonging to the OmpR sub-family of two-component response regulators, an essential 

sub-family of bacterial transcription factors (TFs) possessing a winged helix-turn-helix 

(wHTH) DNA-binding domain (DBD). Despite the prevalence of the wHTH domain in 

bacterial TFs, prior to this work neither the DNA sequence recognition potential nor 

structural basis of sequence-specific binding had been fully characterized on a large scale 

in vitro. In this investigation, I discovered both canonical and non-canonical forms of 

binding utilized by different members of this TF family, examined the conservation and 

co-variation of amino acid residues, and both predicted and validated 

specificity-determining residues (SDRs) with the potential to alter specificity via both 

DNA base and backbone contacts. These data greatly expand our understanding of the 

basic structural mechanisms by which OmpR homologues select specific genomic targets, 

and can support future lines of investigation: 

 

4.1 Validation and characterization of non-canonical binding mode 

 Using in vitro SELEX, it was determined that a representative majority of OmpR 

homologues recognized a related binding motif, which I termed the ‘canonical’ mode. 

This mechanism of binding was especially prevalent when proteins were presented with a 

‘seed’ half-site held constant in SELEX libraries; however, in the absence of a partial site, 

an alternative binding motif. Strikingly, both the canonical and alternative motifs bear 

resemblance to some previously observed for a eukaryotic wHTH (Forkhead) TF family 
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[1]. Anecdotally, this motif also appears frequently in regions enriched for binding by 

QseB and BasR in a previous study using genomic SELEX [2]. Moreover, it appears 

repetitively in verified enhancers for the closely related BasR, as well as in the sequence 

selected for structural analysis [3; 4]. There are relatively few bona fide examples of TF 

multi-specificty; as such, this result warrants further study.  

 Although not fully reported in this work, I attempted to replicate the interaction 

between QseB and both canonical and non-canonical motifs by EMSA; under identical 

conditions, only oligonucleotides containing the canonical motif were bound. These 

attempts to demonstrate non-canonical binding by an orthogonal method were undertaken 

in a gel format - formally, a kinetic technique. SELEX, however, was conducted in 

solution under equilibrium conditions. If the alternative complex is dynamic or very large, 

a gel format could lower its stability. Steps could also be taken to generate higher-quality 

protein, and/or to quantify the degree of phosphorylation. 

 On the balance of circumstantial evidence, I offer three suggestions for continued 

study of this potential mode of binding. First, Future analyses should take these important 

assay properties into account; perhaps solution-state measurements or in vivo activity 

assays can shed light on this mode of DNA interaction. Second, genomic SELEX analysis 

has provided a variety of potential alternative target sites for QseB, but only a single one 

was selected for validation. An attempt should be made to screen binding to a broader set 

of genomic regions, guided by genomic SELEX enrichment and known QseB target 

genes. Third, KdpE and BasR were also observed to enrich for alternative motifs, and 



	
   104	
  

could also be the subject of these analyses. 

 

4.2 Characterization of native targets by Spec-seq 

 A major conclusion of this work was the relative uniformity of sequence recognition 

by distantly-related, functionally-distinct OmpR paralogs. Motif discrimination is 

unlikely to produce the level of genomic specificity inferred from analysis of native 

sequences. Therefore, there is likely a great deal of interesting ‘specificity mechanisms’ 

encoded directly in cis-regulatory sequences (e.g., multimeric binding, cooperativity, 

low-affinity / transient interactions, etc.) that warrants further study.  

 Importantly, the significant contrast between motifs identified through SELEX and 

known genomic binding sites suggests far greater complexity than synthetic libraries can 

feasibly represent. In a hypothetical follow-up experiment, regions enriched by genomic 

SELEX can be randomly diversified (e.g., through error-prone PCR) then analyzed using 

Spec-seq. Spec-seq is an ideal approach, given its ability to resolve complexes of 

different molecular weights, a necessity given the diverse size range of native DNA 

targets and potential for multi-protein complex formation. Results can shed light on how 

affinity is ’tuned’ at specific target sites, and, much like CpxR, reveal alternative 

sequence-specificities driven by multimeric binding. 

4.3 Expanding SDR prediction to other TF families 

 There is no shortage of techniques to predict DNA-, ligand-, and protein-binding 

SDRs; although algorithmically distinct, many produce very similar results and require 
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arbitrary statistical thresholds. In this work, I applied a simple biological principle: that 

SDRs engaged in disparate biochemical processes and spatial domains, if linked through 

a selective pressure toward functional specificity, evolve convergently as a single 

specificity-centric network. This assumption enabled the application of information 

theoretic methods typically applied to identify interacting residues across interfaces; 

importantly, because SDR groupings do not physically interact (in this work, SDRs occur 

in distinct domains), this approach implicitly eliminates covariance signal due to 

structure- or sequence-proximity. Although the success of this approach was not 

rigorously tested (e.g., through large-scale mutagenesis), it did enrich strongly and 

specifically for DNA-contacting residues, and two moderately-ranked predictions were 

functionally validated and characterized. 

 Beyond the OmpR sub-family, bacteria contain large numbers of TFs that bind DNA 

in response to chemical and protein ligands, and, for many such families, binding pockets 

and interfaces have been predicted and described. Given the broad availability of protein 

sequences in public database repositories, it should be possible to perform analyses 

similar to the one proposed here to identify DNA-binding SDRs on a large scale. For 

certain ligand-binding families, such as LacI, extensive mutational studies have already 

been conducted, and may provide necessary functional benchmarks with which to 

evaluate success.  

1) Training structure-based models 

 Large-scale functional characterization of naturally-occurring TFs has, in some ways, 
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reduced the need to develop biophysically accurate models of protein:DNA interactions. 

However, it would be unwise to de-emphasize the development of tools for 

structure-based design. First, many of the challenges in modeling the protein:DNA 

interface are generic to nucleic acids, so the potential impacts will extend far beyond the 

prediction of sequence recognition potential. Second, given recent progress in genomic 

sequencing, there will always be more disease- and phenotypically-relevant variants than 

can be characterized experimentally [5]. Due to their high sequence variability and 

functional diversity, for example, two-component response regulators are especially 

appropriate targets for modeling. Thirdly, it is currently possible to calculate the structure 

of multi-protein / DNA complexes only at relatively low resolution, and scoring functions 

or algorithms intended for protein design have been shown to aid in refinement. Thusly, 

protein:DNA modeling can, even in its current, imperfect state, make a significant impact 

on structural and regulatory biology [6]. Finally, and more generally, advances in 

modeling will continue to benefit from and drive computing and algorithmic advances.  
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