
Washington University in St. Louis
Washington University Open Scholarship

All Theses and Dissertations (ETDs)

1-1-2011

Protein-DNA Recognition Models for the
Homeodomain and C2H2 Zinc Finger
Transcription Factor Families
Ryan Christensen
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/etd

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All
Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact
digital@wumail.wustl.edu.

Recommended Citation
Christensen, Ryan, "Protein-DNA Recognition Models for the Homeodomain and C2H2 Zinc Finger Transcription Factor Families"
(2011). All Theses and Dissertations (ETDs). 564.
https://openscholarship.wustl.edu/etd/564

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fetd%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/564?utm_source=openscholarship.wustl.edu%2Fetd%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 
 

WASHINGTON UNIVERSITY IN ST. LOUIS 
 

Division of Biology and Biomedical Sciences 
 

Computational Biology 
 
 
 

Dissertation Examination Committee: 
Gary D. Stormo, Chair 

Michael R. Brent 
Jeremy D. Buhler 
James J. Havranek 

Garland R. Marshall 
Robi D. Mitra 

 
 
 

PROTEIN-DNA RECOGNITION MODELS FOR THE HOMEODOMAIN AND 
C2H2 ZINC FINGER TRANSCRIPTION FACTOR FAMILIES 

 
by 
 

Ryan Goaslind Christensen 
 
 
 

A dissertation presented to the  
Graduate School of Arts and Sciences 

of Washington University in 
partial fulfillment of the 

requirements for the degree 
 of Doctor of Philosophy 

 
 
 

 
 

 
August 2011 

 
Saint Louis, Missouri 



 

   

 

ii 

ABSTRACT OF THE DISSERTATION 

Protein-DNA Recognition Models for the Homeodomain and C2H2 Zinc Finger 

Transcription Factor Families 

By 

Ryan Goaslind Christensen 

Doctor of Philosophy in Biology and Biomedical Sciences 

Computational Biology 

Washington University in St. Louis, 2011 

Professor Gary D. Stormo, Chairperson 

 

 Transcription factors (TFs) play a central role in the gene regulatory network of each 

cell.  They can stimulate or inhibit transcription of their target genes by binding to short, 

degenerate DNA sequence motifs.  The goal of this research is to build improved models of 

TF binding site recognition. This can facilitate the determination of regulatory networks and 

also allow for the prediction of binding site motifs based only on the TF protein sequence. 

Recent technological advances have rapidly expanded the amount of quantitative TF binding 

data available.  PBMs (Protein Binding Microarrays) have recently been implemented in a 

format that allows all 10mers to be assayed in parallel.  There is now PBM data available for 

hundreds of transcription factors.  Another fairly recent technique for determining the 

binding preference of a TF is an in vivo bacterial one-hybrid assay (B1H).   In this approach 

a TF is expressed in E. coli where it can be used to select strong binding sites from a library 

of randomized sites located upstream of a weak promoter, driving expression of a selectable 
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gene.  When coupled with high throughput sequencing and a newly developed analysis 

method, quantitative binding data can be obtained.  In the last few years, the binding 

specificities of hundreds of TFs have been determined using B1H. 

The two largest eukaryotic transcription factor families are the zf-C2H2 and 

homeodomain TF families.  Newly available PBM and B1H specificity models were used to 

develop recognition models for these two families, with the goal of being able to predict the 

binding specific of a TF from its protein sequence.    We developed a feature selection 

method based on adjusted mutual information that automatically recovers nearly all of the 

known key residues for the homeodomain and zf-C2H2 families. Using those features we 

find that, for both families, random forest (RF) and support vector machine (SVM) based 

recognition models outperform the nearest neighbor method, which has previously been 

considered the best method.  
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Chapter 1: Introduction 
 

Transcription Factors 

Transcription factors (TFs) are important components of gene regulatory networks.  

They bind to short degenerate DNA motifs, activating or inhibiting their target genes by 

either recruiting the transcriptional machinery or blocking it.  The general principles of 

transcription regulation were first deduced from studies of the lac operon system in E. coli by 

Jacob and Monod (Jacob and Monod, 1961).  They showed that the lac operon has cis-acting 

elements in a promoter region that are controlled by trans-acting proteins that bind to these 

regulator elements, either activating or repressing transcription. 

TFs make up a significant percentage of the human genome, about 6 to 10% (Babu 

et al., 2004; Vaquerizas et al., 2009).  However only a small percentage of the DNA motifs 

that these TFs bind have been determined.  TFs also play an important role in disease.  For 

instance, TFs are over represented among oncogenes (Furney et al., 2006; Vaquerizas et al., 

2009).  A third of the genes linked to birth defects in OMIM are transcription factors 

(Boyadjiev and Jabs, 2000).   
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C2H2 Zinc Finger and Homeodomain Families 

There are many different types of transcription factors that utilize a wide variety of 

protein folds to bind DNA and recognize specific sites (Garvie and Wolberger, 2001; 

Luscombe et al., 2000; Luscombe and Thornton, 2002).  The two largest transcription factor 

families in most metazoan genomes are the C2H2 zinc finger (hereafter referred to as ZF) 

family and the homeodomain (hereafter referred to as HD) family (Tupler et al., 2001). 

 Both of these families utilize a relatively small set of key residues to bind to DNA 

specifically (Ekker et al., 1994; Puppin et al., 2011; Wolfe et al., 2000), and they are capable 

of binding to a wide variety of different types of binding sites.  It has been proposed that 

this ability to bind a wide array of possible DNA motifs is why these families have expanded 

so quickly (Itzkovitz et al., 2006; Luscombe and Thornton, 2002).  The reasoning is that if 

only a few mutations at key residues can lead to a wide variety of different binding 

specificities, than a TF family should be able to expand through duplication successfully. 

 The HD and ZF are both relatively small domains, 30 and 60 amino acids long, 

respectively.  Both families use an alpha helix, or recognition helix, to bind in the major 

groove.  HD proteins also bind in the minor groove via an N-terminal arm (see chapters 2).  

ZF proteins generally contain tandem repeats of ZF domains that bind to overlapping 
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subsites (see chapter 5). The HD family is a subfamily of the HTH class of proteins, which 

are very abundant in prokaryotic genomes, although ZFs are not.   

 

Protein-DNA Recognition Code 

It has been a long standing goal to determine the rules that govern how TFs 

specifically recognize their target binding sites (Pabo and Sauer, 1984; Seeman et al., 1976).  

Initially, it was hoped that there would be a simple deterministic recognition code that once 

decoded would allow the regulatory network of the cell to be deciphered, just as learning the 

genetic code allowed protein sequences to be decoded.  In 1976, before there were any 

known structures of protein-DNA complexes, Seeman et al. (Seeman et al., 1976) proposed 

a simple recognition code in which Arg would specifically bind to G-C base-pairs and Asn 

and Gln would specifically bind to A-T base-pairs.  As the first crystal structures of TFs 

bound to DNA became available, however, it became apparent that there was no simple, 

universal recognition code (Mandel-Gutfreund et al., 1995; Matthews, 1988).  The history of 

the idea of a recognition code is reviewed in Benos et al. (Benos et al., 2002b).  Benos et al. 

point out that although there is no simple universal code, it may be possible to construct 

probabilistic models for individual families.   A major obstacle for parameterizing these types 

of models is the size of the possible parameter space (Benos et al., 2001).  Even for a motif 
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like the ZF domain that only has about three key residues that contact DNA, there are 8000 

possible different ZF domains.  However, if it can be assumed that all interactions are 

additive, then this reduces to only 60 different measurements.  The extent to which 

interactions between key residues are additive is a matter of debate (Liu and Stormo, 2008).  

Until recently, not much effort had been spent on developing an HD recognition code.  A 

recent paper (Alleyne et al., 2009) proposes that the a simple nearest neighbor model may 

have the best performance that can be hoped for, given the current data.  Further more, the 

authors propose that the nearest neighbor approach may be essentially as good as or better 

more sophisticated machine learning methods for other TF families as well. 

 

Methods For Determining TF Binding Preferences 

Many different techniques have been developed to determine the affinity of TFs for 

specific DNA sites.  Two of the most utilized methods are the DNase footprinting assay 

(Galas and Schmitz, 1978) and the Electrophoretic mobility shift assay (EMSA)(Fried and 

Crothers, 1981; Garner and Revzin, 1981).  They can be used to determine the equilibrium 

disassociation constant (Kd) of a TF for a particular site by varying the concentration of the 

TF.  The Kd is a measure of the absolute affinity of a TF for a site.  These methods are low 

throughput and laborious.  In the end, it is not very helpful for elucidating regulator 
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networks to know the Kd of just a few sites.  What we really want to know is the relative 

binding affinity to any given site in the genome.   

 

Biophysical Model of Binding 

 TFs do not bind to DNA in a binary fashion.  The concentration of DNA is so high 

with in a prokaryotic cell or a eukaryotic nucleus that a TF is effectively always bound to 

DNA.  Roughly speaking, there are 107 potential binding sites in a prokaryotic genome.  

With a cell volume of about 10-15 L, that is a concentration of sites in the mM range, which is 

well above the non-specific Kd for any TF, the affinity it has for DNA in general. 

A given TF will bind to any site in the genome with some probability.  However, it 

will generally have high affinity for only a small number of sites, but this is also a function of 

the TF’s concentration (Bussemaker et al., 2007; Zhao et al., 2009).  A TF binding to the 

DNA sequence Si is a thermodynamic processes governed by two rate constants, kon and koff: 

  

These rate constants define the affinity of the TF for the site, Si, expressed in terms of the 

equilibrium disassociation constant:  

  

TF + Si
kon

koff
! "!# !! TF $Si

Kd (Si ) =
[TF][Si ]
[TF !Si ]

=
koff
kon
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The occupancy of site Si by the TF, or the probability that site Si will be bound by the TF is a 

function of the concentration of the TF and of the disassociation constant: 

 

where P(Si) is the probability that site Si will be bound by the TF, Ei = -ln(Ki) is the Gibbs 

free energy of binding in units of the RT (the gas constant times the temperature in degrees 

Kelvin) and µ = ln[TF] is the chemical potential (Zhao et al., 2009). 

 

Models of TF Specificity 

Models of binding are desirable, since they can provide insight into the mechanism 

of binding.  Also, models can be parameterized using multiple different types of data.  This 

can help to filter out noise and biases inherent to different experimental techniques.  On the 

one extreme, the model of DNA specificity with the greatest number of parameters is just a 

list where every possible site of length L, of which there are 4L, has an energy value assigned 

to it.  This provides no real insight in to the mechanism of binding, however.  On the other 

hand, the simplest possible model is just the TFs consensus sequence (Schneider, 2002).   

In 1982, Stormo et al. first introduced the concept of a PWM (Position Weight 

Matrix) to represent RNA sites that function as translation initiation sites in E. coli (Stormo 

P(Si ) =
[TF !Si ]

[TF !Si ]+ [Si ]
=

1

1+ 1
Kd[TF]

=
1

1+ eEi "µ
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et al., 1982).  PWM models assume that binding to one position of a DNA site is 

independent of binding to any other position of that site (Stormo, 2000).  Because the energy 

of binding to each position of the motif is assumed to be independent, these energies can be 

added together to obtain the overall energy of binding to any site of length L.  The extent to 

which additivity is a valid approximation is still an open question (Alleyne et al., 2009; Badis 

et al., 2009; Benos et al., 2002a; Maerkl and Quake, 2007b; O'Flanagan et al., 2005).  Careful 

analysis has resolved many of the concerns that have been raised, showing that additivity 

tends to be a reasonable assumption in most cases (Benos et al., 2002a; Stormo and Zhao, 

2007; Zhao and Stormo, 2011).   

Additivity is certainly a very useful assumption.  If the partial free energies of binding 

to each position of a site are independent, than it is not necessary to measure the affinity to 

every site.  To completely parameterize a PWM model then, it is not necessary to measure 

affinities for all 4L sites, but only for 4L different sites, greatly shrinking the parameter space.  

PWMs also have many other useful properties.  PWMs can be aligned (Mahony et al., 2007) 

and easily used to score all potential binding sites in a genome.  PWMs can score all possible 

L long sequences, even if they are only trained on a handful of sequences, so they can help 

impute missing data.  When necessary, additional higher order interactions terms, such as 

terms describing interactions between adjacent nucleotides, can be add to augment a PWM 
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model (Stormo, 2011).  At the very least, they can serve as null models to help detect non-

additive interactions between motif positions.  

 

Recent Technological Advances 

In order to parameterize protein-DNA recognition models, it is important to be able 

to measure the affinities for many different TFs, since the parameter space of possible TFs is 

very large.  Recently, technological advances have greatly increased the rate at which new TFs can be 

analyzed (Stormo and Zhao, 2010).  These new technologies include MITOMI (Fordyce et al., 2010; 

Maerkl and Quake, 2007a), a method that utilize microfluidics to measure affinities for all 8mers; CSI 

(Cognate Site Identification), a similar technique to PBMs that uses micro arrays (Hauschild et al., 

2009; Puckett et al., 2007; Warren et al., 2006).  This dissertation will focus on three main methods: 

PBMs (Protein Binding Microarrays), HT-SELEX (high throughput Systematic Evolution of Ligands 

by Exponential Enrichment), and the bacterial one-hybrid assay (B1H) (Meng et al., 2005; Meng and 

Wolfe, 2006) (See figure 1.1).   

PBMs (Protein Binding Microarrays) use double stranded DNA micro arrays to 

obtain values proportional to affinity values for all 10mers (Berger et al., 2006; Bulyk et al., 

2001; Mukherjee et al., 2004). SELEX (Systematic Evolution of Ligands by Exponential 

Enrichment) has long been used to determine the specificity of TFs.  Before the advent of 

next generation sequencing, initially SELEX was used obtain a few high affinity sites 
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(Blackwell and Weintraub, 1990; Oliphant et al., 1989; Tuerk and Gold, 1990; Wright et al., 

1991).  Coupled with massively parallel Illumina sequencing, high throughput or HT-SELEX 

can now determine highly accurate specificities for TFs (Zhao et al., 2009).   

The B1H assay is an in vivo method that uses a reporter gene to select for randomized 

binding sites.  In this approach a TF is expressed in E. coli fused to the ω subunit of RNA 

Polymerase, turning any DNA binding protein into a transcriptional activator.  A library of 

randomized binding sites located upstream of a weak promoter, driving expression of a 

selectable gene.  Only sites with high affinity for the TF will survive selection.  In the last 

few years, the binding specificities of hundreds of TFs have been determined using B1H.  

One of the main advantages of B1H is that unlike PBMs or SELEX, the transcription factor 

of interest does not need to be purified.  We show in chapter 4 that when coupled with high 

throughput sequencing and a new analysis method which we introduce, that the B1H assay 

yields accurate models able to predict HT-SELEX results. 

Recently, new in vivo technologies such as ChIP-Chip (Ren et al., 2000) and more 

recently ChIP-Seq (Johnson et al., 2007) have been applied to determine the binding sites of 

TFs on a genomic scale.  This begs, the question, if in vivo methods can determine binding 

sites directly, are in vitro technologies still relevant?  There are many factors at work that 

together determine which sequences are bound.  Chromatin structure, for instance, can 

determine which regions of the genome are accessible to TFs.  It is possible that otherwise 
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high affinity sites are not available to a TF due to competition with other factors.  At the 

very least, in vitro models can provide a valuable null model.  When in vivo binding profiles 

deviate from in vitro results, it means that additional factors are at work.  Also, methods like 

B1H are simple to perform and do not require the purification or pull-down of the TFs. 
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Figure 1.1 Overview of recent in  v i t ro  high throughput, quantitative methods for determining TF 

specificity data: 

(A) MITOMI (B) PBM (C) High-throughput SELEX (D) B1H method. Taken from (Stormo and 

Zhao, 2010) 
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Comparative Genomics Methods 

As genome sequences became available for multiple related species, comparative 

approaches were developed, such as PhyloNet (Wang and Stormo, 2005) that use only 

genomic sequence data to determine a library of conserved motifs.  The comparative 

genomics approach has been fairly successful, but there are limitations.  The greatest draw 

back is that without further experiments, it is not yet possible to determine which TFs are 

paired with each motif.  Also, it is only possible to study TFs that are held in common 

between a group of species.  Because gene regulation is thought to play a major role in 

evolution, some of the most interesting motifs may not be possible to find with this method.   

Having a better recognition models for the largest TF families may help bridge the gap and 

link motifs discovered with purely computational programs such as PhyloNet with putative 

TFs. 

 

Overview 

This chapter addresses the question raised early on by Seeman about whether a 

recognition code exists and if so how complex it is (Seeman et al., 1976). While ZF proteins 

have been studied the most, and there are reasonably good predictive models available 

(Benos et al., 2001; Benos et al., 2002b, c), there is still ample room for improvement.  New 
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data from high throughput technologies such as PBM and B1H allow us to explore the 

question again.  In chapter 5, new models with substantially better accuracy are described.  

For HD proteins, not nearly as much effort has been spent trying to find suitable 

recognition models. In fact a recent paper (Alleyne et al., 2009) proposes that one cannot not 

construct recognition models that perform much better than a nearest neighbor approach, 

which is not very informative about mechanism and is not very useful for HD design. We re-

examine the question, again relying on newer and larger datasets. We first find that the 

motifs can be aligned, which the previous paper suggested was not feasible.  We find quite 

good predictive models, significantly better than nearest neighbor approach. 

 Chapter 2 discusses a large scale characterization of all HD proteins in the 

Drosophila genome using B1H.  This work was expanded with the aim to determine the 

specificity of all Drosophila TFs.  In chapter 3, a database to house this data and an analysis 

pipeline are introduced.  High throughput Illumina sequencing was coupled with a new 

variant of  B1H called constrained variation B1H and a new biophysical based model is 

introduced to analyze this data in chapter 4.  In chapter 5, new ZF and HD models are 

introduced.  They are shown to perform better than the nearest neighbor method and other 

existing models.  Finally, chapter 6 summarizes our findings and discusses future directions. 
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Chapter 2: Analysis of Homeodomain 

Specificities Allows the Family-Wide 

Prediction of Preferred Recognition Sites1 

                                                

 

1 This chapter was adapted from: Noyes, M.B., Christensen, R.G., Wakabayashi, A., Stormo, 
G.D., Brodsky, M.H., and Wolfe, S.A. (2008). Analysis of homeodomain specificities allows 
the family-wide prediction of preferred recognition sites. Cell 133, 1277-1289. I performed 
all of the computational work.  This includes analyzing all of the B1H data sets, clustering 
the motifs, constructing trees, the adjusted mutual information analysis, and development of 
the recognition model and motif prediction web site 
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Abstract 
We describe the comprehensive characterization of homeodomain DNA-binding 

specificities from a metazoan genome. The analysis of all 84 independent homeodomains 

from D. melanogaster reveals the breadth of DNA sequences that can be specified by this 

recognition motif.  The majority of these factors can be organized into 11 different 

specificity groups, where the preferred recognition sequence between these groups can differ 

at up to 4 of the 6 core recognition positions.  Analysis of the recognition motifs within 

these groups led to a catalog of common specificity determinants that may cooperate or 

compete to define the binding site preference. Using these recognition principles, a 

homeodomain can be reengineered to create factors where its specificity is altered at the 

majority of recognition positions. This resource also allows prediction of homeodomain 

specificities from other organisms, which is demonstrated by the prediction and analysis of 

human homeodomain specificities.  

 

 

Introduction 
 

In humans, as well as many other metazoans, homeodomains comprise the second 

largest class of sequence-specific transcription factors (TFs) (Tupler et al., 2001). Homeotic 
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genes were first identified in D. melanogaster because their altered activity resulted in dramatic 

phenotypes such as the formation of an additional pair of wings (Lewis, 1978).  Cloning of 

these genes led to the landmark observation that they contain a common sequence motif 

that encodes a DNA-binding domain (Gehring et al., 1994a). Subsequent studies have 

identified a large number of additional homeodomain proteins in Drosophila that regulate 

diverse developmental processes. A remarkable number of these genes have mammalian 

homologs with conserved developmental functions and biochemical properties (Banerjee-

Basu and Baxevanis, 2001; Mukherjee and Burglin, 2007).  

 

Insights into the mechanisms of sequence-specific DNA binding by homeodomains 

have been provided by the three-dimensional structures of individual protein-DNA 

complexes coupled with directed mutagenesis and biochemical analysis (Ades and Sauer, 

1995; Gehring et al., 1994b; Wolberger, 1996).  The homeodomain consists of approximately 

60 amino acids that fold into a stable 3-helix bundle preceded by a flexible N-terminal arm. 

Interactions with a 5 to 7 base pair DNA binding site are formed by positioning a single 

“recognition” helix in the major groove and the N-terminal arm in the minor groove (Figure 

1A and B). Despite a common DNA-binding architecture, there is significant variation in the 

sequence composition within the homeodomain family; for example the two superclasses of 

homeodomains, denoted as typical and atypical (Banerjee-Basu and Baxevanis, 2001; 
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Mukherjee and Burglin, 2007), share low sequence identity and recognize substantially 

different DNA sequences, yet their docking with the DNA is nearly identical (Kissinger et 

al., 1990; Wolberger et al., 1991). This conserved binding geometry allows differences in 

amino acid sequence and DNA-binding specificity for various homeodomains to be 

interpreted within a common structural framework. Residues at positions 2, 3 and 5-8 on the 

N-terminal arm, as well as residues at positions 47, 50, 51, 54 and 55 on the recognition 

helix, can all contribute to DNA-binding specificity (Ades and Sauer, 1995; Damante et al., 

1996; Ekker et al., 1994; Fraenkel et al., 1998; Passner et al., 1999; Piper et al., 1999; 

Wolberger et al., 1991) (Figure 1B and C).  

 

How specific sequence variations between homeodomains lead to different recognition 

preferences has been defined in several cases. Seminal experiments demonstrated that Lys50 

promotes recognition of TAATCC by the Bicoid class of homeodomains instead of the 

TAAT(T/G)(A/G) recognized by the Gln50-containing Antp and En classes (Hanes and 

Brent, 1989; Percival-Smith et al., 1990; Treisman et al., 1989).  Beachy and colleagues 

mapped differences in binding site position 2 specificity for the posterior HOX protein Abd-

B (TTATGG) and more anterior HOX family members (TAATGG) to amino acids at 

positions 3, 6 and 7 in the N-terminal arm (Ekker et al., 1994).  Interestingly, substitutions at 

amino acids that overlap with these positions (6-8) are sufficient to switch the specificity of 
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an NK-2 type homeodomain (CAAGTG) to the specificity of an Antp-type homeodomain 

(TAAGTG) at the neighboring base, binding site position 1 (Damante et al., 1996). This 

complexity is not limited to the N-terminal arm, as residues at different amino acid positions, 

such as 47 and 54, can potentially contact the same base pair (Fraenkel et al., 1998; Gruschus 

et al., 1997; Wolberger et al., 1991).  This diversity in potential recognition contacts has 

hindered efforts to globally reengineer homeodomain specificity (Mathias et al., 2001). 

Consequently, a comprehensive description of the determinants of homeodomain DNA-

binding specificity remains an important goal.   

 

A complete survey of DNA-binding specificity on a large family of DNA-binding 

domains has not been previously attempted. We have recently described a bacterial one-

hybrid (B1H) system that allows the specificities of a DNA-binding domain to be rapidly 

characterized with sufficient ease that multiple factors can be assayed in parallel (Meng et al., 

2005; Meng and Wolfe, 2006). Using this system, we analyze the DNA-binding specificities 

for all 84 homeodomains in D. melanogaster that are not associated with an additional DNA-

binding domain as well as 16 mutant homeodomains with changes in residues that 

contribute to DNA recognition. Our analysis reveals a diverse array of DNA-binding 

specificities with a minimum of seventeen unique specificities in D. melanogaster, of which the 

majority of homeodomains can be clustered into 11 specificity groups. Members of a given 
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specificity group typically share common recognition residues.  Combining this data with 

previous structural and biochemical work on the homeodomain family, we propose and 

evaluate a detailed set of recognition determinants for homeodomains and use this 

information to broadly and accurately predict the specificities of homeodomains in the 

human genome.   

 

Results 
 

Analysis of homeodomains using a modified bacterial one-
hybrid (B1H) system 

 

We have modified our B1H system to rapidly characterize the DNA-binding specificity 

of a homeodomain (Meng et al., 2005; Meng and Wolfe, 2006). Homedomains are expressed 

as fusions to both the omega subunit of RNA-polymerase (Dove and Hochschild, 1998), 

which provides better dynamic range than fusions to alpha (data not shown), and to zinc 

fingers 1 and 2 of the protein Zif268 (Zif12; Figure 1D).  Because zinc finger-homeodomain 

chimeras exhibit increased affinity and specificity (Pomerantz et al., 1995), even 

homeodomains with relatively low DNA binding activity can be readily characterized, A 

library with 10 randomized base pairs adjacent to a Zif12 binding site (ZF10) was used to 
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isolate recognition sequences that are complementary to the homeodomain in this selection 

system (Figure 1D and Supplementary Figure 1).  

 

This system was used to determine DNA-binding specificities for all 84 of the 

homeodomains in the D. melanogaster genome that are not associated with an auxiliary DNA-

binding domain (Supplementary Figure 2 and Supplementary Table 1). These 

homeodomains cluster into previously described families (Banerjee-Basu and Baxevanis, 

2001; Mukherjee and Burglin, 2007) based on their amino acid similarity (Supplementary 

Figure 3), where approximately 85% of these homeodomains are in the “typical” superclass. 

Present in the collection of Drosophila homeodomains are diverse sets of amino acids at 

DNA-recognition positions, which suggests that a range of DNA-binding specificities is 

possible (Figure 1C). One notable exception is Asn at position 51 of the recognition helix, 

which is present in all but one of these homeodomains.  

 

Comparisons to earlier studies confirm that the motifs obtained by the B1H method 

accurately reflect the DNA-binding specificities of homeodomains. For example, all of our 

specificities for the homeotic (HOX) gene family share a common consensus – 

T(A/T)AT(T/G)(A/G) (Supplementary Figure 4), consistent with previous studies (Pearson 

et al., 2005). Furthermore, subtle differences in the specificity of Ubx, Dfd and Abd-B that 
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were previously observed in biochemical assays (Ekker et al., 1994; Ekker et al., 1992) are 

also present in our data, such as the preference of Abd-B for Thy over Ade at binding site 

position 2. Thus, even subtle differences in homeodomain specificity can be captured by the 

B1H analysis. The accuracy of our B1H-generated data was further validated by competition 

gel mobility shift assays performed for 9 factors that display different specificities 

(Supplementary Figure 5). 

 

Global alignment and clustering of homeodomain binding sites  
 

Remarkable diversity exists in the B1H-determined DNA-binding specificities for the 

entire set of homeodomains (Supplementary Figure 2). The conservation of Asn51, which 

specifies Ade at binding site position 3 (Fraenkel et al., 1998; Wolberger et al., 1991), in 

combination with our ability to infer the orientation of each homeodomain on its binding 

site (Supplementary Figure 6 and Supplementary Table 2) provides a basis for aligning all of 

these recognition sequences.  Using this master alignment (Supplementary Table 3), 

hierarchical clustering of the D. melanogaster homeodomains was performed based on the 

similarity of their DNA-binding specificities (Figure 2A). The majority of these factors can 

be organized into eleven different specificity groups and the average specificity of these 

groups was determined for the purposes of comparison (Figure 2).  In this analysis, we used 
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only the core 6 base pair element recognized by these factors. Consistent with the idea that 

many homeodomain proteins prefer similar TAAT-related motifs, slightly more than half 

(43) of the homeodomains fall into the Antp or En specificity groups.  There are also a 

number of specificity groups, such as the Abd-B and NK-1 group, which differ in sequence 

preference from the Antp or En groups at only one or two positions. However, other 

groups, such as the TGIF-Exd group, differ at four positions relative to the Antp or En 

groups. Outside of these specificity groupings are six factors that exhibit unique specificities. 

The observed diversity of specificities reveals the adaptability of the homeodomain 

architecture for the recognition of a variety of DNA sequences.   

 

Clustering the D. melanogaster homeodomains by specificity has revealed that 

homeodomains that share strong amino acid sequence similarity are not always found in the 

same specificity group (Figure 2C).  In 10 examples, two factors share strong sequence 

similarity, but fall into different specificity groups.  In eight of these comparisons, this 

difference can be explained by the presence of a different residue at one or more of the key 

DNA-recognition positions (5, 47, 50, 51, 54 and 55, see below).  Pairs of factors with high 

overall sequence similarity, but different specificities, may represent recently diverged gene 

duplications where one factor has acquired new target genes. 
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Distinguishing features of homeodomain specificity groups 
 

The contribution of specific residues toward binding site preference for one or more 

group members has been demonstrated in previous studies. Below, we use correlations 

between the average group recognition motifs and the amino acid distributions at key DNA 

recognition positions (Figure 2B) to systematically describe the characteristics of each group 

that lead to differences in binding specificity. 

  

Typical superclass 

Antp and En groups:  The largest groups of homeodomains provide a reference point to 

describe how differences in amino acid sequence correlate with DNA-binding specificity. 

The Antp and En groups share similar recognition motifs and amino acid distributions at the 

key recognition positions. However, at binding site position 5, the En group prefers Thy, 

whereas the Antp group tolerates either Gua or Thy.  There is a corresponding difference at 

amino acid position 54: Ala for the En group and Met for the Antp group. In the Antp-

DNA structure, the side chain of Met54 is neighboring this base pair (Fraenkel and Pabo, 

1998).  
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Bcd group:  Typical homeodomains utilize Lys50 to specify Cyt at binding site positions 5 and 

6 through the interaction of Lys50 with the complementary Gua at these positions (Tucker-

Kellogg et al., 1997).  

 

NK-1, Bar and Ladybird groups: Many of these homeodomains are members of the NK or DL 

homeodomain classes (Banerjee-Basu and Baxevanis, 2001) and generally have Thr at 

position 47 or 54. Compared to the Antp and En groups, the homeodomains with Thr47 

have reduced specificity at binding site positions 4 and/or 5 (Supplementary Figure 7). 

 

NK-2 group: The members of this group prefer Gua at position 4, due to an interaction 

between Tyr54 and the complementary Cyt (Gruschus et al., 1997). Their specificities vary at 

binding site position 1, which correlates with differences at residues 6 and 7 of the N-

terminal arm (Damante et al., 1996) (Supplementary Figure 8).  

 

Abd-B group: These factors prefer Thy over Ade at position 2. In Abd-B, this preference has 

been mapped to amino acid positions 3, 6 and 7 of the N-terminal arm (Ekker et al., 1994); 

however, the variability within the N-terminal arm precludes a simple correlation of binding 

preference and amino acid sequence. 
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 Atypical homeodomains 

The atypical groups generally prefer Gua at binding site position 2, and Cyt and Ade at 

positions 4 and 5 (Figures 2B and 3A). In CG11617, the Iroquois group and the TGIF 

group, the preference for Cyt and Ade at positions 4 and 5 correlates with the presence of 

Arg54, consistent with the structure of MATa2 (Wolberger et al., 1991) (Figure 3B). The 

single exception to this correlation, Onecut, contains a unique residue (Met50), which may 

contribute to its distinct binding preference. Likewise, with the exception of the Iroquois 

group, homeodomains that contain Arg55 prefer Gua at position 2, consistent with the Exd 

and Pbx structures (Passner et al., 1999; Piper et al., 1999).  

 

TGIF-Exd group: Our data are consistent with previously described specificities for individual 

members of the TGIF - Exd group (TGA(C/t)A) (Bertolino et al., 1995; Chang et al., 1996). 

 

Six group: All members of this group (So, Six4 and Optix) display a specificity that overlaps 

with the recognition motif TGATAC and share identical residues at the key DNA-

recognition positions (47, 50, 51, 54 and 55). Our data are consistent with a known So motif 

((T/C)GATAC) (Hazbun et al., 1997). A discrepancy between our data and a motif (TAAT) 

reported for an Optix homolog, Six3 (Zhu et al., 2002), is investigated in the analysis of 

human homeodomains described below. 
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Iroquois group: Our monomeric motif (ACA) reflects part of the palindromic, homodimer 

binding site (ACANNTGT) for a full-length Mirr protein (Bilioni et al., 2005). 

Homeodomains in this group have weak preferences at binding site positions 1 and 2, 

despite containing notable specificity determinants (Arg5 and Arg55).  One striking feature 

of the Iroquois group is Ala at position 8 (Supplementary Figure 3).  In other 

homeodomains, a large hydrophobic residue at this position binds in a cleft formed by the 

homeodomain helices and appears to position the N-terminal arm over the 5’ end of the 

binding site (Figure 4). To examine the effect of residue 8 on Iroquois specificity, an 

Ala8Phe mutation was introduced into Caup (Figure 4D). This mutation restores, albeit 

incompletely, the anticipated specificity at positions 1 and 2. The incomplete transformation 

suggests that additional determinants also contribute to specificity at the 5’ end of the 

binding site (Supplementary Figure 9). 

 

Our assessment of the typical and atypical superclasses suggests two overlapping, but 

distinct sets of protein-DNA interactions (Figure 2B and 3B). Both classes generally share 

Arg5 and Asn51, which typically specify Thy and Ade at binding site positions 1 and 3, as 

well as common set of phosphate contacting residues (Supplementary Figure 3), which 

should result in a similar docking arrangement of all of these homeodomains with the DNA. 
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Thus, specificity differences between these homeodomains primarily arise from distinct 

combinations of residues that directly interact with DNA or that influence these contact 

residues, rather than changes in the overall conformation of the homeodomain-DNA 

complex. 

 

Common specificity determinants for homeodomain proteins 
 

Computational and qualitative approaches were used to decipher how variations in 

homeodomain amino acid sequences across all specificity groups lead to differences in the 

preferred bases at each binding site position. Mutual information (MI) analysis was used to 

identify potential specificity determinants by evaluating homeodomain residues that co-vary 

with changes in binding site preferences (Gutell et al., 1992; Mahony et al., 2007). A simple 

MI analysis identified some expected correlations at the protein/DNA interface 

(Supplementary Table 4), but was complicated by the limited variability at some individual 

positions (Supplementary Figure 10A). To compensate for differences in variability, the MI 

matrix was transformed into a joint rank product matrix (Supplementary Figure 10B). This 

plot identifies many known homeodomain-DNA interactions; for example, strong MI is 

observed between recognition helix positions 50 and 54 and binding site positions 6 and 4, 

respectively. However, a strong correlation between residue 47 and binding site position 2 is 
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likely due to evolutionary linkage; the residue present at position 47 correlates to the 

superclass of the homeodomain (atypical or typical) and each superclass typically prefers 

different bases at this position. Although evolutionary history complicates MI analysis, novel 

positions are identified that may be new hallmarks for predicting binding specificity.  

 

To identify which amino acids lead to different binding site preferences, we examined 

the correlations between amino acid sequence and recognition preference in the context of 

homeodomain structures and existing or new mutagenesis experiments. The keystone for 

this analysis is recognition of Ade at position 3 by Asn51. Inferences about specificity 

determinants may not be valid in the absence of this interaction. Below, residues that most 

frequently contribute to specificity are summarized for each position in the binding site 

(Figure 5) and a more detailed analysis is available in the supplementary discussion. 

 

Binding Site (BS) Position 1: 89% of the aligned recognition sequences have Thy at 

this position.  Consistent with this preference, the majority of homeodomains (94%) have 

Arg5 in the N-terminal arm, which specifies Thy (Ades and Sauer, 1995).  

 

BS Position 2: Preferences for Ade, Gua or Thy are observed among the different 

homeodomains. 83% of the aligned recognition sequences have Ade at this position. Most 
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typical homeodomains contain Arg2 or Arg3, which help specify Ade (Ades and Sauer, 1995; 

Hovde et al., 2001). Most atypical homeodomains contain Arg55, which can specify Gua. 

 

BS Position 3: Asn51 specifies Ade at this position.  

 

BS Position 4: Any base can be specified at this position.  Thy is the most common 

base (80%) and is strongly correlated with the presence of Ile or Val at position 47.  

 

BS Position 5: Preferences for Ade, Thy and Cyt are observed among different 

homeodomains. For many specificity groups, correlations exist between combinations of 

residues at positions 47, 50 and 54 and certain base preferences.  

 

 BS Position 6: Preferences for Ade, Gua and Cyt are observed among the different 

homeodomains. Like binding site position 5, residues at positions 47, 50 and 54 appear to be 

the primary determinants of specificity.  

 

These results imply that there is rarely a simple one-to-one correlation between a specific 

residue and the preferred base at a binding site position. This complexity precludes the 

construction of a basic “recognition code” that defines specificity based on a subset of 
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residues at key recognition positions; however, this analysis reveals some general principles 

regarding how certain combinations of residues influence specificity. Multiple homeodomain 

positions can contact a single base pair (e.g. residues 47 and 54 at base position 4 and 

residues 3 and 55 at base position 2), and when more than one determinant is present for a 

single base pair, these residues can be in competition (see next section). In addition, other 

residues can indirectly contribute to specificity by influencing the conformation of potential 

contact residues. For example Ala8 affects specificity in the N-terminal arm (Figure 4). 

Similarly, Lys50 displays distinct base preferences in the Bcd and Six groups, likely due to 

different neighboring residues at positions 47 and 54. These examples support the general 

conclusion that the contribution of individual specificity determinants to DNA recognition 

is modulated by additional residues at the protein-DNA interface. 

 

Bcd uses competing contact residues 
 

We have used Bcd to explore the role of competition in determining specificity, as it 

contains Ile47 and Arg54, which can specify Thy and Cyt, respectively, at binding site 

position 4. At this position, Bcd displays a strong preference for Thy, a weak preference for 

Gua and no evidence of tolerance for Cyt (Figure 6A and Supplementary Figure 11). The 

weak preference for Gua at position 4 has been previously demonstrated (Dave et al., 2000), 
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and is likely due to Lys50, as this residue can interact simultaneously with the carbonyls of 

the base at position 4 on the primary strand and position 5 on the complementary strand in 

the context of the consensus binding site, TAATCC (Tucker-Kellogg et al., 1997).   

 

The absence of Cyt in the recognition motif at position 4 suggests that Ile47 or Lys50 

may prevent Arg54 from contributing to the base preference. When Ile47 is mutated to Asn, 

a residue commonly found in atypical homeodomains that contain Arg54, a slight tolerance 

for Cyt is observed, indicating the influence of Arg54 (Figure 6A). When Lys50 is mutated to 

Ala, a complete shift to an En-like specificity (TAATTA) is observed. In the double mutant 

Ile47Asn and Lys50Ala, a preference for Cyt at position 4 - the base specified by Arg54 in 

most atypical homeodomains - is revealed. Thus, three different potential specificities are 

embedded within Bcd. Lys50 and Arg54 are less influential, likely because they are more 

flexible and are able to make other favorable interactions: Lys50 with bases at positions 5 

and 6, and Arg54 with the phosphodiester backbone. 

 

Engineering the DNA-binding specificity of En  
 

We used our catalog of specificity determinants to shift the specificity of En from a 

typical homeodomain (TAATTA) to a TGIF-type atypical homeodomain (TGACA).  En 
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and TGIF differ in binding site preference at four out of six positions (Figure 6B) and share 

only 28% amino acid sequence identity overall.  While homeodomain specificities have been 

previously altered at one or two binding site positions, attempts to produce more dramatic 

changes have failed (Mathias et al., 2001).  

 

Two partial conversions were performed in parallel to assess the flexibility of the En-

scaffold for each end of the binding site (Figure 6B):  two mutations (R3K and K55R) were 

sufficient to alter specificity at position 2 (TGATTA) and two other mutations (I47N and 

A54R) altered specificity at positions 4-6 (TAACA). The combination of both pairs of 

mutations (R3K, I47N, A54R and K55R) resulted in the desired 5’ specificity, but an 

intermediate 3’ specificity (TGA(T/C)(T/A)(G/A); Figure 6B), which suggests additional 

competing specificity determinants. Gln50, although passive in the I47N, A54R mutant, 

might influence specificity in the quadruple mutant context.  Indeed, addition of the Q50A 

mutation creates an almost complete conversion to the desired TGACA specificity, as 

demonstrated by motif clustering analysis (Supplementary Figure 12). The intermediate and 

final transformations of binding specificity demonstrate that En is a robust scaffold for 

engineering novel DNA-binding specificities (Supplementary Figure 13). In addition, these 

results highlight how the impact of an individual specificity determinant (i.e. Gln50) can be 

influenced by its context at the homeodomain-DNA interface.  
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Predicting the specificity of the human homeodomains 
 

We used our analysis of Drosophila homeodomain specificities to predict the specificity of 

most human homeodomain proteins. Pairs of homeodomains with the highest overall 

sequence similarity can have different specificities, likely due to differences at their key 

recognition positions (Figure 2C). Therefore, three criteria were employed in making 

predictions for the independent human homeodomains: 1) the presence of Asn51, 2) the 

overall sequence similarity of each human homeodomain to each fly homeodomain, and 3) 

the number of identical residues at five recognition positions (5, 47, 50, 54 and 55). The 

recognition motifs for 153 of 193 human homeodomains (79%) were constructed from the 

selected binding sites of up to three fly factors that share the highest overall sequence 

homology and the most similar recognition residues (Supplementary Figure 14). A cross-

validation test with the fly homeodomain set was used to assess the accuracy of these 

predictions (Supplementary Table 5). The human predictions were binned into four 

confidence levels based on the cross-validation analysis (Supplementary Table 6) from 

highest (1) to lowest (4). 113 (74%) of the predictions fall in the top two confidence levels. 

These predictions were confirmed for six human homeodomains (BarHL1, Nkx3-2, PitX2, 

Six3, TGIF2, Vsx1) by determining their specificities using the B1H system (Figure 7). The 
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determined and predicted specificities are very similar (all p-values < 2x10-6), indicating that 

this approach should be applicable to homeodomains from a broad range of species. This 

conclusion is supported by an independent comparison with the specificities for non-fly 

homeodomains in TRANSFAC (Matys et al., 2003) with our predicted specificities for these 

factors (Supplementary Table 7).  Predictions of homeodomain specificities from other 

species can be made through our web-page where a user enters the homeodomain amino 

acid sequence and a recognition motif is generated if homeodomains are present in our 

dataset that meet the user-defined criteria (Supplementary Figure 15). Our specificity 

predictions for the human homeodomain set, their corresponding PWMs, and the interactive 

prediction tool are available at http://ural.wustl.edu/flyhd.   

 

Discussion 
 

A major limitation for understanding transcriptional regulation in animal cells is the 

paucity of defined specificities for the majority of encoded transcription factors. The B1H 

system offers many potential advantages for the analysis of transcription factor specificity. 

First, selected binding sites are assayed for the ability to activate a biological response in the 

context of competition from a pool of potential sites in the E. coli genome. More 

importantly, the ability to determine the orientation of the homeodomain on each selected 
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binding site allows even partially symmetric sites to be properly aligned when constructing 

recognition motifs (Supplementary Figure 6). Correct alignment of selected sites is not only 

important for ranking predicted recognition sequences in genomic DNA sequences, but it is 

also required to understand the structural basis for variations in DNA binding specificity. 

 

This study provides a complete analysis of homeodomain specificities in a metazoan and 

it dramatically increases the number of characterized homeodomains in this organism, as 

only 18 of 84 had any binding site information in the FlyREG database (Bergman et al., 

2005). We find that the homeodomain family displays an extensive range of specificities in 

which a wide variety of bases can be preferred at most positions within the core 6 bp 

binding site.  Overall, the majority of homeodomains (93%) in our dataset can be clustered 

into 11 different specificity groups with an additional 6 homeodomains that display unique 

specificities.  This clustering strategy allowed us to describe how common variations in 

residues at a given position in the homeodomain contribute to differences in specificity. 

However, even within these groups there are homeodomains that display differences in 

binding site preference. For example, members of the NK-2 group differ in their base 

preference at the 5’-most position and Exd specificity clearly differs from other members of 

the TGIF group (Supplementary Figure 8, Figure 3A). In addition, differences outside the 

core 6 base pair binding site motifs lead to further diversity among homeodomain 
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specificities (Supplementary Figure 2). Thus, the 17 specificities described by the 11 groups 

and 6 unique homeodomains represent the minimum number of different specificities 

recognized by Drosophila homeodomains. 

 

Our analysis demonstrates that the overall sequence similarity between two 

homeodomains is a useful, but sometimes misleading indicator of the degree of similarity in 

their DNA-binding specificities. Once factors are clustered into specificity groups, it is 

possible to compare binding specificity with their degree of sequence homology (Figure 2C). 

As expected, a substantial correlation between sequence similarity and preferred recognition 

motif is observed. However, we find multiple examples where pairs of closely related 

homeodomains cluster into different specificity groups.  In both naturally-occurring and 

engineered homeodomains, single amino acid changes at putative DNA recognition 

positions are sufficient to alter specificity. These observations illustrate the importance of 

defining the amino acid positions that contribute to variations in binding site specificity in 

order to make accurate specificity predictions. 

 

In addition to providing a better understanding of DNA-recognition for this family, this 

dataset provides a resource for the prediction and interpretation of homeodomain binding 

sites in regulatory targets within the D. melanogaster genome. The specificity of individual 
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homeodomains has proven instrumental in the identification of functional regulatory sites 

utilized by these factors in vivo (a subset of examples in D. melanogaster are listed in 

Supplementary Table 8) and in the computational identification of target genes with 

evolutionarily conserved binding sites (Berman et al., 2004; Kheradpour et al., 2007; 

Schroeder et al., 2004; Sinha et al., 2003).  Comparisons with chromatin 

immunoprecipitation (ChIP) data confirm that Bicoid monomer binding sites are enriched at 

sites that are occupied in vivo (Li et al., 2008) and that the combination of ChIP data and 

analysis of conserved transcription factor binding sites generally provides significant 

improvement in the prediction of functional targets over either method alone (Kheradpour 

et al., 2007). The complete analysis of D. melanogaster specificities also highlights the 

importance of identifying factors with overlapping specificities, as conserved binding sites 

may reflect recognition sequences for a number of potential factors.   

 

Homeodomains can bind DNA as monomers, homodimers, heterodimers or higher 

order complexes; in several examples, the preferred recognition sequence of monomers in 

these complexes may even be modified (Pearson et al., 2005; Ryoo and Mann, 1999; Wilson 

and Desplan, 1999). Both structural data and our analysis suggest that a likely site for 

modified specificities is in the flexible N-terminal arm (Figures 1, 2 and 4). The recently 

described structures of Scr-Exd heterodimers bound to DNA reveal how complex 
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formation can alter the interaction of residues within and beyond the N-terminal arm with 

DNA (Joshi et al., 2007). Thus, while the primary sequence determinants within the N-

terminal arm help define sequence preferences, intramolecular (e.g. Ala8 in Caup; Figure 4) 

or intermolecular (e.g. Scr-Exd) interactions can also influence recognition.  It is currently 

unclear how frequently monomeric specificities are modified by protein-protein interactions, 

but our systematic characterization of monomeric specificities provides a foundation to 

explore this question.  

 

The analysis of homeodomain specificities in D. melanogaster also provides the basis to 

predict most homeodomains specificities in other organisms. We predicted the DNA-

binding specificities of 79% of the independent homeodomains in the human genome with 

moderate to high confidence (Supplementary Figure 14). This prediction scheme can be 

applied to homeodomains from any species, providing a resource to help identify binding 

sites in cis-regulatory regions. In the future, incorporation of a probabilistic recognition code 

to approximate the specificities of factors that do not have good homologs in our database 

should allow more comprehensive specificity predictions based on homeodomain amino 

acid sequence (Benos et al., 2002; Liu and Stormo, 2005).  
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Continued analysis of homeodomain specificity will lead to more detailed understanding 

of recognition by this family. Our current experiments have led to a catalogue of specificity 

determinants that can be used to rationally engineer the DNA-binding specificity of 

homeodomains. The throughput of the B1H system will facilitate the synthesis of a more 

comprehensive recognition model as more naturally-occurring and mutant homeodomains 

are characterized. The B1H system can also be used to perform selections on pools of 

mutagenized homeodomains to assess the range of residues that are compatible with 

recognition of a given motif. Given the high success rate of the B1H method, a systematic 

characterization of other classes of DNA-binding domains can be used to produce a 

complete map of transcription factor specificities in a genome. 
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Experimental Procedures: 
Homeodomain binding site selections:  A detailed description of the general B1H 

selection protocol has been previously described (Meng et al., 2005; Meng and Wolfe, 2006), 

modifications to this procedure and a detailed description of the construction of the ZF10 

randomized library are presented in the Supplementary Methods. The 84 independent D. 

melanogaster homeodomains were identified as described in Supplementary Methods. The 

sequences of the homeodomains used in the B1H selection and the raw selected binding 

sites are found in Supplementary Table 1. 

 

Construction of the master alignment of sites for clustering and MI analysis: 

The master alignment contains 1860 binding sites for 83 of the 84 Drosophila 

homeodomain proteins as well as Oct1 (Lag1 was excluded because it lacks Asn51). These 

alignments were constructed from overrepresented motifs identified for each factor using 

CONSENSUS (Hertz and Stormo, 1999). Details on the alignment construction, motif 

clustering and MI analysis can be found in the Supplementary Methods. All Sequence logos 

(Schneider and Stephens, 1990) for these factors were generated using WebLogo (Crooks et 

al., 2004). Because the number of selected binding sites that comprise a particular logo is 

modest (22 on average), the significance of bases that are absent or occur infrequently in a 

motif cannot be fully assessed. 
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Specificity Predictions for the human homeodomain set 

193 homeodomains containing proteins were annotated in the SMART human genome 

database and 175 of these were independent homeodomains containing Asn51.  To predict 

the DNA-binding specificity of this set we used the DNA-binding specificity of up to 3 of 

the fly homeodomains with the highest BLOSUM45 similarity scores (calculated from a 

sequence-to-profile multiple sequence alignment (Edgar, 2004) between the query sequence 

and the 84 fly homeodomain profiles) provided that: 1) they contained Asn51; 2) they 

contained identical residues at the other 5 key recognition positions (5, 47, 50, 54 and 55); 

and 3) they passed a BLOSUM45 similarity score threshold. The similarity score threshold 

was set to 200, based on a cross validation analysis of the fly homeodomain set (data not 

shown).  Additionally, once a reference protein passed all of our filters, additional reference 

proteins were only added to the predictive set if their similarity score was within 40 similarity 

score units of the most similar reference protein. If no reference homeodomain passed these 

three criteria, we considered up to 3 homeodomains within the set that contained identical 

residues at 4 of the 5 key recognition positions, as long as they also passed the similarity 

score threshold.  Specificity predictions comprise all of the selected binding sites for all of 

the reference homeodomains that passed the filters.  In some cases no fly homeodomains 

met these criteria and consequently no prediction was made.  
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Cross-validation analysis and comparison of predicted and 
determined motifs 
To assess the accuracy of the specificity predictions we performed a cross-validation analysis 

where the binding specificity of each fly homeodomain was predicted based on the 

information of all of the other homeodomain proteins. All TRANSFAC 10.2 datasets 

associated with proteins classified as homeodomains (TRANSFAC classes C0006, C0027, 

C0047, C0053) and that contain at least 20 binding sites were extracted from the database 

(Matys et al., 2006). The 47 groups of binding sites that met these requirements were 

reanalyzed with CONSENSUS to generate new motifs. 27 of these 47 transcription factors 

were sufficiently similar to a D. melanogaster homeodomain to make a prediction based on our 

criteria (described in the text).  In some cases (8), multiple homeodomains were associated 

with one dataset in TRANSFAC and vice versa (5).  In these cases, we compared the 

predicted matrix for a factor to each of the CONSENSUS matrices associated with it.  We 

used the Average Log Likelihood Ratio (ALLR) score to determine the best local alignment 

(Matalign-v2a, Wang, T & Stormo, G. D. unpublished) between the predicted and 

CONSENSUS matrices.  Based on these alignments, we assessed the degree of similarity 

using the ALLR similarity score, the ALLR based distance and the e-value computed by 

Matalign.   
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Figure Legends 
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Figure 2.1 DNA recognition by the homeodomain family. 

A) The structure of Msx-1 bound to DNA is representative of homeodomain-DNA interactions 

(Hovde et al., 2001). B) Detailed view of the recognition contacts (red), where residues at positions 2 

and 5 of the N-terminal arm (orange) interact with bases in the minor groove and residues at positions 

47, 50, 51 and 54 of the recognition helix (yellow) are positioned to make contacts in the major groove.  

C) (Top) Sequence logo representation of the diversity in our set of 84 homeodomains. (Bottom) 

Windows highlighting the diversity in the DNA-recognition regions - the N-terminal arm (red) and 

recognition helix (yellow). The key recognition positions are indicated with asterisks. D) Cartoon 

depicting recruitment of omega-Zif12-HD (homeodomain) fusions to the weak promoter driving the 

HIS3  and URA3  reporters used in the B1H system (Meng et al., 2005; Meng and Wolfe, 2006).  
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Figure 2.2. Clustering of the 84 Drosophila homeodomains. 

 (A) Clustering based on the similarity between the recognition motifs of these factors, which we have 

organized into eleven different specificity groups. (B) The typical and atypical homeodomains are 

distributed into separate groups. The average specificity of each group is indicated under the Group 

recognition motif, and to the right is the Sequence logo of the key recognition positions. (C) The 

specificity groups (colored rectangles) are mapped onto the homeodomain amino acid sequence 

similarity tree. In instances where neighbors have been assigned to different specificity groups 

(indicated by red brackets) any difference in residue type at a key recognition position (5, 47, 50, 54 or 

55) is noted (ND = No difference). 
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Figure 2.3 Atypical homeodomain specificity and correlations with positions 54 and 55. 
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A) (Left) Sequence logos for types of atypical homeodomains (either groups or outliers). (Right) 

The corresponding amino acid sequences at the key DNA contact positions. Arg at position 54 

(magenta) correlates with a preference for Cyt at binding site position 4. Arg at position 55 (cyan) 

correlates with a preference for Gua at binding site position 2. Notable exceptions are indicated 

by red circles.  B) Structural model of DNA recognition for atypical family members constructed 

from a superposition of the contacts observed in the MATα2-DNA (Wolberger et al., 1991) and 

Exd-Ubx-DNA structures (Passner et al., 1999). The arginines potentially specify the contacted 

Gua and the 5’ Thy due to the favorable van der Waals interaction (~4 Å) with the T-methyl 

group (silver sphere).   
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Figure 2.4  The role of position 8 in organizing the N-terminal arm. 

A) A large hydrophobic residue at position 8 docks into a pocket formed by the three-helix bundle of 

the homeodomain fold anchoring the N-terminal arm over the minor groove.  B) Surface rendering of 

the homeodomain (residues 9-60, recognition helix shown in yellow; Msx-1 structure (Hovde et al., 

2001)). Phe8 (red) sits in a structural pocket.  C) Iroquois family members contain Ala at position 8, 

allowing the N-terminal arm to sample other conformations that reduce the specificity of the factor.  

D) Reintroduction of the Phe at position 8 in Caup (A8F) dramatically alters the specificity of the 

protein at positions 1 and 2 of the binding site.   
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Figure 2.5 Catalog of common specificity determinants for Asn51-containing homeodomains. 

 Amino acid positions that are most likely to influence the sequence preference at a particular position 

are indicated in boxes (solid line – major groove, dotted line – minor groove) surrounding the core 6 

bp binding element. An arrow points from the box of potential interactions to the base within each 

base pair that it describes.  For simplicity some interactions, such as Lys50 with binding site positions 

5 and 6, are described as influencing specificity on the primary strand of the DNA when in reality 

direct contacts are made to the complementary strand. DNA recognition by residues in the N-

terminal arm is also dependent on the type of residue at position 8 as observed for the Iroquois group. 
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Figure 2.6 Exploring DNA-binding specificity through mutagenesis. 

A) Mutational analysis of binding site position 4 in Bcd. Three different mutants (I47N, K50A and 

I47N with K50A) were characterized to determine the alteration in base preference at this position. 

The frequency that each base was recovered at position 4 is indicated to the right of the Sequence 

logo for each factor. B) Conversion of Engrailed (En) into a homeodomain with TGIF-like specificity.  

(Top)  Schematic representation of the critical base contacts responsible for specificity in En and 

TGIF family members.  (Bottom) Flow diagram of the mutations required to complete the specificity 

conversion.  Two intermediate specificity conversions (EnV1 and EnV2) were obtained first, and these 

mutations were combined along with Q50A to produce TGIF-like specificity. 
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Figure 2.7 Comparison of the predicted and determined recognition motifs for 6 human 

homeodomains. 

The specificities of the human factors were determined using the B1H system.  In each case the 

“Determined” compares favorably with the “Predicted” motif generated using our algorithm.  The p-

value for each comparison was calculated from the weight matrices for each motif as described in the 

Methods with additional metrics of these comparisons in Supplementary Table 9.  Of particular note, 

the specificity of Six3 is consistent with other Six family members; it does not specify TAAT as 

previously described (Zhu et al., 2002). 

Supplemental Material 
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Due to the large quantity of supplemental material, including all of the aligned selected sites, 

please refer to the supplemental material available on Cell’s web site: 

http://www.sciencedirect.com/science/article/pii/S009286740800682X 

doi:10.1016/j.cell.2008.05.023 
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Chapter 3: FlyFactorSurvey: a database of 

Drosophila transcription factor binding 

specificities determined using the 

bacterial one-hybrid system1 

                                                

 

1 This chapter was adapted from: Zhu, L.J., Christensen, R.G., Kazemian, M., Hull, C.J., 
Enuameh, M.S., Basciotta, M.D., Brasefield, J.A., Zhu, C., Asriyan, Y., Lapointe, D.S., et al. 
(2011). FlyFactorSurvey: a database of Drosophila transcription factor binding specificities 
determined using the bacterial one-hybrid system. Nucleic Acids Res 39, D111-D117.  I 
developed the analysis pipeline and methods for analysing all of the B1H data sets.  I 
genenerated all of the logos, alignments and matricies that were subsequently added to the 
database 
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Abstract 

 

FlyFactorSurvey (http://pgfe.umassmed.edu/TFDBS/) is a database of DNA binding specificities 

for Drosophila transcription factors (TFs) primarily determined using the bacterial one-hybrid system. 

The database provides community access to over 400 recognition motifs and position weight 

matrices (PMWs) for over 200 TFs, including many unpublished motifs. Search tools and flat file 

downloads are provided to retrieve binding site information (as sequences, matrices and Sequence 

logos) for individual TFs, groups of TFs or for all TFs with characterized binding specificities. 

Linked analysis tools allow users to identify motifs within our database that share similarity to a query 

matrix or to view the distribution of occurrences of an individual motif throughout the Drosophila 

genome. Together, this database and its associated tools provide computational and experimental 

biologists with resources to predict interactions between Drosophila TFs and target cis-regulatory 

sequences. 

 

Introduction 

The first critical step in converting genomic sequence into temporally and spatially patterned gene 

expression is the regulation of transcription. This process is typically controlled by cis-regulatory 

modules (CRMs), discrete sequences that contain groups of binding sites for sequence specific 

transcription factors (TFs). Experimental methods such as chromatin immunoprecipitation allow 
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direct genome-wide analysis of TF binding in a specific cell type and experimental condition 

(Johnson et al., 2007; Li et al., 2008; Ren et al., 2000; Zeitlinger et al., 2007). Work in Drosophila and 

other organisms has shown that matrix representations of the recognition motif of a TF can be used 

to computationally map enrichment of its binding sites across the genome (Berman et al., 2004; 

Schroeder et al., 2004; Sinha et al., 2004). By analyzing homo- and heterotypic clusters of TF binding 

sites, conservation of these sites across species, and the spatial and temporal expression of TFs and 

their potential target genes, it is possible to computationally construct transcription regulatory 

networks (Janssens et al., 2006; Kheradpour et al., 2007; Schroeder et al., 2004; Segal et al., 2008). In 

the case of the Drosophila anterior-posterior patterning network, we have shown that the accuracy of 

networks predicted based on a nearly complete set of TF binding site motifs can be similar to that 

obtained using chromatin immunoprecipitation data for these TFs (Kazemian, 2010). In principal, 

such computational approaches could be applied in any cell type where sufficiently complete gene 

expression and TF binding specificity data is available. Currently, one major limitation for this type of 

analysis is the incomplete description of recognition motifs for the majority of sequence-specific TFs.  

 

The first studies of TF DNA binding specificity used biochemical methods such as DNAse I 

footprinting to identify individual binding sites in known target regulatory sequences. Compilations 

of these sites (Matys et al., 2006; Portales-Casamar et al., 2010) have provided a rich but crude source 

of descriptions of binding site preferences. In Drosophila, motifs constructed from these compiled 

sites (Bergman et al., 2005), provided a basis for many early studies of TF-CRM regulatory 

interactions. Subsequently, a variety of additional methods have been developed to study binding 
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specificities more systematically, including systematic evolution of ligands by exponential enrichment 

(SELEX) (Kinzler and Vogelstein, 1990; Tuerk and Gold, 1990), SELEX with deep sequencing 

(Jolma et al., 2010; Zhao et al., 2009; Zykovich et al., 2009), and protein binding microarrays (PBMs) 

(Berger and Bulyk, 2009; Jolma et al.; Roulet et al., 2002). As an alternative to these purely in vitro 

methods, we have developed the bacterial one-hybrid system (B1H) that allows TF specificities to be 

determined without purification and in the context of competition from the bacterial genome (Meng 

et al., 2005). The relative efficiency of this system has allowed for the systematic characterization of 

large numbers of TFs in Drosophila, including all members of the large family of homeodomain 

proteins and all of the known core components of the embryonic A-P patterning network (Noyes et 

al., 2008a; Noyes et al., 2008b).  This method allows relatively large libraries of randomized binding 

sites (~108) to be rapidly interrogated for potential recognition sequences, where hundreds to 

thousands of binding sites can be recovered and characterized using high-throughput SOLEXA 

sequencing. 

 

Several existing databases house collections of TF DNA binding information. The commercial 

database Transfac (Matys et al., 2006) and the publically accessible database JASPAR (Portales-

Casamar et al., 2010) both include matrix descriptions of recognition motifs for TFs across multiple 

species generated from a variety of methodologies, including compiled sequences, SELEX, PBMs 

and B1H (Portales-Casamar et al.; Wingender, 2008; Wingender et al., 2000). The Redfly database, 

which is specific to Drosophila, provides an extensive compilation of published experimental data 

identifying CRMs and individual TF binding sites within these CRMs (Halfon et al., 2008). The 
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Uniprobe database provides specificity information for TFs derived from a single technique, PBMs, 

providing access to the underlying raw data, which allows investigators to directly employ the binding 

site preferences determined by the data producer or to develop alternative representations of these 

data to describe recognition (Newburger and Bulyk, 2009). 

 

FlyFactorSurvey provides an important complement to these existing databases.  The current version 

focuses exclusively on the description of DNA binding specificities for Drosophila TFs determined by 

B1H and other methods. This database provides a repository for an ongoing project to determine 

specificities for all TFs in Drosophila, which is one of the primary model organisms for the analysis of 

transcriptional regulatory networks in metazoa. This database houses more than 400 recognition 

motifs for over 200 factors often generated from hundreds to thousands of selected binding sites. In 

keeping with the spirit of other genome-wide analysis projects, a large number of these binding 

specificities have been released prior to publication to facilitate the use of this information for the 

analysis of transcriptional regulation at the level of individual transcription factors, genes, or 

regulatory pathways. 

 

Database Content 

The primary source of recognition motifs within FlyFactorSurvey is TF binding site selections 

performed using the B1H method (Meng et al., 2005; Noyes et al., 2008a; Noyes et al., 2008b). An 
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outline of the important selection parameters captured in the database, as well as the data processing 

pipeline is shown in Figure 1. In brief, the predicted DNA binding domain of each Drosophila TF is 

expressed as a fusion to a component of E. coli RNA polymerase and transformed into cells with a 

library of reporter plasmids containing a randomized DNA sequence upstream of a weak promoter 

driving expression of the His3 gene. When plated on media lacking histidine and containing a His3 

inhibitor, plasmids with a complementary binding site within the randomized region are required for 

colony growth. TF binding sites are recovered by sequencing the randomized region of the reporter 

plasmid recovered from visible colonies. The MEME algorithm (Bailey et al., 2009; Bailey et al., 

2006) is used to identify enriched sequence motifs within these sequences, which should represent 

the DNA binding specificity of the assayed TF. These motifs can be represented in a variety of 

formats, including alignments of the sequences containing the motifs, a counts matrix depicting the 

number of sequences with a given base at each position and a position weight matrix (PWM) 

depicting the log-odds score at each position (Stormo, 2000).  FlyFactorSurvey houses three classes 

of information regarding each selection. First, some general information about each transcription 

factor is provided, including direct links to other wide-ranging databases describing Drosophila genes 

and proteins, such as FlyBase and FlyMine (Drysdale, 2008; Lyne et al., 2007). Second, parameters of 

B1H selections and sequence analysis are described. Third, recovered sequences and the sequence 

motif output from MEME and images depicting the information content in these motifs are stored. 

 

A strength of the B1H system is the variety of parameters that can be adjusted to ensure a successful 

selection or change the complexity of the recovered recognition motif. Many of these important 
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parameters are captured with the database (Figure 1). For each TF characterized using the B1H 

system, the type of the DNA-binding domain(s) and the amino acid sequence of the portion of the 

protein characterized is provided. In some cases this is the entire coding sequence, but in others it is 

the region spanning the DNA-binding domain as well as conserved flanking elements that may play 

accessory roles in recognition. For heterodimeric TF complexes characterized by the B1H method, 

the amino acid sequence of both protein fragments is included. The TF expression vector employed 

dictates the TF fusion partner (either the alpha or omega subunit of E. coli RNA polymerase) and the 

strength of the promoter  (lppC > UV5 > UV2) driving expression of the hybrid protein. In 

addition, some vectors contain two fingers of the zif268 zinc finger protein (“zif12”) as an accessory 

DNA-binding domain to increase the activity of the hybrid protein (Noyes et al., 2008a). Finally, a 

subset of these vectors allow expression of a second monomer as an untethered protein for studies 

of heterodimeric complexes.  The vector name provided within the database captures each of these 

parameters. Additional selection parameters captured in the database include the type of binding site 

library, which can vary in the length of the randomized region and contain a fixed DNA binding site 

for the zif12 protein fusion partner. The stringency of the selection is primarily influenced by the 

concentration of the inducer (IPTG) regulating TF expression and concentration of the His3 

inhibitor, (3AT), where higher concentrations of inhibitor require higher affinity interactions between 

the hybrid protein and DNA binding site for colony growth.  

 

TF DNA binding sites are characterized from bacterial colonies by two methods. First, the 

randomized region is amplified and sequenced (Sanger method) from 24 to 48 individual colonies. 
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MEME is used to identify an overrepresented sequence motif within this population of sequences 

that should represent the recognition motif of the TF. If a significant motif is identified, the 

randomized region is amplified from a pool of all colonies on the selection plate, characterized by 

SOLEXA sequencing and the unique sequences are analyzed using MEME. The Sanger-generated 

motif is compared with the SOLEXA-generated motif as a quality control step. Aligned sequences 

comprising the MEME-identified motif are input into WebLogo(Crooks et al., 2004) to generate a 

Sequence logo (Schneider and Stephens, 1990) describing the information content at each position in 

the recovered motif. For each recognition motif the associated unique sequences, aligned sequences, 

counts matrix, and WebLogo image are captured within the database. For published B1H motifs, the 

associated Pubmed ID number is also provided. 

 

FlyFactorSurvey can also host DNA binding specificity information derived from other experimental 

methods. In these cases, the construct and selection information may be incomplete, but counts 

matrices and WebLogo images describing the motif can still be generated and associated with a given 

TF and publication. The database currently contains this information for DNase I footprint derived 

motifs described by Bergman and colleagues (Bergman et al., 2005). 

 

Database Structure and User Interface 

 



 

 

 

   

 

 
81 

Database schema and website 

The TFDBS database application was developed in house using a MySQL relational database hosted 

in a database server as the back-end, with the business/presentation layer written using PHP, and 

client access through a standard web client (browser) hosted by a Apache server. The database 

consists of several tables. The TF table stores detailed information about the transcription factors. 

The PWM table stores information about the position weight matrices. The TF_PWM table links 

TFs to PWMs allowing a many to many relationship. The DNA_BindingSites table contains the raw 

selected sequences as well as the aligned sequences used to derive the PWM. The Selection table 

contains the detailed selection conditions used to obtain the sequences that ultimately generated the 

PWMs. The DNAbindingDomain table contains detailed information about the DNA binding 

domains associated with the TFs. Lastly, the Users table stores user information and associated roles 

for access control and monitoring. The database contains constraints, indices, and keys to ensure data 

integrity and high performance. In addition, each editable record contains meta-data to monitor 

recent edits with regards to the user, date, time and location for any changes. The detailed 

relationship among these tables can be viewed as the Entity Relation Diagram (ERD) at 

http://pgfe.umassmed.edu/TFDBS/Documentation/FFS_schema.pdf. 

 

Data access 

The website home page provides several paths to navigate to TF binding site data of interest. The 

header contains a link to a “browse” page that lists all TFs with associated DNA binding specificity 
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data within the database (currently 250 factors). Links to individual TF summary pages - one per 

factor - are on the left of each table in the “view” column. The home page also provides two search 

windows that allow users to either search for TFs of interest based on gene name or other 

identification information, or to search for TFs based on the presence of the type of DNA binding 

domain motif contained within the protein (e.g. homeodomain or C2H2 zinc finger). Each of these 

searches can be restricted to comprise only TFs with associated binding specificity information 

within the database or only TFs characterized using the B1H method. These searches return 

matching TFs in the same format provided in the browse page. 

 

The TF summary page for each factor is split into two sections (Figure 2). The top section provides 

key descriptive information for the TF, including links to the FlyBase (Tweedie et al., 2009) and 

FlyMine (Lyne et al., 2007) databases. Below the TF summary are individual panels for each 

associated recognition motif. In most cases, multiple motifs are available for each TF. These may be 

derived from different methods to identify binding sites (B1H and DNAse I), different sequencing 

methods, different selection conditions or different expression constructs. In addition, TFs that 

recognize their bindings sites as dimers may have different motifs associated with different hetero- or 

homo-dimeric binding partners. For each recognition motif, the WebLogo image is shown and 

download buttons allow retrieval of the aligned binding sites, all unique raw sequences analyzed to 

discover the motif, or matrices representing the motif in formats compatible with different sequence 

analysis programs. Information describing the parameters of the B1H selection that generated the 

motif is provided on the right side of each motif. In the case of selections performed with 
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heterodimers, a link to the TF summary page for the partner and its amino acid sequence are also 

displayed. 

 

FlyFactorSurvey also provides an option for obtaining binding site information and matrices for all 

stored motifs as a flat file download. The home page header contains a link to a Downloads and 

Resources page. As on each TF summary page, the motif sequences and matrices for the entire 

dataset are accessible in a variety of formats to maximize the ability of biologists to employ data for 

large numbers of factors with existing computational tools. 

 

Analysis tools 

The sequence and motif formats provided for download are compatible with many commonly used 

computational tools to analyze TF binding specificities and to map potential binding sites for a TF or 

set of TFs within a genomic sequence. Two analysis tools of use to the Drosophila research 

community have been implemented in conjunction with this database. The first is an implementation 

of the TOMTOM motif comparison tool from the MEME suite (Bailey et al., 2009; Gupta et al., 

2007). A version of the tool populated with all FlyFactorSurvey motifs is accessible via a link from 

the home page. This program allows a user to input a query motif and identify similar motifs within 

the database. For example, an investigator might identify an enriched motif in promoters of genes 

expressed in a given cell type and then query whether any of the TFs in FlyFactorSurvey have a 

similar DNA binding specificity. Each resulting match provides an image of the query and subject 
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motifs and a link to the TF summary page containing the matching motif within the database. An 

example of such a search and the resulting TOMTOM output is described in Supplementary Figure 

1. 

 

The second tool is an implementation of GenomeSurveyor that allows investigators to examine the 

distribution of matches to a given DNA binding site motif within regions of the Drosophila genome. 

GenomeSurveyor uses a Hidden Markov Model to score DNA binding site motif matches for single 

or multiple TFs in 500 base pair regions of the Drosophila genome and then display them as Z score 

tracks on a genome browser (Gbrowse) (Donlin, 2009; Noyes et al., 2008b; Sinha et al., 2004). Within 

the TF summary page for a TF in FlyFactorSurvey, each listed motif has a link to a GenomeSurveyor 

page where the default settings display three Z score tracks for the motif calculated over the 

Drosophila melanogaster genome and as averages across the genomes of two or eleven Drosophila species 

(Figure 3). An additional track displays the position of individual high scoring matches to the motif. 

When viewed in smaller genomic regions, the matching genomic sequence can be directly observed. 

The default genomic region (20 kB surrounding the eve gene) can be shifted to any desired region of 

the genome. 
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Availability 

All data is freely available for distribution at the website. The authors request that they be contacted 

if multiple unpublished motifs from the database are being used prior to formal publication by the 

authors. Database and website code are available on request. 
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Figure Legends 

Figure 3.1. Schematic of data flow into FFS database.  The majority of motifs present in the database 

originate from B1H binding site selections.  Information on the factor constructs and selection 

conditions is captured within the database for each motif generated.  Clones from each selection are 

sequenced either individually via Sanger sequencing or as a pooled population via SOLEXA 

sequencing, and binding site motifs are identified from these sequences using MEME (Bailey and 

Elkan, 1994).  The FFS database provides users with access to published and unpublished motif 

information on our characterized Drosophila TFs as well as links to tools to mine our database of 

motifs as well as utilize these for searches within the Drosophila genome. 

 

Figure 3.2. Screen shot of bicoid summary page within FlyFactorSurvey.  (top) Header information for 

each factor contains identification information, the type(s) of DNA binding domains found within 

the gene, and links to factor information in Flybase (Tweedie et al., 2009), Unipro (The UniProt 

Consortium, 2010) and FlyMine (Lyne et al., 2007).  (bottom) Recognition motifs determined for the 

factor through different methods, under different conditions, or assayed via different sequencing 

methods are displayed in independent panels.  Each panel displays the recognition motif as a 

Sequence logo (Schneider and Stephens, 1990) and download buttons to obtain count, position-

specific probability (PSPM) or position-specific scoring (PSSM) matrices.  The other information 

panel summarizes the methods used to select and sequence the factor binding sites.  For motifs 

determined using the B1H system, the expression vector and the selection conditions are indicated, 
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where different stringencies can result in motifs with different complexity. In this example, only two 

of the four bicoid Motif panels within the database are shown; these panels illustrate that the increased 

inhibitor concentration used in the selection to generate the lower panel resulted in a more stringent 

motif.  For each individual motif, a direct link is provided to view the relative frequency of the motif 

in the Drosophila genome using Genome Surveyor (see Figure 3). 

 

Figure 3.3. Screen shot of Genome Surveyor interface directly linked from the Bcd_SOLEXA motif 

within the FFS database. The relative enrichment (profile) of this motif in 500 bp windows 

surrounding the eve locus is represented as a Z score relative to the genome-wide average.  Three 

different motif profiles are shown: Single species (D. melanogaster), Multi species (D. melanogaster & D. 

pseudoobscura) and BMPhylo (11 Drosophila species).  Individual high scoring sequence motif matches 

are also shown at bottom. This tool provides a rapid assessment of the overrepresentation of any 

motif in the database within the Drosophila genome and additional functions such as combined motif 

searches (Noyes et al., 2008b). 
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Figure 3.1 Schematic of data flow into FFS database  
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Figure 3.2 Screen shot of bi co id  summary page within FlyFactorSurvey 
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Figure 3.3 Screen shot of Genome Surveyor interface directly linked from the Bcd_SOLEXA motif 

within the FFS database 
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Supplemental Figure 3.1 Example of TOMTOM analysis identifying a TF within our database that 

recognizes a motif similar to an enriched promoter sequence motif.  

The “TAGteam” motif was identified as a sequence motif related to the consensus sequence 

CAGGTAG that is overrepresented in the upstream regions of genes expressed in the Drosophi la  pre-

cellular blastoderm embryo (see Sup Fig. 1 in (Bosch et al., 2006)).  We constructed a position weight 

matrix from the four most enriched individual sequences in these promoters and used the TOMTOM 

program to search within FlyFactorSurvey for factors with similar DNA binding site motifs. The only 

significant hit found within our database is v f l  (also known as ze lda), which was recently shown to 

encode a TF that regulates gene expression through this motif in the early zygotic genome (Liang et 

al., 2008). The screenshot shown illustrates the output of the TOMTOM search where the query is the 

motif constructed from promoter-derived sequences and the subjects are two v f l  motifs obtained from 

either Sanger or SOLEXA sequencing. 
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Chapter 4: A Modified Bacterial One-
Hybrid System Yields Improved 
Quantitative Models of Transcription 
Factor Specificity1 
  

                                                

 

1 This chapter was adapted from: Christensen, R.G., Gupta, A., Zuo, Z., Schriefer, L.A., 
Wolfe, S.A., and Stormo, G.D. (2011). A modified bacterial one-hybrid system yields 
improved quantitative models of transcription factor specificity. Nucleic acids research. 
Epub April 20.  I performed all of the computational work, produced all of the figures and 
wrote the bulyk of the paper.  The experiments were designed by Gary and I.  Most of the 
experimental work was done in the Wolfe lab by Ankit Gupta. In the Stormo lab, Larry 
Schriefer performed some of the 28 bp selections and Zheng Zuo did all of the B1H 
selections in liquid media. 
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Abstract 

We examine the use of high-throughput sequencing on binding sites recovered using a bacterial one-

hybrid (B1H) system and find that improved models of transcription factor (TF) binding specificity 

can be obtained compared to standard methods of sequencing a small subset of the selected clones. 

We can obtain even more accurate binding models using a modified version of B1H selection 

method with constrained variation (CV-B1H). However, achieving these improved models using CV-

B1H data required the development of a new method of analysis - GRaMS (Growth Rate Modeling 

of Specificity) - that estimates bacterial growth rates as a function of the quality of the recognition 

sequence.  We benchmark these different methods of motif discovery using Zif268, a well 

characterized C2H2 zinc finger transcription factor on both a 28bp randomized library for the 

standard B1H method and on 6bp randomized library for the CV-B1H method for which forty-five 

different experimental conditions were tested: 5 time points and three different IPTG and 3-AT 

concentrations.  We find that GRaMS analysis is robust to the different experimental parameters 

whereas other analysis methods give widely varying results depending on the conditions of the 

experiment. Finally, we demonstrate that the CV-B1H assay can be performed in liquid media, which 

produces recognition models that are similar in quality to sequences recovered from selection on 

solid media. 
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Introduction 

Determining the specificity of transcription factors (TFs) is an important step in elucidating 

regulatory networks. It is also an essential step in developing rules describing the relationship 

between the protein sequence of a TF and its preferred binding sites, which can be used to predict 

the specificities of uncharacterized TFs and to design TFs with novel specificities. Traditionally, 

determining the specificity of a TF was a slow and laborious process.  Recent technological advances 

have greatly increased the rate at which new TFs can be analyzed (Stormo and Zhao, 2010).  One 

new method, MITOMI (Fordyce et al., 2010; Maerkl and Quake, 2007), provides good estimates of 

binding affinities to different DNA sequences in a moderately high-throughput format, including a 

recent advance that allows affinity measurements for all possible 8-long (8mer) binding sites.  PBMs 

(Protein Binding Microarrays) were first described about ten years ago, and recently have been 

implemented in a format that allows all 10mers to be included in the analysis (Berger et al., 2006; 

Bulyk et al., 2001; Mukherjee et al., 2004).  CSI (Cognate Site Identification) is a related technique 

with similar capabilities (Hauschild et al., 2009; Puckett et al., 2007; Warren et al., 2006).  SELEX 

(Systematic Evolution of Ligands by Exponential Enrichment) has long been used to determine the 

specificity of TFs, but initially it was used in a low-throughput manner that only returned the 

consensus sequence and some measure of the variability tolerated at different positions (Blackwell 

and Weintraub, 1990; Oliphant et al., 1989; Tuerk and Gold, 1990; Wright et al., 1991).  Several years 

ago it was coupled with a serial analysis of gene expression (SAGE) method to create a moderate 

throughput method that greatly increased the accuracy of specificity determination (Roulet et al., 
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2002). In the last year SELEX has been scaled up to utilize next generation sequencing methods and 

is now capable of determining highly accurate specificities for TFs (Jolma et al., 2010; Zhao et al., 

2009; Zykovich et al., 2009).  One advantage of SELEX over the other methods is that it is capable 

of analyzing binding sites of essentially any length; the only limitation is that the library of potential 

binding sites is limited to about 1012 and the number of sites that can be sequenced is about 108, both 

of which are much greater than all possible 10mers (106 different sequences), the limit of methods 

such as PBM.   

Another method to determine the binding specificities of TFs is a bacterial one-hybrid (B1H) system 

(Meng et al., 2005; Meng et al., 2006; Noyes et al., 2008b).  In this approach a TF is expressed in E. 

coli fused to the ω subunit of RNA Polymerase.  This turns any DNA binding protein into an 

activator of transcription.  A library of randomized binding sites is located upstream of a weak 

promoter driving expression of a selectable gene.  Under appropriate growth conditions only sites 

with high affinity for the TF will survive selection.  As with SELEX, this approach has the advantage 

that binding sites of any size can be studied, the only limitation being that the library size is 

constrained by the transformation efficiency of bacteria, which is about 108 individual sequences.  

Another advantage of this approach is that the TF does not have to be purified, or expressed in vitro; 

any TF that can be functionally expressed in E. coli can be assayed with this method making it rapid 

and easy to use.  It can also be used with TFs that have very low specificity by fusing them to two 

fingers of a zinc finger protein to create a chimeric protein with sufficient specificity and affinity for 

function within the B1H system (Noyes et al., 2008b).  Previously binding sites were sequenced from 

a small number of surviving colonies, typically 20-40, and a model of the specificity of the TF would 
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be inferred using a motif finding program (Noyes et al., 2008a; Noyes et al., 2008b), such as 

Consensus (Hertz and Stormo, 1999) or MEME (Bailey and Elkan, 1994).   

Regardless of the method employed, the goal is to obtain an accurate quantitative model of the 

specificity of the TF. In this paper we test several different variations of the B1H method, including 

different approaches to analyzing the data, using the well-characterized Zif268 zinc-finger protein as 

the standard for comparison. We find that the standard B1H method, which employs a large 

randomized library and determines the binding sites from a few selected colonies, has reasonable 

accuracy which can be further improved by the application of high-throughput sequencing methods 

that determine the frequencies of selected binding sites across the distribution from high affinity to 

low affinity. We also show that using a library with limited variability, in which part of the binding 

site is fixed and the other part randomized, combined with high-throughput sequencing allows us to 

measure the growth rate of colonies containing each site in the library. An algorithm that models the 

relationship between binding energy and growth rate can then further increase the accuracy of the 

quantitative specificity model. We call this experimental approach CV-B1H for “constrained 

variation B1H” and the analysis method GRaMS for “Growth Rate Modeling of Specificity” and we 

compare its performance under many different experimental protocols to other experimental and 

analysis methods. Overall we show that CV-B1H is an inexpensive, fast and easy method for 

accurately determining the specificity of a TF, where optimal results are obtained when the data are 

analyzed using an appropriate model that accounts for the dynamic growth of cells. 
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Methods 

Zif268 B1H selections  

All of the B1H binding site selections were performed as described previously using an ω-Zif268 

fusion protein expressed from a UV2 promoter in the plasmid pB1H2ω (Noyes et al., 2008b). Zif268 

was used for these experiments because it has been thoroughly characterized by a number of other 

methods allowing comparison of the recognition models we obtain to its previously defined 

specificity.  

Randomized 28bp binding site library 

Four independent B1H binding site selections for Zif268 were performed using a 28-bp randomized 

library in pH3U3 reporter vector as previously described (Noyes et al., 2008b). Approximately 2x107 

cotransformed cells containing the library and the ω-Zif268 expression plasmid were plated under 

each selection condition on selective media plate containing 0, 2(replicated) or 5 mM 3-AT and 10 

uM IPTG. These selections were incubated at 37 °C for 36-48 hours following which surviving cells 

were washed off the plate as a pool.  The plasmid DNA from the pooled colonies was isolated.  

Library regions from the recovered reporter plasmids were PCR-amplified, adaptor ligated with 

barcodes identifying each selection, and the library for Illumina-sequencing was prepared as 

previously described (Gupta et al.). The initial 28bp library was also Illumina-sequenced where about 

107 reads were obtained to provide a background model for subsequent motif analysis. 



 

 

 

   

 

 
105 

Randomized 6bp binding site library 

 The binding site library 

(GCGGCCACTGGGCAGCTGGCCANNNNAAAAATNNNNNNGCGGTACCTAGGTTCTT

CGAATTC) cloned between the EcoRI and NotI sites in pH3U3 contains two different randomized 

regions: a 6bp element (bold underlined) that is associated with the four 3’ bases of the Zif268 

recognition sequence (GCGG, underlined), and a 4bp randomized region (italics) that serves as an 

internal control to identify sequences that may be enriched in the selections or preparation for 

sequencing sample due to jackpot effects. We did not observe any evidence of a jackpot effect.  

Auto-activating clones within this library were removed by 5-FOA counter-selection as previously 

described (Noyes et al., 2008b).  Approximately 106 co-transformed cells containing the library and 

the ω-Zif268-expression plasmid were plated under each selection condition on selective media 

plates containing 0.5, 1 or 2 mM 3-AT and 0, 10 or 50 µM IPTG, where these selections were 

incubated at 37 °C for 4, 8, 12, 18 or 24 hours. This was a total of 45 independent selections.  At the 

desired time-point surviving cells were washed off the plate as a pool. Isolated plasmid DNA from 

the pooled cells was prepared for Illumina sequencing as for the 28bp library. Using barcodes for 

each experiment, sequences from all 45 experiments were obtained from a single Illumina sequencing 

lane that contained over 15 million reads, leading to an average of about 300,000 binding sites per 

experiment. There are only 4096 different 6mer sites so this quantity of sequences is sufficient for 

good coverage of all possible binding sites.  We also performed CV-B1H from the same initial library 

in liquid media with 5 mM 3-AT and 50 µM IPTG. After 4 hrs the cells were pelleted, plasmids 
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isolated and they were prepared for Illumina sequencing as with the experiments on plates. We 

independently sequenced the counter selected library, which was the input to each of the binding site 

selection experiments, to define the initial frequency of each 6mer.  More than 16 million reads were 

obtained and every 6mer was observed at least 472 times.  This allowed us to determine the 

enrichment of each site after selection. The sequences from each dataset are available at 

http://ural.wustl.edu/htb1h_zif68 and from the GEO database (GSE26767). 

Binding site modeling using existing programs 

We model the binding energy of Zif268 for any sequence using a position weight matrix (PWM) 

(Stormo, 2000). We used four different motif discovery methods on the different datasets. 

BioProspector (Liu et al., 2001) was used on both the 28bp datasets with a site size of 10bp, and on 

the 6bp datasets with a site size of 6bp. For the 6bp dataset the orientation was fixed whereas for the 

28bp datasets sites could be discovered in either orientation. A 3rd-order Markov model, based on the 

sequences of the respective initial libraries, was used for the background model. MEME (Bailey and 

Elkan, 1994) was run only on the 28bp datasets because it requires sites longer than 6bp for motif 

analysis. The 3000 most abundant 28mers served as the input to MEME with each sequence being 

used only once in the input set. Sites were allowed to occur in either orientation. BEEML (Zhao et 

al., 2009) requires the alignment of the binding sites for motif analysis, so it was used only on the 6bp 

datasets with the background model derived from the 6mer counts in the initial library. On the 6bp 

datasets we also tested a simple Log-Odds method that determines the value of each PWM element 

from the ratio of the observed frequency of each base at each position in the aligned binding sites to 
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the observed frequency of each base at each position in the initial library (from the randomized 

region). We also tested the accuracy obtained from the consensus sequence, GCGTGGGCGG, 

where its energy is set to 0 and the optimal mismatch energy (over all possible integer values) is 2. 

 

Binding site modeling based on growth rate analysis 

We model protein-DNA binding using a biophysical model described previously (Zhao et al., 2009). 

Briefly, the probability that the sequence Si is bound at equilibrium is: 

  (1) 

where Kd is the dissociation constant and square brackets indicate concentrations. It is convenient to 

express the energy of binding, Ei, relative to the Gibbs free energy of binding to a reference 

sequence; we use the consensus sequence, in units of RT, with its energy defined as, Eref = 0 :  

  (2) 

where 

  (3) 
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  (4) 
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Binding sites with Ei=µ have a binding probability of one-half. 

In order to grow and replicate, cells must express sufficient His3 enzyme to meet their histidine 

requirements. We define the growth rate of an allele as the number of doublings that a cell possessing 

it undergoes each hour during exponential growth phase.  The equation 

  (5) 

describes the exponential growth of a colony, where t is the number of hours, Ni(t) is the final 

number of cells possessing site Si present at time t, ri is the growth rate for cells containing that site in 

doublings/hr, and Ni(0) is the initial number of cells with that site at time 0.   

Histidine is a rate limiting reagent, and we make the simplifying assumption that the amount of 

histidine is directly proportional to the occupancy of the His3 promoter by the TF (up to some 

saturating level) and that the growth rate, ri, of cells possessing Si is directly proportional to the 

amount of histidine produced, up to a level where it is no longer limiting.  The relationship between 

binding energy of the TF for site Si and the growth rate is then: 

  (6) 

where M is the maximum growth rate for these cells under the same conditions but with histidine not 

being limiting.  Supplemental figure 1A shows a simulated ideal experiment where the counts for 

each sequence depend on the binding energies as described in the biophysical model of the preceding 

equations.  Data taken at different time points will fall on different curves, but when converted to 
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growth rates all of the data sets converge to a common curve describing the relationship between 

growth rate and binding energy (Supplemental figure 1B).   

We are only able to determine the frequency of each allele from the Illumina reads.  In order to 

convert these frequencies into numbers of cells, we need to know the initial number of cells plated, 

nI, and the final number of cells on the plate, nF, at time t.  The growth rates determined by the 

frequencies at time t will be off by a constant 

  (7) 

such that 

  (8) 

where fi(t) is the frequency of site Si at time t, and fi(0) is the initial frequency of Si before selection.  

We refer to the quantity 

  (9) 

as the enrichment of site Si at time t. For a given experiment, every growth rate will be off by the 

same constant.  If we assume that the minimum growth rate is 0 (cells may not divide but they do not 

disappear from the plate) we can determine the constant by assuming the plateau of high energy 

binding sites represents a growth rate of 0.  For the remainder of the paper, including all of the 
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figures, the calculated growth rates for each site have been adjusted such that the median of the high 

energy plateau is defined as 0. 

For a given PWM, the predicted growth rates, , depends on the energy model via: 

  (10) 

where  is the encoded sequence, Si, and  is the PWM.  In this analysis, M was fixed to the 

maximum growth rate for each data set.  We use the Levenberg-Marquardt algorithm (Levenberg, 

1944; Marquardt, 1963; Moré, 1978) in a program called GRaMS (Growth Rate Modeling of 

Specificity) to perform a least squares fit between the measured and predicted growth rates in order 

to find the optimum PWM. 

Assessment of different protocols and analysis methods 

For each experimental dataset and each analysis method we obtain a position weight matrix (PWM). 

We adjust the elements such that those corresponding to the reference sequence are assigned 0, and 

the other elements are estimates of the binding energy differences for each other base at each 

position in the binding site, as proposed by Berg and von Hippel (24).  We determine the accuracy of 

each method by measuring, using the squared Pearson Correlation Coefficient (R2), how well it 

predicts the binding data from a single-round SELEX experiment (Zhao et al., 2009). In that 

experiment a large library of random 10mers were bound to Zif268 and the bound fraction as well as 

the initial library were Illumina-sequenced. For each PWM the values of µ and a non-specific binding 
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energy, Ens, are found that maximize the fit for that model so that the comparisons are strictly 

between how well the PWMs capture the energy differences for each base at each position. BEEML 

(Zhao et al., 2009) was developed specifically to model that SELEX data so we determined its R2 

value when trained on the SELEX data directly as the maximum that any other PWM could be 

expected to obtain. This was 0.93 and 0.96 for the 10bp PWMs and 6bp PWMs, respectively. The 

remaining variance is probably due to experimental noise as well as binding energy contributions not 

captured by the simple PWM which are known to exist but be small for Zif268 (Benos et al., 2002).  

Results 

Selections from 28 bp library 

We first characterized how well the PWM obtained from the 28bp library can predict the zif268 

SELEX data. T shows a simulated ideal he PWM from Meng et al. (2005), which was based on only 

17 sequences from selected colonies, gives an R2=0.67. This is nearly as high as that obtained from a 

Zif268 PWM obtained from PBM data (R2=0.69)(Berger et al., 2006) and is much better than simply 

using a consensus sequence (GCGTGGGCGG) to predict quantitative binding affinities, which 

gives an R2=0.27. We next tested whether using high-throughput sequencing methods when applied 

to the B1H selected clones would provide a motif with even higher accuracy. We collected all of the 

cells on the plate from a selection using Zif268, which includes the large colonies, small colonies and 

even individual cells that have not divided, purified the binding site plasmids and subjected the entire 

mixture to Illumina sequencing. We did this for four different growth conditions and obtained 
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between 117,475 and 928,304 sequences from each selection (after removing poor quality reads that 

did not match the fixed sequences flanking the library). We used BioProspector and MEME to 

obtain alignments and PWMs from each dataset, and then used those PWMs to predict the SELEX 

data. The results from both motif discovery methods were nearly identical, with median R2 of 0.79 

and 0.80 for BioProspector and MEME, respectively (Figure 1). This is a significant improvement 

over the PWM based on only 17 sequences. We also tested how many reads are required to obtain 

that accuracy by randomly selecting subsets of sequences of various sizes from our datasets. We 

found that the maximum accuracy was achieved by both BioProspector and MEME analyses with a 

population of about 3000 reads. Thus, a large number of different B1H binding site selections can be 

multiplexed together in a single Illumina lane to minimize sequencing costs, while still obtaining good 

recognition models for each experiment. 

Selections from 6 bp library 

While quite good, those R2 values still leave considerable room for improvement. We next tested 

whether we could get further improvement by fixing part of the binding site, in this case 4bp, and 

only randomizing the remaining 6bp for our B1H binding site selections. This eliminates problems 

related to aligning the binding sites because the TF should always prefer the orientation and position 

that overlaps the fixed region; we found no exceptions to that expectation in the analysis of the data 

that was generated. Moreover, because there are only 4096 different 6bp sequences, we can obtain 

good frequency estimates for all binding sites in both the initial library and in the selected sites while 

at the same time multiplexing many different experiments in a single Illumina lane. We averaged 
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about 300,000 reads for the each of 45 different selections that explore a range of different selection 

conditions (3-AT, IPTG and incubation time). Motif comparisons for data generated from these 

experiments were made to the subset of Zif268 SELEX data that contained the GCGG sequence in 

the last four positions on the binding site, to be consistent with the constraints in our selections. The 

BEEML PWM predicts the SELEX data (that it was trained on) with an R2=0.96, which is the 

maximum we would expect from any other method trained on alternative datasets. The simple 

consensus sequence, with optimal mismatch penalty, predicts the SELEX data with an R2=0.50 and 

the 6bp segment of the previous B1H Zif268 PWM (Meng et al., 2005) fits with R2=0.74 (Figure 2). 

We performed a traditional B1H experiment on this library, picking and sequencing just 22 colonies, 

and the resulting PWM had an R2 of only 0.52, much worse than the previous PWM from a 28bp 

library. Equally unexpected was that BioProspector and Log-Odds analyses on the various 6bp 

experiments were highly variable and generally much poorer than for the 28bp library. The median 

values of R2 were only 0.52 and 0.54 for BioProspector and Log-Odds, respectively, and the 

maximum values were only 0.71 and 0.74 (Figure 2). Motifs generated from selections with short 

incubation times displayed the worst performance, but none of the experimental conditions 

performed very well on this library.  

We think these results are explained by the fact that the initial library, which has been counter-

selected to remove autoactivating sequences, has a very low proportion of the consensus binding site 

and some other closely related sites. Their low initial frequencies ensure that even after the 24hr time 

selections they have not become the most abundant sites, therefore leading to PWMs with sub-

optimal parameters. Although both the Log-Odds method and BioProspector take the initial library 
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into account through their background estimates, those are only based on the total composition, in 

the case of Log-Odds, or a 3rd-order Markov model, neither of which really captures the explicit 

deficiency of specific binding sites, some of which are high affinity sites. We therefore tested the 

BEEML program on the 45 datasets. It takes into account each specific binding site in both the 

initial and selected libraries and, based on a biophysical model for enrichment based on affinity, does 

a non-linear regression to find the optimal parameters for a PWM. While its performance is still quite 

poor on the earliest time points, its median R2 is 0.86 and its best is 0.92, both significantly better 

than the other methods (Figure 2). This level of performance makes BEEML analysis of the 6bp CV-

B1H data even better than the BioProspector and MEME performance on the 28bp high-throughput 

B1H datasets (Figure 1). 

Since we expect the differences in binding energies for different sites to affect their relative growth 

rates, we developed GRaMS to obtain optimal PWMs for CV-B1H data according to the model 

described in Methods. Supplemental Figure 1 shows, for ideal simulated data, how the occurrences of 

difference binding sites at various time points fall on different lines, but when converted to growth 

rates they all converge to a single line that shows the relationship between growth rate and binding 

energy. Figure 3 shows the results from one experiment (8hrs, 50µM IPTG, 2mM 3-AT) where the 

binding energies are the predictions from the GRaMS model (Figure 4).  Supplemental Figure 2 

shows the same curve for all 45 datasets. While obviously noisier than the simulated data, the curves 

are all very similar and are consistent with our model.  Supplemental Figure 3 shows the logos for all 

45 datasets.  Note that the models are very similar indicating that with GRaMS analysis the resulting 

models are relatively insensitive to the exact experimental protocol.  Motifs from the 4hr time points 
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are still the least accurate and those from the late time points have slightly reduced accuracy probably 

due to the onset of colony saturation for the highest affinity binding sites.  At the earlier times points 

increased stringency, using higher concentrations of 3-AT, improved the quality of the motifs 

somewhat but the results are not much affected by the concentration of IPTG. In contrast, 

Supplemental Figure 4 shows the Logos for the 45 different PWMs obtained by BioProspector. 

While overall they are not too bad, they are more variable between different conditions and none fit 

the SELEX data as well as the GRaMS models. 

Using GRaMS we obtained R2 values with a median of 0.92 (Figure 2) and with a maximum value of 

0.94, nearly as good as the maximum expected. The entire range is from 0.84 to 0.94, again indicating 

that the models are relatively insensitive to the exact experimental protocol.  Only one sample gave 

an R2 as low as 0.84, with the next lowest value being 0.88.  On average, the lowest R2 values were 

obtained using GRaMS models trained on the 4 hour data sets.  None of the methods performed 

particularly well on these data sets, but GRaMS performed the best (Supplemental Figure 5). On 

datasets from the later time points the R2 values ranged from 0.89 to 0.94 with a median of 0.92 

(Supplemental Table).  

The largest difference between the logos from GRaMS (Supplemental Figure 2) and from 

BioProspector (Supplemental Figure 3) is at position 5, where BioProspector nearly always shows a 

slight preference for A over G, whereas GRaMS has a somewhat larger preference for G over A, 

which is consistent with the SELEX data. This difference can be attributed to bias in the initial 

library (probably due to the counter-selection), which contains many more sequences with A at 
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position 5 than with G. Even after selection up to 24 hours, A remains the most common base in 

each dataset, which causes the BioProspector PWM to prefer A. But the growth rate of sites with G 

in position 5 is, on average, greater than for those with A, so GRaMS infers the higher affinity for G. 

Presumably BioProspector would perform better if the initial library were less biased, as we observed 

in the 28bp library, but one advantage of GRaMS is that it takes the bias into account directly 

through its background model and so is not strongly influenced by it.  

We also performed HT-B1H in liquid culture and found that similar models could be obtained.  

Supplemental Figure 6 shows the motif obtained through GRaMS analysis after 4 hrs of growth 

which attained an R2=0.93 on the SELEX quantitative predictions.  This may be the most 

straightforward method to employ for selections in practice but we have not examined its 

performance in detail as we have with the plate growth method.  Performing the B1H assay in liquid 

media has the potential artifact that the cells with low affinity sites may be able to grow using 

histidine made in excess by other cells, although this should not be a major limitation at early time 

points when the cell densities are very low.  

Given that GRaMS performed so well with CV-B1H data we wondered whether it would also 

improve the models obtained from the 28bp B1H experiments. One limitation is that GRaMS does 

not generate a native alignment of binding sites from a population of selected sequences, it requires 

an existing alignment to generate a binding motif.  Consequently, we generated PWMs with GRaMS 

using the aligned sites generated by BioProspector and MEME, and we used for the background 

model the counts of 10mers from the input 28bp library. This provided almost no improvement over 
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the original MEME and BioProspector models, where the median R2 values increased by only 0.01 

for both sets (data not shown). We think this stems from several factors including: an incomplete 

sampling of the binding sites, especially the low affinity sites, in the BioProspector and MEME 

alignments; an incomplete sampling of the sequences in the initial library for the construction of the 

background model; and the influence on the activity of a sequence by its distance from the promoter, 

which is evident in the strong preferences for the recovery of binding sites at specific registers in the 

randomized sequences, that is not accounted for within the current GRaMS model. Therefore as 

currently implemented, GRaMS does not provide an improved analysis method for general B1H 

experiments, even with high-throughput sequencing data, but with the appropriate experimental 

design, as in the CV-B1H experiments, it can be used to obtain highly accurate, quantitative models 

of TF specificity. 

 

Discussion 

The B1H assay has proven to be a robust technique applicable to a wide variety of different 

transcription factor families.  For instance, it has recently been successfully applied to more than 200 

different Drosophila transcription factors from a variety of different families (i.e. pfam families: 

bZIP_1, bZIP_2, CBF_beta, Fork_head, HLH, HMG_box, PAX, RHD, Runt, zf-C2H2, zf-C4) 

(Zhu et al.) We find that applying massively parallel sequencing methods to all of the selected 

binding sites on an entire plate can lead to more accurate, quantitative models of TF specificity. The 
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new models are more accurate than those obtained from the same library when sequencing only a 

few selected colonies, as might be expected. These new models are also slightly better than those 

obtained from PBM experiments on Zif268. Despite the increased accuracy from the high-

throughput sequencing there remains substantial room for improvement. We show that by 

constraining the variability in the library, which eliminates ambiguities in the alignment of the sites 

and allows for deep sampling of the population, very accurate models can be obtained. However, 

even when using the CV-B1H protocol, the accuracy of the resulting motifs depends on the data 

analysis method employed. By measuring growth rates of cells across the distribution from high 

affinity to low affinity sites and using a biophysical model for the relationship between growth rate 

and binding energy, GRaMS is able to obtain more accurate models from B1H data than any other 

approach we tested. This approach is fairly insensitive to the exact B1H protocol used and we 

obtained good models under all of the variations that we tested except for the very early time point (4 

hours). From selections in liquid culture we were able to obtain a good model even after only 4 hours 

of growth. Increased 3-AT concentrations, which increase the stringency of the selection, increased 

the accuracy of the resulting model slightly on average. The IPTG concentration had little effect, 

although 10 and 50 µM were slightly better than 0, on average. 

We have used some simplifying assumptions in our biophysical model, but the fact that we 

consistently get good PWMs suggests that the assumptions are reasonable.  In particular we have not 

used a coupling factor, referred to as λ by Berg and von Hippel (Berg and von Hippel, 1987, 1988), 

that relates the binding energy to the functional activity of a binding site.  In essence we assume λ=1, 

which is within the range of 0.5 to 1.5 that they found for several natural systems.  If we empirically 
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determine a λ for each of our PWMs that converts them to the optimal PWM for Zif268, we find 

that it decreases at late times, but we think this is best explained by the saturation effects of the faster 

growing colonies beginning to reach their maximum size.  For early time points, and for most 

conditions, assuming λ=1 appears to be a good approximation.  It is unclear whether this 

relationship will hold true for other TFs, but the fact that the TFs analyzed by this approach use the 

ω-fusion as the means of coupling DNA-binding to transcriptional activation suggests that assuming 

λ=1 is likely to be reasonable in general. 

 

AVAILABILITY 

The sequences from each dataset are available at http://ural.wustl.edu/htb1h_zif68 and via GEO 
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download from http://ural.wustl.edu/resources.html#Software. 
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Figure Legends 

 

Figure 4.1 Boxplot showing the ability of the set of MEME and BioProspector motifs learned from the 

four 28bp B1H data sets to predict the SELEX data. 

For each PWM, the squared Pearson correlation coefficient (R2) was calculated to determine the 

correlation between the predicted and observed SELEX counts.  The performance of three PWMs 

from the literature is also shown.  Zhao2009, Berger2006 and Meng2005 were learned from SELEX, 

PBM and B1H data, respectively.  The GCGTGGGCGG consensus sequence PWM was constructed 

using an optimal mismatch penalty term. 
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Figure 4.2 Boxplot showing the ability of the 45 PWMs produced by each analysis method using each 

B1H data set as training data to predict the SELEX nnnnnnGCGG data. 

 For each model, the squared Pearson correlation coefficient (R2) was calculated to determine the 

correlation between the predicted and observed SELEX counts.  The performance of four individual 

PWMs is also indicated.  Two of these PWMs, Zhao2009 and Meng2005, were obtained from 

published SELEX and B1H studies respectively; the first six positions of these PWMs were used.  The 

LT-B1H PWM was learned from 22 sequences obtained from a CV-B1H experiment.  The GCGTGG 

consensus sequence PWM was constructed using an optimal mismatch penalty term. 
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Figure 4.3 Plot of predicted energies versus growth rates per 6mer. 

The GRaMS PWM (8 hour, 50µM IPTG, 2mM 3-AT), was used to predict the energies.  The growth 

rates (shifted so that the median value is zero) are from the 8 hour, 50µM IPTG, 2mM 3-AT dataset 

used to estimated the GRaMS PWM.  

 



 

 

 

   

 

 
124 

 

Figure 4.4 Sequence logo for the GRaMS PWM obtained from the same dataset. 

The y-axis indicates the information content of each position in bits.  Sequence logos were produced 

using in-house software, svgSeqLogo, written by RGC.  

  



 

 

 

   

 

 
125 

 

Supplemental Material 

Due to the large amount of supplemental material, we refer the reader to the NAR web site: 

http://nar.oxfordjournals.org/content/early/2011/04/20/nar.gkr239.long 

doi: 10.1093/nar/gkr239 
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Chapter 5:  Protein-DNA Recognition 

Models for the C2H2 Zinc Finger and 

Homeodomain Transcription Factor 

Families1  

                                                

 

1 The work in this chapter has not yet been published.  Our collaborators are completing 
additional B1H experiments, which will expand the zinc finger data set that I describe in this 
chapter.  We anticipate that this data will be available by the end of August 2011, at which 
point the manuscript will be updated and submitted for publication.  The analysis pipeline I 
have written is almost completely automated, so it will be a simple matter to perform the 
required analysis for the finalized C2H2 zinc finger data set. 

I performed all of the computational work described in this chapter and wrote it with 
editorial assistance from Gary Stormo.  Our collaborators in the Wolfe performed all the 
experimental work.  Ankit Gupta, Marcus Noyes, and Metewo Enuameh in Scot Wolfe’s lab 
at the University of Massachusetts performed all of the B1H analysis.  Ankit performed all of 
the Zif268 CV-B1H selections and generated the designed Zif268 mutants. Marcus Noyes 
and Metewo Enuameh performed the homeodomain B1H selections.  Marcus performed all 
of the initial homeodomain selections that were sequenced using the Illumina platform.  
Metewo performed additional follow up selections.  Keith Joung’s lab at Harvard performed 
all of the B2H experiments.  All of the homeodomain data used in this study is publicly 
available.  The Zinc finger data sets are not yet publicly available. 



 

 

 

   

 

 
132 

 

Abstract 

 It is long standing goal to a transcription factor’s DNA-binding specificity directly 

from its protein sequence.  While it was initially hoped that the protein-DNA recognition 

code would be simple, it is now apparent that interactions between transcription factors and 

DNA are more complicated.  Different families of transcription factors utilize different folds 

to bind to DNA.  Family based approaches to learn C2H2 Zinc Finger recognition models 

have met with some success.  Here we describe random forest based recognition models for 

the C2H2 zinc finger and homeodomain transcription factor families and show that they 

perform better than all of the other methods tested. 

Introduction 

It is a long-standing goal to predict the DNA-binding specificity of a transcription 

factor (TF) based only on its protein sequence. That ability would allow for the inference of 

regulatory networks from genome sequences alone as well as for the design of TFs with 

desired binding sites.  In 1976, before there were any known structures of protein-DNA 

complexes, Seeman et al. (Seeman et al., 1976) proposed a simple recognition code in which 

Arg would specifically bind to G-C base-pairs and Asn and Gln would specifically bind to A-
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T base-pairs.  But soon after the first few structures were determined using X-ray 

crystallography, the title of a famous Nature paper stated “Protein-DNA interaction. No 

code for recognition” (Matthews, 1988).  However, it was clear that this referred to a simple, 

one-to-one deterministic code, in which there were only the types of interactions proposed 

by Seeman et al. As the structures of more DNA-protein complexes were determined it 

became apparent that there were definite preferences for interactions between particular 

amino acids and base-pairs, and that those preferences might vary depending on the class of 

TF.  Zinc finger proteins, in particular, were heavily studied and a degenerate, qualitative 

recognition code was shown to be moderately successful at predicting their binding 

specificities (Choo and Klug, 1994a, b, 1997; Wolfe et al., 1999; Wolfe et al., 2000). This 

general idea of class-specific, degenerate recognition codes was further developed into a 

quantitative probabilistic code for zinc finger proteins that was more predictive than 

previous models although still much less accurate than one would like (Benos et al., 2001; 

Benos et al., 2002a, b; Kaplan et al., 2005).   

This chapter pursues the goal of developing quantitative recognition models, 

focusing on the two most abundant TF families in mammalian genomes, the zinc finger and 

homeodomain families (Tupler et al., 2001). It takes advantage of new high-throughput 

methods for determining the specificity of individual TFs and the resulting large increase in 

the number of TFs from each family with well-characterized binding motifs (Stormo and 
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Zhao, 2010).  It compares several different algorithms for predicting the specificities from 

protein sequences using 10-fold cross-validation assessment.  The zinc finger models were 

also tested on additional data that were not included in any of the training sets.  It 

demonstrates that a random forest machine learning method performs better than other 

methods tested and better than previously published methods.  

 

 

Figure 5.1 Cartoon style image of PDB structure 1ZAA of Zif268-DNA complex produced using Jmol 

(Herraez, 2006). 
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C2H2 Zinc Finger Family 

The C2H2 family of zinc finger TFs (Pfam name: zf-C2H2) constitutes the largest 

TF family in mammals and most other sequenced eukaryotic genomes (Tupler et al., 2001).  

Throughout the rest of this chapter we will refer to this family simply as ZF.  The DNA 

binding domain consist of a compact set of about 30 amino acids which form a ββα motif 

that coordinates a zinc ion which helps stabilize the structure (Figure 5.1).  Members of this 

family share a distinct CXnCXnHXnH motif (Figure 5.3).  The two cysteine and histidine 

residues are critical for coordinating a zinc ion that allows the motif to maintain its structure.  

The alpha helix, or recognition helix, binds in the major groove where its amino acids bind 

to bases in the major groove and confer specificity.  The recognition helix also makes 

multiple contacts with the backbone.  Crystal structures indicate that there is nearly a one-to-

one relationship between DNA contacting residues (key residues) in the well studied ZF 

protein Zif268 and its binding site. Figure 5.2 shows the set of key residues in Zif268 and 

the bases they contact.  This is known as the canonical model of zinc finger binding.  There 

are exceptions to this general mapping between key residues in the recognition helix and the 

binding site observed in some crystal structures for other proteins.  See Pabo et al. for a 

review (Pabo et al., 2001). 
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Figure 5.2 Canonical DNA binding model for Zif268 (Benos et al., 2001). 

Recognition helix positions -1, +3, +6 contact bases at positions 3, 2, 1 respectively in each finger’s 

sub site.  The +2 position (overlapping base) binds to the complementary base at position 4.  The key 

residues of each recognition helix are labeled.  The bases in the DNA site are numbered from 5’ to 3’. 

 

Figure 5.3 HMM logo for the ZF family from Pfam. 

This domain follows a clear CXnCXnHXnH pattern, hence the name, ZF. 
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The ZF data set used for training the recognition models in this study consists of 

PWMs for over 250 different Zif268 mutants.  The specificity of these mutants was 

determined using the CV-B1H assay (Christensen et al., 2011).  Some of these mutants were 

selected by our collaborator Keith Joung’s lab at Harvard to bind specific target sequences of 

the form GNNNNGgcgg.  The first finger was fixed to the wild type sequence and portions 

of the recognition helix of fingers 2 and 3 were randomized.  The consensus site for the wild 

type finger 1 is gcgg.  Mutants were selected from a large randomized library using a bacterial 

two-hybrid assay (Joung et al., 2000; Serebriiskii et al., 2005).  For the mutants selected by 

the B2H assay, only recognition helix positions +5 and +6 of finger 2 and -1, +1, +2 of 

finger 3 were randomized.   The ZF data set also contains other mutants that were designed 

by our collaborator Scot Wolfe’s lab at the University of Massachusetts.  Existing B2H 

selected mutants were modified in an attempt to create variants with greater specificity for 

the desired target sites.  Figure 5.4 shows that for the most part, the data set consists of 

proteins that were randomized at positions 5 and 6 of finger 2 and positions -1 to 3 of finger 

3.  Position 4 of fingers 2 and 3 was the only position that was never varied. 
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Figure 5.4 Sequence logo showing the variability at each position of the Zif268 mutants in the data set. 

 

Homeodomain Data Set 

 

Figure 5.5 HMM logo for the Pfam homeobox family. 
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 Notice that the first position of this logo corresponds to the second position in our MAFFT 

alignment 

 

 The homeodomain TF family (Pfam name: homeobox) (Figure 5.5) is the second 

largest TF family in humans and in most metazoans (Tupler et al., 2001).  This DBD motif 

was first discovered in Drosophila.  TFs possessing a homeodomain DBD generally have 

only a single DBD.  The domain consists of about 60 residues that fold into a stable bundle 

of three alpha helices.  The C-terminal helix, or recognition helix, binds in the major groove.  

There is an unstructured N-terminal arm that occurs at the very beginning of the domain.  

This N-terminal arm binds in the minor groove.  See chapter 2 for more details about the 

homeodomain family.  Hereafter we will refer to this family as ‘HD.’ 

In Noyes et al., we described a web application available at 

http://ural.wustl.edu/flyhd called hd_pred that used all of the Drosophila B1H data 

available at that time to make DNA specificity predictions along with estimates of the quality 

of those predictions (Noyes et al., 2008).  To the best of our knowledge, this was the first 

recognition model for the homeodomain family that predicted position specific frequency 

matrices (PFMs) based on the protein sequence of the query proteins.  The hd_pred model 

was based on the observations that (1) HD factors with similar key residues tend to bind 

very similar motifs and (2) this tendency holds true as long as the overall similarity is 
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sufficiently high between two proteins.  This model is similar to the k nearest neighbors 

method (KNN), except that we considered both the overall similarity as measured by the 

BLOSSUM similarity score as well as exact identity at a few selected key residue positions 

(residues 5, 47, 50, 51, 54, 55, indexed relative to the Drosophila engrailed protein). 

Shortly after the hd_pred model was publish, an analysis paper was published 

claiming that of all the machine learning methods they tried  (nearest neighbor, SVM, 

random forests, principle component regression) the simplest model, nearest neighbor, 

worked essentially as well as any of the more sophisticated methods (Alleyne et al., 2009).  

Alleyne et al. did not predict PWMs as our hd_pred method does.  Instead, they predicted 

the PBM Z-scores for all 32,896 non-redundant 8mer probe intensities based essentially on 

the Hamming distance between the protein sequence of the query and reference proteins.  

Machine learning algorithms like SVM and random forests can take multiple dependent 

variables as input, but they can predict only a single dependent variable.  For this reason, 

Alleyne learned 32,896 individual SVM and RF models, one for every non-redundant 8mer.  

Predicting PBM Z-scores precluded the inclusion of the Drosophila B1H HD data set 

(Noyes et al., 2008) in their analysis.  They decided to predict 8mer probe intensities partly 

because they believed that many HD motifs could not reliably be aligned (Alleyne et al., 

2009; Berger et al., 2006), and partly because they did not believe that PWMs are capable of 

adequately modeling PBM data. 
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We decided to revisit the HD recognition model problem using all of the available 

HD B1H and PBM data.  We combined all of the B1H models for fly proteins with all of 

the PWM models for the mouse, yeast and worm proteins characterized using PBM.  Since 

our previous study, all of the B1H experiments have been repeated for the wild type fly 

proteins and the selected sites were sequenced using Illumina sequencing in a multiplexed 

sequencing run.  This yielded many more selected sites than were obtained in the previous 

study.  We did not use the motifs produced by the Bulyk group’s seed-and-wobble algorithm 

(Berger et al., 2006), which are available in JASPAR (Portales-Casamar et al., 2010) and in 

the online database UniPROBE (Newburger and Bulyk, 2008).  Instead a new set of PWMs 

generated by an algorithm called BEEML-PBM (Zhao and Stormo, 2011) were utilized.  

These newly available BEEML-PBM PWMs have been shown (Zhao and Stormo, 

2011) to explain the original PBM data significantly better than the PWMs produced by the 

seed-and-wobble algorithm.  Furthermore, Zhao and Stormo showed that PWMs are able in 

most every case examined to model the PBM data well.  

Looking at the B1H and BEEM-PBM PWMs, it became clear that it should be 

possible to align the mouse HD motifs, contrary to the conclusions drawn by Alleyne et al. 

and Berger et al. (Alleyne et al., 2009; Berger et al., 2008).  Some of the UniPROBE HD 

PFMs looked like they contained two half sites and not a single monomeric motif.  The 
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BEEML-PBM motif set did not contain any motifs that looked like they had this issue.  This 

new motif set made it clear that motif alignment ought to be possible. 

 

Non-Additivity in Recognition Models 

Position weight matrix (PWM) models assume that binding to one position of a TF 

site is independent of binding to any other position of that site (Stormo, 2000).  Because the 

energy of binding to each position of the motif is assumed to be independent, these energies 

can be added to obtain the overall relative energy of binding.  The extent to which additivity 

is a valid approximation for protein-DNA recognition models is still an open question.  

Many recognition models exist which make the simplifying assumption that all interactions 

are independent.  These models make the same independence assumption that PWMs make, 

which we call the assumption of ‘independence between bases’.  They also assume that the 

energy of an amino acid, A, at position i in the protein binding to base b at position j in the 

motif is not affected by the identity of the other amino acids in the protein.  In other words, 

it is assumed that amino acids at other key residue positions can be mutated with out 

affecting the binding at other positions.  We call this assumption ‘independence between 

residues.’  These assumptions of independence between bases and between amino acids are 

almost certainly not true, but the question is one of degrees.  To paraphrase George Box, 
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“all models are wrong, but some models are useful.”  While these assumptions of additivity 

are oversimplifications, the questions is how big of a sacrifice we need to make in accuracy 

in order to have a model that is as simple as possible.  It would be ideal if a simple, easily 

interpretable model was all that was needed.  We show however, that while simple 

recognition models like SAMIE perform reasonably well, more complicated models that do 

not make strict assumptions of independence have better performance. 

 

Existing Family Recognition Models 

SAMIE 

SAMIE consists of several different matrices.  The first matrix is a contact matrix 

that defines the mapping between positions in the recognition helix and positions in the 

triplet DNA motif.  SAMIE models the interaction between each key residue and the base it 

binds as being independent from the other interactions.  It also assumes that the identity of 

neighboring bases does not affect the energy of binding.  Furthermore, it assumes that each 

finger binds independently of the other fingers.  In addition to the contact matrix, SAMIE 

has three 20x4 energy matrices that model the energy of each key residue. 
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SAMIE ignores the contact made by the +2 position of the adjacent finger on the 

opposite strand.  SAMIE was parameterized using the selected proteins or sites from phage 

display experiments and sites selected using SELEX taken from the literature. 

 The energy of each AA-DNA contact is modeled by a 20x4 energy matrix, Eij, where 

i and j indicate the indexes of the positions.  Once it has been populated, this matrix is used 

as a look-up table where each element indicates the energy of residue Ai to base Bj, where i 

indicates the position in the recognition helix and j indicates the position in the motif.   

KFM05 

There are several other matrix based ZF models in the literature.  One of these, 

KFM05, has a contact matrix and four 20x4 AA-DNA energy matrices to model the partial 

binding energies contributions of positions -1,+3, +6 and also +2 of the adjacent C-terminal 

finger (Kaplan et al., 2005).  Note that refer to all of the MBMs besides SAMIE and those 

learned in this study by their author’s first initials and the last 2 digits of the year the model 

was published, after Persikov et al. (Persikov et al., 2009).  KFM05 was parameterized using 

unaligned short sequences from TRANSFAC (Wingender et al., 2000). An EM algorithm 

was employed to both find the staring sites of all the binding sites and to parameterize the 4 

energy models and an additional parameter, α, which weights the contribution of the +2 and 

+6 matrices, since both of the residues together determine the specificity of the first position 

in a single finger triplet motif (Wolfe et al., 2000). 
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ZifNet 

We also tested a neural network based model called ZifNet which was trained on the 

same data set used to train SAMIE (Liu and Stormo, 2008).  The goal of ZifNet was to take 

into account the amino acid context of the key residues -1, +3, +6.  It takes as input only 

these three residues and ignores the adjacent C-terminal finger +2 overlap position.  It 

outputs a vector of scores for all 64 DNA 3mers and converts this vector to a PFM. 

Single Matrix Models 

Other simpler models have been reported to perform fairly well at predicting ZF 

motifs.  These models consist of a single 20x4 energy matrix that is used to model the energy 

of all residue (20 rows) and base (4 columns) binding contacts.  A contact matrix can then be 

constructed for a particular structural family of transcription factors and used with this 

energy matrix.  One such model, SBGY95, was constructed by Suzuki et al. after looking at 

crystal structures of transcription factors from different families bound to DNA (Suzuki et 

al., 1995).  They assigned unitless, semi-arbitrary ‘chemical merit points’ to different possible 

nucleotide and amino acid binding interactions.  We find that these ‘chemical merit points’ 

are roughly proportional to energy values, once they are scaled appropriately, and that this 

pseudo-quantitative model actually performs relatively well.   We also test another single 

matrix model, MGM98, that was parameterized by looking at crystal structures containing 

protein-DNA complexes.  The authors took the frequency of observed interactions and a 
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theoretical background model and generated a log-odds energy matrix (Mandel-Gutfreund 

and Margalit, 1998).  Interestingly, the theoretical SBGY95 matrix performs better than the 

empirically parameterized MGM98 model (see results). 

 

 

Methods 

Analysis of ZF B1H Data 

GRaMSc 

Because the CV-B1H version of the B1H assay was employed (see chapter 4), the 

alignment of all 6bp zinc finger motifs was trivial.  For every protein but one, all of the 

selected sites were already aligned.  In this one exception, some of the selected sites seemed 

to be shifted by 1 base pair relative to the majority of sites and relative to the expected motif.  

Thus, we did not need to use our multiple PFM alignment method, since the sites were 

already aligned due to the fixed finger 1 subsite adjacent to the 6bp randomized region.  This 

enabled us to use GRaMS to learn PWMs from the ZF data sets. 

In the original implementation of GRaMS, nonlinear regression was employed to 

parameterize a model consisting of a PWM and a parameter, !, which describes the degree 
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of saturation due to the free concentration of the TF (see chapter 4).  Many of the Zif268 

mutants appear to be more specific then wild type Zif268 for their target sequences.  This is 

not surprising since the mutant proteins in our collection were selected or designed to bind 

as specifically as possible to their target sequences.  However, in order to get properly scaled 

PWMs, (i.e. PWMs with the correct information content), we find that it is critical to 

estimate µ accurately.  Otherwise, when there are only a handful (i.e. less than 20) sites that 

are significantly enriched, the original version of GRaMS has a difficult time parameterizing 

µ correctly.  This is because µ is equal to the ΔΔG of those sites that are bound 50% of the 

time.  Those sites that are half saturated or are nearly half saturated occur in the linear region 

of the sigmoid energy VS occupancy curve. If none of the observed sites fall in this linear 

region on the ‘true’ energy versus occupancy curve (figure 4.3), then it is difficult or 

impossible to determine µ accurately from only a few saturated sites.  We found in practice 

that for very specific proteins, it worked best to re-arrange the GRaMS objective function 

equation and fit directly to the observed counts per 6mer rather than to the relative growth 

rate of each 6mer allele.  Otherwise, when there were very few appreciably enriched sites, the 

tendency was to over fit to the noise when the growth rates were fit directly.  We found it 

also helped to set M, the maximum growth at which 100% saturation occurs to 1.02 the 

observed maximal growth rate.  In the original version, M was set to the maximum observed 

relative growth rate.  We call this version of the program GRaMSc and we used it to analyze 
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all of the B1H Zif268 mutant data.   Figure 5.6 shows that our ZF training set contained a 

great deal of diversity in the set of motifs at positions 2 through 5.  Positions 1 and 6 of the 

motifs were largely invariant because the key residues known to bind these positions were 

not varied for the most part. 

 

 

Figure 5.6 Average PFM for the mutant Zif268 data set produced by averaging all 251 GRaMSc PWMs, 

after converting them to PFMs. 

 

Analysis of HD Data Set 

Protein Alignment 

 Only the HD proteins needed to be aligned, since the ZF proteins contained no 

insertions or deletions, only point mutations.  The hmmsearch program from the HMMER 

suite (Eddy, 2001; Eddy, 1998) was used to extract the DBD from every protein fragment 
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used for either the PBM or B1H analysis using the homeobox Pfam hmm model (Finn et al., 

2010).  All wild type protein sequences were obtained from the UniPROBE (Newburger and 

Bulyk, 2008) or FlyFactorSurvey (Zhu et al., 2011).  Table 5.1 shows the source of all of the 

HD motifs and proteins used in this study. 

 

Table 5.1 Source of HD motif matrices 

Source Species Number 
PBM worm 1 
PBM yeast 4 
B1H, Sanger human 8 
B1H, Sanger fly directed mutants 13 
B1H, SOLEXA fly 84 
PBM mouse 154 

 

The protein multiple alignment program MAFFT (Katoh et al., 2005), was used to 

align each set of extracted DBDs.  We found that using MAFFT rather than other alignment 

methods such as clustalX or hmmalign from the HMMER suite worked best.  The N-

terminal domain in particular is difficult for many alignment programs to align correctly.  

Other programs tended to insert too many gaps in this region.  We included one flanking 

residue on either side of the homeobox domain matches returned by hmmsearch, so the first 

position in the homeobox hmm logo corresponds to the second position in our alignment. 

One of the best studied HD proteins is engrailed (Ades and Sauer, 1994; Clarke et al., 

1994; Draganescu and Tullius, 1998; Fraenkel et al., 1998; Grant et al., 2000; Kissinger et al., 
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1990; Liu et al., 1990; Sato et al., 2004; Tucker-Kellogg et al., 1997).  The engrailed homologs 

in moue (en1 and en2) and fly (en) are all very similar.  For consistency with previous studies 

that generally number residues with respect to engrailed, all columns in the multiple 

sequence alignment that contained insertions relative to engrailed were removed.  Only a 

small minority of the proteins in the data set had insertions relative to engrailed.  There were 

three main insertions relative to the engrailed proteins.  One insertion of three residues that 

occurred between engrailed positions 21 and 22 was present in 26 out of 264 proteins.  

These 26 proteins were member of the atypical subgroup and are known to have this small 

insertion.  The two other insertions only occurred in the mouse proteins Hdx, Hmbox1, 

Tcf1, and Tcf2. 
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Figure 5.7 Sequence logo for the HD multiple sequence alignment used for training the recognition 

models. 

The ‘*’ characters denote positions found by our feature selection method to be important.  The ‘+’ 

symbol by position 51 indicates that it is a critical residue.  Most HD proteins have Asn51, which 

binds Adenine with high specificity.  Those that do not, such as Lag1, tend to have very divergent 

motifs 

Scaling BEEML-PBM Motifs 

We noticed that the HD B1H position specific count matrices (PCMs) from Fly 

Factor Survey database (Zhu et al., 2011) and the PWMs from the BEEML-PBM set were 
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scaled differently when both were converted to PFMs.  Although it was not clear which set 

was scaled correctly, they needed to be scaled similarly in order to combine both data sets 

for recognition model construction.  A set of close mouse and fly homologs was assembled 

for comparison.  We took this set of B1H and BEEML-PBM motif pairs and aligned each 

pair of motifs.  All of the B1H PCMs were first converted to PFMs using a small pseudo 

count of 1e-10.  The BEEML-PBM PWMs were also converted to PFMs.  The elements of 

the PWMs were exponentiated and then each column of the resulting matrix was normalized 

to sum to one using the following formula: 

!!,! =
!!!!,!

!!!!,!!
  where W is the scaled PWM matrix, i is the index over the number 

of positions in the motif, and b is an index over the number of rows in the PWM, one for 

each of the four bases A, C, G, T.  Initially, a factor of 2.5 was used to scale the BEEML-

PBM PWMs before converting them to PFMs based on the observation that for a few 

mouse and fly homolog pairs, the scaling factor looked to be about 2.5.  Each pair of fly and 

mouse PFMs was aligned using our MATLAB implementation of the SSD metric and the 

ungapped Smith-Waterman motif core alignment technique described by Mahony et al. 

(Mahony et al., 2007a).  The best scaling factor was then found for each pair of aligned fly 

and mouse motifs by performing a linear fit between the models.  A single global scaling 

factor of 2.2381 was obtained by averaging all of the scale factors together.  This value was 

then used to scale all of the BEEML-PBM PWMs before converting them to PFMs. 
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Low Information Content PWMs Removed 

A few of the BEEML-PBM PWMs had very low information content, even after 

being scaled.  Very low information content was potentially due to a failed PBM experiments 

or a non-specific protein.  BEEML-PBM PWMs with information contents lower than three 

standard deviations below the mean information content were removed.  This resulted in 

seven PWMs being removed (Dbx1, Hoxb6, Hoxc6, Obox2, Pax6, Six6, Tlx2). 

 

Multiple Motif Alignment 

Mahoney et al. developed a multiple PFM alignment program called STAMP 

(Mahony et al., 2007a, b) which they demonstrated was able to produce motif alignments 

which it then used to determine some of the key residues via mutual information analysis for 

various TF families with some success.  It was also shown to be an accurate motif database-

searching tool.  We implemented a similar multiple alignment program in MATLAB.  We 

wanted to test additional scoring metrics and methods of guide tree construction, and we 

found that it was simpler to do this in a framework like MATLAB, which has a 

bioinformatics toolbox with many built in functions.  STAMP, on the other hand, is written 

in C++ and is very fast, but the process for adding new motif column-column scoring 
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metrics is somewhat involved, since new empirical distributions must also be calculated in 

order to obtain p-values for the each new distance metric, which are necessary in STAMP 

for tree building.  After developing metrics which incorporated the per column information 

content, we found that the best metric was SSD (sum of squared differences), also one of 

the two best metrics reported by Mahony et al.  We also found that ungapped local 

alignments yielded the best alignments and that it was important to perform motif core 

alignment, as outlined by Mahoney et al. when aligning the relatively short HD motifs to 

generate a multiple motif alignment (MMA).   Motif cores are define as consecutive positions 

in a motif having an information content above 0.3 bits, or if there were not at least 4 

consecutive columns with IC > 0.3 bits, then the four consecutive columns with the highest 

total IC were used.  If the motif was less than 4 base pairs long, then the entire motif was 

designated as the motif core.  

In the end, the main difference between our progressive multiple motif alignment 

program and STAMP lies in how we calculated our distance matrix used to produce the 

guide tree.  STAMP uses empirically derived p-values that are assigned to all alignments to 

generate the guide tree and to do database search analysis.  It converts a pairwise matrix of 

p-values obtained for each alignment to a distance matrix and then generates a guide tree 

from these distance matrices.  At least in this case, the result was not very different, but it 

does show that a simpler method for calculating the distance matrix for the guide trees was 
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sufficient.  We did find that adjusting the mutual information scores tended to yield better 

results than calculating the mutual information between positions in the motif and protein 

multiple alignments as implemented in STAMP however. 

 

Low Mean Information Content Positions Removed from MMA 

Not all columns of the multiple motif alignment had similar information content 

(IC).  Some of the flanking positions in the original multiple motif alignment consisted 

mostly of gaps, which had an IC of zero.  Rather than attempt to model these positions that 

were not relevant for most motifs, we trimmed flanking positions from the MMA that had a 

mean IC of less than 0.05.  The final trimmed multiple motif alignment consisted of 9 

positions.  Figure 5.8 shows the average PFM for the HD data set.  All the PFMs in the final 

trimmed MMA were averaged together.  The ‘A’ at position 9 in the average HD PFM is 

almost completely conserved.  This is because almost all of the proteins in the data set have 

Asn at position 51, which binds strongly to adenine (see Figure 5.7). 
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Figure 5.8 Average PFM for the trimmed HD multiple motif alignment 

 

Feature Selection using Adjusted Mutual Information and 

Profile Alphabet 

Machine learning methods like SVMs and random forests are relatively good at 

capturing both the non-linear and linear relationships between independent variables that 

give rise to the observed variable.  In our case the independent variables are the dummy 

encoded amino acids in the recognition helices of each protein.  The dependent variables are 

the elements of the energy matrix for each protein, 18 and 27 parameters for the ZF and HD 

data sets respectively.  The SVM and RF methods are good at performing feature selection.  

However, we found that using an adjusted form of mutual information (MIp) to filter out 

the least informative features first resulted in even more accurate models. 
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The mutual information (MI) between two continuous variables is a measure of the 

degree of independence between those two variables.  If the variables are completely 

independent, the MI will be zero.  If the variables are completely correlated and the two 

categorical variables each have some degree of variability, then the MI will be maximal.  

Mutual information requires that the two variables being compared be discrete variables.  In 

order to make each PFM matrix discrete, we used a profile alphabet (Wang and Stormo, 

2005).  Nineteen different multinomial probability distributions over the four bases A, C, G, 

and T were defined and assigned to labels in an alphabet.   This allowed us to convert each 

column of a PFM to a single label.  We began with an initial set of seed profiles chosen to 

cover the space of possible PFM columns sand then iteratively refined those profiles.  The 

Euclidean distance between every column from every PFM in the multiple motif alignment 

(MMA) and all 19 profile vectors was calculated.  Each PFM column was assigned to the 

nearest profile.  The mean of the set of column vectors assigned to each profile then became 

the new profile vector.  This process was repeated until convergence. 

MIp 

Adjusted mutual information (MIp) was used to sort the positions in the DBDs by 

their ability to determine the most predictive features.  The adjustment to the mutual 

information proposed by Dunn et al. is based on the idea that the average entropy of each 

position in an alignments gives each position a particular propensity towards MI_b, or 
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background mutual information.  Dunn et al. come up with a simple correction to the MI 

which they call the average product correction (APC).  MIp(a,b) = MI(a,b) + APC(a,b).  In 

other words, on average, the MI between positions a and b is due to the variability at those 

two positions and not due to direct interactions between these two positions.  Subtracting 

APC(a,b) from MI(a,b) should yield the amount of MI due to functional interactions 

between positions a and b. A truly random data set of sufficient size should not need to be 

adjusted.  The HD data set is much less random than the ZF data set, but even this data set 

is not completely random. 

Every possible protein and motif position pair was ranked according to its MIp 

score.  The maximum MIp score for each position in the protein alignment was calculated.  

The set of protein positions, or potential features, was then sorted according to max(MIp) 

resulting in a sorted set of features.  The RF, SVM and KNN methods (described below) 

were each used to train a set of models, one model per element of the PFM.  WYK encoding 

(Stormo, 2011) was used so that only free parameters were predicted by the models, since 

each position of a PFM only has three free parameters due to the constraint that each PFM 

column sums to one. 

To avoid imposing an arbitrary MIp score cut off to determine the feature set to use 

for training the recognition models, the sorted set of features was used to construct 

progressively larger training sets.  The first feature set contained just the single feature with 
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the highest MIp score.  The last feature set in the series contained all of the residues in the 

DBD.  Figure 5.10 and Figure 5.14 shows the mean squared error (MSE) for each model 

obtained by using progressively more features from the list of MIp ranked protein positions 

for the HD and ZF set, respectively.  10-fold cross validation was used to determine the 

MSE in every case.  There is a clear plateau in the MSE scores for all three methods that 

indicates that adding features beyond a certain point did not appreciably increase the 

performance of the model. 

STAMP on the other hand does not assign one single label to each PFM column.  

For each PFM column and protein residue pair, it assigns a total of one count to the 

appropriate joint and marginal count matrices, but it splits that count fractionally between 4 

different discrete categories A,C,G, and T.  This is equivalent to using the PFM to assign 

frequencies to all possible sites of length L, where L is the number of positions in the PFM.  

Then, calculating the MI using a multiple alignment of all sites for all proteins, where each 

protein is paired once with all 4! sites.  We believe that one of the reasons that our method 

of discretizing the PFMs improves performance is that it acts as a form of normalization and 

filters out noise.  It tends to assign the same labels to PFM columns that are slightly different 

due to noise or differences in scaling due perhaps to differences in the B1H and PBM assays.  

PFM columns that are not equal may in reality be instances of the same multivariate 

distribution.  In practice, using the profile alphabet to make the PFM columns discrete 
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helped us to detect the true key residue set more accurately for the HD data set and it did 

not hurt our accuracy in the zinc finger case. 

 

Machine Learning Algorithms 

K Nearest Neighbors 

The k nearest neighbors (KNN) algorithm is a very simple method based on the 

principle that similar inputs generally yield similar outputs.  The Euclidean distance between 

every dummy encoded pair of proteins was calculated.  This is functionally equivalent to 

computing the Hamming distance between the proteins.  For every query protein, the closest 

protein in the training set served as the reference protein.  The reference protein’s PFM was 

then used as the prediction for the query protein.  If the user defined K parameter is set to 1, 

only the closest protein is included in the reference set.  If it is set to 2, then the second 

closest protein is also included, etc.  In the case of a tie or multiple reference proteins, all of 

the corresponding PFMs were averaged together.  We used the knnflex R package for the 

KNN analysis.  Surprisingly, in preliminary studies involving the HD data set, we found that 

tuning the K parameter did not increase performance, so we fixed the K parameter to 1 for 

all subsequent analysis. 
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Random Forest Regression 

Random Forest (RF) is a fairly recent ensemble method that makes use of a 

collection of weak decision trees (Breiman, 2001).  There are only two user specified 

parameters: the total number of trees in the ensemble (ntree) and the number of randomly 

selected features to use to parameterize every node in of each tree (mtry), so it is simple to 

tune.  In practice, it works well even without any tuning, although we did tune the mtry 

parameter for every RF model.  The R package that we used, randomForest, had its own 

tuning function, but we developed our own method.  We iteratively tried increasing values of 

mtry, from 2 to 50.  For all of these iterations, we set ntree to 50 for increased speed.  Next, 

the mtry versus MSE curve was smoothed and the mtry parameter the yielded the best MSE 

value was determined.  Then, we used the optimal mtry parameter, and we set ntree to 500, 

which is the default value.   

 

State Vector Machine Regression 

SVMs are a popular machine learning binary classifier that has been adapted to 

perform regression.  SVMs use a kernel function to map a set of training vectors into a 

higher dimensional space.  They find the linear separating hyperplane that maximizes the 

margin of separation in this higher dimensional space.  A non-negative cost parameter, C,  is 

set by the user and determines the weight of the error term in the minimization (Hsu et al., 
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2010).  The e1071 R package was used to train and tune the SVM models.  This packages is 

based on the libsvm program (Chang and Lin, 2011).  Of the available kernel functions, the 

authors of libsvm recommend the radial basis function as the simplest to tune and the most 

generally applicable.  The radial basis function includes a gamma parameter, which we tuned 

along with the cost parameter using the grid search function implemented in the e1071 

package.  We searched over the range 2!!" ≤ ! ≤   2! and 2!! ≤ ! ≤   2! using a step size 

of 2!.  In preliminary studies involving the HD data set, we tried using all of the different 

kernel functions available in libsvm.  However, we found that the radial basis function 

performed better or as well as the other kernel functions.  Also, it was much less expensive 

to tune in most cases. 

We also tried using R packages to construct neural networks and perform partial least 

squares regression.  We found that these methods did not perform well compared to the 

random forest and SVM methods, so we did not use them in this study. 

 

Normalization of Predicted PFMs 

There is no guarantee that the columns of the raw predicted PFMs will sum to 1, 

although in practice the column total is very close to 1, once the predicted PFMs are 

converted from WYK to ACGT space.  Sometimes the predicted frequency for a given base 
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is slightly negative.  Since negative frequencies are not possible, all negative values were 

replaced with a very small pseudo count of 1e-10, and then all predicted PFMs were 

normalized. 

 

Single Finger Models 

The Zif268 mutant data consist of two finger motifs that are 6bp in length.  In the 

ZF finger data set, key residue position -1 of finger 2 is almost always Arg and position +6 

of finger 3 is almost invariably Arg as well.  In order to parameterize a more broadly 

applicable single finger model, we combined specificity data for finger 2 and finger 3.  We 

split up the 6bp motifs into finger 2 and 3 submotifs and paired them with the appropriate 

recognition helix protein sequence.  In order to allow the models to capture the context 

effect that causes a finger to give rise to a different triplet motif depending on whether that 

finger occurs as the first, second or third finger (Liu et al., 2002), the sequence of the 

adjacent two fingers was included.  In the case of finger 3, we encoded the fact that there is 

no adjacent C-terminal finger (ACF) by adding a series of seven gaps, one for each position 

in the recognition helix to the training data.  Each of these gaps was dummy encoded to 

form a 20 long vector populated completely by zeros. 
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Figure 5.9 Sequence logo illustrating the diversity present in the combined finger 2 and 3 data set used 

to train the single finger models 

To investigate the importance of interactions between amino acid residues in the 

recognition helix, we parameterized several matrix based models (MBMs).  These models are 

similar to the SAMIE model (Benos et al., 2001).  We developed four different types of 

MBMs, each using a different mapping or contact matrix, C.  MBM1 has four different 

energy matrices, three for positions -1, +3, +6 of Fn and one for position +2 of Fn+1.  Table 

5.2 shows the contact matrix used for the MBM1 model. There is also a weighting 

parameter, alpha, which scales the contribution of the Fn:+6 and Fn+1:+2 matrices to position 

1 of the triplet motif.  (1-alpha) is used to weight Fn:+6 and alpha is used to weight the 
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Fn+1:+2 matrix.  MBM2 is similar in design to MBM1, except that there is no F_(n+1):+2 

matrix or alpha parameter.   

 MBM3 only has a single energy matrix that is used to model the amino acid and 

nucleotide interactions between positions -1, +3 and +6 in the recognition helix and 

positions 3, 2, and 1in the motif respectively.  MBM4 also has only a single energy matrix, 

but it also uses its single matrix to model the ACF+2 position. 

The reverse complement is taken to predict the Fn+1:+2 contribution, since Fn+1:+2 binds to 

the opposite strand. 

 

Table 5.2 The contact matrix used by MBM1.  Columns indicate the position in the recognition helix.  
Rows correspond to positions in the Nth fingers subsite. 

 
FN 

      
F(N+1) 

     
 

-1 1 2 3 4 5 6 -1 1 2 3 4 5 6 
1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 
2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

GNN Test Data 

We used a series of 51 different single finger, 3bp long PCMs reported by Liu et al. 

to test our single finger ZF models in addition to the 10-fold cross-validation test (Liu et al., 
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2002).  The goal of Liu et al. was to design SP1 mutants to bind specifically to all 16 GNN 

triplets.  SP1 is a three finger human ZF protein similar in structure to Zif268 (Berg, 1992).  

They used Sangamo Bioscience Inc.’s proprietary database of zinc fingers.  They designed 

SP1 mutants to be specific for all 16 possible GNN sites.  To investigate a possible finger 

context effect, they repeated this process for all three different finger positions for a total of 

48 designed proteins, plus three additional mutants.  Each protein was incubated with a 

library of randomized oligomers and a gel mobility shift assay was used iteratively to purify 

high affinity binding sites.  The selected sites were then aligned to the consensus site and 

used to generate PCMs. 

Results 

HD Results 

Our MIp analysis was able to successfully rank the most important key residues with 

only one false positive in the case of the HD data set.  Position 19 had a high MIp score but 

to our knowledge, it has never been observed to contact DNA specifically.  All of the other 

positions found by our MIp based feature selection analysis found key residues do interact 

with the bases directly in at least one structure.  While other groups have used overlapping 

yet different sets of key residues, we find that including additional features beyond the set 
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selected using MIp actually hurt performance for the SVM and KNN models, and only 

helped performance slightly for RF. 

Table 5.3 shows the set of MIp ranked features obtained from taking the maximum 

MIp score per position of the HD protein alignment (Figure 5.12).  Those features that 

improved the MSE appreciably for all methods are highlighted in yellow.  Only the top 30 

features were considered.  Figure 5.10 compares the 10-fold cross-validation performance of 

the KNN, SVM, and RF methods on the HD data set.  The x-axis shows that after the 

seventh MIp ranked feature (Table 5.3) was included in the training set, adding additional 

parameters did not improve performance. 
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Figure 5.10 Plot of the number of features used to train the KNN, RF and SVM models versus the 10-

fold cross validation MSE values. 

After seven features are included the MSE stoped decreasing for KNN and SVM and did not decrease 

much for RF.  Only the top 30 features were considered  
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Table 5.3 MIp Ranked HD Features 

Features 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Residue 
Number 50 54 6 47 19 3 55 41 33 17 32 58 10 44 20 

                Features 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Residue 
Number 52 46 38 26 43 2 8 56 25 4 18 7 24 30 11 

 

 

For the KNN and SVM methods, performance tended to decrease.  The 

performance of the RF model did increase slightly in general as more features were added.  

Apparently the RF method does a slightly better job of feature selection here than even the 

SVM method.  Based on the literature (Ekker et al., 1994; Kissinger et al., 1990; Noyes et al., 

2008), all seven of these residues are thought to be important key residues in at least some 

contexts, except for position 19, which has not been reported to be a key residue.  In chapter 

2, based on our own findings and on a summary of the literatures, we report the following 

key residue set: 2, 3, 5, 6, 7, 43, 47, 50, 51, 54, 55.  Alleyne et al. reviewed the literature and 

reported the following two key residues sets: 3, 5, 6, 25, 31, 44, 46, 47, 48, 50, 51, 53, 54, 55, 

57 (Kissinger et al., 1990) and 3, 6, 7, 47, 50, 54 (Ekker et al., 1994). 

To investigate how much our MIp based method for ranking features helped, we 

compared it to the MI analysis method implement in STAMP.  The top seven residues with 
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the highest maximal STAMP MI values are, in order: 50, 54, 6, 19, 46, 56, 28 (Figure 5.11).  

Positions 46, 56 and 28 are not thought to be important for determining specificity.  STAMP 

also finds residue 19, which was the one potential false positive found by our MIp based 

method.  These, in order or rank, are the top ten features reported by Alleyne et al. (Alleyne 

et al., 2009): 50, 6, 46, 54, 7, 56, 14, 28, 4, 19.  It is also interesting to note that there is a lot 

of overlap between the feature set reported by Alleyne et al. and the STAMP features set.  It 

could be that some of the these positions have high entropy in the protein alignment and 

that this is why the MI is so high, not because of correlation due to coevolution (Dunn et al., 

2008).   
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Figure 5.11 Heat map showing the MI matrix returned by STAMP for the HD PFM alignment 

produced by STAMP and our MAFFT protein alignment 
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Figure 5.12 Heat map showing the protein alignment versus motif alignment MIp matrix. 

The PFM alignment was produced using our multiple motif alignment software.  The PFMs where 

then made discrete using our profile alphabet.  Position 5 in the MMA is the conserved A bound by 

Asn 51 in most cases. 

 

The STAMP multiple motif alignment was very similar, yet not identical to our own.  

To control for the affect of the alignments being slightly different, we calculated the MI and 

MIp matrices using our own multiple PFM alignment without using the profile alphabet to 

make the PFMs discrete.  Table 5.4 shows the top seven residues returned by the MI and 

MIp without using the profile alphabet.  Using just the MI values gives the same set of 
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features, just in different order as were returned by STAMP.  In this case, the profile 

alphabet helps find the correct set of key residues. 

 

Table 5.4 Top Features found without using profile alphabet to make PFMs discrete 

MI 54 50 19 6 46 56 28 
MIp 54 50 17 19 55 52 20 

 

ZF Results 

For the zif268 mutant data, adding MIp ranked features improved the MSE until the 

sixth feature is included.  After this, there is no improvement for any of the methods (Figure 

5.14).  All of the canonical features for these two fingers appear in this set of six features 

except for one.  Finger 3 (F3), recognition helix position +6 was not found to be an 

important feature and it was not highly ranked in the MIp list (Table 5.5).  This was 

doubtlessly due to the low variability in this position in the data set (see Figure 5.6 and 

Figure 5.9).  For the most part, this position was never randomized or mutated.  It is 

particularly interesting that F3:+2 was found to be important; including this feature 

noticeably lowered the MSE for all methods.  This position is known to bind to the opposite 

strand of the DNA triplet bound by the adjacent finger 2.  However, some models ignore 

the contribution of this position (i.e. SAMIE).  
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It is also interesting to note that not only did our method selected the known key 

residues, but the mapping of key residues to positions in the motif was also perfectly 

recovered by MIp, except for the F3:+6 and motif position 6 interaction (Figure 5.13) 

 

 

 

Figure 5.13 Heat map showing the protein alignment versus motif alignment MIp matrix. The PFMs 

were made discrete using our profile alphabet 
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Figure 5.14 Plot of the number of features used to train the KNN, RF and SVM models versus the 10-

fold cross validation MSE values for the ZF data set. 

After six features were included the MSE stoped decreasing for all.  These results are for the two 

finger models which predicted six position PFMs given the sequence of the finger 2 and finger 3 

randomized recognition helices. 
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Table 5.5 Features ranked by MIp for Zif268 mutant data set 

Feature 
Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Finger 3 3 2 2 2 3 2 2 3 3 3 2 3 2 
Recognition 
Helix 
Position 

-1 3 3 6 -1 2 2 1 1 6 5 5 4 4 

 

We tested models from the literature (SAMIE, KFM05, ZifNet, MGM98, SBGY95) and our 

single finger RF, KNN, SVM and MBM models trained using recognition helix positions -1, 

+2, +3, +6 from fingers 2 and 3 of the mutant Zif268 training sets.  All of the predicted 

PFMs using the models from the literature were scaled, except for the SAMIE PFMs, which 

were nearly optimally scaled.  We tested them on the GNN data set, which was not used for 

training.  Figure 5.15 shows the MSE values for these tests.  The RF model had the lowest 

MSE, followed by SAMIE, which is a simple matrix based model.  SAMIE performed even 

better than SVM on this test, which is surprising, while KNN performed relatively poorly.  

We also performed 10-fold cross-validation to test the models using the Zif268 mutants 

training set.  Again, the RF model performed the best (Figure 5.16).  Not surprisingly, all of 

the models trained on this data set (albeit via 10-fold cross-validation) performed better than 

all of the models from the literature, since they were not trained on completely different data 

sets.  KNN did not perform very well here either.  It only did better than two of our MBM 

models.  It should be noted that these two models are single matrix models that utilize only 
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one residue-base energy matrix to predict specificities at every position in the motif, so it is 

not very impressive that KNN beat these two methods. 

 



 

 

 

   

 

 
178 

 

Figure 5.15 Performance on GNN test of single finger models. 

The RF, SVM, KNN, MBM3 and MBM2 models are all single finger models trained using all -

1,+2,+3,+6 positions from all 3 fingers in the ZF training set.  The other models are all from the 

literature.  
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Figure 5.16 Performance on the ZF set. 

The MSE scores are from 10-fold cross validation when there is an ‘*’ next to model name.  Other 

models are from the literature.  All models not trained on ZF data set were scaled, except for SAMIE  

It is interesting to note that our RF recognition model trained using GRaMS PWMs 

did very well on the ZF test set.  Two completely different experimental methods were used 

to obtain the GNN and Zif268 mutant data sets, yet we did not need to re-scale our PWMs. 
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Discussion 

The goal of this study was to find improved recognition models for the two most abundant 

TF families, ZF and HD.  While ZF proteins have been studied extensively and reasonably 

good models exist that can predict PWMs, we show that our new models have even better 

performance.  In particular, all of our RF based models out performed the models from the 

literature and the other methods we tried in every test.  These new models performed well 

partly because of the new, large high quality data set we used for training and partly because 

we did not impose strict non-additivity imposed by all of the previous models we tested 

except for ZifNet, which actually performed relatively poorly in our tests.  This may be 

because the method ZifNet uses for generating PWMs may not be optimal. 

 The HD family on the other hand has been much less studied in terms of a 

recognition model.  Previous work suggested that more sophisticated models did not 

perform better than a simple nearest neighbor extrapolation.  We show that it is possible to 

obtain good motif alignments that allow us to recover most of the most important key 

residues reported in the literature.  Adding additional features beyond these key residues to 

the training set does not help any of the models much and actually hurts the performance of 

KNN.   
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Chapter 6: Conclusions and Future 
Directions 

 

Overview and Concluding Remarks 

The goal of this dissertation was to develop improved recognition models for the 

two largest classes of transcription factors (TFs), the C2H2 zinc finger (ZF) and 

homeodomain (HD) families.  More accurate recognition models have many different 

potential uses.  They can be applied to predict the binding sites of uncharacterized TF.  They 

can be used to engineer new proteins with novel specificities and new functions, such as zinc 

finger nucleases (Mani et al., 2005). 

The HD family has not previously received as much attention as the ZF family with 

regards to learning recognition models.  This is partly due to a lack of data.  In the same 

issue of the journal Cell, two articles appeared that reported the entire catalog of HD DNA 

specificities for the mouse (Berger et al., 2008) and fly (see chapter 2) genomes.  In chapter 

2, a simple nearest neighbor based recognition model was introduced, that to our knowledge 

represented the first semi-quantitative recognition model for the HD family able to predict 

PFMs based on protein sequence alone.  Analysis of the fly HD set highlighted the 

importance of a limited set of key residues in determining DNA binding preferences.  Site 
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directed mutagenesis showed that changing only a few of these key residues could result in 

very different DNA binding preferences and that changing non-key residues did not 

generally have the same magnitude of an effect, giving further credence to the idea of an HD 

recognition code.  

To facilitate the development of a new ZF recognition model, a new analysis 

method, GRaMS, was developed specifically to model Illumina sequenced B1H data.  We 

introduced this method in chapter 4 and demonstrated that it was robust to different 

experimental conditions such as the 3-AT and IPTG concentrations as well as the duration 

of the experiment.  We also introduced a B1H variant called CV-B1H, in which a portion of 

the binding site is fixed to the consensus, so that only some positions are randomized.  We 

show that analyzing CV-B1H data using GRaMS yields models capable of predicting high 

throughput SELEX data (Zhao et al., 2009) with high accuracy.  We also showed however 

that for ‘unconstrained’ B1H data produced using larger randomized regions, the popular 

program MEME (Bailey et al., 2006) could be run on the set with reasonably good results 

and that surprisingly GRaMS did not improve performance for this type of data.  Chapter 3 

describes the online database, FlyFactorSurvey, which is a repository for Drosophila B1H 

data sets.  An analysis pipeline was developed based in part on our findings described in 

chapter 4 and this analysis pipeline was used to analyze B1H data sets for more than 200 

different TFs from at least 11 different Pfam families. 
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  In chapter 5, we presented a new random forest (RF) based recognition model 

which out performed all of the other methods and models that we examined, including K 

Nearest Neighbors (KNN).  We showed that our new method has the potential to be 

generally applicable to multiple TF families, in that it was successfully applied to both the ZF 

and HD families.  In the future, we wish to apply this method to other TF families as 

UniPROBE (Newburger and Bulyk, 2008), FlyFactorSurvey (Zhu et al., 2011) and other TF 

specificity data bases continue to expand. 

For the HD analysis in chapter 5, we showed that it was possible to successfully 

combine PMB and B1H motif matrices produced from different types of experimental 

assays and using different analysis methods.  It did prove necessary to scale the HD 

BEEML-PBM (Zhao and Stormo, 2011) and B1H motifs from FlyFactorSurvey, however.  

Why these two sets of motifs are scaled differently remains unknown and warrants further 

investigation. 

As part of the training process for constructing the recognition models, we found 

that it was beneficial remove unnecessary protein residues, or features, from the training set.   

Our adjusted mutual information based feature selection method was able to recover known 

sets of key residues for both the ZF and HD families with high accuracy.  We only recovered 

a single residues that we believe to be a false positive, residue number 19 in the HD protein 

alignment.  It could be that this position is phylogenetically informative and that our 
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adjusted mutual information method is unable to account for this.  In other words, perhaps 

position 19 is only serving as a marker for membership in a clade, and that members of this 

clade tend to have similar DNA binding preference.  Residue 19 was picked out by a variety 

of different methods as well, so it potentially warrants further study.  It would be relatively 

simple to investigate this position as a potential key residue via mutational studies using the 

B1H system.  If mutating this residue has no significant effect on specificity, then it is 

probably only a marker for other traits.  This highlights the benefits of data sets like the 

Zif268 mutant set described in chapter 5.  Randomizing the recognition helix virtually 

eliminates any potential for phylogentically informative residues to be misidentified as key 

residues.   It would be beneficial to carry out similar studies of the HD family.  It would 

especially be interesting to do this since there are multiple key residues sets utilized by 

different subsets of this family, as discussed in chapter 2. 

Contrary to the claims of a recent paper (Alleyne et al., 2009), we did not find that 

the simple nearest neighbor method to be as affective as random forest or SVM based 

recognition models.  Alleyne et al. also claim that it is not feasible to align HD motifs.  PFM 

alignment is necessary in order to construct a recognition model that predicts PWM or PFM 

matrices.  In stead, they predicted the PBM Z-score transformed signal intensities for all 

non-redundant 8mers, requiring over 32,896 models.  This must required a lot of CPU time 

to train, which doubtless contributed to their adoption of the KNN method, which only 
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requires a matrix of pairwise protein Hamming distances.  In order to learn recognition 

models that predict a PFM, we only need to learn 18 or 9 different RF models for the ZF 

data, depending on if a single or two finger PFM is predicted, and 27 models to predict the 9 

position trimmed HD PFMs (we learn a single model per free parameter in the PFM).  This 

is a much simpler task computationally and is more satisfying since many fewer parameters 

are required. 

In the future, a comparison should be made to determine the ability of the HD 

PFMs predicted by our RF recognition model to predict raw PBM data.  A recent study 

shows that contrary to claims made in Alleyne et al. and elsewhere (Berger et al., 2006), 

PWMs, when trained with a biophysical based model such as BEEML-PBM, can explain 

PBM 8mer intensities quite well, often as well as replicate data sets (Zhao and Stormo, 2011).  

It may be that since the HD RF recognition model was trained using BEEML-BPM that the 

motifs that it predicts will also be able to explain raw PBM data well. 

 

Future Directions 

Recently Sahota et al. introduced a novel comparative genomics method for 

discovering motifs using hundreds of bacterial genomes (Sahota and Stormo, 2010).  The 

novel aspect of their approach is that instead of searching for motifs in orthologous sets of 
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promoters, they rely on the observations that (1) TFs with identical key residues from the 

same family tend to bind similar motifs and (2) up to 80% of operons may be auto 

regulatory, if neighboring operons are considered.  Based on these observations, they 

assembled set of promoters that corresponded to TFs that were identical at the key residue 

sets learned from crystal structures, but which were not otherwise required to be similar.  

Sahota et al. concentrated on two HTH subfamilies LacI and TetR and they were able to 

discover many motifs that matched experimentally determine motifs using only genomic 

data and a knowledge of the LacI and TetR key residue sets. 

For my postdoctoral work, I plan to extend my research developing recognition 

models for the ZF and HD families to the HTH TF family using primarily genomic data as 

input in order to extend the work of Sahota et al.   One of the issues that Sahota et al. faced 

is that many of the clusters of TFs with identical key residues are too small for effective 

motif discovery using methods like MEME (Bailey et al., 2006).  It seems that it would be 

ideal to find a way to use all of the data at once to learn a family recognition model rather 

than to divide the data up into data sets that are often too small.  Currently, the information 

contained in one group of TF’s promoters cannot be applied to another group during the 

motif learning process.  Combining information learned from different key residue clusters 

can currently only occur through some type of post processing set.  I hope to develop a 

method similar in spirit to the method developed by Kaplan et al. that used the EM 
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algorithm to identify binding sites and learn a recognition model for the ZF family 

simultaneously (Kaplan et al., 2005) using only sequences known to be enriched for binding 

sites but without knowing their location (the model they learned, KFM05,  is discussed in 

chapter 5).   

 

Conclusion 

In summary, we developed perhaps the first homeodomain recognition model that 

predicts PFMs based on identity at key residues in the protein and overall homology.  We 

subsequently constructed a new HD recognition model using newly available BEEML-PBM 

models and B1H data sets available from the FlyFactorSurvey database.  We developed 

methods to analyze B1H data, such as GRaMS that performed better than all other tested 

methods, using an HT-SELEX Zif268 data set as a benchmark. GRaMS was used to analyze 

more than 250 new B1H Zif268 mutant data sets.  These PWMs were used to learn a new 

random forest based recognition model that we found to perform better than all methods 

that we tested.  We show that contrary to recent claims, the nearest neighbor method does 

not compare favorably to random forest based recognition models.  We also show that it is 

feasible to align most homeodomain PFMs and that these alignments can be used together 

with a novel feature selection method to determine key residue sets with high accuracy.  We 
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believe the our recognition models have improved performance because they were trained 

with higher quality data and because the random forest method is able to model higher order 

interactions between key residues. 
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