1,019 research outputs found

    MR-BART: Multi-Rate Available Bandwidth Estimation in Real-Time

    Full text link
    In this paper, we propose Multi-Rate Bandwidth Available in Real Time (MR-BART) to estimate the end-to-end Available Bandwidth (AB) of a network path. The proposed scheme is an extension of the Bandwidth Available in Real Time (BART) which employs multi-rate (MR) probe packet sequences with Kalman filtering. Comparing to BART, we show that the proposed method is more robust and converges faster than that of BART and achieves a more AB accurate estimation. Furthermore, we analyze the estimation error in MR-BART and obtain analytical formula and empirical expression for the AB estimation error based on the system parameters.Comment: 12 Pages (Two columns), 14 Figures, 4 Tables

    Performance analysis and network path characterization for scalable internet streaming

    Get PDF
    Delivering high-quality of video to end users over the best-effort Internet is a challenging task since quality of streaming video is highly subject to network conditions. A fundamental issue in this area is how real-time applications cope with network dynamics and adapt their operational behavior to offer a favorable streaming environment to end users. As an effort towards providing such streaming environment, the first half of this work focuses on analyzing the performance of video streaming in best-effort networks and developing a new streaming framework that effectively utilizes unequal importance of video packets in rate control and achieves a near-optimal performance for a given network packet loss rate. In addition, we study error concealment methods such as FEC (Forward-Error Correction) that is often used to protect multimedia data over lossy network channels. We investigate the impact of FEC on the quality of video and develop models that can provide insights into understanding how inclusion of FEC affects streaming performance and its optimality and resilience characteristics under dynamically changing network conditions. In the second part of this thesis, we focus on measuring bandwidth of network paths, which plays an important role in characterizing Internet paths and can benefit many applications including multimedia streaming. We conduct a stochastic analysis of an end-to-end path and develop novel bandwidth sampling techniques that can produce asymptotically accurate capacity and available bandwidth of the path under non-trivial cross-traffic conditions. In addition, we conduct comparative performance study of existing bandwidth estimation tools in non-simulated networks where various timing irregularities affect delay measurements. We find that when high-precision packet timing is not available due to hardware interrupt moderation, the majority of existing algorithms are not robust to measure end-to-end paths with high accuracy. We overcome this problem by using signal de-noising techniques in bandwidth measurement. We also develop a new measurement tool called PRC-MT based on theoretical models that simultaneously measures the capacity and available bandwidth of the tight link with asymptotic accuracy

    PathAB: A New Method to Estimate End-to-End Available Bandwidth of Network Path

    Get PDF
    Estimating available bandwidth accurately is extremely important for many network related applications, especially the ones which need real-time traffic information. With the ever increasing use of Internet, several available bandwidth measurement techniques have been proposed. But most of them assume fluid traffic model, whereas studies show that current Internet traffic follows Poisson distribution. Moreover, very few can operate in stand-alone mode and have relatively high estimation errors. We propose a new method, PathAB, which combines the concepts of three existing algorithms, MoSeab, PoissonProb and PathChirp. It first obtains a rough estimation of available bandwidth using an exponential probing train, and later obtains the final estimate using several Poisson distributed probing trains. It can operate both in client-server and stand-alone modes. Unlike other stand-alone methods, PathAB sends very small echo packets back-to-back after the large probe packets to reduce the cross-traffic effect in returning path as well as the estimation error

    Congestion Control for Streaming Media

    Get PDF
    The Internet has assumed the role of the underlying communication network for applications such as file transfer, electronic mail, Web browsing and multimedia streaming. Multimedia streaming, in particular, is growing with the growth in power and connectivity of today\u27s computers. These Internet applications have a variety of network service requirements and traffic characteristics, which presents new challenges to the single best-effort service of today\u27s Internet. TCP, the de facto Internet transport protocol, has been successful in satisfying the needs of traditional Internet applications, but fails to satisfy the increasingly popular delay sensitive multimedia applications. Streaming applications often use UDP without a proper congestion avoidance mechanisms, threatening the well-being of the Internet. This dissertation presents an IP router traffic management mechanism, referred to as Crimson, that can be seamlessly deployed in the current Internet to protect well-behaving traffic from misbehaving traffic and support Quality of Service (QoS) requirements of delay sensitive multimedia applications as well as traditional Internet applications. In addition, as a means to enhance Internet support for multimedia streaming, this dissertation report presents design and evaluation of a TCP-Friendly and streaming-friendly transport protocol called the Multimedia Transport Protocol (MTP). Through a simulation study this report shows the Crimson network efficiently handles network congestion and minimizes queuing delay while providing affordable fairness protection from misbehaving flows over a wide range of traffic conditions. In addition, our results show that MTP offers streaming performance comparable to that provided by UDP, while doing so under a TCP-Friendly rate

    Optimizing the delivery of multimedia over mobile networks

    Get PDF
    Mención Internacional en el título de doctorThe consumption of multimedia content is moving from a residential environment to mobile phones. Mobile data traffic, driven mostly by video demand, is increasing rapidly and wireless spectrum is becoming a more and more scarce resource. This makes it highly important to operate mobile networks efficiently. To tackle this, recent developments in anticipatory networking schemes make it possible to to predict the future capacity of mobile devices and optimize the allocation of the limited wireless resources. Further, optimizing Quality of Experience—smooth, quick, and high quality playback—is more difficult in the mobile setting, due to the highly dynamic nature of wireless links. A key requirement for achieving, both anticipatory networking schemes and QoE optimization, is estimating the available bandwidth of mobile devices. Ideally, this should be done quickly and with low overhead. In summary, we propose a series of improvements to the delivery of multimedia over mobile networks. We do so, be identifying inefficiencies in the interconnection of mobile operators with the servers hosting content, propose an algorithm to opportunistically create frequent capacity estimations suitable for use in resource optimization solutions and finally propose another algorithm able to estimate the bandwidth class of a device based on minimal traffic in order to identify the ideal streaming quality its connection may support before commencing playback. The main body of this thesis proposes two lightweight algorithms designed to provide bandwidth estimations under the high constraints of the mobile environment, such as and most notably the usually very limited traffic quota. To do so, we begin with providing a thorough overview of the communication path between a content server and a mobile device. We continue with analysing how accurate smartphone measurements can be and also go in depth identifying the various artifacts adding noise to the fidelity of on device measurements. Then, we first propose a novel lightweight measurement technique that can be used as a basis for advanced resource optimization algorithms to be run on mobile phones. Our main idea leverages an original packet dispersion based technique to estimate per user capacity. This allows passive measurements by just sampling the existing mobile traffic. Our technique is able to efficiently filter outliers introduced by mobile network schedulers and phone hardware. In order to asses and verify our measurement technique, we apply it to a diverse dataset generated by both extensive simulations and a week-long measurement campaign spanning two cities in two countries, different radio technologies, and covering all times of the day. The results demonstrate that our technique is effective even if it is provided only with a small fraction of the exchanged packets of a flow. The only requirement for the input data is that it should consist of a few consecutive packets that are gathered periodically. This makes the measurement algorithm a good candidate for inclusion in OS libraries to allow for advanced resource optimization and application-level traffic scheduling, based on current and predicted future user capacity. We proceed with another algorithm that takes advantage of the traffic generated by short-lived TCP connections, which form the majority of the mobile connections, to passively estimate the currently available bandwidth class. Our algorithm is able to extract useful information even if the TCP connection never exits the slow start phase. To the best of our knowledge, no other solution can operate with such constrained input. Our estimation method is able to achieve good precision despite artifacts introduced by the slow start behavior of TCP, mobile scheduler and phone hardware. We evaluate our solution against traces collected in 4 European countries. Furthermore, the small footprint of our algorithm allows its deployment on resource limited devices. Finally, in an attempt to face the rapid traffic increase, mobile application developers outsource their cloud infrastructure deployment and content delivery to cloud computing services and content delivery networks. Studying how these services, which we collectively denote Cloud Service Providers (CSPs), perform over Mobile Network Operators (MNOs) is crucial to understanding some of the performance limitations of today’s mobile apps. To that end, we perform the first empirical study of the complex dynamics between applications, MNOs and CSPs. First, we use real mobile app traffic traces that we gathered through a global crowdsourcing campaign to identify the most prevalent CSPs supporting today’s mobile Internet. Then, we investigate how well these services interconnect with major European MNOs at a topological level, and measure their performance over European MNO networks through a month-long measurement campaign on the MONROE mobile broadband testbed. We discover that the top 6 most prevalent CSPs are used by 85% of apps, and observe significant differences in their performance across different MNOs due to the nature of their services, peering relationships with MNOs, and deployment strategies. We also find that CSP performance in MNOs is affected by inflated path length, roaming, and presence of middleboxes, but not influenced by the choice of DNS resolver. We also observe that the choice of operator’s Point of Presence (PoP) may inflate by at least 20% the delay towards popular websites.This work has been supported by IMDEA Networks Institute.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Ahmed Elmokashfi.- Secretario: Rubén Cuevas Rumín.- Vocal: Paolo Din

    A Wavelet-Based Approach to Detect Shared Congestion

    Full text link

    TCP performance enhancement in wireless networks via adaptive congestion control and active queue management

    Get PDF
    The transmission control protocol (TCP) exhibits poor performance when used in error-prone wireless networks. Remedy to this problem has been an active research area. However, a widely accepted and adopted solution is yet to emerge. Difficulties of an acceptable solution lie in the areas of compatibility, scalability, computational complexity and the involvement of intermediate routers and switches. This dissertation rexriews the current start-of-the-art solutions to TCP performance enhancement, and pursues an end-to-end solution framework to the problem. The most noticeable cause of the performance degradation of TCP in wireless networks is the higher packet loss rate as compared to that in traditional wired networks. Packet loss type differentiation has been the focus of many proposed TCP performance enhancement schemes. Studies conduced by this dissertation research suggest that besides the standard TCP\u27s inability of discriminating congestion packet losses from losses related to wireless link errors, the standard TCP\u27s additive increase and multiplicative decrease (AIMD) congestion control algorithm itself needs to be redesigned to achieve better performance in wireless, and particularly, high-speed wireless networks. This dissertation proposes a simple, efficient, and effective end-to-end solution framework that enhances TCP\u27s performance through techniques of adaptive congestion control and active queue management. By end-to-end, it means a solution with no requirement of routers being wireless-aware or wireless-specific . TCP-Jersey has been introduced as an implementation of the proposed solution framework, and its performance metrics have been evaluated through extensive simulations. TCP-Jersey consists of an adaptive congestion control algorithm at the source by means of the source\u27s achievable rate estimation (ARE) —an adaptive filter of packet inter-arrival times, a congestion indication algorithm at the links (i.e., AQM) by means of packet marking, and a effective loss differentiation algorithm at the source by careful examination of the congestion marks carried by the duplicate acknowledgment packets (DUPACK). Several improvements to the proposed TCP-Jersey have been investigated, including a more robust ARE algorithm, a less computationally intensive threshold marking algorithm as the AQM link algorithm, a more stable congestion indication function based on virtual capacity at the link, and performance results have been presented and analyzed via extensive simulations of various network configurations. Stability analysis of the proposed ARE-based additive increase and adaptive decrease (AJAD) congestion control algorithm has been conducted and the analytical results have been verified by simulations. Performance of TCP-Jersey has been compared to that of a perfect , but not practical, TCP scheme, and encouraging results have been observed. Finally the framework of the TCP-Jersey\u27s source algorithm has been extended and generalized for rate-based congestion control, as opposed to TCP\u27s window-based congestion control, to provide a design platform for applications, such as real-time multimedia, that do not use TCP as transport protocol yet do need to control network congestion as well as combat packet losses in wireless networks. In conclusion, the framework architecture presented in this dissertation that combines the adaptive congestion control and active queue management in solving the TCP performance degradation problem in wireless networks has been shown as a promising answer to the problem due to its simplistic design philosophy complete compatibility with the current TCP/IP and AQM practice, end-to-end architecture for scalability, and the high effectiveness and low computational overhead. The proposed implementation of the solution framework, namely TCP-Jersey is a modification of the standard TCP protocol rather than a completely new design of the transport protocol. It is an end-to-end approach to address the performance degradation problem since it does not require split mode connection establishment and maintenance using special wireless-aware software agents at the routers. The proposed solution also differs from other solutions that rely on the link layer error notifications for packet loss differentiation. The proposed solution is also unique among other proposed end-to-end solutions in that it differentiates packet losses attributed to wireless link errors from congestion induced packet losses directly from the explicit congestion indication marks in the DUPACK packets, rather than inferring the loss type based on packet delay or delay jitter as in many other proposed solutions; nor by undergoing a computationally expensive off-line training of a classification model (e.g., HMM), or a Bayesian estimation/detection process that requires estimations of a priori loss probability distributions of different loss types. The proposed solution is also scalable and fully compatible to the current practice in Internet congestion control and queue management, but with an additional function of loss type differentiation that effectively enhances TCP\u27s performance over error-prone wireless networks. Limitations of the proposed solution architecture and areas for future researches are also addressed

    Network and service monitoring in heterogeneous home networks

    Get PDF
    Home networks are becoming dynamic and technologically heterogeneous. They consist of an increasing number of devices which offer several functionalities and can be used for many different services. In the home, these devices are interconnected using a mixture of networking technologies (for example, Ethernet, Wifi, coaxial cable, or power-line). However, interconnecting these devices is often not easy. The increasing heterogeneity has led to significant device- and service-management complexity. In addition, home networks provide a critical "last meters" access to the public telecom and Internet infrastructure and have a dramatic impact on to the end-to-end reliability and performance of services from these networks. This challenges service providers not only to maintain a satisfactory quality of service level in such heterogeneous home networks, but also to remotely monitor and troubleshoot them. The present thesis work contributes research and several solutions in the field of network and service monitoring in home networks, mainly in three areas: (1) providing automatic device- and service-discovery and configuration, (2) remote management, and (3) providing quality of service (QoS). With regard to the first area, current service discovery technology is designed to relieve the increasing human role in network and service administration. However, the relevant Service Discovery Protocols (SDPs) are lacking crucial features namely: (1) they are not platform- and network-independent, and (2) they do not provide sufficient mechanisms for (device) resource reservation. Consequently, devices implementing different SDPs cannot communicate with each other and share their functionalities and resources in a managed way, especially when they use different network technologies. As a solution to the first problem, we propose a new proxy server architecture that enables IP-based devices and services to be discovered on non-IP based network and vice versa. We implemented the proxy architecture using UPnP respectively Bluetooth SDP as IP- and non-IP-based SDPs. The proxy allows Bluetooth devices and UPnP control points to discover, access, and utilize services located on the other network. Validation experiments with the proxy prototype showed that seamless inter-working can be achieved keeping all proxy functionalities on a single device, thus not requiring modification of currently existing UPnP and Bluetooth end devices. Although the proxy itself taxes the end-to-end performance of the service, it is shown to be still acceptable for an end user. For mitigating resource conflicts in SDPs, we propose a generic resource reservation scheme with properties derived from common SDP operation. Performance studies with a prototype showed that this reservation scheme significantly improves the scalability and sustainability of service access in SDPs, at a minor computational cost. With regard to the second area, it is known that the end-to-end quality of Internet services depends crucially on the performance of the home network. Consequently, service providers require the ability to monitor and configure devices in the home network, behind the home gateway (HG). However, they can only put limited requirements to these off-the-shelf devices, as the consumer electronics market is largely outside their span of control. Therefore they have to make intelligent use of the given device control and management protocols. In this work, we propose an architecture for remote discovery and management of devices in a highly heterogeneous home network. A proof-of-concept is developed for the remote management of UPnP devices in the home with a TR-069/UPnP proxy on the HG. Although this architecture is protocol specific, it can be easily adapted to other web-services based protocols. Service providers are also asking for diagnostic tools with which they can remotely troubleshoot the home networks. One of these tools should be able to gather information about the topology of the home network. Although topology discovery protocols already exist, nothing is known yet about their performance. In this work we propose a set of key performance indicators for home network topology discovery architectures, and how they should be measured. We applied them to the Link-Layer Topology Discovery (LLTD) protocol and the Link-Layer Discovery Protocol (LLDP). Our performance measurement results show that these protocols do not fulfill all the requirements as formulated by the service providers. With regard to the third area, current QoS solutions are mostly based on traffic classification. Because they need to be supported by all devices in the network, they are relatively expensive for home networks. Furthermore, they are not interoperable between different networking technologies. Alternative QoS provision techniques have been proposed in the literature. These techniques require end-user services to pragmatically adapt their properties to the actual condition of the network. For this, the condition of the home network in terms of its available bandwidth, delay, jitter, etc., needs to be known in real time. Appropriate tools for determining the available home network resources do not yet exist. In this work we propose a new method to probe the path capacity and available bandwidth between a server and a client in a home network. The main features of this method are: (a) it does not require adaptation of existing end devices, (b) it does not require pre-knowledge of the link-layer network topology, and (c) it is accurate enough to make reliable QoS predictions for the most relevant home applications. To use these predictions for effective service- or content-adaptation or admission control, one should also know how the state of the home network is expected to change immediately after the current state has been probed. However, not much is known about the stochastic properties of traffic in home networks. Based on a relatively small set of traffic observations in several home networks in the Netherlands, we were able to build a preliminary model for home network traffic dynamics

    PERFORMANCE CHARACTERISATION OF IP NETWORKS

    Get PDF
    The initial rapid expansion of the Internet, in terms of complexity and number of hosts, was followed by an increased interest in its overall parameters and the quality the network offers. This growth has led, in the first instance, to extensive research in the area of network monitoring, in order to better understand the characteristics of the current Internet. In parallel, studies were made in the area of protocol performance modelling, aiming to estimate the performance of various Internet applications. A key goal of this research project was the analysis of current Internet traffic performance from a dual perspective: monitoring and prediction. In order to achieve this, the study has three main phases. It starts by describing the relationship between data transfer performance and network conditions, a relationship that proves to be critical when studying application performance. The next phase proposes a novel architecture of inferring network conditions and transfer parameters using captured traffic analysis. The final phase describes a novel alternative to current TCP (Transmission Control Protocol) models, which provides the relationship between network, data transfer, and client characteristics on one side, and the resulting TCP performance on the other, while accounting for the features of current Internet transfers. The proposed inference analysis method for network and transfer parameters uses online nonintrusive monitoring of captured traffic from a single point. This technique overcomes limitations of prior approaches that are typically geared towards intrusive and/or dual-point offline analysis. The method includes several novel aspects, such as TCP timestamp analysis, which allows bottleneck bandwidth inference and more accurate receiver-based parameter measurement, which are not possible using traditional acknowledgment-based inference. The the results of the traffic analysis determine the location of the eventual degradations in network conditions relative to the position of the monitoring point. The proposed monitoring framework infers the performance parameters of network paths conditions transited by the analysed traffic, subject to the position of the monitoring point, and it can be used as a starting point in pro-active network management. The TCP performance prediction model is based on the observation that current, potentially unknown, TCP implementations, as well as connection characteristics, are too complex for a mathematical model. The model proposed in this thesis uses an artificial intelligence-based analysis method to establish the relationship between the parameters that influence the evolution of the TCP transfers and the resulting performance of those transfers. Based on preliminary tests of classification and function approximation algorithms, a neural network analysis approach was preferred due to its prediction accuracy. Both the monitoring method and the prediction model are validated using a combination of traffic traces, ranging from synthetic transfers / environments, produced using a network simulator/emulator, to traces produced using a script-based, controlled client and uncontrolled traces, both using real Internet traffic. The validation tests indicate that the proposed approaches provide better accuracy in terms of inferring network conditions and predicting transfer performance in comparison with previous methods. The non-intrusive analysis of the real network traces provides comprehensive information on the current Internet characteristics, indicating low-loss, low-delay, and high-bottleneck bandwidth conditions for the majority of the studied paths. Overall, this study provides a method for inferring the characteristics of Internet paths based on traffic analysis, an efficient methodology for predicting TCP transfer performance, and a firm basis for future research in the areas of traffic analysis and performance modelling

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic
    corecore