
TESIS DOCTORAL

OPTIMIZING THE DELIVERY OF MULTIMEDIA OVER MOBILE
NETWORKS

Autor: Foivos Ioannis Michelinakis, IMDEA Networks Institute
University Carlos III de Madrid

Director \Tutor: Joerg Widmer, IMDEA Networks Institute

DEPARTAMENTO DE INGENIERÍA TELEMÁTICA

Leganés (Madrid), Junio de 2018

PH.D. THESIS

OPTIMIZING THE DELIVERY OF MULTIMEDIA OVER MOBILE
NETWORKS

Autor: Foivos Ioannis Michelinakis, IMDEA Networks Institute
University Carlos III de Madrid

Director \Tutor: Joerg Widmer, IMDEA Networks Institute

DEPARTMENT OF TELEMATIC ENGINEERING

Leganés (Madrid), June 2018

Optimizing the Delivery of Multimedia over Mobile Networks

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy

Prepared by

Foivos Ioannis Michelinakis, IMDEA Networks Institute, University Carlos III of Madrid

Under the advice of

Joerg Widmer, IMDEA Networks Institute

Departamento de Ingenierı́a Telemática, Universidad Carlos III de Madrid

Date: Junio, 2018

Web/contact: foivos.michelinakis@imdea.org

This work has been supported by IMDEA Networks Institute.

VI

TESIS DOCTORAL

OPTIMIZING THE DELIVERY OF MULTIMEDIA OVER MOBILE NETWORKS

Autor: Foivos Ioannis Michelinakis, IMDEA Networks Institute
University Carlos III de Madrid

Director \Tutor: Joerg Widmer, IMDEA Networks Institute

Firma del tribunal calificador:

Presidente:

Vocal:

Secretario:

Calificación:

Leganés, de de

Disclaimer

We would like to emphasize that this is a presentation of academic research and should not be

taken as indicative of Spotify’s product plans.

The European Commission is not responsible for any use that may be made of this research.

Part of this work was carried out while Foivos Michelinakis was visiting:

Korea Advanced Institute of Science and Technology (KAIST)

Simula Research Laboratory (Simula)

Spotify AB (Spotify)

IX

Acknowledgements

The front page of this PhD thesis may have just a single name as author but a lot of people

have contributed in its creation. Their contributions range from technical through ethical to just

“being there”. For example, my family was always by my side, even though physically they were

far away.

I am grateful to my supervisor Dr. Joerg Widmer who gave me the opportunity pursue a

doctorate in one of the fastest growing and interesting engineering areas: mobile communications.

His guidance and mostly patience have been invaluable in developing my profile as an engineer

and helping me grow as a person. He was not alone in this effort though. I would also like to

express my gratitude to my supervisors in the three internships I had during my PhD studies:

Gunnar Kreitz in Spotify, Yung Yi in KAIST and Ozgu Alay in Simula. Each of them had their

unique contribution to my growth and gave me the opportunity of being exposed to a variety

of research and work environments. From a “work hard, party hard” hip startup, where I was

constantly surrounded by extremely gifted people making me often think I am the stupidest person

in the room, to witnessing first hand the Korean work ethics, working with a very dedicated team

and to the family friendly, casual, but very efficient Scandinavian workplace.

During this PhD trip I had the pleasure to work closely with a number of wonderful people.

Nicola, Fabian, Andra and Hossein have been excellent co-authors and friends. Without their

contributions none of my papers would have been published. Guido has been the best intern I

could be paired with and was always a joy to supervise him. Miguel has been an excellent and

incredibly patient engineer.

A special thank you is deserved to my colleagues at IMDEA Networks Institute for welcoming

me to a foreign country and being the perfect workmates and friends. Some of them are Omar,

Miriam and Jorge who helped me adapt in Spain, even going with me to visit houses and being

my go-to translators. Angelos, Evgenia, Elli, Nicholas, Vasilis and Stelios who helped me keep

my Greek fresh and even gave me the opportunity to become godfather to a wonderful girl. Javier

and Rosa who went well beyond their duties to help me with any difficulties I had living in Spain.

Javier was even accompanying me to the hospital the day of my knee surgery. Roderick has been a

wonderful and calm colleague, friend and flatmate. Christian, Aymen, Mohamed, Maurizio, Amr,

Hany, Dario, Guillermo, Roberto, Alejandro, Lisa, Ander, Julien, Gines, Pablo, Joan, Noelia,

Syed, Camilo, Allyson, Arash, Thomas, Claudio, Adrian, Danilo...... and so many more have

XI

XII

been mostly friends than coworkers. I am sure I am forgetting someone, but you know you are

important to me.

Finally, I have to thank the rest of the people I met and worked with during my PhD trip at

my internships: Riccardo Petrocco, Boxun Zhang and the metadata quality squad who hosted me

in their space at the Spotify headquarters, Boram Jin and the rest of the Lanada group at KAIST

and Giorgos, Kostas, Cise and Isabel at the mobile systems and analytics group at Simula.

My only regret and advice to the new people is how late I discovered the productivity gains

that a good pair of noise canceling headphones paired with a brown noise generator can offer in a

lively open space environment such as IMDEA.

Abstract

The consumption of multimedia content is moving from a residential environment to mobile

phones. Mobile data traffic, driven mostly by video demand, is increasing rapidly and wireless

spectrum is becoming a more and more scarce resource. This makes it highly important to op-

erate mobile networks efficiently. To tackle this, recent developments in anticipatory networking

schemes make it possible to to predict the future capacity of mobile devices and optimize the

allocation of the limited wireless resources. Further, optimizing Quality of Experience—smooth,

quick, and high quality playback—is more difficult in the mobile setting, due to the highly dy-

namic nature of wireless links. A key requirement for achieving, both anticipatory networking

schemes and QoE optimization, is estimating the available bandwidth of mobile devices. Ideally,

this should be done quickly and with low overhead.

In summary, we propose a series of improvements to the delivery of multimedia over mobile

networks. We do so, be identifying inefficiencies in the interconnection of mobile operators with

the servers hosting content, propose an algorithm to opportunistically create frequent capacity es-

timations suitable for use in resource optimization solutions and finally propose another algorithm

able to estimate the bandwidth class of a device based on minimal traffic in order to identify the

ideal streaming quality its connection may support before commencing playback.

The main body of this thesis proposes two lightweight algorithms designed to provide band-

width estimations under the high constraints of the mobile environment, such as and most notably

the usually very limited traffic quota. To do so, we begin with providing a thorough overview

of the communication path between a content server and a mobile device. We continue with

analysing how accurate smartphone measurements can be and also go in depth identifying the

various artifacts adding noise to the fidelity of on device measurements. Then, we first propose

a novel lightweight measurement technique that can be used as a basis for advanced resource

optimization algorithms to be run on mobile phones. Our main idea leverages an original packet

dispersion based technique to estimate per user capacity. This allows passive measurements by

just sampling the existing mobile traffic. Our technique is able to efficiently filter outliers in-

troduced by mobile network schedulers and phone hardware. In order to asses and verify our

measurement technique, we apply it to a diverse dataset generated by both extensive simulations

and a week-long measurement campaign spanning two cities in two countries, different radio

technologies, and covering all times of the day. The results demonstrate that our technique is

XIII

XIV

effective even if it is provided only with a small fraction of the exchanged packets of a flow. The

only requirement for the input data is that it should consist of a few consecutive packets that are

gathered periodically. This makes the measurement algorithm a good candidate for inclusion in

OS libraries to allow for advanced resource optimization and application-level traffic scheduling,

based on current and predicted future user capacity.

We proceed with another algorithm that takes advantage of the traffic generated by short-lived

TCP connections, which form the majority of the mobile connections, to passively estimate the

currently available bandwidth class. Our algorithm is able to extract useful information even if the

TCP connection never exits the slow start phase. To the best of our knowledge, no other solution

can operate with such constrained input. Our estimation method is able to achieve good precision

despite artifacts introduced by the slow start behavior of TCP, mobile scheduler and phone hard-

ware. We evaluate our solution against traces collected in 4 European countries. Furthermore, the

small footprint of our algorithm allows its deployment on resource limited devices.

Finally, in an attempt to face the rapid traffic increase, mobile application developers out-

source their cloud infrastructure deployment and content delivery to cloud computing services

and content delivery networks. Studying how these services, which we collectively denote Cloud

Service Providers (CSPs), perform over Mobile Network Operators (MNOs) is crucial to under-

standing some of the performance limitations of today’s mobile apps. To that end, we perform

the first empirical study of the complex dynamics between applications, MNOs and CSPs. First,

we use real mobile app traffic traces that we gathered through a global crowdsourcing campaign

to identify the most prevalent CSPs supporting today’s mobile Internet. Then, we investigate how

well these services interconnect with major European MNOs at a topological level, and measure

their performance over European MNO networks through a month-long measurement campaign

on the MONROE mobile broadband testbed. We discover that the top 6 most prevalent CSPs

are used by 85% of apps, and observe significant differences in their performance across differ-

ent MNOs due to the nature of their services, peering relationships with MNOs, and deployment

strategies. We also find that CSP performance in MNOs is affected by inflated path length, roam-

ing, and presence of middleboxes, but not influenced by the choice of DNS resolver. We also

observe that the choice of operator’s Point of Presence (PoP) may inflate by at least 20% the

delay towards popular websites.

Table of Contents

Disclaimer IX

Acknowledgements XI

Abstract XIII

Table of Contents XV

List of Tables XIX

List of Figures XXIII

List of Acronyms XXV

I Introduction 1

1. Introduction 3
1.1. Motivation . 3

1.2. Contributions and Published Material . 7

1.3. Thesis Overview . 9

2. Background 11
2.1. “Flow” Definition . 11

2.2. Content Servers and the Modern (Mobile) ISP 12

2.3. LTE Architecture . 14

2.3.1. LTE Core Network . 14

2.3.2. The Lower Layers of LTE . 16

2.3.3. Baseband . 18

2.4. Linux Kernel Networking . 19

2.4.1. Interrupt Handling . 22

2.4.2. The Higher Layers of the Linux Networking Stack 24

2.5. Final Notes . 24

XV

XVI TABLE OF CONTENTS

3. Related Work 27
3.1. Mobile Bandwidth / Capacity Estimation . 27

3.1.1. Active Measurement Techniques . 27

3.1.2. Lightweight Active Measurement Techniques - Packet Dispersion 28

3.1.3. Passive Measurement Techniques . 28

3.2. Mobile Communication Standards Mechanics and Measurements 29

3.3. Characterization and Evaluation of Cloud Service Providers 30

II Smartphone Measurements on the Physical and Lower Layers 33

4. LTE Radio Link Estimation Accuracy of Smartphones 35
4.1. Testbed . 36

4.2. Experiment and Results . 38

4.2.1. Measuring Layer Latency (Isolated Transmission Test) 38

4.2.2. Measuring Link Rate Estimation (Burst Transmission Test) 41

4.3. Summary . 46

5. Challenges in Performing Low Layer Mobile Measurements 47
5.1. Measurement Artifacts . 47

5.1.1. Small Congestion Window Values During the Slow Start 48

5.1.2. Infrequent Polling for Incoming Packets 48

5.1.3. Weak or Busy Phone Hardware . 50

5.1.4. Slower Speed During the First Packets of a Flow 50

5.2. Packet Pair Issue . 51

5.3. Packet Trains Issue . 52

6. Passive Mobile Bandwidth Classification Using Short Lived TCP Connections 53
6.1. Algorithm . 54

6.2. Comparison with Bin-Based Tools . 57

6.3. Discussion . 61

6.4. Summary . 63

7. Lightweight Capacity Measurements For Mobile Networks 65
7.1. Mobile Capacity Estimation . 65

7.1.1. Capacity Estimation Samples . 69

7.1.2. Statistical Processing of the Samples . 70

7.1.3. Capacity Measurement . 70

7.2. Simulation Campaign . 74

7.3. Measurement Campaign . 76

7.4. Results and Discussion . 76

TABLE OF CONTENTS XVII

7.5. Summary . 80

III Interconnection of Third-Party Services and Mobile Operators 81

8. A Measurement Study of Mobile Cloud Services 83
8.1. Recent Trends . 84

8.2. Methodology and Datasets . 85

8.2.1. Step 1. Collecting Accurate Traffic Logs 86

8.2.2. Step 2. Mapping FQDNs to Cloud Service Providers (CSPs) 87

8.2.3. Step 3. Empirical Performance Analysis 88

8.3. Cloud Service Provider (CSP) Prevalence on Mobile Apps and Services 89

8.4. CSP Performance and Integration with MNOs 91

8.4.1. In-path Middleboxes . 91

8.4.2. DNS infrastructure . 92

8.4.3. CSP Performance . 93

8.4.4. CSP-MNO Integration . 94

8.4.5. International Roaming . 97

8.5. Study Limitations . 98

8.6. Effect of Point of Presence (PoP) Selection on Quality of Service (QoS) 98

8.7. Summary . 101

9. Conclusions 103

Appendices 107

A. A Model for Throughput Prediction for Mobile Users 109
A.1. Taxonomy of Predictors . 110

A.1.1. Mobility Predictors . 111

A.1.2. Bandwidth Predictors . 112

A.2. Bandwidth Availability Model . 113

A.3. Results . 115

A.4. Summary . 118

References 128

XVIII TABLE OF CONTENTS

List of Tables

4.1. Technical specifications of the test phones. 37

6.1. How frequently our algorithm and the baseline match. 60

7.1. Simulation parameters . 74

7.2. Average CU and average optimal tT per technology. 79

8.1. List of MNOs per country. MNOs listed in bold are roaming internationally (home coun-

try code in brackets). 88

8.2. Top 5 FQDN by app penetration. 89

8.3. Multi-CSP strategies by FQDN and SLD. 90

8.4. Median and standard deviation values of the organization and country distance per

CSP when aggregating all the MNOs that we measure in the MONROE platform.

We target six main CSPs we previously identified in the analysis of the Lumen

dataset. 95

8.5. The effect of organization and country distance on TCP connection time [median

(std)]. 95

A.1. Prediction Taxonomy . 110

A.2. MCS coefficients . 116

XIX

XX LIST OF TABLES

List of Figures

2.1. Simplified topology and network components that form the path between a CDN

edge server and a mobile device. 12

2.2. Logical representation of a TCP splitting middlebox. 13

2.3. The LTE protocol stack. Protocols of the same layer have the same color. 16

2.4. The RRC state machines of the 3G and 4G-LTE mobile communication standards. 17

2.5. The fields of a IPv4 header. 21

2.6. The fields of a TCP header. 21

2.7. The fields of a UDP header. 21

2.8. The fields of a ICMP echo request / reply header. 21

4.1. Experiment setup showing devices, connections and software (figure from [1]). . 36

4.2. Communication diagram for the downlink isolated transmission. Dimension lines

illustrate data-to-ack latency (figure from [1]). 38

4.3. Empirical probability density functions of the latencies observed in the downlink

(figure from [1]). 39

4.4. Empirical probability density functions of the latencies observed in the uplink

(figure from [1]). 41

4.5. Communication diagram for downlink burst transmissions (figure from [1]). . . . 42

4.6. Inside a burst of packets, we may identify Groups that arrived at the phone simul-

taneously, encapsulated in the same TB. 43

4.7. Comparison of the estimator ratios computed on burst by the application (a) and

the kernel (b) and on groups (c). The small plots on the left show estimator

densities: the x-axis is the cell ground truth and the y-axis the estimate (figure

from [1]). 44

4.8. Estimator ratios computed on burst in the uplink, as measured in the kenrel level

(figure from [1]). 45

5.1. Link saturation traffic over LTE during the steady state of a TCP flow. 48

5.2. Arrival of the first packets of a TCP flow over LTE. 48

5.3. WiFi experiment of a phone with infrequent polling of the NIC. 49

5.4. WiFi experiment of a phone unaffected by polling. 49

XXI

XXII LIST OF FIGURES

5.5. Some packets may be registered with a noticeable delay. Experiment over 3G. . . 50

5.6. Arrival of high speed UDP Constant Bitrate (CBR) traffic over LTE. 50

6.1. First 100 packets of a TCP flow. The identified groups are enclosed between two

vertical lines and their derived bandwidth estimators are located right below them. 56

6.2. A trace generated by the Speedtest application while the UE was stationary and

connected to an uncongested cell. 58

6.3. A trace generated by the Speedtest application while the UE was in car moving

with 100 Km/h. 59

6.4. Percentage of difference between the instantaneous bandwidth measured by our

tool and the average bandwidth measured by the Speedtest APP. 61

6.5. Percentage of difference between the instantaneous bandwidth measured by our

tool and the average bandwidth measured by a bin-based estimator. The solid and

the dashed lines mark the 100% and 50% limits respectively. 62

7.1. Dispersion of IP packets over the Internet. First, they are sent back-to-back from

the server (1). After experiencing dispersion on the Internet, they arrive on the BS

(eNodeB) (2). Finally, they are received in groups by the UE (3). The timelines

(1-3) happen sequentially, one after the other, not in parallel. The horizontal

arrows represent TBs allocated to the recipient UE. 66

7.2. Scatterplots of cW (left of each pair) and its statistical distribution (right of each

pair) computed for tT = {1, 5, 10, 20, 30}ms from left to right. When the disper-

sion time is computed on windows larger than the TTI, tT > tS , the distribution

gets more stable. 67

7.3. Ratio ∆(tT), varying tT ∈ [2, . . . , 50] ms. The measurements get stable from

tT > tS = 10 ms. 71

7.4. Coefficient of variation of the normalized root mean square error εC of the ca-

pacity estimate computed over a fraction f = k/K of continuous samples for

varying bin sizes ({0.1s, 0.2s, 0.5s, 1s}). 72

7.5. Time plot of the capacity variation CU (k)(t) computed every 500 ms and its dif-

ferent estimates computed with f = {10, 20, 50, 100} %. 73

7.6. CV(NRMSE) εP of the capacity estimate between ideal arrivals (tP = 0) and

arrivals that suffer from polling (tP 6= 0), for varying bin sizes and minimum

dispersion times tT . 74

7.7. Deviation of the sampling estimations (k = 5%) for various average polling peri-

ods tP from the ideal case (k = 100%, tP = 0). 75

7.8. Scatterplot of the average estimate of per user capacity computed using all avail-

able information E[CU
(K)] against the estimate computed 5 % of the available

information E[CU
(k)], k = K/20. 77

7.9. Contour graph of εC varying tT and f for a bin size of 200 ms. 79

LIST OF FIGURES XXIII

8.1. Schema of our study methodology using a simplified case of the Flipboard app as a toy

example. We followed three complementary steps in our study: 1) we analyse app traffic

logs to identify the network domains reached by thousands of mobile apps (each red

arrow represents a traffic flow to a domain); 2) we detect those domains hosted in CSPs;

and 3) we actively measure the performance of CSP-hosted domains on the MONROE

measurements platform. 85

8.2. Top-15 CSPs prevalence by app, FQDN and SLD. 90

8.3. Heatmap of TCP connection times over ports 80 and 443 for a Vodafone Italy

SIM when roaming (left) and when connecting from the home network (right).

Lighter colors indicate more repetitions. 91

8.4. Median values of TCP connection time and TLS handshake duration for < CSP

> < DNS resolver > combinations. Error bars represent the 25th and 75th

percentile. 93

8.5. Effect of roaming on TCP handshake over Telia. 97

8.6. Boxplots presenting the effect of suboptimal PoP selection in two scenarios (Fig-

ure from [2]). 99

8.7. Histogram presenting the duration of external IP leases and PoP selections (Figure

from [2]). 101

A.1. Bandwidth forecasting examples: category 3, 2 and 1 predictor outputs are shown

on the left hand side, in the center and on the right hand side, respectively. 112

A.2. Plots of the SINR CDF FΓ, given a perfect knowledge of N = 10 (left) or a per-

fect knowledge of d = 1.5 Km (right). In the former case the standard deviation

σd, of the distance is set as that of the most common localization systems, while

in the latter σN ∈ {0, 1, 3, 10}. 116

A.3. Plots of the throughput CDF FT , given a perfect knowledge of N = 10 (right

left side) or a perfect knowledge of d = 1.5 Km (right hand side). In former

case the standard deviation σd, of the distance is set as that of the most common

localization systems, while in the latter, σN ∈ {0, 1, 3, 10}. 117

XXIV LIST OF FIGURES

List of Acronyms

C-RNTI Cell Radio Network Temporary Identifier

DRX Discontinuous Reception

EPC Evolved Packet Core

HARQ Hybrid Automatic Repeat Request

IMSI International Mobile Subscriber Identity

MCS Modulation and Coding Scheme

PDCP Packet Data Convergence Protocol

QoE Quality of Experience

QoS Quality of Service

RLC Radio Link Control

RRC Radio Resource Control

TB Transport Block

TFT Traffic Flow Template

UE User Equipment

DMA Direct Memory Access

UID User Identifier

SoC System on Chip

SKB Socket Buffer Structure

NAPI New API

NIC Network Interface Controller / Network Interface Card

XXV

WLAN Wireless Local Area Network

SKBs Socket Buffer Structures

PGW Packet Data network Gateway

NR New radio

SGW Serving Gateway

TTI Transmission Time Interval

FDD Frequency-Division Duplexing

TDD Time-Division Duplexing

CDNs Content Distribution Networks

IXP Internet Exchange Point

PoP Point of Presence

RBs Resource Blocks

MAC Medium Access Control

RBG Resource Block Group

SIM Subscriber Identification Module

OWL Online Watcher for LTE

RAN Radio Access Network

CBR Constant Bitrate

CSPs Cloud Service Providers

CSP Cloud Service Provider

MNOs Mobile Network Operators

EEA European Economic Area

EU European Union

TTFB Time to First Byte

RTT Round Trip Time

PEP Performance Enhancing Proxies

NAT Network address translation

EPDF Empirical Probability Density Function

Part I

Introduction

1

Chapter 1

Introduction

Modern western civilization relies on “information”. Information is needed to understand

the world around us, communicate and make informed decisions. Smartphones are an example

of how it enhances modern life. Smartphones are hand-held computers focusing primarily on

various forms of communication. They enable users to among others, access text, audio, images

and video, hosted on other computers, called servers, through a network connection. These forms

of content are collectively called “multimedia”. Multimedia files are broken into smaller pieces

by the server and transmitted in sequence to the smartphone. A sequence of packets forms a

(network) flow1. In this thesis, we will explore ways to optimize the way smartphones make use

of “information”, which in our context are multimedia flows. As a fortunate side effect, the same

tools and techniques might have a favorable influence on the “energy” aspect of these devices,

which is battery life. In summary, we will study the properties of these flows, how they are

affected in the various stages of transmission and propose ways to exploit the information we can

gather from them to make them more efficient. Since we cannot study flows in isolation, we will

also study the various network components that interact with them and how these components are

interconnected. Thus, we will study the smartphone itself, the radio access network, core network

components and the servers hosting the multimedia.

1.1. Motivation

Over the last few years, emerging new technologies and devices have altered the traditional

scheme of media discovery and delivery. The gigantic growth in popularity of online Social

Networks (OSNs), Content Distribution Networks (CDNs), video sharing websites, hand-held

devices with multimedia capabilities and access to fast 4G/3G networks have shape-shifted the

old media dissemination model.

The availability of affordable mobile broadband connections encourages people to consume

a lot of multimedia content, often HD videos, on their handheld devices. The global mobile data

1A stricter definition of “flow” will be given later.

3

4 Introduction

traffic is expected to increase sevenfold between 2016 and 2021, reaching 49.0 exabytes per month

by 2021 [3], mostly caused by the ever increasing video traffic. Augmenting the network capacity

to cope with this traffic or offloading the traffic to other wireless technologies such as WLAN,

may not always be the best solution since the former is very costly and the latter may not work

in all cases [4,5]. Even though spectrum efficiency is improving thanks to the fifth generation [6]

of mobile networks, the wireless medium is becoming a scarcer and scarcer resource, due to the

ever increasing demand for mobile communication. As a consequence, it is highly important

to try to reduce traffic volume and increase network efficiency. Recently, a number of papers

addressed improved resource allocation mechanisms based on capacity prediction techniques.

For instance, [7–10] propose to use resources when they are more abundant and cheap, and to

refrain from or to limit communication when it is more expensive (e.g., lower spectral efficiency,

higher congestion, etc.) by exploiting perfect knowledge of the future capacity.

In Appendix A, we will survey the state of the art on mobile capacity prediction techniques

and build a model for both short and medium to long term prediction errors in order to be able to

quantify the impact of prediction uncertainties in resource allocation. Most short term prediction

techniques [11, 12] rely on time series filtering solutions, such as moving average and autore-

gressive (ARMA) or autoregressive conditional heteroskedasticity (ARCH) modeling. Thus, in

order to allocate resources on a given time granularity, prediction must be available with the same

granularity and, consequently, mobiles must be able to measure capacity with the same granular-

ity [13]. In other words, they all share the requirement of having as many as possible past values

of bandwidth.

Apart from mobile operators content providers are affected as well. The distribution of audio

and video content is swiftly moving from the desktop environment to the mobile one. This shift

affects streaming applications like Spotify [14], that have seen an increasing mobile consumption

over the last years and continue to do so. In the competitive market of streaming services, Quality

of Experience (QoE) is important. The metrics comprising QoE include fast start-up time, low

playback latency, stutter-free media delivery, and high bitrates.

Given the high variation of the available radio resources and capabilities of mobile devices,

streams are often available in different bitrates. To achieve high QoE, it is imperative to select

the highest possible bitrate, as constrained by available bandwidth and device hardware. Ideally,

it is desirable to avoid switching bitrates during playback, but due to the difficulty of predicting

bandwidth, it is currently a common practice to begin playback on a low-quality bitrate, and then

increase it if possible. In order to improve on the current practice and select an appropriate bitrate

also for the initial part of stream, it is required to have a bandwidth estimation algorithm that

operates on very small amounts of traffic.

Another key use case for a rapid bandwidth estimator is to make buffering decisions. Stream-

ing media players need to buffer content before commencing playback, and thus need to decide on

the size of said buffer. Such decisions require an estimate of the bandwidth available in the near

future. This is particularly important for applications such as Spotify, which do not perform bi-

1.1 Motivation 5

trate switching, but still require low playback latency. Furthermore, when streaming audio tracks,

the small amount of data transferred makes it difficult to apply traditional bandwidth estimators.

Spotify reported in a previous study [14] a median playback latency of 265 ms with less than 1%

of streams suffering one or more stutter events. However, at that point, most users were streaming

on desktops rather than mobile devices, and the data reported did not include phones.

Part II of this thesis is dedicated to estimating the bandwidth of mobile users in minimally

intrusive ways. As we will analyse in later chapters, getting a good enough estimation of mobile

bandwidth is very challenging. Especially, if the estimations should be generated with the fre-

quency required by traffic prediction algorithms. Some of the limitations that we have to take into

account include:

Low CPU cost. Even modern mobile devices have limited CPU resources, if we take

into account user demands (i.e., high density displays, multitasking etc.). Our algorithms

have very low complexity, thus do not cost a lot of CPU cycles.

No traffic generation. The most popular approach for estimating bandwidth is gen-

erating saturation traffic and observing how much traffic actually “goes through”. Since

most users have a fixed quota of traffic per month, we had to invent solutions that follow a

very different logic in order to avoid generating traffic. We focus on inferring bandwidth

by cleverly analysing the arrival pattern of the traffic other applications are generating.

Minimal impact on battery. Battery is the most scarce resource of a smart phone.

Our algorithms take this into account. Radio is the most resource intensive component

of a smartphone and since our algorithms do not generate traffic at all, do not contribute

to having it active. Also, the low complexity of our solutions has the side effect of not

requiring a lot of energy to run.

Fast execution. It is critical to generate an estimate fast, so that the traffic prediction

algorithms have “up to date” data to work with. Our algorithms are able to give a result a

few ms after a sample has been received and timestamped by the kernel of the device.

In the following chapters we propose two mobile bandwidth estimation solutions that respect

the above limitations.

Naturally, the question regarding how trustworthy are measurements performed in a device as

constrained as the mobile phone arises. There is extensive past work in attempting to measure the

characteristics, such as speed, of mobile connections [15–19]. Despite that, and very surprisingly,

at the time of conducting the research presented in Part II, there was no study evaluating the

accuracy of smartphone measurements over mobile networks. At the same time, we also noticed

that different phones may exhibit very different behavior in aspects that are easily observable,

such as end-to-end throughput, under the same conditions.

To address this, in Chapter 4, we provide a detailed study of the reliability of mobile phone

measurements and further analyse how different chipsets impact on their accuracy. We use an

6 Introduction

LTE control channel decoder called Online Watcher for LTE (OWL) [20], to compare the band-

width observed at the kernel level to the actual bandwidth measured at the physical layer. OWL

has excellent reliability (i.e., successful decoding rate higher than 99.85%) which is fundamental

to provide ground truth readings of LTE scheduling information. OWL decodes LTE control mes-

sages sent by base stations to mobile devices2. Therefore, we can observe traffic at the physical

layer of the device. Then, we compare the view we have of the physical layer, with the view we

obtain from higher layers of the device like the kernel and the application. Further, Chapter 5 anal-

yses in detail the measurement artifacts that add noise in smartphone measurements performed

using tcpdump, such as the techniques proposed in Chapters 6 and 7.

Apart from the low level aspects of mobile measurements, in Part III, we also dive into how

management, configuration and political decisions affect the performance of mobile networks.

Mobile app developers have a wealth of tools and techniques at their disposal that help them

decrease the amount of time and effort required to develop, deploy, and maintain their apps.

One particularly powerful and very common technique is to use a variety of third-party online

services such as on-demand cloud computing platforms (e.g., Amazon Web Services) and content

delivery networks (e.g., Akamai) in their apps. This technique makes it easier and more efficient

to deploy mobile apps at a global scale by shifting the burden of managing and maintaining server

infrastructure from app developers to these Cloud Service Providers (CSPs).

While there have been quite a few studies on the implications of newer protocols such as

QUIC on the performance of mobile apps [21], there is a notable lack of a systematic study on the

performance of third-party cloud computing and content delivery services used by mobile apps.

In fact, the relationships between CSPs, app developers, and Mobile Network Operators (MNOs)

are tangled, and decisions made by each entity can have a significant and far-reaching impact on

the ecosystem as a whole. For example, MNOs may peer with popular CSPs to reduce their costs

and improve performance for their users, thereby placing these CSPs and the apps that use them

at an advantage over others.

Chapter 8 characterizes the performance of these services in the wild. Such evaluation is

critical in understanding, and ultimately reducing, the technological gap between the limited ca-

pabilities of the mobile Internet infrastructure and the performance requirements of current and

future mobile apps [22].

Since 15 June 2017, the European Union (EU) has ended roaming surcharges within the states

participating in European Economic Area (EEA). Travelers between these countries only pay do-

mestic charges for their mobile data. However, to the best of our knowledge there is no systematic

study about the effect of roaming on the Quality of Service (QoS) of mobile applications. Chap-

ter 8 further explores this aspect that is expected to affect millions of European citizens.

2Note that OWL does not violate users’ privacy, since it only logs UEs’ temporary identifiers.

1.2 Contributions and Published Material 7

1.2. Contributions and Published Material

The research work presented in this thesis has been published and presented in several peer-

reviewed journals and conferences. In detail, the related publications are six conference papers

(in three of these I am the first author and in the other three the second author) [1,23–27] and two

journal articles (one as first author and one as second author) [2, 28]. As of writing these lines

another journal paper (second author) is under submission, which extends the work presented

in [1]. Parts of this work have been presented as two demos [29, 30], one invited talk [31] as

well as several posters. Finally, during my PhD I contributed to one peer-reviewed conference

paper [32], which is out of the scope of the current thesis and thus not discussed.

Research is a collaborative process and all of these works have been the result of the joint

efforts of their authors. For completeness and in order to have everything presented in its proper

context, in the following chapters, I present the work in a similar fashion as it was originally

published, without highlighting or isolating my own contributions. The goal of this section is to

present a summary of the above publications and clarify what was my contribution to each one.

In order to comply with plagiarism rules, content from papers where I am not the first author

is either presented as an appendix or shortened, paraphrased and the figures’ captions cite the

original paper.

The main topic of this thesis is, as its title declares, “optimizing the delivery of multimedia

over mobile networks”. In an attempt to make it a stand alone and cohesive work, only the most

relevant parts of the published papers to its main topic are presented. Some work that I did during

my PhD that is not discussed in this text includes measuring the performance accuracy over WiFi

and speed and delay measurements of mobile networks.

I have studied in depth the arrival patterns of IP packets to mobile devices and analysed the

possible artifacts that may distort their accurate observation. To do so, I gathered an extensive set

of traces in a variety of conditions and countries, as well as generated vast simulation data. Then, I

proposed two algorithms that may use arrival pattern information to passively estimate bandwidth,

either by analysing the first few packets of a TCP flow, or by sampling a minimal portion of the

traffic generated by bigger flows. Chapter 5 presents the measurement artifacts and Chapters 6

and 7 the two algorithms. Further, Chapter 2 is mostly original content created specifically for this

thesis and acts as supplementary material to the peer reviewed work presented in the other three

chapters. To the best of my knowledge, there is no other public resource that analyses the whole

process of delivering a packet to a mobile phone as Chapter 2, does. The available resources are

scattered, outdated or wrong and some parts of the process, like the baseband operation, have

notoriously limited public documentation. Thus, it is a good starting point for anyone interested

in learning about mobile communications. The related publications are:

Foivos Michelinakis, Nicola Bui, Guido Fioravantti, Joerg Widmer, Fabian Kaup,

David Hausheer, “Lightweight Capacity Measurements For Mobile Networks”, in Com-

puter Communications, 84. pp. 73-83, June 2016, ISSN 0140-3664.

8 Introduction

Foivos Michelinakis, Gunnar Kreitz, Riccardo Petrocco, Boxun Zhang, Joerg Wid-

mer, “Passive Mobile Bandwidth Classification Using Short Lived TCP Connections” in

The 8th IFIP Wireless and Mobile Networking Conference (WMNC 2015), 5-7 October

2015, Munich, Germany.

Foivos Michelinakis, Nicola Bui, Guido Fioravantti, Joerg Widmer, Fabian Kaup,

David Hausheer, “Lightweight Mobile Bandwidth Availability Measurement”, in The 14th

IFIP Networking 2015 Conference, 20-22 May 2015, Toulouse, France.

A crucial part of the above was validating that smartphones are capable of reporting accurately

enough the timing of packet arrivals. Chapter 4 analyses how we assessed smartphone measure-

ment accuracy. In this work, I created the experiment logic and performed the experiments, as

well as analyse the gathered data. I also performed experiments regarding the accuracy of mea-

surements over the WiFi interface, which are not discussed in this thesis. The related publication,

an extension of which is under submission to the “Pervasive and Mobile Computing” Journal, is:

Nicola Bui, Foivos Michelinakis, Joerg Widmer, “Fine-grained LTE Radio Link Es-

timation for Mobile Phones”, in The 18th International Symposium on a World of Wireless

Mobile and Multimedia Networks (WoWMoM 2017), 12-15 June 2017, Macau, China.

In collaboration with researchers from TU Darmstadt I contributed to two works evaluating

the QoS of mobile networks based on crowd sourced data. I worked on gathering traces from

Spanish operators and analysing the dataset. Parts of this work are presented in Section 8.6. The

related publications are:

Fabian Kaup, Foivos Michelinakis, Nicola Bui, Joerg Widmer, Katarzyna Wac,

David Hausheer, “Assessing the Implications of Cellular Network Performance on Mo-

bile Content Access”, in IEEE Transactions on Network and Service Management, 13 (2).

pp. 168-180, March 2016, ISSN 1932-4537.

Fabian Kaup, Foivos Michelinakis, Nicola Bui, Joerg Widmer, Katarzyna Wac,

David Hausheer, “Behind the NAT – A Measurement Based Evaluation of Cellular Ser-

vice Quality”, in The 11th International Conference on Network and Service Management

(CNSM 2015), 9–13 November 2015, Barcelona, Spain.

I performed extensive measurements and analysis of the performance of third-party services

over twelve dominant European network operators, using the MONROE experiment testbed. This

work is discussed in Chapter 8 and the related publication is:

Foivos Michelinakis, Hossein Doroud, Abbas Razaghpanah, Andra Lutu, Narseo

Vallina-Rodriguez, Phillipa Gill, Joerg Widmer, “The Cloud that Runs the Mobile Internet:

A Measurement Study of Mobile Cloud Services”, in The 37th IEEE International Confer-

ence on Computer Communications (IEEE INFOCOM 2018), 15-19 April 2018, Honolulu,

HI, USA.

1.3 Thesis Overview 9

Finally, I created simulations helping define and validate a stochastic model for user through-

put prediction in mobile networks. We did not discuss these simulations in the resulting publica-

tion though. Appendix A presents the model and the related publication is:

Nicola Bui, Foivos Michelinakis, and Joerg Widmer, “A Model for Throughput Pre-

diction for Mobile Users”, in European Wireless May 2014, Barcelona, Spain.

Chapter 3 offers an overview of the state of the art as it was presented in the above publica-

tions.

1.3. Thesis Overview

The thesis is divided into three parts. Part I contains all the background material required to

follow the flow of the thesis. Part II discusses how trustworthy are smartphone measurements

and then proposes 2 bandwidth estimation algorithms. Part III presents a series of measurements

which evaluate the interconnection of Cloud Service Providers and mobile operators. In particu-

lar, Part I starts with the present introduction. Then, Chapter 2 offers a very extended background

overview, meant to make the information presented in the chapters about mobile bandwidth es-

timation more approachable to the average reader. Chapter 3 summarizes the state of the art.

Part II starts with Chapter 4 which studies the accuracy of smartphone measurements. Chapter 5

provides an overview of the artifacts that distort the proper timing of packet arrivals and should

be accounted for by any algorithm that relies on packet interarrival times. In Chapter 6, we pro-

pose an estimation of available bandwidth of mobile phones through passive traffic monitoring of

the traffic generated during the initial few hundred milliseconds of the TCP “slow start” phase.

Chapter 7 provides a simple tool that evaluates passively and with minimum impact the per user

capacity variations over time in a mobile environment. Chapter 8 is the sole chapter of Part III and

discusses a series of measurement studies aimed at identifying dominant Cloud Service Providers,

analysing how they interconnect with mobile operators and how the interconnections and opera-

tors’ configurations affect their performance. Chapter 9, concludes the thesis offering the bigger

picture of the presented work and discusses some open issues. Finally, Appendix A presents a

model that may take as input the bandwidth estimations of the algorithms of Chapters 6 and 7 and

derives throughput predictions.

Chapter 2

Background

A big portion of the thesis analyses the arrival patterns of IP packets as they are reported

by the Linux kernel. We use these patterns to infer bitrate at the physical layer, in other words,

how fast a base station is transmitting data to the target smartphone. On other parts, we study

how the behavior of the different players in the path between a client and a server affects the

delay of the connection. This chapter serves as a brief introduction on how an IP packet travels

between a server and a mobile device and how it interacts with the entities that handle it along

the way. We follow the path from the moment the IP packet is transmitted from the Network

Interface Controller / Network Interface Card (NIC) of the server, until its payload is delivered to

the application of the smartphone requesting the related data. We put more emphasis on the steps

that can have an effect on what we discuss later on. Figure 2.1 presents the main nodes along this

path. To the best of our knowledge, this chapter is the only cohesive, accurate and up–to–date

public resource that analyses all the parts of a packet trip between a server and a mobile device.

Considering how fragmented and often surprisingly hard it is to find reliable information for

some of the material discussed here, this chapter serves as an excellent starting point for anyone

interested in mobile networks.

2.1. “Flow” Definition

Since we are interested in the end to end connection between two machines, we have to start

by specifying what is a “flow”. The term “flow” may have multiple definitions in networking.

We are interested the total amount of traffic that a smartphone can receive from a specific server.

Therefore, in this thesis a “flow” is a set of packets generated by a server traveling towards a

client. Unless otherwise specified, we will be referring to such cases when using this term. This

is in contrast to a more popular but strict definition of “flow”, where it is defined as a set of packets

which have fixed values in specific parts of their network and transport layer headers.

In this stricter case, a TCP flow is identified by the values of 1) protocol, 2) source IP address

and 3) destination IP address of the IP header and 4) source port and 5) destination port of the

11

12 Background12 Background

UEUE

SGWSGW

eNodeBeNodeB

LTE Core Network
Evolved Packet Core (EPC)

R
A
N

HTML

PNG

CSS

Router

Web page

UEUEUE
eNodeBeNodeBeNodeB

SGWSGWSGW

LTE LTE Core NetworkCore Network
Evolved Packet Core (EPC)Evolved Packet Core (EPC)

Router

Web pageWeb pageWeb page

Mobile Network Operator

PGWPGWPGW

Internet Exchange
Point Switch

MiddleboxMiddlebox

DNSDNS

PoP

Other servicesOther services

CDN Edge Server

NAT

eNodeBeNodeBeNodeB

R
A
N

PoP

MiddleboxMiddleboxMiddlebox

DNSDNSDNS

Other servicesOther servicesOther services

NAT

Operator Backbone

eNodeBeNodeBeNodeB

Figure 2.1: Simplified topology and network components that form the path between a CDN edge
server and a mobile device.

TCP header. The same fields can be used to identify a UDP flow. For a flow generated by the

pingcommand, the same fields from the IP header and the identifier field of the ICMP header

define a flow. In recent years, it is common to open multiple TCP connections to a server when

fetching content, such as web pages, in part to overcome the limitations of the slow start phase of

TCP. In our studies, we do not distinguish packets of different TCP flows, rather all the packets

of such TCP flows are treated as one big flow.

Another key aspect of “flow” definition is the vantage point where traffic is observed. In our

case, it is usually at the kernel of an Android smartphone. So, the view we have of the traffic is

limited by the capabilities of the device. This poses a great limitation in accurately evaluating

traffic characteristics. Most specifically, it was not possible for the contemporary smartphone

hardware we used in the experiments we will present in the next chapters, to accurately report

the precise arrival time of IP packets. It seems that more modern hardware, as well as recent

advancements in the linux kernel have the potential to increase the precision of traffic monitoring,

improving the accuracy of our tools. There is no guarantee though that even with improved

equipment, monitoring could be consistently precise enough to get the real view of the traffic.

Ideally, we would like to have sub-millisecond accuracy for the majority of the packets at the IP

layer. A big part of this thesis is dedicated to techniques that lessen the effect of such inaccuracies.

2.2. Content Servers and the Modern (Mobile) ISP

Due to the peculiarities of the HTTP and TCP protocols, the main factor dictating the per-

formance of modern web applications and web sites is latency rather than bandwidth. The main

2.2 Content Servers and the Modern (Mobile) ISP 13

UE Remote hostTCP Spitter

End to End TCP connection as the UE sees it

Figure 2.2: Logical representation of a TCP splitting middlebox.

contributing factor to latency is the distance between the content and the user. Distance in regards

to Internet is measured in two ways. The first way is to measure the physical distance, which

based on the speed of light, dictates the minimum delay of the transmission. The second way is to

measure the number of nodes that have to process and forward a packet in its trip towards the user.

To this end, current trends are pushing towards placing content as close to the user as possible

and have led to the very high popularity of Content Distribution Networks (CDNs). CDNs are a

network of proxy servers geographically distributed in order to be as close as possible to the end

user.

As we will see in Chapter 8, CDNs are widely used in the mobile ecosystem. Thus, a good

starting point for examining the trip of a packet between a server and a mobile client is a CDN

edge server. Edge servers are the servers of a CDN closer to the user. Depending on the CDN’s

size and peering agreements with ISPs, edge servers can be at various locations. Typically they

are located or, at least, well connected to an Internet Exchange Point (IXP), a location where ISPs

and CDNs exchange traffic. If the user’s ISP and the CDN are colocated at an IXP, the traffic

enters the ISP’s network at this point. Otherwise, the CDN uses the IXP or a transit link to send

the traffic to a tier-1 ISP, which routes it to the user’s ISP.

Some of the biggest CDNs put their servers inside the network of ISPs, a strategy that mini-

mizes latency and transit costs. The same approach is followed by some ISPs which offer CDN

services. In such cases, the server usually has a private IP address, since it is behind the Network

address translation (NAT) device of the operator, making it hard for third parties to identify who

is the true owner of the server. In the future it is expected that content and computing resources

will continue to move closer to the user in a concept called “fog computing” or “mobile edge

computing”. In some cases, it is expected that even base stations will have storage and computing

capabilities, offering the smallest possible distance between content and user.

When the packet enters the operator’s network, it has to pass by a few more entities before it

reaches the mobile core. The entry point to the operator is called Point of Presence (PoP), which,

in case of IPv4 networks, may also be collocated with the NAT. The norm for mobile operators is

to use NAT in order to be able to provide all of their customers with IPv4 addresses. This results

in a big number of customers having the same public IP address. The network distinguishes them

based on their private address, which is unique within the private network behind the NAT. In our

experiments, we found that only a handful of operators, located in Norway and Sweden, assign

14 Background

public IPs to their mobile clients. After the PoP, the operator may apply traffic shaping and / or

pass the traffic through middleboxes.

A common type of middlebox in mobile networks are TCP splitters. When a user initiates a

TCP connection the splitter intercepts it, replies to the user posing as the target server (i.e., the

packets have the IP address of the target server) and then opens a connection with the target server

itself. The splitter then relays the packets between the target server and the user, as is shown in

Figure 2.2. This may increase the quality of the connection since it isolates the loss and delay

prone mobile part of the path (between the user and the middlebox) from the long distance part

(between the middlebox and the target server) and thus allows the TCP congestion window to

reach values close to the bandwidth delay product. Otherwise, losses occurring at the mobile part,

would be interpreted as congestion by TCP and thus keep the congestion window low.

2.3. LTE Architecture

In this section we provide a brief overview of the main components and characteristics of

mobile networks that have an effect on what we will discuss in the following chapters. We will

present the architecture of the LTE communication standard, since it is the one most frequently

used in this thesis and has in general widespread adoption.

2.3.1. LTE Core Network

The LTE core, widely known as Evolved Packet Core (EPC), shares a lot of similarities with

the cores of other popular mobile communication standards in use today, such as the 3G family.

Thus, the following is representative of their core as well. Please note though, that the following

may not apply to the upcoming 5G-New radio (NR) standard. As of writing this thesis, only part

of the early specification of 5G has been completed [33]. Its core seems to be focusing on offering

a modularized set of services, called “network functions”, making it hard to specify specific core

components.

In brief, the main components of the core network of LTE are:

Packet Data network Gateway (PGW): It is the connection point between the In-

ternet and the network of the operator.

Serving Gateway (SGW): It is the regional entity of LTE that forwards data packets

to the eNodeBs where the destination UEs are. It does so by keeping track of the mobility

of the UEs that are associated to the eNodeBs that it is connected to. Also, it is the anchor

point of the UEs who perform handover between two eNodeBs. It is worth noting that the

majority of the handovers take place between eNodeBs that belong to the same SGW.

eNodeB: It is the base station of the LTE network. The SGW forwards there the

packets that are destined to the UEs that are connected to it. Upon reception of a packet, it

2.3 LTE Architecture 15

is temporarily stored and a scheduler regulates when it will be transmitted to the recipient

UE.

User Equipment (UE): The mobile device of the user. It can be any device with

mobile communication capabilities. In our scenarios it is a smartphone.

Different types of traffic have different requirements in regards to latency and guaranteed

bitrate. Thus, in order to maximize QoS, the LTE architecture is able to treat some data differently.

LTE uses the concept of bearers to route IP traffic from a gateway to the UE. A bearer is defined as:

“ an IP packet flow with a defined QoS between the gateway and the UE” [34]. When a device is

attached to the network a default bearer is created, that is able to carry all types of traffic without

any QoS provisioning. When the network is required to carry traffic with QoS requirements a

dedicated bearer is set up. The dedicated bearer exists in parallel with other dedicated bearers and

the default bearer. It serves as tunnel to carry this traffic, and uses a Traffic Flow Template (TFT)

to specify the QoS provisioning (e.g., delay, guaranteed bitrate) applied to the traffic. In practice

though, only VoLTE traffic is served by a dedicated bearer. To the best of our knowledge, all other

traffic is served by the default bearer. Thus, in the sequel the algorithms we propose may treat all

multimedia and web traffic as equal.

The UE connects to the operator network through any of the multiple base stations (eNodeB)

that the operator controls, as shown in Figure 2.1. EnodeBs are in turn connected to the core

network (CN) of the operator. This set of enodeBs can be collectively called Radio Access Net-

work (RAN). They form the interface between the UE and the operator.

When a mobile user surfs the web, a TCP connection is established with a remote server. The

packets associated with this TCP connection travel through the Internet, enter the core network of

the mobile operator through the PGW, and are then routed to the serving base station (eNodeB)

that the UE is connected to. At the eNodeB, the packets are stored in a buffer dedicated to the

target device. The allocation of resources to the connected UEs is determined by a scheduling

mechanism.The packet remains in the dedicated buffer until the scheduler decides to allocate

resources to the recipient UE.

The scheduling decision is taken periodically, once every Transmission Time Interval (TTI).

This period largely differs among mobile telecommunication systems, with more recent technolo-

gies having lower values. The TTI of the downlink for the Frequency-Division Duplexing (FDD)

version of LTE, which is used by the majority of operators, is fixed to 1 ms [35]. For the Time-

Division Duplexing (TDD) version, used mostly by operators in China [36], the TTI is in the

range of a few ms, depending on operator configuration. For the older UMTS technology this

value is at least 10 ms. Thus, the UEs receive data in a way such that a burst of data is transmitted

to them, during TTIs in which they have been allocated resources and receive nothing during TTIs

in which they have not been allocated resources. The scheduling process is usually based on a

fairness scheme that takes into account the data requirements and channel quality of all the UEs

served by the same BS. A very popular such scheme is the “proportionally fair” scheduling [37].

16 Background16 Background

UEUEUE eNodeBeNodeBeNodeB
PHY
MAC
RLC

RRC
PDCPPDCP
IP

PHY
MAC
RLC

Relay

PDCP
RRC

Figure 2.3: The LTE protocol stack. Protocols of the same layer have the same color.

It tries to weight the past allocation of resources and the current potential throughput of all the

competing users. This way it finds a balance between providing adequate resources to all users,

regardless of their channel quality, and maximizing the overall throughput of the base station.

Thus, in contrast to wired networks, which usually serve traffic based on a FIFO scheme, the

incoming traffic at the antenna is distributed to user specific queues and the outgoing is shaped

by the scheduler. So, the nature of the competing traffic (UDP/TCP or short/long flows) does not

greatly affect the speed of each user. On the other hand, factors that may have an effect include

policies (e.g., whether a user is a virtual or host network subscriber1 [38]) and the specific service

that generates the traffic (e.g., VoLTE traffic has the highest priority in an LTE network).

When a UE is scheduled, the packets present in the buffer are grouped into a Transport Block

(TB), which is then sent to the UE. In case of a very bad signal and/or a small amount of allocated

resources, just a segment of a packet can be encapsulated in a TB.

2.3.2. The Lower Layers of LTE

The amount of bits that may fit in the TB is a function of the amount of radio resources

allocated by the scheduler in a specific TTI and the Modulation and Coding Scheme (MCS). In

LTE, radio frequencies are organized in groups of 14, called Resource Blocks (RBs) and RBs in

turn are organized in groups of varying size (2, 3 or 4), forming a unit called Resource Block

Group (RBG). RBGs are the quantum of resources that can be allocated to the users. The amount

of bits that each RBG can “carry” depends on the MCS used for it. The UE periodically notifies

its signal quality to the antenna, which then decides the MCS value for the transmission.

The physical layer of the UE receives the TB and the LTE protocol stack starts processing

it. Figure 2.3 presents the main layers of the stack. In brief, the layer 2 of LTE is composed of

3 sublayers managing the data transmission, on top of which is another layer responsible for the

1It is documented that users of virtual operators have lower priority to the users of the corresponding host operator.

2.3 LTE Architecture 172.3 LTE Architecture2.3 LTE Architecture

IDLE

IDLE
Data transfer possible

CELL_FACH

CELL_DCH

(a) 3G

Data transfer possible

CELL_FACH

Data transfer possible

CELL_FACH
IDLEIDLE

IDLE

Long DRXLong DRX

RRC Connected

Short DRX

Continuous
ReceptionReception

(b) 4G-LTE

Figure 2.4: The RRC state machines of the 3G and 4G-LTE mobile communication standards.

signaling between the UE and the base station. A bottom up presentation of these sublayers is the

following:

Medium Access Control (MAC): The first layer above the physical channel is re-

sponsible for, among others, the integrity check of the TBs. If it detects errors in the TBs

it requests a fast retransmission of the problematic TB, a process called Hybrid Automatic

Repeat Request (HARQ). A retransmission may happen no sooner than 5 ms after the orig-

inal transmission, even though it has priority over normal transmissions. The MAC layer

stores all the received versions of the TB and then applies operations to them in order to

recreate the original TB.

Radio Link Control (RLC): This layer receives TBs and uses them to reconstruct

packets of the upper sublayer (PDCP). RLC packets have a unique sequence number that

ensures in order delivery to the receiver. If RLC detects that a packet is missing, it stops

forwarding packets to the upper layers until it is received. While it waits for the missing

RLC packet to arrive, the incoming packets that have a higher sequence number than the

missing one are stored in a buffer. If the missing packet does not arrive within 35−100 ms,

it is considered lost and requested as new data. The RLC packets with smaller sequence

number than the missing packet are then delivered to the upper layer. Such events may add

significant inaccuracies to applications monitoring traffic and are taken into account in the

algorithms we develop in the sequel.

Packet Data Convergence Protocol (PDCP): In general, a PDCP packet corre-

sponds to an IP packet. This sublayer prepares IP packets for transmission over LTE. For

example, it may apply header compression, by replacing the IP header with a token that has

a maximum size of 4 bytes, effectively reducing the data needing transmission.

The Radio Resource Control (RRC) layer is responsible for exchanging connection related

information between the UE and the antenna and is not directly involved in the data transmission.

It is on the same layer as IP. Operating the radio is very costly both in terms of power and network

resources. The radio is only activated in periods when data transmissions are expected. The radio

18 Background

turns on to handle a transmission and then remains on in anticipation of more future transmissions

until a timer expires. This state is called “continuous reception”. If the timer expires before

any new transmissions take place, the radio enters Discontinuous Reception (DRX), where it

sleeps for a portion of the time, while maintaining the established radio context (e.g., remains

synchronized with the antenna). The DRX state is split into two phases where the proportion

of time spent sleeping, is related to the anticipation of a transmission. If it remains in this state

for long enough without any transmission it returns to the idle state. The timers that determine

how much time the radio remains at each state are called “RRC state machine”. A graphical

representation of the transitioning between the states is shown in Figure 2.4b. The RRC timers’

exact values are operator dependent. Changing state is a very time consuming process. The RRC

state machine adds extra delay only to the first packet of a connection or to packets of connections

with very infrequent transmissions though.

Please note that the RRC state machine of 3G technologies is different, as can be seen in

Figure 2.4a. In brief, there is no DRX phase, but between the connected and the idle states there

is another one which consumes about 40% of the energy and allows the device to access a low

speed (about 20 Kbps) shared channel.

2.3.3. Baseband

There is very limited public information on the lower layers of mobile hardware. Also, the

experts in this area are mostly found in companies rather than academia. In the following para-

graphs, we will attempt to present an overview of what is known to be common practices of the

major vendors, regarding the low level design of their communication hardware. Smartphones

intergrate a lot of their hardware functionality in a System on Chip (SoC). Among others, a SoC

contains a cellular modem for connecting to mobile networks and a Wireless Local Area Net-

work (WLAN) module for connecting to WiFi access points. The code of the core OS2 and most

of the device’s drivers is executed by a part of the SoC called Application Processor (AP). All

the radio devices of a phone are controlled by a part of the SoC called Communication Processor

(CP), or just modem. In older devices the CP used to be a separate chip, but nowadays it is usu-

ally integrated in the SoC. The reasons for separating the applications and the communications

functionalities of the device include the increased complexity of the communications code and

isolating low level communications from applications. Both AP and CP can write and read a

region or all of the main system memory in a process called Direct Memory Access (DMA) and

this is how they communicate3.

The code executed by the CP is independent of the core OS and is essentially a secondary OS

inside the device. This code, the firmware of the CP, is called baseband. It is notoriously hard

to find public documentation of its operation, to the point that there is speculation that not even

2In this thesis this is always Android.
3There is a set of commands called “Hayes command set”, dictating how the two processors exchange information,

mostly related to handling voice and signaling. This is out of scope of this thesis though.

2.4 Linux Kernel Networking 19

smartphone manufacturers have access to parts of it. It is suspected that CPs are very vulnerable

to exploits, so the very limited number of vendors capable of building them, release as little

information as possible. As a consequence, in the experiments we will discuss in the sequel, this

part is treated as a black box. We can have a clear view of the functionality of the main OS,

but can only assume that the baseband is following the 3GPP specifications. 3GPP specifications

though are very complex and allow in a lot of cases functionality to be implemented differently

by the various vendors. In some of the experiments, we resorted to monitoring eNodeB control

messages, in order to get insights about how the lower layers of the mobile networking stacks

operate on the smartphones we examined.

2.4. Linux Kernel Networking

In this section, we will attempt to shed some light on how a packet moves up in the kernel

networking stack. It is said that Linux Kernel Networking is a “sealed garden”, despite being the

most famous open source project. The related code is very dense [39] and has very few comments.

Public documentation and tutorials are hard to find, outdated and to a big degree inconsistent. Due

to number of companies involved in building Anrdoid phones, the used kernels are usually very

behind the upstream versions, and thus lack some modern features. The main deciding factor for

picking a kernel is based on what the SoC supports and SoC vendors tend to not provide updates

after a chip is on the market. Before diving into how Linux and, by extension, Android handle

packet transmission and reception and how it interacts with the NIC, we have to define some

related concepts.

DMA is a feature of modern hardware, which allows a component of a computer to write

directly to the main system memory. In the case of networking, before DMA the packet would

have to be received by the NIC and then an interrupt would be sent to the CPU to handle the

packet, a process with a great impact on the efficiency of the CPU. With DMA, the NIC may

write the incoming packets as they arrive to a designated area in the main memory of the system,

without interfering with the normal CPU operations. Since the first stages of packet arrival are

independent of the CPU, it is possible to disable network interrupts, without dropping packets.

This allows for efficient handling of big numbers of packets without choking the CPU.

The ring is a circular data structure of fixed size. A major benefit of a circular buffer is

allowing different processes to add and remove elements at the same time, without conflicts, thus

enabling asynchronous operation. A ring buffer is used by network cards to store references to

packet descriptors. For example, in the case of packet transmission the operating system would

put data in the ring and then move a pointer indicating what is the last element added to the ring.

There is another pointer of the network interface indicating the last element the network interface

transmitted. As the interface is transmitting packets it moves its pointer until the element pointed

by the pointer of the OS, at which point there would be no more data to transmit.

The contents of the ring are fixed size pointers to data structures called Socket Buffer Struc-

20 Background

tures (SKBs). The Socket Buffer Structure (SKB) is the most basic data structure in the Linux

networking code. Every packet sent or received is associated with at least one SKB, which holds

packet related metadata, headers of the various layers, layer specific fields and part or all of the

actual packet. Through this structure the different layers are coordinating their processing of each

packet. Upon booting the device, the kernel informs, through the related drivers, the network in-

terfaces which area of the main memory is reserved for storing packets and initializes a number of

SKBs there. After a packet fully arrives at the NIC and the NIC finishes processing it, it is written

in the specified area of the main system memory through DMA. Writing the packets directly at

the main memory, removes the need for coping them as they are processed by the network stack,

resulting in faster processing. The DMA process checks the ring to find an unused SKB and

copies the payload and headers to the related fields of the structure. It also sets up some flags in

the SKB structure indicating the processing the packet has already received and packet metadata.

If the memory dedicated to packet handling is full, the packet is dropped without consuming any

CPU resources for processing and the hardware issues an error. If the packet is too big to fit in

a single SKB, multiple descriptors are fetched from the ring and the contents of the packet are

split among the related structures they point to. Then a hardware interrupt is sent to the CPU,

notifying of the arrival of the new packet. The exact handling of the interrupt will be discussed

later. Upon deciding to act on the packet, the OS reads the packet data and sends it to the TCP/IP

stack for further processing. Once the associated SKBs and descriptors are no longer in use the

OS releases them.

Code 2.1: Some important fields of the sk buff structure.

s t r u c t s k b u f f {
/ * These two members must be f i r s t . * /

s t r u c t s k b u f f * n e x t ;

s t r u c t s k b u f f * p re v ;

s t r u c t s k b u f f h e a d * l i s t

s t r u c t sock * sk / / The s o c k e t t h a t owns t h i s b u f f e r

. . .

union { t c p h d r ; udphdr ; . . . } h ; / / T r a n s p o r t header

union { i p h ; ipv6h ; a rp h ; . . . } nh ; / / Network header

union { raw} mac ; / / MAC header

. . . / / Data

}

Part of this structure’s definition in the Linux kernel is shown in code snippet 2.1 [40]. The

first fields are related with the data-structure itself, which since it is a version of a doubly linked

list, it needs pointers to the next and previous elements. In order for every entry to be able to find

the first element quickly, there is another pointer to a dummy structure (sk buff head), placed

2.4 Linux Kernel Networking 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Octet 0 Octet 1 Octet 2 Octet 3

Version IHL DSCP ECN Total Length

Identification Flags Fragment Offset

Time To Live Protocol Header Checksum

Source IP Address

Destination IP Address

Options. . .

Figure 2.5: The fields of a IPv4 header.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Octet 0 Octet 1 Octet 2 Octet 3

Source port Destination port

Sequence number

Acknowledgment number

Data offset RSVD Flags Window size

Checksum Urgent pointer

Options. . .

Figure 2.6: The fields of a TCP header.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Octet 0 Octet 1 Octet 2 Octet 3

Source port Destination port

Length Checksum

Figure 2.7: The fields of a UDP header.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Octet 0 Octet 1 Octet 2 Octet 3

Type Code Header Checksum

Identifier Sequence Number

Payload

Figure 2.8: The fields of a ICMP echo request / reply header.

22 Background

at the head of the list. This dummy structure holds information about the first real element of the

list and the total number of elements and controls concurrent access to the list with lock fields.

SKB is modified based on the processing done to the packet on each layer. For example, an out-

going packet will have IP header related entries added at the IP layer. It is tied to a socket through

a pointer to a struct sock, a structure holding networking information for sockets [41].

The lower part of code snippet 2.1 presents some unions, which hold various structures related

to the different networking layers. A bit indicates which process has control over each ring entry.

There is a pointer marking the exact location of the data in the packet. In the case of an incoming

packet, it points to the packet as it was received. As the packet moves up in the stack, each layer

adds a pointer to this layer’s header and moves the data pointer after the end of its header. In case,

the packet is outgoing, every layer writes its own header initializing the related pointer.

In systems with multicore processors, incoming packets are spread among the CPU cores, in

order to among others balance the load. Each CPU core has its own receive queue (rx ring) and

when an incoming packet generates an interrupt it is possible to be directed to that core (e.g., each

queue has its own interrupt number). The packets are split among the queues based on hashing

parts of their headers. For example, if the received packet is TCP or UDP, the location of the

bits related to the IP addresses and ports are fixed. This can be observed in their headers shown

in Figures 2.5, 2.6 and 2.7, where the related fields are marked in green. Thus, the hardware

may hash these specific bit ranges, then divide the results by the number of rings and assign the

packet to the ring with number equal to the remainder of the division. This process guarantees that

packets of the same TCP / UDP flow will be assigned to the same ring, processed by the same core

and therefore arrive at the higher layers in order. This mechnism is called in the documentation of

the Linux Kernel: “RSS: Receive Side Scaling” [42]. The exact hashing procedure varies among

hardware vendors, but the results are similar. For example, even if only the IP addresses are

hashed, it is enough for the packets of the same flow to be assigned to the same ring. Curiously,

the field that defines a flow in the case of ICMP echo messages, namely the “Identifier” field, is

in a different bit range compared to the bit ranges of port numbers in TCP and UDP headers, as

it is shown in Figure 2.8. Thus, it is not guaranteed that these packets will always be assigned to

the same ring.

Timestamping packets is an expensive operation, so it is enabled only when it is needed. Since

timestamps are crucial for traffic analysis they are enabled when packet capture software such as

tcpdump is in use. The timestamps represent either the time the packet was sent or arrived. For

arriving packets specifically, the timestamp is added right after the packet moves out of the link

layer. In the case of the LTE stack, the last part of the link layer is the PDCP sublayer. The

timestamps are stored in the SKB of each packet.

2.4.1. Interrupt Handling

There are two ways for the OS to be notified of a new packet: interrupts and polling. Interrupts

offer the minimum possible receive latency per packet, at the cost of high processing overhead.

2.4 Linux Kernel Networking 23

Modern CPUs have features such as long pipelines and speculative executions, making interrupt

handling very costly and thus not suitable in cases of frequent packet arrivals. Polling allows the

CPU to check for packet arrivals at specific intervals, reducing the CPU cost, but increases delay

and jitter between packet arrival and processing. Interrupts are better in cases of infrequent and

unpredictable arrivals. On the other hand, polling is better in cases of high volumes of traffic. The

polling frequency should balance the tradeoff between overhead and delay. When a new packet

arrives the NIC always issues a hardware interrupt, which is received by the driver. It is up to

the driver when to send a software interrupt to the kernel and by extension the CPU. In order to

increase efficiency, interrupts are disabled while the CPU is processing packets and each receive

queue is independent, so the related core can work on its backlog safely.

It is possible that the CPU is not able to handle all the incoming packets during a busy period,

either because a very big burst of packets arrives at once or because of competition to CPU

resources from other processes. The CPU relies on buffering the packets it cannot process right

away, but if packets continue to arrive at a higher rate than they can be processed, some packets

will eventually be dropped.

The default behavior of the Linux kernel is to rely on interrupts, but if the flow of incoming

packets increases beyond a certain threshold, it switches to polling. This behavior is dictated by

an extension to the packet processing framework, designed to improve the performance of high-

speed networking called New API (NAPI). Upon switching, the first polling request takes place

as soon as the last interrupt related packet is processed, since it is assumed that a flow of packets

is incoming. While NAPI polling is active, the kernel checks for new packets at fixed intervals or

when the NIC receives a specific number of packets or when an application requests for network

data. When the number of unprocessed packets falls below a threshold, the kernel switches to

interrupts again.

As of writing this thesis, the Linux kernel supports busy polling [43]. Busy polling reduces

interrupt and polling latencies at the cost of consuming CPU cycles. The developers of this feature

describe it as: “the ability for a user thread waiting for some incoming network message to directly

poll the device ring buffer.” [44]. The CPU is not occupied by another process in between arrivals,

thus context switching delay is avoided and the CPU can act on the freshly arrived packets as soon

as possible. Thus, one CPU core is dedicated to waiting arrivals of a specific process, improving

significantly the throughput and latency parameters. It is up to the application developers whether

to use this functionality though. To the best of my knowledge, busy polling is not yet included

in Android. For the time being it is aimed towards datacenters, where each machine may have

upwards of 100 cores. However, modern mobile CPUs are increasing their core count and we

expect future mobile CPU implementations to support this feature. Once Android supports it, it is

expected to reduce the effects of various measurement artifacts described in later chapters of this

thesis, therefore increasing the accuracy of the presented techniques.

24 Background

2.4.2. The Higher Layers of the Linux Networking Stack

Once a packet has been received by the kernel it is sent to the queuing discipline (QDisc)

layer. This layer is between the NIC and the IP stack. It is responsible for enforcing traffic

control in the Linux kernel. The capabilities of the QDisc layer in manipulating outgoing traffic

are: “shaping” (e.g., smoothing big bursts of traffic and lowering available bandwidth in general)

and “scheduling” (e.g., reordering packets in order to protect interactive traffic from bulk down-

loads), When the traffic is incoming, it applies “policing”, which has the same main objectives

as “scheduling” but in the ingress. Finally it also applies “dropping” in both directions, in cases

where traffic exceeds a set bandwidth. It should be noted that mainstream Android distributions

have very limited support for QDisc, whereas some more specialized, like Cynaogenmod, support

its full functionality.

Then, the IP stack further processes the packet as it goes up the network layers. Eventually, the

payload of the packet will be delivered to the corresponding socket of the application requesting

the data. The only interesting aspect in this part of the packet path in regard to delay is whether

the socket is “blocking”. When an application thread makes a call to a blocking socket, in case the

request cannot be fulfilled right away, the thread will wait until the socket can fulfill it. Such cases

include when a thread tries to push data to a full socket buffer or read data from an empty socket

buffer. In contrast, if a socket is “non-blocking”, the call will return immediately with an error

message and it is expected that the application will make another call in the future. Therefore,

blocking sockets have the smallest added delay in data transmission, with the price of forcing

threads to wait. This option is important in case we want to run delay sensitive algorithms at the

application level. The default behavior for TCP sockets is “blocking”.

One last thing we have to mention is under which conditions the OS is forced to make a DNS

request, when an application wants to map a domain to an IP address. Initially the program mak-

ing the request will check if it has the IP of the target host is already stored in its cache. If not, it

will call the OS function gethostbyname to do the resolution. If the OS has the address stored

in its own cache or there is mapping of the host to an IP in a special file called hosts, it returns

the IP to the program. If not, the OS will make a DNS request to the preconfigured DNS resolver.

The default DNS resolver is usually set by the ISP to be one of their own servers. Users may

modify the DNS resolver to any of the publicly available DNS services, such as Google public

DNS, Cloudflare and OpenDNS. In later chapters, we investigate the implications of choosing a

DNS server other than the default offered by the ISP.

2.5. Final Notes

In this last section, we mention some other networking aspects of smartphones that can im-

prove the context of this thesis, but did not fit in any of the sections above.

In this thesis, we assume that the network configuration of the mobile devices is static. So,

if a mobile is using the mobile interface, it will continue using it with the same IP. In normal

2.5 Final Notes 25

operation this might not always be the case. While a connection is active another interface might

come up (i.e., a download was started over mobile and the WiFi comes up in the meantime)

or IPv6 autoconfiguration might change the IP address of an interface (i.e., use of tentative IP

address).

The data usage tracking on an Android device is implemented by counting bytes per appli-

cation - User Identifier (UID) / network interface combination. The results are outputted in the

\proc directory. The operators track the data usage of specific users4 based on the number

of packets that pass through the PGW in both directions. Since these are two different vantage

points, it is common to report different values. This is pronounced in the case of high bitrate UDP

traffic, which might overflow buffers on the path between the PGW and the UE.

Android is able to perform “per application routing / socket routing”. Users might want to

connect at the same time to the Internet and a device like a goPro camera, a drone or a wireless

printer. Thus, the mobile interface should provide Internet access to all the other processes, while

the WiFi interface is connected to these devices. Incoming connections are mapped to network

interfaces based on which interface received the SYN packet.

4A user is identified as an International Mobile Subscriber Identity (IMSI), a unique number included in the
Subscriber Identification Module (SIM) card.

Chapter 3

Related Work

In this chapter, we review the state of the art literature and emphasize the differences with the

sequel of this thesis. We start with presenting some characteristic examples of bandwidth mea-

surement approaches, which vary between active, lightweight active and passive in Section 3.1.

Then Section 3.2 gives an overview of past work on the analysis and evaluation of mobile com-

munications standards and finally, Section 3.3 summarizes studies evaluating the performance of

third-party services.

3.1. Mobile Bandwidth / Capacity Estimation

3.1.1. Active Measurement Techniques

Nowadays, the most popular solution for mobile bandwidth estimation is Ookla’s mobile

application Speedtest [45], which makes use of active measurement techniques. To estimate the

bandwidth available to a mobile device, Speedtest tries to saturate the device’s downlink by down-

loading a large file through two parallel long-lived TCP connections in a test that lasts for about

10 seconds. Speedtest can connect to many well-connected measurement servers deployed by

Ookla, so the measured bandwidth is less likely to be affected by cross traffic. To the best of our

knowledge, there is no public documentation detailing the algorithm used by Speedtest on mobile

devices. Our understanding is that every second, a certain amount of traffic samples are generated.

These samples are aggregated into 20 bins, with each bin containing about 5% of the samples.

The bins are then filtered to remove measurement artifacts. The final estimation is calculated by

averaging over the bandwidth values of the remaining bins.

A similar approach is proposed by [15], where 3 parallel TCP connections are established

with the three closest servers to reduce the impact of TCP’s receive window, overloaded servers,

and packet losses. The traffic samples are segmented into equally sized bins and samples collected

during the slow-start phase are discarded. In order to reduce the effect of outliers, the median of

the bandwidth estimated in the remaining bins is taken as the final estimation.

In [46], authors calculate the end-to-end throughput availability by sending high rate UDP

27

28 Related Work

traffic, while taking into consideration packet interarrival times and the scheduling effects of

mobile networks.

These tools may provide the most accurate bandwidth estimation, but are unsuitable for fre-

quent usage on mobile devices, which is the ultimate goal of our tools. They rely on transfer of

large amounts of data over prolonged periods of time and thus, incur a high overhead.

3.1.2. Lightweight Active Measurement Techniques - Packet Dispersion

“Packet dispersion” is a lightweight active measurement technique. Packet pairs or packet

trains are transmitted from a server to a target device, which timestamps their arrivals. It is meant

to measure the asymptotic capacity of the path’s bottleneck link by analysing the time dispersion

of packet arrivals. It is possible to estimate the capacity of the bottleneck link in the path, based

on the fact that the average throughput measured by packet trains converges to the asymptotic

dispersion rate, from which an estimate of the bottleneck capacity can be computed.

Lai [47] attempts to actively measure the link capacity (which in [47] is called bandwidth) of

a path by taking advantage of the packet pair property of FIFO-queuing networks. Dovrolis [48]

further refines the packet pair technique and demonstrates that packet pair dispersion rate has a

multimodal distribution, whose modes in turn depend on the capacity and the cross traffic at each

of the links composing the sender-receiver path.

CapProbe [49] proposed a technique based on packet pairs dispersion and delays to devise a

reliable capacity estimation technique, aimed at mobile networks. This approach though is very

sensitive to topology parameters, like the number of nodes in the path and the link utilization.

The number of packet pairs required to generate a valid estimation rapidly increases, when these

parameters increase. Furthermore, it ignores the effects of the mobile scheduler.

Packet dispersion offers a good estimate of the capacity, while generating very little traffic.

As we will show in Chapter 5, applying packet dispersion techniques in a mobile network is prob-

lematic, because the scheduler of the base station either shrinks or enlarges the dispersion greatly.

Also, CapProbe is not robust enough to be used in most scenarios. Finally, these techniques are

meant to measure the capacity of the bottleneck link of a path. Instead, we are interested in mea-

suring the per user capacity of the cell at a given moment. Only the latter metric may by used by

bandwidth optimization algorithms.

3.1.3. Passive Measurement Techniques

Conversely, passive monitoring techniques aim at estimating similar information by analysing

ongoing mobile communications, without triggering any dedicated activity. Gerber et al. [50]

achieved quite accurate results just by relying on selected types of applications (i.e., video stream-

ing), which provide more reliable throughput measurements as they are more likely to exploit the

full cell capacity. Their method first sniffs all the traffic going through a certain vantage point

inside an operator’s network. Then it identifies the traffic flows that belong to applications that

3.2 Mobile Communication Standards Mechanics and Measurements 29

are not rate-limited at the server side and are guaranteed to use all the resources that the base

station allocates to a user.

In order to study transport protocols in LTE, [16] developed a passive measurement scheme,

which monitors the sending rate over a given time window that ensures the full exploitation of

the capacity. PROTEUS [51] combines passive monitoring with linear prediction to estimate the

achievable throughput. Other solutions worth mentioning in this category are [52], where the

authors try to identify bottleneck links in the core network of an UMTS operator by conducting

large scale passive measurements of TCP performance parameters and [53], where network “foot-

prints” (generated by counting the number of packets and the number of retransmissions of all the

users of a network) were used to identify capacity bottlenecks.

The above solve the major problem of generating traffic, a resource very limited in a mobile

scenario. However, they cannot be directly applied to mobile phones. It is important for traffic

prediction algorithms to be aware of the context of specific users. Some of these techniques are

implemented inside the operator’s network. Therefore, they are not applicable at the application

level and require the cooperation of the operator.

We conclude that none of the aforementioned solutions allow for frequent throughput mea-

surements, nor do they provide estimates of the per user cell capacity on the client side (mobile

device) to allow for effective capacity prediction and resource allocation. In Chapter 6 we propose

a passive technique that is able to provide an estimation of the per user capacity range by monitor-

ing the packet arrival patterns that take place during the TCP slow start phase. In this thesis, we

are interested in a more accurate per user capacity measurement that is based on periodic samples

of the exchanged traffic, taken during the whole duration of the flow.

3.2. Mobile Communication Standards Mechanics and Measure-
ments

None of the works presented in Section 3.1 attempts to validate the accuracy of their measure-

ments when these are performed directly on the smartphone. A high guarantee of measurement

accuracy is critical though for bandwidth prediction algorithms, such as the ones presented in

Appendix A. To this end, Chapter 4 is dedicated to using accurate LTE scheduling information in

order to validate the measurement algorithms presented in Chapters 6 and 7. In this section, we

present papers which take measurement accuracy into account by comparing their results to some

kind of baseline.

Huang et al. [16] studies LTE performance by measuring mobile phone data. To validate their

findings, the authors performed experiments with controlled traffic patterns, which served as a

reference point.

The authors of [54] use a real-time spectrum analyser to detect the amount of LTE resources

M2M devices utilize and subsequently evaluate the performance of channel aware algorithms.

Xie et al. [55] use an energy-based spectrum monitor to assess the the average fraction of used

30 Related Work

RBs. Even though this is a robust solution, we are interested in more fine grained control over

the resources specific users use. The same team has proposed another approach to monitor LTE

control channel scheduling information [56]. However, they admit that it is reliable only when the

wireless channel has also zero error and it does not scale well with an increasing number of users.

In this thesis, we use a solution developed in house at IMDEA Networks Institute. OWL [20] is

a reliable LTE control channel sniffer. It is able to accurately decode more than 99% of LTE the

control messages. That way we can obtain a virtually complete log of base station scheduling.

MobileInsight [57] is able to access the debug log of the radio chipset of phones with Qualcom

SoC. It is the solution with the least overhead for monitoring physical layer traffic, but it is limited

to a single vendor, whereas in Chapter 4 we are interested in studying the behavior of phones

with different vendors of SoC. Thus in the sequel, we rely on OWL for trustworthy radio level

information. It is has complete information of all the smartphones connected in the monitored

cell, in contrast to the aggregated information that power-analysis based solutions provide.

Li et al. [58] assess the measurement accuracy of smartphones over WiFi. In their testbed they

use three laptops, which serve as the ground truth, to sniff the traffic a smartphone is receiving.

Then, they compare when the related packets appear in tcpdump traces collected on the smart-

phone and the laptops. In our experiments though, we observe that sometimes LTE and WiFi have

a drastically different behavior at the same device, prohibiting us from using this solution.

A few papers [59–61] use commercial tools and/or operator network information to evaluate

LTE performance. For instance, direct access to network logs is used in [59] to provide a detailed

comparison between LTE and UMTS, but since network logs are usually always anonymized

(if they are released at all), it is impossible to identify a given device under test among the set

of traces. A commercial LTE modem from Teldat is used in [60] to measure application level

performance. Similarly, a network maintenance tool is used in [61] to analyse quality of service,

but such tools only provide compound information averaged over periods of time, which do not

achieve the required granularity for our measurements.

3.3. Characterization and Evaluation of Cloud Service Providers

CSPs’ performance in mobile networks may be affected by multiple factors such as radio

link variability, the presence of in-path middleboxes [62], traffic shaping policies [63, 64], the

behavior of the DNS resolver [65, 66], the peering relationships between cloud providers and

MNOs [67, 68], and inflated network paths [38]. While previous research studies assumed that

users are always paired with geographically close content replicas thanks to DNS-based geoloca-

tion techniques [69] and IP anycast, [70] showed that this assumption might not always be true

due to inaccurate geolocation of mobile users resulting in sub-optimal server assignment. Kr-

ishnan et al. (2009) [71] demonstrated that redirecting clients to the server of a CSP with least

latency does not guarantee an optimum client latency.

Furthermore, Goel et al. [72] investigated how content served by third-party service providers

3.3 Characterization and Evaluation of Cloud Service Providers 31

for a certain web pages might impact the end-user’s experience while browsing. The authors re-

port third parties inflate the page load time by as much as 50% in the extreme case. Rula et al.

conducted a crowd-sourced measurement campaign to study DNS behavior in mobile networks

and revealed that client-to-resolver inconsistencies make DNS-based solutions unsuitable for de-

termining the location of clients in MNOs [65]. Recently, the Internet has witnessed the growth

of new anycast-enabled CDNs (e.g., CloudFlare) to overcome these limitations. However, this

strategy depends on the stability of the paths toward the nearest server.

Part II

Smartphone Measurements on the
Physical and Lower Layers

33

Chapter 4

LTE Radio Link Estimation Accuracy
of Smartphones

This chapter addresses the accuracy of LTE performance measurements on mobile phones,

such as the ones proposed in the next chapters. More specifically, we study whether mobile

phones can accurately measure LTE radio link data rate. We do so by comparing ordinary smart-

phone measurements, performed at the kernel and application level, to the actual LTE scheduling

information obtained through our reliable LTE control channel sniffer: OWL [20]. These physical

layer LTE measurements serve as the ground truth for the measurements of the higher layers.

We have developed software components to generate data traffic between a “remote” server

and a UE, using three different smarphones. The generated traffic is monitored from a total of five

vantage points, located in various networking layers of three physical locations. Using a variety of

phones allows us to examine whether different chipsets exhibit variations in the reported accuracy.

We perform two measurement campaigns. The first is focused on attempting to quantify

the latencies that the different layers of the phone add in the transmission / reception process.

Studying these latencies we can reveal the source of inaccuracy in link rate estimation. The second

campaign compares data rate estimates as they are reported by monitoring traffic at different

layers.

In summary, our experiments report that the mobile phones are able to perform accurate and

precise data rate measurements, even when the measurement is performed over small data bursts.

The accuracy between the uplink and the downlink is different though, due to the different pro-

cessing followed in each direction, with the uplink being less accurate. Finally, we observe mea-

surable differences in the biases different phones add to the estimation.

The rest of the chapter specifies the measurement setup and the devices involved in Sec-

tion 4.1 and Section 4.2 discusses the two measurement campaigns and our findings. Section 4.3

concludes the chapter.

35

36 LTE Radio Link Estimation Accuracy of Smartphones

Figure 4.1: Experiment setup showing devices, connections and software (figure from [1]).

4.1. Testbed

Figure 4.1 illustrates our testbed as well as the vantage points from where we monitor traf-

fic. The following steps serve as a walkthough of the downlink scenario, where a target device

receives traffic from a remote server. The uplink scenario is similar, but for some small differ-

entiations in the physical layer of LTE, which will be discussed later in Section 4.2. We use a

well connected university server to transmit traffic towards the phone being measured. The traffic

travels through the Internet and then through the mobile operator’s network until it reaches the

eNodeB that serves the phone. Before the traffic is transmitted, the eNodeB uses the control chan-

nel of LTE to coordinate with the phone the TTIs during which the transmission will take place.

OWL, the LTE sniffer we use, intercepts these unencrypted control messages and logs them for

offline processing. The actual data transmission follows, where the IP packets the server had

originally transmitted, are sent from the eNodeB to the UE encapsulated in TBs as we discussed

in Chapter 2. OWL is able to sense power on the channel during the data transmission, but this

transmission is encrypted. Since, relying on detecting power makes it impossible to distinguish

our target device from other devices using the same cell, we ignore the actual data transmission

at the physical layer. We rely only on the unencrypted scheduling information. Finally, the UE

receives the traffic, and forwards the related packets to the upper layers of the networking stack

and eventually to the application requesting them.

The vantage points where we monitor traffic are the following. At the server and the phones

we use tcpdump to monitor IP packets at the kernel and we also log socket events as they are

4.1 Testbed 37

Table 4.1: Technical specifications of the test phones.

Phone Motorola MotoG 4G (2014) Huawei P8 lite (2015) ZTE Blade A452 (2015)

Chipset
Qualcomm Snapdragon 400

MSM8926
Huawei HiSilicon KIRIN 620 MediaTek MT6735P

CPU
ARM Cortex-A7

1200 MHz (4 cores)
ARM Cortex-A53

1200 MHz (8 cores)
ARM Cortex-A53

1000 MHz (4 cores)
OS Android: 4.4.2 KitKat Android: 5.0.2 Lollipop Android: 5.1 Lollipop

RAM 1 GB 2 GB 1 GB

reported by the application sending or receiving the data. The sniffer logs the physical layer

between the UE and the eNodeB at both directions. At each layer we report the data (e.g., TB,

IP packet, socket.receive, socket.send) size and the related timestamp. After each experiment we

combine the log files offline to identify the same packet transmission at each vantage point.

It is important to use a well connected server, because any cross traffic in the Internet may

distort the packet transmission patterns we use. As we will discuss in the sequel we rely on these

patterns to identify specific transmissions. Further, all the measurements are performed at a cell

which does not have much congestion (i.e., usually less than 10 − 20% of the available RBs are

used by competing traffic) and the connected phones have good signal quality. This further helps

us identify specific packet transmissions.

The scheduling information the eNodeB transmits identifies the UEs based on their Cell Radio

Network Temporary Identifier (C-RNTI). We are not able to extract the C-RNTI from the phones.

Thus, in order to identify the C-RNTI that belongs to our target device, before each experiment

we transmit a specific sequence of packets and we look in the sniffer logs which C-RNTI has a

similar pattern. This C-RNTI remains valid for the rest of the experiment, but resets soon after

we stop sending traffic.

We use a variety of phones which belong in the same category, performance and price wise,

but use different chipsets and Android versions. Our goal is to examine whether the manufacturer

and OS version affects accuracy. The exact specifications of each test device are reported in

Table 4.1.

The above components are synchronized by the controller PC, which coordinates the experi-

ment. The controller manages the server through an ssh session and is directly connected to the

target UE and OWL over USB. At the end of each transmission collects and combines the logs.

It should be noted that we try to have the various devices as much in sync as possible, but

we are not able to achieve a synchronization of less than a few hundred ms. As we will discuss

in Section 4.2, the experiments are formulated with this fact in mind though and thus are not

affected.

38 LTE Radio Link Estimation Accuracy of Smartphones

tS

tC

tP

tA

Figure 4.2: Communication diagram for the downlink isolated transmission. Dimension lines
illustrate data-to-ack latency (figure from [1]).

4.2. Experiment and Results

Both experimental campaigns follow the same base principle. We want to measure how much

time after an event is registered in the physical layer, it is registered in the upper layers. It is

important to note that systematic (i.e., fixed) timestamping errors are not affecting the accuracy

of the estimators we will present in the following chapters. For example, we suppose that there is

a delay of exactly X ms between a packet arriving at the PHY and being registered by tcpdump

at the IP layer. If we receive a group of packets, each one of them will be registered X ms later

to the IP layer. Our bandwidth estimators, as we will elaborate in the sequel, require the time

difference between the arrival of the first and the last packet of the group. This time difference is

unaffected by the fixed delay.

On the other hand, the variability of the delay between the layers (i.e., jitter), has a detrimental

impact on our bandwidth estimators. Thus, in the experiments of this section, it is not needed

to have perfect synchronization between the participating devices, since we want to track the

variability of delay. We time the packets in the following way. In each measurement, we identify

the packets related to the transmission at every layer. The first packet of the transmission at

every layer, sets the beginning of time for this layer. In other words, we consider that the first

packet arrives at time 0 ms. Therefore, we are able to track jitter between the layers, without

perfect synchronization. Each experiment lasts a few seconds at most, consequently clock drift is

ignored in this study.

4.2.1. Measuring Layer Latency (Isolated Transmission Test)

First we try to identify the impact of each layer in the perceived latency of reporting the arrival

of a single packet. We send a series of 500 byte packets with a periodicity of 400 ms. The param-

eters were chosen in order to easily isolate our packets from competing traffic and LTE control

messages, as well as distinguish the original transmission of a packet from potential retransmis-

4.2 Experiment and Results 39

0 50 100 150
Latency, t [ms]

0

0.05

0.1

0.15

0.2
Huawei
MotoG
ZTE

(a) Server latency (tS)

0 5 10 15 20 25 30
Latency, t [ms]

0

0.05

0.1

0.15

0.2
Huawei
MotoG
ZTE

(b) Cell latency (tC)

0 0.5 1 1.5 2 2.5 3
Latency, t [ms]

0

0.05

0.1

0.15

0.2
Huawei
MotoG
ZTE

(c) Phone latency (tP)

Figure 4.3: Empirical probability density functions of the latencies observed in the downlink
(figure from [1]).

sions. Further, the small packet size allows the encapsulation of data in a single “transmit unit” at

each layer.

Figure 4.2 presents graphically the experimental process in the downlink scenario for a single

packet. Each arrow represents the event timeline of a specific layer. The filled marker represents

the timing of a TCP data packet and the empty marker the timing of its acknowledgement. We

keep track of the time difference between the data and the ack and refer to this data-to-ack time as

“latency”. tS , tC and tP is the latency at the IP layer of the server, the LTE PHY and the IP layer

of the phone respectively. We cannot define latency at the application layer. Instead, we measure

the time difference between the arrival of the IP packet and data appearing at the application and

we denote it by tA.

Figure 4.3 presents the Empirical Probability Density Function (EPDF) of tS , tC and tP .

The latency measured at the server (Figure 4.3a) is the sum of:

40 LTE Radio Link Estimation Accuracy of Smartphones

The delays caused by two Internet traversals.

Two LTE scheduling delays (downlink first and then uplink).

Phone processing (chipset time plus protocol stack traversal in the kernel).

The latency at the cell downlink (Figure 4.3b) starts when the downlink LTE transmission is

already scheduled and, as a consequence, it only contains:

The phone processing.

LTE uplink scheduling delays.

The latency at the phone downlink (Figure 4.3c) starts when the kernel receives the reception

interrupt from the chipset and finishes at the ACK transmission to the communication interface.

We observe that the distributions of tS and tC are similar for all the phones. Therefore, we

may exclude the impact of network traversals and LTE scheduling from the rest of the analysis

and focus solely on tP . This is also an indication that they do not impact the data rates estimates

we will present in the next Section.

The main remarks from Figure 4.3c per phone are:

MotoG exhibits a wider distribution of its latencies ranging from 0.3 to almost 2 ms.

ZTE exhibits a low latency variability and a single peak around 0.5 ms.

Huawei exhibits latency closer to the length of the LTE TTI around 0.9 ms. This may

cause data rate overestimation.

In general, chipsets with short and deterministic latency achieve more accurate and precise

data rate estimation, as we will present in Section 4.2.2. A higher latency makes it hard to dis-

criminate the arrival at the phone of distinct LTE transmissions. Consequently the higher layers

observe what appears to be smoothed arrivals and therefore provide less accurate bandwidth esti-

mators.

We repeat the same experiment in the uplink scenario, where the phone is transmitting traffic

to the server and receives the related ACK. In this scenario, the latency measured at the server

is just the server processing. It should be noted that the kernel delay at the server is a mere 50

µs, with very low variability. Thus, it is reasonable to expect the tP of the downlink scenario to

improve in the future, as phone hardware becomes better, in effect allowing for better data rate

estimators. At the cell vantage point, the latency includes the server processing delay and the

two Internet traversals. Finally, the latency at the phone includes both uplink and downlink LTE

scheduling, two Internet traversals and the server processing.

Server and cell latencies can be excluded from our analysis again, since as can be observed

in Figures 4.4a and 4.4b, all phones exhibit identical latencies at these vantage points. We may

attribute most of the variability observed in Figure 4.4c to the LTE uplink scheduling delay, which

4.2 Experiment and Results 41

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Latency, t [ms]

0

0.05

0.1

0.15

0.2
Huawei
MotoG
ZTE

(a) Server latency (tS)

0 10 20 30 40 50
Latency, t [ms]

0

0.05

0.1

0.15

0.2
Huawei
MotoG
ZTE

(b) Cell latency (tC)

0 50 100 150
Latency, t [ms]

0

0.05

0.1

0.15

0.2
Huawei
MotoG
ZTE

(c) Phone latency (tP)

Figure 4.4: Empirical probability density functions of the latencies observed in the uplink (figure
from [1]).

in general is higher than the donwlink scheduling delay. The expected uplink delay in Connected

state is 20 ms. Given the periodicity of the packets though, when the test devices initiate the

transmission, they are in DRX mode. As a consequence, the transmission suffers an additional

delay while the interface sleeps. The exact DRX parameters vary among the devices, but we can

observe that motoG seems to have the most conservative setup with a peak at 85 ms and a lot of

variability. The other two phones, have a latency around 50 ms. Due to the wider distribution of

latencies, uplink data rate estimators are less precise than downlink estimates by 10%.

4.2.2. Measuring Link Rate Estimation (Burst Transmission Test)

In this section, we will attempt to estimate the link rate at the various vantage points and then

evaluate the accuracy and precision of the higher layer estimations compared to the ground truth

of the physical layer. Each experiment consist of transmitting a series of data bursts at periodic

42 LTE Radio Link Estimation Accuracy of Smartphones

tI
tG

tB

Figure 4.5: Communication diagram for downlink burst transmissions (figure from [1]).

intervals. The burst size is 100 KB for the downlink experiments and 30 KB for the uplink ones.

These sizes ensure that, at the LTE MAC layer, the burst will be split among at least ten TBs, even

at the most favorable conditions. We push the data burst at the socket in a single call. The data

are then split among TCP packets before transmission. The server transmits them back-to-back

in what looks like a packet train.

The packets get spaced even while they are at the server by TCP dynamics and processing

delays. While they travel the Internet, they get spaced even more until they reach the antenna

where they are stored at its buffer. Then a group of packets is transmitted in single TB to the

target device. This packet group arrives at the device at exactly the same time. While the packets

are processed by the higher layers one by one, they are spaced a bit. Eventually they reach the

socket buffer, where their payload is stored until it is delivered to the application.

Figure 4.5 presents a diagram of this process. We are interested in identifying at higher layers

the packets transmitted in the same TB. To this end we define the following parameters. The

interarrival time between two consecutive packets at the same layer is tI . The time difference

between the fist and the last packet of a burst is tB . We define “packet group”, as a sequence of

packets that we believe were transmitted in the same TB. In practice, we identify groups as packet

sequences which have interarrival times less than or equal to τ . τ is bounded by the LTE TTI of

1 ms, therefore all the tI of a group have the property: tI ≤ τ ≤ 1ms. τ is unique to each phone

and depends on how much the different layers contribute to the latency. We plot the CDFs of the

interarrival delays for the higher layers and choose the value of τ depending on where the plots

do “knees” and flat regions1.

The concept of “packet groups” is more clear in Figure 4.6, where we plot the arrival time of

packets against the cumulative size of received data as captured by tcpdump. Packets that arrive
1We do not present these plots in this thesis.

4.2 Experiment and Results 43

Burst

Groups

Figure 4.6: Inside a burst of packets, we may identify Groups that arrived at the phone simultane-
ously, encapsulated in the same TB.

in the same TB are close together forming a group, separated by several ms from the next group of

packets transmitted in a single TB. At the LTE PHY layer, a group is a sequence of one or more

consecutive TB transmissions as reported by the scheduling information. The time difference

between the first and the last packet of the group is symbolized as tG in Figure 4.5. The empty

markers of Figure 4.5 stand for the ACKs of data packets.

The data rate is calculated as the fraction of data size and time duration. At every layer we

may calculate the data rate on either groups or bursts. In the sequel we compare the data rate

measured by the LTE sniffer, r0, with the data rate measured by Application–bursts, Kernel–

bursts and Application–groups. The results are summarized in Figure 4.7, which presents the

empirical PDF of the ratio η = r/r0, where r is the higher layer data rate estimation. Ideally, we

would want values as close to 1 as possible. The smaller figures show the density of estimators in

a system where the x-axis is the ground truth and the y-axis is the higher layer estimate. Ideally,

all estimators should fall on the y = x line.

The variability of the results proves again that different phones have slightly different biases.

Among others, we examine the accuracy and precision of the estimators. Accuracy reveals sys-

tematic errors. The measure of accuracy in Figure 4.7 is the distance of the EPDF peak from 1.

Precision quantifies the random errors and it is represented by how wide are the distributions.

44 LTE Radio Link Estimation Accuracy of Smartphones

0 0.5 1 1.5 2
Ratio, η

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro
b
a
b
il
it
y

Huawei
MotoG
ZTE

2 4 6 8 10
2

4

6

8

10

2 4 6 8 10
2

4

6

8

10

2 4 6 8 10
2

4

6

8

10

ZTE

MotoG

Huawei

(a) Application–bursts

0 0.5 1 1.5 2
Ratio, η

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro
b
a
b
il
it
y

Huawei
MotoG
ZTE

2 4 6 8 10
2

4

6

8

10

2 4 6 8 10
2

4

6

8

10

2 4 6 8 10
2

4

6

8

10

ZTE

MotoG

Huawei

(b) Kernel–bursts

0 1 2 3 4 5
Ratio, η

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro
b
a
b
il
it
y

Huawei
MotoG
ZTE

15 20 25 30 35 40 45

20

30

40

50

60

70

80

20 25 30 35 40 45 50

20

40

60

80

100

15 20 25 30 35 40

20

30

40

50

60

ZTE

MotoG

Huawei

(c) Application–groups

Figure 4.7: Comparison of the estimator ratios computed on burst by the application (a) and the
kernel (b) and on groups (c). The small plots on the left show estimator densities: the x-axis is
the cell ground truth and the y-axis the estimate (figure from [1]).

Comparing Figures 4.7a and 4.7b, we observe that kernel measurements are slightly more

precise. This is to be expected since, they are performed at a vantage point closer to the physical

layer. Despite that, even applications are able to provide good enough estimators, with Huawei,

the worst performer being able to achieve 85% accuracy and 82% precision.

Each phone shows a unique bias and all have a tendency to report slightly higher bandwidth

values. Consequently, if a measurement campaign requires high accuracy, it is advised to calibrate

the phones used. MotoG and ZTE achieve higher accuracy and precision as is expected, based on

their performance at the latency test of Section 4.2.1 We further observe that accuracy and preci-

sion are independent of the actual data rates. The slightly larger width in the measurement point

distribution at higher rates is expected since the same percentage error causes a larger absolute

error at higher rates.

We observe that group based estimators have a tendency to severely overestimate data rate.

4.2 Experiment and Results 45

0 0.5 1 1.5 2 2.5 3
Ratio, η

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
ro
b
a
b
il
it
y

Huawei
MotoG
ZTE

2 4 6 8

2

4

6

8

2 4 6 8

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7
1

2

3

4

5

6

7

ZTE

MotoG

Huawei

Figure 4.8: Estimator ratios computed on burst in the uplink, as measured in the kenrel level
(figure from [1]).

In the sequel, we study group based estimators in depth and reveal the mechanics that cause this

behavior. A brief explanation is that the groups have usually very small tG, which combined with

the inability of the phone hardware to provide accurate packet timestamps and the ignorance of

group spacing times make it impossible to generate an accurate estimation. In scenarios where we

try to opportunistically generate traffic estimators, by passively sniffing traffic created by third-

party applications, usually only groups are available. To this end, Chapters 6 and 7, propose

techniques that may use group related information to provide trustworthy results. On the other

hand, the estimator values provided by bursts are averaged over a longer period of time, thus are

less affected by artifacts and inaccurate timestamps. As a consequence, they may provide more

accurate and precise estimations. In the rest of the analysis, we focus on burst based estimators.

We repeat the same experiment in the uplink and report the results of burst based estimators

observed at the kernel level in Figure 4.8. As expected, by the analysis of the previous section,

MotoG is the worst performing device, underestimating the real speed by 30%. On the other hand,

the other two devices achieve accuracy of at least 93%. We observe though that the PDFs are

wider than the downlink case, resulting in reduced precision of about 70% for ZTE and Huawei

and 60% for MotoG. Consequently, we reach again the to the conclusion that if low margin of

error is required, the measurement devices should be calibrated first.

46 LTE Radio Link Estimation Accuracy of Smartphones

4.3. Summary

This is the first study exploring the accuracy and precision of bandwidth measurements per-

formed directly on a smartphone. In most cases, the value reported based on observations at the

higher layers is close to the value observed at the physical layer, but if a low margin of error is

needed, then the phones used should be calibrated, since hardware differences have a measurable

effect. In general, downlink measurements have a smaller error compared to uplink. Smaller error

is also observed when the traffic is monitored at the kernel level, instead of the application level

and when bandwidth samples are generated based on bursts of packets rather than groups.

Chapter 5

Challenges in Performing Low Layer
Mobile Measurements

This chapter analyses in detail how the mechanisms described in Sections 2.3 and 2.4 affect

our attempts to accurately measure traffic and serves as the foundation on which Chapters 6 and 7

build upon. We also justify why the packet pair approaches mentioned in Section 3.1.2 are not

suitable for use on mobile phones. The tools we will present are based exclusively on phone side

measurements, and this imposes some limitations. Our main objective is to have a view of packet

arrivals at the physical layer, but we can only know what tcpdump is reporting at the IP layer.

Thus, we explore the measurement artifacts that distort the IP layer view of the traffic.

5.1. Measurement Artifacts

Figures 5.1 to 5.6 present time-sequence graphs of packet arrivals to a smartphone, as they

were captured by the traffic sniffing tool tcpdump. The time values represent time since the first

packet of the download arrived and when the related packets were captured by tcpdump. First, we

examine what the arrival patterns of IP packets look like under ideal conditions. Figure 5.1 shows

the arrival of packets to an LTE smartphone, as captured by tcpdump. In this experiment, we are

saturating the link and observe its behavior during TCP steady state. Note that the TTI of LTE

is fixed to 1 millisecond. It is easily observable that the packets arrive in groups that have about

the same duration as the TTI. Between these groups of packets, the smartphone is not allocated

resources, thus nothing is received. The size and temporal spacing of the groups depend on the

channel quality of the UE and the congestion level at the base station.

In our traces though, we frequently observed measurement artifacts that are unrelated to the

scheduler and are due to the following reasons.

47

48 Challenges in Performing Low Layer Mobile Measurements

Figure 5.1: Link saturation traffic over LTE dur-
ing the steady state of a TCP flow.

Figure 5.2: Arrival of the first packets of a TCP
flow over LTE.

5.1.1. Small Congestion Window Values During the Slow Start

The perhaps most well known artifact which our algorithms must handle is the grouping of

packets during the slow start phase of a TCP connection. The servers that transmit data over

TCP send bursts of packets to the client and wait for the related acknowledgments before sending

more. This behavior is very prominent during the slow start phase of the transmission when the

congestion window has small values. The gap in the transmission at the server side may cause

an analogous gap in the transmission at the base station. During this time, the base station is

not sending data to the recipient UE, because there are not data in the dedicated buffer. This is

visible in Figure 5.2, which illustrates the delivery of the first packets of a TCP flow over LTE.

In two occasions, consecutive TBs are received with a delay in the order of tens of ms. We also

observe in this example, that the total number of packets delivered in the groups that arrive at

about 75 ms is bigger than the number of packets in the first set of groups (the second group has

just one packet) at 0 ms. This is caused by the exponential growth of the congestion window.

Eventually, the congestion window is large enough that the we observe a continuous stream of

incoming packets and this effect diminishes. The specific flavor of TCP is not important, since all

of them use initial congestion window values that create this effect. The Round Trip Time (RTT)

is larger in 3G networks, compared to LTE, so, the impact of this TCP behavior is slightly more

pronounced.

5.1.2. Infrequent Polling for Incoming Packets

IP packets arrive at the UE as part of a TB alongside other IP packets. An ideal method to

measure the downlink speed then would require registering the exact size and timestamp of each

TB. The related information is only available at the eNodeB, as we have explained in Chapter 2,

so this is unfeasible. The lowest level from which we can extract network information is the

kernel, where we register the time and size of all the IP packets. Usually packets are registered

5.1 Measurement Artifacts 49

Time [s]
0.01 0.015 0.02 0.025C

u
m
u
la
ti
ve

d
ow

n
lo
ad

si
ze
,
[b
y
te
s]

×10 4

2

3

4

5

6
Phone

Sniffer

Figure 5.3: WiFi experiment of a phone with in-
frequent polling of the NIC.

Time [s]
3.4 3.45 3.5 3.55 3.6C

u
m
u
la
ti
ve

d
ow

n
lo
ad

si
ze
,
[b
y
te
s]

×10 6

1.46

1.48

1.5

1.52

1.54

1.56

1.58
Phone

Sniffer

Figure 5.4: WiFi experiment of a phone unaf-
fected by polling.

at the kernel with a noticeable delay, compared to their arrival at the NIC. In general, tcpdump

registers packets as soon as they arrive in the kernel, but in case of high network load, the kernel

might choose to delay polling in order to reduce packet processing overhead.

We have conducted a small scale experiment to assess the effect of polling on a variety of

phones, when both the WiFi and the LTE interface are used. When the LTE interface is active,

packets are reported in groups similar to the ones visible in Figure 5.1, in all of the phones.

The pattern is always similar with some minor variations on the size and spacing of the groups,

depending on how powerful the hardware is. For the WiFi experiment we use the 802.11g protocol

without packet coalescing, to ensure that each MAC frame encapsulates exactly one IP packet and

there is no grouped transmission of packets. We also set up a WiFi sniffer, which provides more

accurate timestamps to monitor the exchanged traffic and provide the ground truth. In Figures 5.3

and 5.4, we show WiFi traces captured by the sniffer and the phones during high speed downloads.

We observe that different phones may exhibit a very different behavior in the WiFi case. The

WiFi sniffer always reports a continuous delivery of packets “in the air”. Some phones report the

packets in the same grouped fashion as the LTE experiments, whereas others report continuous

delivery of packets. Based on these observations, we conclude that the pattern of packet arrival

on WiFi seems to be greatly dependent on the phone specifications. The arrival pattern in the LTE

case is determined by the grouped delivery of packets in the physical layer, but the timestamping

accuracy of each packet is related to the phone hardware. More powerful phones are less affected

by the polling problem, but even in this case, the delay shows slight variations. Since this delay

is very small, it is not significantly affecting our techniques, whose adaptive and statistical nature

tries to countermeasure it.

50 Challenges in Performing Low Layer Mobile Measurements

Figure 5.5: Some packets may be registered with
a noticeable delay. Experiment over 3G.

Time [ms]
0 50 100 150

C
u
m
u
la
ti
ve

d
ow

n
lo
ad

si
ze
,
[b
y
te
s]

×10 5

0

2

4

6

8

10

12

14

16

Figure 5.6: Arrival of high speed UDP CBR traf-
fic over LTE.

5.1.3. Weak or Busy Phone Hardware

It is quite common for packets to be delivered to the phone but not delivered to the higher

layers until several milliseconds later, alongside all the other packets that have been received in

the meantime. This is usually observed in cases of high capacity and/or high CPU utilization.

This behavior is very evident in Figure 5.5, which depicts the TCP steady state of a 3G download,

at a speed close to the theoretical maximum the measurement device can support, without any

other process stressing the CPU. Similar behavior is observed over LTE. According to the server

side trace of this download, the server transmitted all the packets that are visible in the figure

almost “back-to-back”. Also, the phone trace showed a steady rate in the delivery of packets. But

at times 5175 and 5215 ms we observe a gap in the delivery of packets and then the delivery of

an impossibly large group. Packets were actually delivered during these gaps, but were registered

all together when the CPU was able to process them. When the CPU is busy, this effect can be

observed at lower speeds.

5.1.4. Slower Speed During the First Packets of a Flow

We have noticed that when a UE may achieve very high speed, there is a significant difference

in the arrival rate of the first few hundred packets of a flow and the arrival rate of the rest of that

flow’s packets. The difference is present even if we take into account the reduced rate of the

slow start phase of TCP, in case the flow is TCP. We have observed this phenomenon in traces

gathered in the networks we used to evaluate our tools, as well as other European mobile networks

and across different devices. In order to get more insight, we have done a small experiment in a

Spanish LTE network, where we send CBR UDP traffic and monitor the arrival rate as reported

by the mobile. When the server transmits traffic at a rate smaller than 25 Mbps, there is no

difference in the arrival rate at different parts of the flow. If the rate of the server is higher than

25 Mbps, the first part of the flow (usually the first 150 to 300 packets) has an arrival rate 25%

5.2 Packet Pair Issue 51

to 50% lower compared to other parts of the same flow. A characteristic example is presented in

Figure 5.6, where the speedup is easily observed if we study the angle of the groups. The angle,

which represents speed, is lower on the groups on the left side of the dashed line compared to

the groups on the right side of the dashed line. More specifically, the arrival rate of the packets

located on the left side of the continuous line 1 (first 178 packets) is almost half the rate of the

rest of the packets on the right side of the continuous line.

If the transmission pauses for a few tens of ms, the same effect is observed upon restart.

Even though we do not present a dedicated experiment for a 3G network, our traces indicate that

this phenomenon is even more prominent in 3G. An independent team of researchers [60], who

conducted measurements in the same German network we used to collect our traces, observed

that the first packets of a flow experience a considerably higher delay compared to the rest, when

the rate at the server is higher than 20 Mbps. This effect causes reduced speed during the first

part of the flow. At the time of performing these experiments, we were unable to investigate this

phenomenon further, due to the lack of any means to monitor physical layer or mobile network

specific information. We believe that it can be attributed to an operator configuration.

5.2. Packet Pair Issue

The previous characteristics of mobile networks and phone hardware make the use of tradi-

tional packet pair techniques infeasible. Any two packets that would make a packet pair are in

either of the following cases.

Transmitted in the same TB. In this case the packets arrive more or less at the same time to

the UE, since all the information included in the TB is transmitted in parallel using multiple carrier

frequencies. The lower protocol layers of the UE ensure that they are delivered to the higher

layers in the right order, while also assigning them slightly different timestamps. Consequently,

sniffing tools like tcpdump perceive them as arriving with a tiny time difference, in the order of a

few hundreds of microseconds. A capacity estimation based on these packet pairs would greatly

over-estimate the real value of the capacity.

Transmitted in different TBs. In this case, the packet pair consists of the last packet of a

TB and the first packet of the following TB. Thus, the capacity value is greatly underestimated,

since the measured dispersion is the dispersion between the TBs and each TB is very likely to be

able to encapsulate more than one IP packet, which is not reflected in the measurement. If there

is exactly one packet per TB, then an accurate estimation is possible, but we observed that in the

majority of the cases each TB contains multiple packets.

1In order to avoid the including the visible “gap”, which is a measurement artifact, in the calculation, we calculate
the speed for the first packets of the connection based on the arrival of the packets before the “gap”.

52 Challenges in Performing Low Layer Mobile Measurements

5.3. Packet Trains Issue

Packet trains are also problematic. They cannot be used in a passive scenario because the

server transmits packets on the receipt of ACKs and the application requirements, so the trains

will have variable length. The number of packets in each TB may be different, which results in

similar problems to the ones described in the “packet pair” scenario. On some occasions all the

packets will be transferred in the same TB and on others in multiple TBs.

It is clear that long-established packet dispersion techniques that were developed to detect the

bottleneck link capacity in wired networks are not suitable for mobile networks, especially in re-

gards to detecting the per user capacity. In the sequel, we will present the necessary modifications

to this approach for it to provide reliable capacity estimations in mobile scenarios.

Chapter 6

Passive Mobile Bandwidth
Classification Using Short Lived TCP
Connections

The current state of the art solutions for bandwidth estimation require the transmission of link

saturation traffic [15, 45, 46]. This practice is problematic considering the scarce resources of

mobile devices. The focus of this study is the estimation of available bandwidth of mobile phones

through passive traffic monitoring. We specifically focus on traffic generated during the initial few

hundred milliseconds of the TCP “slow start” phase. At least 95% of the streams a mobile phone

generates are TCP and the majority of them are so short lived that they do not exit the slow start

phase of TCP [16]. In this chapter, we present a method that provides good bandwidth estimation

under these challenging conditions. Further, our method is robust against measurement artifacts

introduced by hardware-limited mobile devices, and the scheduling process of the base station.

The run time complexity of our algorithm isO(n) and the algorithm requires only the first packets

of a TCP stream.

This information may be used to choose the most appropriate media quality in streaming

scenarios, before the actual streaming commences. For example, a user may browse a library

of available media before picking one to stream. We can take advantage of the minimal traffic

the thumbmails generate in order to make an estimation of the bandwidth the user currently has.

Thus, it is possible to pick the best media quality that has sufficiently low probability of causing

buffering delays and slow startup.

The output of our algorithm can also be used as input to bandwidth optimization algo-

rithms [7–9], to achieve more efficient usage of the mobile resources. Such algorithms are usually

based on a resource prediction model that makes heavy use of time series information. We eval-

uate our algorithm by means of real-word experimentation, through LTE traces collected in 4

European countries (Germany [26], Sweden, Greece and Spain), using a variety of Android de-

vices.

53

54 Passive Mobile Bandwidth Classification Using Short Lived TCP Connections

The rest of the chapter is structured as follows. Our algorithm and a comparison with similar

tools are presented in Sections 6.1 and 6.2. Section 6.3 offers a discussion about the potential and

the limitations of our solution. Finally, Section 6.4 concludes this chapter.

6.1. Algorithm

In this section, we introduce the bandwidth estimation algorithm. Our goal is to provide a

tool that can estimate the available bandwidth of a mobile device by passively monitoring the

traffic exchanged during the slow start phase of TCP, coping with all the artifacts described in

Chapter 5. The core idea can be summarized as: we try to identify groups of packets that arrive at

the eNodeB together and thus were transmitted to the UE at the maximum speed that the scheduler

could allocate at that instance. For each such group we compute the bandwidth by dividing the

group’s total number of bytes by its time duration. Because this approach is very susceptible to

artifacts, we apply a set of filtering techniques before a result is derived.

Ideally, we would want to extract traffic information from the NIC, but this is impossible

without specialized drivers that vendors are very hesitant to release for public usage. Instead, we

use rooted Android phones and the traffic sniffing program tcpdump [73] to record the time and

the size of every IP packet reported by the kernel.

After we sniff the traffic and we organize it into flows based on IPs and ports. Packets related

to TCP and TLS handshakes are ignored, since we are only interested in the data exchange part of

the connection. On phones, most of the time only one TCP flow is actively downloading data [16],

thus the chance of having overlapping flows is low. Even if there is an additional flow, it will most

probably be in the slow start as well, or generate very low traffic. We may include these packets

in the measurement, since our goal is to detect burst transmissions from the antenna.

An outline of the algorithm is presented in Algorithm 1 and its analytical presentation follows.

For each incoming data packet Pi of a given flow, its size Si and timestamp Ti are logged. The

logging continues until a TCP FIN or RST packet is detected or until a few seconds have passed

without any data exchange. The next step is to identify the groups of packets that were transmit-

ted back-to-back from the server, which is done by locating unusually large delays between the

arrivals of two consecutive packets. At this point, the timestamps of all the packets of the flow are

available, so we derive their inter-arrival delays Di = Ti+1−Ti. We ignore all the delays that are

smaller than 1 ms, as such small delays imply that the packets were transmitted in the same TB

and arrived at the same time at the NIC (i.e. packets that belong in the same “line”, as shown in

Figure 5.1). The remaining delays are either caused by the scheduler organizing IP packets into

consecutive TBs (delay between the last packet of a TB and the first packet of the next TB) or

the server having paused the transmission because the congestion window limit has been reached

(delay between the last packet of a server group and the first packet of the next server group). We

want to identify the latter.

Usually, a TB related delay is significantly smaller than a server group related one. However,

6.1 Algorithm 55

Algorithm 1: Algorithm outline.
Data: Array T of n timestamps of packet arrivals
Array S of sizes of n packets
Result: Estimation of the instantaneous available bandwidth class
D,G,BW ← ∅;
for i = 1 to n− 1
do

if Ti+1 − Ti ≥ 1 ms then
D = D ∪ {Ti+1 − Ti};

s← 1;
P1 is the first packet of group G1;
for i = 1 to n− 1
do

if Ti+1 − Ti ≥ average(D) then
Pi last packet of group Gs;
Pi+1 first packet of group Gs+1;
s← s+ 1;

Pn is the last packet of group Gs;
for g in G
do

if Tglast − Tgfirst < 2 ms then
Delete g;

else
BW = BW ∪

{ ∑
Sg

Tglast−Tgfirst

}
;

return 75th percentile of BW ;

56 Passive Mobile Bandwidth Classification Using Short Lived TCP Connections

0 0.05 0.1 0.15
0

5

10

x 104

Time (seconds)

C
um

ul
at

iv
e

by
te

s
re

ce
iv

ed

0 0.05 0.1 0.15
0

10

20

30

Estimators

B
an

dw
id

th
 M

bp
s

Figure 6.1: First 100 packets of a TCP flow. The identified groups are enclosed between two
vertical lines and their derived bandwidth estimators are located right below them.

this observation applies only to the early stages of slow start. For larger flows, which reach a state

of almost continuous arrival of packets the two kinds of delays are indistinguishable. Such flows

are beyond the scope of our tool, since other established bandwidth estimation tools can be used

in case a flow is that large. If a delay Di is higher than the average delay, we assume that it is

server related, thus packet Pi is the last packet of the server group Gs and Pi+1 is the first packet

of the next server group Gs+1.

The duration of a group is the time difference between its first and its last packet. Each group

that has a duration of less than 2 ms is ignored. In order to generate a bandwidth estimator from

a group, it should consist of multiple TBs. Groups with a total duration of less than 2 ms usually

are single-TB groups. For such, the measured time duration is unreliable since the packets arrive

at the same time at the physical layer. At the kernel level where they are reported, there is a small

time difference, which, if used to compute an estimator, would yield very high values. Also, such

groups can be indicative of artifacts from a weak CPU, where a lot of packets appear at once after

a long period of inactivity. The upper part of Figure 6.1 presents the first 100 packets of a high

speed download generated by the Speedtest application. Our algorithm was able to identify six

6.2 Comparison with Bin-Based Tools 57

valid groups (marked between vertical lines), and one group that had to be ignored because of its

small duration.

For each remaining group g a bandwidth estimation value is derived by summing its total

number of bytes over its duration:

BWg =

∑
Sg

Tglast − Tgfirst
(6.1)

We then filter out the lowest 50% of these values. Such small values are usually caused by

smaller groups that are unable to fully utilize the available bandwidth (usually the very first server

group, which was generated with the smallest possible congestion window value). Other possible

reasons are sets of packets that arrived a little later at the antenna because of cross-traffic, or the

algorithm splitting groups too aggressively. In order to avoid the effect of very large outliers,

the median of the remaining samples is the output of the algorithm. These outliers could be

caused by ordinary polling delays and weak hardware artifacts, which may significantly alter the

timestamps. Effectively, these last two steps are implemented by picking the 75th percentile of

the values. In the example of Figure 6.1, the estimator values of each group are calculated in the

lower part. The values of the 2nd, 4th and last group are ignored as part of the lowest 50% and

the final result is the median of the remaining ones: about 30 Mbps.

This algorithm is so lightweight that it can be used on any modern mobile hardware with

minimal impact on its resources. Not only is its complexity O(n), but also n is bounded by

the number of packets, which is at most a few hundred. The algorithm is designed to provide

results for flows that have a number of packets that ranges from many tens (about 60-80) to a few

hundred.

6.2. Comparison with Bin-Based Tools

In this section we assess the accuracy of our algorithm. We collected traces from 4 European

countries (Sweden, Germany, Spain, and Greece) using several FDD LTE devices. Our traces

were collected by measuring traffic generated by automated tests and by volunteers who per-

formed their usual tasks on our instrumented devices. In this way, we can test our algorithm in a

variety of scenarios and configurations.

To the best of our knowledge, there are no other bandwidth estimation tools that can exploit

the traffic exchange of the slow start phase. An alternative would be to compare the resources

allocated by the eNodeB scheduler to the result of our algorithm. This can be achieved by access-

ing the logs of an eNodeB in order to fetch the exact timing of each TB transmission. Obtaining

such information is very hard, since it requires access to network components that are regarded

as commercial secrets by both equipment vendors and mobile operators1. Instead, we compare to

a baseline bin-based algorithm similar to the one used in [45] and [15]. If the measurement was

1At the time of performing the experiments and analysis of this chapter, we did not have access to OWL

58 Passive Mobile Bandwidth Classification Using Short Lived TCP Connections

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7
x 107

Time (seconds)

C
um

ul
at

iv
e

nu
m

be
r o

f b
yt

es
 re

ce
iv

ed

Figure 6.2: A trace generated by the Speedtest application while the UE was stationary and
connected to an uncongested cell.

generated by the Speedtest application, we use the result of this application instead. The baseline

algorithm works as follows: 1) the data exchange part of a flow is isolated, then 2) the flow is

split into 100ms bins, 3) a bandwidth estimation for each bin is generated by dividing the data ex-

changed by its duration, 4) the highest 10% and the lowest 30% of the values, as well as bins with

no data, are discarded in order to reduce the effect of slow start and measurement artifacts and

finally 5) the average of the remaining bins is returned. When the baseline algorithm is used on

Speedtest generated traces, the deviation from the Speedtest value is at most 8%. Therefore, we

believe its results are close to those of Speedtest. We remark that our algorithm only has access

to a very small part of the data, while the baseline algorithm has access to the full trace.

A comparison between our algorithm and an active measurement one should be done with

caution, because they are designed to compute different metrics. The data exchange part of files

in the range of 100 KB, which is the target of our tool, requires no more than 500ms even in

slow connections and can often be completed in less than 200ms. On the other hand, an active

measurement tool requires very big downloads, that must be active for 10 to 20 seconds, in order

to provide trustworthy results. Thus, our tool measures instantaneous bandwidth and an active

tool measures the average channel capacity over the duration of the measurement. The perceived

bandwidth at the side of the end user may greatly vary over a 10 second period. This can be

caused by the channel experiencing fast variations (e.g., moving car), changing cell congestion,

6.2 Comparison with Bin-Based Tools 59

0 5 10 15
0

1

2

3

4

5

6

7
x 107

Time (seconds)

C
um

ul
at

iv
e

nu
m

be
r o

f b
yt

es
 re

ce
iv

ed

Figure 6.3: A trace generated by the Speedtest application while the UE was in car moving with
100 Km/h.

or packet loss. In such cases, it is expected that the results of the two tools differ. This effect can

be seen in Figures 6.2 and 6.3, which present traces generated by the Speedtest application. Both

traces generate a similar pattern in their slow start phase (presented in the the smaller figures),

which is what our tool is designed to use as input. The trace of Figure 6.2 continues to have a

stable packet arrival pattern throughout its duration, in contrast to the one of Figure 6.3. Conse-

quently, the deviation of the resulting speeds between the two tools is several times higher in the

second case compared to the first. In addition, it is reported that even well regarded tools that are

meant to measure speed on the less dynamic “wired scenario” using a similar approach may have

significant deviation between each other [74].

For the rest of this section, the result generated by our tool is based on the first 100 packets

of a flow. We use this limit in order to represent what it would be able to track if the flow

was a short-lived TCP download that finished before exiting the slow start phase. Figure 6.4

results are generated by a small subset of the collected measurements generated solely by the

Speedtest application. Except for some cases that were caused by the phenomena described above,

the deviation is within 45%. Our tool is consistently giving lower values, because of the effect

described in Figure 5.6, since the speed achieved in most of the these traces, as reported by

Speedtest, was mostly above 35Mbps.

Next, we filter our traces in order to keep flows that could be used by both our tool and the

active bin-based estimator, described above. Thus, we reject flows that are too short, have too

60 Passive Mobile Bandwidth Classification Using Short Lived TCP Connections

few packets, are UDP, use network technologies other than LTE etc. Consequently, the size of

our sample reduces greatly from a few thousand flows to a few hundred, since most flows are too

short-lived for the baseline algorithm. This further highlights the importance of a passive tool

that can be used when very low traffic is present. The deviation between the values of the two

tools is presented in Figure 6.5. For the majority of the cases the deviation is less than 50%.

The traces which exhibit a deviation of more than 100% are caused mostly by flows that exhibit

traffic patterns not suitable for binning (e.g., video streams) or extreme cases of channel variation

(e.g., usage on a train). For example, a video stream is unsuitable for binning, because it is very

bursty—there are long pauses and short bursts of rebuffering. The binning algorithm samples

using a fixed time interval of 100 ms. Thus in every burst the first and the last bin are mostly

empty, resulting in significant underestimation. Building a more robust binning for the baseline

algorithm is beyond the scope of this work.

For the purpose of selecting the appropriate bitrate for a streaming application, it is convenient

to classify the resulting bandwidth into ranges. The number of classes and their limits are chosen

with respect to bandwidth range categories that would make sense for a multimedia streaming ap-

plication (bitrates of different stream qualities). Thus, the lower classes have significantly smaller

range than the higher ones. To this end, we define five classes, that have the following Mbps

ranges: 1) 0-5 Mbps 2) 5-10 Mbps 3) 10-20 Mbps 4) 20-60 Mbps and 5) higher than 60 Mbps.

Table 6.1 presents how frequently our algorithm and the baseline match and by how many classes

they differ, if they do not. We present both a comparison over all the traces and a comparison

over only the traces that have traffic patterns more suitable for binning. Even though the two

approaches have different objectives, in at least 60% of the cases they agree on the class. This is

significant, considering that the result of our solution is derived with virtually no cost and there is

no other tool that may provide such information.

Class difference Same 1 2 3 4
Traces suitable for binning 70% 29.6% 0.4% 0% 0%
All traces 60.29% 30.88% 8.46% 0.37% 0%

Table 6.1: How frequently our algorithm and the baseline match.

Our approach is optimized for cellular scenarios but we have also performed some limited

experimentation with WiFi. The challenges of a WiFi scenario are different from those of a

cellular one. In brief, 1) the channel is half duplex, 2) usually a centralized scheduling entity is

absent, 3) the significantly lower RTT compared to cellular networks may make the detection of

burst transmissions by the server harder, 4) the variable timing of the back-off mechanism, 5) the

potentially weak hardware and the great variation of polling behavior, as presented in Chapter 5

and finally 6) the presence of broadcast traffic.

Despite the above, the same version of the algorithm, applied to a small WiFi trace was able

to agree with the bin-based benchmark on the bandwidth class in at least 50% of the cases. Also,

the deviation between the values of the two tools was again less than 50% in the majority of the

6.3 Discussion 61

Percentage of difference
-100 -50 0 50 100 150

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.4: Percentage of difference between the instantaneous bandwidth measured by our tool
and the average bandwidth measured by the Speedtest APP.

trials.

6.3. Discussion

This section highlights some important aspects of our solution. The small footprint of the al-

gorithm makes it possible to run it as a background service without influencing the OS’s resource

utilization. For example, it could be integrated in the interrupt or polling functions triggered upon

packet arrivals. As mentioned in [50], some of the services that generate the flows we monitor

might be rate limited on the server side or by a bottleneck link other than the antenna. In this case

the tool does not measure the available bandwidth that the eNodeB can allocate to the user, but

rather the rate of the server or the bottleneck link of the path. Thus, as with other passive tech-

niques, the output of our algorithm should be seen as a lower bound. Also, a big portion of flows

do not generate enough traffic to be used for a trustworthy estimation even for our tool. This in-

cludes applications that by definition use use very low traffic (less than 10 packets per 100ms), like

chat applications (WhatsApp), or notification services like “Google cloud service”. Of course, if

a user receives a media file in one of these apps, the traffic generated then is sufficient.

If the reported bandwidth is above 25Mbps, it is possible that the actual bandwidth that could

be achieved by larger flows is significantly higher because of the phenomenon presented in Fig-

ure 5.6, where the first few hundred packets of a flow have an artificially slower speed than the

62 Passive Mobile Bandwidth Classification Using Short Lived TCP Connections

Percentage of difference
-200 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.5: Percentage of difference between the instantaneous bandwidth measured by our tool
and the average bandwidth measured by a bin-based estimator. The solid and the dashed lines
mark the 100% and 50% limits respectively.

rest, which are able to achieve the full possible speed. Also, it is possible that the slow start phase

of TCP cannot (even momentarily) saturate the link enough for the estimators to get such high

values. Our tool is meant to be used to optimize the QoE of media streaming applications and

not to provide a highly accurate bandwidth estimation. An underestimation of the true value at

such a high bandwidth class is not going affect the media application. Even the most demanding

video streaming applications, like the Ultra HD quality of Netflix require bandwidth in the range

of 25 Mbps [75]. Thus, any value above that is guaranteed to ensure minimum start up delays

and uninterrupted playback, while offering the best possible stream quality. If desirable, the exact

value of bandwidth might be obtained by another solution after the playback has started. This

tool is designed to operate during the slow start phase of a TCP connection. If the flow enters

the steady state, our tool is under-performing, because it will try to find server related groups

of packets, when the incoming packets form a continuous stream. In such cases, it is better to

use another approach that is designed to work on large flows. Our tool is meant to be used as

a complementary solution to the flows that cannot be used by the existing bandwidth estimation

algorithms.

Since our tool only tracks the size and time of the incoming packets, there is no privacy

violation. The IP and port pairs are only used to identify when a flow is active and can be discarded

after the measurement. Finally, when a user has a lot of small downloads within a short period

of time, such as browsing web sites, the resulting estimations may be able to reflect the channel

6.4 Summary 63

variation.

6.4. Summary

We have presented a lightweight mobile bandwidth estimation tool able to estimate the band-

width class of a UE by monitoring small flows. It is designed to be robust against various measure-

ment artifacts introduced by the phone hardware and the scheduling process of mobile networks

and is ideal for enhancing the Quality of Experience (QoE) of streaming applications. It can pro-

vide an estimation of the bandwidth available to a device, by just monitoring flows that precede a

media streaming request, enabling the optimal selection of content bitrate. This solution is meant

to be used alongside traditional bandwidth estimation tools that require access to large flows, thus

offering reliable estimation for a great range of traffic. It was also evaluated with traces collected

in 4 European countries with a variety of devices.

Chapter 7

Lightweight Capacity Measurements
For Mobile Networks

Mobile capacity measurement is a well investigated topic in the literature, but, to the best of

our knowledge, no lightweight or passive technique allows mobiles to collect frequent measures

of their capacity. To fill this gap, this chapter proposes a simple technique which is able to measure

the fast variations of the per user capacity and, from those, the expected end-to-end throughput.

Our goal is to provide a lightweight measurement technique that evaluates passively or with

minimum impact the per user capacity variations over time in a mobile environment. This enables

filter based prediction techniques and, consequently, prediction based resource allocation opti-

mization. Source code for the tool can be found in the repository of the EU project eCOUSIN1.

In order to do so we adapt packet train dispersion techniques by applying an adaptive filtering

mechanism, which we show is effective in removing the impact of outliers due to bursty arrival

and jitter, which are very prevalent in mobile environments. We validate the effectiveness of the

solution through extensive simulation and “real world” measurement campaigns: our technique

can achieve an accurate throughput estimate with as few as 5 % of the packets needed by other

solutions, while making an error smaller than 20 %.

The rest of the chapter is structured as follows. We present our measurement technique in

Section 7.1, in Section 7.2 we provide a first evaluation of our technique based on simulations,

and in Section 7.3 we describe how we collected “real world” data to validate it. The results are

discussed in Section 7.4 and Section 7.5 concludes the chapter.

7.1. Mobile Capacity Estimation

In the literature, the term “link capacity” refers to the transmission rate of a link, “path capac-

ity” is the minimum transmission rate among all the links of the path and finally “link available

bandwidth” refers to the spare link capacity (capacity not used by other traffic) [48]. Instead, we

1https://ecousin.cms.orange-labs.fr/sites/ecousin/files/lightmeasure.zip

65

https://ecousin.cms.orange-labs.fr/sites/ecousin/files/lightmeasure.zip

66 Lightweight Capacity Measurements For Mobile Networks

ms
1 2 3 4 765 8

ABCD E FGH

(1)

ms
1 2 3 4 765 8

A B CD E F G H

(2)

Packets S
e
rv
e
r
e
N
o
d
e
B

U
E

TTI
1 2 3 4 765 8

A B C D E FGH

(3)

Figure 7.1: Dispersion of IP packets over the Internet. First, they are sent back-to-back from the
server (1). After experiencing dispersion on the Internet, they arrive on the BS (eNodeB) (2).
Finally, they are received in groups by the UE (3). The timelines (1-3) happen sequentially, one
after the other, not in parallel. The horizontal arrows represent TBs allocated to the recipient UE.

are interested in estimating the maximum capacity that the scheduler of an eNodeB could allocate

to a target user if he requested saturation traffic under a specific bearer. This metric is specific to

cellular networks, we call it “per user capacity” and we symbolize it as CU . For brevity, in the

rest of the chapter we refer to it as “capacity”. To the best of our knowledge, traffic flow tem-

plates are not used for generic browsing and multimedia traffic, which is the scope of this work.

Thus, we can safely assume that all the measured traffic is using the default bearer, allowing us

to ignore this variable. As we will analyse in the sequel, in practice, the measured CU will often

be less than the maximum capacity a user could be allocated. For this reason, the measured value

represents the greatest lower bound of the user’s capacity. We will show that this value is very

close to the actual maximum, thus causing a slight underestimation of the true maximum per user

capacity.

The wireless link is the last hop of a downlink path and the CU of all the connected users is

dependent on the cell congestion, the channel quality, the channel’s bandwidth and the scheduling

algorithm. It is usually the link of a path with the lowest capacity, that also contributes the most to

the delay. On the other hand, the average end-to-end TCP throughputR, depends on the capacities

and the cross traffic of all the links in the path, as well as possible rate adaptations at the server

side, caused by the TCP mechanisms. The end-to-end TCP throughput is primarily determined

by the link with the minimum spare link capacity, which in a mobile scenario is usually the RAN.

We are interested in measuring CU , since it is the metric that affects all the connections that the

7.1 Mobile Capacity Estimation 67

Time, [s]
2 4 6 8 10 12 14 16 18 20

C
ap

ac
it
y,

c
W
,
M
b
p
s

0

10

20

30

40

50

60

70
tT = 1 ms

Capacity, cW , Mbps
0 10 20 30 40 50 60 70

F
re
q
u
en
cy
,
[s
am

p
le
s]

0

200

400

600

800

1000

1200

1400

1600

1800

2000

tT = 1 ms

Time, [s]
2 4 6 8 10 12 14 16 18 20

C
ap

ac
it
y,

c
W
,
M
b
p
s

0

2

4

6

8

10

12

14

16
tT = 5 ms

Capacity, cW , Mbps
0 2 4 6 8 10 12 14 16

F
re
q
u
en
cy
,
[s
am

p
le
s]

0

100

200

300

400

500

600

700

800

tT = 5 ms

Time, [s]
2 4 6 8 10 12 14 16 18 20

C
ap

ac
it
y,

c
W
,
M
b
p
s

0

2

4

6

8

10
tT = 10 ms

Capacity, cW , Mbps
0 2 4 6 8 10 12

F
re
q
u
en
cy
,
[s
am

p
le
s]

0

100

200

300

400

500

600

tT = 10 ms

Time, [s]
2 4 6 8 10 12 14 16 18 20

C
ap

ac
it
y,

c
W
,
M
b
p
s

0

1

2

3

4

5

6

7

8

9
tT = 20 ms

Capacity, cW , Mbps
0 2 4 6 8 10

F
re
q
u
en
cy
,
[s
am

p
le
s]

0

100

200

300

400

500

600

tT = 20 ms

Time, [s]
2 4 6 8 10 12 14 16 18 20

C
ap

ac
it
y,

c
W
,
M
b
p
s

0

1

2

3

4

5

6

7

8 tT = 30 ms

Capacity, cW , Mbps
0 2 4 6 8 10

F
re
q
u
en
cy
,
[s
am

p
le
s]

0

100

200

300

400

500

600

tT = 30 ms

Figure 7.2: Scatterplots of cW (left of each pair) and its statistical distribution (right of each pair)
computed for tT = {1, 5, 10, 20, 30}ms from left to right. When the dispersion time is computed
on windows larger than the TTI, tT > tS , the distribution gets more stable.

68 Lightweight Capacity Measurements For Mobile Networks

user is going to have in the future and is usually the bottleneck.

Figure 7.1 illustrates the packet dispersion due to the transmission over links at different link

capacities. This example is based on LTE, but similar effects are observed in various mobile

technologies. Initially, (1) the server sends a burst of IP packets (A-H in the example) back to

back. The number of packets in the burst varies since it depends on a number of factors like

the state of TCP connection, the specifics of the application and the server that generates it.

Subsequently, (2) the base station (eNodeB) receives the packets, which have suffered variable

delays due to the different link capacities and cross traffic encountered along the path. When

the scheduler allocates a TB (marked with horizontal arrows in the plot) to the receiving UE (3),

as many packets as possible are encapsulated in it. Therefore, all the packets that are scheduled

together arrive within the same TTI at the UE. As a consequence, the inter-packet interval can be

greatly reduced (packets A and B) or greatly magnified (packets B and C).

Considering the set of “back-to-back” transmitted packets crossing the path in Figure 7.1, we

can distinguish their arrival rate RA at the antenna from their transmission rate from the antenna

to the user, which can have a maximum value of CU . Both metrics are dynamic and are affected

by the same parameters that affect R. Thus, if we sample them for a specific period of time, we

may notice the following relationship between them. IfRA > CU , the set of packets arrives at the

BS with a delay which is inversely proportional to RA and shorter than the average time needed

for the BS to serve all but the last packet. Since the arrival rate is higher than the departing rate

at the base station, the dispersion of the set is caused by the last link. Also, depending on the

scheduling strategy, the set may be served within the same transport block or multiple transport

blocks by the BS. Conversely, ifRA < CU the set of packets arrives at the BS separated by a delay

which is longer than the average serving time of the BS. We thus have three cases (excluding the

problematic cases presented in Chapter 5):

I Bursty arrival [16, 46] (e.g.: set of packets E-F), if RA > CU and packets are in the same

transport block.

II Wireless link capacity, if RA > CU and packets are in different transport blocks (e.g.: set

of packets A-D).

III The bottleneck link being in the server-BS path and/or the server transmitting at a very low

rate (e.g. TCP slow start), if RA < CU .

In order to estimate CU , we have to filter both i) and iii) cases, as well as take into account

the behavior of sets of packets when transmitted over mobile networks as presented in Chapter 5.

In brief, our approach has two components: a) generating capacity estimation samples which are

not significantly affected by the above and b) the statistical processing of those samples in order

obtain a CU value.

7.1 Mobile Capacity Estimation 69

7.1.1. Capacity Estimation Samples

The input data for our passive measurement tool are the timestamps and sizes of all the re-

ceived data packets of a smartphone. We ignore packets related to connections establishment

such as TCP and TLS handshakes, since they cannot saturate even momentarily the wireless link.

This information can be collected on the OS level by monitoring the stack. In our experiments,

we use rooted Android smartphones and tcpdump to capture all the incoming traffic. Ultimately

this functionality could be included in the mobile OS as an on-demand lightweight measurement

service.

We consider a set ofN packets sent from a server and received at the UE so that the i-th packet

is received at time ti, with i = {1, . . . , N}. A key metric used by our algorithm is the “inter-

packet interval”, the time difference between the arrival of two consecutive packets (ti+1 − ti).
Obviously, in a group containing N packets, there are N − 1 intervals. W represents the unit-

less number of such intervals that we take into account when we generate the capacity estimation

samples. For each packet in the set we define the dispersion time dW (i) = ti+W − ti, and the

per user capacity sample cW (i) = (
∑i+W−1

j=i Lj)/dW (i), for a given value of W , where Li is the

length of i-th packet.

In detail, the cW (i) value of packet i is derived by adding the sizes of W consecutive packets,

starting from i and then dividing by the time duration of W consecutive inter-packet intervals,

starting from [ti+1 − ti]. Packet i + W contributes only to the denominator. For example, in

Figure 7.1, cW=2(A) is computed by dividing the sum of sizes of the packets A and B by the

dispersion time dW=2(A) = tC − tA.

The three arrival cases above contribute to the distribution of the capacity samples in different

ways. Arrivals of type i) cause a tiny dW and, thus, skew the distribution to the right (over-

estimation of CU). At the same time, type iii) events, which show larger dW (under-estimation of

CU) skew the distribution towards the left. To better visualize what is discussed next, Figure 7.2

shows a set of scatterplots of cW and histograms of its distribution computed on a single down-

load performed using the Speedtest application [45] over a HSPA connection. The X-axis of the

scatterplots represents the arrival time of packet i and the Y-axis its cW value.

The impact of type i) arrivals can by limited by settingW appropriately. The idea is to include

in each measurement packets belonging to different TBs in order to make sure that the highest

throughput cW we can measure is only related to the cell capacity and not to bursty packet arrivals,

as it would have happened had we chosenW = 1 in the example of Figure 7.1. In order to achieve

that, it is sufficient to study groups that, starting from any packet i, containWi intervals so that the

minimum dispersion time dW (i) is longer than the maximum TTI of the scheduler, abbreviated

tS :

Wi = {min(W) | min
W

(dW (i)) > tS} (7.1)

This guarantees that at least two packets within the Wi window are scheduled in two different

transport blocks, since ti+Wi − ti = dWi(i) > tS . In other words, we are averaging the burstiness

70 Lightweight Capacity Measurements For Mobile Networks

over two transport blocks. An effect of Equation (7.1) is that each packet i has a different Wi

value, depending on the spacing of packets that were received after it.

It is important to select the minimum value ofW for the creation of the cWi(i) value for packet

i that has the property min(dWi(i)) > tS . As discussed in Chapter 5, the “slow start” behavior of

TCP introduces noticeable gaps in packet delivery. Thus, samples that include these gaps in their

calculation of dW , generate cW values that are significantly smaller and not representative of the

CU . A high value of W increases the probability of a sample to include such gaps.

7.1.2. Statistical Processing of the Samples

Now that type i) events are filtered, we ensure that each set spans across at least two TBs.

The minimum dispersion time min dWi(i) for every packet i of the flow cannot be smaller than

the minimum time needed for a set of packets to cross the wireless link, which corresponds to the

maximum per user cell capacity. Thus, CU can be found as the maximum of the distribution of

cW , which is equivalent to the maximum value of cW .

CU = max
i∈[1,...,P]

cWi(i) (7.2)

P is the total number of data packets of a flow. Note that, with Equation (7.1) we are filtering the

effect of type i) arrivals (min) and with Equation (7.2) the delays introduced by type iii) arrivals

(max).

Ideally, we would like to sample cW until its distribution is stable, but CU is varying because

of both user movements and fast fading. Hence we can only obtain an estimate CU (p) of it from a

set of p consecutive estimation samples, where p < P . Although estimating the distribution from

a limited number of samples reduces the accuracy of our measurement, we can at least guarantee

that we are not overestimating CU :

CU
(p) = max

i∈[1,...,p]
cWi(i) ≤ max

i∈[1,...,P]
cWi(i) = CU (7.3)

This follows from the probability of the distribution of a sampled random process to contain the

maximum of the theoretical distribution of the process, which is increasing with the number of

collected samples:

lim
p→∞

CU
(p) = CU (7.4)

7.1.3. Capacity Measurement

This section describes the feasibility of lightweight active and passive measurements of per

user capacity CU based on dispersion samples of packet sets. It also explores the effect different

values of some parameters have on our technique. We compute the dispersion time by using an

7.1 Mobile Capacity Estimation 71

tT , ms
0 10 20 30 40 50

∆
(t

T
)

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 7.3: Ratio ∆(tT), varying tT ∈ [2, . . . , 50] ms. The measurements get stable from tT >
tS = 10 ms.

adaptive window Wi intervals long for every packet i such that:

Wi = {min(W) | ti+W − ti > tT }, (7.5)

where tT ∈ [1, . . . , 50] ms, for all the values of tT . The estimation sample of the ith packet is

composed of all packets following i until the first packet which arrived at least tT ms later than i.

This allows to satisfy Equation (7.1) a posteriori if the TTI duration is not known.

We exemplify the dispersion time in Figure 7.2 based on data obtained by time-stamping

the arrival time of the packets of a 6 MB HSPA download. The figure presents the evolution

of the scatterplots of cW and the corresponding histograms of the cW distribution for various

characteristic values of tT .

During the slow start phase of a TCP connection an increasing number of packets are sent

back to back from the server, and after a few RTTs the congestion window is large enough to

allow the transmission of packet trains long enough to measure capacity as high as 100 Mbps. In

fact, CU should be proportional to the maximum number of packets that can be scheduled in a

single transport block and, if Equation (7.1) is satisfied and tT > tS , the impact of outliers due to

bursty arrivals is removed. With reference to Figure 7.2, it can be seen that the maximum of cW
is approaching a stable value of about 10 Mbps when tT ≥ 15 ms. A similar analysis on the rest

of our dataset reveals that a stable value is reached for values of tT between 10 and 20 ms.

Moreover, Figure 7.3 shows the stability of the maximum of the capacity by plotting the ratio

72 Lightweight Capacity Measurements For Mobile Networks

Fraction of sample, f , [%]
0 20 40 60 80 100

C
V
(N

R
M
S
E
),
ε
C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bin = 1 s
Bin = 0.5 s
Bin = 0.2 s
Bin = 0.1 s

Figure 7.4: Coefficient of variation of the normalized root mean square error εC of the capacity
estimate computed over a fraction f = k/K of continuous samples for varying bin sizes ({0.1s,
0.2s, 0.5s, 1s}).

∆(tT), computed between the maximum value obtained with windows of [tT] and [tT − 1]:

∆(tT) =
|CW |tT − CW |tT−1|

CW |tT−1
(7.6)

Ideally, the ratio ∆(tT) should stabilize to 0 as soon the scheduling outliers are filtered (tT >

tS) and further increasing tT should only make the distribution smoother. However, in actual

experiments increasing tT makes it more difficult to obtain a sample of the maximum capacity

which is consistent over different transport blocks. In this preliminary example, we can see that

∆(tT) becomes stable for tT > 20 ms, which is in line with the HSPA TTI of 2− 10 ms.

Next, we divide the time duration of a download into fixed sized bins. We apply the above

method taking into account only a percentage f = k/K of consecutive capacity samples in

each bin. In this case, K is the total number of samples inside each bin and k is the number of

consecutive samples that we consider for every bin. Figure 7.4 shows the coefficient of variation

of the normalized root mean square error – CV(NRMSE) – of the estimate εC , by varying f :

εC =

√∑
bins(C

(k) − C(K))2

NbE[C(K)]2
, (7.7)

where Nb is the number of bins in a flow. The computations have been repeated for different bin

7.2 Simulation Campaign 73

Time, [s]
5 10 15 20

P
er

u
se
r
ca
p
ac
it
y,

C
U
(k
) (
t
),
[M

b
p
s]

0

1

2

3

4

5

6

7

8

9

10

f = 100 % f = 50 % f = 20 % f = 10 %

Figure 7.5: Time plot of the capacity variation CU (k)(t) computed every 500 ms and its different
estimates computed with f = {10, 20, 50, 100} %.

sizes varying in {1, 0.5, 0.2, 0.1} seconds (dotted, dash-dotted, dashed and solid lines, respec-

tively). It can be seen that the error decreases below 20 % when more than 20 % of the samples

are used.

Figure 7.4 can also be interpreted as the width of the probability distribution of having an

exact measurement using f % of the samples. In particular, it is easy to see that when we use all

the samples, the distribution should collapse into a delta function (zero width), while the fewer

samples we use, the wider the distribution. The real value can only be larger than the measured

one, because of Equation (7.3) that shows maxi∈[1,...,k] cWi(i) ≤ maxi∈[1,...,K] cWi(i). Thus, this

distribution has non-zero width for values smaller than the actual measurement only.

To complete this preliminary evaluation of our measurement technique, Figure 7.5 shows the

variation of the per user capacity CU (K)(t) measured every 500 ms and its estimates CU (k)(t)

computed with f = k/K = {10, 20, 50, 100} % (dotted, dash-dotted, dashed and solid lines,

respectively). Although with 10 % of samples the estimates are quite different from the actual

capacity values, we will be showing next that it is possible to exploit these coarse estimates to

obtain a sufficiently accurate capacity estimate.

74 Lightweight Capacity Measurements For Mobile Networks

average polling period, tP , [ms]
1 10 100

C
V
(N

R
M
S
E
),
ε
P
,
[%

]

0

10

20

30

40

50

60

70

80 tT = 5 ms

tT = 15 ms

tT = 30 ms

Bin = 0.1 s

Bin = 0.5 s

Bin = 1 s

Figure 7.6: CV(NRMSE) εP of the capacity estimate between ideal arrivals (tP = 0) and arrivals
that suffer from polling (tP 6= 0), for varying bin sizes and minimum dispersion times tT .

7.2. Simulation Campaign

We have performed an extensive simulation campaign in order to evaluate our proposed tech-

nique in a controlled environment. We use a modified version of ns-3.23 [76] and its LTE module

LENA [77]. We focus the simulation part of this study on LTE due to its increasing popular-

ity. In all simulations the monitored user uses TCP, since it is both the most challenging and

the most popular [16] transport layer protocol of mobile phones. The variable parameters of the

simulations are presented in Table 7.1. The fixed parameters are: 1) the simulation lasts for 22

seconds and 2) the BS uses a proportionally fair scheduler. For each set of parameters we run the

simulation multiple times with a different seed, generating in total 18570 flows.

Table 7.1: Simulation parameters

Parameter Value
Number of resource blocks (Mhz) 25 (5), 50 (10), 75 (15), 100 (20)

Number of competing UEs in the cell [0, 1, 2 . . . , 10]

Distance between UE and BS in m [0, 50, 100 . . . , 450]

Number of interfering BS [0, 1, 2 . . . , 6]

Type of scenario “Static”, “Urban walking”, “Vehicular”

Next we investigate the effect of polling on the accuracy of the measurements. The simulation

results do not suffer from polling, thus the packet arrival time reported in the logs is the actual

7.2 Simulation Campaign 75

Percentage Deviation, DS, [%]
0 0.2 0.4 0.6 0.8 1

C
u
m
u
la
ti
ve

P
ro
b
ab

il
it
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ideal (0 ms polling)
1 ms polling
10 ms polling
30 ms polling
100 ms polling

Figure 7.7: Deviation of the sampling estimations (k = 5%) for various average polling periods
tP from the ideal case (k = 100%, tP = 0).

arrival time at the NIC. In order to simulate the polling effect we manipulate the logs so that we

check for incoming packets every tP ± 10%, where tP ∈ [1, 3, 10, 30, 100] ms. We add the 10%

deviation in the timing of each polling because based on our traces and the literature, polling does

not have a fixed frequency. We also add a tiny inter-packet delay (in the range of 0.1 ms) between

the packets that are reported together by the polling function, in a fashion similar to the one we

observe in our “real life” traces. Please note that the polling delay (if present) is usually within

10 ms under normal circumstances.

Figure 7.6 shows the CV(NRMSE) εP between traces that have the original timestamps and

processed ones. We calculate the εP as we did for the εC in Equation (7.7).

εP =

√∑
bins(C

(tP) − C(0))2

NbE[C(0)]2
(7.8)

It can be seen that the error is at most 20% for most cases (up to 10 ms of delay).

Subsequently, we examine how the combination of sampling only 5% of the available esti-

mators and polling affects the accuracy of the results. We divide every flow to 100 ms bins and

for every bin we calculate the CU (100%) and the CU (5%) for various tP values. The speed of each

flow is the average of the measured capacity of all its bins E[CU
(k)]. As a groundtruth, against

which we compare the rest of the results, we suppose the case where tP = 0 (ideal polling) and

k = K. Figure 7.7 depicts the Empirical CDF of the percent Deviation DS computed by the

76 Lightweight Capacity Measurements For Mobile Networks

formula:

DS =
|E[CU

(5%)(tP)]− E[CU
(100%)(0)]|

E[CU
(100%)(0)]

(7.9)

By comparing the ideal line of tP = 0 with the rest, we conclude that even though polling does

have a negative effect in the measurements, the dominant cause of error is the sampling. Also, we

observe that for the most common tP values (tP < 10 ms) the deviation for 90% of the cases is

less than 30%.

7.3. Measurement Campaign

In order to validate our measurement technique over many different “real life” scenarios and

configurations, we organized a measurement campaign that covers two cities in two different

countries, Darmstadt (Germany) [26] and Madrid (Spain), for 24 hours a day lasting 7 days. Dur-

ing this time, 5 people per city moved around as they normally do, carrying one measuring device

each and performing their usual tasks involving mobile networking on the measuring devices. In

order to be able to compare results of both passive and active measurements, we also perform

automated periodic file downloads.

All the devices were running a simple Android application, which was periodically sampling

the available capacity by starting two download types: short downloads of 500 KB to study the

TCP slow start phase and long downloads of 2 MB to measure TCP steady state throughput. The

two types were organized in a sequence with a long download, preceded by two small downloads

and later succeeded by another two. We use tcpdump on the measurement devices to monitor

the arrival time and size of all incoming packets. The download sequence was repeated every

50 minutes. Additionally, we log other related phone parameters: GPS, cell ID, Channel Quality

Indicators (ASU, dBm) and network technology (2G, 3G, LTE).

The phones used in the campaign were the following: 5 Nexus 5, located in Germany, and 4

Sony Xperia Miro and 1 Samsung Galaxy S3, located in Spain. Also, while the Nexus 5 phones

are LTE capable, the other phones only support radio technologies up to HSPA.

7.4. Results and Discussion

We verified our measurement technique by analysing more than 3000 unique TCP flows ex-

tracted from the communication of the phones participating in the campaign. As before, we split

each flow into 100 ms bins and calculate the CU (100%) and CU (5%) metrics, and assume that their

average is the speed of each flow. Note that in these measurements we neither have control over

the polling, nor we can distinguish it from the scheduling behavior.

Figure 7.8 shows a scatterplot where the abscissa and the ordinate of each rectangular point

are the sampled and non-sampled versions of CU , respectively. Further we add in the same plot

the related simulation results for tP = 3 ms as diamonds. As expected from Equation (7.3) all the

7.4 Results and Discussion 77

10 -2 10 -1 10 0 10 1 10 2

Average capacity, E[CU
(5%)], [Mbps]

10 -2

10 -1

10 0

10 1

10 2

A
ve
ra
ge

ca
p
ac
it
y,

E
[C

U
(1
00
%
)]
,
[M

b
p
s]

Measurements
Simulations
y=x line
Linear fit of measurements

Figure 7.8: Scatterplot of the average estimate of per user capacity computed using all avail-
able information E[CU

(K)] against the estimate computed 5 % of the available information
E[CU

(k)], k = K/20.

data points are above the y = x line. Thus, we verify that our algorithm may only underestimate

the capacity. The fact that all the points are so close to the y = x line proves that the values

derived by just 5% of the samples are good estimators of CU (100%). As a consequence, this

measurement can be safely used as a lower bound in resource optimization problems. We also

plot the linear regression of only the actual measurement results as a dashed line. The regression

line would allow us to build an even better estimator with lower error.

The figure is plotted in double logarithmic scale in order to emphasize that the relationship

betweenCU (100%) andCU (5%) can be observed over all the measured connection rates and there is

an almost constant ratio between the estimate and the actual value. Although outliers are visible,

we can obtain quite an accurate estimate of CU by exploiting as few as 5 % of the packets sent

during a TCP connection. This allows for quite an effective passive monitoring technique as, even

by monitoring small data exchanges, it is possible to obtain frequent and accurate mobile per user

capacity measurements necessary for user throughput prediction and resource allocation. The

linear regression line seems to deviate from the measurement “cloud” for low values of capacity,

because of the double logarithmic scale used in the plot, which highlights the regression offset for

low values (500 Kbps and less). Further, we observe that for high values, the regression line has

an almost fixed vertical distance from the y = x line (constant percentage error). This represents

the error of the estimate and, since it is constant, in the double logarithmic plot, appears as a fixed

deviation on the Y-axis from the y = x line.

78 Lightweight Capacity Measurements For Mobile Networks

Unfortunately, using very low rate background traffic is impossible. The rates of such traffic

are on the order of 4 packets over 100 ms, which do not allow for reliable capacity measurements.

Also, a big number of the APPs use the Google Cloud Messaging (GCM) service, which mini-

mizes their notification related traffic. In the case of GCM, if there is an update a few packets are

sent just to generate a notification. When the user interacts with the notification, a larger number

of packets are downloaded. In this scenario, we can use that download to get an estimation.

In the experiments, we use rooted Android phones and tcpdump to perform the measurements.

Given the very low complexity and resources that are required by our approach, theCU estimation

is generated at virtually no cost. Therefore, we believe that it may be included in the OS as a

service to applications that may opt-in to use it. For example, the flow-id, the timestamp and the

size of a packet could be registered as part of the standard kernel packet processing procedure.

Since these values do not contain any sensitive information, there are no privacy concerns and

after a short period to time, when this information is irrelevant it can be deleted. Upon application

request, the OS could generate a CU estimation, if there are sufficient data stored. The knowledge

of the flow-id can help distinguish the state of a TCP flow (slow-start, steady-state etc.). If it is

possible to use small values of tT , it is possible to generate accurate estimators even during the

late part of slow start, when the congestion/receive windows have relatively high values, since

then the dispersion time can be smaller than the time required by the antenna to transmit a server

burst. In case of a TCP flow that stops very early, it can be difficult to remove both the slow start

and the scheduling artifacts. In such cases, the resulting value will be significantly lower than the

truth, but this is easy to detect and filter (e.g., requiring a flow to generate at least 75 downlink

packets in order to be used).

As a side note, our technique is also able to estimate fast per user capacity variations. How-

ever, it obtains a lower accuracy since a larger fraction of samples are needed to estimate the

maximum of the cW distribution. Nonetheless, it is often sufficient to use 20 % of the samples

collected in a bin to achieve a reasonable estimate of CU . In fact, with the smallest bin size and

as few as 20 % of the samples have an error εC < 0.2, which means the actual capacity should

not be larger than 120 % of the estimated value.

In addition, tT must be taken slightly longer than the TTI to avoid the measurement being

impacted by many bursty arrivals. In line with Equation (7.1) of Section 7.1, ∆(tT) approaches

zero for tT > 15 ms for most of the recorded flows.

Figure 7.9 shows the CV(NRMSE) for various combinations of tT and f of the measurement

campaign flows. The bin size is set to 200 ms to give an example of this technique’s results when

it collects very frequent measurements. As expected εC decreases when tT and f increase. For

values of tT ≥ 15 ms and f ≥ 20 %, the error is small enough for the model to give trustworthy

results (εC ≤ 15 %).

Finally, Table 7.2 shows some of the overall evaluation of the traces obtained by the mea-

surement campaign with f = 25 % averaged over the bin size and using the optimal tT
(min tT |∆(tT) → 0). Optimal tT and CU are computed as described in Section 7.1 and then

7.4 Results and Discussion 79

0.02

0.02

0.
02

0.04

0.04

0.
04

0.06

0.06

0.
06

0.08

0.08

0.
08

0.1
0.1

0.1

0.12

0.12

0.
12

0.14

0.14

0.
14

0.
14

0.16

0.16

0.18

0.2

0.22

Sample percentage, f [%]
10 20 30 40 50 60 70 80 90 100

W
in
d
ow

ti
m
e,

t
T
m
s

5

10

15

20

25

30

35

40

45

50

Figure 7.9: Contour graph of εC varying tT and f for a bin size of 200 ms.

averaged over all the traces. While some of the flows are transmitted using 2G EDGE data, the

results are not included since there are too few such flows for statistical significance.

Technology UMTS HSPA HSPA+ LTE
CU (Mbps) 10.83 1.4 10.74 24.3
Optimal tT (ms) 19 23 17 16

Table 7.2: Average CU and average optimal tT per technology.

The measurements are based on the data reported by the Android OS. Note that HSPA and

HSPA+ are a family of enhancements to UMTS, that greatly increase its speed. The high average

speed of UMTS is related to networks that support the HSDPA enhancement for improved down-

link speed, but not all the enhancements that would classify them as HSPA or HSPA+. The very

big differences in speed between the HSPA, HSPA+ and LTE technologies can be explained by

the following reasons. More recent technologies can achieve higher speeds. Smartphones tend to

use the best technology possible for their channel quality. Thus, they use HSPA only when their

signal is too bad to use a better technology and in turn the bad signal greatly affects speed.

Our approach is designed for downlink measurements, which account for the vast majority

of the smartphone generated traffic [16]. Recent trends, though, show an increase in uplink re-

lated user activity and therefore we will briefly discuss the uplink case. Our algorithm cannot

be directly applied to the uplink due to uplink communication characteristics. For instance, if

we attempt to perform a measurement on the phone side we can gather very limited informa-

80 Lightweight Capacity Measurements For Mobile Networks

tion. Without accessing the transceiver firmware, we can only observe how fast packets appear

in the kernel, instead of how fast the NIC successfully transmits them at the medium, which is

the metric we are interested in. It is possible that packets may remain in the buffer of the NIC

for a relatively long time after they appear in the kernel, leading to wrong estimations. On the

other hand, applying our algorithm to measurements collected on the server side will fail to mea-

sure the cell capacity, since many intermediate hops may be between the eNodeB and the server.

An alternative approach would be to infer clues of the speed indirectly at the phone side. If a

UDP socket is blocking, it can be an indication that the rate at which an application is generating

packets (which we can detect) is higher than the link capacity, thus deriving an upper limit of the

speed. In the case of TCP traffic, the ACKs can be analysed to infer whether the rate that the

application is generating traffic is above or below the link capacity. Further analysing the uplink

scenario though is beyond the scope of this thesis.

7.5. Summary

We presented a lightweight measurement technique that leverages adaptive filtering over the

packet dispersion time. This allows to estimate the per user capacity in mobile cellular networks.

Accurate estimates can be achieved exploiting as few as 5 % of the information obtained from

TCP data flows. We validated our technique over a week-long measurement and an extensive

simulation campaign. We achieved good estimation accuracy even when using only short lived

TCP connections. Since our technique is based on simple post-processing operations on the

packet timestamps, it is possible to easily integrate it in background processes or OS routines. It

is possible to extend our measurement application with filter based prediction capabilities, such

as the ones proposed in Appendix A, in order to provide mobile phones with a complete capacity

forecasting tool, which, in turn, may allow for advanced resource allocation mechanisms.

Part III

Interconnection of Third-Party Services
and Mobile Operators

81

Chapter 8

A Measurement Study of Mobile Cloud
Services

In the previous part we focused on how the multimedia experience can be improved based

on solutions that work in the low level aspects of networking. In this chapter, we focus on man-

agement, configuration and political aspects of networking that have a measurable effect on user

experience. More specifically, we are interested in how providers of cloud infrastructure and con-

tent delivery, collectively called CSPs, are interconnected with mobile ISPs and also measure how

they perform. The prevalence of such services in mobile websites and applications, make them

a key component of the mobile experience. If a CSP provider, especially one of the dominant

players, underperforms, a big number of seemingly unrelated websites and services are affected.

In this chapter, we empirically analyse the web of relationships between mobile apps, CSPs,

and MNOs. In particular, we aim to answer the following questions:

Which are the most dominant CSPs enabling the mobile Internet?

How well are these CSPs interconnected with MNOs at a topological level?

What is the performance of these services (i.e., as perceived by end-users) when ac-

cessed from commercial MNOs?

We conduct the first comprehensive study of its kind, combining different measurement tech-

niques and vantage points to fully capture the synergies between the entities forming this complex

ecosystem. As a starting point, we use traffic logs that we collected with Lumen Privacy Moni-

tor [78], a mobile privacy and transparency tool. Lumen’s rich traffic logs allow us to accurately

identify the most prevalent CSPs providing on-line infrastructure to 8,281 mobile apps in the wild.

Then, we run a purpose-specific month-long measurement campaign using the MONROE plat-

form for mobile broadband measurements [79] to capture the interactions between ten commercial

MNOs from four European countries and the most popular CSPs, as well as their transport- and

application-layer performance. Specifically, we focus on analysing the effect of replica selec-

tion, the role of the DNS subsystem, and the impact of in-path TCP splitting proxies, as well as

83

84 A Measurement Study of Mobile Cloud Services

routing- and peering-level effects on transport-layer performance. Our study also includes mobile

subscriptions roaming internationally.

Our analysis reveals that six CSPs— Amazon Web Services (AWS), Google, Facebook, Aka-

mai, Amazon CloudFront, and Highwinds — provide infrastructure and online support to 85%

of the apps that we measure with Lumen. We capture interesting multi-CSP strategies that 687

second level domains (15% of domains) use to increase their geographical coverage and reliabil-

ity (Section 8.3). We also track the integration and collaboration strategies between the top CSPs

identified through Lumen and the MNOs available in the MONROE platform (Section 8.4). In

particular, Akamai’s strategic alliances with multiple MNOs stand out. The varying degrees of

collaboration between MNOs and CSPs translates into notable performance differences, which we

actively measure and analyse in the same section. Namely, the tight integration between MNOs

and CSPs results in lower latency and connection times: Google’s relationship with various MNOs

has resulted in 15% lower connection times on average compared to other similarly performing

CSPs. We detect various levels of EDNS adoption among the studied operators, which, however,

does not seem to have any significant impact on performance. International roaming may add

significant delays, especially in the case of well provisioned CSPs, defeating their attempts to put

content close to the user. Finally, we observe that the choice of PoP may inflate by at least 20%

the delay towards popular websites (Section 8.6).

8.1. Recent Trends

The line distinguishing a CDN from a cloud computing provider can be blurred at times:

third-party service providers may simultaneously offer cloud computing and CDN services using

the same domain names and IP blocks. Due to this classification challenge, in this study we

analyse them together using the term CSP.

CSP deployment strategies: CDNs and cloud services may follow different strategies to deploy

their servers at a global scale. Cloud services like AWS leverage a reduced number of datacenters

located in strategic locations. Instead, most CDNs deploy thousands of caches and proxies as

close to the end-user as possible to minimize the end-to-end latency. For example, Akamai’s

infrastructure controls more than 233,000 servers in over 130 countries and 1,600 networks [80],

while AWS operates just 44 large-scale datacenters located in 16 geographic regions [81]. Large

CDNs may also host their services in IP blocks owned by MNOs and fixed-line ISPs who may

also commercialize their own CDNs and cloud solutions (e.g., Level 3 and TeliaSonera). This

state of affairs makes it difficult to attribute a given domain name or IP address to a particular

CSP, as we will discuss in Section 8.4.

CSP-MNO integration: The quality of experience (QoE) the end user perceives when connect-

ing to CSPs may be determined by the underlying connectivity agreements between MNOs and

CSPs [67,68]. A recent crowd-sourcing measurement campaign [82] suggests that certain mobile

domains perform poorly on many MNOs. App developers, MNOs and CSPs are increasingly

8.2 Methodology and Datasets 85

!"#$

api.fac
ebook.c

omcss.
wash

ingt
onpo

st.c
om

s.amazon-adsystem.com
config.uca.cloud.unity3d.comsvastx.moatads.com

!%&&'()*+,$
-./0$

1))2(+3'$144$5(+66*)$7%80$

1)3*9'$
-'+02('&':30$

$
•! ;."$,%%<240$
•! 5(+)'(%23'$$
•! 5!#$)%::')3*%:$

3*&'$
•! 57"$0'00*%:$

'03+=,*0>&':3$3*&'$

?&4*(*)+,$#'(6%(&+:)'$
1:+,@0*0$

A$ B$ C$

;'3')3*%:$=@D$
#5E$ 1"$

Figure 8.1: Schema of our study methodology using a simplified case of the Flipboard app as a toy
example. We followed three complementary steps in our study: 1) we analyse app traffic logs to identify
the network domains reached by thousands of mobile apps (each red arrow represents a traffic flow to
a domain); 2) we detect those domains hosted in CSPs; and 3) we actively measure the performance of
CSP-hosted domains on the MONROE measurements platform.

engaging in new peering agreements [67, 83, 84] and initiatives to avoid such inefficiencies. Two

examples are Netflix’ Open Connect Initiative [85] and Akamai’s Accelerated Network Partner

(AANP) program [86].

Multi-CDN strategies: CSP usage by mobile apps can be complex at times. Some apps com-

bine several cloud services to perform specific operations – e.g., Netflix uses AWS for encoding

their videos while using multiple CDN providers to enhance their resilience, coverage, and effi-

ciency. This strategy is known as Multi-CDN [87]. Adhikari et al. [87] studied Netflix and Hulu’s

multi-CDN strategies and their CDN selection algorithms. Their work concludes that considering

network conditions in the CDN selection algorithm or utilizing multiple CDNs simultaneously

can improve the average available bandwidth by 12% and 50%, respectively.

8.2. Methodology and Datasets

We follow a multi-step research method to study mobile CSPs as we depict in Figure 8.1.

In summary: i) we obtain accurate mobile traffic traces provided by thousands of users of the

Lumen app to identify the set of network domains reached by thousands of mobile apps; ii) we

rank each domain by its popularity, and identify those hosted on CSPs using a purpose-built CSP

classifier; iii) we measure the performance of CSP-hosted domains on the MONROE platform

and infer peering relationships between CSPs and MNOs. As our study is built upon real-world

86 A Measurement Study of Mobile Cloud Services

mobile traffic, we can comprehensively study the most prevalent CSPs by running realistic active

measurements on a set of representative CSP-hosted domains.

Toy example: the Flipboard app. Figure 8.1 provides a high-level description of our method

using the Flipboard app as a toy example, depicting how our method helps us understand the rela-

tionships between mobile apps, domains (specifically, Fully Qualified Domain Names (FQDNs)),

and CSPs hosting these domains. First, we use the Lumen Privacy Monitor (Lumen) [78] to

capture the different domains Flipboard connects to during normal operations (Step 1 in Fig-

ure 8.1). In Step 2, we combine a number of techniques — including reverse DNS lookups,

domain classification, and IP block analysis, among others — to identify which domains rely on

cloud providers, and to determine the actual CSPs providing support. This step allows us to know

that the Flipboard app communicates with 5 different FQDNs, and that each contacted domain is

hosted in a different CSP.

Mobile apps, including Flipboard, typically connect to third-party services for purposes of

advertising and tracking [88], or to embed other services like online payment and weather re-

ports [89]. These third-party services may also rely on CSPs for outsourcing their cloud infras-

tructure. For example, the Flipboard app leverages Facebook’s Graph API, which is hosted in

Facebook’s own cloud infrastructure, for user login and possibly for advertising purposes. Armed

with this FQDN-CSP mapping, we select a number of representative domains to perform active

performance measurements on (e.g., TCP connection time), using the MONROE platform (Step
3). We further describe each step and their relevant datasets in the following subsections.

8.2.1. Step 1. Collecting Accurate Traffic Logs

Lumen is a free Android tool for transparency and user control that captures, reassembles,

and analyses mobile app’s traffic flows on the device itself. Lumen operates as a middleware

between apps and the network interface, and intercepts all network traffic locally and in user space

using the Android VPN API. This allows Lumen to correlate traffic flows with disparate and rich

contextual information available on the device. For example, Lumen matches DNS queries to

outgoing flows and the app process owning the socket in order to obtain an accurate profile of a

given app’s traffic patterns.

Lumen is publicly available to download from the Google Play Store [90], allowing us to

crowd-source mobile traffic measurements at scale from all over the world. This feature makes

Lumen a unique mobile vantage point to understand how mobile apps communicate with online

services using real user input and network-stimuli and, therefore, the real interactions between

mobile apps and the CSPs supporting them. Lumen’s global user base allowed the collection of

a representative dataset accounting for over 5M anonymous network flows corresponding to over

8,000 different mobile apps reaching more than 18,000 FQDNs. In order to preserve user privacy,

Lumen performs its flow processing and analysis on the device, only sending anonymized data —

8.2 Methodology and Datasets 87

no payload or user identifier is collected – to our servers1.

8.2.2. Step 2. Mapping FQDNs to CSPs

Identifying the synergies between mobile apps, FQDNs, and CSPs is a challenging prob-

lem. To tackle this problem, our approach focuses on the 18,000 FQDNs available in the Lumen

dataset. We retrieve and analyse the PTR records (if available) associated with each IPv4 and IPv6

address by running reverse DNS lookups to identify whether a FQDN is hosted on a given CSP.

This allows us to map FQDNs to CSPs using CDNFinder’s PTR to CSP mapping [91].However,

CDNFinder’s mapping does not include marginal CDNs like CDNetworks as well as pure cloud

service providers like AWS or Claranet. Moreover, we could only retrieve PTR records for 62%

of the total IP addresses present in the Lumen dataset. In order to overcome these limitations and

increase CDNFinder’s coverage, we take the following steps:

1. We run a semi-supervised PTR classification by searching for strings that may suggest CSP-

related operations like ‘‘cdn’’ and ‘‘host’’ on the PTR records.

2. To identify CSP-related PTR records that are absent in CDNFinder’s mapping, we imple-

ment a semi-supervised PTR classifier that leverages public domain classifiers, specifically

McAfee’s [92] and OpenDNS’ [93] domain classifiers. To that end, we first extract the most

common categories assigned by the aforementioned domain classifier services to well-known

CSP-related PTR records (namely “Internet Services” and “Content Server”). Then, we check

if any of the PTR records that we obtain through our reverse DNS lookups fall in any of these

categories. Unfortunately, this approach introduces false positives as third-party in-app ser-

vices like ad networks may be classified as “Internet Services” too. The sheer size of the PTR

records impedes our ability to sanitize all of them manually so we limit our manual inspection

to PTR records associated with 248 popular FQDNs.

3. For each IP address associated with Lumen’s FQDN entries, we run WHOIS queries and re-

trieve the information on registrant organization and listed email addresses. We browse the

website of the email address domain to check if the organization offers any CSP-related prod-

ucts.

4. To identify CSPs in IP addresses that do not have PTR records associated with them, we

leverage the organization name string as present on AS-level records. This analysis allows us

to infer the presence of CSPs for 37% of FQDNs without PTR records and to increase the

identification coverage of FQDNs associated with CSPs by 14%.

Combining these four techniques allows us to create a mapping of 194 second-level PTR

records associated with 125 third-party CSPs, of which only 43 were initially present in CD-

NFinder. We made our PTR- CSP mapping open to the public [94].
1Our institutional IRB classifies this project as “non-human research subject” as we analyse the behavior of soft-

ware, and not people.

88 A Measurement Study of Mobile Cloud Services

Table 8.1: List of MNOs per country. MNOs listed in bold are roaming internationally (home country
code in brackets).

Country MNOs
Norway Telenor, Telia, Telia (SE)
Italy Vodafone, Wind, TIM
Spain Yoigo, Orange, Vodafone (IT)
Sweden Telia, Telenor, 3

Summary: Our extended FQDN-CSP mapping — both for IP addresses as well as PTR-records

— and their associated AS numbers allow us to measure the prevalence of each CSP in the mo-

bile ecosystem, reveal instances of multi-CDN strategies, analyse CSP peering relationships with

MNOs, and compile a set of representative domains to empirically measure on the MONROE

platform (step 3). Due to time and technical restraints, we limit our active measurements cam-

paign to a subset of 1,334 FQDNs hosted by the 6 most prevalent CSPs across apps: Amazon

Web Services (AWS), Google, Facebook, Akamai, Amazon CloudFront, and Highwinds.

8.2.3. Step 3. Empirical Performance Analysis

In order to assess the performance of CSP-hosted domains, we run a dedicated measure-

ment campaign on the MONROE platform [79], the first open access measurement platform

for independent and large-scale experimentation on commercial MNOs. MONROE consists of

programmable nodes spread across several European countries, each one multi-homed to three

MNOs. For this study, we use nodes in 4 countries — including SIMs performing international

roaming — as listed in Table 8.1. We benefit from MONROE’s openness and capabilities to

run long-lived active measurements in realistic but controlled scenarios in commercial MNOs.

Namely:

DNS test: We run DNS lookups for each target mobile domain. We compare the response

provided by the default MNO DNS resolver with Google’s and OpenDNS public resolvers. This

allows us to compare the quality of the responses and identify possible DNS-level inefficiencies

during the replica selection. All of our DNS queries include the EDNS flag [69] as it may be used by

CSPs like EdgeCast and Amazon services to locate the end user and improve the quality of replica

selection [95]. If we do not receive a reply, as it occurs for Vodafone (IT) possibly due to the presence

of an in-path DNS proxy filtering those requests, we repeat the request without the flag. We detect

support for this functionality based on whether the DNS response includes an ECS option with the

client’s subnet [69].

Traffic performance test: We measure the TCP connection and TLS session establishment

time, if applicable, towards the resolved IP addresses. We open both TCP and TLS connections

over TCP ports 80 and 443 by making an HTTP GET request for the favicon.ico object. The

presence of the object in the server is not relevant as the handshakes are triggered regardless of its

8.3 CSP Prevalence on Mobile Apps and Services 89

Table 8.2: Top 5 FQDN by app penetration.

App (%) SLD IP(%) CSP(s)
29 googlesyndication.com 0.8 Google
28 doubleclick.net 1.4 Google
27 facebook.com 0.6 Facebook, Akamai
26 crashlytics.com 1.4 AWS
25 googleadservices.com 0.5 Google

existence.

Network topology test: For each resolved IP address, we run UDP traceroutes to study CSP-

MNO peering and topological relationships.

We run the aforementioned experiments in isolation from other experiments continuously

over 4 weeks, from April 5, 2017 until May 6, 2017. The combined results of the three tests for

a given FQDN produce a “sample”. The measurements are run continuously, and the time period

between our samples varies between 4 and 24 hours. Thus, our experiments may cover several

instances across time of day and various radio conditions. Nevertheless, we run the experiments

sequentially to guarantee similar network conditions across FQDNs. We do not measure metrics

such as Time to First Byte (TTFB) [96] and download speed as they are more likely to be affected

by server-side artifacts, which is beyond the scope of this study. The measurement code and

dataset are publicly available [94] to satisfy the reproducibility principle.

Data sanitation: We leverage metadata provided by the MONROE nodes to avoid bias intro-

duced by uncontrolled changes in the wireless technology coverage (see Section 8.5 for further

details) while we use packet captures to ensure that the measurements run by higher layer tools

are accurate. We also remove measurements that may be affected by MNOs enforcing volume

caps which may inflate latency. After sanitizing our dataset, we obtain a set of 173,679 valid

samples.

8.3. CSP Prevalence on Mobile Apps and Services

In this section we analyse the prevalence of CSPs among mobile apps in order to identify the

main players supporting the mobile Internet and multi-CDN strategies. 55 of the CSPs that we

identified in the previous section are present in the Lumen dataset and 85.2% of the apps connect

to at least one of them. However, such a high prevalence is not necessarily a consequence of

app-developer decisions. As we can see in Table 8.2, advertising-related FQDNs have the highest

app penetration [89, 97]. Just the domain googlesyndication.com, hosted by Google on

its own datacenters, is present in over 29% of the apps in our dataset. Most organizations seem to

leverage a single CSP. However, popular organizations like Facebook clearly follow a multi-CSP

strategy by combining their own CSP infrastructure with Akamai’s.

Figure 8.2 ranks CSPs by the number of mobile apps connecting to them, also showing the

90 A Measurement Study of Mobile Cloud Services

0

20

40

60

Amaz
on

 AW
S

Goo
gle

Fa
ce

bo
ok

Aka
mai

Amaz
on

 C
lou

dF
ron

t

High
wind

s

Inc
ap

su
la

CDNGP

Ins
tar

tlo
gic

dc
−m

se
dg

e

Cac
he

fly

Word
Pres

s

Le
as

ew
eb

Drea
mho

st

Arub
a

%
 o

f t
ot

al Apps

FQDN

SLD

Figure 8.2: Top-15 CSPs prevalence by app, FQDN and SLD.

Table 8.3: Multi-CSP strategies by FQDN and SLD.

of CSP 1 2 3 ≥ 4
FQDN(%) 97.4 2.5 0.1 0.0
SLD(%) 84.9 13.6 1.3 0.2

percentage of FQDNs and second-level domains that they support. We report CSP prevalence

by apps, by FQDNs and second-level domains (SLDs in short) to give a sense of both app and

domain-level usage. The figure reveals a clear power-law distribution. While 49 CSPs (e.g., Pure-

peak, not shown in the figure) have a marginal presence as they receive connections from less than

1% of the apps, six CSPs play a central role on this market, being associated with 85.05% of the

apps. AWS and CloudFront, both owned by Amazon, are the most used CSPs by mobile on-line

services, supporting 27% and 6% of SLDs, respectively. Other CSP services like Facebook are

easily found across mobile apps as many of them integrate Facebook services, including advertis-

ing, through the Facebook Graph API. However, Facebook also leverages Akamai’s infrastructure

as well as its own, which is only open to affiliate companies like Instagram. Google, instead, has

opened their infrastructure to third parties with the Google App Engine service.

Finally, we leverage our PTR-CSP mapping to identify instances of multi-CSP strategies on

a per-FQDN and per-SLD basis. According to our results (Table 8.3), only 3% of the analysed

FQDNs and 15% of SLDs use at least 2 CSPs. After carefully inspecting such FQDNs, we can

conclude that they are associated with large companies such as Samsung, Adobe, Chartboost,

Unity or Facebook among others. This observation suggests that multi-CSP strategies are specific

to large companies — probably because of cost-related reasons — despite their performance and

reliability benefits.

8.4 CSP Performance and Integration with MNOs 91

0 50 100 150 200 250

port 80 [ms]

0

50

100

150

200

250
p
o
rt
 4
4
3
 [
m
s]

(a) Location: Spain (roaming)

0 50 100 150 200 250

port 80 [ms]

0

50

100

150

200

250

p
o
rt
 4
4
3
 [
m
s]

(b) Location: Italy

Figure 8.3: Heatmap of TCP connection times over ports 80 and 443 for a Vodafone Italy SIM
when roaming (left) and when connecting from the home network (right). Lighter colors indicate
more repetitions.

8.4. CSP Performance and Integration with MNOs

This section aims to analyse the actual performance of CSPs in the MONROE platform. To

that end, we study first the presence of in-path middleboxes on MONROE’s MNOs given that

their presence can bias CSP performance measurements (Section 8.4.1). In Section 8.4.2, we

characterize the DNS infrastructure deployed by our tested MNOs and their support for EDNS, a

DNS extension used by many CSPs to correctly locate the end-user. Third, we study the CSPs’

performance in the MONROE platform (Section 8.4.3) following the methodology described in

Section 8.2.3, further analysing in detail the effect of topological and peering relationships be-

tween MONROE MNOs and our six target CSPs (Section 8.4.4) on TCP and TLS connection

establishment. We conclude with an analysis of the impact of international roaming on TCP and

TLS performance (Section 8.4.5).

8.4.1. In-path Middleboxes

MNOs may deploy Performance Enhancing Proxies (PEP) to optimize mobile traffic perfor-

mance [62] using techniques like TCP splitting. However, TCP-splitting proxies can introduce

bias in our measurements, as the TCP connection time obtained is to the proxy rather than to

the final end-point (i.e., the CSP). In order to identify such scenarios, we run the Netalyzr net-

work troubleshooting tool [98] directly on the MONROE nodes [62, 99]. Netalyzr only revealed

a TCP-splitting proxy for Vodafone Italy in TCP port 80. MNOs do not deploy TCP-splitting

proxies on port 443 as their presence can interfere with mobile apps’ securing TLS flows [100].

92 A Measurement Study of Mobile Cloud Services

As a consequence, in the Spanish location, all the measurements over port 80 have a maximum

connection time of about 130 ms, whereas over port 443, we cannot identify an upper limit as

can be seen in Figure 8.3a. Likewise, in the Italian location, the vast majority of connection time

measurements over port 80 are below 150 ms, whereas over port 443 we cannot identify an upper

limit as can be observed in Figure 8.3b. The inflated times of the Spanish location are due to the

roaming strategy of Vodafone Italy, as we will discuss in the sequel. Due to the above, we focus

our TCP performance analysis only on TCP port 443, a middlebox-free path for all our MNOs.

8.4.2. DNS infrastructure

DNS Proxies: As for stateful TCP traffic, MNOs may also deploy DNS proxies to gain full

control over user’s traffic [62]. Their presence can interfere with CSP’s performance by altering

both DNS queries and responses. DNS resolvers deployed by all Swedish carriers perform cache

delegation of DNS records (i.e., they store the authoritative DNS servers for a specific domain), a

common practice across MNOs [101]. Furthermore, TIM Italy proxies DNS traffic and performs

DNS wildcarding (i.e., they resolve non-existing names). Finally, Vodafone (IT) seems to actively

block all DNS requests towards any DNS resolvers containing the EDNS flag. This behavior could

be caused either by a DNS proxy or a DNS-aware firewall. Consequently, we cannot study the

impact of the EDNS extension on Vodafone (IT).

EDNS support: Both Google’s Public DNS and OpenDNS publicly claim to support the

EDNS edns-client-subnet flag. We study whether DNS resolvers — including the de-

fault DNS resolver provided by the MNO as well as Google’s and OpenDNS resolvers — support

EDNS by checking whether the ECS option is included in the response, as specified by the RFC

7871 [69]. According to our results, only Google’s public DNS seems to completely follow the

RFC 7871 recommendations: the ECS option is absent from OpenDNS responses despite sup-

porting EDNS [95]. This observation leads us to believe that OpenDNS may have their own

interpretation of the standards. The only instance where the flag is absent from the response,

when contacting Google is for TIM (IT), probably due to an in-path DNS proxy. Additionally, we

check both the EDNS buffer size and reply size. For all the Norwegian operators as well as Telia

SE, DNS replies are limited to 512 bytes, which is an indication that EDNS is not supported.

As opposed to public DNS resolvers, MNO’s recursive DNS resolvers may not need to pro-

vide EDNS support to help the authoritative name server locate the end-user. MNOs may assign

the same public IP address space both to end-users and recursive DNS resolvers. To study the

feasibility of this, at least for the MNOs under consideration, we record the public IP of the user

by sending traffic to a machine we own. Then, we get the public IP of the default DNS resolver

of the operator, by resolving the URL whoami.akamai.net, which returns the IP from which

Akamai servers receive the DNS request. Our experiment shows that all our studied MNOs use

different address spaces for their DNS infrastructure and their subscribers, hence making the lo-

calization of the user based on the public IP address of the resolver impossible.

whoami.akamai.net

8.4 CSP Performance and Integration with MNOs 93

C
lo
u
d
Fr
o
n
t_
D
E
F

C
lo
u
d
Fr
o
n
t_
G
O
O
G

C
lo
u
d
Fr
o
n
t_
O
D
N
S

A
W
S
_D

E
F

A
W
S
_G

O
O
G

A
W
S
_O

D
N
S

G
o
o
g
le
_D

E
F

G
o
o
g
le
_G

O
O
G

G
o
o
g
le
_O

D
N
S

A
ka

m
a
i_
D
E
F

A
ka

m
a
i_
G
O
O
G

A
ka

m
a
i_
O
D
N
S

Fa
ce

b
o
o
k_
D
E
F

Fa
ce

b
o
o
k_
G
O
O
G

Fa
ce

b
o
o
k_
O
D
N
S

H
ig
h
w
in
d
s_
D
E
F

H
ig
h
w
in
d
s_
G
O
O
G

H
ig
h
w
in
d
s_
O
D
N
S

0

50

100

150

200

250

300

350

400
C
o
n
n
e
ct
io
n
 t
im

e
 [
m
s] TCP

TLS

Figure 8.4: Median values of TCP connection time and TLS handshake duration for < CSP > <
DNS resolver > combinations. Error bars represent the 25th and 75th percentile.

8.4.3. CSP Performance

Once we understand the DNS infrastructure of each MONROE MNO, we study the “quality”

of the DNS responses provided by each DNS service and its impact on TCP and TLS connection

time. In only 45% of the tests, the three resolvers return IPs that belong to the same set of \24
subnets. However, only 2% of the responses provided by the third-party DNS providers point to

machines hosted in a different country than the one in the responses of the default MNO resolver.

In that case, the increase of the median handshake duration is at most 2ms and 9ms for TCP and

TLS, respectively.

Figure 8.4 shows the TCP and TLS connection time across all our MNOs, grouped by the DNS

resolver being used. As we can see, the three resolvers perform similarly at the transport level

regardless of EDNS support. MONROE nodes connecting to IPs provided by the default DNS

resolver have marginally better TCP connection times than those connecting to servers proposed

by OpenDNS and Google’s public DNS (around 3ms). Facebook is the only CSP exhibiting

significantly better performance when using the MNO’s default resolver in all MNOs but in the

case of TIM (IT) where all the DNS responses perform similarly because of its in-path DNS

94 A Measurement Study of Mobile Cloud Services

proxy. For the other MNOs, the responses provided by the default DNS resolver are 10ms faster

at the TCP level compared to Google’s and OpenDNS’ responses.

Figure 8.4 also reveals performance differences across CSP services, namely due to the scale

and coverage of their infrastructure. As we can see, Amazon CloudFront (a CDN provider with

a vast infrastructure) and Amazon AWS performance differences are remarkable. A possible

explanation for that is that CloudFront is a dedicated CDN provider service, with replicas in

multiple locations, whereas AWS is a cloud computing platform with just a few data centers in

Europe. In fact, among the many FQDNs studied, we can identify that many Amazon AWS

customers do not leverage AWS’s global infrastructure and decide to host their services entirely

in US data centers, hence further inflating the delays.

8.4.4. CSP-MNO Integration

In this section, we study the topological relationships (e.g., peering) and the geographical

distribution of CSPs’ data centers and MNOs’ Points of Presence (PoP) in order to identify their

effect on TCP and TLS connection time. We use MONROE’s traceroute measurements to char-

acterize the interconnection between MNOs and CSPs. We retrieve the Autonomous Systems

(ASes) that advertise in BGP the most specific network prefix covering the IP of each hop in the

traces we collect.

Given the difficulty to accurately measure the geographic distance between an MNO and a

CSP without insider knowledge, we define the following distance metrics:

Country distance: This metric counts the number of unique countries traversed by a tracer-

oute probe from the MONROE vantage point to the target CSP. We retrieve country-level informa-

tion by mapping each hop’s IP along the data path to a country code using MaxMind’s free GeoIP

service. Consequently, MaxMind’s accuracy [102] constrains our analysis accuracy.

Organization distance: This metric reflects the number of unique organizations traversed by

a traceroute probe from the MONROE vantage point to the target domain. For each hop’s IP address

along the traceroute data path, we retrieve the AS using the most specific prefix advertised in BGP.

Then, we use CAIDA’s AS-to-Organization mapping dataset [103] to identify the parent organization

for each IP address2.

Large Internet entities such as Tier-1 ISPs and CSPs may use multiple AS numbers and yet

advertise various IP blocks with the same origin AS [104]. This makes identifying the actual

entity behind a given IP block and its usage harder. For example, Telia Sonera – an ISP offering

both fixed and mobile connectivity that owns multiple AS numbers – advertises its reachability

information in BGP, including its mobile subscribers, using the AS number associated to its Tier-1

ISP.
2The same organization may own several AS numbers, thus we refrain from using the AS path length as a distance

metric.

8.4 CSP Performance and Integration with MNOs 95

Table 8.4: Median and standard deviation values of the organization and country distance per CSP
when aggregating all the MNOs that we measure in the MONROE platform. We target six main
CSPs we previously identified in the analysis of the Lumen dataset.

CSP
Performance

Tests #
Country dist.
median (std)

Org. dist.
median (std)

CloudFront 408,537 3 (1.6) 2 (1.0)
AWS 400,240 2 (1.3) 2 (1.0)

Google 69,839 2 (0.8) 2 (0.7)
Akamai 67,375 2 (0.7) 2 (0.7)

Facebook 9,731 3 (1.1) 3 (0.9)
Highwinds 8,984 3 (0.9) 3 (0.7)

Table 8.5: The effect of organization and country distance on TCP connection time [median (std)].

CSP MNO
Organization

dist.
Country

dist.
TCP conn.
time [ms]

Akamai

Telia NO 2 (0.3) 2 (0.4) 42.0
Telenor NO 3 (0.9) 2 (1.0) 65.0

Telia SE 3 (0.6) 2 (0.4) 52.0
TIM IT 2 (0.3) 2 (0.5) 30.0

Orange ES 2 (0.5) 2 (0.7) 39.0
Yoigo ES 2 (0.7) 2 (0.5) 38.0

Google

Telia NO 3 (0.0) 2 (0.0) 43.0
Telenor NO 2 (0.4) 2 (0.4) 75.0

Telia SE 3 (0.7) 2 (0.3) 57.0
TIM IT 2 (0.5) 2 (0.5) 30.0

Orange ES 2 (0.4) 3 (1.2) 56.0
Yoigo ES 2 (0.4) 3 (0.8) 41.0

Results: Table 8.4 presents the median country and organization distance for each CSP across

all our MONROE nodes. We identify organizations and countries along the path based on the IPs

we see in the traceroute data. In general terms, Akamai and Google have the smallest distance

metrics, presumably because of the extensive use of peering and the presence of caches within

MNO networks. Table 8.5 shows the impact of distance values on the TCP connection time for a

selection of MNOs and CSPs. When aggregating all results across all MNOs, we can see that most

flows cross 2 or 3 organizations on average at most. The following paragraphs discuss specific

MNO cases.

Telia (SE, NO): Both Telia and Telenor operate in Sweden and Norway. The median value

organization distance between Telia and the majority of our target CSPs is 3, regardless of the

operating country. The only exception is Akamai for Telia NO, where the median value goes

down to 2 organizations. From our MONROE measurements, we find that Telia (SE) (AS3301)

reaches over 85% of the Akamai services directly through its Swedish parent organization, Telia

Company (AS1299), which also acts as its Internet transit provider [105], hence possibly inflating

96 A Measurement Study of Mobile Cloud Services

the network path. Similarly, we find that Telia (NO) (AS12929) always routes its traffic through

Telia Company (AS1299). which has over 1,500 customer networks and 50 peers. The ongoing

strategic alliance between Akamai and Telia [106] allows the CDN-MNO collaboration to im-

prove the end-user experience in a cost-effective manner. We measure a median TCP connection

time of 52ms and of 42ms for Telia SE and Telia NO to Akamai, respectively. According to

[105], Telia Company registers as a peer for Google Inc. (AS15169), explaining the organization

distance of 3 to Google from Telia NO and Telia SE. The TCP connection time we measure to-

wards Google servers is similar to Akamai’s prior values: 43ms from Telia NO and 57ms from

Telia SE, respectively.

Telenor (SE, NO): Telenor Sweden’s median distance towards each one of the six CSPs is 3,

while for Telenor NO the distance varies in median value with Google having the smallest value

(2 organizations) and Akamai – a median value of 3 organizations. Telenor NO (AS8786) belongs

to the Telenor group and is registered for mobile operations in Norway. AS8786 always routes

its traffic using the parent company AS2119. Similarly, Telenor SE also depends on the same

AS2119 to reach targets. Our traceroute measurements reveal a high diversity of AS-level paths

when reaching Akamai target servers with a median organization distance of 3. In 20% of these

paths, we observe IP address blocks belonging to the Amsterdam Internet Exchange (AMS-IX).

This suggests that Telenor (NO) leverages its peering connections in the Netherlands at AMS-IX

to reach content hosted by Akamai. This result does not suggest an ongoing alliance between

Telenor and Akamai. This observation translates in performance degradation: 65ms in median

value from Telenor NO to Akamai (Table 8.5) In Telenor SE we also identify that 27% of the

requests have a country distance of 4 or higher, while for the rest of the MNOs this is less than

2%.

TIM (IT): Telecom Italia (AS6762) (TIM) is one of the largest operators in the world, with

peering connections to all the other Tier-1 ISPs [105]. Thanks to its dense global interconnection

and large user-base, CSPs such as Akamai entered into partnerships agreements with TIM to

optimize content delivery and increase the quality of experience of content consumers [107]. We

note that when breaking down the organization distance (Table 8.4) for TIM on the six different

CSPs, only Facebook and Highwinds have a median distance value of 3 organizations, while

for the rest we find a median distance value of 2 organization. The tight integration of TIM

with Akamai and Google translates into low TCP connection times: 30 ms both for Akamai and

Google.

Yoigo (ES) and Orange (ES): The two MNOs that we measure in Spain, Yoigo and Orange,

present similar distances to the two CSPs listed in Table 8.5. Our traceroute experiments show that

Yoigo (AS16299) relies exclusively on its two transit providers to reach popular content, namely

Telia Company (AS1299) and Orange Spain (AS12715). Similarly, Orange ES relies on its two

providers, Orange S.A. (AS5511) and Level 3 (AS3356) to reach both Akamai and Google ser-

vices. Both MNOs have Tier-1 ISPs as providers, and leverage the latter’s dense interconnection

with Google and Akamai to ensure good performance for their customers. Our measurements re-

8.4 CSP Performance and Integration with MNOs 97

100 101 102

TCP connection time [ms]

0.0

0.2

0.4

0.6

0.8

1.0

Norway (home network)
Sweden (home network)
Norway (roaming)

(a) Akamai

100 101 102

TCP connection time [ms]

0.0

0.2

0.4

0.6

0.8

1.0

Norway (home network)
Sweden (home network)
Norway (roaming)

(b) Google

Figure 8.5: Effect of roaming on TCP handshake over Telia.

port a median TCP connection time of 39ms from Orange ES to Akamai and of 38ms from Yoigo

ES to Akamai. The TCP connection time from both MNOs is slightly higher towards Google

(Table 8.5), which may be caused by a higher median country distance.

8.4.5. International Roaming

When a SIM card is in international roaming state, MNOs can either forward their traffic to the

home network before reaching the Internet (i.e., home routing) or use the host MNO infrastructure

(i.e., local breakout) [62]. Most MNOs decide to implement home routing so that they can keep

control over their subscribers’ traffic at the expense of inflated path length and as a consequence

downgraded performance.

Our traceroute analysis reveals that our MNOs implement home routing roaming as the num-

ber of hops to a given target remains the same – due to the presence of a transparent tunnel –

but path latency increases. Figure 8.5 presents the CDF of TCP connection time of all the suc-

cessful connections over ports 80 and 443 in logarithmic scale for Telia SIM cards. We compare

the performance for the three Telia SIM cards in our MONROE nodes: two locally connected in

Norway and Sweden, and a third Telia Sweden SIM card roaming on a Norwegian MONROE

node. According to our results, TCP connection time takes on average 20ms more on roaming

devices than on those connecting directly to the local network (Figure 8.3) because of the coun-

try distance inflation. The home routing roaming approach, by its nature, defeats the purpose

of CDNs placing content close to the user. Roaming users do not benefit from existing peering

agreements between the host network and large CSPs. For this reason, when the target server

belongs to a well-provisioned CSP— possibly better peered — this impact is greater, compared

to CSPs present in a few locations. For example, CloudFront and Google services over the net-

work of Telia have at least 20% delay inflation. In contrast, the delay inflation for AWS under the

98 A Measurement Study of Mobile Cloud Services

same conditions is usually below 15%. We also identify a clear performance degradation in the

Vodafone (IT) SIM card roaming in the Spanish node. It is visible in Figure 8.3b, where the point

cloud is located further away from the axis (higher delay) compared to the local connection.

8.5. Study Limitations

App representativity: Our mobile app sample is limited to the traffic logs obtained from our

Lumen users. Nevertheless, as discussed in our previous work [89], we consider the apps in our

dataset to be representative of those used by average mobile users from all over the world: 48%

of the apps in our records have more than 1M installs while 71% of the apps listed on the Google

Play Top-50 charts for USA, Spain, Germany, India and UK are also present in our dataset.

CSP representativity: Because of limited testing cycles on the MONROE platform, our study

focuses on the six most representative CSPs across our sample of mobile apps. However, these

CSPs are likely the better peered ones with large MNOs due to their popularity. Finally, we

intentionally execute measurements towards FQDNs rather than towards specific CSPs to analyse

realistic domains and characterize DNS-level artifacts. Unfortunately, this is skewing our number

of samples towards the most popular CSPs.

Cellular technology: We only consider measurements run only over LTE due to its rapid adop-

tion rate and its low latency radio link. Including 3G and 2G cellular technologies in our studies

could bias our empirical results due to the significant differences in the radio access link.

Active measurements: We execute our active measurements in real networks against real sys-

tems. As a result, the scale and accuracy of our results may be limited by a number of factors

beyond the scope of this study. We cannot fully control aspects such as CSP load balancing mech-

anisms and server load, cellular network behavior, network load and congestion, and radio link

stability which may influence and introduce bias in our results.

Given the aforementioned limitations, our goal is not drawing conclusive causal relationships

between MNOs and CSPs, but providing a first study of this complex ecosystem to motivate

further research. To that end, we made public our data and measurements scripts so that other

researchers can continue, extend and improve our work.

8.6. Effect of Point of Presence (PoP) Selection on Quality of Service
(QoS)

We conclude this chapter by presenting a relevant measurement study we performed a few

years prior the campaign analysed in the previous Sections. The part of the study we will discuss

in this thesis, reveals that the choice of PoP may increase end to end delay by more than 50%,

while it is very frequent to be assigned a suboptimal PoP. Therefore, this section emphasizes the

importance of proper operator configuration when accessing third-party services.

8.6 Effect of Point of Presence (PoP) Selection on Quality of Service (QoS) 99

0

10

20

30

40

50

PoP 1 (18.7%) PoP 2 (25.2%) PoP 3 (56.1%)
Location

R
TT

 [m
s]

(a) Effect on minimum RTT towards a measurement
server across the detected PoPs.

(b) Effect of suboptimal PoP selection on the median
TTFB of Germany’s 25 most popular domains.

Figure 8.6: Boxplots presenting the effect of suboptimal PoP selection in two scenarios (Figure
from [2]).

The main dataset we discuss was collected in the city of Darmstadt, Germany between 19 De-

cember 2014 and 19 January 2015. We specifically select this period in order to include samples

during normal work weeks and holidays. In order to minimize the effects of weak hardware, we

use five state of the art at the time, Nexus 5 devices. We measure the long term variation of:

RTT towards a well connected dedicated server located at TU Darmstadt.

TTFB of the, at the time, 25 most popular German websites, based on the Alexa

ranking [108]. The measurement retrieves only the main HTML document.

All the RTT measurements use the native Linux ping and traceroute command line

utilities to avoid the overhead added by the Android API [58]. Each ping consists of five probes

and we ensure that the device is in “RRC connected” state before each measurement to avoid

including promotion delays in the dataset. When measuring the RTT of the different hops detected

by traceroute, we only keep the minimum value of three probes, to counter potential routing delays

caused by the low priority of the ICMP unreachable messages. In order to reveal as many hops

as possible, we complement the phone traceroute measurements with traceroutes from the

measurement server towards the public IP of the phones. We then combine the two traceroute

logs creating a more complete view of the path. We perform a ping measurement every minute

and a traceroute measurement every 15 minutes.

When measuring website performance we rely on TTFB in order to be certain we are mea-

suring the performance of the host server and not of a PEP. This set of measurements has a

periodicity of 30 minutes. We rely on the operator’s DNS server to resolve the URLs, expecting

to be directed to the best performing server. Finally, we only take into account measurements

performed using LTE technology.

100 A Measurement Study of Mobile Cloud Services

The ping and TTFB measurements reveal delay, while the traceroute measurements locate

the PoPs. We are able to distinguish PoPs based on the host names of the routers close to the

edge of the operator’s network. First, we discuss the dataset of the measurements towards our

own server and present a summary of the results in Figure 8.6a. 3 PoPs are identified in these

measurements. We group measurements per PoP and study the minimum RTT values of the pings

towards our server. The distributions of the minimum RTTs per PoP are presented as boxplots. In

the parenthesis of the x-axis we present the relative frequency of each PoP in the dataset. The best

performing PoP was used the least, serving only 18.7% of the measurements, whereas the worst

performing PoP had the majority of the samples with 56.1%. Each PoP has a relative constant

performance over time, as denoted by the small size of the boxes, symbolizing the 25%th and

75% percentiles. The end–to–end delay increase, compared to PoP 1, is 58% for PoP 2 and 73%

for PoP 3.

The reason for the vast performance difference is the location of phones, server and PoP. Both

the phones and the server are located at the same city. Thus, when the traffic is routed through a

PoP of a nearby city, the overall path is short. On other cases though, the PoP is located at the other

side of Germany. As a consequence, the traffic has to travel towards the PoP moving away from

the server and then move back towards the server through the public Internet, inflating the delay

unnecessarily. This comes in contrast to the common assumption that traffic is routed through the

shortest path. Rather, it is distributed across the operator’s network. We conclude that the internal

routing of the operator has a very big impact on the performance of a well connected server and

since the majority of the traffic is routed suboptimally, there is a lot of room for improvement.

The above has obvious implications on CDN performance. We quantify the impact on CDNs

by measuring the most popular German websites, which are highly likely to use CDN services.

As before, we group the measurements per PoP. We are able to detect again the previous 3 PoPs,

as well as a new one not used before. To quantify the performance difference, we calculate the

median TTFB of each URL–PoP combination. A URL–PoP combination is essentially a different

path between the same endpoints. Considering as a baseline the performance of each URL over

PoP 1, we calculate the relative difference of the URL performance over the rest of the PoPs.

The distribution of the relative increase in delay for each of the suboptimal PoPs is presented as

a boxplot in Figure 8.6b. We observe that the median value of these distributions is between 20%

and 40% higher for the suboptimal PoPs compared to PoP 1. We further statistically validate

the significance of the performance impact of PoP selection on the delay, by running a Kruskal–

Wallis test on the sample. Therefore, PoP location should be taken into account, alongside server

location and user location, when matching users to CDN servers.

Next, we try to examine the criteria of the PoP selection. We can only observe that the

PoP changes in specific time periods, which are multiples of 36 hours. As consequence, the

performance over time has the same periodicity as the change of PoP. Figure 8.7 reveals this

pattern. It presents an histogram of the PoP and public IP assignment durations, with a bin size

of 6 hours. The selection of PoP appears to be random and can be forcefully triggered before

8.7 Summary 101

0 36 72 108 144
0

5

10

15

20

25

30

Connection duration [h]

N
um

be
r o

f o
cc

ur
re

nc
es

Public IP changes
PoP changes

Figure 8.7: Histogram presenting the duration of external IP leases and PoP selections (Figure
from [2]).

the timeout period by disconnecting and reconnecting the device to the network. The selection

of PoP is also independent of the public IP address. The public IP address, which changes more

frequently than the PoP, does not seem to have any effect on performance.

We also observe that, for the whole duration of the study, all devices were connecting to

the same DNS server address. Alongside every traceroute, we performed an RTT measurement

towards the DNS server. We measure smaller delays contacting the DNS server, while connected

to a better performing PoP, indicating that DNS Servers are located close to the PoPs. Thus, PoP

choice also affects the trip duration towards the DNS server.

Finally, we conduct two smaller measurement campaigns in Denmark and Spain, using dif-

ferent devices and network technologies, such as 3G. The public IP changes with a periodicity

ranging between 3 and 24 hours in the Danish network and exactly every 12 hours in the Span-

ish one. We are able to detect a single PoP in the Spanish network with very little variation in

performance.

8.7. Summary

We have presented an overview of the interconnection and performance of MNOs and CSPs.

We leveraged accurate traffic fingerprints from thousands of mobile apps that we collected through

crowd-sourcing with Lumen [78]. This data allowed us to i) identify the most relevant CDNs and

cloud providers for mobile traffic; ii) map their connectivity with relevant European MNOs; and

iii) measure their performance using the MONROE platform [79]. Our results show a significant

reliance of apps on mobile CSPs with the major CSPs being used by 85% of the apps. We reported

path inflation (e.g., due to poor peering relationships and roaming) and presence of middle-boxes

(e.g., in-path DNS proxies) which can significantly impede CSP performance, but we saw no

102 A Measurement Study of Mobile Cloud Services

noticeable difference in performance metrics when using different DNS resolvers or enabling the

EDNS parameters. Our active measurement dataset, the code for the measurement experiments

and the CSP mapping tool are publicly available [94]. We have further shown that the choice of

PoP may have a significant impact on the performance of CDNs.

Chapter 9

Conclusions

In this thesis, we have proven the feasibility of performing accurate smartphone measure-

ments, presented techniques to passively measure mobile bandwidth by observing minimal traffic

and identified inefficiencies in the interconnection of mobile operators with CSPs. These may

be used to optimize the delivery of multimedia to mobile devices without investing in expensive

infrastructure or requiring big modifications in existing components. We also expect that the ac-

curacy of our tools will improve thanks to the rapid increase in the computing power of mobile

devices and recent improvements in the networking stack of the Linux kernel.

We started with giving a detailed presentation of how a packet travels from a content server

to the smartphone application requesting its payload in Chapter 2. This chapter serves as a foun-

dation of the work presented in Part II. To my knowledge, this is the only public resource that

presents all the steps accurately and cohesively. Then we presented the State of the Art in the

areas of bandwidth estimation and measuring CSP performance in Chapter 3. In contrast to past

research, this is the first study proposing solutions to estimate the bandwidth of mobile devices

passively, while requiring very little traffic. We are also the first to identify and assess the rela-

tionship of CSPs and MNOs in the European ecosystem.

Part II starts with Chapter 4 assessing the feasibility of performing accurate measurements

on smartphones. We proved that LTE data rate measurements performed by mobile phones can

be accurate and precise, but depending on the acceptable margin of error a calibration of the

specific devices might be necessary. The measured rate does not affect the relative error which is

somewhat constant per phone. Since the kernel is closer to the physical layer, measurements at

this level may have better error compared to the application level. Due to the the mechanics of LTE

scheduling downlink estimates are better than uplink ones. The bigger duration of packet bursts is

key to generating better estimates than packet groups, but in the following chapters we developed

algorithms that may use packet groups in challenging scenarios to achieve good results. Chapter 5

went in depth in identifying the route causes of measurement artifacts on the kernel level. It also

explained why the state of the art lightweight bandwidth estimation techniques are not applicable

to mobile networks.

103

104 Conclusions

The last 2 Chapters of Part II build upon the analysis of Chapters 2, 4 and 5. Chapter 6 pre-

sented a very lightweight mobile bandwidth estimation tool that is able to provide reliable results

by monitoring small data exchanges. To the best of our knowledge, it is the only tool that may

provide an estimation relying solely on the traffic generated during the early phase of a TCP con-

nection in mobile scenarios. Such flows are the vast majority in mobile networks. In a streaming

scenario, they may provide enough information to choose the ideal initial streaming quality the

bandwidth of the consumer may support. Chapter 7 adapted traditional packet dispersion tech-

niques to mobile networks. This allowed for generating accurate per user capacity estimations,

by exploiting as few as 5 % of the information obtained from TCP data flows. Given that this

solution can support dense throughput sampling, it is ideal for capacity prediction and optimized

resource allocation. If the future capacity availability is known, it is possible to predict when

it is best to communicate by doing so when it is cheaper (i.e., more capacity available), as will

be presented in the following Appendix A. In addition, our solution is able to estimate the fast

capacity variations from a mobile terminal by monitoring the traffic generated under normal daily

usage.

Part III changes scope and focuses on identifying potential inefficiencies at the network side

of the communication path. In Chapter 8, we performed the first holistic analysis of the complex

ecosystem formed by mobile applications, CSPs and MNOs. We aimed to comprehensively char-

acterize their relationships and dynamics and measured their performance with dedicated active

measurements. We identified the dominant players and their prevalence in mobile applications

with data collected through crowd-sourcing with Lumen Privacy Monitor. Using the MONROE

mobile broadband testbed, we were able to study their interconnections in Europe and asses their

performance and how it is affected by recent developments such as free roaming and extensions

of the DNS protocol. We also showed that operators’ configurations, such as the choice of PoP

may severely impact their performance.

The work presented in the previous chapters and the following appendix has been published

in six conference and two journal papers. At the time of writing these lines, we are awaiting the

publication of the extension of our work on the accuracy of smartphone measurements presented

here in Chapter 4 and published in [1], as well as working on extending the work on the intercon-

netion of CSPs with mobile ISPs presented here in the first Sections of Chapter 8 and published

in [27]. Some of the tasks we have planned in the future include performing CSP related experi-

ments in nodes installed in countries outside of Europe like USA and South Korea, as well as in

mobile nodes (i.e., trains that crosss a country).

To conclude, this work has proposed a series of improvements and identified inefficiencies

in the current state of mobile networks. As the users’ expectations continue to rapidly increase

and the industry moves towards the new generation of mobile technologies, collectively called

5G, we can expect denser deployments, content placement even closer to the user, more powerful

smartphones and smarter allocation of resources. The proposed improvements will have an even

greater impact in this new environment, where a few ms of delay accounts for a big percentage

105

of the total roundtrip. Further, frequent data rate updates from mobile devices can enable base

stations to perform smarter scheduling. Finally, we believe our work demonstrated that better

tracking of packet arrivals is worth being adopted in future mobile OS releases.

Appendices

107

108 Conclusions

Appendix A

A Model for Throughput Prediction for
Mobile Users

In this appendix, we propose a stochastic model to predict user throughput in mobile net-

works. In particular, the model accounts for uncertainty such as random phenomena (e.g., fast

fading) or inexact information (e.g., user location) to derive the statistical distribution of the user

throughput. Such a model is highly useful for aiding scheduling and resource allocation decisions.

For example, the techniques mentioned in Chapters 6 and 7 can be used to feed the model with

data and then obtain future values with the same granularity as the granularity of the input data.

These future values may then be fed to a scheduling optimization algorithm like the one proposed

in [10].

In addition, we provide a taxonomy of prediction techniques to investigate error sources and

the main characteristics of prediction accuracy. Finally, we show the versatility of the model by

analysing LTE user throughput for the case where knowledge of either the user’s actual position

or the congestion level in the cell is inexact.

The main contribution of this appendix is a novel synthetic model representing the impact

of estimation and prediction errors on the bandwidth availability statistics to be able to study

network resource optimization problems under forecasting uncertainties. In order for the model

to account for the many different error sources, we analyse state of the art prediction models for

both network resources as well as user mobility, which we subsequently organize in a taxonomy

based on the time-scale and granularity of the prediction.

The rest of the appendix is structured as follows. Section A.1 provides an overview and

taxonomy of predictors upon which our model is based. In Section A.2, we discuss in detail

the model for network resource availability under estimation and prediction errors. The model is

applied to LTE cellular systems in Section A.3 and Section A.4 concludes the appendix.

109

110 A Model for Throughput Prediction for Mobile Users

Table A.1: Prediction Taxonomy

Ref. Cat. Accuracy Notes
[109]

(1
)-

ne
t cr ∼ 0.8 Provides a model for the number of user in a cell.

[110] ε ∼ 0.15 ARIMA models and wavelet MRA.
[12] ε ≥ 0.01 GARCH-ARIMA accurately models static high-speed net-

work traffic.
[111] ε ∈ [0.01− 1] Evaluates multi scale and s-sample prediction.
[112]

(2
)-

ce
ll cr ∈ [0.5− 0.72] Compares Markovian (better) and Lempel-Ziv models.

[113] εl ∼ 2 m User trajectory prediction.
[114] cr ∈ [0.2− 0.7] Route prediction on GPS data.
[115] cr > 0.8 Using pre-filtered data and Markov models. Prediction

possible in the 98% of the cases.
[11]

(3
)-

us
er ε ∈ [0.05− 2] Empirical study on user traces using wavelet approxima-

tions and filtering.
[116] ε ∼ 1 First attempt at mobile system bandwidth prediction.
[117] n/a Complete solution for mobile bandwidth forecast.
[118] ε ∼ 0.01 Spatial and temporal dynamics characterization of mobile

Internet traffic.

A.1. Taxonomy of Predictors

In this section, we analyse predictors for both user mobility (A.1.1) and network resource

availability (A.1.2) in order to understand the forecasting capability for mobile systems and the

accuracy of the available solutions. The considered works cover a wide range of time scales,

location granularities and levels of accuracy. To provide a comprehensive model, we classify

them in three categories according to their time and space granularity.

The first group [12, 109–111], (1)-net, is the most coarse: network performance is modeled

by analysing the whole network at once, with a time scale on the order of minutes to hours; users

are statistically mapped to base station cell ID or geographic location, i.e., predictions obtained

by these models concern average throughput achievable in the location a given user is most likely

to be found.

Algorithms in the second group [112–115], (2)-cell, combine user mobility information and

network location specific information to refine prediction granularity. Predictors belonging to this

group aim at predicting the next cell a user is likely to visit, the congestion level in that cell and

the time of the visit. Its timescale is between tens of seconds and a few minutes.

The third group [11,116–118], (3)-user, comprises the predictors with highest time granular-

ity: in fact, most of the solutions in this group leverage filtering techniques and historical data.

The aim, here, is to model the fast bandwidth variations experienced by the users on a timescale

of tens of milliseconds up to a few seconds.

Table A.1 groups the papers into the three categories and also provides a high level description

of the papers. The “Cat.” column specifies the name of the category, while the “Accuracy” column

provides an evaluation of the effectiveness of the techniques. Here, we use the ratio between the

A.1 Taxonomy of Predictors 111

mean square error of the prediction and the standard deviation of the original time series (e.g.: the

user throughput, the bandwidth availability, etc.) ε = MSE(x̃)/σ2
x =

∑
i(xi − x̃i)2/

∑
i(xi −

µx)2 , where xi and x̃i are the i-th samples of the original time series and their predictions,

respectively, and σx and µx are the standard deviation and the average of the original time series,

respectively; cr is the correct prediction rate defined as the ratio between the number of times the

predicted location of a user is correct and the number of attempts; and εl represents the distance

between the predicted and the correct user position.

A.1.1. Mobility Predictors

The most common methods to locate a mobile terminal are, in order of decreasing accuracy,

the Global Positioning System (GPS), WiFi, and cellular network positioning. These solutions

can identify a terminal’s position with an average error on the order of 10, 100 and 500 meters,

respectively [119].

Theoretical works, such as [120] and [121] studied characteristics of human behavior and

found that an appreciable level of self-similarity exists among behavioral patterns and that, within

due limits, forecasting is possible. Among the many studied properties, we highlight the one

asserting that the probability of a user to be found in a given location is approximately inversely

proportional to the location rank.

Some predictors aim at estimating the next user position on a grid representing network cells:

[112](2) compares Markovian and Lempel-Ziv models trained with the sequences of locations

a user visited in the past, while [109](1) studies the accuracy of mobility modeling. Notably,

the first paper comes to the conclusion that second order Markov models provide a good trade off

between complexity and accuracy achieving a correct prediction rate cr ∈ [0.5−0.72] on mobility

traces collected from more than 6000 users of Dartmouth College’s wireless network. The second

paper provides an effective way to estimate the number of users in a cell and, consequently, the

congestion level.

Other predictors deal with routes and trajectories. [113](2) uses 1-sample predictions of user

position to improve the performance of a routing protocol. (An s-sample prediction computes the

first s unknown samples of a given time series.) The location prediction accuracy is claimed to

be on the order of a few meters, with a position error εl ∼ 2 m. The work in [114](2) focuses on

predicting complete routes from historical GPS data and obtains a cr ∈ [0.2−0.7]. Here, the best

results are obtained when excluding single trips from the dataset.

Finally, [115](2) uses second and third order Markov models trained on a pre-filtered leap

graph to model and predict cellular user mobility. The solution is able to achieve a cr ≥ 0.8

in 98% of the cases. Finally, recent works, such as [122] and [117](3), directly exploit position

information obtained from navigation systems to map bandwidth availability to locations. While

these solutions provide a prediction that is based on the actual intended destination of the user, the

accuracy of the prediction is still limited by the accuracy of the positioning system and the possi-

bility of user detours. To the best of our knowledge, a detailed study linking location prediction

112 A Model for Throughput Prediction for Mobile Users

accuracy to bandwidth/throughput prediction accuracy does not exist.

A.1.2. Bandwidth Predictors

0 1 s 1 m 1 h
0

50

100

150

200

250

Time

B
a
n
d
w
id
th

Cat.3 Cat.2 Cat.1

Figure A.1: Bandwidth forecasting examples: category 3, 2 and 1 predictor outputs are shown on
the left hand side, in the center and on the right hand side, respectively.

One of the most relevant studies on traffic dynamics for cellular networks is [123], which

conducted the first detailed wide scale analysis of network usage and subscriber behavior. The

paper characterizes mobility and temporal activity patterns and identifies their relation to traffic

volume. Traffic has been analysed from the base station point of view, identifying its variations

over space and time.

Earlier works such as [110](1), [11](3) and [12](1) studied different filtering techniques,

namely MEAN, LAST, BM, MA, AR, ARMA, ARIMA, and FARIMA, all of which are different

combinations of moving average and autoregressive filtering. We refer the interested reader to the

source papers for the details.

Although different papers use slightly different metrics, the following conclusions can be

drawn: low order filtering techniques coupled with smoothing solutions (e.g., wavelet MultiRes-

olution Analysis (MRA) or wavelet approximation) are able to provide 1-sample static network

traffic predictions with an error as low as ε = 0.05 and almost always lower than the variance

of the original signal, ε = 1. (In the latter case, the predicted sample error would be as large as

those that would have been obtained by generating random samples from a distribution with the

same variation as the original signal). The error decreases with larger timescale and smoother

A.2 Bandwidth Availability Model 113

approximation of the signal.

Subsequent work in [111](1) compares FARIMA and GARCH filtering techniques in terms

of both time scale and the number of predicted samples s. Results obtained from Internet traffic

traces show that GARCH outperforms FARIMA, achieving an error that is four times smaller.

The authors confirm that the error decreases with increased signal timescales and increases with

the number of predicted samples s. In particular, the error becomes as high as the variance of the

original signal for s = 10 and s = 100 samples for FARIMA and GARCH, respectively. Also,

GARCH errors are slightly smaller than half the variance for s = 10 samples and beyond.

[116](3) and [118](3) study resource availability in mobile systems. The former observes no

significant correlation within a single trip, but throughput traces show a higher degree of self-

similarity during repeated trips. The latter paper, instead, classifies traffic according to spatial

features and proposes a multi-class model to predict traffic, achieving promising results (ε ∼
0.01). Finally, although standard filtering techniques for static environments are less effective

when applied to throughput of mobile nodes, they provide better accuracy when location is used

as a context.

A.2. Bandwidth Availability Model

Based on the previous taxonomy, this section determines the main error sources and their

impact on the statistical distribution of the predicted throughput. Figure A.1 shows examples

of effects of errors on throughput prediction: the x-axis represents how far into the future the

prediction is made, while the y-axis represents the predicted throughput and the corresponding

estimation error. Note that purpose of the figure is to graphically exemplify the predictor cate-

gories; it is primarily intended to provide an intuition.

The figure examines the three categories of the taxonomy starting from (3)-user category

on the left hand side. Here, the solid line represents the prediction itself, while the two dashed

lines represent the confidence range of the prediction. Although the accuracy degrades with time,

predictors belonging to this category are able to closely follow the throughput variations. As soon

as the confidence range becomes as large as the signal’s standard deviation, category (2)-cell

predictors becomes as effective as category (3)-user predictors.

In the center, predictions obtained from the category (2)-cell are shown. Here, the predictions

are averaged over longer time periods and their variability is represented by error bars. The solid

line represents the actual prediction average along with its standard deviation, while the dashed

line represents the same for the original signal. Predictors in this category infer user throughput

from their position and statistics of the corresponding network cell.

Whenever it is not possible to predict the next user location, only predictors in category (1)-

net can be used (right hand side of Figure A.1). They derive an estimate of user throughput from

general network information using, for example, the generic distribution of user throughput in the

overall network (shown in the figure as a dashed line).

114 A Model for Throughput Prediction for Mobile Users

To model the impact of errors on the predictors, we start from a simple formulation of the

phenomenon itself. A very popular user throughput model can be found, for instance, in [124].

Here, the throughput T of a user with a distance of d kilometers to the transmitter and competing

withN other users uniformly distributed within the coverage area of the transmitter, is represented

as a function of the Signal to Interference plus Noise Ratio (SINR) γ, and N :

T = gT (Γ, N) = T0η/N, (A.1)

where Γ = 10 log10 γ is the SINR in dB, T0 is a parameter specific to the actual cellular system

and η = gη(Γ) is the spectral efficiency for that SINR. The SINR is a function of d and the fast

fading gain r:

γ = gγ(d, r) = γ0r/d
α, (A.2)

where γ0 is a technology specific parameter and α is the pathloss exponent.

For what concerns errors themselves, different predictors are impacted by different error

sources: for instance, those belonging to the third category try to model the short term behavior of

the achievable throughput starting from past information. Thus, predicted throughput T̃ = T+eT ,

is the sum of the actual throughput and the prediction erro. Given that the error eT has a probabil-

ity density function (pdf) feT (e), the predicted throughput will have a pdf fT̃ = feT (e−T). Also,

in the worst case the s-sample prediction can be modeled has the sum of s i.i.d random variables

with distribution feT (e). Thus the s-sample predicted throughput distribution can be obtained as

fT̃ (s) = feT ((e−T)/s)/s, which will have an expected value µT̃ (s) = T (s) +sµeT and standard

deviation σT̃ (s) = sσeT . Note that increasing s makes the prediction less and less accurate up to

a point where the standard deviation of the prediction becomes comparable to the variability of

the throughput σT .

Beyond this point using this type of predictors is useless and category 2 and category 1 pre-

dictors should be used. In this case, most of the predictors try to first estimate system parameters,

such as the distance d and the number N of users and, from those, estimate the throughput dis-

tribution. Thus, in order to model the latter from the distributions of d and N , we will proceed

as follows. First we analyse the distribution of the SINR given that N user are competing for the

channel. It depends on the joint distribution fr,d(r, d|N), of the fading gain r and the distance d

according to (A.2):

fγ(γ|N) =

∫ ∞
0

fr,d(g
−1
γ (γ, d), d|N)

∣∣∣∣∂g−1
γ (γ, d)

∂γ

∣∣∣∣dd, (A.3)

where g−1
γ (γ, d) is the inverse function of (A.2) and we remove the variable d from the joint dis-

tribution fγ,d(γ, d|N) by integrating it on its whole support. Note that it is important to condition

on N in order to account for opportunistic gain effects.

The last step requires to compute the throughput from the SINR using gη(Γ), which can be

a piece-wise constant or other non-differentiable functions. In this case it is easier to use the

A.3 Results 115

cumulative distribution functions (CDF), since we can avoid to use the derivative. In fact, the

throughput CDF FT (x|N) = P (T ≤ x) = P (gT (γ) ≤ x) = P (γ ≤ g−1
T (x)) = Fγ(γ∗|N),

where γ∗ = g−1
T (x). Thus,

FT (x|N) =

∫ γ∗

0
fγ(γ|N)dγ. (A.4)

The SINR and the throughput distributions can be obtained removing the dependency on N

by multiplying by the probability mass function (pmf) of the number of user pN , and summing

over N . Thus,

Fγ(γ) =

MN∑
i=1

pi

∫ γ

0
fγ(γ|i), (A.5)

FT (x) =

MN∑
i=1

piFT (x|i), (A.6)

where MN is chosen so that pMN
> 0 and pMN+i = 0,∀i > 0.

Note that, thanks to the independence of the fading and the distance distributions, their joint

distribution can be written as the product of the two distributions:

fr,d(r, d|N) = fr(r|N)fd(d). (A.7)

It is easy to customize the model by modifying the distributions of three basic random variables,

namely pN , fd(d), fr(r|N). In particular, it is possible to include temporal and/or spatial depen-

dencies by letting the distributions vary according to the location and the time.

A.3. Results

In this section we apply the model to the case of an LTE cellular system as defined in [125]

adopting a Proportional Fair (PF) scheduler modeled according to the results presented in Sec-

tions II.D and III.B of [124].

In particular, we provide more specific definitions for some of the previous parameters:

T0 = NRBR, where NR is the number of resource blocks and BR is channel bandwidth;

γ0 = 10(PT−Nf+C)/10, where PT is the eNodeB transmission power in dB Nf is the noise plus

interference power in dB and C = 128.1 dB is a constant modeling other effects (such as antenna

gains, frequency dependency, etc.); gη(Γ) = ci if Gi < Γ ≤ Gi+1 with i ∈ {0, . . . , 15} and

G16 = ∞. ci is the bit efficiency of the modulation of the i-th Modulation and Coding Scheme

(MCS). The values for ci and Gi are derived from [125] and are given in Table A.2.

In order to derive the exact expression for the SINR and the throughput distributions, we need

to specify the distributions for the fading gain r, the distance d, between the user equipment and

the eNodeB, and the number N , of user in the cell.

For what concerns the fading gain, we follow the results of [124], which models the oppor-

116 A Model for Throughput Prediction for Mobile Users

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR, Γ [dB]

C
D
F
,
F
Γ
(Γ
|N

=
1
0
)

No error
GPS error
WiFi error
Cell error

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR, Γ [dB]

C
D
F
,
F
Γ
(Γ
|d

=
1
.5
)

No error
±1
±3
±10

Figure A.2: Plots of the SINR CDF FΓ, given a perfect knowledge of N = 10 (left) or a perfect
knowledge of d = 1.5 Km (right). In the former case the standard deviation σd, of the distance is
set as that of the most common localization systems, while in the latter σN ∈ {0, 1, 3, 10}.

Table A.2: MCS coefficients

CQI Mod. Gi ci
0 N/A −∞ 0
1

Q
PS

K

−6.00 0.15
2 −4.14 0.23
3 −2.29 0.38
4 −0.43 0.60
5 1.43 0.88
6 3.29 1.18

7

16
Q

A
M 5.14 1.48

8 7.00 1.91
9 8.86 2.41

10

64
Q

A
M

10.71 2.73
11 12.57 3.32
12 14.43 3.90
13 16.29 4.52
14 18.14 5.12
15 20.00 5.55

tunistic gain obtainable by the PF scheduler as follows:

fr(r|N) = N(1− e−r)N−1e−r. (A.8)

This gain is associated to the higher probability for a user to be scheduled having a high SINR,

when more users are competing for the channel.

The distance distribution fd(d), is obtained as the sum of two components: the actual distance

distribution and the error committed in evaluating and/or predicting it. In the following, we anal-

A.3 Results 117

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput, T [Mbps]

C
D
F
,
F
T
(T

|N
=

10
)

No error
GPS error
WiFi error
Cell error

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput, T [Mbps]

C
D
F
,
F
T
(T

|d
=

1.
5)

No error
±1
±3
±10

Figure A.3: Plots of the throughput CDF FT , given a perfect knowledge of N = 10 (right left
side) or a perfect knowledge of d = 1.5 Km (right hand side). In former case the standard
deviation σd, of the distance is set as that of the most common localization systems, while in the
latter, σN ∈ {0, 1, 3, 10}.

yse the case of a static user, whose distance is obtained with the three most common methods:

GPS, WiFi and cell signal strength. In all the three cases we model the distance with a Gaussian

distribution with an average µd = d∗, equal to the correct user position d∗, and a standard devi-

ation σd = {10, 100, 500} meters, for GPS, WiFi and cell localization [119], respectively. Since

the Gaussian distribution can lead to positive probability for negative values, we will normalize

by 1− Φ(−µd/σd), where Φ(x) is the CDF of a Gaussian distribution computed in x.

Similarly, the distribution of the number of users N , depends both on the actual value N∗,

and the estimation error. As above, we take the Gaussian distribution as a reference:

pi = Φ((i− µN)/σN)/(σN
∑
j

pj) (A.9)

with i ∈ {1, . . . ,MN}, where µN = N∗ is the average value of the distribution and σN ∈
{0, 1, 3, 10} are the standard deviation values we studied in the following examples of Figure A.2

and Figure A.3.

In these two examples, we focused on a single error at a time so as to separate the effects

of an erroneous knowledge of N and d. The plot presents results for which we applied the

aforementioned distributions to (A.3), obtaining:

fγ(γ|N) =

∫ ∞
0

Ndα

γ0σd

(
1− e−

γdα

γ0

)N−1
e
− γd

α

γ0 φ

(
d− µd
σd

)
dd. (A.10)

118 A Model for Throughput Prediction for Mobile Users

Now it is possible to compute γ∗ as

γ∗ = 10
g−1
η (TN

NRBR
)/10 (A.11)

γi,N = 10Gi+1/10 with
ciT0

N
≤ T <

ci+1T0

N
,

which depends on both the bandwidth and the number of users. Now it is possible to compute

(A.5) and (A.6), by using (A.10), (A.11) and (A.9).

In particular, Figure A.2 (left) shows FΓ(Γ|N = 10), using fd(d) = N (µd = d∗ = 1.5, σd),

and σd ∈ {0, 0.01, 0.1, 0.5} to represent a static user, whose position is obtained with a localiza-

tion error ranging from perfect knowledge to the worst approximation of a cell system localiza-

tion. The figure shows that only with the precision of GPS is it possible to accurately estimate the

statistical distribution of the SINR and that, if GPS information is lacking, the SINR prediction

distribution becomes very wide even for static users.

Similarly, Figure A.2 (right) shows FΓ(Γ|d = 1.5) and the number of users distributed ac-

cording to (A.9) using µN = 10, σN ∈ {0, 1, 3, 10} and MN = µN + 5σN . Again, for low σN ,

the distribution maintains the original shape, but as soon as σN > 1 the SINR distribution starts

to get wider and is shifted towards the left. Note that, an error on N implies that P (γ̃ > γ) = 0

∀γ, which is a direct consequence of the modeling of the opportunistic gain of the PF scheduler.

The last two figures, Figure A.3 (left) and Figure A.3 (right), study FT with errors on d and

N , respectively. The error distributions are shaped as above, but this time the discontinuities of

gη(γ) are evident. In particular, for a wider SINR distribution a larger number of MCS get positive

probability of being used. Also, on the right hand side figure, the throughput CDF becomes

smoother and smoother for increasing σN . This is due to the wider range of γi,N introduced by

(A.11).

Besides the trivial conclusion that the throughput distribution widens as the uncertainties

grow, our model allows to compute where the correct value of the throughput is more likely to

be found when a given prediction is computed. Also, the model allows to estimate the likelihood

of the throughput to fall below a given threshold, thus enabling the study of resource allocation

techniques when future information has limited reliability.

A.4. Summary

In this appendix we proposed a novel stochastic model for the user throughput prediction

in mobile networks. The model takes into consideration the most relevant sources of prediction

inexactness, such as random phenomena (e.g., fast fading) or imprecise information (e.g., user

location). In fact the model derives the statistical distribution of the user throughput starting from

those of the error sources. Also, the model allows for a closed form analysis of throughput predic-

tion, which, in turn, enables to study the likelihood of forecasting-based optimization techniques

to achieve their objective.

References

[1] N. Bui, F. Michelinakis, and J. Widmer, “Fine-grained lte radio link estimation for mobile

phones,” 2017.

[2] F. Kaup, F. Michelinakis, N. Bui, J. Widmer, K. Wac, and D. Hausheer, “Assessing the im-

plications of cellular network performance on mobile content access,” IEEE Transactions

on Network and Service Management, vol. 13, no. 2, pp. 168–180, 2016.

[3] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016

- 2021 White Paper,” Cisco Public Information.

[4] D. Wei, S. Rallapalli, R. Jama, L. Qiu, K. K. Ramakrishnan, L. Razoumov, Y. Zhang, and

T. W. Cho, “ideal: Incentivized dynamic cellular offloading via auctions,” in Proceedings

IEEE INFOCOM, 2013.

[5] C. Joe-Wong, S. Sen, and S. Ha, “Complementary wireless network technologies: Adop-

tion behavior and offloading benefits,” CoRR, 2012.

[6] S. Wang, Y. Xin, S. Chen, W. Zhang, and C. Wang, “Enhancing spectral efficiency for lte-

advanced and beyond cellular networks [guest editorial],” IEEE Wireless Communications,

vol. 21, no. 2, pp. 8–9, April 2014.

[7] Z. Lu and G. de Veciana, “Optimizing stored video delivery for mobile networks: the value

of knowing the future,” in IEEE INFOCOM 2013, 2013, pp. 2706–2714.

[8] H. Abou-zeid, H. Hassanein, and S. Valentin, “Energy-efficient adaptive video transmis-

sion: Exploiting rate predictions in wireless networks,” IEEE Transactions on Vehicular

Technology, vol. 63, no. 5, pp. 2013–2026, June 2014.

[9] N. Bui and J. Widmer, “Mobile network resource optimization under imperfect prediction,”

in Proc. IEEE WoWMoM, June 2015.

[10] F. Michelinakis, “Practical challenges of network optimized stored video delivery,” Mas-

ter’s thesis, Universidad Carlos III de Madrid, Spain, 2013.

[11] Y. Qiao, J. Skicewicz, and P. Dinda, “An empirical study of the multiscale predictability of

network traffic,” in Proceedings IEEE HDCP, 2004.

119

120 REFERENCES

[12] N. Sadek and A. Khotanzad, “Multi-scale high-speed network traffic prediction using k-

factor Gegenbauer ARMA model,” in Proceedings IEEE ICC, 2004.

[13] N. Bui, I. Malanchini, and J. Widmer, “Anticipatory Admission Control and Resource

Allocation for Media Streaming in Mobile Networks,” in Proc. ACM MSWIM, Cancum,

Mexico, November 2015.

[14] G. Kreitz and F. Niemelä, “Spotify – large scale, low latency, P2P music-on-demand

streaming,” in Peer-to-Peer Computing. IEEE, 2010, pp. 1–10.

[15] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A close examination

of performance and power characteristics of 4G LTE networks,” in ACM MobiSys, Low

Wood Bay, Lake District, United Kingdom, June 2012, pp. 225–238.

[16] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and O. Spatscheck, “An in-

depth study of LTE: Effect of network protocol and application behavior on performance,”

in ACM SIGCOMM, Hong Kong, China, August 2013, pp. 363–374.

[17] J. B. Landre, Z. E. Rawas, and R. Visoz, “Lte performance assessment prediction versus

field measurements,” in IEEE PIMRC, Sep. 2013, pp. 2866–2870.

[18] A. Nikravesh, D. R. Choffnes, E. Katz-Bassett, Z. M. Mao, and M. Welsh, “Mobile network

performance from user devices: A longitudinal, multidimensional analysis,” in Springer

PAM, 2014, pp. 12–22.

[19] A. Nikravesh, H. Yao, S. Xu, D. Choffnes, and Z. M. Mao, “Mobilyzer: An open platform

for controllable mobile network measurements,” in ACM MobiSys, 2015, pp. 389–404.

[20] N. Bui and J. Widmer, “OWL: a Reliable Online Watcher for LTE Control Channel Mea-

surements,” in ACM All Things Cellular, Oct. 2016.

[21] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin, “Http/2 performance in cellular

networks,” in ACM MobiCom, 2016.

[22] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: a platform for high-

performance internet applications,” ACM SIGOPS Operating Systems Review, vol. 44,

no. 3, pp. 2–19, 2010.

[23] N. Bui, F. Michelinakis, and J. Widmer, “A model for throughput prediction for mobile

users,” in European Wireless, Barcelona, Spain, May 2014.

[24] F. Michelinakis, N. Bui, G. Fioravantti, J. Widmer, F. Kaup, and D. Hausheer, “Lightweight

mobile bandwidth availability measurement,” in IFIP Networking Conference, May 2015.

[25] F. Michelinakis, G. Kreitz, R. Petrocco, B. Zhang, and J. Widmer, “Passive mobile band-

width classification using short lived tcp connections,” in WMNC, 2015.

REFERENCES 121

[26] F. Kaup, F. Michelinakis, N. Bui, J. Widmer, K. Wac, and D. Hausheer, “Behind the NAT

– A measurement based evaluation of cellular service quality,” in CNSM, 2015.

[27] F. Michelinakis, H. Doroud, A. Razaghpanah, A. Lutu, N. Vallina-Rodriguez, P. Gill, and

J. Widmer, “The Cloud that Runs the Mobile Internet: A Measurement Study of Mobile

Cloud Services,” in Proc. IEEE INFOCOM, Honolulu, HI, USA, April 2018.

[28] F. Michelinakis, N. Bui, G. Fioravantti, F. Kaup, D. Hausheer, and J. Widmer,

“Lightweight capacity measurements for mobile networks,” Elsevier Computer Commu-

nications, vol. 84, pp. 73–83, Jun. 2016.

[29] C. Koch, N. Bui, J. Rückert, G. Fioravantti, F. Michelinakis, S. Wilk, J. Widmer, and

D. Hausheer, “Media download optimization through prefetching and resource allocation

in mobile networks,” in Proceedings of the 6th ACM Multimedia Systems Conference.

ACM, 2015, pp. 85–88.

[30] C. Koch, J. Ruckert, N. Bui, F. Michelinakis, G. Fioravantti, D. Hausheer, and J. Widmer,

“Mobile social prefetcher using social and network information,” 2014.

[31] F. Michelinakis, “Mobile capacity measurements and estimation,” 2014.

[32] M. Marciel, F. Michelinakis, R. Fanou, and P. J. Muñoz-Merino, “Enhancements to google

course builder: Assessments visualisation, youtube events collector and dummy data gen-

erator,” 2013.

[33] 3GPP release 15: The first set of 5G standards. [Online]. Available: http:

//www.3gpp.org/release-15

[34] Alcatel-Lucent, “STRATEGIC WHITE PAPER: The LTE Network Architecture: A

comprehensive tutorial,” Tech. Rep., 2013, http://www.cse.unt.edu/∼rdantu/FALL 2013

WIRELESS NETWORKS/LTE Alcatel White Paper.pdf.

[35] C. Johnson, Long Term Evolution IN BULLETS, 2nd ed. CreateSpace Independent Pub-

lishing Platform, 2012.

[36] S. Chen, S. Sun, Y. Wang, G. Xiao, and R. Tamrakar, “A comprehensive survey of TDD-

based mobile communication systems from TD-SCDMA 3G to TD-LTE(A) 4G and 5G

directions,” Communications, China, vol. 12, no. 2, pp. 40–60, Feb 2015.

[37] R. Kwan, C. Leung, and J. Zhang, “Proportional fair multiuser scheduling in LTE,” Signal

Processing Letters, IEEE, vol. 16, no. 6, pp. 461–464, 2009.

[38] F. Zarinni, A. Chakraborty, V. Sekar, S. R. Das, and P. Gill, “A first look at performance

in mobile virtual network operators,” in Proceedings of the 2014 Conference on Internet

Measurement Conference. ACM, 2014, pp. 165–172.

http://www.cse.unt.edu/~rdantu/FALL_2013_WIRELESS_NETWORKS/LTE_Alcatel_White_Paper.pdf
http://www.3gpp.org/release-15
http://www.3gpp.org/release-15
http://www.cse.unt.edu/~rdantu/FALL_2013_WIRELESS_NETWORKS/LTE_Alcatel_White_Paper.pdf

122 REFERENCES

[39] (last accessed June 2018) Common Android Kernel Tree. [Online]. Available:

https://android.googlesource.com/kernel/common/

[40] (last accessed June 2018) Definition of the skbuf structure in Android

source code. [Online]. Available: https://android.googlesource.com/kernel/common/

+/a7827a2a60218b25f222b54f77ed38f57aebe08b/include/linux/skbuff.h

[41] (last accessed June 2018) Explanation of some fields of skbuf structure. [Online].

Available: http://vger.kernel.org/∼davem/skb.html

[42] “Scaling in the linux networking stack,” https://android.googlesource.com/kernel/msm/+/

android-wear-5.0.2 r0.1/Documentation/networking/scaling.txt, last accessed June 2018.

[43] E. Dumazet, “Busy polling: Past, present, future.”

[44] (last accessed June 2018) BUSY POLLING Netdev 2.1. [Online]. Available:

https://netdevconf.org/2.1/slides/apr6/dumazet-BUSY-POLLING-Netdev-2.1.pdf

[45] Ookla, “Ookla speedtest mobile apps,” http://www.speedtest.net/mobile/, last accessed

June 2014.

[46] Y. Xu, Z. Wang, W. K. Leong, and B. Leong, “An end-to-end measurement study of modern

cellular data networks,” in Passive and Active Measurement. Springer, 2014, pp. 34–45.

[47] K. Lai and M. Baker, “Measuring link bandwidths using a deterministic model of packet

delay,” in Proceedings of the Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communication, ser. ACM SIGCOMM ’00, New York, NY,

USA, pp. 283–294. [Online]. Available: http://doi.acm.org/10.1145/347059.347557

[48] C. Dovrolis, P. Ramanathan, and D. Moore, “Packet-dispersion techniques and a capacity-

estimation methodology,” IEEE/ACM Transactions on Networking, vol. 12, no. 6, pp. 963–

977, December 2004.

[49] R. Kapoor, L.-J. Chen, L. Lao, M. Gerla, and M. Sanadidi, “CapProbe: a simple and accu-

rate capacity estimation technique,” ACM SIGCOMM Computer Communication Review,

vol. 34, no. 4, pp. 67–78, October 2004.

[50] A. Gerber, J. Pang, O. Spatscheck, and S. Venkataraman, “Speed testing without speed

tests: estimating achievable download speed from passive measurements,” in ACM IMC,

Melbourne, Australia, November 2010, pp. 424–430.

[51] Q. Xu, S. Mehrotra, Z. Mao, and J. Li, “PROTEUS: network performance forecast for

real-time, interactive mobile applications,” in ACM MobiSys, Taipei, Taiwan, June 2013,

pp. 347–360.

http://vger.kernel.org/~davem/skb.html
https://android.googlesource.com/kernel/msm/+/android-wear-5.0.2_r0.1/Documentation/networking/scaling.txt
https://netdevconf.org/2.1/slides/apr6/dumazet-BUSY-POLLING-Netdev-2.1.pdf
http://www.speedtest.net/mobile/
https://android.googlesource.com/kernel/common/
https://android.googlesource.com/kernel/common/+/a7827a2a60218b25f222b54f77ed38f57aebe08b/include/linux/skbuff.h
http://doi.acm.org/10.1145/347059.347557
https://android.googlesource.com/kernel/common/+/a7827a2a60218b25f222b54f77ed38f57aebe08b/include/linux/skbuff.h
https://android.googlesource.com/kernel/msm/+/android-wear-5.0.2_r0.1/Documentation/networking/scaling.txt

REFERENCES 123

[52] F. Ricciato, F. Vacirca, and M. Karner, “Bottleneck Detection in UMTS via TCP Passive

Monitoring: A Real Case,” in ACM CoNEXT, Toulouse, France, October 2005, pp. 211–

219.

[53] P. Svoboda and F. Ricciato, “Analysis and detection of bottlenecks via TCP footprints in

live 3G networks,” in IFIP WiOPT, Hammammet, Tunisia, April 2008, pp. 37–42.

[54] C. Ide, B. Dusza, and C. Wietfeld, “Performance of channel-aware M2M communications

based on LTE network measurements.” in IEEE PIMRC, 2013, pp. 1614–1618.

[55] X. Xie, X. Zhang, S. Kumar, and L. E. Li, “pistream: Physical layer informed adaptive

video streaming over lte,” in ACM MobiCom, Sep. 2015, pp. 413–425.

[56] S. Kumar, E. Hamed, D. Katabi, and L. Erran Li, “LTE radio analytics made easy and

accessible,” in ACM SIGCOMM, vol. 44, no. 4, 2014, pp. 211–222.

[57] Y. Li, C. Peng, Z. Yuan, J. Li, H. Deng, and T. Wang, “Mobileinsight: Extracting and

analyzing cellular network information on smartphones,” in ACM Mobicom, Oct. 2016.

[58] W. Li, R. K. P. Mok, D. Wu, and R. K. C. Chang, “On the accuracy of smartphone-based

mobile network measurement,” in IEEE INFOCOM, Hong Kong, April 2015, pp. 370–378.

[59] A. Elnashar and M. A. El-Saidny, “Looking at lte in practice: A performance analysis of

the lte system based on field test results,” IEEE Vehicular Technology Magazine, vol. 8,

no. 3, pp. 81–92, Sep. 2013.

[60] N. Becker, A. Rizk, and M. Fidler, “A measurement study on the application-level perfor-

mance of LTE,” in IFIP Networking Conference, 2014, pp. 1–9.

[61] M. Jovanovic, M. K. Karray, and B. Blaszczyszyn, “QoS and network performance esti-

mation in heterogeneous cellular networks validated by real-field measurements,” in ACM

PE-WASUN, 2014, pp. 25–32.

[62] N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, N. Weaver, and V. Paxson, “Beyond the

radio: Illuminating the higher layers of mobile networks,” in ACM MobiSys, 2015.

[63] “During Netflix money fight, Cogent’s other big customers suffered

too.” [Online]. Available: https://arstechnica.com/information-technology/2014/11/

during-netflix-money-fight-cogents-other-big-customers-suffered-too/

[64] A. Molavi Kakhki, A. Razaghpanah, A. Li, H. Koo, R. Golani, D. Choffnes, P. Gill, and

A. Mislove, “Identifying traffic differentiation in mobile networks,” in Proceedings of the

2015 Internet Measurement Conference, ser. IMC ’15. New York, NY, USA: ACM,

2015, pp. 239–251. [Online]. Available: http://doi.acm.org/10.1145/2815675.2815691

https://arstechnica.com/information-technology/2014/11/during-netflix-money-fight-cogents-other-big-customers-suffered-too/
https://arstechnica.com/information-technology/2014/11/during-netflix-money-fight-cogents-other-big-customers-suffered-too/
http://doi.acm.org/10.1145/2815675.2815691

124 REFERENCES

[65] J. P. Rula and F. E. Bustamante, “Behind the curtain: Cellular dns and content replica

selection,” in Proc. IMC. ACM, 2014, pp. 59–72.

[66] J. S. Otto, M. A. Sánchez, J. P. Rula, and F. E. Bustamante, “Content delivery and the

natural evolution of dns: remote dns trends, performance issues and alternative solutions,”

in Proc. IMC. ACM, 2012, pp. 523–536.

[67] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feldmann, B. Maggs, J. Rake,

S. Uhlig, and R. Weber, “Pushing CDN-ISP Collaboration to the Limit,” SIGCOMM

Comput. Commun. Rev., vol. 43, no. 3, pp. 34–44, Jul. 2013. [Online]. Available:

http://doi.acm.org/10.1145/2500098.2500103

[68] I. N. Bozkurt, A. Aguirre, B. Chandrasekaran, P. B. Godfrey, G. Laughlin, B. Maggs, and

A. Singla, “Why is the internet so slow?!” in International Conference on Passive and

Active Network Measurement. Springer, 2017, pp. 173–187.

[69] C. Contavalli, W. van der Gaast, D. Lawrence, and W. Kumari, “Client Subnet in

DNS Queries,” RFC 7871 (Informational), Internet Engineering Task Force, May 2016.

[Online]. Available: http://www.ietf.org/rfc/rfc7871.txt

[70] S. Narayana, J. W. Jiang, J. Rexford, and M. Chiang, “Distributed wide-area traffic man-

agement for cloud services,” in ACM SIGMETRICS Performance Evaluation Review,

vol. 40, no. 1. ACM, 2012, pp. 409–410.

[71] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy, T. Anderson,

and J. Gao, “Moving beyond end-to-end path information to optimize cdn performance,”

in ACM IMC, 2009.

[72] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin, “Measuring what is not ours: A

tale of 3rd party performance,” in International Conference on Passive and Active Network

Measurement. Springer, 2017, pp. 142–155.

[73] MartinGarcia, Luis, “Tcpdump,” http://www.tcpdump.org/, last accessed November 2016.

[74] S. Bauer, D. D. Clark, and W. Lehr, “Understanding broadband speed measurements.”

TPRC, 2010.

[75] Netflix, https://help.netflix.com/en/node/306, last accessed June 2015.

[76] “The network simulator - ns-3,” http://www.nsnam.org/, last accessed September 2015.

[77] “LENA - ns-3 LTE module,” http://lena.cttc.es/manual/, last accessed September 2015.

[78] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, P. Gill, M. Allman,

and V. Paxson, “Haystack: A multi-purpose mobile vantage point in user space,” arXiv

preprint arXiv:1510.01419v3, 2016.

http://lena.cttc.es/manual/
http://doi.acm.org/10.1145/2500098.2500103
https://help.netflix.com/en/node/306
http://www.ietf.org/rfc/rfc7871.txt
http://www.nsnam.org/
http://www.tcpdump.org/

REFERENCES 125

[79] Ö. Alay, A. Lutu, M. Peón-Quirós, V. Mancuso, T. Hirsch, T. Dely, J. Werme, K. Evensen,

A. Hansen, S. Alfredsson, J. Karlsson, A. Brunstrom, A. Khatouni, M. Mellia, and

M. Marsan, “Experience: An Open Platform for Experimentation with Commercial Mobile

Broadband Networks,” in Proc. of ACM Mobicom, 2017.

[80] “Akamai Facts & Figures,” 2017, https://www.akamai.com/uk/en/about/facts-figures.jsp.

[81] “AWS Global Infrastructure,” https://aws.amazon.com/about-aws/global-infrastructure/.

[82] D. Wu, R. K. Chang, W. Li, E. K. Cheng, and D. Gao, “Mopeye: Opportunistic monitoring

of per-app mobile network performance,” arXiv preprint arXiv:1703.07551, 2017.

[83] I. Castro, J. C. Cardona, S. Gorinsky, and P. Francois, “Remote peering: More peering

without internet flattening,” in Proc. CoNEXT. ACM, 2014, pp. 185–198.

[84] A. Dhamdhere and C. Dovrolis, “The internet is flat: modeling the transition from a transit

hierarchy to a peering mesh,” in Proc. CoNEXT. ACM, 2010, p. 21.

[85] “Netflix Open Connect.” [Online]. Available: https://openconnect.netflix.com

[86] “Akamai Network Partnerships.” [Online]. Available: https://www.akamai.com/uk/en/

products/network-operator/akamai-network-partnerships.jsp

[87] V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, Z.-L. Zhang, M. Varvello, and M. Steiner, “Mea-

surement study of netflix, hulu, and a tale of three cdns,” IEEE/ACM ToN, vol. 23, no. 6,

pp. 1984–1997, 2015.

[88] N. Vallina-Rodriguez, S. Sundaresan, A. Razaghpanah, R. Nithyanand, M. Allman,

C. Kreibich, and P. Gill, “Tracking the Trackers: Towards Understanding the Mobile Ad-

vertising and Tracking Ecosystem,” in Workshop on Data and Algorithmic Transparency,

Nov. 2016.

[89] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan, M. Allman,

C. Kreibich, and P. Gill, “Apps, Trackers, Privacy, and Regulators: A Global Study of

the Mobile Tracking Ecosystem,” in Proc. NDSS, 2018.

[90] ICSI, “Lumen Privacy Monitor,” 2016, https://play.google.com/store/apps/details?id=edu.

berkeley.icsi.haystack.

[91] “CDNFinder by CDNPlanet,” https://www.cdnplanet.com/tools/cdnfinder/.

[92] Intel Security/McAfee, “Customer URL Ticketing System,” http://www.trustedsource.org/.

[93] “OpenDNS Domain Tagging,” https://domain.opendns.com.

[94] “Cloudmap Project,” 2018, http://wireless.networks.imdea.org/cloudmap-project.

https://aws.amazon.com/about-aws/global-infrastructure/
https://www.cdnplanet.com/tools/cdnfinder/
https://www.akamai.com/uk/en/products/network-operator/akamai-network-partnerships.jsp
http://www.trustedsource.org/
https://domain.opendns.com
https://play.google.com/store/apps/details?id=edu.berkeley.icsi.haystack
https://www.akamai.com/uk/en/products/network-operator/akamai-network-partnerships.jsp
https://play.google.com/store/apps/details?id=edu.berkeley.icsi.haystack
http://wireless.networks.imdea.org/cloudmap-project
https://www.akamai.com/uk/en/about/facts-figures.jsp
https://openconnect.netflix.com

126 REFERENCES

[95] “edns-client-subnet participants,” http://www.afasterinternet.com/participants.htm.

[96] E. Halepovic et. al, “Can You GET Me Now?: Estimating the Time-to-first-byte of HTTP

Transactions with Passive Measurements,” in Proc. ACM IMC, 2012.

[97] N. Vallina-Rodriguez, J. Shah, A. Finamore, Y. Grunenberger, K. Papagiannaki, H. Had-

dadi, and J. Crowcroft, “Breaking for Commercials: Characterizing Mobile Advertising,”

in Proceedings of the Internet Measurement Conference, 2012.

[98] ICSI, “Netalyzr,” http://netalyzr.icsi.berkeley.edu/.

[99] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: illuminating the edge net-

work,” in Proceedings of the 10th ACM SIGCOMM conference on Internet measurement.

ACM, 2010, pp. 246–259.

[100] A. Razaghpanah, A. A. Niaki, N. Vallina-Rodriguez, S. Sundaresan, J. Amann, and P. Gill,

“Studying TLS Usage in Android Apps,” in Proc. ACM CoNEXT, 2017.

[101] M. Almeida, A. Finamore, D. Perino, N. Vallina-Rodriguez, and M. Varvello, “Dissecting

DNS Stakeholders in Mobile Networks,” in Proc. ACM CoNEXT, 2017.

[102] Y. Shavitt and N. Zilberman, “A geolocation databases study,” IEEE Journal on Selected

Areas in Communications, vol. 29, no. 10, pp. 2044–2056, 2011.

[103] CAIDA/UCSD, “Mapping Autonomous Systems to Organizations: CAIDA’s Inference

Methodology.” [Online]. Available: https://www.caida.org/research/topology/as2org/

[104] J. P. Rula, F. E. Bustamante, and M. Steiner, “Cell spotting: studying the role of cellular

networks in the internet,” in Proc. ACM IMC, 2017.

[105] CAIDA/UCSD, “AS Relationships Dataset.” [Online]. Available: http://as-rank.caida.org/

[106] T. Sonera, “Telia and Akamai announce strategic relation-

ship to deliver enhanced web services throughout Europe.” [On-

line]. Available: https://www.teliacompany.com/en/news/press-releases/2000/1/

telia-and-akamai-announce-strategic-relationship-to-deliver-enhanced-web-services-throughout-europe/

[107] Akamai Press Release, “Akamai And Telecom Italia Enter Into Part-

nership To Offer Content Delivery And Web Optimization Solutions.”

[Online]. Available: https://www.akamai.com/us/en/about/news/press/2015-press/

akamai-and-telecom-italia-enter-into-partnership-to-offer-content-delivery-and-web-optimization-solutions.

jsp

[108] (last accessed October 2015) Alexa: Most popular websites in Germany. [Online].

Available: http://www.alexa.com/topsites/countries/DE

http://as-rank.caida.org/
https://www.akamai.com/us/en/about/news/press/2015-press/akamai-and-telecom-italia-enter-into-partnership-to-offer-content-delivery-and-web-optimization-solutions.jsp
https://www.teliacompany.com/en/news/press-releases/2000/1/telia-and-akamai-announce-strategic-relationship-to-deliver-enhanced-web-services-throughout-europe/
https://www.teliacompany.com/en/news/press-releases/2000/1/telia-and-akamai-announce-strategic-relationship-to-deliver-enhanced-web-services-throughout-europe/
https://www.akamai.com/us/en/about/news/press/2015-press/akamai-and-telecom-italia-enter-into-partnership-to-offer-content-delivery-and-web-optimization-solutions.jsp
http://www.alexa.com/topsites/countries/DE
http://www.afasterinternet.com/participants.htm
http://netalyzr.icsi.berkeley.edu/
https://www.akamai.com/us/en/about/news/press/2015-press/akamai-and-telecom-italia-enter-into-partnership-to-offer-content-delivery-and-web-optimization-solutions.jsp
https://www.caida.org/research/topology/as2org/

REFERENCES 127

[109] A. Burulitisz, S. Imre, and S. Szabó, “On the accuracy of mobility modelling in wireless

networks,” in Communications, 2004 IEEE International Conference on, vol. 4. IEEE,

2004, pp. 2302–2306.

[110] K. Papagiannaki, N. Taft, Z.-L. Zhang, and C. Diot, “Long-term forecasting of internet

backbone traffic: Observations and initial models,” in INFOCOM 2003. Twenty-Second

Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies,

vol. 2. IEEE, 2003, pp. 1178–1188.

[111] B. Zhou, D. He, Z. Sun, and W. H. Ng, “Network traffic modeling and prediction with

arima/garch,” in HET-NETs 06 Conference. Citeseer, 2005, pp. 1–10.

[112] L. Song, D. Kotz, R. Jain, and X. He, “Evaluating location predictors with extensive wi-

fi mobility data,” in INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE

Computer and Communications Societies, vol. 2. IEEE, 2004, pp. 1414–1424.

[113] W. Creixell and K. Sezaki, “Routing protocol for ad hoc mobile networks using mobility

prediction,” International Journal of Ad Hoc and Ubiquitous Computing, vol. 2, no. 3, pp.

149–156, 2007.

[114] J. Froehlich and J. Krumm, “Route prediction from trip observations,” SAE SP, vol. 2193,

p. 53, 2008.

[115] W. Dong, N. Duffield, Z. Ge, S. Lee, and J. Pang, “Modeling cellular user mobility using a

leap graph,” in Passive and Active Measurement. Springer, 2013, pp. 53–62.

[116] J. Yao, S. S. Kanhere, and M. Hassan, “An empirical study of bandwidth predictability in

mobile computing,” in ACM WiNTECH Workshop, San Francisco, CA, USA, September

2008, pp. 11–18.

[117] A. J. Nicholson and B. D. Noble, “Breadcrumbs: forecasting mobile connectivity,” in Pro-

ceedings of the 14th ACM international conference on Mobile computing and networking.

ACM, 2008, pp. 46–57.

[118] M. Z. Shafiq, L. Ji, A. X. Liu, and J. Wang, “Characterizing and modeling internet traffic

dynamics of cellular devices,” in Proceedings ACM SIGMETRICS, 2011.

[119] P. A. Zandbergen, “Accuracy of iphone locations: A comparison of assisted gps, wifi and

cellular positioning,” Transactions in GIS, vol. 13, no. s1, pp. 5–25, 2009.

[120] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, “Understanding individual human

mobility patterns,” Nature, vol. 453, no. 7196, pp. 779–782, 2008.

[121] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictability in human mobil-

ity,” Science, vol. 327, no. 5968, pp. 1018–1021, 2010.

128 REFERENCES

[122] V. A. Siris and D. Kalyvas, “Enhancing mobile data offloading with mobility prediction

and prefetching,” in Proceedings of the seventh ACM international workshop on Mobility

in the evolving internet architecture, ser. MobiArch ’12. New York, NY, USA: ACM,

2012, pp. 17–22. [Online]. Available: http://doi.acm.org/10.1145/2348676.2348682

[123] U. Paul, A. P. Subramanian, M. M. Buddhikot, and S. R. Das, “Understanding traffic dy-

namics in cellular data networks,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011,

pp. 882–890.

[124] O. Osterbo, “Scheduling and capacity estimation in LTE,” in Teletraffic Congress (ITC),

2011 23rd International, 2011, pp. 63–70.

[125] S. Sesia, I. Toufik, and M. Baker, LTE: the UMTS long term evolution. Wiley Online

Library, 2009.

http://doi.acm.org/10.1145/2348676.2348682

	Disclaimer
	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	I Introduction
	Introduction
	Motivation
	Contributions and Published Material
	Thesis Overview

	Background
	``Flow'' Definition
	Content Servers and the Modern (Mobile) ISP
	LTE Architecture
	LTE Core Network
	The Lower Layers of LTE
	Baseband

	Linux Kernel Networking
	Interrupt Handling
	The Higher Layers of the Linux Networking Stack

	Final Notes

	Related Work
	Mobile Bandwidth / Capacity Estimation
	Active Measurement Techniques
	Lightweight Active Measurement Techniques - Packet Dispersion
	Passive Measurement Techniques

	Mobile Communication Standards Mechanics and Measurements
	Characterization and Evaluation of Cloud Service Providers

	II Smartphone Measurements on the Physical and Lower Layers
	LTE Radio Link Estimation Accuracy of Smartphones
	Testbed
	Experiment and Results
	Measuring Layer Latency (Isolated Transmission Test)
	Measuring Link Rate Estimation (Burst Transmission Test)

	Summary

	Challenges in Performing Low Layer Mobile Measurements
	Measurement Artifacts
	Small Congestion Window Values During the Slow Start
	Infrequent Polling for Incoming Packets
	Weak or Busy Phone Hardware
	Slower Speed During the First Packets of a Flow

	Packet Pair Issue
	Packet Trains Issue

	Passive Mobile Bandwidth Classification Using Short Lived TCP Connections
	Algorithm
	Comparison with Bin-Based Tools
	Discussion
	Summary

	Lightweight Capacity Measurements For Mobile Networks
	Mobile Capacity Estimation
	Capacity Estimation Samples
	Statistical Processing of the Samples
	Capacity Measurement

	Simulation Campaign
	Measurement Campaign
	Results and Discussion
	Summary

	III Interconnection of Third-Party Services and Mobile Operators
	A Measurement Study of Mobile Cloud Services
	Recent Trends
	Methodology and Datasets
	Step 1. Collecting Accurate Traffic Logs
	Step 2. Mapping FQDNs to CSPs
	Step 3. Empirical Performance Analysis

	CSP Prevalence on Mobile Apps and Services
	CSP Performance and Integration with MNOs
	In-path Middleboxes
	DNS infrastructure
	CSP Performance
	CSP-MNO Integration
	International Roaming

	Study Limitations
	Effect of Point of Presence (PoP) Selection on Quality of Service (QoS)
	Summary

	Conclusions
	Appendices
	A Model for Throughput Prediction for Mobile Users
	Taxonomy of Predictors
	Mobility Predictors
	Bandwidth Predictors

	Bandwidth Availability Model
	Results
	Summary

	References

