
PERFORMANCE CHARACTERISATION OF IP NETWORKS 

by 

BOGDAN VLADIMIR GHITA 

A thesis submitted to the University of Plymouth 
in partial fulfilment for the degree of 

DOCTOR O F PHILOSOPHY 

School of Computing, Communications, and Electronics 
Faculty of Technology 

February 2004 



Unlversi:v i-lymouth 
Library 

Item No. 

Shelfmarl; 



Abstract 

Performance characterisation of IP networks 

Bogdan Vladimir Ghita 

Abstract 

The initial rapid expansion o f the Iniemet, in terms o f complexity and number of hosts, was 

followed by an increased interest in its overall parameters and the quality the network offers. 

This growth has led, in the first instance, to extensive research in the area of network monitoring, 

in order to better understand the characteristics o f the current Internet. In parallel, studies were 

made in the area of protocol performance modelling, aiming to estimate the performance o f 

various Internet applications. 

A key goal o f this research project was the analysis o f current Internet traffic performance from a 

dual perspective: monitoring and prediction. In order to achieve this, the study has three main 

phases. It starts by describing the relationship between data transfer performance and network 

conditions, a relationship that proves to be critical when studying application performance. The 

next phase proposes a novel architecture of inferring network conditions and transfer parameters 

using captured traffic analysis. The final phase describes a novel alternative to current TCP 

(Transmission Control Protocol) models, which provides the relationship between network, data 

transfer, and client characteristics on one side, and the resulting TCP performance on the other, 

while accounting for the features of current Internet transfers. 

The proposed inference analysis method for network and transfer parameters uses online non-

intrusive monitoring o f captured traffic from a single point. This technique overcomes 

limitations o f prior approaches that are typically geared towards intrusive and/or dual-point 

offline analysis. The method includes several novel aspects, such as TCP timestamp analysis, 

which allows bottleneck bandwidth inference and more accurate receiver-based parameter 

II 



Abstract 

measurement, which are not possible using traditional acknowledgment-based inference. The 
the results of the traffic analysis determine the location o f the eventual degradations in network 
conditions relative to the position o f the monitoring point. The proposed monitoring framework 
infers the performance parameters o f network paths conditions transited by the analysed traffic, 
subject to the position of the monitoring point, and it can be used as a starting point in pro-active 
networic management. 

The TCP performance prediction model is based on the observation that current, potentially 

unknown, TCP implementations, as well as connection characteristics, are too complex for a 

mathematical model. The model proposed in this thesis uses an artificial intelligence-based 

analysis method to establish the relationship between the parameters that influence the evolution 

o f the TCP transfers and the resulting performance o f those transfers. Based on preliminary tests 

of classification and function approximation algorithms, a neural network analysis approach was 

preferred due to its prediction accuracy. 

Both the monitoring method and the prediction model are validated using a combination of 

traffic traces, ranging from synthetic transfers / environments, produced using a network 

simulator/emulator, to traces produced using a script-based, controlled client and uncontrolled 

traces, both using real Internet traffic. The validation tests indicate that the proposed approaches 

provide better accuracy in terms of inferring network conditions and predicting transfer 

performance in comparison with previous methods. The non-intrusive analysis o f the real 

network traces provides comprehensive information on the current Internet characteristics, 

indicating low-loss, low-delay, and high-bottleneck bandwidth conditions for the majority of the 

studied paths. 

Overall, this study provides a method for inferring the characteristics of Internet paths based on 

III 



Abstract 

traffic analysis, an efficient methodology for predicting TCP transfer performance, and a firm 
basis for future research in the areas o f traffic analysis and performance modelling. 

IV 



Table of contents 

Table of contents 

ABSTRACT II 

TABLE OF COVTEYTS V 

TABLE OF FIGURES XI 

ACKNOWLEDGMENTS X V I I 

GLOSSARY XVi i i 

C H A P T E R I . I N T R O D U C T I O N I 

1.1 ARMS AND OBJECTIVES 4 

1.2 THESIS CONTTENT 5 

C H A P T E R 2. T R A F F I C A N A L Y S I S A N D P E R F O R M A N C E M O D E L L I N G 9 

2.1 INTRODUCTION 10 

2.2 THE INTERNET PROTOCOLS 11 

2.2. / Interne! Protocol ^2 

2.2.2 Transmission Control Protocol 

2.2.3 HyperText Transfer Protocol / 7 

2.3 TRAFFIC AND NETWORK ANALYSIS TRENDS: FROM INTERNET EXPERIMENTS TO MONITORING \ 8 

2.3.1 The need to monitor network status 

2.3.2 The evolution of network performance analysis 20 

2.4 TAXONOMY OF TRAFFIC ANALYSIS TECHNIQUES 23 

2.4.1 Interaction taxonomy 23 

2.4.2 Temporal taxonomy 27 

2.4.3 Information taxonomy 28 

2.5 T C P MODELLING - CURRENT STATE OF THE ART 29 

2.5.1 Introduction 2 9 

2.5.2 The influencing parameters for TCP tliroughpul 30 

2.5.3 Current TCP mathematical models 37 

2.6 CLASSIFICATION OF DATA SOURCES 44 

2.7 SUMMARY 4 7 

C H A P T E R 3. A N O V E L A P P R O A C H T O M O N I T O R I N G 4 9 

V 



Table of contents 

3.» INTRODUCTION 50 

3.1.1 Ideal monitoring method -50 

3.2 PROPOSED ONUNE, SINGLE-POINT, NON-INTRUSIVE MONrroRiNC METHOD 54 

3.2 / Targeted traffic 

3.2.2 General description. -56 

3.2.3 Impact 58 

3.3 THE REAL-TIME TRAFFIC MONrroR 59 

3.4 THE T C P TRAFFIC MONITOR 6 0 

3.4.1 Method - TCP endpoint emulation 60 

3.4.2 State analysis, 

3.4.3 Sequence analysis 

3.4.4 Timestamp options-based TCP analysis 79 

3.4.4.1. Congestion window 80 

3.4.4.2. BotUeneck bandwidih 80 

3.4.5 The measured parameters S2 

3.4.6 Fault localisation S4 

3.5 METHOD IMPLEMENTATION 86 

J. 5. / Block diagram S6 

3.6 SUMMARY 92 

C H A P T E R 4. ISSUES R E L A T E D T O T H E P R O P O S E D T C P A N A L Y S I S 94 

4.1 ROUND TRIP TIME 96 

4.2 PACKET LOSS lOl 

4.2.1 Limitations while identifying loss and misordering 107 

4.2.2 A voidance of estimation errors due to Identification field wrap-around 108 

4.3 CONGESTION WINDOW 110 

4.4 BOTTLENECK BANDWIDTH 113 

4.4.1 Errors due to netyvork conditions 1^4 

4.4.2 Limitations anderrors due to implementation issues. /15 

4.4.3 Evaluate TCP timestamps resolution /18 

4.5 FAULT LOCALISATION 120 

4.6 SEPARATION BETWEEN H T T P v I . I SESSIONS AND TIMEOUT LOSSES 122 

VI 



Table of contents 

4.7 SUMMARY 

C H A P T E R 5. V A L I D A T I O N O F M O N I T O R I N G M E T H O D S « 124 

5.1 INTRODUCTION 

5.2 TESTBED DATA - THE MST/VET NETWORK EMULATOR * 26 

5.3 SYNTHETIC DATA - THE N S ENVIRONMENT »30 

5.3./ Topology 

5.4 A75rAtrTESTS 

5.4.1 RTTmeasurement 

5.4.2 Loss measurement 

5.4.3 Bottleneck bandwidth measurement Z'̂ ' 

5.4.4 Conclusions /'^•^ 

5.5 N S TESTS 

5.5.1 RTT tests ''^'^ 

5.5.2 Loss tests ^'^^ 

5.5.3 Congestion window ''^^ 

5.6 SUMMARY 

C H A P T E R 6. A N A L Y S I S O F I N T E R N E T T R A C E S 154 

6.1 INTRODUCTION ' 5 5 

6.2 THE R Y L TRACES ' 5 5 

6.3 THE REAL NETWORK TRACES ' 57 

6.4 RANDOM YAHOO LINK TRACES ANALYSIS ' 6 1 

6.4.1 Network topology and connectivity /<5/ 

6.4.2 Round Trip Time statistics 

6.4.2.1. Ack-based RTT vs. TCP timestamp-based RTI" esUmalions 170 

6.4.2.2. Effect on cmrcni TCP implemenlalions ' 73 

6.4.3 Bandwidth ' 7 5 

6.4.4 Loss '7<5 

6.4.4.1. Visible loss ™ 

6.4.4.2. Inferred loss '81 

6.4.4.3. Overall loss '82 

6.4.4.4. Retransmission errors 182 

VII 



Table of contents 

6.4.5 Connection size '^-^ 

6.4.6 Congestion window ^85 

6.4.7 Throughput 

6.4.8 Elapsed time i92 

6.4.9 Page content 

6.5 UOP TRACES ANALYSrS ' 95 

6.5.1 RTT. ^96 

6.5.2 Loss 200 

6.5.3 Band\vidth ^01 

6.5.4 Connection size ^02 

6.5.5 Congestion window 204 

6.5.6 Throughput ^06 

6.5.7 Elapsed time 208 

6.5.8 Issues and limitations 209 

6.6 SUMMARY 2 1 0 

C H A P T E R 7. T C P P E R F O R M A N C E P R E D I C T I O N M O D E L B A S E D O N I D A 2 1 4 

7.1 INTRODUCTION 2 1 5 

7.2 LIMITATIONS OF EXISTING MATHEMATICAL MODELS 2 1 5 

7.3 W H Y USE I D A ? 2 1 9 

7.3.1 The structure of IDA 220 

7.3.2 I DA for this project 222 

7.4 W H Y USE A NEURAL NETWORKS APPROACH? 224 

7.5 APPLYING I D A TO T C P PERFORMANCE MODELLING 228 

7.5.1 Data collection and pre-processing 2 2 5 

7.5.2 Data analysis - procedure and algorithms 231 

7.5.3 Interpretation of the results 234 

7.6 IMPLEMENTATION 236 

7.7 SUMMARY 238 

C H A P T E R 8. V A L I D A T I O N O F T C P P E R F O R M A N C E P R E D I C T I O N M E T H O D 239 

8.1 OBSTACLES. .240 

8.2 DATA ANALYSIS 241 

V I I I 



Table of contents 

8.3 PRELIMINARY TESTS - CONNECTIONS WmiOUT LOSSES 245 

8.3.1 Neural network structure 246 

8.3.2 The stopping criteria 247 

8.3.3 The optimum parameters for a set network 252 

8.4 V A U D A T I O N TESTS - CONNECTIONS WTTHOUT LOSSES 255 

8.4.1 The NSdataset 255 

8.4.2 TlieRYLdataset 259 

8.4.3 Generalisation - the UoP dataset 264 

8.5 PRELIMINARY TESTS - CONNECTIONS WITH LOSSES 267 

8.5.1 Neural network structure and slopping criteria 267 

8.5.2 The optimum parameters for a set network 270 

8.5.3 Data scaling 272 

8.6 VALIDATION TESTS -CONNECTIONS WITH LOSSES 274 

8.6.1 NStraces 274 

8.6.2 UoP traces 277 

8.7 APPLICATIONS 281 

8.8 SUMMARY 281 

C H A P T E R 9. R E V I E W ^ F U T U R E W O R K , A N D C O N C L U S I O N ™ 2 8 4 

9.1 ACHIEVEMENTS 285 

9.2 LIMITATIONS 290 

9.3 FUTURE WORK 293 

9.4 CONCLUSION 295 

R E F E R E N C E S 297 

A P P E N D I C E S . J I 6 

APPENDIX A - REAL-TIME TRAFFIC MONITOR 3 1 7 

A.I Monitoring procedure -^'^ 

A . I . I Identification of ihe real-time flows 318 

A. 2 Parameter inference and extraction 

A.2.1 Correlaling RTF analysis with RTCP parsing 322 

A. 3 VoIP validation ^23 

IX 



A.3.1 Limiiations 

Table of contents 

325 

APPENDIX B - SCRIPTS 326 

Appendix B.l - Neural network processing scripts 326 

9.4. I . I . B.I.I Main processing script (nn.sh) 326 

9.4.1.2. B. 1.2 Script to conx-ert CSV files to SNNS fonnat (conv2snns.tcI) 338 

B. 1.3 Script to normalise input data (scale.tcl) 340 

B. 1.4 Script 10 evaluate the accuracy of the neural network output (cval.lcl) 342 

Appendix B.2-NSscripts 346 

B.2.1 Simulation script for a three-tier topology (neLtcl) 346 

B.2.2 Loop script to produce a batch of traces (loop.sh) 351 

Appendix B.3- wget data collection script 352 

B.3.I Main data collection script (ryl.sh) 352 

B.3.2 Thread maintenance script (killer.sh) 353 

APPENDIX C - PUBLICATIONS 354 



Table of Figures 

Table of Figures 

Figure 2.1 - The header of an HTTP response 35 

Figure 3.1 - Degradation position in relation to the monitor 58 

Figure 3.2 - The TCP monitor state diagram 64 

Figure 3.3 - HTTP 1.1 session 70 

Figure 3.4 - Initial GET request from a client 71 

Figure 3.5 - Illustrating connection window evolution through sequence numbers 73 

Figure 3.6 - Estimated congestion window based on identifying transmission window peaks... 76 

Figure 3.7 - Estimated congestion window based on identifying packet trains 78 

Figure 3.8 - The components o f loss and delay for the monitoring configuration 85 

Figure 3.9 - Traffic analyser - main blocks diagram 87 

Figure 4.1 - Configuration example for RTT measurement 97 

Figure 4.2 - Position of the monitor in relation to the packet loss 102 

Figure 4.3 - Example o f sender experiencing a mixture of packet duplication and misordering 

(top); a zoomed view of the circled area (bottom) 108 

Figure 4.4 - Example of wrap-around sequence 109 

Figure 4,5 - Procedure to avoid false out-of-order sequences caused by wrap-around 109 

Figure 5.1 - The NISTNet testbed configuration 127 

Figure 5.2-Test configuration 128 

Figure 5.3 - NS generated network structure 133 

Figure 5.4 - Cumulative distribution of the (a) acknowledgment-based and (b) TCP-timestamp-

based RTT estimation errors for the NISTNet delay experiments 136 

Figure 5.5 - Plot o f relative errors o f TCP timestamp based inference as a function of delay 

introduced by NISTNet 138 

Figure 5.6 - Cumulative distribution o f the acknowledgment-based RTT samples / TCP-

XI 



Table of Figures 

timestamps'based RTTsamples ratio for the NlSTNet dataset 139 

Figure 5.7 - Relative error between the inferred and reported losses for (a) LostBefore and (b) 

LostAfier loss events 140 

Figure 5.8 - Cumulative distribution o f relative error for the bottleneck bandwidih estimation 

using a 64kb/s bottleneck 142 

Figure 5.9 - NS configuration used for RTT tests - path comprising three types o f links: access 

(4-2 and 3-5), aggregation (2-0 and 1-3), and core (0-1) 144 

Figure 5.10- Cumulative distribution of the relative error between the sum of links delay and the 

estimated RTT 145 

Figure 5.11 - Cumulative distribution o f the relative error between the sum o f links delay and the 

estimated RTT 146 

Figure 5.12 - Network topology used for losses - two lO-host lOMB/s networks connected via a 

2Mb/s backbone link (between nodes 0 and 1) 147 

Figure 5.13 - Plot of the lost data packets for each connection (+) as resulting from the TCP 

analysis and (x) as reported by the A'S'trace 148 

Figure 5.14 - Plot of (+) sequence numbers from sender, (x) acknowledgments numbers from 

receiver within a connection exhibiting erroneous retransmissions 148 

Figure 5.15 - Plot of the relative sequence numbers for a connection with congestion window 

limited by the receiver 150 

Figure 5.16 - Plot o f congestion window values, as resulting from (+) NS internal variable 

cwnd_ and (x) TCP analysis inference (based on the connection from Figure 5.15) 150 

Figure 5,17- Plot o f the relative sequence numbers for a connection 151 

Figure 5.18 - Plot of congestion window values, as resulting from (+) NS internal variable 

cwnd_ and (x) TCP analysis inference (based on a connection with losses) 152 

Figure 6,1 Part o f the traceroute output from UoP network to www.holmail.com 159 

Figure 6.2 - Path distribution for the (a) allj)robes and (b) good_probes sets, spring 2002 

XII 



Table of Figures 

experiments 164 

Figure 6.3 - Distribution o f connections/unique IP address 166 

Figure 6.4 -RTT average [ms] cumulative distribution for: (a) autumn 2001, (b) spring 2002.167 

Figure 6.5 - RTT standard deviation [ms] cumulative distribution for: a) autumn 2001, b) spring 

2002 168 

Figure 6.6 - Distribution o f RTT samples based on acknowledgments vs. RTT samples based on 

TCP timestamp options for a) autumn 2001 and b) spring 2002 171 

Figure 6 .7 -TCP timestamp resolution for a) autumn 2001 b) spring 2002 173 

Figure 6.8 - Bottleneck bandwidth cumulative distribution for a) autumn 2001 and b) spring 

2002. The two grey markers indicate c) the T l (i.544Mb/s) boundary and d) the lOMb/s 

boundary 176 

Figure 6.9 - Packet loss rate distribution for visible loss events (a) 2001 and (b) 2002 178 

Figure 6.10 - The sender packets from a page retrieval example from the 2002 round of 

experiments (each packet is represented by the relative sequence number o f the first byte) 

179 

Figure 6.11 - Packet loss distribution for inferred loss events (a) 2001 and (b) 2002 181 

Figure 6.12 - Erroneous packet retransmission distribution (a) 2001 and (b) 2002 183 

Figure 6.13 - Cumulative distribution of connection size for a) autumn 2001 b) spring 2002.. 185 

Figure 6,14 - Cumulative distribution o f the initial congestion window size for the a) 2001 and 

b) 2002 datasets 187 

Figure 6,15 - Cumulative distribution o f the maximum congestion window size for the a) 2001 

and b) 2002 datasets 187 

Figure 6,16 - Throughput distribution for the a) autumn 2001 dataset and the subsets of: b) 2-

packet c) 3-packet, and d) 4-or-more-packets connections 190 

Figure 6.17 - Throughput distribution for the connections with at least 4 data packets for the a) 

autumn 2001 and b) spring 2002 traces 191 

X I I I 



Table of Figures 

Figure 6.18 - Cumulative distribution o f the a)/c) connection lime, b)/d) data connection time for 

the autumn 2001 / spring 2002 traces 193 

Figure 6,19 - Distribution o f page content in (top) bytes / page and (bottom) objects / page ... 194 

Figure 6.20 - RTT average distribution for the UoP backbone traces 196 

Figure 6,21 - RTT standard deviation distribution for the UoP backbone traces 196 

Figure 6.22 - RTT average values for a traceroute to cnn.com using a host from a) UoP network 

b) Pipex ISP (the initial 30ms difference is due to the ADSL connectivity, compared with 

the lOOMb/s UoP access) 197 

Figure 6.23 - Distribution of RTT samples based on acknowledgments vs. RTT samples based 

on TCP timestamp for the UoP dataset 199 

Figure 6.24 - TCP timestamp resolution of the a) TCP clients and b) TCP servers for the UoP 

dataset 199 

Figure 6.25 - Packet loss rate cumulative distribution for (a) visible, (b) inferred, and (c) 

avoidable loss events within the UoP dalaset 201 

Figure 6.26 - Bottleneck bandwidth cumulative distribution for the UoP dataset. The three grey 

markers indicate a) the T l (1.544Mb/s) boundary, b) the EI (2.048Mb/s), and d) the IOMb/s 

boundary 202 

Figure 6.27 - Connection size analysis 203 

Figure 6,28 - Cumulative distribution of the (a) initial and (b) maximum congestion window size 

for the UoP tt^ces 205 

Figure 6.29 - Thput distribution for a) entire UoP dataset and b) only 4+ packets connections 

from the UoP dataset 207 

Figure 6.30 - Connection exhibiting a possible timestamp error 207 

Figure 6.31 - Cumulative distribution of the a) total and b) data transfer only duration o f 

connections from the UoP dataset 208 

Figure 7.1 - IDA processing diagram - basic representation (adapted from [Fayyad et al, 1996]) 

XIV 



Table o f Figures 

221 

Figure 7.2 - I D A processing diagram - basic representation 222 

Figure 8.1 - The structure o f the 3-6-3-1 neural network used during the preliminary tests 247 

Figure 8.2 MSE=f][cycles) for exhaustive training o f the RYL dataset, with a 10% testing (a) and 

90% training (b) split, using T I = O . O I , T=0.0, M = O . I , C = O . I (left) and TI=0.1, T=0.0, ^=0.1, 

c = O . I (right) 249 

Figure 8.3 - MSE=fl[cycles) for exhaustive training of the RYL datasel, using (a) T I = O . O I , T=0.0, 

H=0.1, c=0.1, (b) 11=0.1, T=0.0, ^=0.1, c=0.1, and (c) TI=0.9, T=0.0, \L=0. I , c=0.1 250 

Figure 8.4 MSE=f(cycles) for two different learning processes: (left) slow convergence, with 

i\=OA, T=0.0, n=0.1, 0=0.1, and (right) fast convergence, with T|=0.5, T=0.0, n=0.7, c=0.l 

251 

Figure 8.5 MSE=f](Ti,n) for Tie[0.I;0.9] and Me[0.l;0.9] (T=0.0, C = O . I ) 253 

Figure 8.6 - MSE=fl(Ti,^) for T I e [0.01 ;0.1] and HG[0 .1 ;0.9] (T=0.0, C=0. 1) 254 

Figure 8.7 - Plot of the real values vs. estimated values, as resulting from the NS dataset 256 

Figure 8.8 Cumulative distribution of the relative error for the RYL dataset using the (a) neural 

network model and (b) mathematical model 258 

Figure 8.9 Plot of the real values vs. estimated values, as resulting from the RYL dataset 260 

Figure 8.10 Error distribution for the RYL dataset using the (a) neural network model and (b) 

mathematical model 261 

Figure 8.11 Results from 100 training sessions 263 

Figure 8,12 Plot o f the real values vs. estimated values, as resulting from the UoP dalaset 265 

Figure 8.13 Error distribution for the UoP datasel using the (a) neural network model and (b) 

mathematical model 266 

Figure 8.14 - The structure o f the 5-10-5-1 neural network used during the preliminary tests .268 

Figure 8.15 - MSE=f(cycles) for exhaustive training o f the UoPx dataset, with a 6% testing (a) 

and 94% training (b) split, using T I = O . O I , T=0.0, ^=0.1, c = O . I (left) and T I = O . I , T=0.0, ^1=0.1, 

X V 



Table of Figures 

c=0.1 (right) 269 

Figure 8.16 - MSE=fl:T^,^) for (top) Tie[0.1;0.9] and ne[0.l;0.9] and (bottom) Tie[0.1;0.9] and 

^ie[0.1;0.9] (T=0.0, C=0.1) 271 

Figure 8.17 - Distributions o f values after using (a) linear, (b) logarithmic, (c) exponential, and 

(d) softmax scaling to the UoP trace loss subset 273 

Figure 8.18 Cumulative distribution o f relative error as resulting after applying (a) linear, (b) 

logarithmic, (c) exponential, and (d) softmax scaling to the UoP trace loss subset 274 

Figure 8.19 - Plot of the real values vs. the neural network estimated values, as resulting from 

the loss subset 275 

Figure 8.20 - Cumulative distributions o f the relative error resulting from using the (a) 

mathematical model and (b) neural network model with the NS loss subset 276 

Figure 8.21 - Plot o f the real values vs. the neural network estimated values, as resulting from 

the UoP loss subset 277 

Figure 8.22 - Plot o f the real values vs. the resulting prediction relative error, as resulting from 

the UoP loss subset 278 

Figure 8.23 - Cumulative distributions of the (a) actual values and (b) estimated values from the 

UoP loss subset 279 

Figure 8.24 Accuracy of the (b) NN model and (a) mathematical model for the UoP loss subset 

279 

Figure A. 1 - Network parameter inference based on RTP analysis 321 

Figure A.2: RTP and RTCP flows monitoring 323 

Figure A.3: RTP B-^A jitter distribution (from RTP analysis) 324 

Figure A.4: RTP jitter distribution (from RTCP parsing) 325 

X V I 



Acknowledgments 

Acknowledgments 

I would principally like to acknowledge the contributions of the following people: 

o Professor Emmanuel Ifeachor, my director o f studies, for his guidance in research and for 

setting a high standard, both for this project and for my entire research. 

o Dr. Steven Fumell, for his technical and professional advice, his personal support 

throughout the project, and for his patience while reading countless draft versions o f the 

thesis. 

• Dr. Benn Lines, for his technical advice and encouragements. 

o Dominique LeFoll, from Actema, for providing me the opportunity of pursuing this 

research and for his input and guidance during the monitoring part of the research. 

o My colleagues from the Network Research Group for their friendship and for their help, 

whenever requested. 

o My family and Oana, my girifriend, for their support and encouragements, without which 

this thesis would never have been written. 

X V I I 



Glossary 

Glossary 

ACK Acknowledgment 

ANN Artificial Neural Network(s) 

AMP Active Measurement Project 

BSD Berkeley Software Distribution 

CBR Constant Bit Rate 

IDA Intelligent Data Analysis 

ITU International Telecommunication Union 

ISP Internet Service Provider 

LBNL Lawrence Berkeley National Laboratory 

MolP Multimedia over IP 

MSE Mean Square Error 

MSS Maximum Segment Size 

NIMI National Internet Measurement Infrastructure 

NAI Network Analysis Infrastructure 

NAT Network Address Translation 

NLANR National Laboratory for Applied Network Research 

NS [ISI] Network Simulator 

OS Operating System 

PMA Passive Measurement and Analysis 

PSTN Public switched telephone network 

RFC Request For Comments 

RTCP Realtime Transport Control Protocol 

RTO Retransmission TimeOut 

RTP Realtime Transport Protocol 

X V I I I 



Glossary 

RTT Round Trip Time (delay) 

RYL Random Yahoo Link 

SLA Service Level Agreement 

SNNS Stuttgart Neural Network Simulator 

TTL Time To Live 

VoIP Voice over IP 

X I X 



Author's Declaration 

AUTHOR'S DECLARATION 

At no time during the registration for the degree of Doctor of Philosophy has the author 

been registered for any other University award. 

This study was financed vwth funding from Acterna and the University of Plymouth. 

Relevant scientific seminars and conferences were regularly attended at which the work 

was presented. Contacts from Actema provided technical advice and guidance, 

particularly In the early stages of the project Details of the published papers are listed In 

the Appendices 

Signed 

Date 

X X 



Chapter I - Introduction 

Chapter 1. Introduction 



Chapter I - Introduction 

Since its inception, the Internet has witnessed an exponential increase in the number o f hosts it 

interconnects. A series of network studies has shown that the number o f allocated IP addresses 

increased substantially between 1993 and 1999, growth that slowed down in the last few years 

[ISC 2003]; while this slowdown may have a variety of causes, such as connectivity via Network 

Address Translation (NAT) devices, one o f the reasons may also be the saturation o f Internet 

provisioning. This is one o f the reasons why, during the past few years, the networking area 

turned from providing connectivity to providing quality, change reflected in application 

performance. In this context, Internet Service Providers (ISPs) and customers focused their 

interest towards observing, understanding, and controlling the performance characteristics o f 

their network and their connectivity to their neighbours [NYI 2003] [MCI 2003], [Pipex 2003]. 

The increased interest to control network and application performance was hindered by the *best-

effort' character o f IP (Internet Protocol), which does not provide any quality guarantees. This is 

why the focus o f the research moved towards observing the network paths features and 

estimating performance. 

Current monitoring approaches use active monitoring or passive offline analysis of stored traffic 

to obtain a precise image o f the network status. Although successful in their purpose, such 

methods present several disadvantages. They require an infrastructure o f active probes and 

capturing devices deployed throughout the studied internet and typical tests involve traffic 

exchanged between these probes, traffic that adds to the network congestion. As the Internet has 

became more complex, such infrastructures become less viable due to their scalability issues and 

the resulting amount of traffic. Also, these infrastructures provide information regarding the 

aggregation and core segments of the network, where the probes are likely to be located, rather 

than the quality parameters for the end-networks, which are o f interest for the end-user. With 



Chapter I - Introduction 

regards to ofHine trace analysis, the result lacks timeliness: the characteristics of the studied 

internetwork are likely to change between the time when the traces were collected and the 

present. 

One o f the aims of the project on which this thesis is based is to propose a novel, online, non-

intrusive method to analyse traffic, using a single-point of capture, in order to reduce or 

eliminate the disadvantages of current network monitoring solutions. The proposed method aims 

to overcome the above-listed limitations and to allow a new approach for observing network 

conditions such as loss, delay, and bottleneck bandwidth. 

In parallel with studying the properties o f the Internet, there is a growing interest in the area o f 

protocol behaviour modelling. TCP is a typical focus for such research, particulariy due to its 

network status awareness and self-adjusting nature. Various studies aimed to characterise 

mathematically the behaviour o f data transfers in order to improve efficiency and to allow 

performance prediction. The models are all based upon the same theoretical concept: evaluate 

the throughput by emulating the variations in transmission pace during a TCP connection. This 

mathematical approach appeared to be accurate when validated, but it was designed for long 

connections, atypical for current typical Internet traffic, and it requires comprehensive 

knowledge about the behaviour o f the endpoints. Because o f this, the method requires prior study 

for any new TCP implementations and, more important, it cannot provide reliable estimates for 

senders with unknown behaviour. 

This research aims to improve the area of performance modelling by proposing a neural network 

based model to evaluate TCP performance. The goal is to provide a model that describes 

accurately, relative to the mathematical models, the relationship between network parameters 

and the resulting transport performance. 



Chapter 1 - Introduction 

The users' demand for quality is likely to increase in the near future. In such a performance-

focused environment, the areas of network monitoring and quality evaluation wil l occupy a 

critical role. There is a need to improve existing methods in these areas or to propose novel 

approaches that offer a better alternative in terms o f accuracy. The learning capabilities of the 

neural network wil l make it possible for the model to be adapted for ftjture implementations or 

application requirements. 

1.1 A ims and objectives 

This thesis advances the understanding of cun^nt Internet characteristics and transfer 

perfonnance. Two main areas o f study have been identified: network monitoring and 

performance prediction. 

The first aim of the thesis is to provide a novel approach to the area of traffic monitoring. The 

proposed method infers the current status o f network paths in a non-invasive manner, using 

online analysis o f existing traffic. It wil l be shown that, although current active measurement 

architectures are successful in examining and describing network characteristics, the complexity 

of the Intemet is likely to make them costly in terms of network resources. 

The second aim of the thesis is to provide a novel robust altemative, using a neural network 

based approach, to current perfomiance prediction methods. The research aims to observe that 

current, mathematical models, the only altemative of inferring application performance, although 

successful in explaining the theoretical behaviour, may perform poorly when dealing with real 

traffic. The proposed method uses a neural network model to approximate the relationship 

between network parameters and data transfer performance. The proposed approach wil l be 



Chapter 1 - Introduction 

evaluated in terms of accuracy relative to the existing mathematical models. 

To achieve these aims, the research programme had the following specific objectives: 

1. To identify the current state o f the art in the areas o f network conditions analysis 

(encompassing topics such as monitoring, traffic analysis, or network probing) and TCP 

performance modelling. 

2. To present a novel method of single-point, non-intrusive, online traffic analysis and 

monitoring that overcomes the disadvantages o f existing analysis techniques. 

3. To produce and evaluate a prototype for the proposed traffic analysis method, using 

synthetic and controlled traffic. 

4. To produce a snapshot of Internet paths conditions, as seen from the University o f 

Plymouth connectivity perspective by applying the developed traffic analysis method 

onto sources o f uncontrolled traffic. 

5. To propose a novel TCP performance model, based on knowledge o f prior connections, 

that overcomes limitations o f existing mathematical models and provides better accuracy. 

6. To evaluate the accuracy o f the proposed model, using a combination o f synthetic and 

uncontrolled traffic. 

1.2 Thesis content 

The thesis begins with an overview of the current state o f the art for the areas o f trafTlc 

monitoring and performance modelling. This overview, presented in Chapter 2, starts with a 

brief description of several essential TCP/IP core protocols, which collectively form the focus o f 

the monitored traffic. This is continued with a review of the current efforts in the area of network 

monitoring, together with the focus o f these studies and their purpose, followed by a taxonomy 



Chapter I - Introduction 

of the techniques described. The third part of the overview discusses the efforts in the area o f 

TCP modelling, starting from eariy TCP steady state models up to recent models slightly adapted 

for short-lived connections. The section concludes with an outline o f environments that may be 

used for validating traffic analysis and modelling methods. It is noted that such environments 

range from traffic with a synthetic element, generated using either a network simulator or a 

network emulator, through semi-controlled traffic, produced with the aid of a random link 

generator, up to real traffic, collected from a network backbone 

Chapter 3 builds upon the monitoring overview from Chapter 2 in its first section. It provides a 

summary o f characteristics that would contribute to an ideal monitoring method, all aiming to 

overcome the limitations o f existing methods. The chapter then continues by presenting the 

proposed monitoring method, which uses the issues highlighted in the previous section. The 

discussion includes the targeted traffic and then follows with the framework and theoretical 

aspects of the technique. The chapter describes the details o f TCP and real-time analysis, the 

target protocols o f the proposed method. The chapter finishes with an overview of the 

achievements o f the proposed method. 

The proposed monitoring method is analysed throughout Chapter 4. The structure of the study 

follows the inferred network parameters. Each section highlights advantages or limitations o f the 

method. The advantages are presented by comparing the method with previous approaches. The 

limitations consist of particular cases when the inference routines may lead to errors by 

misinterpreting certain network events. 

Chapter 5 presents the validation tests run to evaluate the accuracy of the method described in 

Chapter 3. The chapter starts by identifying supervised simulated or emulated environments that 

may be used to validate the accuracy o f the method, based on the outline from section 2.6. The 



Chapter 1 - Introduction 

validation process uses these environments and takes into consideration the limitations 

highlighted in Chapter 4. 

Chapter 6 reveals the use o f the proposed TCP monitoring method to obtain a holistic view of 

current Internet paths and web page transfer characteristics. The study starts by describing semi-

controlled and real traffic sources, together with the scalability issues involved. The remainder o f 

the chapter provides an image of the Internet, as viewed through the analysed traces. Concluding, 

the discussion highlights the fact that the images provided by the two types o f sources are very 

similar, showing the Internet to be dominated by low-delay low-loss paths, and short-lived TCP 

connections. 

Chapter 7 advances the research to the next level, from studying network monitoring to building 

the relationship between network conditions and application performance. The chapter proposes 

a novel TCP performance prediction model, based on Intelligent Data Analysis. After starting 

with a justification for using IDA, the chapter presents the entire process, starting with data pre

processing, followed by core analysis, and ending with interpretation of the results. 

Chapter 8 compares the accuracy o f the IDA-based TCP models proposed in Chapter 7 with the 

results obtained using a traditional mathematical approach. Two separate models are provided, 

one for connections without losses and one for connections that encountered losses. The 

validation tests are separately performed on a wide range o f traffic conditions, ranging from 

simulated traffic to real network traffic. The results are encouraging, particularly for connections 

without losses; the discussion also highlights the simplicity of synthetic traffic and the 

difficulties encountered when modelling connections with losses. 

Chapter 9 concludes the thesis. It highlights the achievements of this research programme in the 



Chapter 1 - Introduction 

areas of monitoring and modelling, as well as the limitations encountered throughout the studies 

performed. Finally, it summarises a number of promising directions for future work. 

The thesis includes three appendices to provide further clarification of the issues presented. 

Appendix A provides details regarding the real-time traffic analysis method; the presentation 

starts by describing the method itself, it continues with details on its implementation, and it 

concludes with the validation tests run to benchmark it. Appendix B includes several scripts 

written during various stages of the research for automating the neural network processing o f 

traces (Appendix B , l ) , generating synthetic packet traces using a network simulator (Appendix 

B.2), and retrieving web pages using a command-line web client (Appendix B.3)'. Finally, 

Appendix C includes copies o f selected research papers arising from the project. 

' The implemeniation of the proposed tmdic analysis method was considered loo large to be included in the 
appendices, but exists in electronic form on the attached CD. 

8 



Chapter 2 - Traffic analysis and performance modelling 

Chapter 2. Traffic analysis and performance modelling 



Chapter 2 - Traffic analysis and performance modelling 

2.1 Introduction 

The literature survey covers four areas that were involved in this research programme: network 

protocols, network monitoring, performance modelling, and sources of traffic. In order to 

understand the domain o f traffic analysis, the review wil l commence with the theory basis for 

internet communication - the protocols. For each protocol, the presentation wil l expand on its 

functionality and wil l highlight the characteristics that are likely to influence its behaviour and 

performance. 

The second part o f the literature review will focus on the state of the art achieved in studying 

network traffic. The discussion wil l start by justifying the increasing need for monitoring, caused 

by the evolution of Internet provisioning from basic customer connectivity towards offering 

quality to network applications. The section will then expand on state o f the art for network 

analysis methods from the historical approaches to the present days. These methods wil l be then 

grouped in a taxonomy based on three criteria: 

- interaction between the monitoring tool and the measured environment, i.e. how the 

method obtains its output data 

- timeliness of the obtained information, i.e. wlien is the method applied onto the studied 

environment 

- information resulting from applying the method, i.e. what the method provides as a result 

o f the analysis 

The third part follows the understanding o f traffic by studying the relationship between the 

achieved performance and the parameters which influence it. Af^er previously presenting the 

rules o f transferring data and describing how current approaches manage to identify the network 

10 



Chapter 2 - Traffic analysis and performance modelling 

conditions, the discussion continues with an overview of perfomiance modelling. The section 

describes the efforts made towards producing a mathematical model to estimate the performance 

achieved by TCP connections. The presentation wil l follow the improvements that various 

studies brought to the initial idea o f formalising the TCP transfer based on the changes that loss 

and delay inflict on the amount of unacknowledged data that the sender may transmit at one 

time. 

The fourth part o f the chapter overviews the types of traffic sources that may be used when 

validating a monitoring method or evaluating the parameters o f the Intemet. The section 

identifies several types of sources, ranging from synthetic traffic, produced without releasing any 

actual packets on a network, through controlled network or endpoint conditions, up to real, 

uncontrolled traffic, produced by unknown endpoints. As it wi l l be highlighted, each o f these 

sources is used in one of the project stages, either to validate a proposed method, or to infer the 

current status of the Intemet. 

The last section of this chapter summarises the gathered information and opens the way towards 

the proposed methods and models within this research programme. 

2.2 The Intemet protocols 

A series of studies mn since 1993 [ISC 2003] has shown that the Intemet has become a more and 

more complex collection o f networks through its exponential increase in terms o f host numbers. 

From a human perspective, this success is most likely due to the ease that the Intemet has shown 

in disseminating knowledge, allowing virtually everybody to publicise and access information. 

This openness was strongly encouraged in the past decade by unifying the access methods 

through the advent of the Worid Wide Web. 

11 



Chapter 2 - Traffic analysis and performance modelling 

From a technical perspective, this fast expansion was made possible only due to the robustness 

and efficiency o f the protocols involved in transporting the information. The protocols gathered 

within the TCP/IP stack, currently running the Internet, were standardised in the early 1980s; 

their principles, with add-ons to improve efficiency, are still in place, governing present transfers 

of data. This section discusses only five of them, relevant to the focus of this study. The first 

discussed is the Internet Protocol (IP) [ARPA 1981a], providing connectivity at the network 

layer, followed by the main choice for reliable transport protocol, Transmission Control Protocol 

(TCP) [ARPA 1981b]. The discussion ends with a short overview of HyperText Transfer 

Protocol (HTTP) [Fielding ei al 1997], which provides the functionality for WWW. 

The following sections assume a basic level of familiarity with the TCP/IP stack and the 

described protocols. I f certain aspects may be insufficiently expanded, the recommended sources 

for further clarifications are the documents listed as sources in each section. 

2.27 Internet Protocol 

IP, the core of the Internet, provides an addressing infrastructure for the network and basic 

mechanisms o f error detection and fragmentation-and-reassembly [ARPA 1981a]. Although its 

header includes functionality for preferential service of traffic, due to the complexity o f the 

Internet and the peering character o f its carriers (both o f them discouraging end-lo-end quality o f 

service provisioning), it is only used as a best-effort protocol. From the point o f view of this 

project, IP provided valuable information in two areas. First, it helped defining unique flows, 

through the combination of IP addresses and ports described in section 3.2, Second, it allows, 

through its Augmentation functionality, differentiation between packet misordering and packet 

loss, via an inference mechanism presented in section 3.3. 

12 



Chapter 2 - Traffic analysis and performance modelling 

2.2.2 Transmission Control Protocol 

From a technical perspective, TCP is a connection-oriented transport protocol which provides for 

end-to-end reliable transfer, and includes self-tuning according to the conditions of the network 

[ARPA 1981b], being the most complex from the protocols described in this section. The 

positive side of its complexity is its robustness and flexibility; it is based on Jon Postel's 

philosophy "be conservative in what you do, be liberal in what you accept from others" [ARPA 

1981b]. 

The connection-oriented character o f TCP is achieved through a state machine, thoroughly 

described in the defining Request For Comments 793 [ARPA 1981b]. The state machine 

includes 11 states: one for inactivity (CLOSED), three for connection initiation (LISTEN, SYN 

SENT, SYN RCVD), one for data transfer (ESTABLISHED), and six for connection closing 

(FIN WAIT-1 , CLOSING, TIME WAIT, CLOSE WAIT, LAST-ACK). The transitions between 

states are determined by system calls (CLOSE, passive OPEN), arrival o f packets with set 

control bits (SYN, FIN, ACK, RST), or expiration o f timers (Maximum Segment Lifetime). In 

order to identify the lifespan o f a TCP connection based on the packets exchanged, this state 

machine must be replicated. 

The reliable transfer is achieved through data segmenting and sequencing. The transfer o f a data 

object/stream is realised by splitting the information into segments. The sender associates a 

sequence number to each transmitted byte from the data stream; to simplify the mechanism, each 

transmitted segment carries the sequence number associated with the first data byte it carries. 

The receiver returns acknowledgment numbers to confirm the next data byte expected. This 

process uses a mechanism known as delayed acknowledgments to reduce the number o f 

acknowledgment packets returned to the sender: rather than sending an acknowledgment for 

13 



Chapter 2 - Traffic analysis and performance modelling 

each data segment, the receiver produces an acknowledgment for every n data segments; in case 

the sender has less than n segments to send, the receiver wi l l send an acknowledgment at the 

expiration o f an associated timer. Current implementations use w=2, which is why this policy is 

also known as every-other acknowledging. Loss is identified through duplicate acknowledgments 

or retransmission timeout (RTO). The first category o f losses is detected when the receiver 

repeatedly acknowledges (through duplicate acknowledgments) a data byte that bears a sequence 

number lower than the last byte sent'. The retransmission is triggered when d=3 duplicate 

acknowledgments are received (this is to eliminate minor misordering events). The second 

category o f losses is detected when a sent data segment is not acknowledged before a timer 

expires. 

The timer, known as RTO timer, is subject to a relatively coarse resolution (which wil l be 

discussed in section 2.5.2) and is calculated using an RTT estimate. This estimate indicates the 

maximum delay that a data segment and its acknowledgment can encounter as they transit the 

network path between the two endpoinis. The value is computed by the TCP client using the 

following algorithm, as thoroughly explained in [Stevens 1995]: 

- Determine a smoothed RTT (SRTT): 

SRTT <-SRTT+g iRTT ~ SRTT\ 2.1 

where RTT is the last measured RTT, and g is a gain factor; set to 1/8 

* There is ihe choice, enabled and functional in approximately a quarter of servers - 28% according to [Floyd 2001] 
or 14% according to [Wendland 2000], of Selective ACKnowlcdgmenis (SACK) , [Maihis et al 1996] where, rather 
than sending duplicate acknowledgments to indicate the loss of a segment, the receiver sends a SACK packet lo 
indicate the missing data segment. 

14 



Chapter 2 - Traffic analysis and performance modelling 

Determine the RTT variation (RTTvar): 

RTT^ar^ RTTvar +' " SRTT\ 2.2 

where h is the gain factor for RTTv^, set to 0.25 

- Compute the retransmission timeout (RTO) as: 

RTO = SRTT + P • RTTy^r 2.3 

where P is the delay variance factor, specified to be 2.0 in [Jacobson and Karels 1988], then 

after further research, changed to 4.0 in [Jacobson 1990] 

- Apply exponential back-off i f the packet is lost more than once. 

Even at the sender a loss is inferred rather than announced by the arrival of a packet and section 

4.2 discusses some of the difficulties encountered in the inference process based upon 

observation of the packet arrival sequence. 

The success of TCP is due to its network-aware, self-tuning character. The number o f data 

segments a sender may transmit at any time, providing that the sender has a large amount o f data 

to transmit, is limited by an upper-bound, called congestion window and measured typically in 

data segments (some implementations use bytes). This limit is controlled by the 

acknowledgments received from the corresponding TCP entity, which are regarded as an 

indication o f the current network status, i.e. delay and loss. The congestion window is increased, 

after a policy dependent on the historical network conditions (described below) every time new 

acknowledgments are received, and decreased every time a data loss is inferred. 

15 



Chapter 2 - Traffic analysis and performance modelling 

Acknowledgments are generated when new data segments arrive at the receiver and the transport 

o f both the data segments and acknowledgments is subject to the network bandwidth and delay. 

As a result, the amount o f data that a TCP sender injects into the network is determined by the 

network conditions and limitations in the congestion window imposed by the receiver. 

The packet loss is inferred through the mechanism described above, while the network delay 

results from the fact that an acknowledgment for a data segment wi l l arrive at the sender only 

after a certain delay, named the Round Trip Time (RTT) delay. The RTT is defined as the time it 

takes for the data segment to travel from the sender to the receiver plus the time it takes for the 

acknowledgment to propagate back, from the receiver to the sender. From the TCP perspective, 

the RTT governs the pacing of packets during the data exchange. 

This is why, in spite of the fact that the data transfer is continuous, TCP transfers may be divided 

into transmission rounds [Padhye et al 1998]. A transmission round can be characterised by the 

data segments belonging to a congestion window and the associated acknowledgments: a sender 

cannot transmit newer data in a round before receiving (at least some oO the acknowledgments 

for the data already sent. 

The essence of the self-tuning character of TCP lies in its congestion window update algorithms. 

The congestion window is initialised at the start o f the data transfer by the sender with an 

implementation-dependent value (the initial congestion window) [Floyd 2001]. Another preset 

variable is the receiver advertised window (rwnd), advertised throughout a TCP connection. The 

initial phase of the update, used from the beginning of the data transfer until a loss occurs, is 

governed by the slow start algorithm. During this phase the sender increments the congestion 

window for every received acknowledgment. As a result, the congestion window increases 

exponentially over each round. The second algorithm, congestion avoidance allows linear 

16 



Chapter 2 - Traffic analysis and performance modelling 

increases (one data segment per round) and is triggered by packet loss. The two algorithms, 

based on the way that loss is detected, alter the value o f the congestion window and its update 

policy. When a loss occurs, the congestion window is reset to its initial value; slow start is used 

until the congestion window reaches half of the value it was before the loss occurred, then 

congestion avoidance is initiated 

The two algorithms described above were later refined by two more in order to account for the 

specific network conditions [Stevens 1997]. The first refinement, retransmit, stated that a 

retransmission should occur i f three or more duplicate acknowledgments are received, regardless 

of the retransmission timers. In addition, the second refinement,yhj/ recovery, recommended that 

the congestion window should be halved rather than reset to the initial value and congestion 

avoidance should be used after that. 

2.2.i HyperText Transfer Protocol 

HTTP is the application protocol used by web browsing applications, based on a request (named 

method in the HTTP specification) - response mechanism [Fielding et al 1997]. Typically, the 

method is a (web) client request for an object from a (web) server; the response is the server 

returning the object to the client. The initial protocol [Bemers-Lee et al 1996] had a major 

limitation: it required opening a new connection for each object retrieved from the server. With 

the additional 6 packets and 3 RTT required for opening and closing each TCP connection, this 

behaviour had a negative impact on the download speed for e.g. web pages incorporating 

multiple images. This problem was adjusted in HTTP v l . l [Fielding et al 1997], which allows 

TCP connections to transport multiple objects, a feature named persistent connections. The new 

version also does not force downloads to be sequential (i.e. having to wait for an object to 

download before requesting fiirther ones) by allowing multiple requests to be made - pipelined 

17 



Chapter 2 - Traffic analysis and performance modelling 

requests. The impact that these add-ons have on performance was studied before [Heidemann et 

al 1997], but a part of this study, section 6.5, wi l l look at the overall results obtained in practice 

ft-om HTTP v.1.1 client-server interaction. 

2.3 Traffic and network analysis trends: from Internet experiments to monitoring 

2. J. / The need to monitor network status 

The growth o f the Internet was not followed by similar advances in understanding and predicting 

its evolution. Until recently, the Internet was still being seen as a developing service due to its 

novelty and, because of that, the connection / link / network monitoring implied only availability 

tests. More recently, the nature of the information travelling on the Internet has changed. 

Technology evolution, expressed mainly in bandwidth increments, and new emerging 

applications have moved the content of the data exchanged from mainly-text to multimedia-rich 

and even real-time. The multimedia and real-time applications, aside from opening new avenues 

for information publishing or broadcasting on the Internet, also brought in new requirements for 

the network characteristics. Timing and packet loss, which were less of a problem for browsing 

small web pages or transiting e-mail messages, became an issue when downloading or streaming 

large multimedia files. 

This move impacted on the perception of the Internet service, with beneficiaries requiring and 

Internet providers offering boundaries for the parameters o f their connection [Woods 2000], 

fPappalardo 2002], [UUNET 2003b]. it is interesting to note that the need for quality o f service 

reached even the residential customers. A survey run in 2001 on 14,000 residential Internet users 

found that 70% of the respondents would switch to a different ISP due to the quality that their 

current provider offers [NNRI 2003]. 

18 



Chapter 2 - Traffic analysis and performance modelling 

In recent years, two main directions emerged in the area of Internet quality provisioning: 

integrated services (intserv) and differentiated services (diffserv). Intserv, a concept that is 

behind the Resource Reservation Setup Protocol (RSVP) [Braden et al 1997], is based on a 

circuit reservation infrastructure. RSVP requires an internet with intelligent nodes, capable of 

signalling between them and reserve resources based on requests placed by receivers. The 

approach is currently considered unscalable to larger networks due to the signalling 

infrastructure and traffic overheads required for its functionality. At the other extreme, diffserv 

[Blake et al 1998] has a more simplistic approach, traffic classification: set for each packet a 

certain priority, then instruct the transiting nodes to obey these priorities. Diffserv is based on 

redefining the Type of Service field used in the IP version 4 header [ARPA 1981a] and 

providing functionality to the Traffic Class field in the IP version 6 header [Deering and Hinden 

1998], both designed to differentiate between traffic priorities. 

In spite o f all these initiatives, the current situation is still a best-effort IP governing the Internet, 

due to complications that quality provisioning would introduce (one of the typical problems 

being billing between peering networks). This is why, in order to balance the need for quality 

with the lack o f support, the iSPs have to start paying attention to the quality their networks offer 

to the transiting traffic. In this context, the first step is to evaluate the network parameters in a 

manner that should reflect the quality that end-users receive. Such tests currently may include 

network status information such as latency and packet loss, using network probing to peering 

networks [ N Y I 2003] [MCI 2003], [Pipex 2003]. This is far from satisfactory, as it provides 

information only at the core of the network, without expanding on the access segment parameters 

and, of similar importance, to the parameters for the rest o f the path. Starting from these 

commercial indicators o f interest, this section wil l expand on the research directions proposed in 

the area of network monitoring and, at the end, wi l l lead to a proposed traffic monitoring 

19 



Chapter 2 - Traffic analysis and performance modelling 

approach that aims to satisfy the requirements o f current and ftiture network monitoring needs. 

2.3.2 The evolution of nehvork performance analysis 

The network and traffic analysis started in the late 60s - early 70s with Internet experiments that 

aimed to provide information about the typical behaviour o f the Internet [Kleinrock 1976]. Until 

mid 90s, the studies aimed to describe the entire Internet; due to its size at the time. Such an aim 

could be considered satisfied i f the study analysed the traffic over a set o f international link 

characteristics, such as [Wakeman e. al 1992], [Asaba et al 1992], or the behaviour o f Internet 

paths for generated traffic, as in [Bolot 1993]. The international links traffic analysis was limited 

in the sense that the studies analysed only aggregate information of the traffic, such as link 

utilisation, data volume, connections rate, percentage of traffic per protocols, etc. This provided 

valuable information with regards to the amount and nature of the traffic travelling over the 

Internet, but did little in the area of studying the properties of the paths involved. On the other 

hand, the method used in [Bolot 1993] aimed precisely to determine the path characteristics, loss 

and delay, but used generated traffic to achieve this; ftirther, the traffic was constituted from ping 

ICMP requests, which were emulating a Constant Bit Rate (CBR) source rather than TCP traffic 

(due, for example, to the generic bursty behaviour o f TCP traffic). An important study was the 

one made by Mogul in [1992], where he laid the foundation for offline analysis o f TCP traces. 

The study indicated the issues that may be encountered (most o f them relating to the 

computational limitations at the time) as well as the analysis procedure and provided basic 

information about the characteristics o f the studied paths. 

As the Internet evolved, with the web boom starting in the mid-90s, holistic studies of the 

Internet network properties became more expensive to perform in terms o f setup and complexity. 

Recently, the most well-known individual research attempt was made by Paxson between 1995 

20 



Chapter 2 - Traffic analysis and performance modelling 

and 1997, who probed a mesh of Internet paths. The results were extensively described in 

[Paxson 1997a] and various aspects were summaiised or expanded in [Paxson I997b-c]. After 

this large scale experiment, Paxson observed [I997d] the complexity o f the Internet then 

proposed and developed [Paxson et al 1998] a monitoring infrastructure (NIMI - National 

Internet Measurement Infrastructure), as part o f The National Laboratory for Applied Network 

Research (NLANR), to continue the study [Paxson et al 2000] of the Internet in a holistic way. 

Al l his experiments, including N I M I , were based on an intrusive method, which consisted of 

multiple file transfers followed by offline trace analysis. 

Most o f the published studies from the recent years based their results on end network traffic 

analysis. Starting with 93-94, they looked at end networks, either on a theoretical basis, as in 

[Leland et al 1994], or, most common, trace based, as in [Willinger et al 1995] and [Crovella and 

Bestavros 1996], analysing self similarity in particular. They were continued by trace-based 

studies such as the ones based on major web servers traffic, either a busy one, such as the Atlanta 

Olympics server, studied in [Balakrishan et al 1997, 1998] or an undisclosed one, monitored for 

a long period of time (one and a half years) in [Allman 2000]. These studies indicate a definite 

trend in Internet traffic analysis: while 10-15 years ago a brief experiment was sufficient to 

define typical behaviour on the Internet, the current complexity and dynamics o f the Intemet 

[Paxson I997d] no longer allow for such generic conclusions to be drawn. 

Special attention has to be paid to papers analysing the variation of Intemet paths properties in 

time. Studies from this category start with the previously mentioned analysis made by Bolot in 

[1993], where he looked at the short-term correlation between packet losses, followed by 

Mukherjee's study [Mukheijee 1994], where he modelled the delay with a Gamma distribution 

whose parameters depended on the path analysed and lime, followed by Yajnik [1999], who 

applied Markov Chain models to packet losses and found correlations of up to Is for the loss on 

21 



Chapter 2 - Traffic analysis and performance modelling 

the analysed paths. More recent are the studies have been made by Zhang, [2000, 2001], that 

looked at the stationarity o f network properties for a set o f Internet paths; the study also included 

a comparison with earlier measurements made by Paxson [1997c]. 

Aside from the end network studies, there are currently several initiatives o f Internet 

measurement for research purposes. One o f them is NIMI [NIMI 2003], already mentioned 

above, which includes a mesh of probes that perform intrusive measurements between them to 

establish the characteristics of the nenvork. NIMI uses Paxson's Network Probe Daemon 

[Paxson et al 1998], running at each o f the participating endpoints, to perform the connections, 

analyse the data, and dispatch the results to the central database. Another two projects, running 

also within NLANR are AMP (Active Measurement Project) [AMP 2003] and PMA (Passive 

Measurement and Analysis) [PMA 2003]. The two projects, both running on a mesh 

infrastructure called NAJ (Network Analysis Infrastructure), fu l f i l complementary purposes. 

AMP uses the traditional ping between probes at end networks and performs intrusive analysis of 

the paths performance, while PMA has a set o f trace agents placed at the core of the network that 

collect the traffic transiting through those points. These three measurement infrastructures are 

not an exhaustive list, but only exponents of the current interest for Internet monitoring. Even 

when using these infrastructures, the results are limited to the size and complexity of the mesh: 

N I M I has probes placed in 6 countries (with the majority o f the probes located in the US), while 

N A l spreads over the US and has only two probes outside it, one in Korea and one in New 

Zealand, From this perspective, a study / measurement infrastructure wi l l describe only a 

punctual behaviour in terms of network topology, depending on the complexity o f the mesh, and 

time, subject to the length o f the experiments. The conclusions drawn may be totally erroneous 

for a different end network or may be outdated at any time, even for the same network'. 

' A good example of such dynamics is presented within this thesis in section 6.5. It was observed that the parameters 
of an end network changed dramatically in an interval of only a few months, all most likely due lo a network 
upgrade. 

22 



Chapter 2 - Traffic analysis and performance modelling 

It may be concluded that the ever-changing Internet requires continuous examination in order to 

develop its QoS-awareness, promoted in the recent years. This, in terms o f traffic analysis, points 

to a transition from offline trace analysis and / or intrusive methods to passive traffic monitoring. 

The remainder o f this chapter offers an overview o f the available tools for network analysis and 

then closes with a set of requirements for an ideal traffic analysis method. 

2.4 Taxonomy of traffic analysis techniques 

The evolution o f the network analysis was accompanied, as expected, by a wide range o f 

analysis methods and accompanying tools to support the studies. Due to the variety o f purposes 

that led to the development of these methods, a linear classification is impossible to make. This 

is why this section, aiming to offer an overview of the network analysis proposed methods, is 

split into three taxonomies (interaction, temporal, and information), with examples that highlight 

the advantages and disadvantages for each category. The classifications wil l focus mainly on the 

methods and tools that relate to performance measurement, in order to follow the focus of this 

project, A generic overview o f existing networking tools may also be found on the Cooperative 

Association for Internet Data Analysis (CAIDA) website [CAIDA 2003]. 

2.4.1 Interaction taxonomy 

The first characteristic to discuss when considering an analysis method is whether it generates 

traffic in order to determine the network conditions. From this point o f view, there are three main 

categories o f methods and / or tools: inlnisive, pseudo-non-intrusive, and non-intrusive. 

Intrusive methods cover the majority o f the network analysis spectrum. They all use the same 

23 



Chapter 2 - Traffic analysis and performance modelling 

principle: send a probe packet / initiate probe traffic to a remote host, receive the response to the 

probe packet / traffic and analyse. The main purpose of these tools is to determine whether the 

remote host is reachable and to measure the latency and availability o f that host. In the most 

common case, the probe is an ICMP ECHO_R£QUEST packet to which the remote end replies 

with an ICMP ECHO^REPLY. The best example of a tool that uses this mechanism is the ping 

[Muss 2003] utility and variants, such as fping [Schemers 2003], echoping [Bortzmeyer 2003], 

Nikhef ping [Wassenaar 2003], etc, A more powerful utility, based on the same principle but 

using UDP packets with a controlled Time To Live (TTL) value instead of ICMP, is Jacobson's 

iraceroute [Jacobson 2003], which measures the latency and availability of all the hops between 

the source and the remote host. Finally, on the highest level of complexity for this class, are the 

TCP-based measurement tools, which generate TCP traffic and measure the characteristics o f the 

network based on that traffic, such as sting [Savage 1999]. In parallel with this evolution of 

tools, from ping to sting, a new class of active measurement tools emerged: bandwidth 

estimators. These tools, such as pathchar [Jacobson 2003], patMoad [Jain and Dovrolis 2003], 

and pchar [Bruce 2003], worked on the same principle: the packet-pair probing scheme, 

described by Keshav in [1991]. The scheme uses the assumption that two packets sent back-to-

back by the source have a high probability to be queued in sequential positions along their route 

to the destination. As a result, the time spacing between their arrivals al the destination wil l 

indicate the bottleneck bandwidth of the path transited by the flow. 

The intrusive measurement methods have two important advantages: accuracy and ease o f use. 

The accuracy comes from the complete control: the tool used controls one of the endpoints, 

therefore the packets arriving, with the correspondent delays, are guaranteed to inform about the 

end-to-end, round-trip conditions of the transited network path. 

The main disadvantage is the fact that they must generate additional traffic in order to evaluate 

24 



Chapter 2 - Traffic analysis and performance modelling 

the network properties. The amount of traffic produced depends on the method used, from low 

(in the case of ping and traceroute) through medium (in case of sting) and up to very high (in the 

case of the bandwidth estimators). Aside from the less-obvious Heisenberg uncertainty that some 

of the methods generating high-traffic may introduce', the injected traffic requires bandwidth to 

evaluate the network. In the case o f a low-bandwidth end network, with Intemet connectivity in 

the dial-up to ISDN range, this may end up using a significant amount of the bandwidth, which 

could degrade the service itself 

The second issue is the actual target (the remote endpoint) o f the test. In a generic case, the 

clients in a network wil l connect to a variety of servers (web servers in the case of HTTP traffic); 

an exclusively active method cannot follow all these connections and wil l attempt to evaluate 

only the parameters between that endpoint host / network and a single / group of remote hosts. It 

is appropriate, from this point o f view, to monitor the activity on a single specific path, but this 

wi l l provide no information about the end-to-end quality that users get from the paths they use to 

connect to the remote endpoints. Finally, the third disadvantage is the type o f traffic used for the 

tests: the majority o f methods use ICMP or UDP traffic, which are not TCP shaped, i.e. 

controlled by a congestion window. Even i f the traffic is shaped in a TCP-like form, a QoS-

aware environment may treat it differently from the TCP traffic. Also, recent recommendations 

to configure firewalls, such as [CERT 1999], suggest that network administrators should reject 

UDP / ICMP packets, in order to avoid possible attacks of the network they manage. 

The second category o f methods, based on their interaction, is the pseudo-non-intrusive ones. 

Such methods, relating more to management issues then monitoring itself, require a strong 

cooperation from the other devices along the way, e.g. using SNMP messages to interrogate MJB 

databases on routers. Most o f the tools available from this category are commercial products. 

' Once additional traffic is introduced in the network, the actual network characteristics change. 
25 



Chapter 2 - Traffic analysis and performance modelling 

such as Provisio [Quallaby 2003], InterMapper [InterMapper 2003], or TDSLink [TDSLink 

2003]. The main advantage o f these methods is their accuracy: the results are correct both in 

terms of figures and in localisation capabilities. Their disadvantage is their dependency' on the 

information they receive from the network devices. This raises no problems i f the segments o f 

interest are managed by the same organisation that does the monitoring, but introduces 

insurmountable problems i f some of the interrogated devices are placed outside the managed 

zone, as it is highly unlikely that a network device wil l reveal such infomiation to an external 

party. In addition, there is the inconvenience o f additional traffic due to messages exchanged 

between SNMP entities, minor due to the amount o f traffic involved. 

The third category o f methods is the non-intrusive ones. They do not inject any traffic into the 

network, but capture and / or analyse packets to infer or measure characteristics of the traffic 

itself (such as traffic volume) or o f the network path transited (such as delay and packet loss). 

This category covers a wide range of subsets, starting from packet parsers / analysers, followed 

by traffic capacity analysers, then, at the highest level, performance inference methods. The 

packet parsers / analysers do not produce any analysis outputs, but only study the content o f the 

packets and output the header fields to the user; most packet capturing programs (e.g. tcpdump 

[Jacobson 2003b], ipgrab [Borella 2003] ) may perform such analysis. At the next level, there 

are commercial packages, such as the DataAnalyser [Actema 2003] from Actema, or the Agilent 

Advisor suite [Agilent 2003] from HP/Agilent, that include, aside from packet decoding, 

complex functionality for monitoring o f the overall workload or determining traffic figures for 

each protocol. Neither of these two subsets includes the functionality provided by performance 

inference tools. The methods used in this category aim to evaluate the network parameters by 

inferring the events that led to a certain traffic sequence. For example, a packet loss is inferred to 

' This highlights the difference between light cooperation, as required by intrusive tools (ranging from an ICMP 
ECHO_RESPONSE, I C M P _ T I M X C E E D , or P O R T _ U N R E A C H A B L E to a web server response), and strong 
cooperation, which requires the device to reveal internally stored information. 

26 



Chapter 2 - Traffic analysis and performance modelling 

have happened in a TCP connection i f a data segment is captured more than once by the 

capturing / analysing device. There are only a few tools developed in last subset, with tcpanaly 

[Paxson 1997b] and tcptrace [Ostemam 2003] being the best known ones, both suited for offline 

analysis, with tcpanaly requiring, in addition, a capturing device placed near to / al the 

endpoints. 

The advantages o f the tools listed in this category are clear: they do not interfere with the 

network traffic, do not need any cooperation from the endpoints that produce the analysed 

traffic, and do not need network resources to draw any conclusions. From the performance 

analysis point o f view, the last category mentioned, the performance inference tools, is the most 

interesting, as it aims to provide information about the actual parameters o f the network fi-om 

observations o f real traffic. On the other hand, the non-intrusive tools, particularly the inference-

based ones, have an inherent disadvantage: the inference methods have as input only the 

captured traffic and the assumptions made may lead to erroneous conclusions about the network 

events which, in turn, wil l lead to a lower accuracy. In many cases, as it wil l be revealed later in 

Chapter 4, the resulting parameters are the result o f a balance between level o f information 

obtained and the assumptions made. 

2.4,2 Temporal taxonomy 

An important characteristic of a measurement system / infrastructure is its timeliness, i.e. how 

recent are the results produced by the method. From this criterion, the output o f the results can be 

made either near instantaneously (online) or at a later time (offline). The first category o f tools 

may be used for network / traffic monitoring, while the second is more appropriate for Internet 

studies based on trace analysis. I f considering the products / programs mentioned in the previous 

section, it can be noticed that the focus was split into two main classes o f methods: intrusive 

online tools, ranging from ping, simplistic, and up to sting, which involves complex analysis, and 

27 



Chapter 2 - Traffic analysis and performance modelling 

non-intrusive online / offline tools, starting with the commercial real-time traffic analysers and 

ending with the tcptrace-tcpanaly pair, appropriate for offline study o f traffic. From an 

implementation perspective, the offline analysis, particularly the TCP analysis, is more 

convenient for complexity reasons, as the fixed amount of data allows multiple parsing o f each 

connection, with fewer concerns regarding computational resources; online analysis does not 

allow retrospective analysis or any form of accumulation in time (unless the output is logged). 

The difference between the two categories comes back to the applicability o f network 

measurement: while in the past performance analysis was geared towards understanding the 

Internet, future network managers wil l require pro-active schemes, that wil l act in a timely 

manner when the network status changes. It was shown, at the beginning of this range of 

taxonomies, that the characteristics of an end-to-end Internet path do change in time and that the 

variations o f these characteristics may range from stability [Zhang et al 2000] and long-term 

oscillations [Mukherjee 1994], to short-term [Yajnik et al 1999] correlation. This is why 

timeliness, as previously highlighted, is critical for the validity of a path measurement: a pro

active QoS management infrastructure, relying on the data provided by a measurement scheme, 

would require real-time results in order to make useful changes in the network configuration. 

2.4.3 Information taxonomy 

This last taxonomy looks at the type of analysis used by a measurement method, focused on the 

TCP traffic characteristics. The two categories of tools, based on this criterion, are aggregate and 

per-flow analysis. The aggregate analysis category encompasses network monitors that provide 

cumulative information such as statistics on traffic or number o f concurrent flows per port 

numbers. The analysis methods used from this category make no distinction between the 

characteristics of different flows and have no per-flow information available. The per-flow 

28 



Chapter 2 - Traffic analysis and performance modelling 

analysis is based on splitting the captured traffic on flows' and analysing each flow individually 

in order to extract path performance information. The outputs of the two categories are very 

different: per-flow analysis, based on to the complex analysis performed, provides information 

such as loss and delay for the transited path, while aggregate analysis offers only throughout 

information for the captured traffic. The taxonomy separates research tools and current 

commercial products. Research-lead tools, particularly TCP-based ones such as sting, tcptrace, 

and tcpanaly, were specifically designed to run per-flow analysis of the traffic captured; on the 

other hand, current commercial products, aiming to provide a generic real-time picture of the 

traffic transiting the network, look only at the overall proprieties of the traffic, being, in fact, 

more appropriate for workload rather than performance analysis. 

Overall analysis should not be ruled out as being primitive or inaccurate. It is true that in certain 

cases, such as real-time UDP flows, the traffic levels or throughput are irrelevant when the flow 

characteristics are unknown (e.g. a high-bandwidth video streamed over a path with a high 

packet loss wi l l still have a much higher throughput than an audio stream running on the same 

path), but for TCP the main quality characteristic remains throughput. In this context, an overall 

low throughput per stream for an end-network would indicate that the traffic encounters a 

problem. Unfortunately, with overall analysis, this is the maximum level of information that can 

be obtained, with no further details of what makes the throughput low. 

2.5 TCP modelling - current state of the art 

2.5.1 Introduction 

The previous sections from this chapter introduced the first step into the process o f gaining full 

A TCP flow may be identified by the (source IP address, source port, destination IP address, destination port) 

29 



Chapter 2 - Traffic analysis and performance modelling 

knowledge o f the network conditions and the performance o f the endpoints. The presentation 

described the current problem facing current as well as future networks: a network administrator 

has to know what quality the users are getting from the network. This new approach, due to the 

evolution of the Internet, as well as to the evolution of the services that are being run on top of it, 

is leading towards qualitative monitoring, as opposed to connectivity ('is the network 

connected?*), availability (*is the remote host available?'), or quantitative (Ms it too much traffic 

running through the network?') monitoring. 

The quality of a TCP transfer is represented by the resulting throughput: how fast the file / data 

object is transferred between two endpoints. The calculation of the value itself is straightforward 

(with a few notable exceptions, e.g. idle times, described in section 4.6): divide the number of 

transmitted bytes by the time elapsed. The challenge is to model the performance of these 

transfers - to determine the relationship between a throughput and a set o f parameters. This 

section examines which parameters infiuence the performance o f a TCP transfer, along with the 

currently available models and how well these models can be mapped onto real situations. 

2.5.2 The influencing parameters for TCP throughput 

The evolution of a TCP connection can be seen as a function of three main categories: the 

network conditions, which can dramatically affect the TCP transfer through loss, delay, and 

bandwidth, the behaviour o f the TCP sender, which decides the pace at which data segments 

should be sent, and the behaviour o f the TCP receiver, which, through its acknowledgments, 

returns an indication about the quality of the connection, and forces the sender to adjust. In 

addition to these three categories, this section wil l also discuss the impact that file size has on 

TCP performance. 

quadruple, which uniquely specifies the exchange of data ai a moment in time. 
30 



Chapter 2 - Traffic analysis and performance modelling 

One of the main attributes o f TCP is the fact that it is self-adjusting (as presented in section 

2.2.2): the TCP sender endpoints infer the conditions o f the network through the 

acknowledgments they receive from the pairing endpoints and adjust the transmission pace 

accordingly. This mechanism makes the network conditions to be the main influence factor in 

the TCP performance. The sum o f these network conditions is reflected in the variable that 

controls the pace o f a TCP transfer: the congestion window. This behaviour, while providing 

awareness of the network status, generates the above-mentioned strong relationship between the 

network conditions and the resulting throughput. 

The network conditions, and the way they are perceived by the endpoints, relate to the TCP 

sender characteristics and lead to the second category of parameters. It is worth noting that the 

network conditions inferred by a TCP sender do not always coincide with the real network 

conditions, a difference that wil l be highlighted in section 3.2. Further,yram the TCP client point 

of view, it is the /n/erref/parameters that really count towards a certain throughput, and not the 

real ones'. This is not a big issue for two TCP clients that have the same rules / implementation 

code: there is, indeed, a difference between the real loss and the inferred one, but the two TCP 

clients wi l l react the same to such an event, leading to the same throughput. The real issue is that, 

as noted in several studies such as [Dawson et a! 1997], [Floyd and Padhye 2001], the TCP 

protocol was implemented differently within the various TCP/IP slacks. Some o f these 

differences went against the defining document [ARPA 1981b], and refinements [Braden 1989], 

such as generic 'broken retransmission behaviour' o f TCP clients. However, some of them did 

not violate the specification, but only varied within the proposed limits, such as the 

retransmission timeout (RTO) clock resolution, discussed next. 

31 



Chapter 2 - Traffic analysis and performance modelling 

A good debate on the accuracy of network conditions inference, focused on the retransmission 

timeout and available bandwidth parameters, is offered in [Allman and Paxson 1999]. Aside of 

the conclusions, the authors give an example of the impact that behaviour o f the TCP client has 

on the dynamics o f the TCP transfers. They consider two extreme cases o f a setting the RTO and 

explain the consequences. On one side, a client may set the RTO to a very high value, e.g. I 

minute, and never mistakenly retransmit a single packet, but reduce drastically the overall 

efficiency o f the connection. At the other extreme, a very aggressive client can set the RTO to 1 

ms and, while reducing to minimum the amount o f time spent while expecting for possible 

timeouts, it would congest the network due to unnecessary retransmissions, locking it 

completely. It is true that such cases do not exist in real-life implementation, but differences do 

exist between implementations; for example, the RTO clock resolution o f a Linux sender is 100 

ms, while a Solaris endpoint has this value set at 500 ms. As a result, an acknowledgment 

received with a delay in the (RTO + iOO ms, RTO + 500 ms) interval wil l trigger an unnecessary 

retransmission in a Linux client, impacting on the congestion window as well, while a timeout-

inferred loss would delay the Solaris client an additional 400 ms before taking any action. On the 

other hand, the Solaris RTO is initialised to a very low value of 300 ms, [Dawson et al 1997], 

which makes it very ineffective for connections with high RTT and produces a large number o f 

RTOError packets at the beginning of a connection [Paxson I997a]^. The situation perpetuates 

due to the Kam's algorithm [Kam and Partridge 1991] that forbids RTT estimates for 

retransmitted packets, so the client might never infer the real RTT within the connection, and 

erroneously retransmit every single data segment several times. Although it is beyond the scope 

of the project to determine "what is better" or "what is normal" in terms of implementation 

efficiency, it must be mentioned that, when it comes to variations from the suggested behaviour 

' This is very convenient from the perspective of this project, as the measurement method proposed in Chapter 3, 
due to its characteristics, outputs exactly these inferred parameters. 
^ The two timers are positioned al opposite extremes: while, at the beginning, the sender will throUle the network 
with unnecessary retransmissions due to inferred losses, overloading the network, at steady state it would react very 
slowly to the real losses, decreasing the performance of the transfer 

32 



Chapter 2 - Traffic analysis and performance modelling 

and values in [Braden 1989], it is not a question o f "ideal implementation". For example, in the 

above-blamed Solaris, all the studies that incriminated it admitted that, while less efficient for 

'normal' delay and loss values the Internet, the implementation was well-suited for LANs, or, in 

general, for networks with short delays and large bandwidths. 

Ideally, this sender modelling requires defining a set o f parameters that fully describe the 

behaviour o f each implementation. Previous work, [Paxson 1999], [Floyd and Padhye 2001], 

proposed solutions to identify the behaviour o f a TCP sender, but none of them is suited for a 

non-intrusive single-point analysis method. The main problem is the amount of inference 

required while observing the TCP transfer. While this obstacle was avoided, with some notable 

exceptions for the network parameters', the TCP sender characteristics are more intimate and, 

therefore, their impact on the transfer performance is rather transparent to the monitor, e.g. the 

delayed acknowledgment policy. Further, it is difficult to separate the actual behaviour o f the 

TCP client from the sender activity: e.g. a data segment produced after a long delay might be due 

to either to a TCP timeout or due to the TCP server being busy with several other connections 

(this difference is spotted by network sniffer detectors, such as antisniff[LOp\\t 2001]). Different 

implementations would react differently to a certain event, with similar short-term impact, but 

leading to different long-term consequences. For example, in the RTO example above, the Linux 

client wi l l infer and react faster than the Solaris one for a lost packet when reaching steady state. 

As a result, both of them wil l retransmit the packet, but the Linux client wil l start with a 

congestion window of one segment and slow start, while the Solaris client wil l start with a 

halved congestion window and wil l switch to congestion avoidance. 

Two possible directions can be pursued to achieve the desired level o f information about a TCP 

sender: inferring the TCP implementation from its behaviour or retrieve information that 

33 



Chapter 2 - Traffic analysis and performance modelling 

categorises TCP in a certain class 

The first option is to define a comprehensive set o f parameters that fully describe TCP 

behaviour. While being the ideal, this aim is virtually impossible to achieve for uncertainty 

reasons. The nearest proposed method, implemented in icpanaly by Paxson [1997b], classifies a 

TCP sender as belonging to one of a predefined set o f known classes or defines a new class i f it 

does not match any known one. 

The second option is very similar: define a minimal set of parameters that define a specific TCP 

implementation. This is in fact the approach used by current sender identification tools, starting 

with efforts from hacker groups, [Fyodor 1998], up to the research within the tbh project [Floyd 

and Padhye 2001]. These methods generate a specific succession of packets, and analyse the 

response coming from the corresponding TCP endpoint to determine its implementation. 

Another study worth mentioning here, using a non-intrusive approach is from [Popescu and 

Shankar 1999], which profiled the throughput versus the TCP implementation of the sender; in 

this case, the authors modelled the dependency using an empirical formula and validated it only 

in a synthetic environment. 

An alternative derived from the second option and proposed by this research is to obtain 

information that classifies a server application running at the sender into a particular class. This 

method is based on the assumption that a certain version of an application runs on a certain 

platform. An example would be a Microsoft IIS web server, which can run only on a Microsoft 

Windows operation system. The problem in this case resides at a different level: the analysis 

becomes application-dependent, as it wi l l require information provided by the application layer. 

' These exceptions will be described in section 



Chapter 2 - Traffic analysis and performance modelling 

From the above options, only the latter one is appropriate for the proposed method of analysis. 
The first solution succeeded with privileged positioning o f two monitoring devices, while the 
second one required intrusive analysis. Because of this, the usage of such sender information 
would restrict the method to analysing a specific type o f application; due to its popularity and 
usage levels, the chosen application protocol to exemplify the technique was HTTP. The client 
information is laid relatively conveniently within the data segment: the data segment carrying the 
HTTP response, "OK 200", carries in one of the tag fields the version of the web server that 
holds the requested web page, as shown in Figure 2.1 

HTTP/1.1 200 OK 
Date: F r i , 05 Oct 2001 18:52:19 GMT 
S e r v e r : Apache/1.3.12 (Unix) (Red Hat/Linux) 
L a s t - M o d i f i e d : Thu, 11 Nov 1999 10:15:07 GMT 
ETag: "8139b-bde-382a972b" 
Accept-Ranges: bytes 
Content-Length: 3038 

Figure 2,1 - The header of an HTTP response 

As can be seen in this case, the S e r v e r tag indicates the HTTP server type (Apache) and 

version (1.3.12), and even the operating system (Red Hat/Linux). This tag may be parsed i f the 

captured packet has a snaplen large enough to hold the entire HTTP header and may be 

associated with the corresponding TCP connection for further processing. 

This last method, although flexible, has several disadvantages that are worth detailing: 

- It is assumed that the owners of the machine did not alter its default configuration. The 

parameters o f TCP clients within current operating systems can be modified by the user 

(e.g. altering the RTO values or acknowledgment policy), leading to a different 

behaviour, but this should not happen unless the default configuration generates major 

performance problems. 

35 



Chapter 2 - Traffic analysis and performance modelling 

- A l l OSs suffered changes in their evolution. Each flaw noticed in Solaris 

implementations was corrected in the following versions, the TCP clients evolved within 

each Linux kernel, and Microsoft implementers improved the core o f their TCP client 

with every version of Windows. Al l these changes produce a strong variation between 

different versions o f the same operating system, leading to erroneous profile predictions. 

In this case the simplification is generated by the progress itself: each new version of OS 

is (or at least claims to be) better than the previous one, forcing users to upgrade; each 

new version o f a web server is likely to be incompatible with, or at least not optimised 

for, older versions o f the operating system, again forcing to upgrade. As a result, a certain 

combination of web server - operating system should be fairly focused towards the latest 

implementation at one moment in time 

In a similar manner, the behaviour of the receiver has also a strong impact upon the resulting 

connection throughput. It is reasonable to consider that current TCP implementations use the 

delayed acknowledgment policy: an acknowledgment should be transmitted for every other data 

segment. Nevertheless, in the cases when only one data segment is received at a moment in time, 

the receiver uses a timer expiration to produce an acknowledgment to that segment. Again, this 

timer depends on the implementation. For example, although both BSD-derived [Stevens 1995] 

and Microsoft Windows [Microsoft 2000] TCP clients use a 200ms timer, the implementations 

differ in the way they use the timer. The timer from BSD-derived implementations resets itself 

every 200 ms, but is not influenced by the actual retransmissions. This leads to delayed 

acknowledgments being sent with a delay that has a uniform distribution between 

[0.0ms;200.0ms]. On the other hand, the Microsoft Windows timer for delayed 

acknowledgments is set by data segments arrival. This leads to delayed acknowledgments being 

delayed for exactly 200ms. With compulsory usage o f this timer at least once per connection for 

senders with initial sender congestion window of I Maximum Segment Size (MSS), the policy 

36 



Chapter 2 - Traffic analysis and performance modelling 

wil l impact on the resulting throughput figure as well. 

The last parameter that influences the transfer is the size of the data object (file) that is being 

transferred. As previously detailed in section 2.2.2, the TCP client requires a certain amount o f 

data segments to increase its congestion window depending on its bandwidth x delay product, 

until reaching steady state. For a considerable proportion of traffic, as wil l be revealed in Chapter 

6, this does not happen because the objects transferred within connections are too small to allow 

the TCP client to reach steady state. However, because initial and transient behaviour is more 

difficult to model, current TCP models assume that the TCP connection reaches steady state and 

focus mostly on the network-related parameters. 

To summarise, there are three categories of factors that affect the performance of TCP transfers: 

network conditions, endpoints (sender and receiver) behaviour, and file size. The parameters 

listed within these categories are used by the current TCP models to determine what influences 

TCP throughput, as wil l be presented in the following sections. 

2.5.3 Current TCP mathematical models 

TCP modelling efforts aim to determine the relationship between throughput and its influencing 

factors by describing the behaviour of TCP endpoints, as affected by them. This section gives an 

overview of 3 proposed TCP models, each of them with its limitations and assumptions required. 

These models assume certain network characteristics, as well as client behaviour, and then build 

up a model of TCP data transfer. Their result is a description o f throughput as a function of the 

network conditions and client characteristics. 

The first model that formalised the TCP behaviour appeared in a note within Bellcore Labs in 

37 



Chapter 2 - Traffic analysis and performance modelling 

1996 [Ott et al 1996]. It describes the evolution o f an idealised congestion window in time 

during the congestion avoidance phase in order to estimate the value o f the resulting data 

throughput. The authors made a series of assumptions which allowed them to interpret the 

congestion window evolution as a stochastic process, and to determine its evolution by studying 

its stationary distribution. The resulting formula, 2.4, determines the resulting throughput (named 

bandwidth, BW in the paper) as a function o f Maximum Segment Size (MSS), Round Trip Time 

(RTT), packet loss (p) and a constant C, dependent on the acknowledging policy (every / every-

other packet) and on the loss process (periodic / random): 

B W = ^ - ^ 2.4 

The model is based on an ideal TCP connection, as stated in the title of the article. In order to 

model the congestion avoidance exclusively, the model eliminates any other influence in the data 

transfer by using several simplifications that do not always hold in a real-life situation: 

- Low rate loss and independent losses - the first assumption can be considered true in 

today's traffic, as it was proven by various Internet experiments, but not in relation to the 

second assumption. A typical drop-tail router drops all the packets which it cannot hold 

in its queue(s); as a result, there is a high probability for successive losses to be related 

and, further, to occur within the same transmission round. 

- Infinite sender and stationary state - HTTP traffic is not likely to obey such assumptions, 

as it typically encompasses short data transfers, therefore most of the connections wil l 

never reach stationarity. 

It is in fact admitted, within the paper, that the proposed model fails in several situations, none o f 

them uncommon in real-life situations: 

- The receiver advertises a small window (RWND) - i f the connection path has a high 

bandwidth x delay product, the advertised window is an important limitation that the 
38 



Chapter 2 - Traffic analysis and performance modelling 

following models accounted for. 

- The sender always has available data to send - it is very common during HTTP I . I 

connections for the sender to 'pause' during the connection, either waiting for a request 

from the receiver or expecting data from the application layer, as wi l l be shown in section 

4.6 

- The sender never times out (all the losses are signalled by double acknowledgments and 

the recovering procedure is fast retransmission) - the loss of a data segment may trigger a 

timeout. The probability o f a loss being detected through a timeout depends on the 

window size, as wil l be observed and modelled by the next studies. 

It is apparent that the model is fairly limited in respect to real traffic. The study included no real 

traffic validation and the authors limited the tests to simulation traces analysis. However, it 

represents the basis for the following studies in the area, as each of them came with 

improvements but they all used equation 2A as a starting point. 

The second model, described in [Padhye et al 1998], extends the analysis of the congestion 

window evolution in order to account for losses produced by timeouts as well, aside from the 

ones inferred by double acknowledging. It also accounts for limitations due to the size of the 

window advertised by the receiver. The resulting formula for the resulting throughput B(p), 2.5, 

includes, aside from the loss and delay parameters o f the previous model, the acknowledgment 

rate (resulting from the receiver policy), b, the timeout value, To, and the advertised window 

size, Wrruu. 

B{p) mtn ^ I 
RTT 

2.5 

39 



Chapter 2 - Traffic analysis and performance modelling 

The model is closer to reality compared to the previous one, due to the encompassed timeout loss 

events and the reduced number of assumptions made (e.g. only losses fi-om independent rounds 

are considered independent, while losses fi-om the same round are correlated, due to the drop-tail 

behaviour of the router). The validation part analyses real network traces and shows that the 

proposed formula is a better estimator o f the throughput when compared to equation 2.4. Within 

this part the limitations o f the model can be noticed, which relate mostly to the length o f the 

connection. Because, as the previous one, it focuses on the stationary behaviour of TCP, the 

model was validated using connections spanning long periods; the number of data segments sent 

was in the range of tens of thousands up to hundred o f thousands per connection. With an MSS 

of 1500 bytes, these figures translate into files between 15 M B and 150 MB, both very far from 

'usual' network transfers. 

The third model, presented in [Cardwell et al 2000], expands further on the previous ones, by 

accounting for the establishment and slow-start phases of a TCP connection. The proposed 

model additions are based on the observation that most of current TCP data transfers are short

lived and carry a small amount of data. There is a high probability for such flows, when they 

follow a path with low loss rate, to have a zero packet loss and, implicitly, to remain in slow-start 

for their entire duration. Further, i f they carry an amount of data that can be carried in only a few 

rounds, the actual connection establishment represents a high percentage of the entire connection 

life. The model aims to determine the duration o f the transfer, instead of the obtained throughput. 

The resulting formula for the estimated time of a connection, E[T], is shown in equation 2.6 

E[T] = ElTssh 4TIOSS ] + 4Tca ] + ^[Tdeiack] 2.6 

where: 

40 



Chapter 2 - Traffic analysis and performance modelling 

E[Tss] - estimated time spent in slow-start 

E[Tross] - estimated time spent recovering from loss at the end of slow-start period 

EfTca] - estimated time spent in congestion avoidance 

E[Tdeiaci£] - estimated time for a receiver to sent a delayed acknowledgment 

The model used to determine EjTca] is the one from equation 2.5, and the E[Tdeiack] time is taken 

100 ms for BSD-derived TCP endpoints and 150 ms for Windows TCP endpoints. The model for 

E[Tss] is given in equation 2.7, 

RTT log + 1 + 
max 

E[dss]- when E[[V,,]>W, 

/ ? 7 T - l o g ^ ( ^ I ^ ^ | ^ + l ] y^'henE[fVj<W^^ 

2.7 

where: 

RTT - the round trip time average 

y - the congestion window increase factor, due to the acknowledgment rate o f the receiver 

(e.g. 1.5 for the delayed, every-other acknowledging policy) 

Wmax - the receiver advertised window size (in segments) 

W | - initial congestion window (in segments) 

E[dss] - the estimated number o f segments sent in the slow-start phase 

d-\ 
+ 1 2.8 

41 



Chapter 2 - TrafTic analysis and performance modelling 

E[Wss] - the estimated congestion window (in segments) at the end o f the slow-start phase; 

determined using equation 2.9, based on the E[dss] estimator resulting from 2.8 

y r 2.9 

The time to recover form the first loss, EfTuaJ is detenmined using the theory behind [Padhye et 

al 1998], based on: 

- the probability o f a loss occurring, lss(p,d), as a fijnction of packet loss rate, p, and 

number of data segments to transmit, d, as shown below in equation 2.10 

2.10 

the probability o f a sender to detect a loss with a timeout, Q(p^y^), as a ftinction of packet 

loss rate and congestion window size, i v , equation 2.11 

g ( p , w ) = m i n Î (I-P)̂ (I-(I-PH 
i - ( i - p r 2.11 

the expected cost of an RTO, E[Z™], as function of packet loss rate and average timeout. 

To 

42 



Chapter 2 - Traffic analysis and performance modelling 

max_backqff 

2.12 7-0- X 2 * - ^ y 

\ - p 

With the variables resulting from the above equations, the EfTioJ estimator results as: 

4Tioss] = iss\0M^ss])E\z''''\^^^ 2.13 

Q (p ,E[Wss] ) - the probability of a sender to detect a timeout at the estimated end o f the slow start 

phase 

Due to its complexity, the model allowed testing in all the possible configurations: simulations, 

controlled internet measurements, and live HTTP measurements. The results of the validation 

tests show that the proposed model is much more accurate for connections that suffer no loss and 

has similar accuracy with [Padhye et al 1998] when the flow encounters packet loss. The study 

used simplifications and hard-coded values for the live HTTP measurements: the loss rate due to 

timeout was inferred from mis-ordered packets which were delayed for more than 200 ms or in-

order packets spaced more than I second. 

It is apparent that the TCP model proposed by Ott went through radical improvements until the 

one introduced by Cardwell, in spite of the similarity o f the mathematical support used. While 

the conclusions from the first study considered exclusively the TCP transfer reaching steady-

state, the last one focused specifically on short-lived connections and aimed to describe fully 

their evolution. However, all authors were reluctant to test their theories on real traffic, which 

highlights the limitations of the models proposed. 

43 



Chapter 2 - Traffic analysis and performance modelling 

2.6 Classification of data sources 

Network data collection encompasses a wide range of techniques, from interrogating routers to 

establish their queue sizes to sampling traffic and packet capturing. From these techniques, due 

to its main objective, i.e. to build a robust non-intrusive monitoring and prediction mechanism, 

this project focused on data obtained by capturing packets. This section gives an overview of the 

data sources available when studying network traffic, first by classifying these sources in terms 

of their approximation o f real traffic. Chapter 5 and Chapter 6 wi l l describe how and when each 

o f these categories was used with different stages in the research. 

1. Synthetic data - packet traces generated by network simulators. This is the artificial type o f 

network data. There is only an approximate relation with reality, as all the components of the 

simulated transfer are modelled, and each of the models is an idealisation of the real cases. In 

addition, the simulator, no matter how complex, still has a limited size in terms of nodes and 

in terms of network topology as well. A l l the other categories are using captured network 

traces instead of generated traces, i.e. the trace is obtained by capturing real packets instead 

of artificially producing them. 

2. Testbed data ~ packet traces generated using a limited, controlled, and isolated network 

environment (a network testbed). This is different from the previous category in the sense 

that it uses emulation instead o f simulation o f the network environment. The difference 

between the two, according to Carson [1997] is that simulation reproduces an environment 

by modelling the behaviour of the entities, including the TCP endpoints, while emulation 

44 



Chapter 2 - Traffic analysis and performance modelling 

uses real traffic, generated by real TCP endpoints, over a simulated network.' 

The advantage is that the amount of idealised components is reduced - the endpoints are real, 

the traffic is actually produced, but the network conditions are reproduced using an 

emulation agent running within a router. Also, because of the fact that all the traffic is in fact 

generated and the endpoints are real, the topology o f the network can be only as large as the 

available endpoints (and most of the time limited to two endpoints and one or two routers)'. 

The position of the capturing device is somewhere within the testbed. 

3. Controlled data - packet traces resulting from transfers between real endpoints, both known 

and controlled by the person who runs the experiment. This is the step that makes the 

transition from the laboratory environment to the real worid. It is, i f put in a crude way, a 

testbed with the Internet In the middle. The network conditions are no longer simulated / 

emulated, the data is being passed through the Internet; the entire route o f the packets is over 

a real network; the improvement is radical when compared to the previous two sources. 

Using this type o f data does have two drawbacks. Firstly, the results cannot be reproduced as 

the network conditions change continuously. Secondly, such a measurement topology is 

limited, implicitly the network paths also form a finite mesh; the best example of such a 

measurement initiative is afore mentioned Active Measurement F*roject [AMP 2003]. The 

AMP infrastructure includes 130 endpoints, spread throughout the US. The problem with 

such configurations is their stability over time. It was shown by Zhang in [2001] that network 

conditions for certain paths tend to persist (i.e. their characteristics remain constant in time), 

' To complete the picture, the real network tesibed case should be mentioned. Such an environment would 
encompass only real components: real endpoints, connected via a real network, all under the control of the person 
that manages the experiment. While the environment may have controllable delay, by altering the speed of the links 
that form it, the loss would have to be emulated by dropping specific packets in the routers. 

45 



Chapter 2 - Traffic analysis and performance modelling 

which, implicitly, limits the result in a narrow range o f values. 

4. Semi-controlled data - packet traces using an automatic retrieval tool. This takes the network 

conditions one step nearer to reality; the receiving endpoint remains constant, which, 

implicitly, limits the range o f resulting endpoints combinations, but, in this case, the network 

paths are virtually unlimited - all the paths do have a common end, i.e. the receiver, but they 

can expand anywhere in the other direction. Due to the characteristics of this method, i.e. 

single point that makes all the requests, the capturing point is right at the retrieval point^. 

5. Uncontrolled data - packet traces produced by real network IrafTlc. There is no more 

artificial / controlled element involved; all the connections are due to genuine (human) 

requests from the endpoints. The network paths are limited only by the position o f the 

capturing device, i.e. the requesting endpoints can be, still, grouped within a single, local 

network (e.g. University o f Plymouth network). 

The data collected for this research project spanned through all the five categories, except 

controlled data, although not in the mentioned order. The trace collection process was performed 

in parallel with implementing the TCP monitoring methods presented in Chapter 3. In the 

beginning, testbed and semi-controlled traces were used to ensure the correctness o f the results 

by comparing the manual analysis results with the results provided by the implementation. The 

necessity to collect larger network traces became clear once the implementation was finalised. 

The study o f these traces had a double aim: to observe the characteristics o f current Internet 

paths, and to provide a database o f TCP connections in order to build a knowledge-based TCP 

' Progress in the area has been achieved by network simulators (such as Network Simulator) which encompass a 
network emulation agent 
* The other possible alternative for this category is to monitor the trafTic at a web / file server. In this case, there 
would be an additional disadvantage: the resulting behaviour of TCP depends more on the behaviour of the sender 
than on the behaviour of the receiver, therefore the diversity of scenarios would be further limited. 

46 



Chapter 2 - Traffic analysis and performance modelling 

model. In Chapter 5 and Chapter 6 the trace collection process wil l be detailed for each category, 

as well as the rationale behind choosing each of them. 

2.7 Summary 

The literature survey revealed a wide spectrum of issues, all relating to the area of traffic analysis 

and performance evaluation. The presentation started by introducing the basics o f data transfer o f 

the Internet. The description focused on the protocols which were used within this research 

project and expanded on the algorithms that govem TCP behaviour. 

The second part of the survey presented the state o f the art in the area of traffic analysis. The 

section started by describing the Internet as a performance-dependent environment, due to 

emerging applications and increased customer demands. In parallel, the section pictured the lack 

of end-to-end quality support within the current Internet, in spite of existing initiatives. These 

two contradictory facts led to the necessity of evaluating the network status in order to determine 

whether the provided quality is satisfactory for potential customers. The section then continued 

with a list of the methods and tools for traffic analysis. The first part o f the description was 

historical, starting from the early probing programs and ending with recent TCP emulation 

methods. The second part, presented in a separate section, distinguished between the presented 

tools based on ftjnctionality criteria. The proposed three criteria considered the defining 

questions for the output o f a network analyser: what, how, and when to measure. The resulting 

taxonomy wil l be used in the next chapter to identify the missing characteristics from current 

tools and build upon them to depict the features of a virtually ideal network monitoring method. 

In turn, these features wil l be used as a basis to define the objectives o f the monitoring method 

proposed in this following chapter. 

47 



Chapter 2 - Traffic analysis and performance modelling 

The third part of the survey looked at the next level of the network knowledge domain. It 

described the existing series o f mathematical approaches that aim to model the relationship 

between the TCP throughput and the influencing network and endpoint characteristics. The 

presented series ended with the model considered to provide the best accuracy when evaluating 

the TCP performance. 

Finally, the fourth part o f the survey overviewed the data sources which may be used in the 

validation process for monitoring and modelling methods. The description briefly described the 

advantages and disadvantages for each o f the identified types o f environment. Such 

environments wil l be further presented in later sections, while validating the proposed methods. 

The following chapter proposes a novel approach to network monitoring by online analysis o f 

the traffic. The method attempts to overcome some of the disadvantages of current network 

analysis tools, observed in section 2.3, such as intrusiveness and complexity of the monitoring 

architecture, by using a single-point method. The method builds upon previous studies, but also 

introduces new concepts such as inference of network parameters based on TCP timestamp 

analysis. 

48 



Chapter 3 - A novel approach to monitoring 

Chapter 3. A novel approach to monitoring 

49 



Chapter 3 - A novel approach to monitoring 

3.1 Introduction 

The previous chapter discussed the various historical and current approaches towards network 

monitoring, highlighting their advantages and limitations. This chapter wil l start by summarising 

a virtually ideal solution for network monitoring, based on the conclusions drawn from existing 

techniques. Using this ideal collection o f requirements, the chapter wil l introduce a novel 

approach to traffic analysis and monitoring, proposed by this research project. The proposed 

method builds on the area o f per-flow traffic analysis, with improvements in regards to the 

focused traffic, e.g. real-lime traffic, the inferred parameters, e.g. bandwidth, the method, e.g. 

usage of TCP timestamps, and the robustness o f the analysis. The method is considered in terms 

of its novelty, its main characteristics and functionality, the advantages it brings, and its 

limitations. 

3.1.1 Ideal monitoring method 

The previous sections presented the networking worid as an evolving domain. Under the 

pressure o f the newer applications, Internet provisioning had to develop from simple availability 

towards quantity, and recent years and present status took this migration towards quality. Due to 

these changes, network managers also had to shift their responsibilities from observing network 

availability to measuring overall bandwidth and throughput. Further, ISPs and customers are 

bound by a Service Level Agreement (SLA), which, i f breached, may lead to legal liability. The 

set o f requirements contained by the SLA for (he provided connectivity solution may range from 

availability conditions to network parameters boundaries. In this context, monitoring also has to 

transit from measuring availability and quantity towards measuring the quality of the network, as 

transited by the traffic. In the dynamic market that governs Internet provisioning, a network 

50 



Chapter 3 - A novel approach to monitoring 

provider should, aside from optimising the traffic through its own network, check whether the 

providers he connects to also respect their SLAs; the only solution to satisfy all these 

requirements is to continuously measure or estimate the quality of the network paths. 

The previous section presented a wide range o f altematives with regards to measuring or 

assessing the parameters o f a network path, together with their advantages and disadvantages. 

From this overview it is apparent that monitoring methods also migrate from evaluating 

availability and basic path characteristics, as in the case o f ping and traceroule, towards complex 

examinations of traffic to infer as much as possible about the transited path, with tools such as 

pathchar and tcpanaly. For each o f the taxonomies suggested, the resulting performance 

information proved to be a compromise between accuracy and one of the following three factors: 

network interference (intrusive vs. non-intrusive), cooperation o f remote endpoints (pseudo-non-

intrusive vs. non-intrusive), traffic aggregation (overall vs. per-flow), or real-time computational 

load (online vs. offline). It is true that accuracy is one o f the defining factors for any 

measurement / monitoring method, but the proposed solution has to be based on reality. From an 

end-user or access ISP perspective, the reality is: 

- high number o f users, all connecting to a wide variety of remote endpoints, virtually 

impossible to profile; 

- backbone ISP / ISPs that the access ISP cannot interact with, as the inter-ISP connectivity 

is based exclusively on peering agreements, with no control over the neighbouring 

infrastructures; 

- increasing need to evaluate the performance for all users, either per-user or overall, and, 

i f possible, to determine what causes a performance decrease. 

Future monitoring tools wi l l have to provide a satisfactory level o f accuracy when evaluating the 

51 



Chapter 3 - A novel approach to monitoring 

network status and when estimating the level of variation i f the network parameters vary. A l l 

these requirements wi l l have to be satisfied under the restrictive conditions imposed above: 

dynamic network conditions, large number o f paths to test (although all routes may have a 

common path segment, through one o f the international backbone carriers), no guarantees of 

cooperation from remote endpoints, and no trafTic injected. Comparing these requirements with 

the presented taxonomies, such a tool wi l l have to be: 

(i) Online - to provide real-time feedback information to management entities about 

the network conditions 

(ii) Single point - to avoid elaborate configurations and eliminate trafTic between 

devices 

(iii) Non-intrusive - to avoid network overioading 

With regards to the targeted traffic, the monitoring should focus on the type o f applications that 

generate most of the traffic today and are likely to produce high levels of traffic in the future 

networks. It has been shown by previous network studies, such as [Thompson and Miller 1997], 

[McCreary and Clafty 2000], that web browsing accounts for the majority of the trafTic. Because 

of the simplicity of the HTTP protocols, as described in section 2.2.3, the analysis should focus 

primarily on TCP and interpret HTTP only to identify correctly the data exchange (e.g. observe 

persistent and / or pipelined connections). Due to the simplicity o f HTTP, the monitor wi l l also 

offer the possibility to evaluate the network performance for other applications that use TCP. A 

second direction o f traffic to analyse is suggested by the recent trends o f real-time applications, 

generically named MoIP (Multimedia over IP). Such applications [ITU 1999] started to replace 

traditional communication means such as audio or data-over-audio (i.e. the traditional modems), 

all part of the PSTN existing infrastructure, with an everything-over-IP environment. In such an 

environment, all the communication (data, audio, and video) wi l l be done over the existing IP 

52 



Chapter 3 - A novel approach to monitoring 

network infrastructure, using either a QoS-aware Internet or a separate Internet, with strict 

quality requirements. In any case, the traffic wi l l have to be monitored to ensure the quality o f 

the system and to respond promptly to any degradation. 

The above guidelines should be taken as strict for a proposed monitoring method. In addition to 

them, i f possible, a monitoring system should be able to predict the performance offered by a 

network (path) to transiting traffic. There are two areas that an ideal method should cover: 

- Performance-wise - predict the resulting quality o f the applications, based on a set of 

network conditions. This type o f prediction is based on performance modelling and 

would allow a network manager to estimate the results o f the alternative changes that can 

be made in the network configuration. A simple example would be to compare the effect 

of reducing or increasing the queues size in routers. While the reduction would lead to 

higher packet loss and reduce the pace of the TCP clients, leading to a fairer environment 

for short-lived flows, incrementing the queues size would reduce packet loss but increase 

RTT values, leading to greater congestion windows and better environment for long-lived 

transfers. 

- Time-wise - predict the future quality o f the network, based on present status and past 

experience. This is, indeed, the final aim of network monitoring: infer future degradation 

of network conditions based on the current and historical information gathered. Several 

studies were made with regards to network self-similarity o f trafTic and models were 

proposed to predict future network conditions, mostly based on Markov models. 

This project aims to produce a single-point, non-intrusive, on-line, accurate, robust, and 

predictive monitoring method. First, it wil l propose a technique to analyse from a single point, 

online, the information provided by the packet flows and infer the performance parameters of the 

53 



Chapter 3 - A novel approach to monitoring 

traffic. Secondly, an Al-based model wil l be proposed which, using knowledge about the 

network, can model TCP transfers and can estimate the performance that a TCP connection 

would have over a network path with given parameters. 

3.2 Proposed online, single-point, non-intrusive monitoring method 

3.2.1 Targeted traffic 

The technique proposed by this study focuses on two main types of traffic: TCP connections and 

real-time-based streams. This subsection details the rationale behind focusing on these two 

categories of network transfers. 

The choice for TCP was straightforward and imposed by the current status of the Intemet. It has 

been shown by previous network studies, such as [Thompson and Miller 1997], [McCreary and 

Clafiy 2000], that most of the current traffic is HTTPA^CP; even more recent studies [Fraleigh et 

al 2003] indicate that, in spite of the increase in peer-to-peer usage, HTTP still accounts for the 

majority of the traffic This indicates large availability o f information to process by a non-

intrusive monitoring point but also stresses the necessity o f such a monitoring point from a 

network manager's perspective. Also, TCP had proven to be a very good alternative for studying 

the properties of Intemet as a whole, as shown by previous studies which used TCP as a vehicle 

to estimate the network conditions [Paxson 1997a]. While being a good point to start, the subject 

o f TCP traffic analysis is challenging due to the large amount of previous work relating to TCP 

performance analysis, as presented in the section 2.3. The success o f the TCP study depended on 

the amount of novelty brought in by the proposed method; this is why, aside from making the 

analysis online, the main focus was to improve the various prior approaches either in terms of 

robustness or ability to locate a network disfunction, and to propose altemative ways o f 

54 



Chapter 3 - A novel approach to monitoring 

analysing TCP transfers. 

An additional aim was to evaluate real-time traffic performance, by combining the analysis o f 

the two protocols that typically carry such traffic - the Real-time Transport Protocol and the 

Real-time Transport Control Protocol [Schulzrinne et al 1996]. The research within this study 

elaborated therefore on the weaknesses of a RTCP-only analysis: the lack o f localisation details 

when using the RTCP stream and the reliability of the RTCP information. The solution proposed 

is a combined RTP/RTCP analysis, which balances the weaknesses and strengths o f both types 

of performance inference. The only issue that obstructed the finality of this strand was the 

purpose o f IP telephony: the application is used to convey voice between two parties, therefore 

its main indicator is the audio / voice quality, as perceived at the receiving end, and the 

interactivity o f the dialogue. While the second results directly from the delay benveen the two 

endpoints, the first depends heavily on the subjective opinion o f the human listener and cannot 

be mapped directly to network parameters. 

The aim of the project was to build a technique that would achieve as many goals as possible 

from the list shown in section 3.1.1. This is where the novelty o f the method stands: gather as 

much network performance information as possible without injecting traffic or modifying / 

knowing the behaviour o f the nodes. The main characteristics of this method were aimed to be: 

robust, single-point, non-intrusive, online, and able to localise faults. Each of these features was 

approached by previous studies, but they have not been grouped yet into a single method, mainly 

due to the (still) evolving trend o f network monitoring. The proposed TCP analysis method has a 

common ground with two main previous tools, Ostenman's tcptrace and Paxson's tcpanaly, but 

it differs from them in several areas. Firstly, it is designed for online analysis, unlike tcptrace 

and tcpanaly, which are both designed for off-line analysis of network traces. This opens the 

path for continuous monitoring o f the network conditions and it allows closing the loop with 

55 



Chapter 3 - A novel approach to monitoring 

continuous network adjustments for optimising the levels of traffic. Secondly, extensive effort 

was put into the area of TCP timestamp options based analysis, a topic unexplored by any 

previous monitoring approaches: TCP timestamps proved to bring information that allowed a 

parallel inference of the network parameters, as opposed to the traditional use o f 

acknowledgments. Thirdly, the method proposed infers as much information as possible from the 

captured traffic: identify time-out losses and estimate congestion window size, as an indication 

o f the connection's health over time. 

The main issue o f single-point non-intrusive analysis is accuracy: how much can be inferred 

about the network events and endpoints behaviour that may have caused a certain pattern in the 

captured packet sequence at the endpoint? The presentation wil l highlight in this context the 

permanent trade-off between the robustness o f the method and its accuracy, together with the 

decisions taken. 

3.2.2 General description 

The structure o f the proposed method is common to most per-flow analysis. The first level is 

capture and parsing, common for most traffic analysers. The input for the analysis consists o f the 

network trafTic passing through the point where the monitor is placed. The monitor captures 

packets belonging to certain flows, based on a packet filter, and then forwards them to a header 

parsing module. 

The packet headers, at the output o f this module, are used for the actual flow analysis, which is 

specific for the two types o f traffic. Besides the header fields o f each packet, the per-flow 

analysis uses an object associated with the flow to which the packet belongs, object that holds 

historical information o f the flow which is vital to the analysis. The analysis is interpreting the 

56 



Chapter 3 - A novel approach to monitoring 

headers and emulating the endpoint, with the aim of inferring the network events that lead to an 

observed packet arrival pattern. The output o f the analysis is the group o f inferred network and 

connection-related parameters, as encountered by the TCP connection: the RTT delay and 

average, loss, bottleneck bandwidth, and congestion window evolution. Discrete sets o f results, 

produced at the end o f each TCP connection, were used throughout the TCP analysis. For each 

TCP connection, the output is a single set o f parameters, indicating overall figures o f the network 

performance for each connection, and may be used for further analysis, as will be shown in 

Chapter 6. 

I f a problem occurs on a network path, the first step is to highlight its existence through the 

traffic analysis. However, the purpose of network monitoring is twofold: to identify and locate, 

both to a certain extent, degradation of a network segment. While the previous section gave an 

overview of the parameters that can be measured/estimated using the proposed method, which 

solves the first issue o f the problem, this section wil l describe how these parameters can be used 

to narrow the location of a possible degradation of the network path in relation to the position o f 

the monitor. 

The issue can be discussed starting from the simplistic concept of a local network (LAN / WAN) 

connected via a link to the rest o f the Internet, with a monitoring station placed somewhere on 

this link, then expanding to a generic case. In the case of a LAN with a single Internet 

connection, there is no transit trafllc through the connection point; all the monitored flows have 

as either source or destination an endpoint in the local network and the other endpoint on the 

Intemet. Based on this division, the Internet network can be split in two sub-networks - the East 

sub-network, and the West sub-network, as shown in Figure 3.1 

57 



Chapter 3 - A novel approach to monitoring 

End-to-end parameters 

Intemet 

Sub-nenvork Sub-network Endpoint Endpoint 

East parameters west parameters 

Monitonng point 

Figure 3.1 - Degradation position in relation to the monitor 

With this split in place, the local network may be mapped onto the West sub-network and the 

'rest' o f the Intemet, i.e. the collection of network paths and segments that exist outside the local 

network, would be mapped onto the East sub-network. This diagram will be used to explain how 

the fault localisation is applied when monitoring the real-time traffic (see Appendix A) , and the 

TCP traffic, section 3.4.6. 

3.2.3 Impact 

The method proposed in this chapter allows a network manager or management system to 

monitor in real-time the health o f the network. The main problem with offiine analysis traces is 

the reaction speed of the management. I f a transitory problem is noticed (e.g. the average RTT 

value doubling for two hours, then coming back to the original figure), there is nothing a 

network manager can do that would remedy the dissatisfaction o f the customers, nor guarantee 

that whatever measures wil l be taken will remedy the problem in the future. With online 

analysis, the management loop may be closed, i.e. decisional factors may be informed 

continuously about the network status and certain measures may be taken to attenuate / eliminate 

the problems. 

58 



Chapter 3 - A novel approach to monitoring 

On a different strand, this method may inform systems about the network status for different 

network paths, so the endpoints, running either a real-time application or a TCP-based transfer, 

may gather the network status prior to the actual connection. These decisions wil l all be time 

based, subject to the network stationarity. Because this is a very wide area, it was reserved for 

future work, as presented in section 9.2. 

3.3 The Real-time traffic monitor 

Real-time traffic initially played a very important role in this research project, as the focus was 

mainly towards assessing the quality of multimedia over IP communications. But, as the project 

developed, it became apparent that QoS evaluation relates closer to analysis o f the vocal signal 

rather than network research. Therefore, this part was considered to be outside the scope of this 

project and it was pursued by a parallel research project. The work further studied the 

relationship between inferred network parameters and the resulting voice quality o f a VoIP call 

and has been summarised in several papers such as [Sun and Ifeachor 2000], From this 

perspective, this part would require integration with the voice analysis when looking at the 

overall aim of this project, i.e. assessing the resulting quality o f service for various network 

applications (where the interpretation o f QoS depends on the application studied), but the work 

included here may constitute part of a future architecture to predict the quality o f a voice call 

based on the network status, measured non-intrusively from a single point. An overview of the 

real-time trafTic analysis, together with the validation tests performed, may be found in Appendix 

A. 

59 



Chapter 3 - A novel approach to monitoring 

3.4 The TCP traffic monitor 

3.4.1 Method- TCP endpoint emulation 

The TCP monitor emulates or infers the behaviour o f a real endpoint involved in a TCP 

connection, based on the packets it captures from that TCP connection. As explained in section 

2.3.2, there are tools available which attempt to determine the parameters of the TCP transfer by 

analysing the captured packets and emulate the TCP endpoint behaviour, but the approach used 

differs in each case. Firstly, the tools mentioned include techniques optimised for offline traces 

study, such as double pass through each connection, which makes them inappropriate for online 

analysis. Secondly, they aim to determine the end-to-end parameters of the TCP transfer and do 

not isolate the location o f eventual network degradation in relation with the monitor. Thirdly, 

both programs are positioned at the extremes from the inference point of view, tcptrace does not 

perform any inference on the captured packets to estimate values for e.g. evolution o f congestion 

window', timeout losses, or bandwidth. At the other extreme, icpanaly includes profiling 

routines, allowing specialised TCP analysis for each type of TCP implementation. This 

approach, which is providing very accurate results, relies on prior knowledge o f the origin for the 

captured traffic, unfeasible for monitoring traffic produced by unknown remote endpoints. 

Finally, it is relevant to mention an additional inconvenient for tcpanaly. some parts o f its 

analysis routines rely on data retrieval from both the sender and the receiver, which makes it 

inappropriate for single point analysis. 

The proposed TCP analysis method is described in the following section. It includes a general 

approach and architecture designed specifically for single-point online monitoring, aiming to 

balance between inference and robustness. In particular, the technique introduces several 

60 



Chapter 3 - A novel approach to monitoring 

innovative procedures for parameter estimation, such as congestion window inference and 

timestamp options-based analysis. 

3.4.2 State analysis 

The TCP monitor is built similarly to a TCP end-client: a state machine, simulating the 

processing of packets 'sent' and 'received' having as inputs the flags from the captured packets. 

Meanwhile, the monitor is different from the TCP client for several reasons, mainly due the 

inputs of a TCP end client, which include user calls, packet arrivals and timer expirations. 

Because at the monitoring point there is no access to the user-TCP interaction, there is no access 

to user calls and no information about when the timers are set/expire at the endpoint, resulting in 

some o f the transitions, as wi l l be explained, being inferred or unconditional. The presentation 

wil l use the term flow to describe each of the two directions of a TCP connection. In order to 

fully understand the transfer o f data, the monitor requires the two flows belonging to the same 

TCP connection to be paired in a single entity. The processing wil l use events such as packet 

arrivals that appear on one of the directions to modify the current status or / and the parameters 

of the corresponding direction, named pair flow in the discussion that follows. 

The states from the original TCP diagram [ARPA 1981b] were maintained, as shown by Figure 

3.2, but the transition triggers were modified in order to adapt to the unknown conditions. The 

transitions in the monitor follow the transitions that happen at the endpoints and they are due to: 

A. Packet arrival from the endpoint. Most o f the transitions were adapted to this event; in the 

original TCP diagram, after a transition happens in the client, a specific packet is sent. The 

' The program evaluates congeslion window based on the number of unacknowledged bytes. The technique is 
accurate if the capturing point is near the sender, but completely unreliable if the capturing is done nearby the 
receiver. 

61 



Chapter 3 - A novel approach to monitoring 

monitor captures that packet and makes the transition as well. 

Example I . The user sends a 'CLOSE' message to the TCP client, which is in the 

ESTABLISHED state. The TCP client switches to FIN-WAIT-1 state and sends a packet with 

the FIN bit set. The monitor, when receiving this packet, also switches the monitored client from 

ESTABLISHED to FIN-WAIT-1 because the FIN bit is set. 

Example 2. The endpoint switches from ESTABLISHED state to CLOSE_WAIT state when it 

receives a packet with the FIN bit set. After the transition, the endpoint sends an 

acknowledgment o f the FIN. The monitor, when receiving an acknowledgment, checks the state 

of the corresponding endpoint. I f the corresponding endpoint is in F I N W A I T I state, it switches 

the endpoint state from ESTABLISHED to CLOSE-WAIT. 

B. Specific transition of the corresponding eodpoint. Some of the transitions have a packet 

arrival or a user call as an input and do not have any outputs, therefore they are performed from 

the pair flow. Although some of them might not happen as inferred by the monitor, they are 

bound to happen in the future, prior to any other events, in order for the connection to finish 

correctly. For example, i f a packet that was supposed to trigger a transition is lost after the 

monitor, it wil l have to be retransmitted in order to trigger it; the monitor wi l l make the transition 

when it captures the packet first time, while the receiver wil l perform it at the second 

instantiation. Nevertheless, the connection wil l remain in the same condition until the packet 

arrives successfully or, in the worst-case scenario, i f the packet is lost too many times, it wi l l fail 

completely. 

Example I . When the endpoint switches from SYN_RCVD to ESTABLISHED, there is no 

output; this transition is made together with the transition of the corresponding point from SYN-

62 



Chapter 3 - A novel approach to monitoring 

SENT to ESTABLISHED. I f the packet is lost after the monitoring point there wil l be some 

supplementary transmissions that indicate this transition but the transition is performed when the 

sending succeeds. In this case, the monitor transition precedes the endpoint transition. 

C. Unconditional. There is one transition (from TIME_WAIT to CLOSED) that was made 

unconditional, as it is the only one possible from the TIME_WAIT state and, in the TCP client, 

is due to expiry o f a timer. This timer is defined in the TCP specification as 2 x Maximum 

Segment Life (or MSL), with MSL = 2 minutes. The TIME_WAIT state is only for the endpoint 

to make sure that the correspondent TCP client received the last FIN packet. While this transition 

could indicate eventual losses of the last FIN packet, it would keep the TCP object in memory 

for another 4 minutes, which would affect the memory requirements of the monitor. 

Additionally, the data transfer finished before this packet was issued, and therefore it does not 

affect the useful throughput of the connection. 

A l l the above cases can be identified in Figure 3.2, which pictures the state diagram o f the TCP 

monitor 

63 



Chapter 3 - A novel approach to monitoring 

SYN & & ( A C K o f S Y N ) 

(Pair.State = SYN_RCVD)&& 
( A C K o f S Y N ) 

Pair.State: SYN SEND ESTAB 

(Pair.State = FnsJ_WAITI)&& 
( A C K o f F I N ) 

Pair.State: ESTAB 
CLOSE WAIT 

(Pair.State = LAST_ACK) 
& & (ACK of FIN) 

CLOSED 

SYN RCVD SYN SENT 

ESTABLISHED 

CLOSE WAIT (Pair.State = FIN_W AIT 1) 
&&(ACKofFnM) 

F N WAIT I 

CLOSfNG 
FIN WAIT2 

/ Pair.State: ESTAB 
^ FIN W A I T l 

LAST ACK 
7 

TIME WAIT 
/ Pair.State: TIME_WAIT 

CLOSED 
unconditional 

CLOSED 

Legend - types o f transition triggers: 

- SYN /ACK of SYN / FIN - an incoming packet that has the mentioned flag set 

- Pair.State = X - the pair flow is in state X 

- Pair.State: X Y - the transition is actually set from the pair flow, when it transits from 

state X to state Y (that is why these transitions are marked with dotted lines) 

- unconditional - the transition is decided at the endpoint by the TCP client and does not 

have any output 

Figure 3.2 - The T C P monitor state diagram 

64 



Chapter 3 - A novel approach to monitoring 

Additionally, aside from the main TCP state diagram, within the ESTABLISHED state, the two 

parts o f the TCP monitor, the 'sender' and the 'receiver' require a state machine: 

- Sender state machine: 

- IDLE - the sender received acknowledgments for all the data it sent 

- WAJT_ACK - the sender previously sent data which has not been acknowledged yet 

- Receiver state machine: 

- IDLE - the receiver acknowledged all the data it received 

- NORMAL - the receiver is acknowledging data 

- DUPLICATE ERR - the receiver sent twice the same acknowledgment 

- DUPLICATE_ERR1 - the receiver sent three times the same acknowledgment 

- DUPLICATE ERR2 - the receiver sent four times or more the same acknowledgment 

3.4.3 Sequence analysis 

As mentioned, the TCP monitor structure is similar to the structure of a TCP client. Therefore, 

the analysis performed by the monitor is similar to the analysis performed when an event 

happens in the TCP client. The phases o f this analysis are summarised as follows: 

(i) Check flags field and update accordingly the memorised state o f the endpoint; 

(ii) Check the sequence numbers and update the byte accounting parameters (e.g.: bytes 

transmitted, useful bytes transmitted). I f the packet is apparently out o f sequence use 

the sequence numbers, in conjunction with the Identification field from the IP header 

to determine i f the packet is indeed an out-of-order packet or a retransmission; update 

the packet accounting parameters (e.g.: lost packets, out-of-order packets); 

(ii i) Check the timestamp, correlate it with the previous timestamp and with the sequence 

65 



Chapter 3 - A novel approach to monitoring 

numbers and update the time-related parameters (e.g.: RTT, jitter). 

It is worth mentioning that the Identification field mentioned above has a different functionality 

in the IP header, where it is used, together with the More Fragments flag, to reassemble 

datagram fragments. Unfortunately, it cannot be a means o f identifying losses by itself because it 

is incremented every time the host sends a datagram and therefore it can be used as a sequencing 

reference only i f the host has only one active TCP connection at a given moment in time (which 

is not the case for virtually any TCP endpoint). 

The analysis applied to the packet depends on its status (whether or not the data from the packet 

is new, in-order, or out-of-order). The status is detenmined by comparing the 

sequence/acknowledgment number in the TCP header of the packet with the sequence variables 

of the flow to which it belongs. In parallel, the acknowledgment number informs the receiver 

part o f the flow about the status o f data sent. In the following, the terms old and future relate to 

captured data segments that have a sequence number lower / higher than the expected sequence 

number o f the flow to which they belong. 

According to their status, captured data segments were separated into five categories: 

- Correct data = segment of data in sequence, following highest sequence number sent, i.e. 

matching the expected sequence number (IN ORDER DATA); 

- Future data = out-of-order data; the sequence number of the packet is higher than the 

expected sequence number (FUTURE_DATA); 

- Retransmitted data = old data segment which was transmitted at some moment in the 

past, and now is retransmitted, probably due to a packet being lost (RETRS_DATA); 

- Newer data = segment of data which includes both retransmitted data and in order data; 

66 



Chapter 3 - A novel approach to monitoring 

when detecting a lost segment, TCP can retransmit it by concatenating it with a valid 

segment; although the number of packets is the same as in a no-loss situation, still, there 

was a packet lost in the process of transmission, and this event has to be identified 

( N E W E R _ D A T A ) ; 

- Inverted data = old data segment which was mis-ordered (INVERTED DATA) such that 

a segment follows after a future data segment, but it is only out-of order, not 

retransmitted. 

In relation to these categories, the method can determine two types of losses: visible and 

inferred. A visible loss is detectable using only sequence analysis to estimate a loss. This is 

possible either because the monitoring point is close enough to the sender in order to see both 

instances or because the sender transmits other data segments before retransmitting the segment. 

The second category, inferred losses, uses packet spacing instead of sequencing to identify 

losses. The technique relies on the fact that the sender wil l always have data to send; because o f 

this, there should never exist a pause larger than RTraverage+4*RTTvTiriance (based on a slightly 

adapted version o f [Kam and Partridge 1991]). 

The steps o f the data analysis are the following: determine what type o f data is inside the packet, 

determine idle periods, calculate delay-related variables, and estimate the congestion window. 

The processing uses two arrays o f information, named SkipData and BitfferData in the following 

discussion and in section 3.5.1, when discussing the implementation. The role of SkipData is to 

memorise past intervals of sequence numbers that appear to be missing from the captured flow; 

BufferData maintains records o f past captured data segments. Throughout these steps, the flow 

variables are updated. The following list describes each of these steps. 

(i) Determine what type of data is inside the packet. 

67 



Chapter 3 - A novel approach to monitoring 

This step uses the expected sequence number and the SkipData structure to identify the 

visible losses. The first check compares the sequence number of the captured data 

segment with the expected sequence number. I f the received sequence number is higher 

than the expected one, then the segment contains in order data or future data. Else, the 

segment carries old data, and the SkipData list in conjunction with the Identification 

information are required to make a distinction between mis-ordered packets, packets lost 

before the monitor and packets lost after the monitor. The following checks are 

performed: 

- I f the segment is not listed in SkipData, then is a lost-after-monitor segment 

{LostAfler)- it was transmitted previously and both o f the instantiations were 

captured; 

- I f the segment was already acknowledged by the receiver (i.e. the expected sequence 

number o f the receiver is equal to or higher than the last sequence number contained 

in the data segment), then the packet was erroneously retransmitted by the sender 

(RTOError), although no loss happened. This may be due to the acknowledgment that 

indicated the successful receipt of the segment being either lost or to a late (arriving 

to the sender after the retransmission timeout expired). 

- I f the segment is listed in the SkipData, then its Identification field, from the IP 

header of the incoming packet, is compared with the Current ID (which indicates the 

most recent value of the Identification field sent) o f the flow: 

- I f Identification is lower than Current ID, the packet is a genuine out of order 

packet (Inverted), as the sender had released i l before sending the previously 

received packet (which Identification updated last time the flow Current ID); 

- I f Identification is higher than Current ID, the packet is a retransmission o f a lost-

68 



Chapter 3 - A novel approach to monitoring 

before-monitor segment (LostBefore), as the packet is in order from the IP point 

o f view (was transmitted after the previously received packet). 

( i i) Determine idle periods. 

In addition to the above analysis, additional checks are performed to determine whether 

or not the current packet arrives after an idle period. An idle period is defined in this 

context as time during which neither the sender, nor the receiver, have any outstanding 

data segments or acknowledgments to transmit, A sender reaches this state i f there is no 

more incoming data from the application it serves; the receiver in this state acknowledged 

all the data it received. It is not a case mentioned in the traditional TCP behaviour 

modelling literature, where the sender always has data to transmit [Ott et al 1996] or it 

transmits all the available data without any pause. Nevertheless, such behaviour, i.e. with 

pauses within the connection, is not uncommon in a real-life situation, even for file 

transfer protocols such as HTTP and FTP. The best example of such a situation is a TCP 

connection providing data to an HTTP 1.1 web browsing application. HTTP 1.1, as 

mentioned in section 2.1.3, uses a single pipelined TCP connection to transport all the 

objects from a page / website, as opposed to HTTP 1.0, that opens a connection for each 

object. In the HTTP I . I case, when a user browses a website, there will be large gaps 

within the established TCP connection, for example due to the browsing activity: the user 

opens a page, reads its content, then follows a link to a next page. This does not impact 

on the overall TCP dynamics, but it affects performance evaluation o f the transfer. An 

example is given in Figure 3.3. 

69 



Chapter 3 - A novel approach to monitoring 

Sequence 
80000 

number (relative) 
T r 

70000 

60000 

50000 

40000 

30000 

20000 

10000 

60 80 
time [s] 

120 140 

Figure 3.3 - H T T P 1.1 session 

The above figure displays the trace resulting from a 6-page web browsing session. Each 

of the transfers was normal, with a high throughput, but the analysis would reveal a very 

low figure, due to the pauses that the user made on each page. This is why such a 

connection must be properiy analysed; the monitor, in this case, has to account for each 

of the mentioned gaps and to eliminate that time from the total time of the transfer. 

The method to determine idle periods is based on identifying the gaps between different 

object transferred. A period between two packets within a TCP connection is considered 

as idle if: 

(a) The time elapsed between the two packets, At, satisfies the rule 

A/ > max(2RTT^^_f^_,^,2 sec) 3.1 

The 2 second limit aims to eliminate from this counting the gaps between a train o f 

acknowledgments and the next train of packets, sent due to these acknowledgments, 

while the 2RTT limit protects the high-delay connections from the 2 second rule. This 

70 



Chapter 3 - A novel approach to monitoring 

timing information has an impact on the timeout estimation: i f a packet timeouts 

several times, enough to go above the 2 seconds interval, it wi l l be considered as 

coming from a different object, instead of being lost. It is an accuracy trade o f f but, 

on the other hand, such gaps wil l happen within a normal HTTP t . l web browsing 

session, while repeated timeouts are rather exceptional events [Paxson 1997a]. 

(b) Both the sender and the receiver are in IDLE state, as defined in 3.4.2, when 

capturing this packet. This rule reduces the impact that idle periods can have on the 

overall performance estimation i f a connection encounters a severe network outage; 

when there is still data pending to be acknowledged or retransmitted, the connection 

cannot be during an idle period. 

(c) The packet has a non-zero data length. A new object transfer has to start with new 

data being sent. 

Special attention was given to the first idle period within an HTTP connection. A typical 

HTTP retrieval starts with the following data exchange between the server and the client, 

see Figure 3.4. 

t l - C l i e n t : GET /index.htm HTTP/1.1 [HTTP t a g s ] 
t2 - S e r v e r : [empty ACK f o r the GET r e q u e s t ] 
t 3 - S e r v e r : HTTP/1.1 200 OK [HTTP t a g s , packet content] 

Figure 3.4 - Initial G E T request from a client 

The difference (t3 - 1 2 ) , where // is the capture timestamp of the packet /, represents the 

server response time. In the ideal case, this time difference should be virtually null i f the 

capturing point is positioned right at or nearby the server. However, i f the server is busy, 

71 



Chapter 3 - A novel approach to monitoring 

it may be substantial and the server might issue first an empty acknowledgment (either 

immediately or delayed, depending on the prior evolution o f the associated TCP 

connection) and produce the response only later on. In any case, the estimate indicates 

the server performance as part of the overall TCP performance; it does not affect the 

dynamics o f the TCP trafHc, but it has the same impact on the observed performance (i.e. 

"How fast a page is loaded") as degradation in network conditions. 

(iii) Calculate delay-related variables. 

The RTT estimation is based on matching the acknowledgment number carried by the 

packet with a last sequence number from a buffer location. The rationale behind it is that 

an acknowledgment is produced by the receiver immediately when it gets a data segment 

eligible for acknowledgment (in fact it is every other data segment, as receivers - should -

use delayed acknowledging). The acknowledgment is valid for RTT estimation i f the data 

segment was not acknowledged before and the segment was not retransmitted; the two 

conditions ensure that the acknowledgment was produced in normal transfer conditions, 

and not due to losses or mis-ordering, and they are similar in a real TCP client. The RTT 

estimation uses the BufferData to obtain historical information: 

(a) The acknowledgment number is searched in the list. 

(b) I f the last sequence number of a segment (i.e. the segment's sequence number 

plus its length) is equal to the acknowledgment number less I unit (because the 

acknowledgment indicates the next expected sequence number), the 

acknowledgment was sent for that segment; in addition, following checks are 

performed: 

72 



Chapter 3 - A novel approach to monitoring 

- The retransmission counter of the segment must be zero; 

- The acknowledgment counter o f the segment must be zero. 

(c) I f the segment found satisfies all the conditions, the RTT is determined as the 

subtraction between the capture timestamp of the acknowledgment minus the 

timestamp of the data segment. Then, the RTT jitter is determined as the unsigned 

difference between current RTT value and previous RTT value. The formulas for 

the two parameters are given in section 3.4.5. 

(iv) Estimate the congestion window. 

The third step, estimating the congestion window, includes an element of uncertainty, as 

wil l be further detailed in section 4.2.1. A visual presentation of the congestion window 

in time may be produced by plotting the sequence number for each segment against the 

capture time. Such a plot is presented below in Figure 3.5. 

Sequence number (relative) 
160000 

140000 

120000 -

100000 

80000 

60000 h 

40000 \-

20000 ^ 

0 
02 

19 

0 4 0.6 0.8 
time [s] 

21 

27 

1.2 1.4 

Figure 3.5 - Illustrating connection window evolution through sequence numbers 

73 



Chapter 3 - A novel approach to monitoring 

The dotted ellipses indicate which packets were likely to have been sent in the same 

congestion window; to visualise better, beside the ellipse is also written the number o f 

packets in that particular congestion window. 

The ideal method would be to emulate the four TCP algorithms [Stevens 1997] at the 

monitor, and modify the congestion window accordingly, but this would be difficult to 

achieve, mainly because o f the unknowns in the sender behaviour. Two other approaches 

were considered: estimate the congestion window as the number of data packets in flight 

at a moment or estimate the separation between different congestion windows using the 

time elapsed between two consecutive captures of data segments belonging to the same 

flow. The following paragraphs wil l describe each of the mentioned methods. The notion 

of flight (of packets) wi l l be used, with the meaning o f a sequence of packets all 

transmitted within an RTT, as defined in [Paxson 1997a]. 

1. Emulate the behaviour of the sender 

TCP, as presented in 2.1.2, includes four algorithms for performance optimisation. 

Based on capturing the data segments and acknowledgments o f a connection, the 

monitor emulates the evolution o f the congestion window and determines a 

congestion window estimate (CWE), as it happens at the sender. The summary o f this 

type of emulation is: 

- slow start mode: start CWE at 1, when first data segment is captured and every 

time an acknowledgment / a data segment is captured, increment / decrement 

CWE; 

- congestion avoidance mode: increment CWE by l/CWE every time an 

acknowledgment is captured; 

74 



Chapter 3 - A novel approach to monitoring 

- loss (detected via multiple duplicate achnowledgments): reduce CWE to 

((CWE/2)+3) segments and start congestion avoidance. Increase the CWE by one 

segment for each duplicate acknowledgment received; 

- loss (detected via a timeout): reset CWE to I segment and then increment in slow 

start mode. 

The above algorithm, offers not an estimate, but the actual value of the congestion 

window, under ideal conditions (full knowledge of the packets that arrive at the 

sender and of its TCP behaviour). The method was successfully implemented in 

[Paxson 1997b], but only by considering two essential aspects. Firstly, in order to 

correctly follow the evolution o f the TCP sender, the capturing point had to be placed 

right at that endpoint. Secondly, the analysis program was aware about the alterations 

from this policy existing within the TCP implementation studied. None o f these 

aspects exists within the scope of this project; the proposed method should not be 

limited to known senders or/and known conditions at the sender. For these reasons, 

the algorithm emulation was considered to be unsuitable for congestion window 

estimation within this analysis method. 

2. Identify transmission window 'peaks' 

The second type o f congestion window inference, based on the number of packets in 

flight, is less demanding compared to the one described above. It is performing 

inference instead of emulation: it does not make any assumptions about the sender 

behaviour, but it tries to estimate the number o f packets in flight. The rationale 

behind this is that the size o f the congestion window is equal with the number o f 

packets in flight, as the sender can transmit up to the minimum of the congestion 

window and the advertised window [Stevens 1997]. In order to determine this 

75 



Chapter 3 - A novel approach to monitoring 

number, the monitor determines the 'peaks' of the number of unacknowledged 

packets evolution by comparing each three consecutive values of them. A better 

understanding of the method can be gained by looking at a graphical example. Figure 

3.6 presents the evolution of the number of unacknowledged packets, as seen by the 

monitor; the updates are performed each time when a data/acknowledgment packet is 

received. 

Estimated congestion window [data segments] 
2.5 

time [s] 

Figure 3.6 - Estimated congestion window based on identifying transmission 

window peaks 

It may be seen that the number of unacknowledged packets oscillates between 1 and 2 

packets. This is because, in this case, the position of the monitor was very 

unfavourable for this method: at the receiver. Because of this, the monitor will see the 

acknowledgments being sent every other packet the latest, leading to an estimate 

oscillating between I and 2. The method is clearly more robust when compared to the 

previous but is, clearly, prone to errors, due to the uncertainty introduced by the 

position of the monitor. 

3. Identify packet trains - time based 

76 



Chapter 3 - A novel approach to monitoring 

The third proposed option to determine the congestion window is robust, but less 

accurate, particularly for long file transfers. It is based on the observation that, for 

short data transfers and high values of the (bandwidth x delay) product, the sender 

never achieves efficient utilisation of the available bandwidth, due to the speed of the 

slow start algorithm that, even though it increases the congestion window 

exponentially, has a low number of data segments to reach full utilisation. As a result, 

a sender transmits data segments belonging to the same round in an almost back-to-

back fashion, distanced by Atimm-ttnin packets evolution visible in Figure 3.5 between the 

circled groups of segments, and then it waits for the receiver to acknowledge these 

segments. Because of the delay between successive data segments belonging to 

different flights, Atjnter-irain packets, they can be visually observed in the figure. 

Translated in numerical terms, the method must identify this gap by comparing the 

inter-arrival delay with a defined value, using a relation such as equation 3.2 

^imer-tra'm packets ^intra-train packets 3.2 

This best value for Atinter-train packets was considered to be RTT/2, considering that a 

flight of packets is all being sent back to back at the beginning of an RTT period, 

then, approximately one RTT later, when the acknowledgments arrive, the sender 

transmits the next flight'. The result of this estimation, applied on the transfer from 

Figure 3.5, is shown in Figure 3.7. 

' Choosing a figure too low may lead to incorrect splits in the middle of a train of packets; a figure too high might 
erroneously gather segments from more than one packet train. 

77 



Chapter 3 - A novel approach to monitoring 

Estimated congestion window [data segments] 
35 

time [s| 

Figure 3.7 - Estimated coDgestion window based on identifying packet trains 

The problems for this method come from a different direction: the TCP functionality 

itself. It is apparent from the TCP specification (ARPA 1981b], that its primary aim is 

to fill the available bandwidth for each connection. However, in the real case TCP is 

not aware of the network conditions at the start of the connection. Therefore it has to 

probe the available bandwidth through the slow start algorithm, and only then to 

stabilise at the resulting throughput, not always accurately, during the congestion 

avoidance phase. It is due to this unawareness that the proposed congestion window 

estimation works: the TCP client is still in the slow start phase or had a packet loss 

rate that forced it to keep the congestion window low. As a result, the TCP client does 

not fill the available bandwidth x delay product, which leads to the spacing between 

windows visible in Figure 3.5 

The main drawback of the method is that it is suited only for short connections. As 

the size of the congestion window increases, the channel reaches its limits, increasing 

the probability of missing the inter-packel-train gaps. More details about this 

drawback are presented in section 4.2,1. In addition, another limitation of this method 

is that it produces the estimate of the congestion window based on the distance 

between packets as they arrive at the monitor. If the monitor is placed by the receiver 

78 



Chapter 3 - A novel approach to monitoring 

and the distance between packets belonging to the same train is substantially altered 

because of queuing, the method will not be able to identify successive packets from 

the same window. Ideally, the monitor should have information about the distance 

between successive packets as they leave the sender, regardless of its position. This 

limitation is solved in the following section, 3.4.4. 

3.4.4 Timestamp options-based TCP analysis 

A parallel analysis of the network performance and sender parameters is performed using the 

timestamp options from the TCP header, Timestamp options were defined as an add-on of the 

TCP standard in [Jacobson et al 1992], and one of their main purposes is to allow the sender to 

obtain a better estimate of the RTT. The RFC defined two timestamp fields included in the 

typical timestamp option: the TSval (timeslamp value), which is obtained fi*om a local clock, and 

TSecr (timestamp echo reply), which echoes the TSval of the most recent data segment received. 

The monitor uses these exchanged timestamp values in order to determine the RTT, as defined in 

section 3.4.3, and bottleneck bandwidth. 

The timestamp-based analysis uses the same information objects as the previous (the fiow-

related object, containing the current information, as well as the BufferData and the SkipData 

structures). The differences appear when pairing the correspondent packets from the two 

directions of a connection. While in the 'traditional' method, this mechanism was based on the 

acknowledgments produced in response to data packets, with this method it is the timestamps 

that allow identifying which packets were sent as response to certain packets, and determine the 

RTT value. The BufferData must store, besides the boundaries of the data segment, the TSval 

and TSecr values for each TCP segment. When a data segment is captured, if it is an IN-ORDER 

packet, the value of its TSecr field is searched among the TSval values. The TSval values are 

79 



Chapter 3 - A novel approach to monitoring 

retrieved from the historical information stored in BufferData\ the search starts with the most 

recent segment to minimise the number of searched locations. When the segment is found, the 

RTT is computed as the difference between the capture timestamps of the two packets. The 

method has the major advantage of estimating RTT for data segments sent in response to 

acknowledgments (fact that was impossible for the normal sender-receiver configuration, as all 

the TCP segments acknowledged the same sequence number, i.e. Initial Sequence Number+I for 

the acknowledging flow); this radically increases the accuracy of the overall RTT estimation in 

the cases where the monitor is placed near the receiver, as will be described in section 4.1. 

3.4.4.1. Congestion window 

TCP-timestamps-based analysis may also contribute to the congestion window analysis. The 

values carried by TSval are directly proportional to the time when the packet was transmitted by 

the sender. The only information required to convert the difTerence between these values into 

time is the resolution of the TCP timestamp of the sender; because the information is needed 

during the connection, the SYN-ACK resolution estimate is used. The resulting values for inter-

packet spacing are then compared with RTT/2 to identify the trains of packets as they leave the 

sender. This provides a better congestion window estimate,as the TCP timestamps are not 

affected by the queuing between sender and monitor. 

3.4.4.2. Bottleneck bandwidth 

One of the studies laying the foundation for bottleneck bandwidth estimation was [Shenker et al 

1990], where the distribution of packet inter-arrival times was analysed, then continued in 

[Keshav 1991], where the packet pair method was proposed to intrusively determine bottleneck 

bandwidth. The method was further refined in [Mogul 1992] and, more recently in studies such 

as [Lai and Baker 2000]. The theory behind all these alternatives relates to measuring the 
80 



Chapter 3 - A novel approach to monitoring 

spacing between packets and estimate, based on this measurement, the bottleneck bandwidth. It 

considers a pair of (generic) packets of size x bytes sent back-to-back from an endpoint A and 

received at an endpoinl B. When the ACKs arrive at host A, due to the bottleneck segment, the 

spacing between them is changed to /li > 0. The rapport between the size of the packets and the 

resulting spacing gives the bottleneck bandwidth: 

bottleneck bandwidth = 3.3 

There is at the moment a variety of tools for bandwidth measurement, virtually all of them 

focused on active measurement, as described in section 2.3. The nearest to the scope of this 

project can be considered the Packet Bunch Method (PBM) proposed by Paxson in [1997a], in 

which he identified 'bunches' of data segments using monitors both at source and destination 

and fully following the behaviour of the sender. The aim of this project is to have a single point 

estimation, and, as previously mentioned, this eliminates the possibility of establishing the 

sender behaviour (additionally, the actual implementation of the sender is unknown, which 

complicates matters). In all the cases, the problematic quantity is the inter-send time between 

successive packets at the sender; most of the approaches eliminate it by sending back-to-back 

packets (which also increases the probability for these packets to be queued sequentially in the 

routers), or, in PBM case, determine what this value is by capturing the data at the sender as 

well. This project proposes a novel approach, which is gathering this information from the 

timestamp options. Indeed, the TSval is produced based on the local clock of the sender; 

although there is no absolute timing information, due to the fact that the clocks of the sender, 

monitor and receiver are not synchronised, there is still relative information that can be gathered 

by subtracting the TSval values from successive packets. This is how, without producing any 

additional traffic, the monitor is able to infer which of the data segments sent by an endpoint 

may have been transmitted back-lo-back. For satisfactory results, the resolution must be high 

81 



Chapter 3 - A novel approach to monitoring 

enough to differentiate between two separate 'bunches' of back-to-back packets and, i f 

necessary, also low enough to be unable to distinguish between two back-to-back packets 

belonging to the same 'bunch'. Section 4.4 provides a detailed overview of the resolution 

estimation for the TCP timestamps, as well as the limitations that the proposed method has. 

3.4.5 Hie measured parameters 

This subsection details the actual variables that are measured/inferred using the presented 

method. There are two main categories of parameters resulting from the analysis: network-

related and performance-related. 

(i) Network-related parameters. This category of parameters aims to describe the status of 

the network path transited by the packets belonging to a flow. This category includes: 

- RTT average and RTT variation - together aim to inform about the delay encountered 

by the packets when transiting the network. 

n-\ 
• ̂  J^^<^stimation i 3.4 

RTT = , where n is the number of estimations 
average „ 

n—i 

I^T^esiimaiion i ~ ^^atimation i-l J 5 

n-] 

Bottleneck bandwidth {MinimumBW) - represents an estimator of the lowest 

bandwidth segment from the network path transited by the data segments. It can be 

determined only i f the TCP endpoints are producing the TCP timeslamp option (see 

section 3.4.4.2): 

82 



Chapter 3 - A novel approach to monitoring 

3.6 

where: 

m - the number of packet trains observed 

lj,m - the length of packet / from the m'''train of packets 

ti,m - the timestamp of packet / from the m* train of packets 

nm - the length (in packets) of the m* train of packets 

Lost packets - includes three component losses: 

- LostBefore - packets lost on the path segment between sender and monitoring 

point 

- LostAfter - packets lost on the path segment between monitoring point and 

receiver 

- Timeout - packets lost and retransmitted due to a timeout 

Each of them represents the loss on one of the path sub-segments; their sum is an 

inference of the end-to-end losses, either true or due to erroneous behaviour of the 

TCP sender. In addition, a subset of the LostAfter category is determined: RTOErrors 

(retransmission timeout errors). These are data segments that were retransmitted 

although an acknowledgment to confirm their receipt was captured by the monitor in 

the time between first and second instance of the data. 

- Out-of-order packets {Inverted) - the number of genuine mis-ordered packets; 

- Total number of transmitted packets (including retransmissions); 

- Timing information: 

83 



Chapter 3 - A novel approach to monitoring 

o Connection time - the lime elapsed between the first and the last transmitted 

packets 

o Data transfer time - the time elapsed beuveen the first and the last transmitted 

data packets 

o Idle time - the total amount of idle time within the duration of a connection 

(ii) Performance information (throughput and duration) - all the parameters below are 

obtained using the connection / data transfer duration minus the idle times. This ensures 

that the resulting figures reflect directly the performance of the TCP transfer, as 

described in 3.4,3. 

- Valid data throughput - the amount of valid data that was received (obtained by 

subtracting last transmitted sequence number and initial sequence number) 

reported to the duration of the data transfer 

- Connection duration - the time elapsed between capturing the first packet and the 

last packet from the connection 

- Data transfer duration - the time elapsed between capturing the first data packet 

and the last data packet from the connection 

3.4.6 Fault localisation 

The previous section provided a list of parameters that may be obtained from the TCP analysis. 

In turn, these parameters may be mapped onto the two logical subnetworks defined in section 

3.2.2, to give an indication about the location of the measured parameters. As most of the 

Internet traffic today is based on client-server communications (e.g. HTTP), the generic model 

of a connection can be considered the sender-receiver case, where one of the endpoints 

(Endpoint A in Figure 3,1) sends data and the other one (Endpoint B in Figure 3,1) 

84 



Chapter 3 - A novel approach to monitoring 

acknowledges it. With this configuration, the loss and delay parameters were split as pictured in 

Figure 3.8 This model also matches peer-to-peer downloads, which are on the increase in current 

network usage figures [Fraleigh et al 2003]: 

- RTT delay - RTT West and RTT East 

- loss - outgoing West loss, outgoing East loss, incoming East loss, incoming West loss 

West sub-network 

RTT West 

outgoing West loss 

incoming West loss 

East sub-network 

RTT East 

incoming East loss 

outgoing East loss 

Monitoring point 

Figure 3.8 - The components of loss and delay for the monitoring configuration 

Using the notations from Figure 3.1 and Figure 3.8, for Endpoint A acting as sender, the 

following parameters may be inferred: 

- Subnetwork West A—•B packet loss rate o outgoing West loss <— packets lost before the 

monitor 

- Subnetwork East A—>B packet loss rate <=> incoming East loss ^ packets lost after the 

monitor 

- Subnetwork West A—•B packet inversion rate <=> outgoing West misordering inverted 

packets 

85 



Chapter 3 - A novel approach to monitoring 

- Subnetwork East RTT o RTT East ^ RTT measured 

- Subnetwork West RTT o RTT West RTT measured of the reverse fiow (with a lower 

confidence factor, as described in 4.1) 

- Subnetwork West A — o West bottleneck i— estimated bottleneck bandwidth 

Additionally, i f B sends data as well, there can be also determined: 

- Subnetwork West B—•A packet loss rate o outgoing East loss <— packets lost before the 

monitor 

- Subnetwork East B—•A packet loss rate o incoming West loss packets lost after the 

monitor 

- Subnetwork West RTT <=> RTT West ^ RTT measured 

- Subnetwork East B—•A packet inversion rate ^ inverted packets 

- Subnetwork East B-^A o East bottleneck <— bottleneck bandwidth 

3.5 Method implementation 

3.5.1 Block diagram 

The primary aim of the monitor is to reveal an estimative picture of the network performance, as 

encountered by the analysed packet flows. The common part of the monitor performs only the 

header parsing and forwards the information to the analysis blocks, together with prior 

information, retrieved from a connections database. A schematic view of the monitor is given in 

Figure 3.9. The analysis is triggered every time a packet is captured. 

86 



Chapter 3 - A novel approach to monitoring 

Frame 
capturer 

Frame 
parser 

TCP analyser 

State analyser 

Sequence analyser 

Connections 
database 

Post
processing 

unit 

Database 
maintainer 

Figure 3.9 - TrafTic analyser - main blocks diagram 

The Frame capturer and Frame parser components have the obvious role to capture the 

frames passing through the monitoring point and decode their content. The output of the Frame 

parser is used for two purposes: to start the analysis of a current frame by the TCP analysis and 

to retrieve information from the Connection database about the flow associated with the current 

packet. 

The Connection database is a structured collection of objects, each of them containing 

information about each analysed flow. It uses the quadruple (source IP address, source TCP 

port, destination IP address, destination TCP port) as a means to uniquely identify a TCP flow at 

a moment in time. For each monitored flow, the database maintains an object that memorises its 

relevant data. The information held can be split into two headings: connection-related parameters 

and performance parameters,. The connection-related parameters are used in the TCP analysis, 

which inform about the initial and current status of the connection; the performance parameters 

are the actual outputs of the analysis and will be forwarded, when requested, to the Post

processing unit. 

Although a TCP connection has two flow objects associated with it, one for each direction, 

87 



Chapter 3 - A novel approach to monitoring 

analysis of a packet belonging to any of the directions requires both objects. The pair flows have 

to work in conjuction within the monitor, for several reasons. Firstly, some of the transitions of a 

flow can be made only based on packets sent by the other flow in the pair. Secondly, 

acknowledgment numbers of a flow acknowledgment data sent by the pair flow. Thirdly, RTT 

can be computed only by combining the timestamp of the sent data packet with the timestamp of 

the returned acknowledge. In fact, in the actual TCP client implementations, the two flow objects 

are paired in a single structure [Stevens 1995], but the monitor has a different view of each 

connection. While an endpoint maintains information about one sender and one receiver (the 

ones at that endpoint), the monitor must keep the information regarding two senders and two 

receivers (i.e. a sender-receiver pair for each of the endpoints). It was therefore preferred, for 

clarity reasons, to keep the two directions of a connection separate. 

The TCP analysis block uses the two inputs (the headers of the current packet and the past 

information) to update the current details of the flow and it uses the sequencing and timing 

information provided by the current packet to update the parameters of the associated flow from 

the Connection database. The analysis requires two blocks: a State analyser, required to infer 

the current state of the connection according to the TCP state diagram, and a Sequence analyser, 

used to evaluate and update the current status of the data transfer. 

The Database raaintainer periodically polls the database and removes the flows which are in 

CLOSED state. It uses a timer to decide whether a flow should be kept in the database, using its 

inactivity period - the time elapsed since capturing the last packet associated with this flow. This 

is a critical block for the traffic analyser, as it removes unused flows from the database, therefore 

keeping the memory usage to a low value. The actual value of the timer results as a balance 

between the TCP and HTTP timers on one side and the memory limitations on the other side. As 

defined in [ARPA 1981b], a connection can be kept open indefinitely, as long as senders 

88 



Chapter 3 - A novel approach to monitoring 

generate periodically packets to check whether or not the connection is still opened al the 

corresponding endpoini; according to [Braden 1989], the duration between two keep-alive 

packets should be at least 2 hours (the figure of the monitor trigger was doubled to account for 

clients with longer keep-alive timers). Based on this specification, the monitor should set the 

flow removal timer to a value of 2 hours, which would increase massively the amount of 

memory that the monitor requires. During the implementation, the preferred value was of 5 

minutes, which, although it might remove such connections, it considers another type of 

inactivity periods. These are the ones produced by HTTP version 1.1, which may re-use the same 

connection to transfer several objects, behaviour detailed in section 3,4.3 (subject to the duration 

of the monitoring and the amount of traffic captured). 

The Post-processing unit takes the role to take the information from the Connection database 

and either provides it to a control entity or display it to the user. Depending on the chosen output 

method, the performance information may be presented either continuously or discretely. For 

continuous output, the current values for the network parameters are presented every time a 

packet is received; in this case, the post-processing unit will output performance data after every 

captured packet. For discrete output, the output is triggered indirectly from the analysis blocks 

every time a flow is closed. The continuous output is more appropriate for real-time flows, as 

they may last for a long time and the instantaneous or short-term performance average values are 

more relevant than the long-term averages. On the other hand, discrete output is the preferred 

form of sampling for TCP flows, as their performance is best evaluated at the end of the 

connection. 

The Frame capturer component was implemented using the pcapiib packet capturing library 

[LBNL 2003], library used for most of today's network analysis programs. The library includes 

functions to get a handle of the capturing device, filter the captured packets (e.g. retain and 

89 



Chapter 3 - A novel approach to monitoring 

forward for analysis only the http traffic - TCP port 80 - fi-om the entire traffic passing a 

monitoring point). The output of the frame capture is a structure including a pointer to the 

captured frame, time of the capture and the length captured (for TCP analysis, only the 

information up to and including the TCP header is used, and the actual data content of the packet 

is discarded). The Frame parser is called with this mechanism and, from the raw frames 

provided by the Frame capturer, determines the fields of the IP and TCP headers. These two 

preliminary phases are common for most of the available TCP monitors / analysers / parsers, 

such as the well-known tcpdump [Jacobson 2003b], 

As the monitor has to work in real time, it is important that the retrieval of the information 

related to a connection to be fast, on one side, but also, from the same reason, the database must 

be efficiently organised, in order to occupy as little space as possible in memory. The first 

requirement, i.e. speed, points towards an array, with each location uniquely identifying a TCP 

connection; but this would require an array with, roughly, 255^*65535^ locations to encompass 

for all the possible combinations of IP addresses and ports quadruples, which is unfeasible for 

the obvious physical memory limitations. The second requirement, space, can be satisfied using 

a chained list of the current connections, which would impede dramatically the performance i f 

the number of monitored connections were high. A combined hash-based and chained lists 

indexing was chosen as a compromise solution to satisfy both of these conditions. As a result, 

the connection database is organised as an array of hash values, and each of the locations of the 

array points to the beginning of a chained list of objects. The mechanism of determining the 

location of the flow is a two-step one. First, a hash value, HashlD, from the (source IP address, 

source TCP port, destination IP address, destination TCP port) quadruple is determined. The 

hashing function treats the quadruple as a 12-byte string split into 6 16-bit integer values. It then 

produces a number, HashValue by summing these integers. The hash value is calculated as the 

remainder of the division between the HashValue number and the size of the table. Second, the 

90 



Chapter 3 - A novel approach to monitoring 

chain list at location HashID is followed in order to find the requested object. The size of this 

table, HashTableSize, was set to 1024 in order to avoid the chained lists becoming too long. 

The State analyser module has the role to follow the evolution of TCP connections, as a state 

machine. The module infers the evolution of a TCP client based on the packet arrival events or 

timer expirations. The functions of this module implement the method described in section 3.4.2. 

The need for this module comes from two directions, relating to evaluating the duration of the 

TCP connection. The first reason is to correctly determine the start of the data transfer. Secondly, 

knowing the connection lifespan optimises the resources usage of the monitor. Once the 

connection is successfully completed, its associated object can be discarded and the summary of 

the connection either saved or forwarded to the Post-processing unit. 

The Sequence analyser module implements the algorithms presented in sections 3.4.3 and 3.4.4. 

Its purpose is to infer the events, such as latency and dropped packets, that led to the captured 

sequence of packets and to extract the corresponding network parameters from the monitored 

connection. In order to fulfil its objectives, the module includes several variables: 

- BufferData - a circular array that memorises the sequence, timing, acknowledgment, 

and retransmission information for last 256 data segments captured. The roles of this 

array are to identify whether there were any (multiple) retransmissions and to provide 

timing information for RTT calculation (particularly for TCP timestamp-based delay 

inference) 

- SkipData - a circular array that memorises the last 10 intervals of data that appears to 

have been skipped. This array helps to separate between misordered and retransmitted 

data segments. The array has a complementary role to the BufferData. Its 

functionality may be replaced by BufferData, but it was maintained as a separate 

91 



Chapter 3 - A novel approach to monitoring 

structure for speed and simplicity reasons, as the BufFerData memory is larger. It also 

provides a mechanism to determine whether there might have been any packets 

dropped by the interface during the capturing. This is because, once TCP closes 

gracefully a connection, all the data transferred was correctly received by the remote 

end. I f there still exist any entries in the SkipData list after such a connection, it is 

likely that those segments were dropped in the capturing process, only by the 

interface, rather than dropped by a router. 

- PacketStatus - a variable that characterises the data segment contained in the packet, 

according to the categories deHned in 3.4.3 (IN_ORDER_DATA, FUTURE_DATA, 

RETRS_DATA, NEWER_DATA, INVERTED_DATA) 

A third option, not fully explored during the project but important as a future research avenue, is 

to determine whether or not the connections follow the correct evolution, in order to identify 

potential faulty TCP implementations. This direction relates more to the overheads that TCP 

clients must sustain than to the network conditions. A TCP server that does not implement the 

TCP state machine correctly wil l overioad its memory and/or the network. Firstly, by not 

gracefully closing the TCP connections, the endpoint wil l have to memorise a larger number o f 

associated objects. Secondly, the endpoint wi l l create additional traffic due to forced closing o f 

connections (e.g. through RST - reset packets). 

3.6 Summary 

This chapter presented a method that allows non-intrusive, single-point, online analysis o f traffic. 

The description of the method started with an overview of the requirements that current network 

analysis has from monitoring and it built a list of characteristics based on these requirements, 

which was used as a list o f aims for the developed traffic analysis. 

92 



Chapter 3 - A novel approach to monitoring 

The presentation continued with a detailed view of the assumptions and processing involved 

when analysing TCP connections. The discussion described the two main parts that form the 

TCP analysis: the emulation o f the TCP state machine and the inference o f network events. The 

proposed method is a combination of elements from previous studies, such as TCP client 

emulation, but it also brings clear improvements, such as the online support, TCP timestamps-

based analysis, and means to localise network degradation. As a generic conclusion, due to the 

objectives o f the research, robustness prevailed in front of accuracy within the analysis. 

The last part of this chapter provided an overview of a software program that implements the 

described method. The overview included the block structure of the program and some of the 

variables involved in the analysis. 

The following chapter wi l l expand on the issues raised by the proposed analysis method in terms 

of limitations and possible sources of errors. The discussion wil l analyse the problems that may 

come up for each of the estimated variables, discussing various configurations where the 

measurement is likely to be less reliable, as well as particular sequences that may not be 

interpreted correctly by the proposed method. 

93 



Chapter 4 - Issues related to the proposed TCP analysis 

Chapter 4. Issues related to the proposed TCP analysis 

94 



Chapter 4 - Issues related to the proposed TCP analysis 

The monitoring method proposed in chapter 3 aims to represent a robust alternative to TCP 

analysis. It was intended to be generic rather than accurate, especially because it has to predict 

network conditions encountered by TCP endpoints with unknown implementations. It was 

observed in previous studies, [Paxson 1997b], [Floyd and Padhye 2001] that current or past TCP 

implementations do not follow current standards, such as [Braden 1989] or [Stevens 1997], for 

various reasons. Among the problems relating to TCP implementations, there are: 

- * Bugs', with the meaning o f faulty behaviour which does not improve the performance 

under any reasonable conditions and was probably caused by an error that slipped in the 

source code (e.g. the Solaris bug revealed in [Paxson 1997a]); 

- Tailoring for specific networks (e.g. Solaris delayed acknowledgment policy, [Paxson 

1997a], which performs well for LAN/low-delay environments but brings the connection 

near to a 'stop-and-wait' behaviour for high RTFs); 

- Missing algorithms (e.g. Windows 95/98/NT, which do not perform fast retransmit 

[Floyd and Padhye 2001]); 

- Diversions from the standard (e.g. generic broken TCP retransmission, observed in 

[Floyd and Padhye 2001] which leads to a range of erroneous behaviours). 

Besides these implementation issues, there are also issues related to uncertainty due to position 

of the monitor, that wil l be detailed in the subsequent sections. These two are the main reasons 

why some of the detailed directions of analysis, such as TCP algorithms inference, were not 

pursued. 

Aside from the multiple sources of errors associated with each of the estimated parameters, this 

section presents various improvements (o the previously described algorithms, improvements 

95 



Chapter 4 - Issues related to the proposed TCP analysis 

that should increase the overall accuracy when certain assumption are made in regards to the 

network behaviour. Therefore, it is aimed to be more than an enumeration of the cases in which 

the presented method fails to provide correct figures for the inferred parameters. 

4.1 Round Trip Time 

RTT inference accuracy depends on the number of estimations obtained (the more estimations 

produced, the higher the accuracy in assessing the actual value). The discussion will be based on 

a Server - Client configuration, as depicted in Figure 4.1, in which one o f the stations (i.e. 

Server) mainly sends data, and the other station (i.e. Client) mainly sends acknowledgments to 

the received data. This model is considered because the majority of the traffic is produced in the 

current networks by client-server protocols, such as HTTP. The client connects to the server and 

requests files, then the server sends the files back to the client; in any o f the cases, the client-to-

server amount o f data sent is very small (or non-existent) in comparison with the server-to-client 

data (the model also applies for peer-to-peer downloads). 

As mentioned in the previous section, the monitor relies on the acknowledgment mechanism to 

determine R T T values. The main problem arising is that TCP senders, in order to avoid 

'acknowledging acknowledgments', do not confirm the empty acknowledgments and, i f the 

receiver does not send any data, there are no segments to confirm. As a result, in the worse case 

scenario, when the receiver does not send any data, the sender produces only two 

acknowledgments that can trigger RTT estimation: one in the synchronisation sequence and one 

in the closing sequence. 

The end-to-end round trip delay, RTTiowi, can be split, in relation with the monitoring station, 

into two components, as depicted in Figure 4.1: 

96 



Chapter 4 - Issues related to the proposed TCP analysis 

- RTTttwi - based on acknowledgments produced by the Server in response to data sent by 

the Client; 

- RTTcast - determined from acknowledgments produced by the Client in response to data 

sent by the Server. 

With the observations above, in a Client-Server configuration, the monitor can obtain a number 

of RTT estimations for RTTeast and only two measurements for RTT̂ v̂ st- The limited number o f 

estimations itself does not lead to errors', but, in conjunction with other factors, can lead to 

major errors. The worst-case scenario happens when both o f the packets that should trigger the 

RTT measurement (the acknowledgment to SYN and the acknowledgment to FIN) are lost 

before the monitor (i.e. in the West Subnetwork). In this case, there is no apparent out-of-order 

in the TCP arrival sequence (simply because the actual data transmission either has not started or 

finished already), and the monitor erroneously interprets the second instantiation of the packet as 

good-for-RTT and the resulting estimate is in fact (RTTwesi + retransmission timeout). 

Server 
(mainly sender) 

K 1 1 tnttl ^ 
^ 

RTTwesi ^ RTTeast ^ 
w 

Client 
(mainly receiver) 

Monitor 

Figure 4.1 - ConfiguratioD example for RTT measurement 

97 



Chapter 4 - Issues related to the proposed TCP analysis 

Uncertainty due to the position of the monitor, as described above, represents a technical 

limitation of the described monitoring method. The monitor, due to its position, cannot 

determine properly the pairs o f sends and acknowledgments, in order to calculate the RTT. But, 

even in an ideal situation, when all the packets would provide 'pairing' information, is the 

resulting figure the actual delay introduced by the network? The answer is NO. In order to 

analyse the obtained figure, the whole route of the information must be considered: 

Inferred delay = network delay + processing delay + implementation-related dt\diy 

Tlie network delay refers to the time the packets spend in the network to reach from the source 

host to the destination host. It is, under 'normal' conditions, the term with the highest value in 

the equation, and therefore the inferred delay can be approximated with it. It has three 

components: 

- Propagation delay, caused by the finite speed o f the electromagnetic field (e.g. a bit o f 

information travelling through a copper wire for 1000 km is delayed for 1000/(2.5*10^) = 

2.75 ms). It reaches high values for satellite connections; 

- Transmission delay, due to the finite capacity o f the path of links between the endpoints 

(e.g. a full Ethernet frame, 1514 bytes sent over a 10Mb LAN is delayed 10000/(1.514*8) 

= 1,21 ms). It introduces high figures for delay i f the capacity o f the bottleneck (the 

smallest capacity link from the path) is low, mainly in modem-connected endpoints; 

- Queuing delay, due to congestion - n sources of packets that have to be forwarded by a 

router on the same segment have to queue and wait forwarding (e.g. 10 sources 

producing each back-to-back trains of 10 Ethernet full-sized 1.5 KB frames each, 

' The higher number of estimators is required so that the TCP endpoint may follow more closely the changes in the 
network. Therefore, for a connection with a low or non-existeni RTT variance, the number of delay estimators does 
not influence the evolution of the state machine associated with a TCP connection. 

98 



Chapter 4 - Issues related to the proposed TCP analysis 

queuing at the router to be forwarded on a 10Mb link can introduce a delay o f up to 

100*1.21 = 121 ms). It represents a generic introduced delay, dependent on the traffic 

levels at the moment when the connection takes place. As there was no tenm to categorise 

the overall traffic level, Paxson defined [1999] the concepts of btdsy and quiescent 

network to define the overall volume of traffic, based on his observations that the Internet 

traffic follows 24 hour and 7 day patterns, due to the human activity. 

The second term, processing delay, depends on the activity that takes place at the endpoint, 

mainly sender. I f HTTP is considered, as it is the predominant type o f traffic in current Internet 

(section 3.2.1), the web server has, depending on the task required by the client, to perform a 

certain number o f actions. These actions can vary from a simply file retrieval from the hard disk 

(for a simple text-and-images page) to a complex query, followed by formatting o f the resulting 

web page (for a search on a search engine). Each of these sets of actions requires a certain 

amount of time to be processed by the machine on which the web server runs. Although 

optimised for such operations, a large number o f concurrent clients can produce a high 

processing delay, leading to additional time required by the web server to provide the responses. 

There is a clear difference between data acknowledging and page retrieval, as detailed in section 

3.4.3: 

- A server can, i f configured, first acknowledge the GET request, then, at a later time, 

produce and send the requested page to the client; in this case, the RTT will be correctly 

estimated, and the monitor wi l l be able to identify the server response time, as in 3.4.3. 

Otherwise, i f the server does not produce any empty acknowledgments, the RTT 

estimation wil l be erroneous, as it wil l include the server response time within it; 

- The server can be overioaded due to concurrent TCP connections. The delay resulting 

from this is transparent to the monitor in all the circumstances. 

99 



Chapter 4 - Issues related to the proposed TCP analysis 

The third term, implementation-related d^\d.y, indicates the fact that die TCP senders themselves 

can introduce delay due to their operating rules. As specified in [Braden 1989], a TCP endpoint 

must produce delayed acknowledgments, i.e. an acknowledgment is produced either after not 

more than x ms (where x is e.g. 200 for Windows and Linux and 500 for Solaris) from the last 

data segment received or for every two full MSS segments, in order to lower the number o f 

acknowledgments produced (for large data transfers, the number of produced acknowledgments 

is halved) and to avoid undesired behaviour such as the silly window syndrome [Clark 1982]. 

This does not affect the timing measurements for large data transfers, as the TCP sender has 

always data to transmit and the connection reaches full utilisation, but it can introduce an 

additional delay for small congestion windows values or, in general, for underutilised paths, 

when the window includes an odd number o f packets. Unfortunately, this is not unusual for 

current picture of the internet, with average figures for from page web files o f 10-20 KB, fact 

noticed in [Cardwell et al 2000] and analysed using a larger study in Chapter 6, for both 

experimental and backbone traces. 

As presented, none o f the terms has a definitive contribution to the overall figures, but they all 

depend on various factors, ail of them transparent to the monitoring process, such as overall 

Internet activity and TCP implementation at the endpoints. Al l these suggest that the monitor 

provides a very crude estimate of the actual network performance, but informs about the sum of 

the network parameters A N D the adjacent terms. The remark is correct; i f all the 'worst case 

scenarios' are combined, the actual network contribution to the value of the measured delay can 

be very low. But, even in these conditions, the actual view from the TCP endpoint perspective 

must be considered. As with the monitor, the TCP endpoint obtains all its information from the 

arrival sequence of the data segments / achnowledgments, it does not know i f a delay is due to 

network congestion or due to high load at the server, and it adjusts its parameters based on this 

100 



Chapter 4 - Issues related to the proposed TCP analysis 

seen sequence. Summarising, the monitor, in extreme conditions, does not provide information 

about the actual network delay, but it offers an accurate image of the network as seen by tlie 

TCP endpoint. 

4.2 Packet loss 

There are several categories of estimation errors relating to packet loss measurement that can 

occur in the network parameter estimation. 

The first category of error sources are the ones that do not exist within current implementations, 

yet can appear in future ones. A good example of such a source is the Identification IP header 

field, used to determine apparent mis-ordering as mentioned in section 3.4.3. The TCP protocol 

specification includes an enhancement that can obliterate this algorithm: *TCP protocol modules 

may retransmit an identical TCP segment, and the probability for correct reception would be 

enhanced i f the retransmission carried the same identifier as the original transmission since 

fragments of either datagram could be used to construct a correct TCP segment" [ARPA 

1981b]'. Although beneficial, this would require tighter cooperation between the transport and 

network protocols (in order for the first to inform the second about a segment being a 

retransmission or not) and the enhancement, or behaviour generated by it, was never discussed as 

a possible alternative in the literature. 

While possible future error sources do not affect loss estimation for current TCP 

implementations, there is a range o f errors produced by insufficient information at the monitor, 

due to its position in relation to the losses. As mentioned, there are two indications of a packet 

being lost: 'visible' retransmission and 'apparent' out-of-order. In the following paragraphs, a 

101 



Chapter 4 - Issues related to the proposed TCP analysis 

hypothetical connection evolution shown in Figure 4.2, wi l l be discussed. 

Sender 

Timeout U 

Timeout 2--

data t 

data 2 

data 2 

data 2 

Monitor position B Monitor position A 

Receiver 

Figure 4.2 - Position of the monitor in relation to the packet loss 

Note: There are several possible cases for retransmission, and they include acknowledgments 

from the other direction, but this is the most generic case i f neglecting the acknowledgments. 

Based on Figure 4.2, in order to detect all the losses, a monitor has to: 

- capture both o f the transmissions of the packet; (e.g. the first two transmissions of data 2, 

as captured in the monitor position A) 

and 

- identify an apparent out-of-order sequence of data segment arrivals as an actual packet 

retransmission; e.g. the data 2, data 4, data 5, data 3 sequence, as captured in the 

monitor position B) 

and 

Although no implementations appear to use it at the moment, this recommendation was repeated in [Braden 1989]. 
102 



Chapter 4 - Issues related to the proposed TCP analysis 

- identify a retransmission timeout by following the sender time-out procedure; e.g. (the 

data!, data 2 - third retransmission - captured in the monitor position A) . 

Loss is successfully identified in most of the cases for the first two categories: 

- the retransmission is identified by comparing packets containing *past data' with the 

segments from the SkipData array 

- the apparent out-of-order sequence is identified by comparing the Identification of a 

presumed out-of-order packet with the last Identification captured on this flow 

The third category of losses requires, as mentioned, inference of the retransmission timeout. An 

endpoint starts / restarts a timer after releasing each packet on the network; i f it does not receive 

any acknowledgment for the sent data until the timer expires, the sender considers the packet lost 

and retransmits it. In the following paragraphs, it wi l l always be considered the case when the 

loss happens before the monitor, because, i f the first instance of the data segment is visible, the 

monitor would be in the position A (with the conventions from Figure 4.2) and the case reduces 

to identifying repeated instances o f same data segment in the packet arrival sequence. 

It is important to understand under what conditions a timeout occurs, and in which o f the cases it 

is undetectable using out-of-order identification. A TCP sender retransmits a data segment in two 

cases: 

- I f it receives more than a number o f n (with n = 3 , as recommended by the standard) 

duplicate acknowledgments for that segment (duplicate acknowledging); 

- I f it does not receive an acknowledgment for that segment in a time longer than the RTO 

(timeout). 

103 



Chapter 4 - Issues related to the proposed TCP analysis 

There are three types of situations when a loss can occur, in relation to the status of the TCP 

connection at that moment in time: 

- Beginning o f a connection. When the connection begins, the congestion window is small, 

therefore it triggers a small number of achnowledgments, and the sender is more likely to 

retransmit due to timeout than due to duplicate acknowledging. For example, considering 

a 'correct implementation', a sender must receive 3 duplicate acknowledgments to a lost 

segment in order to retransmit it, as mentioned above. Therefore, for example, i f the 

current window is 2 or 3 packets, there wil l not be enough double acknowledgments to 

trigger a retransmission, and the sender wil l have to timeout; 

- Steady state (concept used in earlier studies such as [Padhye et al 1998]. In this stage, the 

TCP connections have a large(r) congestion window, due to the slow-start increase. The 

available bandwidth is ' f i l led ' with data segments and achnowledgments. I f a packet is 

lost, the event is flagged to the TCP sender by multiple double acknowledgments and it is 

unlikely in this case for a timeout to happen; 

- End of a connection. The sender has no more data to send, and waits for the 

acknowledgment to the last data segment sent. Because there is no more data ahead, there 

are no double acknowledgments and the sender times out. 

In relation to all the above cases, a loss wil l be transparent to the monitor i f there are no more 

data segments between the two transmissions o f the lost data segment. From the three situations 

presented, the second one is the only that creates no confusion: the monitor identifies the loss by 

observing the apparent mis-ordering in the data segments sequence. In the first case, it depends 

on the size of the congestion window whether or not the loss wil l lead to a timeout or to a 

transmission due to double acknowledging. In the other two cases, the sender wil l either timeout 

104 



Chapter 4 - Issues related to the proposed TCP analysis 

and stop transmitting any further data, as it had used the entire available congestion window, as 

in the first category, or simply has no more data to be sent, as in the third one; it is these two 

cases that require a solution to identify timeouts. 

During the testing stages of the method, attempts were made to follow the above algorithm, but, 

besides problems interpreted as 'broken retransmission' in senders or the previously mentioned 

errors in estimating the RTT, there was still an essential unknown variable: the time when the 

first transmission occurred; without it, there is nothing to compare the RTO with. A slightly 

different approach was therefore considered, relating to time spacing between consecutive 

packets. It was mentioned that the monitor is unable to detect the timeout only i f there is no data 

being sent between the two transmissions o f the packet. In addition, as long as the sender has 

data to send, there should be no gaps longer than an RTT between transmitting two consecutive 

packets. However, this does not guarantee identification o f all losses, due to TCP's backoff 

retransmission policy. Without having thorough knowledge about the sender, it was impossible 

to infer the value o f the initial timeout and policy used at the sender. To exemplify from prior 

studies, the solution chosen by Cardwell in [2000] was rather coarse: hardcode the delay between 

packets and identify gaps longer than I second as retransmissions due to timeouts. Due to the 

complexity o f the traces used, which may have included HTTP 1.1 connections or, slow-

responding senders, the inference mechanisms were slightly expanded. Based on the above 

assumptions, the monitor follows the gaps between consecutive packets and determines whether 

or not there could have been drops between two apparent normally transmitted packets. The 

analysis also ignored delayed first-packets in a connection, as they could be caused by a busy 

sender and it also eliminated gaps when the receiver had acknowledged all the data transmitted. 

This method to determine retransmission timeouts should not be considered 100% reliable by 

any means, and this is why it is presented here, as an issue together with its possible solution, 

105 



Chapter 4 - Issues related to the proposed TCP analysis 

instead o f being part o f the previous section. There is, first o f all, the obvious case in which there 

are simply delayed packets, without any timeout, in which a high variation in the network 

conditions is interpreted as a timeout. Another source of errors, with an even higher probability 

o f happening, is usage o f HTTP v l . I protocol for web transfers which, as previously mentioned 

within the idle time analysis, section 3.4.3, uses persistent connections. While the idle time 

identification can fiag inactivity periods that are longer than 2 seconds, the monitor wi l l interpret 

shorter periods between object retrievals as timeouts. In fact, i f the first data segment within a 

new retrieved object is lost before the monitor and timeouts, the event is completely transparent 

for the monitor, even i f an additional module to decode and interpret the HTTP dialogue is 

implemented. 

At the end, it is worth mentioning that sometimes even the TCP sender erroneously estimates the 

RTO, and does unnecessary retransmissions. These retransmissions can be observed by the 

monitor and flagged as RTOError packets, as mentioned in 3.4.3; the closer the monitor is to the 

receiver the more chances it has to determine such a condition (at the other extreme, i f the 

monitor is right at the sender, it cannot see any such event, as the sender itself would adjust its 

values correctly). Unfortunately, the resulting figure for RTO errors can be higher than the real 

one due to, again, uncertainty generated by the position of the monitor. The monitor sees the 

acknowledgment that shows that the packet arrived at the receiver and was confirmed but there is 

no guarantee that also this acknowledgment arrived at the sender to inform about the successful 

transmission. In fact, due to the fact that acknowledgments are not confirmed, there is no way to 

determine whether or not this one arrived at the sender or not; the only solution, used by Paxson 

in his analysis [Paxson 1997b], would be to have two devices, one placed at the sender and one 

at the receiver, and to use them to determine what packets are lost or, i f they arrive, when that 

happens. 

106 



Chapter 4 - Issues related to the proposed TCP analysis 

The main problem faced during the Internet traces analysis phase, in relation to this timeout 

inference, was validation. In the ^visible' case of (possible) loss, the proof o f packet 

retransmissions exists (the multiple occurrences of the same data segment or the apparent data 

mis-ordering) but, in this situation, even the retransmission (not the loss) is inferred, so there are 

no obvious means to check the validity o f the assumption. The method used was to randomly 

select the connections which may have contained timeout inferences and determine, based on the 

timestamp numbers and on the (visual) evolution o f the window whether or not the assumption 

was correct. 

4.2.1 Limitations while identifying loss and misordering 

It is true that, according to TCP specification [ARPA 1981b], retransmitted packets may have the 

same identification number as the previous instances, as the transport layers may control how the 

Identification field is incremented. However, the practical implementations do not reuse the 

identification numbers, but increment them for each IP datagram sent [Stevens 1995]. This is 

why a second instance o f a packet with the same identification was considered to be due to 

duplication rather than loss-and-retransmission. An example of such behaviour is presented in 

Figure 4.3 

Sequence number 
40000 

35000 

30000 

25000 

20000 

15000 

10000 

bme Is] 

107 



Chapter 4 - Issues related to the proposed TCP analysis 

Sequence number 
32000 

30000 

28000 

26000 

24000 

22000 

20000 

18000 

16000 

T r 
+ + 

(4) 

(3) 

(2) 

2.1245 2.125 2.1255 2.126 2.1265 2.127 2.1275 2.128 2.1285 2.120 
time [s] 

Figure 4.3 - Example of sender experiencing a mixture of packet duplication and 

misordering (top); a zoomed view of the circled area (bottom) 

Judging by the spacing o f the packets in Figure 4.3 in the top graph, it is clear that the circled 

packets are not part of a retransmitted window: the trains of packets are equally spaced and the 

congestion window is larger than the previous one. Also, the bottom graph shows the pairs of 

packets that appear to be retransmitted are closely spaced and in total there are 13 pairs o f 

packets, figure that matches a slow start increase from the previous window (7 packets long). 

The mechanism implemented to verify the ordering of the packets uses the Identification IP 

header field of the last captured packet. Because o f this, it does work only for strong-coupled 

duplication, i.e. where duplicate packets are closely spaced. An example o f such behaviour exists 

e.g. between the pairs o f packets (3) and (4) from the connection presented in Figure 4.3, which 

the algorithm is able to correctly identify as duplicate. However, the pairs of packets (1) and (2) 

from the connection do not obey the previous rule and, as a result, the second packet from pair 

(2) is reported as retransmitted. 

4.2.2 Avoidance of estimation errors due to Identification field wrap-around 

In relation to the usage of the Identification field to identify mis-ordering, there is a potential 

108 



Chapter 4 - Issues related to the proposed TCP analysis 

wrap-around problem. The field is only 16 bit long, so it takes values in the interval 0-65535. 

Therefore, considering a web server, with three flows, and k, (between the server and one, 

two, or three different clients), the sequence shown in Figure 4.4 is possible: 

t l - f l o w i ; ID = 66534; seqno n 

12 ' f l o w j ; ID = 65535 
t 3 - f l o w k; ID = 0; 

t 4 - f l o w i ; ID = 1 ; seqno n+1 

Figure 4.4 - Example of wrap-around sequence 

It can be noticed that the datagram sent at t4, although in sequence, is interpreted by the monitor 

as an apparent out-of order, when it compares the IDs o f the two datagrams. In the 

implementation, a light protection mechanism was introduced, see Figure 4.5, to avoid this 

happening, which works i f the server sends less than 32768 ( = 65536/2) datagrams between two 

consecutive segments which belong to a specific flow 

i f ( P k t . P I D >= CurrentPID+l) 
{ 
/ / i n - o r d e r PID 

CurrentPID = Pkt.PID; 
} e l s e { 

i f ( ( C u r r e n t P I D - Pkt.PID) < 32768) 
{ 
/ / i n v e r t e d packet 

InvertedIP++; 
} e l s e { 
/ / i n order PID, wrap around 
CurrentPID = Pkt.PID; 

Figure 4.5 - Procedure to avoid false out-of-order sequences caused by wrap-around 

109 



Chapter 4 - Issues related to the proposed TCP analysis 

4.3 Congestion window 

The estimation of the congestion window includes, by far, the largest amount o f guesswork from 

the inferred parameters. The method used by Paxson in tcpanaly, i.e. follow the evolution o f the 

congestion window based on the specification, is far from achievable in a single-point 

monitoring configuration, especially i f the capture point is positioned 'somewhere' along the 

path of the packets, i.e. not even at one of the endpoinls. In the single-point configuration, there 

is no guaranteed information about whether or not: 

- a packet was transmitted - the sender might have transmitted it, but it was lost in the 

sender-to-monitor segment and the loss was transparent even to the timeout identification 

routine; 

- an acknowledgment was received - the receiver sent it and it might have been lost in the 

monitor-to sender segment; 

- a packet was received - the receiver might have received it, but the acknowledgment was 

lost in the receiver-to-monitor segment; 

- an acknowledgment was sent - the receiver might have sent it, but it was lost in the 

receiver-to-monitor segment. 

The first two transparent situations described above trigger a different, unknown, transition in the 

sender, leading to a particular evolution of the congestion window: each timeout switches the 

sender to slow start sending and each acknowledgment received updates the size of the 

congestion window. The last two cases, although not affecting the sender directly, can have an 

impact on the evolution o f the congestion window: i f the lost acknowledgment was flagging an 

apparent mis-ordering due to a previous loss, the sender wi l l timeout instead o f detecting double-

acknowledging. In addition, the receiver is anonymous, therefore has an unknown 

acknowledgment policy. Under certain conditions, i.e. a low value of the delayed 

110 



Chapter 4 - Issues related to the proposed TCP analysis 

acknowledgment timer at the receiver, together with a low bandwidth x delay product, the 

receiver acknowledges every segment instead of the desired *every-other' policy, situation 

highlighted in [Paxson 1997a] and [Floyd and Padhye 2001]. 

With all these unknown quantities in place, it becomes apparent why Paxson's method cannot be 

applied for single point observation. A novel approach, described in 3.4.3, was considered: 

identify the trains of packets, either based on the number of unacknowledged packets, or based 

on the spacing between packet trains. In the following paragraphs there wi l l be highlighted the 

issues that each of these methods raises. 

The second method to determine congestion window, described in 3.4.3 is based on counting, 

every time a packet is captured, the number of unacknowledged data segments at that moment. 

The accuracy o f the method is affected mostly by the location o f the monitor in relation with the 

sender and the receiver: the closer the monitor is to the sender, the higher is the accuracy o f the 

estimated congestion window; at the other extreme, the congestion window estimate is 

Inaccurate i f the monitor is near the receiver. The reason behind this uncertainty can be discussed 

by comparing the packet exchange, as seen by the monitor, in the two extreme cases. I f the 

monitor is near the sender, it wi l l be able to identify correctly the 'peaks' in the variations o f the 

number o f unacknowledged segments, peaks that mark congestion window rounds, because the 

acknowledgments arrive only afler the entire congestion window was transmitted. On the other 

hand, when the monitor is at / near the receiver, it wi l l capture, at most, groups o f two packets 

and their correspondent acknowledgment, inferring continuously a value o f not more than 2 

packets for the size o f congestion window (which is due only to the delayed acknowledging o f 

the receiver). The situation was exemplified in Figure 3.6. 

The conclusion is that the position of the monitor in relation to the endpoints must be determined 

111 



Chapter 4 - Issues related to the proposed TCP analysis 

in order to enable or not the usage of this method. As all the near-far relationship mentioned 

before relate to the network delay between the respective hosts, the best way to determine these 

'distances' is by comparing, either continuously or retrospectively, the RTF for the two sub

networks, East and West, see 3.4.6. I f Subnetwork West RTF » Subnetwork East RTF then the 

monitor is 'near' the sender, and the method can be used; otherwise, the monitor is 'near' the 

receiver, and the inferred value wilt be inaccurate. 

The third method, identifying the packet trains based on the spacing between consecutive 

packets, is not affected by the position o f the monitor in relation to the endpoints. This is due to 

the fact that the relation between time differences from equation 3.2 is not affected by the 

absolute network delays. 

It is clear that the third proposed method wil l not work in the stationary case, e.g. for large file 

transfers, but it may succeed for smaller transfers. The following example wil l examine a 

connectivity example and try to determine the approximate size of a connection for which the 

method is still usable. 

E.g. Ethernet L A N connected via El link to Internet: 

- bottleneck bandwidth: BBW = 2 Mb/s = 256 KB/s 

- delay: RTF = 250 ms 

- maximum segment size: MSS = 1460 bytes/frame 

For the above values, the resulting congestion window (CWmax) that would produce a contiguous 

stream of packets is: 

112 



Chapter 4 - Issues related to the proposed TCP analysis 

CWn^ax = BBW-RTT = 256• 0.25 = 5\2 KB = 36*MSS 4.1 

The congestion window has to reach 36 MSS in order for the sender to transmit continuously. 

Because the inter-train time value used in 3.2 is RTT/2, the transmission window should be 

halved too. Even using the slow start algorithm, it wi l l require 48 MSS (2+3+5+8+12+18, each 

o f the figures representing the number o f packets transmitted during a single round) to reach this 

limit. Based on the Ethernet MSS, the figure translates into approximately 70 KB. Above this 

size, the method would stop working for the given conditions; however, as shown in Chapter 6, 

typical bottleneck bandwidth figures are higher, leading as well to longer transfers. Also, this 

rationale applies in the ideal case where no loss occurs; i f losses appear, the congestion window 

will be reduced, allowing the method to work even for larger data transfers. 

Further, in the generic case of an unknown congestion window increase policy at the sender, the 

monitor determines continuously i f the current (estimated) value is a valid one by comparing it 

with the possible maximum. The monitor can determine both the total RTT delay and the 

bottleneck bandwidth; therefore it can calculate the maximum delectable congestion window. I f 

the currently estimated congestion window is larger than the maximum, this is probably due to 

the algorithm not being able to identify anymore between two consecutive congestion windows, 

and the value is discarded. 

4.4 Bottleneck bandwidth 

There are two types o f issues in regards to bottleneck bandwidth estimation, from the error 

source point o f view. The first category o f errors relates to the unknown nature o f the network, 

while the second is due to the TCP implementation at the endpoints. 

113 



Chapter 4 - Issues related to the proposed TCP analysis 

4.4. J Errors due to network conditions 

Estimation o f bottleneck bandwidth may be affected by a network condition called queue 

draining^ [Zhang et al 1991], which may lead to ACK compression or/and data compression. 

Queue draining is caused by the way packets are being queued in the routers. In normal 

conditions, two packets sent with a certain delay Ati between them, due to going through 

bottleneck links with a speeds lower than the bandwidth o f their source point, arrive at the 

destination with a spacing /M2 > Atf. However, when a group of packets arrives at a router, its 

spacing wil l be affected by the size of the queue and the speed of the outgoing link. For example, 

two distanced data segments which are placed in successive slots in the queue wil l be forwarded 

back-to-back at the speed of the next link; as a result, their spacing due to the link they came 

from is cancelled. Depending on the position o f the bottleneck links and draining queues, the 

inter-arrival time of the packets, /\t2, will be smaller than the one created in normal conditions, 

leading even to the case when ^\t2 < In, [Mogul 1992], and [Bolot 1993], the authors 

observed the phenomenon o f ACK compression, where the affected packets were the returning 

(empty) acknowledgments. On the other hand, data compression was observed in [Paxson 1999]. 

This time, the affected packets were not ACK but data packets, with the same consequence: due 

to queuing, under certain circumstances, the spacing between successive packets can be lost as 

the train o f packets travels to destination. 

The proposed method relies only on data packets to estimate the bottleneck bandwidth, because 

the packets need to be transmitted back to back from the sender As a result, data compression 

does affect the measurement. However, a prior study found this phenomenon to be "relatively 

rare and small in magnitude" [Paxson 1999]. Nevertheless, to reduce the impact o f such a 

condition onto the accuracy o f the estimation, the processing wil l involve outlier removal from 

the initial estimation and averaging. 

114 



Chapter 4 - Issues related to the proposed TCP analysis 

4.4.2 Limitations and errors due to implementation issues 

The second category of issues, implementation-related, is o f higher concern. The bottleneck 

bandwidth estimation, based on the TCP timestamp option, depends highly on the TCP 

implementation o f the endpoinls. The main source o f errors in this case is the resolution o f the 

internal clock, defined as "a (virtual) clock that we call the 'timestamp clock' " with values "at 

least approximately proportional to real lime, in order to measure actual RTT." [Jacobson et al 

1992]. This definition allows the TCP implementation to choose any resolution for the 

timestamp clock, as long as it is "proportional to the real time". What is not mentioned in the 

specification, and makes room for differences in the implementations, is the minimum / 

recommended / maximum values for the timestamp clock resolution. The following presents two 

cases of such clocks that might, in fact, impede the accurate measurement o f the RTT values, for 

a generic case RTT=400 ms. 

- 100ms resolution. In this case, the tsval (the TCP timestamp echo value carried by a 

packet) wil l differentiate between packets belonging to different transmission rounds, but 

the packets belonging to the same flight of packets wi l l carry all the same tsval. As a 

result, the other endpoint wi l l be able to determine the average values for RTT, but, due 

to packets with the same tsval spanned over an interval o f up to 100ms, these values wil l 

include an error factor and, further, the RTT variations wil l be virtually undetectable; 

- Is resolution. Applying the timestamp RTT estimation does more harm than good in this 

case; packets belonging to different rounds wil l carry the same tsval^ and they wil l not be 

able to provide any reliable estimate o f the actual values for the RTT average or 

variation. 

I f considering only the sender timestamp the estimate for the bottleneck bandwidth can be only 

as accurate as the resolution of the internal clock. For a certain resolution of the TCP 

115 



Chapter 4 - Issues related to the proposed TCP analysis 

limestamps, the maximum reliable bottleneck bandwidth estimator BWmax would be 

pki_size \ _ m^(pkt_size) ^ 2 
^^^max - ^^resolution) ~ m\n\resohtion) 

For an Ethernet environment (where the maximum frame is approximately 1500 bytes), and a 

resolution o f 10ms, the resulting maximum for correctly measurable bottleneck is: 

^ ^ m a x £ / W , = = 1200000 A/y = I Mbps 4.3 

Using such an environment, anything above this speed, e.g. an El link (2Mb/s), would lead to an 

unreliable estimate. To overpass this limitation, an assumption was made that the sender is using 

delayed acknowledgments (current implementations o f Microsoft and Linux to satisfy this 

assumption). I f this is the case, the sender wi l l transmit back-to-back a pair o f data packets, every 

time a new acknowledgment is received. The distinctive mark of these pairs wi l l be that they wil l 

carry the same tsecr (TCP timestamp echo reply) value. This allows for the inference mechanism 

to work as long as the combined sender and receiver TCP timestamps include a reasonable 

timestamp. 

The original theory behind packet-pair measurement, [Keshav 1991], suggested that packets 

should be sent back-lo-back at the sender, both to simplify the calculations, but, more important, 

to increase the probability o f the packet pair to be queued at successive positions in the routers; it 

is aimed to maintain this requirement in the proposed analysis method, but there are two 

obstacles: 

- The resolution of the TCP limestamp clocks at the endpoints has to be known; otherwise, 

116 



Chapter 4 - Issues related to the proposed TCP analysis 

no proper decision can be taken regarding the accuracy of the measurement; 

- The only information about spacing o f the sender is gathered through the TCP 

timestamps values. I f their resolution is too low, there is no direct method to determine 

which of the packets were sent back-to-back and which belong to different back-to-back 

trains. 

These two requirements still exist even in the case where the sender and receiver timestamps are 

combined. This is because, i f both the sender and receiver resolution are too low, then the 

measurement might still fail. 

The first problem relates to determining the timestamp resolution o f a remote point. First, an 

implementation case study about the resolution on a few systems wil l be discussed, followed by 

a method to determine the resolution for a pair of endpoints, from a third point, i.e. the 

monitoring point. Several main sources o f information were identified for the implementations 

used during the various experiments conducted within this project, i.e. Linux and Windows. 

Linux is an open source operating system, therefore its TCP/IP implementation is freely 

available. In addition, the actual source code was presented in several publications, such as the 

in-depth analysis made by Stevens in [Stevens 1995] for 4.4 BSD. Although there are slight 

implementation changes between the various versions o f the Linux kernel, the principles, as well 

as the majority of the code explained, remained the same: in 4.4BSD, TCP resolution was set to 

500 ms, while in newer versions o f the Linux kernel, e.g. 2.2.x and 2.4.x, the variable was 

reduced to 10 ms. 

At the other extreme is the Windows TCP/IP implementation: its code is not publicly 

documented (hermetic development is one o f the reasons why, until recent versions, the 

Windows TCP clients had several bugs, highlighted particularly in [Floyd and Padhye 2001]). 

117 



Chapter 4 - Issues related to the proposed TCP analysis 

The most comprehensive source of information regarding the Windows implementation o f the 

TCP/IP stack was found in [Microsoft 2000]. Nevertheless, the document provides little 

information about the algorithms used to implement various TCP ftinctionalities, and insists on 

listing information on how to tune their values. 

None o f the above mentioned sources includes an overview of various operating systems and 

their correspondent resolutions. The most detailed information regarding this subject was found 

in [McDaniel 2001] and [Securiteam 2001]*. Therefore, amongst other information, the article 

gives a list o f the timestamp resolutions for various operating systems, list summarised in Table 

4.1 

Operating system Ticks / second Resolution [ms] 

4.4BSD, Irix, Solaris' 2 500 

Linux 2.2+, Windows 2000 100 10 

Cisco lOS 1000 1 

•More recent versions o f Solaris use a 100 ms resolution. 

Table 4.1 - TCP timestamps resolution for various operating systems (compiled f rom 

IMcDaniel 2001]) 

4.4.3 Evaluate TCP timestamps resolution 

To overcome the variety o f available sources, a method was proposed to empirically determine 

' It is interesting to note that the subject of the two articles was not TCP performance, but IT security. The author 
noted in both sources that the usage of timesiamp resolution may represent a security flaw. By observing the 
timestamp values and their resolution, an attacker can identify the operating system of a remote computer as 
belonging to a certain subset of alternatives. 

118 



Chapter 4 - Issues related to the proposed TCP analysis 

the resolution of the Linux / Windows TCP options timestamps. The resolution may be obtained 

by comparing the timestamps of two transmitted packets (ptl and pki2) with the timestamps o f 

their capture. As a result, the resolution o f the TCP timestamp clock is determined using the 

formula in 4.4 

timestamp pi^2~^^'^^^^^'^Ppki\ 
Resolution = r- : — ; — 4.4 

t^o^pki2-f^^^ph\ 

The method was tested on short file transfers (lOKB) between Linux 2.2.14 and/or Windows 

2000 hosts, using the first and the last packets in die connection as pktl and pki2. The calculation 

indicated a resolution of 10 ms for Linux and 100 ms for Windows, which matches the figures 

from Table 4.1. 

The problem is that, in order for the analysis method to function online, the resolution must be 

identified during the connection, not after it. In the above formula, the resolution was determined 

afier the connection, by reporting the difference o f capture timestamps for the first and the last 

packets to the difference o f tsval values for the same packets. The advantage in doing the 

difference between the last and the first packet is twofold: the resolution is averaged for the 

duration o f the connection and the two packets are distant enough in order to neglect the 

differences caused by changes in the packet spacing due to bottleneck bandwidth. The following 

assumption is made: 

The resolution of a timestamp clock does not vary in time during a connection' 

' It is known that errors of clock timing may appear which lead to variations in the actual values produced. The 
assumption does not refer to these variations, which should be very small relatively to the T C P timestamp 
resolution, but to the actual value set in the TCP client to use with a connection. 

119 



Chapter 4 - Issues related to the proposed TCP analysis 

The implication is that the timestamp resolution can be determined using equation 4.4 on two 

packets. The only recommendation is that the time elapsed between the two captures should be 

high enough to eliminate the errors due to packet spacing changes (e.g.: i f the two packets are 

successive, the impact o f bottleneck bandwidth on the result is very high). The best alternative to 

satisfy this condition, while performing a useful measurement for the evaluation o f the 

connection, is to use the first two packets produced by an endpoint during that connection: a 

SYN packet and its correspondent acknowledge. The advantage of this particular choice is that, 

after transmitting the SYN, each o f the endpoints must wait for the other end to acknowledge the 

packet before transmitting anything else. In this situation, the time elapsed between the two 

packets wi l l be I RTF, enough to eliminate the impact o f the bottleneck bandwidth. 

To compensate for any errors that may appear, the apriori resolution, obtained at the beginning 

of the connection from the SYN packets, is compared at the end with the value obtained from the 

first and last packet o f the connection. I f the difference between the two figures is too high, the 

bandwidth estimation should be considered unreliable for that particular connection. 

Based on all these observations, the bottleneck bandwidth can be predicted with a good accuracy 

using the TCP timeslamp, allowing the measurement o f bottlenecks o f up to lOOMb/s, as wil l be 

detailed in the trace analysis in Chapter 6. 

4.5 Fault localisation 

As section 3.4.6 discussed, the results gained from the network analysis are twofold. First to 

identify and measure/infer the current transport parameters o f a network transited by the 

monitored traffic, then to localise the extent of the possible degradations from the plurality o f 

paths to a subset o f the Internet space. The main problem in interpreting the monitoring results is 

120 



Chapter 4 - Issues related to the proposed TCP analysis 

represented by data summarising: the large number o f independent flows must be converted into 

a limited number of classes, which would allow displaying them as a whole. 

Furthermore, the network (Internet) may be split into two domains, such as the monitored 

network (inbound domain) and the rest o f the internet (outbound domain). The monitor can work 

out the distinction easily, as, in the typical case, the local network has a defined range of 

addresses (e.g. University o f Plymouth has allocated the subnet 141.163.0.0). The separation 

between the two domains is straightforward in this case: a single MP rule, which compares a 

given IP address with the specified range and determines to which of the domains it belongs. 

Expanding the case for any link in the Internet is more cumbersome due to IP localisation issues. 

Considering, for example, the above.net infrastructure [MFN 2003], a core network provider that 

connects Europe and the United States, the traffic passing through its segments is only transit 

traffic. An IP address, in order to be mapped to a West/East configuration, should be localised 

geographically into one of the two continents, which would involve a lookup in the table of 

allocated sub-networks. Even in that case, a company could register an IP network in US and 

have an office in Europe, a fact that would confuse the matters even more. Concluding, this 

division, although not fully scalable, is satisfactory for monitoring in points that connect a 

defined network to the Internet. 

At the other end, it can be argued that this type of mapping is too generic. The Vest o f the 

Internet' can be either just a hop away from the monitored link, leading to very low figures for 

loss and delay, or remote, as far as 20-30 hops away, which would lead to high values for the 

same parameters. But the purpose o f this domain division is to provide a first-degree localisation 

of possible network condition degradation to the monitored network or the rest of the Internet. 

121 



Chapter 4 - Issues related to the proposed TCP analysis 

As wil l be shown in later chapters, for the real network traffic collection, the collection host was 

connected either in a local network or hierarchically above it, in a local backbone segment. 

Because of this positioning, one o f the logical sub-networks presented in Figure 3.1 

encompassed only the local network. Implicitly, the localisation analysis identified the sources o f 

loss and delay mostly in the East sub-network (i.e. the path between the collection point and the 

remote endpoints). However, the theory was successfully tested in Chapter 5 using a controlled 

environment. 

4.6 Separation between HTTP v l . l sessions and timeout losses 

The loss timeout technique is reliable for a simple HTTP 1.0 retrieval, where the reply is a single 

object. Problems arise i f HTTP I . I is used, due to the spacing introduced between retrievals o f 

successive objects within the same connection. For such transfers, there are two choices: involve 

FrTTP analysis or infer object boundaries. The first solution requires combining the TCP analysis 

with information provided from analysis of the application layer (HTTP). Full parsing and 

interpretation o f the HTTP headers was considered to be beyond the scope of this project and 

was reserved for future work (see Chapter 9). The second choice, infer object boundaries, was 

the solution preferred for this project. 

The solution used to avoid confusion between HTTP I . I sessions and timeout losses was based 

on the assumption that a receiver should acknowledge all data before the sender would start 

transmitting the next object. As a result, the sender should be in IDLE state between transmitting 

consecutive objects with longer pauses between them, such as the session pictured from Figure 

3.3. This is why the monitor, besides doing all the comparisons with the RTT values, also checks 

whether the sender is in an IDLE state. I f the sender is not in an IDLE state and a gap longer than 

RTTavcrage+RTT^^iion appears between two successive data packets, the delayed packet is 

122 



Chapter 4 - Issues related to the proposed TCP analysis 

considered a retransmission due to timeout. Otherwise, the monitor interprets the sequence as 

normal. 

4.7 Summary 

This chapter presented a list of issues associated with the TCP analysis. Most of the discussed 

topics emphasised limitations o f the proposed method or possible sources of errors, either due to 

certain network events or due to uncertainty. The encountered problems were ordered according 

to the inferred variable. 

The discussion started with the errors that may appear in the RTT and loss estimation, 

highlighting the components of the RTT value and the uncertainty sources when inferring the 

loss events. The argument focused then on the congestion window issues, insisting on the 

limitations o f the proposed monitoring method when analysing long-lived connections. The last 

inferred variable to be discussed was bottleneck bandwidth; the section observed the two types 

of factors that may infiuence the accuracy when measuring this variable: network conditions and 

implementation specifics. 

The last two sections examined how fault localisation may be applied to a real network 

connectivity case and how to separate between successive HTTP v l . 1 objects and timeout losses, 

events that lead to similar sequences o f packets. 

Chapter 5 wi l l use some conclusions drawn from this discussion in order to evaluate the accuracy 

of the method through validation tests. 

123 



Chapter 5 - Validation of monitoring methods 

Chapter 5. Validation of monitoring methods 

124 



Chapter 5 - Validation of monitoring methods 

5.1 Introduction 

This chapter presents the tests run to validate the TCP analysis method proposed in Chapter 3. 

The tests consisted of three stages: 

- Produce connections using controlled network conditions and endpoints with known 

characteristics. The validation required a reference that can be compared with the 

proposed method in order to determine the accuracy of the estimation 

- Apply the method on the obtained connections. 

- Compare the input (known) network and endpoint parameters with the ones resulting 

from the analysis. 

The first step, producing connections with known parameters, required a controlled network 

environment. As briefly introduced by section 2.6, there are two alternatives that may be used for 

such requirements: simulation or emulation of network conditions. The first section o f this 

chapter wil l provide a detailed overview of the implementation choices used for this study. The 

second step, applying the method on the resulting packet traces, wil l use the implementation 

described in section 3.5. The comparison between the reference and the inferred parameters wi l l 

take into consideration the observations made in Chapter 4. 

The validation o f the TCP analysis method required network traces since its implementation 

phase, in order to provide validation data. The traffic had to be generated within an environment 

with controlled network parameters in order to allow comparison between the output o f the 

implementation and the actual network conditions. In addition, a controlled environment could 

introduce network conditions/impairments over a wide range of values; in comparison, the 

available real network did not offer thai much diversity, as wi l l become apparent from the results 

125 



Chapter 5 - Validation o f monitoring methods 

presented in section 6.3. The two choices of controlled environments to satisfy the above 

requirements were network simulation (resulting in synthetic traces) and network emulation 

(resulting in real traces over a simulated environment). The following two sections wil l introduce 

these two types o f environment, while the rest o f the chapter wi l l discuss the validation tests 

results. 

5.2 Testbed data - the NISTNet network emulator 

Two network emulators were identified as appropriate for this study: N!STNet [Carson 1997], a 

freely available product, and Shunra [Shunra 2003], o f commercial origin. NIST Net was 

preferred because of the flexibility offered (the sofhvare, although under development at the time 

when the experiments were made, was continuously improved by the research community) and 

financial reasons (the price quotations for Shunra were around the figures of £5-20K). NIST Net 

is a software program that runs under Linux and emulates various network conditions (e.g. 

satellite delay, congestion, loss) by forwarding packets between the interfaces of a router. The 

program emulates all network impairments: 

- packet loss, by dropping packets, either randomly or in a correlated manner, based on a 

loss rate and a correlation factor (losscorr), 

' network delay, by deferring the forwarding o f packets, using a delay distribution with 

specified mean and standard deviation values; the values of delay may be either 

uncorrelated or correlated, using a correlation factor {delaycorr). 

- bandwidth, by limiting, on a per-second basis, the amount o f data being forwarded 

between its network interfaces 

In addition, the program also emulates DRD (Derivative Random Drop) router queuing policy 

[Gaynor 1996], through two defining parameters: drdmin and drdmax (the minimum and 

126 



Chapter 5 - Validation of monitoring methods 

maximum thresholds for which a queue drops packets with a probability of /? , 0.0<p<\.0). 

However, for simplicity and consistency with current Internet conditions, the traditional 

DropTail policy was used for queues. 

The built testbed consisted o f 2 endpoints connected via 2 routers, as shown in Figure 5.1. A l l 

the machines (Routers, Monitor, and Endpoints) were running flavours o f Linux (either Suse 6.4 

or RedHat 7.2). 

Endpoint A Router 1 Router 2 Endpoint B Endpoint A ^ p Router 1 Router 2 Endpoint B 

Monitor 

Figure 5.1 - The NISTNet testbed configuration 

Both Router I and Router 2 were running NISTNet. The purpose of the testbed was to emulate a 

range of network conditions using the two routers running NIST Net, and to transport traffic 

between the two endpoints through this emulated network path. The rationale of using two 

emulation boxes was to ensure a higher complexity o f the path (by combining the network 

parameters emulated in the two routers) and to offer the possibility o f capturing packets along 

the path as opposite to right at the endpoints. Figure 5.2 presents the logical perspective for the 

above configuration. 

127 



Chapter 5 - Validation of monitoring methods 

Client 

Link 2 Link I Subnet 3 Subnet 2 Subnet 1 

Server Monitor 

Figure 5.2 - Test configuration 

As the monitoring station was placed in the middle, Figure 5.2 can be mapped onto the 

previously-mentioned East-West configuration from section 3.1.2, Figure 3.1. The West 

Subnetwork consists o f (Link I + Subnet I ) , and East Subnetwork is formed by (Link 2 + Subnet 

3). 

The traffic was generated using a command-line HTTP retrieval tool, wgei [wget 2003] at one of 

the endpoints and an Apache web server at the other end. The tool was running on one o f the 

endpoints and was requesting files placed on the other endpoint, which was set-up as a web 

server. The resulting traffic was collected at the Monitor and at the two endpoints using 

tcpdump. The parallel packet capturing from the three points allowed full comparison between 

inferred network events (e.g. loss), and the actual conditions (e.g. determine whether or not a 

packet loss actually happened). 

The generation / collection o f NIST Net traces was script based and allowed ftill control of the 

process remotely, from the monitoring station. Due to the functionality o f N!ST Net, 

independent network conditions could be defined for each direction at each router. As a result, 

four sets o f parameters had to be specified for each experiment, each of them containing values 

for delay, jitter, delay correlation, loss, loss correlation, bandwidth, queue parameters, and the 

128 



Chapter 5 - Validation of monitoring methods 

file size to be transmitted. These parameters ranged as follows for each segment: 

- Delay: [10ms; 1500ms] 

- Jitter: [0ms; 400ms] 

- Loss: [0%; 20%] 

- Bandwidth: [40000 b/s; 10 Mb/s] 

- File length: I KB, 10KB, 100KB 

Initially, NIST Net proved to be a very good testing environment as it provided the project with 

testbed data, as defined in 2.6. However, the results from the tests highlighted several problems. 

The main issue was the size o f the emulated environment: NIST Net required hardware 

endpoints for extension, endpoints that required either remote or manual control. In the testbed 

configuration used, i.e. with only two endpoints, the amount o f traffic produced could not 

replicate a large network with a large number o f aggregating connections. Of similar importance 

was the realism of the network conditions: for each incoming packet, NIST Net determined 

whether or not the packet should be dropped (according to the drop percentage and correlation), 

delayed (due to delay or/and bottleneck bandwidth emulation). This approach, although aiming 

to reproduce real network conditions, introduced errors when producing delay and bandwidth. 

The delay emulation represented the highest source o f errors. NIST Net calculated the delay for 

each packet separately; by treating packets independently, the program produced out-of-order 

packets when emulating variable delay. The simplest example o f such behaviour was when two 

back-to-back or closely spaced packets arrived at the router and the first one was delayed more 

than the second one; in that case, the two packets would come out reordered from the router. 

This behaviour had no impact for the monitoring part (the method was able to account for 

reordered packets), but it was affecting the response o f the TCP endpoint, which could interpret 

129 



Chapter 5 - Validation o f monitoring methods 

certain reordering events (i.e. a data segment being shifted by more than two slots) as losses and 

start congestion avoidance without an actual loss happening. This situation was, in fact, flagged 

by other users on the NISTNet mailing list [NfSTNet 2003]. 

NIST Net also introduced errors when emulating bandwidth, because the bandwidth estimation 

was performed on a per-second basis. This produced non-realistic packet spacing, i.e. different 

from how it should be when packets pass through a slower link. This problem was less o f an 

issue for the TCP endpoint behaviour, as the emulated figure for bandwidth was correct 

macroscopically, but could potentially lead to erroneous figures when trying to determine the 

bottleneck bandwidth using the TCP monitoring method. 

5.3 Synthetic data - the NS environment 

Al l the above experiments provided data from real transfers, encompassing transmission of real 

packets through either a controlled or uncontrolled environment. From this point o f view, they 

were all superior when compared to a synthetic environment, which only simulates the transport 

of the packets, which makes them much more appropriate for training a trace-based model. 

Nevertheless, they all suffered to some degree from at least one of the Uvo limitations: traffic 

aggregation and diversity o f network environments, depending on the controlled or uncontrolled 

nature o f the environment. Both of these limitations may be removed using a simulated 

environment, which allows reproduction o f a virtually unlimited number o f sources, connected 

via any combination of networks. 

There are several choices for a network simulator (an extensive but not exhaustive list can be 

obtained from [Kennington 2003]), but the choice was rather simple, based on the prior work in 

the area of TCP protocol design and modelling; the majority o f the authors working in this 

130 



Chapter 5 - Validation of monitoring methods 

domain used the Berkeley Network Simulator (ns) suite to implement, test, and / or validate their 

concepts. NS is, as described by its authors, *a discrete event simulator targeted at networking 

research' and provides 'substantial support for simulation o f TCP, routing, and multicast 

protocols over wired and wireless (local and satellite) networks' [NS 2003]. Beyond this short 

description, NS is a collection of models that simulate the behaviour o f various protocol entities, 

(named agents, e.g. TCP agent), network components (e.g. links and router queues) and specific 

network environments (e.g. wireless links, satellite links, etc). The user builds a script with 

specific yvs commands to create a network topology and to introduce traffic through it using the 

available agents. The script is interpreted and run by the NS environment. The result is a trace o f 

the simulated transfers, consisting o f the events that happened during the simulation, e.g. 

queuing, de-queuing, and dropping. The NS suite includes several TCP agents that can be used 

to simulate the behaviour o f TCP endpoints. From the existing choices (Reno, NewReno, Tahoe, 

etc) the FuUTCP agent was preferred, because it was the nearest to a complete TCP client, 

including features such as TCP timestamp options, vital for the functionality of the trace 

analysis. 

A problem was encountered when using the NS package to produce network traces: the output o f 

NS was different from the pcap capturing structure. NS tracing support has a very simple design: 

the resulting output is oriented towards indicating the packets as they travel between endpoints 

rather than their headers. NS produces a plain text trace, with fields corresponding to packet 

fields (e.g. there is a field for the number o f the packet, which, by multiplying with the size o f 

the packet, gives the sequence number). This is satisfactory for the main purpose o f ns, which is 

protocol efficiency or model accuracy validation, but improper for trace analysis. The only 

attempt to transform the output of A^^ into a usable form was a contributed module within 

tcptrace [Osterman 2003], but, at least at the time, it was both incomplete (it did not account for 

all the fields) and out of date (the format of the NS traces changed along the version). This 

131 



Chapter 5 - Validation o f monitoring methods 

module, was, nevertheless, used as a starting point to add to the traffic analysis tool the ability to 

use NS traces. 

5.3.1 Topology 

NS has the ability to simulate large topologies, but does not include the support for generating 

them. Although there are several programs which perform this task, it was preferred to integrate 

the topology generation with the simulation scripts for simplicity. 

As a result, the NS traces were obtained by randomly generating network infrastructures. The 

simulation aimed to include a complex structure, with three levels o f connectivity: a backbone 

running at a random speed ( I ) , having two sub-networks connected to each o f its ends through 

random speed links (2). Each sub-network had a random number of clients connected to it, all 

having the same access speed (3), but random delays. TCP connections were established at 

random start times over this infrastructure between clients from all four subnetworks. The trace 

collection gathered data from the backbone link and, for the TCP analysis, only the arrival events 

were kept for one of the backbone ends, in order to simulate packet capturing by an interface. 

Details about the program used to generate the simulation may be found in Appendix D. An 

example of such a structure may be seen in Figure 5.3. 

132 



Chapter 5 - Validation of monitoring methods 

Figure 5.3 - NS generated network structure 

The preferred solution to obtain more traces was to loop the script rather than keep the 

simulation running for longer. This was because, at the time. NS had no means to start more than 

1 transfer on a TCP client throughout one simulation session (i.e. close the connection and open 

another one). The looping also offered the advantage that, although the generic connectivity 

remained the same, each run used differenl a different number of endpoints. connected via links 

with different characteristics, leading to a wider variety of environments and traffic conditions. 

5.4 W^rA^^r tests 

The NISTNet tests used the testbed described in section 5.2. The aim was to test the capabilities 

of the monitoring method using traces consisting of actual traffic rather than simulated one. The 

VoIP validation included a single round of tests, using a smaller version o f the testbed. with only 

1 NIST Net machine. The TCP tests were more comprehensive, with variations in the network 

133 



Chapter 5 - Validation o f monitoring methods 

conditions, in order to thoroughly verify whether the method infers correctly the TCP behaviour. 

The combination of figures for file size, network delay and jitter, loss, and bottleneck bandwidth 

described in section 5.2 led to a number of 456 usable connections. Each test consisted of a 

single transfer between the two endpoints using a certain set o f emulated ne^vork values (delay, 

jitter, loss, and bandwidth). The transfer was captured using tcpdump, then analysed with the 

method described in Chapter 3. The results from the set o f traces produced were then filtered to 

keep only the useful data (some of the connections failed due to timeouts or finished abnormally 

and produced no results). At the end, the results of the inference were compared with the results 

of the measurement. 

The jitter and bottleneck bandwidth estimations, initially part of the validation, were removed in 

the final stages, for different reasons. The jitter estimation was removed due to the measurement 

characteristics: any measured jitter metric would have been different from the metric introduced 

by NIST Net. For NIST Net, the jitter was applied to each packet and it depended on the set 

parameters (distribution and correlation) and the jitter applied to the previous packet. On the 

other hand, the monitor did not measure the jitter for every packet, but only for the data segment 

- acknowledgment pairs that satisfied the RTT measurement conditions. In addition, the 

measured jitter is obtained by combining the jitter from two sets o f NIST Net emulations. For 

example, in the case o f A acting as sender and B as receiver, the RTT measured on the route 

monitor - host B - monitor, wi l l be affected by the link 2, direction AB (the data segments) and 

link 2, direction BA (the acknowledgments). Depending on how each o f the two jitter 

instantaneous values combine, the resulting jitter may be anywhere between 0 and the double of 

the value set. The bottleneck bandwidth calculations were removed due to the errors introduced 

by NIST Net. The analysis of the resulting data showed only minimal correlation between the set 

bandwidth limitations and the estimated figures. To overcome this problem, connections were 

134 



Chapter 5 - Validation o f monitoring methods 

made over a controlled path that included a low-speed (ISDN) link, followed by analysis o f the 

results. 

5.4.1 RTT measurement 

The RTT measurement section included, after filtering the experiments that did not yield any 

meaningful results, a number o f 72 samples, using various figures for the delay. During this 

round o f experiments there were no bandwidth impairments introduced via the NIST Net boxes. 

This was because, by introducing bandwidth impairments, it would have been impossible to 

obtain the real delay figures (produced by the combined action of added delay and bandwidth-

limitation delay). Previous studies and tools [Paxson 1997b], [Ostermann, 2003] used 

measurement of round trip times based on TCP acknowledgments as a reliable estimator. 

However, as shown in Chapter 3, the TCP timeslamps based measurement has the potential to be 

more accurate, as it allows a collection o f more RTT samples, regardless of the position o f the 

monitor. This is why, as well as determining the validity o f the method for actual traffic (rather 

than synthetically generated one), the purpose of this test was to compare how accurate the two 

methods are when estimating the RTT. Figure 5,4 below shows the cumulative distribution for 

the two evaluation methods throughout the dataset. 

135 



% of connections 

Chapter 5 - Validation o f monitoring methods 

100 -t—T-r-r-r-n • ^ » 1 ^ 

90 -• 

80 
70 ( b ) / \ r (a) -

60 
50 -
40 
30 
20 -
10 

I • - ' 

u 
0 001 

0 0 1 0 1 1 1 
Relative error 

Figure 5.4 - Cumulative distribution of the (a) acknowledgment-based and (b) TCP-

timestamp-based RTT estimation errors for the NISTNet delay experiments 

It may be seen that the proposed TCP timestamps inference method outperforms the traditional 

acknowledgment-based method throughout the dataset. Aside from the visual representation, the 

two methods were also compared using statistical analysis of their results. Paired testing 

[Cochran and Snedecor 1980] was used to determine whether the timestamp-based method leads 

to lower relative errors when measuring the average RTT for a connection. A hypothesis was 

made that the ac know ledge-based measurements lead to higher relative error values when 

estimating the real values of the RTT, compared with the timestamp-based measurements. The 

test involved calculation of: 

- An estimate s^^ for the standard deviation cr-of the sample mean difference D 

5.1 

n{n-\) 

where D, = relerr ack, -relerr tsopt, , with: 

o relerr ack^ - the relative error between the actual average RTT for connection / 

and the average acknowledgment-based RTT estimate for connection / 

o relerr tsopt, - the relative error between the actual average RTT for connection 

136 



Chapter 5 - Validation of monitoring methods 

/ and the average TCP timestamps RTT estimate for connection /. 

- The / quantity from Student's t distribution: 

, = ^ 5.2 

The resulting value for t was then compared with values from lookup tables (the above 

mentioned [Cochran and Snedecor 1980] includes such tables in the appendices section) in order 

to evaluate the statistical significance of the hypothesis. 

Based on the data from Figure 5.4, the resulting values were: O = 0.0825434, ^- = 0,0315989, 

and f = — = 2.61222. Using the lookup table, this value is situated between the 2,5% 

probability, 2̂.5% = 2.29, and the 1% probability, 7^,^= 2.648, for a measurement with 70 

degrees of freedom. It may be therefore concluded that acknowledgment-based RTT 

measurements lead to relative errors 0.08 higher than the TCP timestamps-based RTT 

measurements with a statistical confidence o f more than 97.5%. 

To further clarify the results, it was investigated whether the high error values may have been 

produced by other factors rather than errors in the inference mechanism. Examples of such 

factors may be additional delays, such as processing delays, which become significant for low 

values of the introduced delays. To determine whether this is the case, a graph was produced to 

observe how the inference relative errors varied as a function of the introduced delays. 

137 



Chapter 5 - Validation of monitoring methods 

Relative error 
1 

0.1 

0.01 

0.001 

i t * 
* * 

10 100 1000 
Delay introduced [ms] 

10000 

Figure 5.5 - Plot of relative errors of T C P timestamp based inference as a function of delay 

introduced by NISTNet 

Figure 5.5 shows the relationship between the introduced delay and the relative errors when 

using TCP timestamps-based inference. It may be seen that higher error values appeared only for 

low delays, where it is likely that the influence of other delay sources was relevant for the result. 

Overall, for the entire dataset, the traditional, acknowledgment-based inference had an average 

relative error o f 23.1%, while the TCP timestamp based method produced errors o f only 13.8%. 

One of the causes for this difference in accuracy is the advantage that TCP timestamp inference 

brings in terms o f number o f samples, as highlighted in Chapter 3. To illustrate the difference 

between the number of samples, Figure 5.6 below shows the distribution of die ratio between the 

number of samples obtained with each of the two methods for the entire set o f experiments (the 

whole set was used for these statistics because the actual RTT values were not relevant, but the 

number o f RTT samples obtained for each connection). 

138 



Chapter 5 - Validation of monitoring methods 

% of cxKinectwns 
100 

0 001 001 0 1 
RTT samples (ack-based/TCP-timestamp-based) 

Figure 5.6 - Cumulative distribution of the acknowledgment-based RTT samples / TCP-

timi'stamps-based RTT samples ratio for the NIST Net dataset. 

The graph shows that the TCP-timestamp-based method always yielded more samples than the 

traditional method, w ith an average o f 0.38 for the ratio between the two. It is true that the 

improvement is better for longer transfers, which, as wil l be seen in the trace analysis section, is 

not always the case for real tratTlc. However, regardless of the size of the file, the timestamp-

based method will provide more measurement samples and better estimates of the actual delay 

values. 

5.4.2 Loss measurement 

A subset o f 326 connections (from the 456 generated), included packet loss varying between 1% 

and 62%. The loss was distributed amongst the 4 segments either symmetrically (same for all 

four segments - 2 routers x 2 directions) or asymmetrically (e.g. introducing more/less delay on 

the forward/return direction). Aside from loss, various amounts of delay and delay variation w ere 

also introduced to simulate a realistic environment. NIST Net maintained the number o f lost 

packets, a facility which was very useful in the analysis as it allowed comparison between the 

reported number of discarded packets (by NIST Net), and the estimated number of lost packets, 

139 



Chapter 5 - Validation of monitoring methods 

as determined b> the TCP analysis. The results o f the TCP inference were compared on a per-

segment basis with the N/ST Net data in order to be able to isolate degradations in terms of 

packet loss, equivalent with an East-West divide, as explained in Chapter 3. The results are 

presented below in Figure 5.7. 

% of connections 
100 

Relative en-or 

Figure 5.7 - Relative error between the inferred and reported losses for (a) LostBefore and 

(b) LostAfter loss events. 

Figure 5.7 indicates similar shapes for the distribution of the two measured parameters. 

Statistical analysis was employed to determine which of the two types of loss is more accurately 

identified. The method was the same to the one used for Figure 5.4: use paired testing to 

determine which variable has higher values. The hypothesis was, based on the shape of the two 

distributions, that LostBefore events lead to higher relative measurement errors in comparison to 

LostAfter events. The resulting average difference between the two resulting type of errors was 

D = (LostBefore_err, - LostAfter_err,) = 0.299314. The calculation returned 5 - = 0.0890647 

and / = 3.36064. Using the lookup table, this value is situated beyond the 0.1% probability 

PQ ,^ = 3.2905. Based on this, it was concluded that LostBefore measurements can lead to higher 

relative errors than LostAfter events w ith a statistical confidence of more than 99.9%. 

140 



Chapter 5 - Validation o f monitoring methods 

The graph does indicate that, although for 40%-50% of the connections the method appeared to 

be accurate, errors appeared throughout the rest o f the samples. In fact, 20% of connections 

appeared to have more than 100% errors in the estimation. It is true that some of these errors 

may have been genuine mis-interpretation o f the TCP monitor. However the basic support that 

NIST Net provided for reporting loss, cumulative number of losses, did not allow any further 

analysis into the sources o f the errors. To determine the problems, some experiments were run 

with data collected at the sender. Based on manual analysis o f these traces, it was concluded that 

the errors may have been the result o f other events that generated packet loss unaccounted for by 

NISTNet: 

- events leading to higher estimates than the reported figures: packets dropped by the 

routers, losses on the reverse path (dropped acknowledgments, forcing the sender to 

timeout and retransmit), erroneous retransmissions (an example of such retransmissions 

wil l be presented in section 5.5.2) 

- events leading to lower estimates than the reported figures: multiple drops o f the same 

packet, drops o f non-data packets. 

Due to these multiple uncertainty sources it was decided to expand on the accuracy o f the loss 

inference in the NS tests, which offered a better controlled environment, with fewer sources o f 

error and comprehensive reporting functionality. 

5.4.3 Bottleneck bandwidth measurement 

As mentioned in the introduction section, the bottleneck bandwidth experiments failed to show 

any relevant results. To overcome the lack o f results, a round of 50 experiments was run within 

141 



Chapter 5 - Validation of monitoring methods 

the Actema company network over a network path that included a 64Kb/s ISDN link, as shown 

in Figure 5.8, in order to determine the efficiency of the bottleneck bandw idth estimation. 

Client H 
10Mbps 

Ethernet L A N 
10Mbps 

Ethernet LAN 64kbps 
ISDN link 

10Mbps 
Ethernet LAN Server 

10Mbps 
Ethernet LAN 

Figure 5.8 - Block diagram of the bottleneck bandw idth testbed 

Each experiment consisted of sending a file between the two endpoints, one acting as a server 

and one acting as a receiver, and capturing the resulting packets at the client side. During the 

experiments the size o f the file being transferred was varied (10KB and 100KB) in order to 

observe the efficiency of the method when transferring small/large objects. The results o f the 

measurements are presented below. 

% of connections 
100 

0 0001 0 001 0 01 

Relative enor 

Figure 5.9 - Cumulative distribution of relative error for the bottleneck bandwidth 

estimation using a 64kb/s bottleneck 

The resulting distribution from Figure 5.9 shows that the bottleneck was accurately identified 

throughout the batch. The accuracy was reflected also in the average figure - the average relative 

error was 1.14%. The number o f samples was also relatively high. The traces produced 41 

samples/transfer for each of the 100KB files and 4 samples/transfer for the 10KB files allowing 

142 



Chapter 5 - Validation of monitoring methods 

observation of any possible variations in the average per-connection figures. 

5.4.4 Conclusions 

The NIST Net experiments offered a comprehensive image for the evaluation of the RTP 

monitor. The analysis indicated that the monitor was able to identify the location o f the 

degradation in relation to the monitoring point based on the combined RTP-RTCP analysis. 

Also, both measured parameters (packet loss and jitter) were synonymous with the introduced 

degradation. 

The results were less encouraging when evaluating the TCP connections using the TCP monitor, 

mainly due to the various sources of error that NIST Net introduced. The delay experiments 

encountered variations in the RTT estimation error, but indicated that the TCP-timestamp-based 

estimation produced a more accurate estimate of the RTT. This was due to the higher number o f 

estimation samples for each connection. The errors recorded for some o f the experiments 

appeared to increase for smaller values o f the introduced delay. It was concluded that they may 

have been caused by factors relating the actual network used for testing. The loss experiments 

were more affected, with high errors between the estimated losses and the actual figures recorded 

by NIST Net. A list o f likely causes behind these errors was presented, all indicating that 

synthetic traces may prove to be a better alternative for loss evaluation. Finally, as described in 

Chapter 5, the bandwidth estimation did not produce any reliable results due to the microscopic 

behaviour o f NIST Net. However, a batch of connections was used as an altemative means of 

testing and indicated that the bandwidth estimation was reliable, generating a relatively high 

number o f samples even for small file transfers and producing accurate estimates throughout the 

batch of connections. 

143 



Chapter 5 - Validation of monitoring methods 

5.5 N S tests 

5.5.} RTT tests 

The structure from Figure 5.10 was used to generate 100 different batches o f connections. The 

network reproduced a 3-tier structure: access (links 4-2 and 5-3), aggregation (links 2-0 and 3-1), 

and core (link 0-1). The links were set with the following parameters: 

- Access / aggregation / core bandwidth - variable I -10 /10-100 / 10-100Mb 

- Access / aggregation / core delay - variable 0.01 -0.05 / 0.01 -0.05 / 0.05-0.1 s 

- Gateway / Core router queue limit - 10 slots 

(3 ) 

(Q) ® 

Figure 5.10 - NS configuration used for R T T tests - path comprising three types of links: 

access (4-2 and 3-5), aggregation (2-0 and 1-3), and core (0-1). 

The word *variable' indicates that the parameters were generated randomly with a uniform 

distribution for each experiment, using the internal NS random number generator. The two 

figures for each variable indicate the boundaries between which the respective variable was 

144 



Chapter 5 - Validation of monitoring methods 

generated. The bandwidth was set to relatively high figures (Mb/s) in order to reduce the impact 

of queuing delay (relative to the propagation delay) on the results (this is w hy the queue limit for 

the gateway was also set to a low value). The purpose of this setup was to equal the total RTT 

with the sum of the simulated link delays, which was easier to compute from the script; this 

would allow comparison between the estimated total RTT and the sum of simulated link delays. 

After generating the traces, they were filtered to keep the trace as captured in a single node and 

then analysed using the proposed method. The estimated delay and bandwidth figures were 

compared w ith the set link delays and the bottleneck bandwidth. The results o f the analysis are 

shown below in Figure 5.11. 

0001 0 0 1 

Relatrve error 

Figure 5.11 - Cumulative distribution of the relative error between the sum of l inks delay 

and the estimated RTT 

The distribution of the resulting RTT relative error shows that the method estimates the delay 

accurately. The resulting average relative error was only 2.61%. It is worth noting that the errors 

were probably even lower due to ignoring the queuing delay when computing the real delay 

values. Support for this, not shown in the above distribution, is that all the RTT estimates were 

higher than the actual RTT values. 

145 



Chapter 5 - Validation of monitoring methods 

1e-05 0 0001 

Relatrve error 

0 001 001 

Figure 5.12 - Cumulative distribution of the relative error betneen the actual bottleneck 

bandwidth and the estimated bottleneck bandwidth 

The bandwidth estimation also appeared to perform very well, as pictured in Figure 5.12. The 

method estimated correctly the bottleneck bandwidth throughout the batch, with an average 

relative error o f only 0.02%. It must be said that this virtuall\ perfect match may have been also 

due to the fact that the trace in question is a simulation; therefore all the timings are ideal and not 

affected by any external factors. Also, the TCP options timestamp mechanism, as implemented 

in the TCPFull agent, uses the simulation clock, therefore it has a l^is resolution. 

5.5.2 Loss tests 

A network topology likely to lead to congestion, shown in Figure 5.13, was used to produce the 

traces for loss testing. The end networks, running at lOMb/s, having each 10 nodes, were 

connected via two routers with 10-slot queues to a 2Mb/s backbone link. The endpoint nodes 

connected to node 0 were set as the senders and the nodes connected to node I were the 

receivers. The simulation lasted for a random time between [10s;20s] and had connections 

starting at random moments and running for random periods between [5s, 15s]. The queues of the 

two backbone nodes (node 0 and node 1) were set to 20 slots. 

146 



Chapter 5 - Validation o f monitoring methods 

Figure 5.13 - Network topology used for losses - two 10-host lOMB/s networks connected 

via a 2Mb/s backbone l ink (between nodes 0 and I) 

The above topology was used to run several simulations, leading to a total number o f 100 

connections collected. The traces were collected from the receiver side o f the backbone (node I ) . 

Due to the logging capabilities of NS, it was possible to include in the trace the packet drop 

events. The results from the TCP analysis o f the NS traces were then compared with the number 

of dropped packets, as reported by NS, The results are shown below in Figure 5.14 

147 



Chapter 5 - Validation o f monitoring methods 

Lost packets t p a 
14 r 

12 

10 

8 

6 

2 

- T r 

' 0 10 20 30 40 50 60 70 80 90 100 

Connection no. 

Figure 5.14 - Plot of the lost data packets for each connection (x) as resulting from the TCP 

analysis and (+) as reported by the SS trace 

It may be noticed that the method estimates correctly low values, but it appears to overestimate 

for higher loss rates. The over-estimation cases are in fact due to avoidable retransmissions. An 

example o f such a connection is presented in Figure 5.15; the graph uses data from Figure 5.14 

(connection no. 25), but collected right from the receiver rather than from node I . The chosen 

case is one of the worst in terms of discrepancy betw een the estimated figures for lost packets vs. 

the number of dropped packets, as reported by NS. 

Sequence number (relative) 
6COO0 

50000 

40000 

30000 

20000 

10000 

J 

r 

T 1 1 r 

J I L J L . 

0 0 5 1 1 5 2 2.5 3 3 5 4 4.5 5 

time [s] 

Figure 5.15 - Plot of (^) sequence numbers f rom sender, ( \) acknowledgments numbers 

f rom receiver within a connection exhibiting erroneous retransmissions 

148 



Chapter 5 - Validation of monitoring methods 

Out of the last 20 segments transmitted in order afler 1.6s, only 6 o f them were dropped. The 6 

dropped packets are the ones reported by NS ( 1 ^ 4 ^ 7*, 12^ 14^ M"^), while some of the rest, 

although not lost, were incorrectly retransmitted by the sender due to receiver not returning any 

acknowledgments. It is worth noting that the 7 erroneous retransmissions were avoidable, but 

they were caused by to the position of the lost packets rather than faults in the retransmission 

timeout calculation. For example, the 2-segment window arrived at 2.8s, included I dropped 

segment (the 7^ from the original window), plus one erroneous retransmission (the 8* segment, 

not lost during the first transmission). 

Summarising, the method provides an estimate o f the loss rate as perceived by tfw receiver 

rather than the actuai loss rate, as existing in the network. However, as visible in Figure 5.14, 

the two figures coincide for small transfers and reduced number o f losses. 

5.5.3 Congestion window 

There is no monitoring mechanism within NS that allows monitoring of the congestion window; 

the trace support outputs only header fields, not agent status. However, the TCP client used for 

the simulations (TCPFull) did include an internal variable cwnd_ that indicates the size o f the 

current congestion window. In order to observe the evolution in time, the source code was 

modified to print in a separate trace the values of the cwnd_ variable. Unlike RTT, bandwidth, 

and loss values, which require an average figure, congestion window estimation should reflect 

the evolution o f the variable in time. This is why the best choice to compare the inferred values 

with the actual figures was considered to be graphical comparison. To illustrate the comparison, 

a connection example was used below in Figure 5.16 

149 



Chapter 5 - Validation of monitoring methods 

Sequence number (relative; 
80000 

30000 

20000 

10000 

Figure 5.16 - Plot of the relative sequence numbers for a connection w ith congestion 

\\ind(»\\ limited by the receiver 

The connection evolved in slow start, then, from 4s onwards, the congestion window was limited 

by flow control mechanisms. The result of the comparison between the intemal congestion 

window value and the inferred values is presented below in Figure 5.17 

Conge »n window (data segments] 

time [s] 

4 5 5 5.5 6 6.5 

Figure 5.17 - Plot of congestion window values as resulting from { ) NS internal variable 

cwnd_ and ( \) TCP analysis inference (based on the connection from Figure 5.16) 

The graph indicates that there is a phase shift of approximately 1 RTT between the real values 

and the corresponding inferred ones. For example, the first congestion window (1 segment), 
150 



Chapter 5 - Validation of monitoring methods 

appears at 1.4 seconds; however, the corresponding inferred value appears 0.5 seconds later. The 

delay is maintained throughout the connection. This delay is due to the way the method works: a 

certain congestion window is inferred only when the first packet from the next round arrives, 

which is 1 RTT later. Considering this note, it may be seen that the inference follows the actual 

value throughout the connection. The only apparent error is the last value, which was recorded as 

17 instead of 20. This was because the last round of packets did not include 20 data segments, 

but only 17. 

The method does work even in the case of loss, but with a few limitations. An example o f a 

connection that exhibited losses is given in Figure 5.18. 

Sequence number (relatrve) 
50000 

45000 

40000 

35000 

30000 

25000 

20000 

15000 

10000 

5000 

I 1 r 

J i _ 

-I 1 1 1 — ^ ' V 

J 1 1 1-

4 5 6 

time [si 

8 9 10 

Figure 5.18 - Plot of the relative sequence numbers for a connection 

The connection shown above had two lost packets, both around 3.75s. Both losses were part of 

the same round (appearing circled in the figure). The size o f the congestion w indow at the end of 

that round was 18 data segments; the dropped segments were the 9^ and the 18^. The first loss 

was retransmitted due to the duplicate acknowledgments received for the 10^ - 17**' segments. 

This led to a window of 10 segments (inflated from I segment to 10 segments by the duplicate 

acknowledgments). The second loss was retransmitted due to timeout because the receiver issued 

151 



Chapter 5 - Validation of monitoring methods 

only one cumulative acknowledgment after receiving the missing segment. As a result the 

congestion window was reset to 1 segment and the sender switched to slow start. A comparison 

between the real values and the inferred ones is given below in Figure 5.19 

Cor>^estion wirvJow [data segments] 

1R 

16 

14 

12 

10 

8 

5 

4 

2 

c2 

4 5 6 

time [8] 

10 

Figure 5.19 - Plot of congestion w indow values, as resulting from (+) NS internal variable 

cwnd_ and (\) TCP analysis inference (based on a connection with losses) 

It may be seen that the inferred values followed the internal variable in all but two cases, marked 

aseJ and e2 on the above figure. The first error (el) was produced due to the two lost segments 

missing from their correspondent window. The monitor counts the number of segments rather 

than the covered sequence space and, because 2 segments were lost from the 18-segment 

window, it produced a figure o f 16 segments. The second error (e2) was produced due to the 

retransmission of the first lost segment, together with the 10 data segments which formed the 

actual window, resulting in an inferred value of 11 instead of 10 segments. 

5.6 Summar\ 

This chapter presented a collection of various tests that aimed to evaluate the accuracy o f the 

TCP monitoring method proposed in Chapter 3, using two types of environments: a controllable 

152 



Chapter 5 - Validation of monitoring methods 

real environment, produced with a network emulator and a variety o f synthetic environments, 

based on a network simulator (yV5). 

The network emulation round led to a mixture o f results for the TCP analysis. The RTT tests led 

to low relative errors, increasing only towards lower delay values, likely to be due to the network 

propagation and additional processing delays. According to the tests, the method appeared to 

estimate less accurately the packet loss, with only less than 50% of the connections leading to 

correct estimates. It was observed that, aside from the incorrect interpretation o f the packet 

sequence by the TCP monitor, there were multiple sources of errors, all likely to affect the result 

of the packet loss figures reported by NIST Net. Finally, the bandwidth tests were inconclusive 

due to emulation limitations within NIST Net. To compensate, a round of tests was run in a real 

environment with controlled endpoinls. The results were very good, indicating very low relative 

errors in the bottleneck bandwidth estimation. 

The results obtained from the synthetic traces indicated high accuracy for delay, bandwidth and 

congestion window estimation. The trace support provided the means to study the differences 

between the estimated packet loss and the logged loss events. The analysis revealed that the 

estimated loss is in fact, as highlighted in section 4.2, a better approximation o f the network loss 

as inferred by the client. This figure, although it does not indicate the real number of lost 

packets, is more relevant when evaluating the performance achieved by a connection. 

After benchmarking the accuracy o f the method proposed throughout this chapter, the next 

chapter wil l apply the developed implementation on real traces. The discussion wil l present the 

characteristics and limitations of the environment used, then wil l describe the findings o f the 

trace analysis, aiming to offer a holistic image of Internet paths and web transfers. 

153 



Chapter 6 - Analysis of Internet traces 

Chapter 6. Analysis of Internet traces 

154 



Chapter 6 - Analysis of Internet traces 

6.1 Introduction 

This chapter presents the results obtained when applying the TCP analysis method proposed in 

Chapter 3 onto real network traces. The aim is to obtain an image of Internet paths parameters, as 

observed from a single collection point. 

The traffic produced employed two different methods: either provide a web client that includes 

scripting support with a list of web pages to visit, or use actual traffic, as produced by real users. 

The two alternatives correspond to the "semi-controlled data" and "real data" cases introduced in 

section 2.6. The traffic was collected and stored in packet traces for offline analysis. It is true 

that offiine trace analysis does not make use o f the online capabilities of the developed method, 

but it allows repeatability o f die analysis and changes i f certain algorithms appear to introduce 

errors. 

The study of the results wil l follow the range of network- and endpoint-related parameters that 

the method can infer: packet loss, round-trip delay, bottleneck bandwidth, and congestion 

window values. It is aimed to observe whether influencing factors are reflected in the resulting 

distribution, particularly when analysing the variation o f delay. The images obtained from the 

two sources o f data (semi-control)ed and real) wi l l be compared to determine whether the overall 

network characteristics are affected by the amount and diversity o f data collected. 

6.2 The R Y L traces 

The semi-controlled data collection was based on the idea used by Neil Cardwell to prove the 

efficiency o f his TCP performance model in [Cardwell et al 2000]. He used the Random Yahoo 

155 



Chapter 6 - Analysis of Internet traces 

Link (RYL) [Yahoo 2003], a Common Gateway Interface (CGI) script within the Yahoo website 

that redirects the HTTP client to a random web page, to connect to a few web-sites and use the 

resulting traces to validate his model. The same principle was used for this project, i.e. the 

functionality of RYL, but on a much larger scale, as the purpose was not only to validate the 

TCP model, but also to build it. 

The RYL-based experiment was run in two rounds, the first during the autumn 2001 and the 

second during spring 2002. The resulting traces were filtered repeatedly to remove unfinished, 

reset, and incomplete connections, (which were considered inappropriate for TCP analysis), as 

well as I-packet object transfers (which were producing inconsistent throughput figures and did 

not indicate any TCP behaviour). The filters applied depended on the purpose of the analysis; as 

will be shown in section 7.1, bottleneck bandwidth analysis, for example, required TCP 

timestamps present, and any connections that did not use them had to be removed from the 

bandwidth statistics. However, RTT estimation did not require them; therefore such connections 

were kept in the delay statistics. 

The retrieval used wgei, the command-line HTTP client used previously in the NIST Net 

experiments, and was automatic, controlled with a script described in Appendix B.3, The capture 

was performed, as in previous cases, using tcpdump; all the processes (control, retrieval, and 

capture) were running on the same computer. When the first round of experiments was run, the 

latest version of wget at the time did not allow for a full download of the web pages (e.g. for a 

page with one or more images or embedded objects, only the HTML file was retrieved). At the 

second round of experiments, the newer version of wget had the facility to parse web pages and 

download the objects hosted on the same server with the page), which allowed a rough 

estimation of the actual content of the page. In the case of an HTTPl.l client, these objects 

would be downloaded in a single connection, which gave an approximate indication of the actual 

156 



Chapter 6 - Analysis of Internet traces 

length, in terms of size, of a TCP connection making full use of HTTPI.I. Even at the second 

round of experiments, after all the enhancements, wget still proved to be restrictive for the RYL 

experiments due to its limited capabilities. Its latest version did not include some major 

functionality such as the support for frames, persistent connections, or pipelining', all because 

the program did not support HTTP v l . 1 

The resulting traces were successfully used in the model training and testing, as they contained 

all the necessary data for analysis (the snaplen variable within Icpdump, which controls the 

number of bytes saved from each captured packet, was set to 300 to retrieve, aside from the 

TCP/IP headers, some of the HTTP tags). 

6.3 The real network traces 

NIST Net introduced, as seen in the previous section, several errors when reproducing real 

network environments, in spite of emulating network conditions, errors that affected the 

accuracy of both monitoring and prediction methods. In order to overcome this problem, the data 

collected had to be real traffic, produced by real clients in real networks - real traces or 

uncontrolled data, according to the above taxonomy. 

The procedure of traffic collection is straightforward for 10/100Mbps Ethernet networks: 

connect a computer at the tapping point and capture all the packets going to the uplink. The 

capture requires only a computer equipped with an Ethernet network card and it can be done 

using, as in previous case, tcpdump, the Linux packet capturing program. 

The main problem relating to network trace analysis is gaining access to an aggregation point. 

According to the author, there are no plans to ^ ^ ^ ^ ^® future in these areas 



Chapter 6 - Analysis of Internet traces 

The two main concerns of a network administrator when allowing such a device to be connected 

in his/her network relate to service disruption and privacy. Service disruption may occur only at 

the hardware setup time, i f a hub must be connected to the network core, and along the 

monitoring process, i f the hardware used to interconnect the capturing computer (the cables and 

the hub) is of inferior quality and degrades the system. These issues are less important when 

compared to privacy: the saved traces will contain all / parts of user data thai travelled through 

the network. 

The trace collection required a trusting relationship between the network administrator and the 

person collecting the data. Due to the limited contact with ISPs, the only place it was possible to 

collect traces was the University of Plymouth network backbone. The capturing used port 

mirroring at one of the routers that connect the UoP end-network to the JANET uplink. The 

program used for capturing was tcpdump, with a port 80 filler applied, in order to collect only 

the HTTP traffic 

The UoP trace collection, in spite of appearing to be the ideal solution, had several limitations, 

relating to the size of the environment, OS characteristics, and diversity of the studied 

environment. 

It may be argued that the browsing behaviour and the type of websites accessed may be 

considered rather limited, because the network users (students, lecturers, and researchers), may 

have had similar interests. The question is whether conclusions drawn from this network are 

comparable with results provided by larger traces, collected from higher aggregation points. 

The second issue, OS characteristics, impacted only one of the estimated parameters, network 

bandwidth; the problem was caused by a limitation in the monitoring method rather than a 

problem of the network. The method uses the TCP timestamp options header to estimate the 

158 



Chapter 6 - Analysis of Internet traces 

bottleneck bandwidth, as explained in section 3.4.3.2. Windows 2000 was the typical desktop OS 

at the lime when the traces were collected Although the TCP client includes implementation of 

TCP timestamps, their use was not enabled by default. However, recent versions of Linux 

distributions have all TCP timestamps implemented and enabled in the TCP client. As a result, 

the resulting bottleneck bandwidth estimation is likely to have been produced only by the 

requests from the Linux machines. 

The third problem encountered was the variety of the environment. Regardless of the amount of 

aggregate traffic collected, the topology of the environment was rather static: the University of 

Plymouth network was connected to the Internet, through the Joint Academic Network (JANET) 

- the network that connects the education organisations throughout the UK [UKERNA 2003]. As 

a result, the first 8 hops of all paths were within the JANET infrastructure, as shown in Figure 

6.1 by a traceroute run from the computer on which some of the RYL tests were run to 

www.hotmail.com. Because of this, the first 8 hops were common for all connections, but the 

routes diverged at the exit from JANET, depending on the destination host. 

bogdan@tester : > t r a c e r o u t e www.hotmail .com 
t r a c e r o u t e t o www.hotmail .com ( 6 4 . 4 . 5 4 . 7 ) , 30 hops max, 40 b y t e 
packets 
1 141.163.77.253 (141.163.77.253) 1 ms 0 ms 0 ms 
2 141.163.7.14 (141 .163 .7 .14) 0 ms 0 ms 0 ms 
3 141.163.58.250 (141.163.58.250) 1 ms 1 ms 0 ms 
4 man-gw-1.bwe.net .uk (194.82.125.177) 6 ms 5 ms 4 ms 
5 b r i s t o l - b a r . j a . n e t (146.97.40.101) 4 ms 4 ms 4 ms 
6 p o l 3 - 0 . b r i s - s c r . j a . n e t (146 .97 .35 .29) 4 ms 4 ms 4 ms 
7 p o O - 0 . r e a d - s c r . j a . n e t (14 6 .97 .33 .10) 5 ms 5 ms 5 ms 
8 l o n d o n - b a r 3 . j a . n e t (146.97 .35 .126) 6 ms 6 ms 6 ms 
[...] 

Figure 6.1 Part of the traceroute output from UoP network to www.hotmail.com 

As a result, the performance of the resulting traffic was exclusively influenced by the position of 

the remote endpoint. For remote endpoints connected in 'similar or bener' networks (i.e. 

159 



Chapter 6 - Analysis of Internet traces 

networks connected to UoP through paths with comparable or larger bandwidth and low RTT), 

the distributions obtained for loss, delay, bandwidth, and, implicitly, for throughput, are fairiy 

narrow. More details on the network environment limitations and on the impact they may have 

had on the resulting statistics are offered in section 7.I.L It is worth mentioning here that the 

connectivity parameters did change in time, as the UoP network went through a major internal 

upgrade in the autumn-winter of 2001. This upgrade had a radical impact on the quality of the 

network, improving the end-to-end parameters as it will be seen throughout section 7.1 

With regards to the public traces, the only source identified was the Passive Measurement and 

Analysis initiative [PMA 2003]. The PMA holds an archive of relatively large network traces 

collected from 31 different locations using various physical network technologies to connect, all 

'sanitised' to protect the identity and privacy of the users that created the traffic. The advantages 

are obvious with regards to this source of data: variety of environments, amount of collected 

traffic (which lead to a higher possibility to find traffic generated from non-Windows clients). 

However, there were three main issues when using this traffic for analysis: the data formats, the 

way the data fiows were collected, and the content of the packets in the trace. 

1. Data formats. The traces from NLANR (the umbrella of PMA and AMP, as explained in 

section 2.3) come from different network environments (e.g. ATM, FDDI, Packet over 

SONET) and were captured using different programs / hardware (coral, DAG3, etc), 

which lead to a variety of formats for data. This obstacle was easy to overcome, as the 

NLANR website provides a wide range of tools that allow conversion from any of the 

capturing formats to pcap, the format used by the implemented traffic analyser. 

2. Data collection. Because they were collected more for overall analysis (e.g. number of 

flows, number of bytes per flow, number of bytes per packet), a lot of the traces, 

especially from ATM, include the traffic only one direction, rendering any TCP analysis 

160 



Chapter 6 - Analysis of Internet traces 

impossible. Some of the traces, the ones captured using the CoralReef suite [CoralReef 

2003] were bi-directional but, nevertheless, they had a clock drift between the two 

interfaces, which lead to erroneous figures for the delay statistics. 

3. Captured content. All the traces were 'sanitised* for privacy purposes; as a result, none of 

them included any TCP extensions or data content. This affects the performance 

estimation, as no inference can be made in regards to the bottleneck bandwidth (using the 

TCP timestamps options) or the server that generated the traffic (using the HTTP 

headers). 

For the above reasons, the real trace analysis was limited to studying the UoP traces. Details on 

the actual statistics obtained are presented in section 7.1. The traces were also used in the 

validation process of the proposed TCP performance prediction method, described in details in 

Chapter 8. 

6.4 Random Yahoo Link traces analysis 

6.4.1 Network topology and connectivity 

It is fair to admit that the RYL analysis was limited in the sense that there was a single 

connection point, the UoP network. Further, the UoP network is connected to the Internet, via a 

single link to the UK academic network, JANET. This is why, after the spring 2002 round of 

connections, an experiment was carried out in order to estimate the diversity of individual paths 

explored by the RYL connections. The experiment consisted of running traceroute on a random 

subset of the sites - 350 out of the 2744 unique servers which were contacted during this second 

round. It is true that the experiment was not carried during the data collection but after it, which 

may have introduced slight alterations to the results. In spite of the time difference, it may be 

161 



Chapter 6 - Analysis of Internet traces 

assumed that the overall distribution did not change considerably (its shape resembles the one 

from prior studies such as [Hyun et a! 2003]). 

Due to the topology characteristics, all the routes were the same for the first 8 hops (up the Janet 

backbone). Because of this, the traceroute command was started each time with an initial TTL of 

9, to reduce the number of packets generated. Some of the traces failed to reach the destination 

due to one of the following reasons: 

- Long path. The path up to the remote endpoint was longer than 30 hops. Such traces 

showed no errors and a valid IP address at the last hop, but this last hop was different 

from the targeted address. This category could have been removed by using the "-m" 

option of traceroute but, unfortunately, the option was not considered at the time of the 

experiment 

- Administrative prohibitions. Routers that did not respond to the iraceroule probes (or 

dropped them altogether). Such traces included valid IP addresses up to a certain hop, 

then either no response for any of the following hops (up to hop 30) or an 

administratively prohibited flag. This is one of the reasons why traceroute-based path 

measurement tests may prove to be less successful in comparison with non-intrusive TCP 

analysis. 

- Host unreachable errors. A remote router would report that the requested host is 

unreachable. 

Out of the 350 sites, 23 probes failed due to administrative prohibitions, 22 paths were longer 

than 30 hops, and in 91 cases one of the routers along the path dropped the probe. These 136 

probes, although not complete, indicated the route up to the router that was prohibited / did not 

respond / reported a host unreachable. This is why, when evaluating the variety of paths, they 

162 



Chapter 6 - Analysis of Internet U ĉes 

were taken into consideration up to the router that stopped the probe. 

Two sets of paths were created: one containing all the 350 probes (but with the faulty entries 

removed), referred to here as all_probes, and one containing only the 210 probes that reached 

their destination, named goodj)robes. The paths from the two sets were then compared hop-by-

hop, i.e. hop 9 from all routes, then hop 10 from all routes, and so on, up to the last router before 

destination, to determine the number of unique IP addresses for each hop. The method is not 

100% accurate, as some paths might use two or more alternative sub-paths between the same two 

nodes for load balancing, but gives a rough estimate of the number of unique paths followed by 

the packets. Also, in the case of the all_probes dataset, some of the routes were incomplete, 

indicating that even higher variety could be found in the paths. The experiment is somewhat 

similar to that run by Paxson in [Paxson 1997a] to estimate the characteristics of the Internet but, 

in this case, the only purpose is to provide information about the topology of the remote sites in 

relation with the collection point (UoP network). 

163 



Chapter 6 - Analysis of Internet traces 

Number of unique IP addresses 
180 

120 -

Hop number 

Figure 6.2 - Path distribution for the (a) all_prohes and (b) good_probes sets, spring 2002 

experiments 

The results of this analysis are presented in the distribution from Figure 6.2. The graph shows a 

high number of unique routes, particularly considering the fact that the last hop (the target) was 

removed from each path. The maximum number of unique IP addresses was, in both datasets, 

recorded at 19 hops - 163 for allj)robes and, respectively, 110 for the goodjyrobes dataset. 

These figures are equivalent to a percentage of approximately 50% unique paths in the case of 

both datasets. Also, the average path length (calculated only for the goodj)robes) was 23.15 

hops. 

One final issue in relation to the efficiency of this probing technique is the redundancy of 

Yahoo's randomness. As shown in previous studies [Evans 2001], while RYL provides a very 

convenient interface for random pages, it has a bias towards certain web sites. This observation 

was also reflected in this study. Amongst the 21654 requests made (after removing the 

redirections from the Yahoo website), there were only 11356 unique IP addresses. This 

164 



Chapter 6 - Analysis of Internet traces 

redundancy may be seen below in Figure 6.3. The values beyond the value of 100 (connections / 

unique IP address) were due to only three addresses', but it also shows that more than 80% of 

connections were made to unique hosts. In order to avoid redundancy, the resulting datasets 

should be run through a filter to keep only one sample from each IP address. However, this 

approach is inconvenient for the second round of experiments, due to the fact that each query 

requested all objects from a page and such an IP-only filter would keep only one of the 

connections .̂ A second type of filter may be applied in order to keep all the unique objects 

retrieved from an IP address, which works similarly to a cache memory: remove duplicate 

samples by comparing their source web server and the size of the retrieved object. 

None of the two filters represents the perfect solution. The first one, IP-only based, provides 

accurate path information (particularly delay), but it would not reflect true characteristics of the 

traffic, particularly with the second round of experiments. The second filter, IP-and-size based, 

distinguishes between different objects retrieved from the same IP address, which allows a better 

analysis for typical page transfers, but it may bias the path-related results. This is why, for the 

analysis, the RTT subset was extracted using the IP filtering, while the loss and congestion 

window analysis used the IP-and-size filtering. 

' All three addresses were hosting at the time sites likely to be popular sources of data: one of them was resolved as 
news.bbc.co.uk website and the other two were resolved as www.cnn.com 
^ The kept connection is also likely to be the shortest one the one - the html text rather than e.g. the images on the 
page. 

165 



Chapter 6 - Analysis of Internet traces 

% of connections 
100 

10 100 
Number of connections/unique IP address 

1000 

Figure 6.3 - Distribution of connections/unique IP address 

Generalising, this experiment indicates that, once redundancy is removed, the objects retrieved 

during the RYL experiments were diverse, in terms of the number of paths involved. It was 

preferred to run this trace only on a random subset of addresses in order to avoid triggering any 

network alarms / lead to external complaints, fact that happened in the recent history of the 

Network Research Group [Evans 2001]. Unfortunately, this analysis could not be backed up by a 

geographical analysis due to the (limited) amount of information provided by whois queries. 

The following sections present the results obtained from the analysis of the two rounds of traces. 

In each case, an additional filter was applied to the data in order to maintain only the valid results 

for that type of analysis (e.g. for the round trip time results, the connections that did not yield at 

least 3 RTT measurements were removed) 

6.4.2 Round Trip Time statistics 

The first metric analysed was the round trip time. The traces yielded a low number of RTT 

measurements for each connection, mainly due to the position of the capturing device relative to 

the endpoints, i.e. right at the receiver. Still, there were three RTT measurements within each 

166 



Chapter 6 - Analysis of Internet traces 

connection: first one in the synchronisation sequence, the second when sending the page request, 

and the last when closing the connection, enough for establishing the average and variance 

values for round trip delay. 

The distribution of the RTT for the two sets of experiments is presented in Figure 6.4. As can be 

observed, in both cases the average RTT values are very low for most of the connections, w ith an 

overall average of 192.4 ms for the first round of experiments and 149.6 ms for the second 

round. The difference between the figures may be associated with the network upgrade 

mentioned previously (unfortunately, there was no path information collected during the autumn 

2001 experiments), as the shape of the distribution remained the same for the two sets of results. 

% of connections 
100 

100 
RTT average [ms] 

10000 

Figure 6.4 -RTT average [ms| cumulative distribution for: (a) autumn 2001, (b) spring 

2002 

167 



Chapter 6 - Analysis of Internet traces 

% of connections 
100 

0 01 0 1 1 10 100 
RTT standard deviation [ms] 

1000 10COC 

Figure 6.5 - RTT standard deviation |ms| cumulative distribution for: a) autumn 2001, b) 

spring 2002 

Aside from the actual value of the RTT. the standard deviation of the RTT throughout a 

connection was calculated: the result is shown in Figure 6.5. The average value of the standard 

deviation was 22.3 ms (10.4 % of the RTT averages) for the autumn 2001 round and 7.8 ms (4.7 

% of the RTT averages) for spring 2002. The data results from spring 2002 indicate that for 

more than 80% of the flows, the RTT standard deviation was less than 10ms. 

Statistical T-testing was employed in order to evaluate the two rounds of measurements. The 

analysis was slightly different from the one applied in Chapter 5 because this time the two 

rounds of measurements were independent, with no criteria to group the two sets of results. The 

hypothesis was that the overall RTT average for autumn 2001 was higher than the average for 

spring 2002. The hypothesis made was that the average RTT from the autumn 2001 dataset was 

higher than the average RTT from the spring 2002 round of measurements. The method required 

calculation of: 

The pooled average s for the standard deviation crof the sample mean difference for the 

two measured variables: 

168 



Chapter 6 - Analysis of Internet traces 

. - ^ L l ^ 6.1 

where: 

o X, and X j are the overall average RTT values for the autumn 2001 and, 

respectively, spring 2002 measurements round 

o n^ and / / j are the number of connections yielding RTT values for the autumn 

2001 and, respectively, spring 2002 measurements round 

The variance for the difference of the two measured variables: 

_ Li^rtlh 6,2 

X -X 
The / quantity, / = — , that follows Student's t distribution 

The calculation for RTT average returned the following values for the above variables: 

5^=29786, -ir =4.07957, and r = 10.9325. The value for t is higher than the 0.1% 

probab i l i ty ,=3 .2905 , for a measurement with 00 degrees of freedom. This leads to the 

conclusion that the average RTT for the autumn 2001 dataset was higher than the average RTT 

for the spring 2002 dataset by 44.6 ms with 99.9% confidence limits 31.17 ms and 58.02 ms 

The same method was applied to the RTT standard deviation, yielding 5^=9352.36, 

^ _ - = 2.28595, and / = 8.35606. Using the 0.1% probability value,/> ,^ =3.2905, the 

conclusion was that the standard deviation of the RTT for the autumn 2001 dataset was higher 

than the average RTT for the spring 2002 dataset by 19.1 ms with 99.9% confidence limits 

11.57 ms and 26,62 ms. 

The results obtained for RTT average may be compared with Allman's findings [2000] and show 

169 



Chapter 6 - Analysis of Internet traces 

an improvement in the connectivity, as that study found that 85% of connections had an RTT in 

the 15-500 ms interval'. In this study, the [0;500]ms interval lends to cover nearly all the 

spectrum (95% for autumn 2001 and 98% for spring 2002), while 85% of connections had an 

average RTT of less than 350ms in the spring 2002 dataset and less than 170ms for the autumn 

2001 dataset. 

The analysis method presented in Chapter 3 allows RTT measurements based on the TCP 

timestamp option. Unlike the case of sequence-number-based RTT, TCP-timestamp-based 

measurement produces an estimate for virtually each acknowledgment / every-other data packet, 

based on the pairing of the timestamp values returned in each packet. The main disadvantage of 

this method is that the remote endpoint may not implement the TCP timestamps mechanism 

correctly (or at all), in which cases the RTT estimate(s) should be discarded. In the autumn 2001 

round of experiments, the sequence-based RTT inference produced estimates for 10394 

connections to unique remote IP addresses. On the same trace, the TCP-timestamp-based 

allowed estimates only for 5343 connections. Still, this situation may be remedied in the future, 

with an increasing percentage of TCP clients implementing TCP timestamps'̂ . A good example 

of such an evolving client is the Microsoft Windows TCP/IP stack, which did not include 

support for TCP timestamps before the Windows 2000 version [Microsoft 2000]. 

6.4.2.1. Ack-based RTT vs. TCP timestamp-based RTT estimations 

The expected outcome of the timeslamp-based RTT measurement was, as indicated in RFC 1323 

[Jacobson et al 1992], a substantially larger number of RTT inferences for each connection. 

Figure 6.6 presents the distribution of the sequence-based vs. the timestamp-based RTT 

' There is no information in the study about average values or the percentage of connections with R1T<15 ms. 
• According to a series of studies from Netcraft, the estimated percentage of web servers that implemented to T C P 
timestamps option increased from 38.1% in 2000 to 80.5% in 2003 fWendland 2003] 

170 



Chapter 6 - Analysis of Internet traces 

estimations ratio per connection. Due to the position of the capturing point in relation with the 

endpoints, i.e. near the receiver, the distribution illustrates only the figures for client-server-

clienl RTTs' 

% of connections 

0 0 2 0.4 06 08 1 1.2 1 4 1 6 1 8 
RTT Samples (ack) / RTT Samples (tsopt) 

Figure 6.6 - Distribution of RTT samples based on acknowledgments vs. RTT samf)k s 

based on TCP timestamp options for a) autumn 2001 and b) spring 2002 

It may be observed in the above distribution that the vast majority of the connections 

experienced a comparable number of timestamp-based and sequence-based estimations. The 

average value of the rapport was 0.865 for autumn 2001 and 0.899 for spring 2002). This result, 

less encouraging than the RFC 1323 expectations, may have been caused by two factors: 

- size of the connections (subject expanded within this chapter, in section 6.5.4). I f the 

actual number of transferred data packets is low, the number of RTT inferences will be 

low, regardless of the method used. A good example is an HTTP request that returns an 

object which can be transported in two data packets. The associated TCP connection 

cannot have more than 3 RTT estimate / direction, as the entire data transfer consists of: 

' These are inferences resulting from the server issuing acknowledgments to the data packets sent by the client (e.g. 
the acknowledgment to the HTTP client request) 

171 



Chapter 6 - Analysis of Internet traces 

- 3-way handshake to open the connection - 1 RTT estimate / direction 

- client transmits the request; server acknowledges and transmits 2 back-to-back 

packets; client replies with I acknowledgment - I RTT estimate / direction 

- 3-way handshake to close the connection - I RTT estimate / direction 

resolution o f the TCP timeslamp. The timestamp-based inference cannot produce more 

than I estimate for each unique timestamp, i.e. a new RTT estimate can be produced only 

when the value of the timestamp increases. This impediment affects the number o f 

inferences and it may have an effect on the average RTT value obtained for a connection 

only i f the RTT throughout that connection varies considerably. The sequence-based 

analysis indicated an average o f nearly 100 ms for the spring 2002 dataset. I f the 

resolution o f the sender-generated timestamps is lower than the RTT values, several 

packets (in some cases, for low-delay and high-bandwidth paths, even all packets) may 

carry all the same TCP timeslamp, reducing the number o f estimations for that 

connection. Figure 6.7 presents the distribution of the timestamp resolution for the two 

rounds of experiments. It may be noticed that the majority o f connections (around 68% of 

the probed websites during autumn 2001 and 82% of the sites from spring 2002) were 

produced by senders with a 10ms resolution o f the TCP timestamp. It is interesting to 

note, according to the distribution, that the difference between the two figures was made 

up o f senders that had a 100ms resolution for the TCP timestamps. It is difficult to 

determine whether this difference was made up of websites that upgraded to a newer 

version of operating system (one which came with more accurate timestamps) or these 

are only websites which have not been probed during the spring 2002 experiments\ The 

rest of the senders had timestamps of at least 100 ms, with almost 20% of the TCP 

senders using a resolution o f at least 200ms, comparable with the RTT values for autumn 

2001. With such values, aside from limitations induced in the RTT measurement, the 

172 



Chapter 6 - Analysis of Internet traces 

senders themselves cannot take advantage of any o f the benefits that TCP timestamps 

introduce (e.g. better RTT estimates). 

% of conr>ection8 
100 

1 10 100 
TCP Timestamp resolution [ms] 

10O0 

Figure 6.7 - TCP timestamp resolution for a) autumn 2001 b) spring 2002 

6.4.2.2. Effect on current TCP implementations 

The real network values for RTT should be considered when implementing TCP timers, which is 

not currently the case. RFC 1323 does not set a specific limit for the granularity o f the 

measurements, but only requires the minimum RTO to be of I second and the minimum 

variation added to the RTT to be equal to the granularity'. It is in fact admitted by the authors 

that the proposed figures are rather conservative and may be changed by results of future 

research, but no updates were published since. It is obvious from comparing these low figures for 

RTT with the coarseness of the retransmission timeout algorithm that these limits are loo 

conservative for the current Internet at least for an environment such as the analysed one. 

Firstly, the update of the algorithm is too coarse in comparison with the variations of the RTT. It 

is fair to argue that the number of RTT inferences was low in each case, w ith only 3 samples / 

' A larger number of TCP timeslamp resolution estimates to unique IP addresses (5108) was made for the autumn 
2001 connections in comparison with the number of estimates obtained during spring 2002 (1717). 

173 



Chapter 6 - Analysis of Internet traces 

connection, but these samples were placed at the beginning and at the end o f the connection, 

which gives a good indication about how much the delay changed throughout the transfer 

Considering the average RTT value of 136ms from April 2002, a TCP sender will have to wait 

another 6*RTT before retransmitting the lost segment. It is true that the analysed connections 

were generated in a privileged environment, but, again, at least for such low-delay environments, 

the minimum RTO should be changed to an lower limit of, at most, 500 ms. This change should 

not affect the initialisation value for RTO, which may remain at 3 seconds in order to 

accommodate high-delay environments such as satellite links. 

The main issue when looking at RTO is how often the timeout mechanism is likely to be used. 

The retransmission policy depends, as explained in Chapter 2, on how the loss is observed. Due 

the way congestion window evolves, for paths experiencing low figures for packet loss, the 

larger a file is the more likely it is for losses to be recovered through by fast retransmission, 

because more acknowledgments are in flight at any moment in time. At the other extreme, short

lived connections wil l experience small congestion windows and the TCP senders are likely to 

recover losses through timeout instead of fast retransmission. Unfortunately, the connection 

analysis performed as part o f this study (section 6.4.5) showed that most flows are short-lived 

and the congestion window experiences at low values, which indicate that, on a path 

experiencing loss, TCP senders are likely to timeout instead o f fast retransmit for typical web 

transfers. 

Our observations can be compared with the findings of Allman and Paxson, who modified the 

proposed values for granularity and RTO in [Allman and Paxson 1999], The conclusions o f this 

study were that, over the analysed mesh of Internet paths, a coarse timer (e.g. 500 ms) would 

reduce by half the time spent while waiting for the retransmission timer to expire but would 

' It only mentions thai a fine granularily, defined as less than 100 ms, performs better than a coarse one 
174 



Chapter 6 - Analysis of Internet traces 

double the number o f bad retransmissions (i.e. retransmissions due to an erroneous low RTO). 

The increase was even higher when a lower figure was chosen for the minimum RTO but, as 

Allman observed, one o f the main reasons why this happened (and, generalising, why the 

minimum RTO should not be changed on its own) was the timing of delayed acknowledgments. 

According to the recommendations [Braden 1989], delayed acknowledgments should be delayed 

for at most 500 ms, a rule that allows the receiver to delay the receipt of a data segment for up to 

500ms. In fact, [Paxson 1997a] and [Allman and Paxson 1999] are the most quoted studies that 

critically analysed the effect of the proposed values on Internet TCP transfers. 

6,4.3 Bandwidth 

The estimation was based on identifying back-to-back packets using the TCP timestamp option, 

as described in section 3,4.4.2. The position o f the monitor was extremely favourable for this 

type of measurement, as the data packets coming from the server were captured right at the 

receiver, i.e. at the end of the path, allowing identification o f the bottleneck for the download 

path. Some of the senders had coarse TCP timestamp clocks, therefore the estimation used both 

of the timestamp values within each data segment in order to determine the back-to-back pairs. 

The rationale behind using both values is that back-to-back packets should be transmitted due to 

the same acknowledgment, therefore they should carry the same tsres value. Unfortunately, only 

approximately 50% of the connections produced a reliable bandwidth estimate in each round of 

experiments, statistics likely to be due to erroneous implementation o f the TCP timestamps at the 

senders, or due to connections with loo few packets. The result of the measurement is illustrated 

in Figure 6.8. 

175 



Chapter 6 - Analysis of Internet traces 

Connections \%] 
1 

/ 
80 a / . 

60 

40 - •''7 

b 

20 

1 
c 

1 

10000 100000 1e-K)6 1e-̂ 07 
Bottleneck bandwidth [B/s] 

Figure 6.8 - Bottleneck bandwidth cumulative distribution for a) autumn 2001 and b) 

spring 2002. The two grey markers indicate c) the T l (1.544Mb/s) boundary and d) the 

lOMb/s boundary 

From all network characteristics, the network upgrade mentioned earlier atTected bandwidth the 

most. It can be noticed in the distribution from Figure 6.8 that bandwidth reached a maximum of 

approximately l.2MB/s for the autumn 2001 round of experiments. This matches, in fact, the 

configuration of the network: at the time of the experiment, the connectivity of the desktops was 

10Mb LAN. For the spring 2002, the maximum figure is 12MB/s, which reflects the tenfold 

increase in desktop bandwidth. The reason why the 2002 graph is not asymptotic to this second 

limit is clock accuracy of l^s which becomes a factor at lOOMb/s as a full Ethernet frame 

requires only 120^s to be transmined. 

6.4.4 Loss 

Due to its self-adjusting behaviour [Jacobson and Karels 1988], TCP performance is critically 

affected by loss. Nevertheless, previous studies [Paxson 1997a], have shown that packet loss is 

low, at least for the monitored mesh of Internet paths. A major purpose of this study was to 

investigate the current typical values of network parameters, but based only on traces collected 

176 



Chapter 6 - Analysis of Internet traces 

from a single point. From this perspective, the survey may appear similar to [Allman 2000], but, 

in this case, there is no control over the senders - rather than have "one server and many clients" 

this project used the "one client and many servers" approach. It may be argued that the survey 

carried out was somehow limited, as the client used, wgei, did not support HTTPl, I . As a result, 

the objects from a page were downloaded in separate connections, a fact that led to smaller 

congestion windows. Further, the resulting figures for loss may be less accurate than some 

obtained for long-lived connections, due mainly to larger congestion windows and better 

resolution, as wil l be detailed later in this section. 

The approach used when analysing the loss results was similar with the one for RTT evaluation. 

As explained in section 3.4, losses rely on RTT and information, obtained at least from 

acknowledgments i f not from TCP timestamp options too. Also, the loss analysis does not 

perform well for very short lived connections (i.e. connections lasting for less than 1 RTT). This 

is why a filter was applied to the datasets to remove any connections that have these 

characteristics. The initial datasets were reduced through filtering to 11337 samples (2001) and 

8585 samples (2002). 

There were 3 categories of losses, as defined in section 3.4.5: visible {LostBefore and LostAfter 

events), inferred timeouts {LostTO events), and errors (losses due to either erroneous timeout at 

the sender or due to lost acknowledgments from the receiver). The events from the third 

category, although not produced by genuine losses, have the same effect on the sender -

reduction o f the congestion window. The remainder of the section wil l present, for each 

category, the number of connections that exhibited the event, as well as the associated 

distribution of losses, measured in packets/connection. 

177 



Chapter 6 - Analysis of Internet traces 

6.4.4.1 Visible loss 

The expected result was decrease o f losses due to the network upgrade. However, the first 

category, visible losses, had a strange evolution for the two rounds of experiments. Throughout 

the (filtered) datasets, 75 connections (0.4%) experienced visible losses during 2001, a figure 

that increased to 127 connections (0.6%) for the 2002 dataset. The resulting distributions of loss 

rate (measured in lost_packets / data_packets) for the two rounds of experiments are displayed in 

Figure 6.9 

% of connections 
100 

0 05 0 1 0.15 0.2 0 25 
Packet loss rate 

0 3 0 35 0.4 

Figure 6.9 - Packet loss rate distribution for visible loss events (a) 2001 and (b) 2002 

The anomaly was even higher when looking at the remote endpoints that generated these errors. 

Al l but three connections from the 2001 dataset were generated from distinct IP addresses, 

resulting in a number of 70 unique paths (equivalent with 0.659% of the total number of unique 

paths) that exhibited loss. Using the same analysis, the 2002 dataset had only 53 unique IP 

addresses, equivalent to 2.425%. The higher loss rates for the spring 2002 dataset were 

confirmed also by the statistical t-testing, which produced values o f =0.0001445, 

J — _ — =0.000167, and / = 4.50017, indicating that the average packet loss for visible loss 

events for the spring 2002 dataset was higher than the average figure for the autumn 2001 dataset 

178 



Chapter 6 - Analysis of Internet traces 

by 0.07% with 99.9% confidence limits 0.02% and 0.1%. 

The only explanation consists in the difference between the t^vo rounds of experiments: the 2001 

method retrieved only the HTML content from each page, while the 2002 method retrieved the 

associated objects too. An example of page retrieval from the 2002 experiment is presented in 

Figure 6.10. There was one lost packet during the connection (bearing the sequence number 

11657 and retransmitted at 4.431 seconds) 

Sequence number 
20000 

12000 
10000 

time [s] 

Figure 6.10 - The sender packets f rom a page retrieval example f rom the 2002 round of 

experiments (each packet Is represented by the relative sequence number of the first byte) 

A total of 19 connections were retrieved during this retrieval, ranging between 968 bytes and 

19382 bytes, with an average of 3780 bytes / connection and a total transferred of 71824 bytes in 

77 data packets. I f a request to this page would have been made during the 2001 experiments, 

only the first object, measuring 10415 bytes would have been retrieved, probably using 11 

packets, as was the case for this retrieval. First, the lost packet happened during the longest 

connection of the retrieval, measuring 18382 - almost twice the size o f the first object. This is an 

argument in favour o f the greater packet loss for 2002, but not a definitive one. A separate 

analysis showed that the average size of connections with losses was 47534 bytes for 2001 and 

179 



Chapter 6 - Analysis of Internet traces 

only 29056 bytes for 2002, which indicates that losses seemed to have happened in shorter 

connections during the second round of experiments (more details about the distribution o f the 

file sizes is given in section 7.1.5. A second argument comes to justify both apparent anomalies-

the higher packet loss during shorter connections for the 2002 dataset. With I packet lost out of 

the 77 data packets transmitted, the overall loss rate for this retrieval was 1.29%. Using the same 

rationale, the minimum visible packet loss for the first object would have been I packet out of 

the 11 transmitted, equivalent with 9.09%. The above statistics are based on the page size, a 

variable that may have played an important role in the difference between loss figures. Another 

variable, not available for study from the perspective of this research, is the actual configuration 

of the paths beyond Janet that may have changed between the two experiments. 

The conclusion is that the 2002 dataset led to better resolution of loss rates for the probed 

websites/IP addresses. First argument for this is that the 2002 experiments produced longer 

connections due to some of the objects from a web page being larger than the first object (the 

one that would have been retrieved using the 2001 method). The second argument is that, by 

retrieving all objects from a page, the 2002 experiments always retrieved a larger amount of data 

from each probed page in comparison with the 2001 experiments. These differences indicate that 

it is difficult to draw a line between path properties and the traffic properties. It is true that the 

primary target of a holistic Internet study is to look at unique paths rather than packet traces. 

However, while specific analysis of paths may show relative stability in time, the picture offered 

by overall traffic analysis may show high variations o f the loss figures. This discrepancy may 

appear due to the higher/lower usage of certain websites' or due to the content of the web pages, 

both o f these causes being able to bias the analysis. To expand on this last issue, higher usage of 

a website wil l bias the network characteristics towards the path that connects the analysis point 

with that website. Also, larger web pages wil l lead to higher number o f exchanged packets, 

180 



Chapter 6 - Analysis of Internet traces 

therefore are likely to reveal lower loss rates in comparison with the short-lived transfers. 

6.4.4.2. Inferred loss 

The inferred losses were even fewer than visible losses, which may be due to restrictions posed 

on the spacing between packets. First the minimum and maximum timeout periods were limited 

in order to identify false positives due to small RTT / slow server responses. Second, the 

identification header field numbers from the two instances of the data segment were compared in 

order to separate packet duplication events from visible loss events. After applying all these 

boundaries, only 9 connections from the 2001 dataset and 3 connections from the 2002 dataset 

were identified with timeout events. A graph of the resulting distribution o f losses is presented in 

Figure 6.11 

% of connections 
100 

99 98 

99.97 

99 96 

99 94 
0.02 0 04 0 06 0 08 0.1 0.12 0.14 0.16 0.18 

Packet loss rate 

Figure 6.11 - Packet loss distribution for inferred loss events (a) 2001 and (b) 2002 

' The inversion in figures (i.e. higher loss for the 2002 dataset compared with the 2001 dataset) persisted for the un-
tlltered set (the one to which none of the fihers from 6.4.1 w as applied). 

181 



Chapter 6 - Analysis of Internet traces 

6.4.4.3. Overall loss 

The First observation to be made is that the image offered by these experiments is virtually loss-

free. The main reason for this is, apart from the characteristics of the connectivity point, the 

actual average size o f the objects transferred. The short-lived connections allow only small 

increase o f the congestion window and, implicitly, do not impose stress on the path between 

server and client. 

The short-lived connections have an additional undesired effect: the accuracy o f the 

measurement cannot go beyond the granularity of the download due to the low number o f 

packets exchanged'. For example, having a transfer consisting o f 10 packets, the minimum 

detectable loss is 0.1, a situation also described in [ARPA 1981b]. To reduce this granularity 

error, the total number o f losses was compared to the total number of packets captured. The year 

2001 connections subset had a total o f 166325 packets, with 206 visible and 10 inferred packet 

retransmissions, producing the overall packet loss figures 0.123 / 0.006 / 0.129% visible / 

inferred / total). For the 2002 tests, 232 packets were visible retransmissions and 4 packets were 

inferred retransmissions; comparing this with the total o f 125960 packets, results in an overall 

packet loss of 0.184 / 0.003 / 0.187% (visible / inferred / total). 

Due to the low figures obtained, losses were considered to be rather exceptional (inferred losses 

in particular) throughout the two traces. However, more consistent results were obtained for the 

backbone traces, analysed in section 6.5 

6.4.4.4. Retransmission errors 

It became obvious during the analysis that the monitor had an unfortunate position (i.e. at the 

182 



Chapter 6 - Analysis of Internet traces 

receiver) for identifying losses due to timeout: the solution offered was to infer these events 

based on the packet spacing. On the other hand, this position allowed identification o f avoidable 

retransmissions, i.e. retransmissions triggered by the retransmission timer expiring at the sender 

before the arrival of the required acknowledgment. From the perspective o f the monitoring point, 

a retransmission was avoidable i f at least one acknowledgment was captured between the first 

time and the second time a data segment was transmined. These losses, appearing to the monitor 

as visible losses, were not ignored because, regardless of what it actually happened with the 

packet, the network conditions forced the sender to infer that the data segment was lost. Figure 

6.12 presents the distribution of avoidable retransmissions / connection, as observed in the two 

rounds of experiments. 

% of connections 
100 

0 1 0.2 0 3 0 4 
Erroneous timeout rate 

Figure 6.12 - Erroneous packet retransmission distribution (a) 2001 and (h) 2002 

It can be observed that 1.6% / 0.9% of the connections experienced such events for the autumn 

2001 / spring 2002 experiments. These figures are both higher than the cumulated visible and 

inferred losses for the two rounds o f experiments, which leads to one of the following 

conclusions / reasons: 

This mlRhl be compensated at least partially by ^^dftping the 'per connection' results 



Chapter 6 - Analysis of Internet traces 

Some of the apparent errors may have been unavoidable. The retransmissions were, for 

this category of losses, due to loss on the reverse path: the acknowledgment sent by the 

receiver might have been lost on the receiver-sender path. 

- Some of the apparent errors may have been not genuine losses, but rather packet arrival 

sequences that the TCP analysis interpreted as a retransmission, as shown by one o f the 

examples from section 3.4. Further refinements of the TCP analysis may reduce this 

erroneous interpretation from the analysis method, but would also slow the speed of 

analysis. 

The statistical t-testing also confirmed the graphical results, with ^^=0.000806, 

s- ~= 0.000286, and / = 7.28229, indicating that the spring 2002 yielded a 0.2% higher ratio 

of erroneous packet retransmissions than the autumn 2001 dataset with 99.9% confidence limits 

0.11% and 0.3%, 

6.4.5 Conned ion size 

It was considered that connection analysis would be irrelevant for the RYL traces, as the HTTP 

client used, wget, did not include HTTP v l . l support. A l l current web browsers (with Internet 

Explorer and Netscape Navigator being the typical examples) have HTTP 1.1 implemented and 

enabled by default, therefore they all should [Fielding et al 1997] use persistent connections to 

retrieve web pages. However, in order to be able to compare the RYL results, obtained using 

HTTP 1.0, with any others, resulting from HTTPl. 1 browsers, the analysis included the 

distribution o f data object sizes, as retrieved during the two rounds o f experiments. The result of 

the connection size analysis is displayed in Figure 6.13. 

184 



Chapter 6 - Analysis of Internet traces 

% of conr»ections 
100 

1 C 100 1000 10000 
Connection size [Bytes] 

100000 16^06 

Figure 6.13 - Cumulative distribution of connection size for a) autumn 2001 b) spring 2002 

The statistical t-testing was based on the hypothesis that the autumn 2001 dataset produced 

longer connections than the spring 2002 dataset. The resulting figures, based on this hypothesis, 

were = 2.088-10*, s - - = 1 4 1 . 0 2 3 , and / = 25.0261, confirming the hypothesis by a 

difference of 2529 bytes, with 99.9% confidence limits 3065 bytes and 3993 bytes. 

It is interesting to notice that the autumn 2001 round of experiments had a higher overall average 

for connection size (9899 bytes/connection) compared to the spring 2002 experiments (6370 

bytes/connection). This difference is apparent not only in the average figures, but also in the 

above distribution. This may be due to the structure of a web page. Aside from the HTML 

document, the page may contain a number of images, some of them larger than the HTML 

document (such as pictures) and some of them smaller than the HTML document (such as 

buttons). The resulting average file size wil l depend on the proportions of these three types o f 

files when contributing to the page totals. 

6.4.6 Congestion windoM 

The congestion window inference includes a high level o f assumption in terms o f TCP 

185 



Chapter 6 - Analysis of Internet traces 

connection analysis. In this case, the task had an increased level of difficulty due to the 

characteristics o f the monitored transfers: unknown senders, receiver-based capture, and no 

control over the endpoints / transfer. The fact that the TCP implementations o f the senders were 

unknown did not allow any inference with regards to the congestion window evolution profiling. 

The intention was to produce a rough estimate of the congestion window, not to compete with 

tcpanaly [Paxson 1997b], which includes more complex analysis but also requires traffic capture 

at / near both endpoints. The receiver-based capture introduces uncertainty with regards to i f , 

when, and due to which acknowledgment has the sender transmitted a data segment. 

Due to the variety o f window increase policies and the lack o f knowledge about which 

acknowledgments reached the server, the congestion window inference was based exclusively on 

timing between different trains o f packets rather than acknowledgment dialogue (the third 

method of congestion window estimation from section 3.4.3). The third problem, no control over 

the endpoints, differentiates the study from Internet measurement efforts such as [NIMI 2003], 

also expanded in [Paxson 1999]. Within measurement infrastructures, endpoints are running 

dedicated clients transfer large files between them at regular intervals in order to determine the 

network characteristics. Within this study, all the senders were remote sites on the Internet and 

the objects transferred were various web pages residing on the servers; as a result, there was no 

control over the size / timing of the connections. 

As described in Chapter 3, the timing between successive packets may be estimated using 

several methods. For this trace analysis, the chosen one involved the packet spacing analysis, 

based on the captured timestamps. The alternative, which was to combine this analysis with TCP 

options timestamps, was avoided due to reasons relating to the actual TCP implementations. As 

presented in section6.4.2.1, not all the senders had implemented / enabled TCP timestamp 

options, and, from the ones that did, the coarse resolution used by some of the senders would 

186 



Chapter 6 - Analysis of Internet traces 

have rendered the method unusable. The results for the two rounds of experiments were similar, 

as reflected below in Figure 6.14 and Figure 6.15, which picture the distribution of the initial and 

maximum congestion window per connection for the two datasets. 

% of connections 
100 

'00 
Congestion window size [ MSS ] 

Figure 6.14 - Cumulative distribution of the initial congestion w indow size for the a) 2001 

and b) 2002 datasets 

% of connections 
100 

100 
Congestion window size [ MSS ] 

Figure 6.15 - Cumulative distribution of the maximum congestion window size for the a) 

2001 and b) 2002 datasets 

The average figures for the two variables (initial / maximum congestion window) were 2.07 / 

5.32 MSS for 2001 experiments and 2.21 / 5.52 for the 2002 experiments round. The variation is, 

as shown by the distributions, only marginal, leading to the conclusion that overall, the 
187 



Chapter 6 - Analysis of Internet traces 

characteristics of the data transfers were similar between the two experiment rounds, in spite o f 

the difference in the method used. It is also interesting to observe that the great majority o f 

senders did implement a 2MSS initial window, a fact that is visible in Figure 6.14. This speeds 

up the start o f the TCP connection as it avoids the time-delayed acknowledgment which the 

receiver wil l produce after an initial 1MSS window. 

Similar statistical t-tests tests were applied for both the initial and the maximum congestion 

window, using the hypothesis that the spring 2002 dataset produced generated higher values for 

initial/maximum congestion window in comparison with the autumn 2001 dataset. In the case of 

the initial congestion window, the analysis produced 5^=0.557532, 5 — — = 0.011666, and 

/ = l l .4324, which confirmed the hypothesis and indicated a difference o f 0.1333 segments 

between the two dalasets, with 99.9% confidence limits 0.095 segments and 0.172 segments. The 

hypothesis was also confirmed for the maximum congestion window, where 5^ =11.778678, 

TT =0.05364, and / = 3.60128; in statistical terms, the t value indicated the same confidence 

level, 99.9%, an overall difference o f 0.193 segments with confidence limits 0.0166 and 0.370. 

6.4.7 Throughput 

From all the parameters, data throughput should be the easiest one to evaluate: the number o f 

data bytes divided by the elapsed time between the first and the last packet o f the connection. 

The first unclear Issue is the elapsed lime: which packets should be considered to mark the 

beginning o f the connection? It was considered throughout this study that considering the entire 

connection time would not present any interest from a throughput perspective. Inclusion o f the 

SYN/FIN packets does not Illustrate data efficiency but only combines the data throughput with 

the time spent to establish / close a connection. This is why the throughput was measured using 

the interval between the capture of the first and last data segments with non-zero payload. 

188 



Chapter 6 - Analysis of Internet traces 

A second problem is the behaviour o f the endpoints throughout the connection. In the case o f an 

HTTP 1.1 persistent connections it is rather difficult to define the connection time, because the 

client is expected to leave the connection open for further requests / downloads'. The time 

between two such downloads is spent by both endpoinls in an idle state, therefore it should not 

be accounted for when calculating the elapsed time. To support persistent connections, the loss 

inference mechanism had an upper bound to account for the idle time between retrieving two 

successive objects and the sum of idle periods was removed from the total elapsed time. 

A third problem exists in relation to determining the throughput o f a very small data transfers. 

Connections that carry such objects may have all the data transmitted in the first congestion 

window, in a single back-to*back train of packets. When this happens, the resulting value for 

throughput is actually comparable to the value of the bottleneck bandwidth. To exemplify, the 

traces were split into two-packet connections, three-packet connections and at-least-four-packet 

connections. The split was based on the results from section 6.4.6, which showed that that the 

vast majority o f the analysed TCP senders did not have an initial congestion window larger than 

three packets. The results are illustrated in Figure 6.16 

' Although not an issue for the R Y L analysis, it may be a consistent problem for real packet traces 
189 



C hapter 6 - Analy sis of Internet traces 

% of conrkections 
100 

10 100 1000 10000 100000 1e+06 
Throughput [Bytes/s] 

1e-K)7 1e+08 

Fiyure 6.16 - Throughput distribution for the a) autumn 2001 dataset and the subsets of: b) 

2-paeket c) 3-packet, and d) 4-or-more-packets eonneetions 

The distribution reflects the statistics behind the connections: while the throughput has an 

average value o f 501595 B/s for the raw dataset, it reaches an average of 2.32-10^ B/s for the 2-

packet connections, 434972 B/s for the 3-packet connections, and only 69823 B/s for the 4-or-

more-packets connections. In fact, the above figure for 2-packet connections is higher than the 

bandwidth available at the time. This is due to the way timestamps are collected: for each packet, 

the capturing routines apply a single timestamp; in the case of the pcap library , used to collect 

the traces, the timestamp is applied when the last byte of the packet is captured'. As a result, for 

a 2-packet connection, where the duration of the connection is the time elapsed between the 

moment when the last b>1e o f the first packet is captured and the moment when the last byte o f 

the second packet is captured; as the two packets are sent back-to-back, this is approximately 

equal with the time required to receive the second packet by the capturing program. The 

resulting figure for bandwidth is calculated as the report between the size o f the two packets and 

the time required to receive the second packet, which leads to double the amount of real 

bandwidth i f the two packets are filled with data. To make things worse, in most cases the 

' This pcap characteristic was considered when implementing the bandwidth estimation algorithm, which considers 
the size of the newer packet w hen analysing a pair of data packets inferred to hav e been transmitted back-to-back. 

190 



Chapter 6 - Analysis of Internet traces 

second packet was not ful l : the average size of such connections was 1.44 MSS (average 

connection size - 1728 bvles / average MSS - 1195 bvtes). As a result the elapsed time 

considered in the calculation is less than half of the actual figure, i.e. for both packets. 

After eliminating the 2- and 3-packet connections. Figure 6.17 reveals the throughput 

distribution for the autumn 2001 and spring 2002 traces. 

% of connections 
100 

10 100 1000 10000 100000 ^eM)e 1e+07 1e+08 
Throughput [Bytes/sl 

Figure 6.17 - Throughput distribution for the connections with at least 4 data packets for 

the a) autumn 2001 and b) spring 2002 traces 

The two graphs confirm the results from section 6.4.6: the shape of the distribution remained 

virtually the same between the two experiments. The improvement in download speed, due to the 

bandwidth increase, was better visible in the average throughput figures: from the above-

mentioned average of 69823 B/s, resulting from the 2001 experiments, the 2002 average 

throughput reached 89986 B/s. 

The above average figures were confirmed also by the statistical t-testing. Using the hypothesis 

that the spring 2002 connections experienced higher throughput than the autumn 2001 

connections, the calculations produced .v̂  = 1.81 • I0 ' ° , 5 - - = 1 9 9 7 , and / = 10.096. Based on 

the resulting t value, it was concluded that hypothesis was correct, with a difference between the 

191 



Chapter 6 - Analysis of Internet traces 

two dalasets of 20163B/s and with 99.9% confidence limits I359I B/s and 26734 B/s. 

It is difficult to say whether the throughput distribution of 4-or-more-packet connections from 

Figure 6.17 should be considered the correct one. The rationale used in this section aimed to 

identify transfers with genuine throughput, in the sense that the RTT had a role to play during the 

associated TCP connections. Additional analysis, not included here, on a packet-by-packet basis 

up to 9 packets showed a similar picture to the one in Figure 6.16, with the 5-, 6-, 7-, 8-, and 9-

or-more-packets connections distribution having similar shape and values with the one for 4-or-

more-packets. However, a 4-packet connection in the case of a sender with an initial window of 

3 packets was only delaying the 4^ packet from transmission by one RTT, making this case a 

particular one as well. Expanding from this, in an ideal world, only connections reaching steady 

state, e.g. as defined in [Padhye et al 1998], should be considered for throughput measurement. 

But, in the case o f the RYL traces, the 2- and 3-packet connections represent a considerable 

percentage o f the connections, accounting for approximately a third o f the total number of 

connections (for autumn 2001, 2 1 % of connections were 2-packet connections and another 13% 

were 3-packet connections; the spring 2002 set registered even higher figures, with 2 1 % 2-

packet connections and 19% 3-packet connections). The only reason for not resolving this 

dispute here is because it can be argued that the two traces used HTTP 1.0 traffic only and 

persistent connections introduced by HTTP 1.1 would radically increase the connection size. A 

similar study was performed in the backbone traces in section 6.5 where, this time, the clients 

were real hosts, running actual web browsers, therefore creating a more credible environment. 

6.4.8 Elapsed lime 

Two time-related variables were extracted from the traces for analysis: the connection time, 

indicating the time elapsed between the moments when the first and the last packet were 

192 



Chapter 6 - Analysis of Internet traces 

captured, and the data transmission time, which is delimited by the first and the last captured 

data packets. For reasons mentioned in section 6.4.7, only the connections with at least 4 data 

packets were used for analysis. Figure 6.18 Illustrates the distribution of the two variables. 

% of connecbons 
100 

100 
Duration [s] 

Figure 6.18 - Cumulative distribution of the a)/c) connection time, b)/d) data connection 

time for the autumn 2001 / spring 2002 traces 

Due to the nature of the client (HTTP 1.0), the connections should have been closed as soon as 

possible after the server finished transmitting the requested object. Still, the difference between 

the data transmission time and the connection time was rather high for the raw dataset, due 

mainly to servers that maintained the connection open after transmitting the last data packet. 

This behaviour should not be considered illegal, because the HTTP 1.1 specification mentions 

that a **HTTP/I.I server M A Y assume that a HTTP/I.I client intends to maintain a persistent 

connection unless a Connection header including the connection-token close was sent in the 

request" [Fielding et al 1997]. Wget formatted its requests with a keep-alive connection token, 

probably for compatibilit>' reasons with the HTTP I.O specification, which also allowed 

negotiated persistent connections but, as admined in the above-mentioned HTTP I . I 

specification, had only faulty implementations. 

193 



Chapter 6 - Analysis of Internet traces 

6.4.9 Page content 

The files retrieved during the 2002 round were saved for ofTline page analysis. The saving 

preserved the directorv structure in order to identify each web page, but this led to problems 

when analysing the results because of the redundancy previously mentioned in section 6.4.1. Due 

to retrieval of multiple pages from the same website, some of the apparently larger web pages 

were actually several web pages collected from the same website. The saved content required 

parsing, based on the timestamps o f the files, to separate between pages collected in separate 

retrieval sessions. The resulting distributions are presented below in Figure 6.19 

% of connections 
100 

1000 10000 
Page size [Bytes] 

'COOOO le+06 

% of connections 
100 

10 
Page size [obiects] 

100 

Figure 6.19 - Distribution of page content in (top) bytes / page and (bottom) objects / page 

194 



Chapter 6 - Analysis of Internet traces 

Figure 6.19 shows that a considerable amount o f the retrieved web pages had relatively large 

sizes (previous studies, such as [Paxson 1999], considered 100 KB Files to be sufficiently large 

for demonstrating all aspects of TCP). Also, from the distribution of objects per page, it may be 

concluded that f i i l l usage of HTTP 1.1 request persistent connections would considerably reduce 

the overall time to retrieve the web page. The average figures for Figure 6.19 are 57506 bytes / 

page and 9.15 objects / page. 

6.5 UoP traces analysis 

In the autumn of 2002 an opportunity appeared, thanks to the University o f Plymouth (UoP) 

Computing Services, to collect data from the connectivity point between the UoP network and 

Janet. This allowed a thorough comparison between the distributions obtained for network paths 

and TCP connections parameters during the RYL experiments and larger amounts of real traffic 

data. The results in this section were produced using traces collected from the UoP backbone 

using port mirroring technique on one of the core switches from the UoP network infrastructure. 

Five half-hour traces were collected at the end o f November 2002, all of them during daytime. 

The traces were sanitised using tcpurify and analysed offline similarly to the RYL traces, as 

described in 6.1. The data was filtered also using the same techniques as in the RYL case: IP-

only filter to build a subset for path characteristics (RTT and bandwidth) and IP-and-size filter to 

extract a subset for traffic characteristics (loss, congestion window, and throughput values). The 

following sections give an overview of the findings, and compare them, where appropriate, with 

the RYL results. 

195 



Chapter 6 - Analysis of Internet traces 

6.5.1 RTT 

The average RTT values led to a distribution similar to the one obtained for the RYL. with a 

single exception: the number of connections with RTT<100ms (32%, compared with < I 0 % for 

any o f the RYL traces). The RTT average and standard deviation associated graphs may be seen 

below in Figure 6.20 and Figure 6.21 

% of connections 
100 

100 
RTT avgerage [ms] 

10000 

Figure 6.20 - RTT average distribution for the UoP backbone traces 

% of connections 
100 

1 10 
RTT standard deviation [ms] 

1000 

Figure 6.21 - RTT standard deviation distribution for the UoP backbone traces 

The average values throughout the two distributions are very close to the ones obtained in the 

196 



Chapter 6 - Analysis of Internet traces 

RYL experiments: 168.85 ms for RTT delay and 22.71 ms for RTT standard deviation. It 

became of interest to determine what causes this change in the distribution, i.e. what is the 

100ms mark that appears in both Figure 6.4 and Figure 6.20 and, further, whether this is likely to 

appear in other studies. To clarify this issue, a traceroute was run to cnn.com from within the 

UoP network and from an ADSL host connecting via the ISP Pipex. The results are shown below 

in Figure 6.22. 

RTT average [ms 
140 

Hop number 

Figure 6.22 - RTT average values for a traceroute to cnn.com using a host f rom a) UoP 

network b) Pipex ISP (the initial 30ms difference is due to the ADSL connecti\ i t \ , 

compared with the lOOMb/s UoP access) 

Both graphs (for UoP and Pipex) exhibit an abrupt increase of approximately 70ms in the RTT. 

The increase appears in Figure 6.22 between hops 6 and 7 for the Pipex graph and hops 15 and 

16 for the UoP path. In both cases, the two nodes are the routers of the corresponding carriers 

placed in Europe and US (AlterNet for Pipex' and Sprintlink for UoP). 

The graph for the UoP trace may be therefore split into three regions: 

- Hops 1-15, corresponding to the Janet backbone and connection to Sprintlink, which 

' The names of two AlterNet hosts provided an indication about their location: so-0-l -0.TR2.LND9.ALTER.NET 
(likely to be placed in London) and so-6-0-0. IRLNYC12.ALTER.NET (likely to be placed in New York) 

197 



Chapter 6 - Analysis of Internet traces 

introduce a -10ms RTT delay. 

- Hops 15-16, corresponding to the Sprinllink transatlantic segment, with an associated 

~70ms delay 

- Hops 17-23, corresponding to US carriers, introducing an additional -20ms delay 

The three figures lead to a total approximate RTT delay o f 100ms. It is difTicull to generalise 

from this experiment to the overall results due to other factors that may have influenced the RTT, 

such as the time o f day - the data was collected during day time over several days. However, it is 

believed that US sites are likely to be located in the >100ms RTT interval (the reverse - all the 

>100ms sites are located in US - does not apply, because there are likely to be poorly connected 

sites in Europe as well). 

I f the assumption presented in this section is true, then it may be concluded that the RYL 

experiments were biased towards US-based websites. However, as seen in Figure 6.20, even real 

traces exhibit a large number of connections to sites bearing the same delay characteristics. 

The ratio between the number of ack-based and TCP timestamp-based RTT inferences is shown 

in Figure 6.23. The shape o f the distribution is similar to the ones obtained during the RYL 

experiments, as was the average ratio of the distribution - 0.92. 

198 



C hapier 6 - Anal>sis of Internet traces 

% of connections 
100 

01 1 10 
RTT Samples (ack) / RTT Samples (tsopt) 

Figure 6.23 - Distribution of RTT samples based on acknowledgments vs. RTT samples 

based on TCP timestamp for the LoP dataset 

A statistic of the TCP timestamp resolution was produced as part of the analysis. Because in the 

case of the traces both the senders and the receivers varied, the results included two sets of 

results: one for the hosts acting as web clients (the UoP hosts) and the ones representing the web 

servers (the websites accessed). The resulting distribution is presented in Figure 6.24 

% of connections 
100 7^ 

I: 

r 

10 100 
TCP Timestamp resolution (msj 

'000 

Figure 6.24 - TCP timestamp resolution of the a) TCP clients and b) TCP servers for the 

UoP dataset 

It may be observed that the distribution obtained for TCP timestamp resolution of web servers is 
199 



Chapter 6 - Analysis of Internet traces 

similar to the one obtained during the RYL tests, with approximately 80% of hosts using a 10ms 

resolution, while the rest o f the TCP implementation in the rest o f the servers uses a > 100ms 

timeslamp. The 'default' desktop PCs at UoP were running, at the time, Windows 2000, which 

does implement TCP timestamps but it does not have them enabled by default [Microsoft 2000]. 

Customised hosts, typically machines used by researchers, were running, in addition to / instead 

of Windows, a flavour o f Linux (e.g. the Network Research Group connected to the UoP through 

a NAT host, running Smoothwall - a dedicated Linux-derived flrewall).Working by elimination, 

the web clients which produced the diagram are most likely various flavours of Linux, all using a 

BSD-derived TCP implementation 

6.5.2 Loss 

The rate o f data from the backbone capture was, as expected, much higher than during the RYL 

experiments. Due to the hardware used (Pentiumll 450MHz machine with off-shelf PCI network 

interface card and default Linux installation), the logs had multiple reports of network card 

malfunction during the capture ("too much work at interrupt"). This affected the results of the 

analysis (such as the number of data packets captured during each connection), but it did not 

impact strongly on loss figures. This is because lost packets are identified when the 

retransmission occurs, not when there is a gap in the continuity o f data transmitted (this also 

allows separation between misordering and retransmission); as a result, such gaps are ignored by 

the analysis and the loss figures are not affected. 

The loss figures were higher in comparison with the RYL results. Cumulative distributions of the 

visible, inferred, and avoidable losses are presented below in Figure 6.25 

200 



Chapter 6 - Analy sis of Internet traces 

% of conr>ections 
100 

0 1 0 2 0 3 0 4 0 5 
Packet loss rate 

06 

Figure 6.25 - Packet loss rate cumulative distribution for (a) visible, (b) inferred, and (c) 

avoidable loss events within the LoP dataset 

The visible loss rate events appeared more often in the UoP dataset in comparison with the RYI. 

experiments. There were 16305 connections (9.09% of the total) that contained visible loss 

events. This might be due to the larger transfers that took place - more details about the 

connection sizes will be presented in section 6.5.4. The inferred loss events were very rare 

throughout this collection of traces as well; only 636 connections (equivalent to 0.35% of the 

connections usable for loss analysis) exhibited inferred loss events. A change was also noticed in 

the distribution of the avoidable retransmissions. Compared to RYL, fewer connections exhibited 

avoidable retransmissions in the UoP dataset: 4001 connections, equivalent to 2.23% of the total 

number of connections. This was due probably to the position of the capturing point, i.e. not 

right at the receiver. Being away from the receiver, the capture might not have seen some of the 

acknowledgments for outstanding data segments being sent before the arrival of those segments. 

6.5.3 Bandw idth 

The bandwidth analysis of the UoP traces revealed a very similar picture w ith the one produced 

from the RYL traces. A cumulative distribution of the bottleneck bandwidth is presented below 

in Figure 6.26; the average value obtained was 6.8MB/s 

201 



Chapter 6 - Analysis of Internet traces 

% of connections 
100 

100 1000 10000 100000 1e+06 
Bottleneck bandwidth [Bytes/s] 

1e-f07 1e+08 

Figure 6.26 - Bottleneck bandwidth cumulative distribution for the UoP dataset. The three 

grey markers indicate a) the T l (1.544IVIb/s) boundar>, b) the E l (2.048Mb/s), and c) the 

lOMb/s b<)undar> 

It may be observed that the shape of the graph strongly resembles the distribution from Figure 

6.8. The only difference between the two distributions is that the UoP dataset produced an 

additional change in the slope around the El value (marker (b) in Figure 6.26). This is most 

likely because the UoP dataset included, as explained in section 6.5.1. a larger percentage of 

connections to sites likely to be geographically positioned in Europe. With this combination o f 

geographical sources, the web sites could have been connected via one of the two middle-speed 

equivalent choices-El (2.048Mb/s) in Europe or T l (1.544Mb/s) in US. 

6.5.4 Connection size 

An important part of the UoP traces analysis was the evaluation of connection size. Based on the 

findings from 6.4.9, it was expected that the distribution and average values of connections size 

wil l be higher then the one obtained from the RYL traces. The purpose of the connection length 

analysis was to determine the average length of HTTP retrievals for the real VrafTic case. The 

202 



Chapter 6 - Analysis of Internet traces 

results of the analysis are presented in Figure 6.27. 

% of connections 
100 

10 100 1000 10000 100000 
Connection size [Bytes] 

1e*06 1e-»-07 

Figure 6.27 - Connection size analysis 

The resulting distribution, pictured above, does not match the expected outcome. As described in 

sections 6.4.9, the average page size is around 50KB, which also indicates the middle of the 

distribution from Figure 6.19 (top). It was also explained in section 6.4.5 that average connection 

size within the RYL datasets was under 10KB due to the HTTP 1.0 limitations and it was 

expected for the UoP traces to come close to the 50KB average of the page size. However, the 

average behind Figure 6.27 is only 17532 bytes/connection; this is, indeed, higher than the RYL 

experiments, but still much lower than the page statistics. 

This observation is ver\ important from the perspective of connection life span. It does indicate 

that, even up-to-date web clients, using latest protocols, designed to increase the average 

connection size, still do not reach steady state, which is the condition for which TCP was 

created. I f web browsing continues to remain the main network application used over the 

Internet, certain improvements are worth to be added to the TCP specification, such as faster 

slow-start, in order to increase its performance. Such changes would have to face the current 

recommendations [Allman et al 1999] that suggest strict boundaries for initial congestion 

203 



Chapter 6 - Analysis of Internet traces 

window size and congestion window policy. It must be stressed that both sides make justified 

claims, but also may lead to undesired results. Changes in current TCP algorithms, while 

improving the evolution o f TCP transfers, wi l l alter the self-tuning character o f TCP and may 

lead to higher overall congestion. On the other side, strict recommendations wil l keep the current 

balance of Internet transfers, but, as shown in this section and the next one, which discusses 

congestion window average size, do impact on the performance obtained for current HTTP 

traffic. 

It was not possible to determine whether the clients connecting to the websites disabled the 

HTTPl .1 option' but this is rather unlikely. The most likely conclusions are that either the HTTP 

persistent connections functionality is not efficiently / correctly used or that the web servers have 

disabled the feature in order to have better connection management. The first category o f issues 

relates to incorrect implementations and is likely to be eliminated in the future. The second one, 

however, relates to configuration o f web servers: depending on the loading o f the server, 

administrators may choose to disable the persistent connection feature in order to reduce the 

associated overheads [ IBM 2000] 

6.5.5 Congestion window 

The congestion window analysis produced estimates for 107176 connections within the IP-and-

size filtered UoP dataset. The cumulative distribution is presented in Figure 6.28. 

This would have required saving Uie HTTP headers, which may have been seen as breaching the users' privacy 
204 



Chapter 6 - Analysis of Internet traces 

% of connections 
100 

10 
Congestion window size [ MSS ] 

IOC 

Figure 6.28 - Cumulative distribution of the (a) initial and (b) maximum congestion 

>Mn(io\\ size for the t'oP traces 

The average values were 2.24MSS for the initial congestion window and 6.94MSS for the 

maximum reached congestion window. It may be observed that almost all connections started 

with either I (21.2%), 2 (47.9%), or 3 segments (26.3%) - the next size, 4 segments, accounted 

for only 2.7% of the total. The rest of the estimations may be misconflgured web servers but, 

more likely, they are estimation errors. The problem lies in the criteria used to separate between 

two trains of packets which is distance between packets vs. average RTT: i f the acknowledgment 

to the first packet is lost, the timeout is 3 seconds which, depending on the arrival sequence, 

might lead to an erroneous RTT estimate close to this timeout value. As a result, at least for the 

first few windows, the inter-arrival wil l be compared with this erroneous RTT rather than the 

correct value, leading to a large figure for the initial congestion window. 

The congestion window analysis also created problems when estimating the maximum window 

acheived. As described in section 3.4, the method only works as long as the bandwidth*delay 

product is higher than the size of the current congestion window. For example, using a T l 

bottleneck and with the approximate average of 150ms RTT: 

205 



Chapter 6 - Analysis of Internet traces 

RTF 1.544.10^ 0.15 
visible BW= ""^ . — = 14475Bytes = IOMSS 

6.3 
MSS^\460Byies 

The formula is based on the assumption that paths are symmetric; an assumption which does not 

always hold, but it is diflTicult to asses the asymmetry of the two path directions. This is why the 

RTT is divided by 2, to account for the fact that half of the RTF is the forward path, used for 

data transmission, while the other half is the reverse one, used for acknowledgments. As a result, 

windows above I OMSS are more likely to be the result o f reaching steady state rather than 

genuine congestion window growth in case o f a T l connection. However, as shown in the 

diagram, this was a rare event judging by the fact that 81% of the inferred maximum congestion 

windows were lower than the above I OMSS and that the estimate provided used a throughput 

much lower than the average one observed in 6.5.3. 

6.5.6 Throughput 

The throughput filtering used the same criteria as described in 6.4.7, The 2- and 3-Packet 

connections were separated from the overall set; the resulting distributions (with and without 

these connections) are presented in Figure 6.29. 

206 



Chapter 6 - Analysis of Internet traces 

% of connections 
100 

1 10 100 1000 10000 100000 16+06 1e-K)7 1e*08 1e*0e 1ê 10 
Throughput fBytes/s) 

Figure 6.29 - Thput distribution for a) entire UoP dataset and b) only 4+ packets 

connections f rom the LoP dataset 

The distribution shows the difference between the all-connections dataset and the 4+ Packet 

connections, a difference reflected in the average values: 7.5 MBytes/s average value for the 

entire dataset and only 177240 Bytes/s for the 4+ Packets subset. A strange feature o f the 

distribution is visible in the upper part o f the graph: several connections from the complete UoP 

dataset were recorded with a throughput higher than IGBytes/s. Some of these values resulted 

due to the effect explained in section 6.4.7: all packets from the connection were sent back-to-

back in a single train, with erroneous calculation of the timestamps. However, an additional 

problem was observed when studying the individual connections, exemplified in Figure 6.30 

58. 171805 c l i e n t .1600 > s e r v e r . h t t p : t c p 0 (DF) 
58. 178275 s e r v e r .http > c l i e n t . 1600: t c p 0 (DF) 
58. 178477 c l i e n t .1600 > s e r v e r . h t t p : t c p 0 (DF) 
58. 186164 c l i e n t .1600 > s e r v e r . h t t p : t c p 293 (DF) 
58. 192973 s e r v e r .http > c l i e n t . 1600: t c p 0 (DF) 
5 8 . 196612 s e r v e r .http > c l i e n t . 1600 : tcp 1460 (DF) 
5 8 . 196613 s e r v e r .http > c l i e n t . 1600 : t c p 146 (DF) 
58. 197066 c l i e n t .1600 > s e r v e r . h t t p : tcp 0 (DF) 
74. 993911 s e r v e r .http > c l i e n t . 1600: t c p 0 (DF) 
74. 994104 c l i e n t .1600 > s e r v e r . h t t p : t c p 0 (DF) 
76. 482712 c l i e n t .1600 > s e r v e r . h t t p : t c p 0 (DF) 
76. 489479 s e r v e r .http > c l i e n t . 1600: t c p 0 (DF) 

Figure 6.30 - Connection exhibiting a possible timestamp error 

207 



Chapter 6 - Analysis of Internet traces 

It may be seen in the connection that the two data packets sent by the server are only I^is apart. 

As the timestamp is applied after the packet was entirely captured [Donnelly 2001], the 

conclusion would be that the 146 bytes packet arrived at the capturing point in only l^s. Adding 

the 54 bytes of headers, the resulting correct bandwidth figure is 200MBytes/s, equivalent to 

1.6Gb/s. This is impossible, as the network interface card speed was only lOOMb/s. The error is 

likely to come from the way timestamp is applied to the packet, a subject that relates closely to 

the mechanisms between the Linux kernel and tcpdump. 

6.5.7 Elapsed time 

The last part of the UoP trace analysis was the duration o f the connections. Only the 4+ Packet 

connections were kept, and the analysis looked at the total duration of the connection and the 

duration of the data transfer. The results are displayed in Figure 6.31 

% of connections 
100 

1e-06 0.0001 0 001 GDI 0.1 1 
Duratior [s] 

10 100 1000 

Figure 6.31 - Cumulative distribution of the a) total and b) data transfer only duration of 

connections f rom the t oP dataset 

The average figures throughout the dataset for the two variables were 3.19s for data transfers and 

6.07s for full duration of the connection. This does not imply that half of the time of transfers is 

208 



Chapter 6 - Analysis of Internet traces 

spent in establishing and closing the connection because clients may be keeping the connection 

open to avoid establishing a new one in case other requests are coming. 

6.5.8 Issues and limitations 

One disadvantage of the study was probably the difference in the sources that produced the three 

datasels. Although the two rounds of RYL experiments were grouped, the retrieval process was 

different between them. Due to the limitations o f wget at the lime, the first round allowed 

retrieval of only HTML objects, without the additional objects (e.g. images), while the program 

evolved until the second round and allowed full retrieval of pages. Still, none of the wget 

versions included a HTTP v l . l tool, which would allow persistent connections and, implicitly, 

longer TCP transfers. In comparison, the UoP dataset offered the image of the real traffic, but, 

due to privacy implications, did not allow an in-deplh study o f the HTTP retrievals. 

A limitation of the study was also the lack o f diversity in the studied environment. A l l traces 

were collected from within the University o f Plymouth and, besides a network upgrade that 

happened between the two rounds of RYL experiments, the connectivity remained the same 

throughout the datasets. This limited the network paths results in the sense that, rather than 

analysing a mesh of independent paths, the connections happened between one fixed point, 

connected via a single technology, and a variety o f remote endpoints. However, this may also be 

seen as an advantage because, with the exception o f the first round of RYL experiments, the 

connectivity characteristics did not appear to affect the results o f the measurement (e.g. a low 

access bandwidth would have limited the visible spectrum of bottleneck bandwidth). 

209 



Chapter 6 - Analysis of Internet traces 

6.6 Summary 

This chapter presented the findings resulting from the analysis of three sets o f network traces, 

collected from the same end network, the University o f Plymouth. The traces were captured 

using tcpdump and analysed with an implementation o f the method described in Chapter 3. The 

traffic for the first two sets of traces, grouped under the term "RYL experiments" was produced 

in autumn 2001 and spring 2002 by connecting to random web pages. The third set, referred to as 

"UoP dataset", was traffic produced by real clients and was collected during autumn 2002 from a 

UoP backbone node. 

The analysis attempted to profile three main issues: the Intemet paths characteristics, the 

evolution o f TCP connections, and the web page transfer features. The paths characteristics were 

defined by the round trip delay (RTT) and bottleneck bandwidth encountered by the analysed 

fiows. The analysis also looked at packet loss; it was shown that, although related to the path 

characteristics, this variable had strong links to the transfer features. The evolution o f TCP 

connection focused on its two boundaries, the sizes o f the initial congestion window and o f the 

maximum congestion window. Finally, the analysed transfer features were the size of web pages 

and the size / efficiency o f TCP connections / HTTP retrievals. Throughout the analysis o f the 

UoP dataset, the results between the two collection methods were compared to determine 

whether the findings from the artificial RYL experiments were similar with the results from the 

real traffic. The RYL experiments were also analysed in terms of redundancy and variability. 

In terms o f Intemet paths characteristics, the two datasets have shown a very similar image: 

fairly low delay, proportionally low standard deviation, and high bandwidth paths. The RTT 

average distribution was dominated by a strong increase around the 100ms delay value. It was 

shown that one o f the main possible causes for this increase could have been the large number of 

US-based websites, all incurring a 70-100ms transatlantic and US-continental delay. The 

210 



Chapter 6 - Analysis of Intemet traces 

analysis also compared the resolution of ack-inferred vs. TCP options timestamp inferred RTT 

averages. It was shown that for most flows (and on average) the TCP options timestamp offers a 

higher number of estimates, in spite o f the unfavourable position o f the capturing device in all 

the cases. However, the TCP options timestamp analysis showed that a considerable number o f 

websites still used a clock with a 100ms resolution. With RTT averages being o f comparable 

values, this diminishes the benefits provided by TCP timestamp usage. 

The bandwidth analysis appeared to be accurate in the vast majority o f cases, being able to reveal 

several features o f the analysed environment. The analysis of the RYL experiments was able to 

identify the tenfold network bandwidth upgrade, an event that happened between the two rounds, 

revealing a bottleneck distribution asymptotic to the local access speed. Also, the analysis o f the 

UoP dataset revealed three peaks corresponding to typical connectivity solutions ( E l , T l , and 

10Mb LAN). 

The loss analysis focused on three types of loss-related events: visible losses, inferred losses, and 

avoidable losses. Overall, the image offered by the traces was a loss-free environment for the 

vast majority o f the connections, with a considerable number of avoidable losses and very few 

genuine timeout events. 

The results for web page size, TCP transfer size, and congestion analysis were closely related. 

The RYL spring 2002 analysis showed that web pages were fairly large in terms of total size, but 

they also included on average a large number o f objects to account for that size resulting in 

typically short connection sizes. The congestion window analysis has shown that almost all 

senders were using 2 MSS or 3 MSS initial congestion windows, allowing faster transfers by 

eliminating the first delayed acknowledgment. 

211 



Chapter 6 - Analysis of Internet traces 

The analysis o f the transfer speeds focused on throughput, with a brief discussion about 

connection duration for the UoP dataset. The results were similar for all traces, with low average 

throughput figures, due to the low average values o f maximum congestion window transfers 

which did not allow for proper usage of bandwidth. 

Overall, the results obtained from the RYL experiments scaled well to the backbone study, in 

spite o f the various limitations. This indicates that such short studies may be used to provide 

detailed information about Internet paths and typical web pages. The results o f both types o f 

traces have shown, through the UoP Internet perspective, good path connectivity in terms of 

bandwidth, delay, and loss. 

In conclusion, the proposed analysis method was successfully used to produce an image o f 

Internet paths parameters, as observed from a single collection point. The study was performed 

on packet traces collected from a single connectivity point and focused exclusively on HTTP 

object retrievals. Based on the resulting Internet characteristics, fast and virtually loss-free paths, 

coupled with transferred objects features (short-lived TCP connections) several discussions and 

recommendations were produced. 

In the context of this study, this chapter represented the final stage o f monitoring - applying 

proposed TCP analysis on real traffic in order to observe current network conditions. The next 

step is to try and use the information obtained in order to build the relationship between network 

and endpoint conditions on one side and the resulting performance on the other side. The study 

o f this relationship wi l l be attempted next, with Chapter 7 proposing a novel approach for 

tackling the TCP performance modelling, then, throughout Chapter 8, benchmarking the 

proposed approach using various sources of traffic. 

212 



Chapter 7 - TCP performance prediction model based on IDA 

213 



Chapter 7 - TCP performance prediction model based on IDA 

Chapter 7. TCP performance prediction model based on IDA 

214 



Chapter 7 - TCP performance prediction model based on IDA 

7.1 Introduction 

This chapter presents the top level of the research undertaken as part of this programme. The first 

stage aimed to identify the state of the art and the associated problems within the performance 

analysis area, with a particular focus on monitoring and modelling. The second stage proposed a 

novel approach to monitoring, based on elements of existing techniques. The proposed method 

used non-intrusive analysis on single-point captured traffic to provide timely results using online 

monitoring. As part of this traffic analysis stage, the method was applied to semi-controlled and 

real traces in order to build a holistic image of the Internet. 

This last stage is concemed with modelling the performance of TCP transfers. The proposed 

model aims to overcome the lack of robustness from current mathematical approaches but also to 

produce a higher accuracy when predicting performance. This first section o f this chapter wi l l 

highlight the limitations of current methods in terms of both robustness and accuracy. The 

second section wil l then introduce a knowledge-based approach that aims to provide better 

results to performance modelling. The introduction o f the tool wi l l link the limitations o f a 

mathematical approach with the capability of knowledge-based techniques to learn from past 

examples and wil l present previous successes of such methods in the area o f networking. 

7.2 Limitations of existing mathematical models 

Section 2.5 presented the attempts made to date to produce a comprehensive and robust model 

that describes the evolution and, implicitly, the performance o f a TCP connection. In order to fit 

their proposed models to pseudo-real clients / environments, the theories described are based on 

several simplifications: 

215 



Chapter 7 - TCP performance prediction model based on IDA 

1. The clients have all the same behaviour / use the same implementation (e.g. TCPReno), 

either of them being fully known 

This assumption provides a precise evolution of the connection, due to the predefined 

characteristics of the clients. Unfortunately, this assumption does not apply to real-world 

cases, where the TCP senders belong to different implementations, running under various 

operating systems. Because o f this, such models are bound to fail when confronted with a 

different implementation. The task o f determining the implementation itself is cumbersome, 

as shown in [Paxson 1997b], but necessary, i f an accurate model is desired. In regards to the 

differences between various implementations, in [Popescu and Shankar, 1999] the authors, 

after profiling 3 TCP implementations, all allegedly based on TCPReno (NetBSD 1.2, 

Windows 4.0 SP3, and SunOS 5.5), remarked 'the differences between these [the studied] 

profiles are so large that we wonder whether the overall performance in the Internet can be 

improved merely by just implementing TCP more carefully" 

2. The test environments are either controlled or semi-controlled. 

This assumption relates somewhat to the first one. The validation data for the currently 

proposed models comes mainly from two sources: synthetic connections and controlled 

connections. The first category encompasses connections produced typically using NS 

(Network Simulator) [NS 2003], the network simulator described and used as part of the 

validation in Chapter 5. The second category is represented by connections going through 

real networks, but under controlled conditions: both o f the ends are known and the amount o f 

data transferred is predefined and typically large. A good example for this type o f 

experiments is series run in [Padhye et al 1998] to validate the proposed model. 

216 



Chapter 7 - TCP performance prediction model based on IDA 

Both o f the above mentioned solutions highlight different aspects of the real network, but are 

they sufficient? A good start of the discussion regarding the appropriateness of NS, or, in 

general, simulation environments, as a reliable TCP investigation tool is made in [Allman and 

Falk, 1999]. As the scope of the study is to propose a methodology for analysing the 

performance o f real TCP, it highlights all the pluses and minuses of simulation. It is true, also 

according to the above-mentioned study, that /^S proved to be the favourite environment for 

researchers to test their theories as it offers a wide range o f scenarios. Due to its synthetic 

character, it may reproduce or generate any network conditions or generate environments which 

would be very expensive, money- and time-wise, to obtain in reality. Nevertheless, aside from all 

these advantages, it is Just a simulator. It offers flexibility, as the parameters o f the endpoinls can 

be modified as desired, but its behaviour differs from the real case in several ways: 

- The one-way TCP clients available under NS are based on the Tahoe, Reno, NewReno, 

or TCP Vegas specification; a better choice, especially when trying to reproduce real 

transfers, is the two-way (FullTCP) TCP client from NS, which is based on NewReno 

[NS 2003]. A l l these clients are fully compliant with the standards; there is nothing 

wrong with this, from the point o f view o f testing TCP implementations but, as observed 

in [Popescu and Shankar, 1999] or [Floyd and Padhye 2001] the real clients vary their 

behaviour from operating system to operating system, and even from version to version, 

aiming towards pure specifications (like TCPReno), but never converging. In fact, 

[Paxson et al 1999] even standardised the errors likely to appear in implementations, 

while [Floyd and Fall, 1999] warned about the negative effects that such implementations 

may have; 

- Endpoints without processing delays. The endpoints lack processing delays due to e.g. 

high load, which eliminates some of the timing variations; 

- Limited environment. The topologies generated with ns are basically limited only by the 

217 



Chapter 7 - TCP performance prediction model based on IDA 

software constraints. Within this project, topologies with up to hundreds o f hosts were 

created, in order to provide a near-reality effect. This is far better than configurations or 

topologies that can be built using real testbeds. Nevertheless, as argued in [Paxson 

I997d], the variety o f conditions on the Internet and their variations can rise above any 

type o f simulation. On top o f this, the limited topologies reflect also in the traffic load: 

what is the correct size of the routers buffers for a good replication o f the reality: small 

buffers to produce high losses, ruining the overall performance; large buffers that never 

f i l l , therefore there is no loss in the simulated network, but the delay is unrealistically 

high. 

Having discussed the above, it is very convenient to validate the TCP model, built on the TCP 

Reno specification on a simulation environment that runs exactly the same implementation. The 

remark probably sounds a bit harsh; the aim is not to suggest that the authors biased the 

validation conditions to be in agreement with their proposed models, but to highlight their 

limitations. 

To overcome the limitations due to simulation environments, recent models, such as [Padhye et 

a! 1998], included a certain degree of validation in semi-controlled environments: a number o f 

computers, running various operating systems, exchanged large files between them. In this case, 

while the degree of realism is high in regards to the network, the experiments were rather far 

from reality in regards o f the dimension of the transferred files. As was expanded in Chapter 6, 

the average dimension of the files transferred within HTTP transactions is around I0-20KB, 

which is several degrees smaller than the transferred data within these validation experiments 

(each TCP connection lasting for 100 seconds). The reason behind this is the actual purpose o f 

the models. As explained in Chapter 2, the declared aim of the above-mentioned study, as well as 

[Ott et al 1996] was not to determine the overall performance of the download, but to model the 

218 



Chapter 7 - TCP perfomiance prediction model based on IDA 

stationary behaviour o f the congestion avoidance algorithm. Nevertheless, they are currently the 

landmark papers for defining TCP performance based on the network parameters. Later on, with 

the extensions brought by his study [Cardwell et al 2000], Cardwell attempted the closest 

experiment to uncontrolled environments: connections to a mixture of popular websites and 

random web pages. Unfortunately, it is precisely the results o f these experiments that he did not 

detail in his paper, for reasons which are unknown. 

Summarising the above observations, there is a clear tendency o f the mathematical models to 

limit to the theoretical / simulated situations. The reasons behind this are multiple; they relate to 

the limitations o f the models and they were discussed in some detail in this section, as well as in 

the previous one: 

1. The models are less aimed al performance, but at congestion window evolution in time, 

in particular in the stationary stage. 

2. The behaviour modelled is not likely to appear in real traffic conditions. 

3. The models are heavily relying on knowledge of the TCP behaviour o f the endpoints; in 

fact they use an idealised TCP implementation (the TCPReno specification) as a starting 

point for the models. 

7.3 Why use IDA? 

This project aims to overcome the TCP modelling limitations listed in previous section by 

proposing a novel prediction model, based on intelligent data analysis (IDA) techniques. The 

approach used aims to bridge the relationship between network and transfer conditions on one 

side and the resulting perfomiance on the other. After judging the features that range beyond 

mathematical models, such as unknown client behaviour and uncertain network events, this 

219 



Chapter 7 - TCP performance prediction model based on IDA 

approach was built on Intelligent Data Analysis (IDA). IDA, also known as Knowledge 

Discovery in Databases (KDD) [Fayyad et al, 1996], is a process of extracting features from raw 

data, encompassing techniques for preparing, transforming the data, extracting the features then 

analysing them. 

Current models all use a theory-to-reality approach to define the TCP behaviour. This way of 

thinking proved beneficial in terms of understanding and following the TCP evolution in time. 

One of the successful outputs resulted from the comparison between real clients behaviour and 

the idealised/modelled behaviour, which allowed possible errors / problems in the 

implementation details to be identified. They also led to proposing improvements, such as 

emerging TCP improvements or new TCP algorithms and implementations, all aiming to be 

friendlier to the other traffic and, implicitly, networking environment (i.e. less aggressive, more 

lenient, optimum for the traffic conditions). But, behind all these, remained the reality: a wide 

range of unknown TCP clients, short transfers, and Internet users interested in the throughput 

values resulting from these conditions. Al l these were less of a concern for the conclusions of the 

existing models. This is why, within this project, the proposed approach takes a different view of 

performance when compared to the mathematical based models: 

Analyse the performance of a comprehensive range of current traffic from real networks and, 

based on this knowledge, predict the performance of TCP traffic for any combination of network 

conditions within the known scope. 

73,1 The structure of IDA 

This section describes the typical stages of an IDA procedure. The purpose o f this description is 

to have a generic view of the process, a view that wi l l be customised for the requirements of this 

220 



Chapter 7 - TCP performance prediction model based on IDA 

research programme in the next section. The model used is the one proposed in [Fayyad et al, 

1996], displayed below in Figure 7.1. 

Selection U--^ Preprocessing 

Target ^ 
dataset 

Transformation 

Preprocessed 
dataset 

Data mining 

Transformed 
dalaset 

Interpretation 

Patterns 

Data Knowledge 

Legend: 
•> Data flow 

^ Operations to be applied to data 

> Feedback flow 

Figure 7.1 - IDA processing diagram - basic representation (adapted from (Fayyad et al, 

19961) 

The IDA process, as described in [Fayyad et al, 1996], includes 9 stages: 

1. Build prior knowledge o f the domain to study 

2. Produce a target (raw) dataset that wil l be used as the basis for analysis 

3. Pre-process raw data: remove noise 

4. Project data onto the problem - identify the relevant variables 

5. Identify the actual process, such as classification, regression, clustering 

6. Identify the optimum analysis to use - determine the best combinations o f analysis 

methods and input/output parameters 

7. Apply the data mining itself - perform the pattern/knowledge discovery 

8. Interpret the knowledge. 

221 



Chapter 7 - TCP performance prediction model based on IDA 

The process follows the successive transformations applied in order to extract useful knowledge 

from raw information. Typically, from all 8 steps, the focus falls on the middle stages (5-7), with 

less attention to the pre-processing and post-processing stages. However, as will be shown in 

section 7.5.1, preparing data for the analysis represents a considerable part o f the process, as 

applied to this study. 

7. J. 2 IDA for this project 

The IDA concept uses a very generic approach to data analysis. It aims to analyse raw data and 

to extract patterns and knowledge with a degree o f novelty and/or interestingness [Silberschatz 

and Tuzhilin 1995]. The applications o f the process vary from classification o f data into known 

categories to clustering data into previously unknown categories. In this case the IDA model was 

adapted for the needs o f this study, resulting in the schematic diagram from Figure 7.2. The 

meaning o f the processing blocks from the diagram below wi l l be detailed in the reminder o f this 

section. 

Raw packets 

T 

Network 
traffic 

Legend 

Network and transfer parameters 

Performance 
estimate 

TCP 
analysis 

Pre-processing Data Post 
mining processing 

1 
+ 

Accuracy 
I 
I 
I 

Information flow 

Feedback flow 

Data content 

Figure 7.2 - IDA processing diagram - basic representation 

222 



Chapter 7 - TCP performance prediction model based on IDA 

The input to the process is the Nehvork traffic, representing the raw data captured from the 

headers o f the packets. The capturing can be done for either live processing (where data is fed to 

the IDA right away) or offline processing - the content o f the packets which is stored in a file 

and analysed at a later time by the IDA. 

The raw header content is unusable for data mining. The next step is to acquire knowledge and 

transform data in a meaningful format, using TCP analysis. This was achieved through the 

research associated with network monitoring, Chapter 3, which provided the mechanisms to 

understand and interpret the data exchange within TCP connections (section 3.4). The process 

also requires targeting the relevant data and variables: having determined the domain knowledge 

(TCP behaviour), it must be decided what data would be useful to use in the analysis. At this 

step, described in section 2.5.2, the actual variables that wi l l constitute the input o f the analysis 

have to be chosen. 

The next step, Pre-processing^ is essential for the performance of the entire algorithm: the 

parameters obtained from the raw input during the previous step must be put in a form suitable 

for the data-mining algorithm. It is at this stage where data may be transformed, filtered, scaled 

in order to fit the chosen algorithm. Due to the various steps involved in this task, details about 

the actual processing are provided separately in section 7.5.1. 

Data mining is, aside from highlighting the importance of data pre- and post processing, the core 

of the IDA process. The aim of this stage is to determine a relationship between different 

instances of the input parameters and the variable that is predicted and classified. The methods 

used within this project are detailed in section 7.5.2. The process includes two sub-stages: 

training and testing. During the training phase, the IDA does not generate any output, but only 

produces a set of rules / a function to map the TCP behaviour onto resulting performance based 

223 



Chapter 7 - TCP performance prediction model based on IDA 

on the (filtered) Network and transfer parameters samples that it is presented with. Following 

training, in the test phase the data mining engine is presented with unseen samples. The set o f 

rules and functions established in the training phase is then used to provide at the output an 

estimated value, the Performance estimate. Network and transfer parameters represents an 

instance of the set of variables that define a connection (network conditions, endpoint types, and 

file size). They are extracted using the proposed monitoring method from a network trace, in the 

same way as it happens during the training phase. 

The output of the data mining algorithm may require further processing in order to interpret its 

significance. It is the combined task of the data mining output and the Post processing block to 

perform this further analysis in order to evaluate the success of the method. 

As shown in Figure 7.2, the process has, aside from the forward fiow of data, a feedback flow, 

where the resulting accuracy is used as an indicator for the efficiency of each step involved. This 

reverse flow allows identification of sources of error and, i f possible, remedies them. It is worth 

noting that this is a logical flow and requires extemal interaction. 

7.4 Why use a neural networks approach? 

As explained in the previous section, the prediction model proposed as part o f this study aims to 

approach the relationship between the network and connection characteristics and the resulting 

connection duration from a different perspective: predict the performance based on prior 

knowledge, rather than attempt to model the evolution of the connection. The rationale behind 

this change is supported by the variety o f uncertainty sources when studying the TCP data 

transfer: the variations between the mathematical model and the existing implementations, the 

differences between actual network parameters and their values, as inferred by the TCP 

224 



Chapter 7 - TCP performance prediction model based on IDA 

endpoints, or the preferred steady-state behaviour o f the model versus the typical short-lived real 

connections. 

Due to the nature of this approach and the uncertainty sources, the model is required to learn the 

relationship between TCP performance and its influencing factors. The closest concept to match 

this task is the artificial neural network, which is designed specifically to acquire knowledge 

from the studied environment via a learning process and to store this knowledge in the 

intemeuron connection strengths [Aleksanderand Morton 1990]. 

The neural network consists of a number of neurons, connected via synaptic weights in a 

structured manner. The model of a neuron, as presented in [Haykin 1998], is shown in Figure 

7.3: 

Induced 
Bias local field 

Activation 
function 

<p(x) 

Output 

Figure 73 The model of a neuron (based on (Haykin 1998|) 

The neuron has n of inputs, jc^,/= l , / i , added into a weighted sum - v, the induced local field of 

the neuron: 

225 



Chapter 7 - TCP performance prediction model based on IDA 

/ = 1 

The role of the bias is to adjust the input of the activation ftjnction. It may be modelled through 

an input vo that is added to the sum via the weight wo=b. 

The induced local field is then applied to an activation function, which varies from the threshold 

(Heaviside) function, employed in neural networks used for binary decisions, to the sigmoid 

function: 

(p{v)=—!— 7.2 

where a is the slope o f the function. The sigmoid function is preferred as activation function 

particularly when the neural network is required to map onto a continuous domain. 

Neural networks approaches have been extensively used in recent years in the networking area. 

A few examples o f successful applications were obtained particularly regarding network errors 

classification and decision making. Since early 1990s, [Hiramatsu 1990], [Cheng and Chang 

1996], [Catania et al 1996], until recently [Ramaswamy and Gburzynski 1999], neural networks 

were proposed as an alternative to improve QoS control in A T M networks. The studies, although 

performed in slightly different area o f networking, have shown that a knowledge-based approach 

may lead to better results when faced with the variable nature o f traffic, in comparison with 

statistical approaches. 

Based on the above-mentioned studies, neural network-based solutions are likely to overcome 

typical limitations of the mathematical approaches when dealing with complex relationships 

226 



Chapter 7 - TCP performance prediction model based on IDA 

between the influencing variables. Within this project, it is expected that the neural network 

based TCP model wil l provide better accuracy than the existing mathematical approach, and 

also, due to its learning capability, wil l perform better in terms of robustness and flexibility. 

Robustness is probably the weakest point of all the previous models: they are only able to cope 

with certain types of TCP endpoints / file sizes / traffic conditions. An ideal model should be 

able to cope with any combination of these characteristics. The flexibility will prove to be 

advantageous when the model wi l l be applied on future implementations o f TCP. 

It is virtually impossible, due to the diversity of possible combinations, to address these two 

issues within a model by using a mathematical approach. To build a TCP model using 

mathematical reasoning would require some sort of consistency throughout the range of TCP 

endpoints and network conditions, consistency which at least currently does not exist. This is, in 

fact, the fundamental distinction between mathematical models and the performance prediction 

model proposed in this project: use prior knowledge to predict overall performance instead of 

trying to determine the evolution of the TCP connection. 

It must be stressed that the primary aim of the proposed model is not to compete with the 

mathematical models, but to cover a different area o f TCP performance analysis by using a 

different approach. The proposed solution does not provide any information about the evolution 

of a connection in time, but only about the overall performance (in terms of connection duration) 

that is likely to be achieved, based on the network and endpoint conditions. 

The next section wil l detail the Pre-processing, Data Mining, and Post processing blocks o f the 

IDA process, as applied within this research programme. 

227 



Chapter 7 - TCP performance prediction model based on IDA 

7.5 Applying IDA to TCP performance modelling 

7.5. / Data collection and pre-processing 

The first two stages o f the IDA process are essential for the success of the IDA approach. 

Previous sections already described the various sources and methodologies for obtaining the raw 

data, ranging from synthetic to real network traces, to use for training / testing the proposed 

model. This section wil l focus on how this data is pre-processed before entering in the prediction 

model. 

The first issue is what data should be fed into the data mining algorithm. From the studies that 

developed mathematical TCP models (see section 2.5) and the overall behaviour o f TCP clients, 

it is clear that network parameters, as seen by the endpoint, have a vital impact on the 

performance o f the transfer. In the case of this study, the data collection provides a network 

trace, which is only a list o f the captured packets with their headers; it does not provide any 

information about the network parameters or status. This is where the TCP analyser, described in 

Chapter 3, comes into place to interpret the connections within the raw trace and infer the 

network conditions that were in place during the time of the transfer. The output of the TCP 

analysis includes the average values for delay (round trip time) and loss (probability, measured 

in lost data packets per total number o f packets transmitted). 

A second category o f parameters that affect the throughput are connection parameters; the initial 

and maximum values for congestion window and the file size. Their usage as inputs may be seen 

as a limiting factor for the robustness of the model (aimed to predict performance only on 

network parameters). However, due to the major impact they have on the connection evolution, it 

is impossible to obtain an accurate prediction without including them in the analysis. 

228 



Chapter 7 - TCP performance prediction model based on IDA 

Finally, a third set of parameters completes the picture: aside from the network status, which 

models the behaviour o f TCP, and the amount o f information transmitted, which allows TCP to 

adjust properly to the network conditions, the performance depends on the behaviour o f the 

endpoints. Tliis project did not include in its scope to profile the behaviour o f the TCP senders or 

receivers. However, it provided an easier solution to retrieve the sender information for HTTP 

transfers by extracting relevant fields from the HTTP headers, as presented in section 2.5.2. The 

main problem encountered while extracting the sender information was how to map it onto a 

numerical variable. The issues come from the differences between different implementations: 

there is no better/worse relationship between them (e.g. a Linux-based TCP client, inferred from 

an Apache Linux server tag, is not better or worse than a Windows-based TCP client, inferred 

from an IIS tag, they are simply different). Further, different versions o f the same 

implementation have different characteristics (for example, IIS 4 is likely to run on a Windows 

NT4 server, while an IIS 5 server wi l l be running most likely on a Windows 2000 / XP server, 

resulting in differences between the TCP implementations). 

Considering the above-listed factors, but also the inputs used by the mathematical models 

described in section 2.5, two types o f models were proposed: one for loss-free connections and 

one for connections that encountered losses. 

Initial congestion 
window 

Round trip time 

Data object size 

Model for 
connection 

without losses 
> Connection duration 

(estimate) 

Figure 7.4 - Block diagram of the TCP model for connections without losses 

As shown in Figure 7.4, the TCP model used for connections without losses takes three inputs 

229 



Chapter 7 - TCP performance prediction model based on IDA 

for each connection: the initial congestion window, the average round trip time, and the size of 

the object to be transferred. Using these inputs, the model produces a duration estimate for that 

particular connection. 

Initial congestion ^ 
window 

Round trip time 

Data object size 

Loss rate 

Timeout 

Model for 
connection 
with losses 

-> Connection duration 
(estimate) 

Figure 7.5 - Block diagram of the TCP model for coDDections with losses. 

The TCP model for connections that encountered losses, as presented in Figure 7.5, uses the 

three inputs from the no-loss model and two additional ones (loss rate and timeout), to account 

for the behaviour of the TCP client when packet loss occurs. 

The second part o f the data pre-processing relates to filtering. Ideally, both the input variables 

and the output predicted performance should be uniformly distributed in the sample space; in the 

real case, for the environments studied, at least for the delay and throughput, the distribution is 

concentrated in a narrow spectrum but is long-tailed, as was illustrated by the analysis performed 

in Chapter 6. The problems with such distributions are two-fold: 

- Normalisation. The neural network requires the input and output values to be normalised 

to the interval [0.0, 1.0]. As a result, the larger the interval, the lower the accuracy 

relative to the overall average value o f the throughput. In order to reduce the errors 

introduced by this issue, four different methods o f scaling were tested to reach the 

230 



Chapter 7 - TCP performance prediction model based on IDA 

optimum accuracy. The results o f the tests are presented in section 8.5.3. 

- Training. The neural network requires sufficient values to be trained throughout the 

definition domain of the values; i f there is insufficient data in a specific sub-interval of 

this domain, the neural network wi l l perform poorly or, at least, wil l be biased by the rest 

of the domain. 

To limit the effect of these two issues, the output data fi-om the TCP analysis was filtered to 

remove the extremities of the distribution. Two types o f filtering were applied: 

- Simple - remove only the extreme values for the output variable (throughput) 

- Comprehensive - remove the extreme values for throughput and the input variables 

(delay, loss, congestion window) 

The second filter was obviously more aggressive, as it removed the extreme values from all 

domains, not only the output one. In the end, a biased version o f this filter was used: eliminate 

the extreme 1% from the input variables domains and the extreme 5% of the output variables 

domains. It is worth mentioning that the filters were not additive, but simultaneous - the filter for 

each variable was applied to the original dataset, not on the remaining data. A l l these measures 

aimed to balance between excessive removal of data and reduction of the prediction errors. 

7.5.2 Data analysis - procedure and algorithms 

The crucial problem widiin the data mining step is deciding what method to use. In informal 

discussions regarding IDA, there are three main issues arising: *use good data', 'understand your 

problem', and 'explain your results'. From the three, the second step is the one that is reflected in 

the data mining choice: the algorithm itself is nothing but number crunching; what is important is 

231 



Chapter 7 - TCP performance prediction model based on IDA 

to 'understand the problem', to clarify what results are expected at the output o f the algorithm. 

As shown in Figure 7.4 and Figure 7.5, two separate sets of IDA analysis engines were used, 

depending on whether the connections encountered any packet loss or not. In spite o f the 

differences between the number of inputs and, implicitly, the structure o f the chosen data 

analysis method, the main characteristics o f the two associated data sets remained largely the 

same: 

- Small number of inputs. The number of inputs was either 3 or 5, depending whether loss 

was modelled or not 

- Large number of samples. Aside from a notable exception, lack of connections with loss, 

the number of collections analysed was fairly large - at least thousands of samples. As 

wil l be shown in Chapter 8, this also had an impact on the way data was split into training 

and a testing subset. 

The starting point was to compare the learning capability of a neural network with the 

relationship between the performance o f TCP and its influencing parameters. Neural networks 

may be employed to reproduce this relationship by modelling a function that bridges between the 

variations o f the output (TCP throughput) and the inputs that caused it (network and transfer 

parameters). This is due to the fact that function approximation is one of the six typical leaming 

tasks for Artificial Neural Networks (ANNs) (the others being pattern association, pattern 

recognition, control, filtering, and beaniforming) [Haykin 1999]. Some of these tasks have 

already proven the ANN's superiority in the networking area, as indicated in section 7.4, 

One main IDA toolset was identified when approaching the task o f deciding for a processing 

technique: SNNS, the Stuttgart Neural Network Simulator (SNNS) [SNNS 2003], a generic 

232 



Chapter 7 - TCP performance prediction model based on IDA 

neural network engine that includes a comprehensive list o f neural network algorithms to use for 

specific prediction / classification tasks. SNNS was preferred as the environment to test the 

efficiency of the neural network due to its complexity and maturity. The product began its 

development in the early 90s [Zell et al 1994]; at the time when it was used within this project, it 

included all major types of neural networks and came with a powerful environment that allows 

loading/training/testing/accuracy evaluation of a neural network on a dataset and with a ful l GUI 

to perform all these tasks. The project had a limited need for the GUI support, as it used 

batchman, the SNNS scripting environment to automate the testing/training o f neural networks; 

in fact, the entire data processing, from raw form to final post-processing output, was built 

within a script, included in Appendix C. 

The accuracy o f various neural networks was tested intensively for the available datasets. The 

evaluation included analysis to determine the optimum for: the split for training/testing subsets, 

the algorithm and type o f network to use, and, finally, the training parameters for that specific 

algorithm. 

The aim of this section is only to describe the steps involved in the IDA processing model. This 

is due to the fact that, although the actual processing is performed using known techniques and 

available software packages, the approach itself, i.e. building a TCP performance model using 

IDA, is novel and so is the entire process involved (extraction and preparation o f input 

parameters and output variable, the analysis, and post-processing o f the results). A detailed 

description of the experiments performed and their results wi l l be given later on in Chapter 8 as 

part of the validation tests, together with an accuracy comparison between the proposed IDA-

based model and the existing mathematical models. 

233 



Chapter 7 - TCP performance prediction model based on IDA 

7.5.3 Interpretation of the results 

In both o f the cases, JGDM and SNNS, the output o f the analysis method was improper or 

incomplete for the proposed method. This is why it was preferred to save the evaluation results 

in a rather raw form in each case and in the post-processing phase to apply a different analysis on 

the results. 

First, for both of the methods used, the visual (graphical) comparison was used to determine how 

well the predicted values follow the real values. This involved plotting each of the n real values 

Si versus the predicted values pi:f(Sj) = Pf,i = \,n, In the ideal case, 100% accurate 

prediction, the result is the identity function, f(x)=x. Although convenient, the graphical method 

cannot be used for analytical purposes and the accuracy has to be evaluated using mathematical 

tests, relating to the relative errors between the above-mentioned Sj and pj. 

In the JGDM case, due to the integration of the toolset, the overall classification result had the 

same format for all the algorithms: indicating the percentage o f correct classification. This type 

of output is exactly what is required by a classification method: how many samples were 

correctly classified and how many were erroneously classified. What this overall result does not 

tell is the error, the 'distance' between the real value and the predicted one. This is because the 

classification algorithms used were designed for unrelated output variables (e.g. classifying fruits 

in apples, pears, plums, etc) and there is no metric to uniformly describe their domain. This is 

why, during the post processing phase, the comprehensive format was preferred, which provided 

information about how the variables were classified and it consists o f a square table that has on 

columns the real values of the output variable and on rows the classes as resulting from the 

234 



Chapter 7 - TCP performance prediction model based on IDA 

classification method' 

The SNNS toolset included a much more convenient facility: output the predicted value for each 

data sample tested. This allows a simpler comparison between the real values and the predicted 

ones to obtain the average relative error. However, the relative error is not relevant for the 

accuracy of the prediction i f the domain of the variable is very narrow (which is the case for 

some of the throughput values in the validation datasets from Chapter 5), because the prediction 

domain wil l be similar with the real domain. This is why, aside from the relative error, the 

accuracy of the prediction was evaluated using the correlation r between the predicted values and 

the real ones. 

Summarising, three indicators were used to determine the accuracy of the SNfNS prediction: 

- graphical, very good but human-observation based, therefore unusable for analysis; 

- average relative error, to determine whether or not the predicted values are similar with 

the real values; 

- correlation factor, to eliminate the inaccurate prediction cases undetectable through 

relative error due to narrow domains. 

' The actual table representation was used also for graphical estimation of the resulting error of the algorithm. The 
narrower and closer to the top-lefl-bottom-right diagonal is the area of non-zero values, the more accurate the 
algorithm is. 

235 



Chapter 7 - TCP performance prediction model based on TDA 

7.6 Implementation 

An actual implementation of the IDA process was produced only for the SNNS-based analysis. 

As was mentioned before, the classification approach did not lead to satisfactory outcomes, 

therefore the JGDM toolset was used while experimenting rather than during consolidation of the 

results. The aim of this section is to overview the components of the SNNS-based processing. 

The input used for the processing was the raw network traces, captured with (cpdump. The actual 

process of collecting the traces and the various sources of traffic used were detailed in Chapter 5 

and Chapter 6. 

The implementation followed the three stages of IDA processing: 

1. Pre-processing. 

This stage included scripts and programs to perform the required tasks to produce a database 

of TCP connection samples. Each sample included network performance and transfer 

parameters, as well as the resulting duration of the data transfer, recorded for a specific 

connection. The analysis of the network trace and the parameter extraction were performed 

using the method described in section 3.4. After obtaining a raw database of samples, further 

processing was required to provide an optimum dataset for training and testing: 

- Connection filtering - remove reset/unfinished connections or very short lived 

connections. 

- Parameter filtering - remove samples with parameters that lake values considered 

outliers. 

Randomising - in order to avoid estimation errors due to different domains of definition 

for parameters that varied in time. 

236 



Chapter 7 - TCP performance prediction model based on IDA 

- Scaling - normalise the dataset in order to make it appropriate for the data mining engine 

- Splitting and formatting - separate the dataset into a testing subset and a training subset; 

produce a format compatible with the method used for analysis. 

2. Processing - included scripts to communicate with batchman, the SNNS programming 

environment 

- Train the neural network with the training dataset, using parameters defined by the user. 

- Test the neural network with the testing dataset after each n training epochs, as defined 

by the user. 

- Provide mechanisms for early stopping. The scripts allowed various training process 

scenarios: 

- Exhaustive training - do not apply any early stopping mechanisms 

- Early stopping using a single Mean Square Error (MSE) / correlation factor test -

stop the training if the resulting MSE / correlation factor is below a certain value. 

- Early stopping using multiple MSE /correlation factor tests - stop the training if the 

resulting MSE /correlation factor is below a certain value for.r successive tests 

3. Post-processing - included scripts to evaluate the efficiency of the prediction 

- Extract MSE and calculate the correlation factor 

- Plot the prediction graph 

All the programming was produced under Linux, using shell, tcl, and axvk scripting language. 

The content of the scripts and further functionality details are given in Appendix C. The 

237 



Chapter 7 - TCP performance prediction model based on IDA 

results of applying the neural networks on various types of data will be presented in Chapter 

8. 

7.7 Summary 

This chapter began by listing the limitations of current TCP modelling efTorts. It was observed 

that existing mathematical models, while accurately describing the behaviour of TCP transfers, 

may not map correctly in the case of real network conditions and traffic. As a result. Intelligent 

Data Analysis has been developed as a valid altemative for estimating TCP performance based 

on network and transfer parameters. 

The chapter described the content of a generic IDA process and applied that description onto the 

case of TCP performance prediction, as used within this project. Four main stages were 

identified within the IDA process, as applied to this project: data collection, connection analysis 

and pre-processing, data mining, and post processing. 

Chapter 8 will describe the results of the validation tests of the IDA approach, using all available 

sources of data, processed using the implementation described in this chapter. 

238 



Chapter 8 - Validation of TCP performance prediction method 

Chapter 8. Validation of TCP performance prediction method 

239 



Chapter 8 - Validation of TCP performance prediction method 

8.1 Obstacles 

The development of an accurate prediction method has to consider several possible obstacles: the 

lack of useful / correct network data/traces, the filtering criteria that should be in place when 

processing the connection data, the accuracy of the TCP analysis method itself, and the 

evaluation of its inherent accuracy. 

The amount of (relevant) data is critical to ensure the success of an intelligent-based prediction 

method as the function that approximates the output is based on the available data. In the case of 

this project, the data consisted of raw network packets, captured from an aggregation point. The 

best source of such data in terms of generalisation is represented by publicly available raw 

network trace archives, with the best example being the traces maintained by NLANR. 

Unfortunately, since privacy laws such as the Data Protection Act were established, capturing 

raw network traffic has been regarded as a breach of the user's privacy, unless anonymised and 

sanitised. In order to obey the privacy requirements, research projects that dealt with data 

gathering had to revise their policy of distributing data. Three solutions were found: stop making 

publicly available network traces that captured uncontrolled traffic', as happened in the case of 

LBNL; switch to infrastructure-based measurements [AMP 2003]; reduce the amount of 

information contained in the raw traces [PMA 2003]. The third aitemative, while being a 

theoretically partially viable option, (still unsuitable at its best for the full proposed TCP 

analysis^) was only very recently (e.g. 2001-2002 for NLANR) extended towards formats 

suitable for TCP analysis. Older traces, due to collection characteristics such as separate 

' This category does not include measurement infrastructures, as they generate synthetic connections (e.g. fixed 
sized objects). Traces from such experiments reflect accurately the network characteristics, but do not provide an 
accurate image of the typical end-user tramc. 
^ The typical capture includes a fixed header, with the largest available size including only the 40 bytes on top ofthe 
link layer (enough for minimum IP and TCP headers). This eliminates any scope for TCP timestamp-based analysis. 

240 



Chapter 8 - Validation of TCP performance prediction method 

collection and anonymisalion for inbound and outbound traffic, were appropriate only for 

workload analysis. 

The remaining option was to analyse traces collected from the NRGAJoP backbone. The 

advantage in this case was having full control over the amount of information that has to be 

removed, without breaching the privacy laws, via the use of sofhvare tools such as tcpurify or 

tcpdpriv that allow trace sanitisation without removing the options carried by the TCP header, 

such as the TCP timestamp options) with the downside of analysing only a smaller network 

environment (but, still, a large amount of traffic at it became apparent). 

The dataset was passed through pre-processing in order to remove outliers, in two phases: first 

was the removing of the connections containing outliers of the variable to be predicted, then the 

connections including outliers of any of the inputs, as explained in Chapter 7. The boundaries for 

two sets of filters were set at 5% (i.e. keep the 5%-95% interval) for the predicted variable and 

1% (i.e. keep the l%-99% interval) for each of the attributes. 

8.2 Data analysis 

One of the main objectives of the TCP analysis was to produce a tool with online capabilities, 

which would be able to study in real-time the TCP connections and output the results. This may 

seem to contradict the prediction part of the project, which used throughout the experiments 

offiine analysis. The decision was taken due to two factors. First, the volume of data 

generated/collected in real time was not large enough to stress the monitoring tool; only towards 

the end, during capture of the backbone traces, would the volume of data have been sufficiently 

high to test the analysis implementation. Second, both the TCP analysis method and the 

prediction method required repeatable analysis during both development and finalising stages. 

241 



Chapter 8 - Validation of TCP performance prediction method 

The TCP method required numerous adjustments, most of them based on visual analysis of the 

traces (e.g. to observe the evolution of the congestion window), while the neural network 

required time for training using the connection samples. In spite of this approach, offline analysis 

fulfilled also the stress requirements, as the traces, which were collected over longer or shorter 

periods of time, were streamed to the analysis program. 

The training/testing data came from three main sources: NS simulations, the R Y L experiments 

and, as an opportunity appeared towards the end of the project, the UoP backbone traces. Each 

dalaset was split into two subsets, based on the evolution of the data transfer, with one dataset 

including only connections without losses, while the other consisted of connections with losses. 

The two subsets differed not only in complexity of their evolution in time (connections without 

losses do not vary the policy of the congestion window increase) but also in the number of 

inputs. 

The transfer during connections without losses is affected only by the congestion window 

characteristics (initial value), the amount of data to transfer, and the round trip delay between the 

two endpoints. As a result, the model for these connections used only three inputs: the amount of 

data to transfer, the initial value of the congestion window (both in bytes), and the estimated 

round trip delay (in milliseconds). Initially, the maximum value of congestion window was 

added to the list, to consider the case when the congestion window increase is limited by the 

receiver advertised window. However, the connection analysis revealed that this did not happen 

throughout any of the datasels, due to the value of the advertised window itself (32120 bytes, 

equivalent to 22 full 1460-byte packets)' and the small amount of data transmitted during each 

connection (which did not allow the congestion window to increase too much). Some of the 

242 



Chapter 8 - Validation of TCP performance prediction method 

receivers ft'om the UoP dataset had implemented, however, a window scale mechanism 

[Jacobson et al 1992] to avoid such limitations. 

On the other hand, connections with losses had several loss characteristics that may have been 

added to the list of parameters: the fast retransmit loss rate, the timeout loss rate, and the first 

occurrence of loss. However, as shown throughout section 2.5, mathematical models require 

only the loss rate and the (estimated) timeout in order to predict the loss events that happen 

during a connection. In addition, it would be impossible to predict, from a total loss rate, which 

proportion of it will have secondary effects such as timeout events. To make the neural network 

model comparable with the mathematical one and, more importantly, to allow its usage on 

generic loss rates, the list of loss-related parameters included only two variables: the total loss 

rate and the estimated timeout. The total loss rate was a sum of the visible and inferred fast 

retransmissions and inferred timeouts. The estimated timeout period was almost impossible to 

extract due to reasons explained in section 3.5.2. It was instead replaced with the total duration 

of timeouts; this had a small impact on the mathematical model too, as the E[Z^J term from 

equation 2.9 had to be replaced with the measured total timeout, as produced by the TCP 

analysis. The mathematical model of connections with losses was different in the sense that it 

used segments rather than bytes to describe the amount of data transferred. These two issues led 

to the following list of inputs for the connections with losses: the amount of data to transfer d 

and the size of the initial congestion window wj (both measured in segments), the round trip 

delay RTTand the estimated timeout 7i (measured in seconds), and the loss rate (ratio between 

the number of retransmitted bytes and the number of useful data bytes transmitted) 

' This may appear contradiciory to Balakrishan's findings from [BaJakrishan et al 1997], where he observed that in 
14% of observed connections the congestion window reached the level of the receiver advertised window. However, 
as observed by the author, the data collection was server-based, resulting in a variety of remote receivers with some 
of them having maximum advertised windows as low as 4KB. 

243 



Chapter 8 - Validation of TCP performance prediction method 

These differences imposed the development of two individual neural network-based models, one 

suitable for loss-free transfers and one designed for connections that encountered losses'. 

The Internet traces were subjected to an additional filter in order to consider the connections that 

might have experienced delayed acknowledgments. As identified in [Cardwell et al 2000], 

connections with a start window of I packet will experience delayed acknowledgments and the 

actual delay of the acknowledgment depends on the implementation used. To eliminate 

heuristics, such connections were removed from the traces. 

A problem identified from the TCP connection analysis stages was the availability of data. Due 

to the characteristics of (at least) the environment where the traces were collected, most ofthe 

connections were loss free, a phenomenon described during Chapter 6. Because of this, while the 

neural network training had enough of samples even after removing some of the data, training of 

the neural network model for connections with losses required all traces available in order to 

produce a sizeable dataset. 

Each subset (i.e. with or without losses) was first filtered and then fed to the corresponding 

neural network. The following sections start by describing identification of the optimum model. 

This first part of the process required analysing the impact of several variables, ranging from the 

structure of the neural network to the training parameters used in each case. Certain assumptions 

were made during these preliminary stages in order to simplify the analysis, such as using values 

recommended by literature for certain training parameters. Also, the analysis limited the scope of 

randomness in order to reduce the time required to study all alternatives. 

' In the preliminary stages it was attempted to produce a single network that would be able to deal with both types of 
conncaions, but its output had low accuracy for both kinds of conneaions. 

244 



Chapter 8 - Validation of TCP performance prediction method 

The estimation results from the neural network models were compared with the current existing 

mathematical models in order to assess whether they are superior in terms of accuracy and 

robustness. The comparison was made in terms of relative error, both in the average value and 

actual distribution, as well as using the correlation factor from the two methods. 

8.3 Preliminary tests - Connections without losses 

The purpose of the preliminary analysis was to evaluate which neural network (in terms of 

structure, algorithms, and parameters) is likely to lead to a greater accuracy for a set of 

connections that do not encounter any loss events. All tests from this section used the no-loss 

connections subset of the R Y L dataset, as a compromise solution between the synthetic nature of 

the NS simulations and the variety of the UoP traces. To increase the number of samples in the 

dalaset, the two rounds of experiments were combined in a single dataset which included 16865 

samples. This also added an element of robustness to the problem as the network environment 

changed between the two sets of experiments. 

There were three main parameters to vary when applying a neural network to a dataset: the 

structure of the network, the method applied, and the amount of data to be fed to the network. 

The structure of the network included variables relating to the number of hidden layers, the 

connectivity between neurons, and the number of neurons for each hidden layer. The method 

applied was the most complex part, with several sub-divisions: establishment of the training 

algorithm together with the initialisation and update functions, identification of the optimum 

parameters for the chosen network, followed by detection of the early stopping decision that 

would lead to highest accuracy. 

245 



Chapter 8 - Validation of TCP performance prediction method 

8.3.1 Neural network structure 

The design of the networks started by considering the number of input and output neurons, and 

then produced several alternatives of hidden layer(s). For the loss-free case, the dataset included 

samples with three inputs: the connection size and initial congestion window (both measured in 

bytes), and the round trip delay (measured in seconds); die network had a single output - the 

duration of the data transfer (measured in seconds). Based on these inputs/outputs, three neural 

networks were generated, all fully connected: 3-2-1 (a single hidden layer with two neurons), 3-

6-3-1 (two hidden layers, first layer with six neurons, second layer with three neurons, shown in 

Figure 8.1), and 3-12-6-3-1 (three hidden layers, first layer with twelve neurons, second layer 

with six neurons, and third layer with three neurons). The reason for using neural networks with 

two hidden layers was that some previous studies, such as [Funahashi 1989] and [Chester 1990], 

have shown that neural networks with two hidden layers may perform better than classical I -

hidden layer topologies. 

With regards to the first set of parameters, i.e. the structure of the network, there was no unique 

set of guidelines with regards to the number of hidden layers or the complexity of each layer. 

This is why the preliminary tests were performed using the 3-6-3-1 network, with the structure 

shown in Figure 8.1 

246 



Chapter 8 - Validation of TCP performance prediction method 

Initial 
congestion 

window 

Round trip 
time 

Data object 
size 

Connection 
duration 

(estimate) 

Figure 8.1 - The inputs, output, and the structure of the 3-6-3-1 neural network used 

during the preliminary tests for connections without losses 

The chosen network has three inputs and one output because the preliminary tests used only the 

no-losses subset of connections from the R Y L dataset. The other two networks were also used 

during the validation tests in order to determine whether they improve the accuracy of the 

predicted variable. 

8.3.2 The .stopping criteria 

First set of correlated decisions was to find the optimal values of three factors: splitting the 

dataset into a training subset and a testing subset, the early stopping criteria, and the frequency of 

247 



Chapter 8 - Validation of TCP performance prediction method 

tests. All these would impact on the ability of the network to stop before overfitting'. These 

decisions made extensive use of the prior research in the area of neural network training. A good 

start was provided by [Morgan and Bourlard 1990], [Weigend et al 1990] and [Amari et al 1997] 

which describe the phenomenon of overfitting while training a neural network, advocating the 

split of the dalaset into a training subset and a testing subset, in order to perform early stopping. 

In addition, the mathematical modelling from [Amari et al 1996] provided the optimum testing 

ratio / for networks with a number of m network parameters to be 

1 n-\ 
t = / , where m = ^(w, +1)/;,̂ , 8-1 

•sj I m ^ = 1 

for a network with (n-2) hidden layers and nj neurons in the i*̂  layer. In the case of the network 

used to train the dataset (3-6-3-1), 

m = (3 + l)-6 + (6 + l) 3 + (3+l) l = 46=>r= . ' =0.10425 8.2 
v2 -46 

The figure was rounded to 0.1, resulting in a ratio of 10% testing and 90% training. 

However, [Amari et al 1996] also describes the other extreme: if the size of the datasets is large 

compared with the number of free network parameters, early stopping will provide only a 

marginal improvement in the generalisation error. This case, named asymptotic in the study, 

happens when number of samples W is much larger than the number of free network parameters 

m that satisfied the 8.3 formula 

' The process of training a network using a dataset results in a decrease of the relative error when applying the 
neural network on that dalaset. However, after a certain number of training epochs, the network will start to overfit 
the dataset by learning the noise contained in the data rather than the determining features. This will lead to lower 

248 



Chapter 8 - Validation of TCP performance prediction method 

W>30m 8.3 

If a W=IOOOO samples datasel is considered, in conjunction with the above mentioned 3-6-3-1 

network, equation 8.3 is satisfied (using data from equation 8.2, 4630=I830<10000). In fact for 

the datasets and neural networks used, the equation is satisfied, at least at the limit, in all the 

cases. A test was run on the R Y L dataset', using the 3-6-3-1 network with r|=0.01, T=0.0, ^=0.1, 

c=0.1, to verify whether MSE starts to increase, as training progresses, for the test subset while it 

continues to decrease for the training subset. The split of the dataset was the optimal one, i.e. 

10% testing and 90% training: the results are displayed in Figure 8.2. 

0.018 

0.016 

0 012 

0 008 

0 006 

M S E 
004 

2000 4000 6000 8000 10000 
cydes 

0 035 

0.03 

0 025 

0.OO5 
2000 4000 6000 8000 10000 

cydM 

Figure 8.2 MSE=f(cycles) for exhaustive training of the R V L dataset, with a 10% testing 

(a) and 90% training (b) split, using ii=0.01, T=0.0, H=0.1, C=0.1 (left) and ii=0.1, T=0.0, 

H=0.1,c=0.I (right) 

errors when applying the training dataset but to higher errors when generalising (applying the neural network to 
previously unseen samples and datasets). 

The experiments performed during this subsection relied also on conclusions drawn from section 8.3.3. as the two 
sets of parameters are independent and one o f them has to be preset in order to observ e any variations of the other. 

249 



Chapter 8 - Validation of TCP performance prediction method 

The experiment indicated that, as expected, there is no divergence between the training and 

testing subsets. As a result, the entire set may be used for training and the early stopping 

condition may be applied also to the entire set. 

For this case, Amari recommended [Amari et al 1997] that exhaustive training should be used, 

without using cross validation. Ideally, the training method should be stopped just before the 

network model becomes overfltting for the dataset. This would be equivalent with a zero or 

positive variation of the MSE between two successive training cycles. The aim is theoretically 

attractive, but it cannot be achieved in practice due to computational complexity (the network 

would require testing after ever> training cycle) and due to the evolution of the network accuracy 

(e.g. the average error values might fluctuate slightly before stabilising). To illustrate the 

problem. Figure 8.3 presents the variation of MSE as a function of the training time (in cycles) 

for three values of the training rate (TI=O.OI, TI=O.I , TI=0.9). 

MSE 
004 I ' ' 

• 

0035 
• • 

003 

0025 • 
1 

002 • 

0015 

0.01 
y 

00O5 1 _ j — 

(b) 

(a) 

• • 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
cydes 

Figure 8.3 - MSE=f(cycles) for exhaustive training of the R Y L dataset, using (a) T|=0.01, 

T=0.0, n=0.1, 0=0.1, (b) 11=0.1, T=0.0, M=0.1, c=0.1, and (c) n=0.9, T=0.0, H=0.1, C=0.1 

250 



Chapter 8 - Validation of TCP performance prediction method 

It can be noticed that the M S E decreases and then becomes stable after 3000 cycles for TI=0.01, 

after approximately 1000 cycles for T]=O.I , and it takes only approximately 100 cycles for the 

network to reach the minimum M S E when r|=0.9. This proves that it is difficult to choose a 

single value for exhaustive training in all cases and. therefore, eariy stopping will be applied in 

all cases to find the point of convergence. To identify the point of convergence, the preferred 

aitemative was to use a very low limit of the variation (0.00001) with 10 cycles as testing period 

and a short-term average to eliminate the possible oscillations [Prechelt 1998]. The average was 

calculated in batches of 5 consecutive tests, which means that the network was stopped only 

when the M S E decreased by less than the variation limit five times in a row. Further, in order to 

avoid missing the minimum due to oscillations with an increasing trend, the minimum M S E 

value was memorised throughout the test. An example of such behaviour where the M S E 

increased gradually over time, but not 5 times consecutively, is given in Figure 8.4 

MSE 

0 0105 

0 0095 

0.OO9 

0 0085 

0 008 

0 0075 

0.007 

0 0065 

MSE 
0 055 

0 200 400 600 800 100012001400 
cycles 

0 045 

0 025 

0,015 

0 005 
1000 2000 3000 4000 5000 

cycles 

Fi«:ure 8.4 MSE=f(cycles) for two difTerent learning processes: (left) slow convergence, with 

11=0.1, T=0.0, fi=0.1, 0=0.1, and (right) fast convergence, with T|=0.5, T=0.0, ^=0.7, c=0.1 

251 



Chapter 8 - Validation of TCP performance prediction method 

The two experiments were slopped using the same criteria: the resulting MSE decreased by less 

than 0.00001 in five consecutive tests. The advantage of evaluating the errors over several tests 

becomes clear for the slow-converging network shown on the left in Figure 8.4. Although the 

error oscillated in the short term, it had an obvious decreasing trend, which stabilised over 1000 

cycles and started to oscillate around a constant level, then increased. On the downside, for the 

fast-converging network, pictured in the right diagram, the training was stopped long after the 

convergence (which appeared at 60 cycles), because the error did not increase monotonically 

from 0.007 to 0.030. In this case it may be admitted that exhaustive training was performed but 

the minimum value was recorded. In these cases, the early stopping proposed rule is not efficient 

and the training mode reverts to exhaustive training, which was limited to 5000 cycles. 

8.3.3 The optimum parameters for a set network 

The method applied to the neUvork involved a wider range of issues. Firstly, the training 

algorithm had to be chosen and, after testing various algorithms, it was decided to use back 

propagation with momentum and flat spot elimination. The decision was motivated by three 

factors: the nature of the problem (i.e. time-independent mapping function), which eliminated 

e.g. the memory-based algorithms, generic recommendations for back-propagation algorithms 

[Haykin 1999], and recent developments into such algorithms. Indeed, the chosen variant of 

back-propagation has two improvements when compared with its predecessors: the momentum 

term // that absorbs any eventual oscillations of the resulting error and the flat spot elimination 

term c, which allows the network to surpass possible flat spots (local minima) on the error 

surface. Aside from these two tenms, the algorithm also includes the typical learning rale 7 and 

tolerance threshold r, which define back propagation. The weights of the neural network were 

initialised with random values in all experiments; the only particular feature was maintaining the 

same seed for network initialising throughout a single batch of tests. This allowed proper 

252 



Chapter 8 - Validation of TCP performance prediction method 

comparison of the results of each set of training values throughout a batch and also offered 

repeatability of a batch of experiments. The process of identifying the optimum values for the 

four parameters was automated using the functionality of the script from Appendix B l . The 

establishment of the intervals for the parameters was based on the recommendations from 

[SNNS 2003], which suggested TI€[0.1;1), re[0;0.2J,/iG[0.1;l), ce[0.0;0.25]. 

The first step in determining the optimum training parameters for the 3-6-3-1 neural network was 

to set the minimum threshold, T=0.0. This is because the purpose of the neural network was to 

follow as accurately as possible the real values, rather than provide a confidence interval for 

them. This left the learning rate and momentum terms available to vary. 

MSE 

0 035 
0 03 -

0 025 ^ 

0 005 

Figure 8.5 MSE=f(Ti,n) for Tie|0.1;0.9| and Me|0.1;0.9| (T=0.0, C=0.1) 

Figure 8.5 presents how MSE varies when j] and ^ vary in the [0.1; 0.9] interval; both 

parameters were incremented in 0.1 steps. It can be observed that the surface is relatively flat, 

except the extremities: the value obtained for (i i , \i) = (0.1, 0.1) is slightly smaller than the 

majority of the tests, while the errors resulting for high values of ^, particularly when coupled 

253 



Chapter 8 - Validation of TCP performance prediction method 

with high values of r|. are higher than the rest of the values. It is interesting to note that there are 

certain studies (e.g. [Hertz and Krogh 1991]) that encourage the use of combinations such as 

high 7 and high in order to achieve fast convergence, but at least in this case, this higher 

convergence speed comes with dramatically reduced accuracy. This indicates that the figures 

chosen for r| and fi should be as low as possible (the accuracy is almost constant when they are 

set to values in the [0.2; 0.7] interval). 

A second batch of training tests was run in order to explore the impact that low values of x] and ^ 

have on the accuracy of the network. The focused intervals this time were r|€[0.01;0.1] and 

^G[0.1;0.9], with 0.01 increments for TI and 0.1 steps for fx. This batch was trained exhaustively 

up to 10000 cycles, but the lowest MSE value was selected from the training process. This was 

done to ensure that the early stopping criteria does not stop the training process before it has 

finished, which was likely to happen with the low values chosen for training rate. The results are 

shown in Figure 8.6. 

0 0078 
0.OO75 
0 0072 
0.OO69 
0OO66 
0 0063 

Figure 8.6 - MSE=f(Ti,M) for TIG[0.01;0.11 and fie[0.1;0.91 (T=0.0, C=().1) 

254 



Chapter 8 - Validation of TCP performance prediction method 

It may be observed that the graph exhibits a similar trend with the one in Figure 8.5, i.e. MSE 

decreases for lower values of T | and \i. However, the decrease was not monotonic, as the 

minimum MSE = 0.00658841, obtained for TI=0.03, T=0.0, ^=0.3, c=0.1, after 9660 training 

cycles. 

Based on the batches of training session described, it was concluded that the 

(TI,T,H,C)=(0.03,0.0,0.3,0.1) parameter set was the combination that would lead to best accuracy. 

8.4 Validation tests - Connections without losses 

The first part of this section is based on the RYL traces, while the second part provides an 

indication of whether generalisation of the problem, based on the UoP backbone traces, affected 

the results. 

8.4.] TheNSdataset 

The NS dataset was obtained by generating network infrastructures using random values for the 

network characteristics. As explained in section 5.5.1, the simulations produced a variety of 

environments, with up to three levels of connectivity. These environments were used to transport 

TCP connections starting and finishing at random moments, therefore exchanging data objects of 

different sizes. 

The variety of the clients was the only problem that occurred when processing the NS traces. NS 

had a generic type of TCP implementation, called TCPfitll, which had set parameters for all TCP 

client variables. Although the documentation [Fall and Varadhan 2003] indicated methods to 

vary some of these variables, the traces did not exhibit any variations when varying the initial 

255 



Chapter 8 - Validation of TCP performance prediction method 

congestion window. Because of this, the data generated had the same value (one full packet) for 

the initial congestion window for all connections. As the initial congestion window was one of 

the inputs of the neural net and there was no reason to apply a constant input to the network, a 

variant of the neural network was designed only for this set of connections. The network had 2 

neurons in the input layer. 2 hidden layers (6 neurons in the first hidden layer. 3 neurons in the 

second hidden layer), and I neuron in the output layer. 

The dataset was applied to the neural network and trained exhaustively using 10000 cycles, 

employing the set of parameters obtained in the preliminary tests - (Tl,T,^,c)=(0.03,0.0,0.3,0.1). 

At the end of the training session, the minimum registered MSE was 0.00222113, resulting after 

4720 cycles. After the training, the dataset was then applied to the neural network that led to the 

minimum MSE in order to obtain the most accurate estimators for the duration of the transfers. 

Figure 8.7 displays a plot of the estimated values vs. the actual values. 

Estimated value [s] 

15 2 2 5 3 
Actual value [s] 

Figure 8.7 - Plot of the real values vs. estimated values, as resulting from the NS dataset 

256 



Chapter 8 - Validation of TCP performance prediction method 

The neural network followed die real values accurately, as exhibited by the graph in Figure 8.7, 

with only a few significant errors appearing towards larger values of the spectrum. 

The next step was to apply the NS dataset to Cardwell's model in order to determine how 

accurate the mathematical model is when compared with the neural network model. The results 

produced by this second model were then compared with the results from the neural network 

model. The statistical results of the comparison are presented in Table 8.1. It may be observed 

that, on average, the neural network model outperforms the mathematical model in terms of 

accuracy. The table also includes a column for the correlation between the predicted values and 

the real values in order to illustrate that the accuracy of the neural network was not due to the 

narrow spectrum of the output variable, but to learning the variations in transfer duration 

produced by changes in the amount of data transferred and the RTT values. 

One final test was run in order to determine whether a simpler network configuration would lead 

to better results. A neural network with only 2 hidden neurons, placed in 1 hidden layer, was 

trained under the same conditions (same parameters, dataset, and initialisation seed). The results 

from the model were introduced in Table 8.1, the neural network (3-2-1) entry, for comparison 

purposes. 

Model Average relative error Stdev. of relative 
error 

Correlation 

Mathematical 0.292689 0.184215 0.969077 
Neural network 0.0305206 0.0478511 0.987012 

Neural network (3-2-1) 0.0454152 0.0527412 0.985258 

Table 8.1 Comparison of the resulting average figures for the NS dataset, using the 

mathematical and the neural network models 

Table 8.1 shows that the neural network models lead to lower average error values. It may be 

257 



Chapter 8 - Validation of TCP performance prediction method 

observed also that the 3-2-1 neural network, although still superior to the mathematical model, it 

shows a 50% higher figure for the average relative error when compared with the results from 

the 3-6-3-1 neural network. This led to the conclusion that simpler structures may be used for the 

neural nenvork with similar qualitative results, but they would impact on the quantitative results 

obtained. The following and conclusions were exclusively based on the 3-6-3-1 neural network 

structure, unless otherwise stated. 

A second graph was produced to illustrate how the neural network and mathematical models 

perform throughout the dataset. The graph, shown in Figure 8.8, compared the relative error 

produced by the two models. 

% of connections 
100 

1e-05 0.0001 0.001 0.01 0.1 
Relative error 

Figure 8.8 Cumulative distribution of the relative error for the R Y L dataset using the (a) 

neural network model and (b) mathematical model 

The figure above confirms the average figures, indicating that the neural network model 

outperformed the mathematical model throughout the vast majority of the dataset. The figure 

also reveals the outliers from Figure 8.7: the neural network error values increase sharply for a 

small number of connections towards the top of the distribution. The high errors produced by the 

neural network appear also in Table 8.1, where the standard deviation of the relative error for the 

258 



Chapter 8 - Validation of TCP performance prediction method 

neural network model is relatively high compared to its average. 

The statistical t-test was applied to the two datasels to evaluate the differences between the 

resulting relative errors. The two models aimed to reproduce the same actual values, fact that 

allowed for the resulting samples to be paired. As a result, the t-test used was similar to the one 

used in Chapter 5. The hypothesis made was that the neural network model produced lower 

relative errors in comparison to the mathematical model when estimating the actual values for 

the duration of TCP connections. Using equations 5.1 and 5.2 and the data from Figure 8.8, the 

resulting values were: D = 0.223293, ^-=0.00461539, and / = — = 60.414. The obtained t 

value is situated beyond the 0.1% probability, /^Q ,^ =3.2905, for a measurement with oo degrees 

of freedom. The conclusion drawn was that, overall, the neural network model produced 

estimates of the connection duration with relative errors lower by 22.3% in comparison to the 

mathematical model, with 99.9% confidence limits of 21.3% and 23.2%. 

The results obtained from the A'iS dataset indicated that neural networks may provide better 

performance estimate, compared to mathematical models, of TCP transfers that encountered no 

losses. However, the other main objective of the method is to provide a robust estimator. This is 

why the next step was to apply and test the neural network on a more realistic environment, i.e. 

the dataset produced from the RYL connections. 

8.4.2 The RYL dataset 

The training process was similar and used the same dataset with the preliminary tests run in 

section 8.3. Unlike the A'^ traces, the senders from this dataset had different values for the initial 

congestion window and, as a result, the 3-6-3-1 network, displayed in Figure 8.1, was used in the 

process. The dataset used was the same with the one from section 8.3, produced by joining the 
259 



Chapter 8 - Validation of TCP performance prediction method 

two rounds of experiments (from autumn 2001 and spring 2002). 

The network was trained for 10000 cycles and it reached a minimum of 0.00658795 for MSE 

after 9230 cycles. 

Estimated value [s 

0 125 
0.125 0 25 0 5 

Actual value [s] 

Figure 8.9 Plot of the real values vs. estimated values, as resulting from the RYL dataset 

It is visible from scatter shown in Figure 8.9 that the accuracy of the neural network decreased. 

However, the neural network still performed beUer than the mathematical model. The average 

figures for the tw o models are presented below in Table 8.2 

Model Average relative error Stdev. of relative error Correlation 
Mathematical 0.58665 0.458046 0.834741 

Neural nctwi^rk 0.179934 0.214648 0.899387 

Table 8.2 Comparison of the resulting average figures for the RYL dataset, using the 

mathematical and the neural network model 

260 



Chapter 8 - Validation of TCP performance prediction method 

Finally, a plot of the relative error distributions, as produced by the two models, is shown in 

Figure 8.10. Although this is less visible in the graph below, the neural model has higher error 

values than the mathematical model at the top of the distribution. This is again due to the lack of 

examples at the edges of the transfer duration domain. 

% of connections 
100 

80 

60 

40 

20 

0 

— 1 1 — T r -

. /7 
- I j 

/a / 
• / / b -

/ / 
' 1 
1 -

/ J 
. . 1 . ^.--r" ^ . .... . . 

1e-05 0.0001 0.001 0.01 0.1 
Relative error 

10 

Figure 8.10 Error distribution for the R Y L dataset using the (a) neural network model and 

(b) mathematical model 

The average figures and the graphical representation of the resulting errors were also confirmed 

by the statistical t-test. The hypothesis and the test used were the same with the ones from 

section 8.4.1. In this case, the resulting values were: D = 0.406715, j-=0.00349869, and 

/ = — = 116.248. The obtained t value is situated beyond the 0.1% probability,/J ,^ =3.2905, 

for a measurement with oo degrees of freedom. The conclusion drawn was that, overall, the 

neural network model produced estimates of the connection duration with relative errors lower 

by 40.6% in comparison to the mathematical model, with 99.9% confidence limits of 39.7% and 

41.5%. 

261 



Chapter 8 - Validation of TCP performance prediction method 

It may be noticed fi-om Table 8.2 that the resulting figure for MSE does not match the figure 

obtained during the preliminary tests. This is due to the fact that the two training sessions used 

different seeds, generated at the beginning of the batch of experiments for the preliminary tests 

and at the beginning of the training session from this section. These generated seeds were used, 

in each case, to initialise the network and to randomise the examples. A separate batch of 100 

training sessions was run to determine what results will be obtained when using other values as 

seeds while keeping the same training parameters. The batch was run using random values for 

the seeds but the same values for training parameters: (TI,T,P,C)=(0.03,0.0,0.3,0.I), The random 

seeds were obtained using the same function as previous experiments, seiseedfx), which, when 

invoked with an empty argument, provides a random value using the clock of the system. The 

result of these sessions may be seen in Figure 8.11. The figure indicates that the accuracy of the 

model depends rather heavily on the initialisation values for the links in the neural networks, at 

the beginning of the experiment, and on the order that the samples are fed to the neural network, 

throughout the training. However, the graph still indicates that these values tend to lead to low 

values in the learning process, with an average value for MSE of 0.00681869 for the entire batch. 

262 



Chapter 8 - Validation of TCP performance prediction method 

MSE 
0.0074 

0.0072 

0.007 

0.0068 

0.0066 

0.0084 
20 40 60 

Experiment no. 
100 

Figure 8.11 Results from 100 training sessions 

This batch indicates that accuracy depends strongly on the initialisation values used. This would 

impact on the resulting figures from training, but it was decided to limit the scope of this study to 

the qualitative results of the analysis. One of the reasons behind this decision was the duration of 

the tests: a single exhaustive training* (10000 cycles) experiment lasted approximately 20-30 

minutes. Each of the batch tests from section 8.3.3 required 100 experiments (based on 

modifying two parameters, each of them taking 10 values); running each combination of values 

for 100 times, as in the experiment above, would have required 150-200 days. It was, therefore, 

decided to determine mainly whether a neural network solution would provide better results 

compared to the mathematical model, using only a first degree of tuning. However, this area 

appeared to be an interesting direction to follow and, therefore, it is highlighted as one of the 

potential directions of research in the further work section. 

' Applying early stopping would only halved the resulting value, while could have impacted on slow-converging 
combinations. 

263 



Chapter 8 - Validation of TCP performance prediction method 

The analysis of the RYL traces showed that the trained neural network performed better than the 

mathematical model. The final test was to check whether the neural model may be generalised 

for backbone traces. 

8.4.3 Generalisation - tlie UoP dataset 

This dataset was expected to provide the full generalisation for the efficiency of the method. 

With the NS dataset, the senders and receivers all had the same behaviour (not influenced by the 

attempts to vary it); with the RYL dataset, the senders varied and used unknown 

implementations, but the receiver used the same TCP implementation throughout the 

experiments (the TCP/IP implementation from SuSE Linux). In comparison with these two 

datasets, the UoP data resulted from connections with unknown entities at both ends, using most 

likely a variety of implementations. The only indication to narrow the variety of receivers was 

that the typical host at University of Plymouth was running the Microsoft Windows 2000 

(professional edition) operating system at the time when the captures were made. However, there 

were several people, particularly researchers, who had different Linux distributions installed on 

their computers. 

The dataset used was generated from a I-hour trace and had 21629 samples, reduced to 18545 

after filtering. The dataset was applied to a 3-6-3-1 neural network (such as the one from Figure 

8.1) for 10000 cycles, reaching a minimum MSE of 0.0133164 after 1770 cycles. The decrease 

in accuracy may be observed in Figure 8.12 

264 



Chapter 8 - Validation of TCP performance prediction method 

Estimated value [s] 

025 

0 25 0 5 1 
Actual value [s] 

Figure 8.12 Plot of the real values vs. estimated values, as resulting from the UoP dataset 

Still, even for this generalisation case, in spite of the slight overtraining that may be noticed (the 

visible horizontal line at the estimated value of 1.3 seconds from Figure 8.12), the neural 

network appears to perform better than the mathematical model. A comparison of the average 

figures may be seen in Table 8.3. The table also contains the results from a second training 

round, which was run using a more complex neural network, with 12 neurons in the first hidden 

layer and 6 neurons in the second hidden layer. The purpose of this additional test was to 

determine whether the accuracy may have been improved considerably by increasing the 

complexity of the neural network. 

Model Average relative 
error 

Stdev. of relative 
error 

Correlation 

Mathematical 0.608076 0.402349 0.62782 
Neural network 0.372684 0.410532 0.700272 

Neural network (3-12-6-1) 0.341687 0.41052 0.722875 

Table 8.3 Comparison of the resulting average figures for the UoP dataset, using the 

mathematical and the neural network model 

265 



Chapter 8 - Validation of TCP performance prediction method 

It may be observed from the above table that the difference between the mathematical and neural 

models is smaller in comparison with the previous datasets. Nevertheless, the average error 

produced by the mathematical model is approximately 60% higher than the one resulting from 

the neural model. The results also indicate that the improvement provided by a more complex 

neural nenvork, i.e. the 3-12-6-1 network, is only marginal. Finally, the comparison of the 

relative errors, as obtained from the neural network model and the mathematical model, 

throughout the dataset is presented in Figure 8.13. 

% of connections 
100 

1e-05 0.0001 0.001 0.01 0.1 
Relative error 

Figure 8.13 Error distribution for the UoP dataset using the (a) neural network model and 

(b) mathematical model 

The figure confirms the average results, showing that the accuracy of the neural model is higher 

than the one resulting from the mathematical model. In addition, the statistical t-test produced 

the following values: D = 0.393518, 5-=0.00363978, and / = —=108.116. The figures 

indicated that the errors fi-om the neural network model were 39.3% lower in comparison to the 

mathematical model, with 99.9% confidence limits of 38.4% and 40.2%. 

266 



Chapter 8 - Validation of TCP performance prediction method 

8.5 Preliminary tests - Connections with losses 

The preliminary tests for connections with losses differed from the procedure from connections 

without losses due to data availability. After applying all filters to the three traces collected, NS, 

RYL, and UoP, it appeared that none of them had enough data to train the neural network. This 

problem could be resolved for the NS traces by simulating more network structures and for the 

UoP traces by collecting more data. Unlike the two other cases, generating data for the RYL 

connections was more tedious, involving slow generation of a limited number of queries (slow -

to allow traces time to finish and limited - preferably non-threaded - to avoid raising network 

alarms). In addition, the downloaded objects during the RYL experiments were small-sized, a 

fact that flirther reduced the possibility to lead to loss events for low levels of loss rates. The two 

combined RYL traces had only 142 usable samples of connections with losses after filtering. 

This is why, rather than using the RYL traces, the preliminary tests for connections with losses 

were based on larger UoP traces. A set of 5 traces, each lasting for approximately 30 minutes, 

were combined to obtain a larger dataset, encompassing almost 10000 samples after filtering. 

8.5.1 Neural nenvork structure and stopping criteria 

The design of the neural network structure used some of the conclusions drawn from section 8.3. 

The main problem faced was to balance the complexity of the network with the amount of data 

available. The overview made in section 2.5 showed that the mathematical model for 

connections with losses is much more complex than that for slow start. Similarly, a neural model 

for connections with losses might require a more complex network structure, e.g. more hidden 

nodes, compared with the one produced in section 8.3.1. On the other hand, the availability of 

data led to a smaller network, which could be within the asymptotic convergence region (as 

267 



Chapte r 8 - V a l i d a t i o n o f T C P pe r f o rmance p red i c t i on m e t h o d 

de f i ned in 8.3.2) and w h i c h w o u l d not requ i re sp l i t t i ng the data in to tes t ing and t r a i n i ng subsets. 

T h e p re fe r red so lu t i on was to use a s t ructure w i t h t w o h idden layers, but to l i m i t i ts size in o rde r 

to a v o i d the danger o f o v e r t r a i n i n g i t . T h e ( theo re t i ca l ) m i n i m u m n u m b e r o f samples/dataset was 

set to 5000 , lead ing to -~ 160 free parameters in the n e t w o r k . 

I n i t i a l 
conges t i on 

w i n d o w 

R o u n d t r i p 
l i m e 

Da ta ob jec t 
s ize 

Loss rate 

T i m e o u t 

C o n n e c t i o n 
- d u r a t i o n 

(es t imate ) 

F i g u r e 8.14 - T h e i n p u t s , o u t p u t , a n d t he s t r u c t u r e o f t h e 5 -10-5 -1 n e u r a l n e t w o r k used 

d u r i n g t h e p r e l i m i n a r v tests f o r c o n n e c t i o n s w i t h losses 

T h e neura l n e t w o r k chosen to run the p r e l i m i n a r y tests w a s a sca led-up vers ion o f that used to 

t ra in no- loss connec t ions , as s h o w n in F igu re 8 .14 . T h e 5 inputs are the ones presented in F igu re 

7.5 - connec t i on and n e t w o r k parameters ( i n i t i a l conges t i on w i n d o w , r o u n d t r i p t i m e , da ta ob jec t 

s ize, loss rate and t imeou t d u r a t i o n ) - same a p p l y i n g fo r the ou tpu t - the es t imated du ra t i on o f 

2 6 8 



Chapte r 8 - V a l i d a t i o n o f T C P pe r f o rmance p red ic t i on m e t h o d 

the connec t i on . T h e chosen ne two rk was f u l l y connec ted and inc luded t w o h idden layers, w i t h 

10 neurons o n the f i rs t layer and 5 neurons on the second one. to increase its l ea rn ing 

capab i l i t ies . T h e n e t w o r k p ic tu red above has 121 free parameters, w h i c h , based on [ A m a r i et al 

1996] , w o u l d requ i re o n l y 3 6 3 0 samples in the dataset to a v o i d o v e r t r a i n i n g . 

A short test w a s run to observe the e v o l u t i o n o f the chosen neura l n e t w o r k w h e n app l i ed to the 

c o m b i n e d U o P dataset. T h e test, s im i l a r to the one from 8.3.2, compa red the e v o l u t i o n o f 

accuracy fo r the test and t ra in datasets. T h e a i m was to de te rm ine whe the r the ne two rk is s i m p l e 

enough and whe the r the c o m b i n a t i o n o f the t w o (dataset neura l n e t w o r k ) obeys the conc lus ions 

f r o m [ A m a r i et al 1996 ] . 

MSE 
0036 

0.028 

0 026 

0 024 

MSE 
0.034 r 

0 032 

0.028 

0.024 

0 022 
0 2000 4000 6000 8000 10000 

cycles 

0 2000 4000 6000 8000 10000 
cycles 

F i g u r e 8.15 - M S E = f ( c y c l e s ) f o r e x h a u s t i v e t r a i n i n g o f t h e U o P x d a t a s e t , w i t h a 6 % t e s t i n g 

(a ) a n d 9 4 % t r a i n i n g ( b ) s p l i t , u s i n g i i = 0 . 0 1 . T = 0 . 0 , ^ = 0 . 1 , c=0 .1 ( l e f t ) a n d r\=OA, T = 0 . 0 , 

^ = 0 . 1 , c = 0 . 1 ( r i g h t ) 

T h e test used a d i f f e r e n t tes t - t ra in ra t io , due to the d i f f e r e n t s t ruc ture o f the n e t w o r k used. T h e 

neura l n e t w o r k from F igu re 8.14 imposed a va lue o f 0 .642 fo r the / ra t io (equa t ion 8 .2) . T h e 

resul ts o f the test are s h o w n in F igu re 8.15 fo r t w o sets o f parameters . It can be observed that , as 

2 6 9 



Chapte r 8 - V a l i d a t i o n o f T C P pe r fo rmance p red i c t i on m e t h o d 

expec ted , the accu racy o f the test subset has the same e v o l u t i o n as the one from the t ra in subset. 

T h i s leads to the c o n c l u s i o n that the g i v e n dataset m a y be used fo r exhaus t i ve t r a i n i n g o f the 

neura l n e t w o r k f r o m F igu re 8.14 w i t h o u t ove r t r a i n i ng i t . 

8.5,2 The optimum parameters for a set network 

T h e next phase o f p r e l i m i n a r y tests f o l l o w e d the procedure f r o m 8.3. A f t e r es tab l i sh ing a 

n e t w o r k s t ruc ture and the s topp ing c r i te r ia , the n e t w o r k was t ra ined us ing the ex tended U o P 

subset that con ta ined connec t i ons w i t h losses. T h e t r a i n i n g ran i n t w o batches, by v a r y i n g the 

va lues fo r the t r a i n i n g rate x\ and the m o m e n t u m [ i . 

In the f i rs t ba tch , bo th n and n we re va r ied in the [ O . I ; 0 . 9 ] i n te rva l w i t h a 0.1 step, w h i l e the 

o ther t w o parameters w e r e kept constant ( T = 0 . 0 , C = O . I ) . T h e second batch cove red the 

[ 0 . 0 I ; 0 . 0 9 ] i n te rva l f o r r i , at a 0 . 0 ! step, w i t h \i va r ied in the same in te rva l [ O . I ; 0 . 9 ] and x and c 

ma in ta i ned constant to the same va lues as be fo re . T h e resul ts f r o m these batches are presented i n 

F igu re 8.16 

2 7 0 



Chapte r 8 - V a l i d a t i o n o f T C P pe r f o rmance p red ic t i on m e t h o d 

MSE 

0 05 ' 

0 04 -
0 035 

0 025 
0 02 -

0015 ^ 
09 

MSE 

0.0256 

0.0248 

0 024 

0 0232 

0 0224 

F i g u r e 8.16 - M S E = f ( T i , M ) f o r ( t o p ) T i e [ 0 . 1 ; 0 . 9 | a n d H 6 | 0 . 1 ; 0 . 9 | a n d ( b o t t o m ) T I G [ 0 . 1 :().*>| 

a n d 10.01 ; 0 . 0 9 | ( T = 0 . 0 , C = 0 . 1 ) 

T h e graphs led to s im i l a r conc lus ions to the ones f r o m sect ion 8.3. F i rs t , it m a y be no t i ced that 

t he M S E decreases w h e n r| and decrease f o r the [ 0 .1 ;0 .9 ] i n te rva l . Second ly , the decrease is 

not m o n o t o n i c f o r r | G [ 0 . 0 1 : 0 . 0 9 ] : these va r ia t i ons m a y have been caused by a c o m b i n a t i o n o f the 

f o l l o w i n g three fac tors : the n e t w o r k reached its l im i t s , the low conve rgence speed d i d not a l l o w 

2 7 1 



Chapte r 8 - V a l i d a t i o n o f T C P pe r f o rmance p red i c t i on m e t h o d 

the n e t w o r k to t ra in f l i l l y , o r the va lue o f the in i t i a l seed i n f l uenced the resul ts . T h e first fac to r , 

M S E h a v i n g o n l y s m a l l va r ia t i ons , can be one o f the causes i f c o n s i d e r i n g the sma l l va r iance i n 

resul ts. T h e s tandard d e v i a t i o n o f the M S E va lues f r o m F igu re 8.16 ( b o t t o m ) was o n l y 0 .00037 , 

a n d the [MSEn, in;MSEmax] i n te rva l w a s o n l y 0 .002893 . T h e i n te rva l s ize is , h o w e v e r , c o m p a r a b l e 

w i t h the one ob ta ined i n the batch associated w i t h F igu re 8.6 w h i c h , a l t hough not m o n o t o n o u s , 

exh i b i t s a t r end . T h e second fac tor , dependence on seed, w i l l be cons ide red later o n u s i n g a 

s i m i l a r e x p e r i m e n t w i t h the one that p roduced F igu re 8 . 1 1 . F i na l l y , the t h i r d fac tor is a lso l i k e l y 

to i n f l uence the results: the m i n i m u m M S E w a s ob ta ined th roughou t the r | G [ 0 . 0 l ; 0 . 0 9 ] ba tch 

a f te r an average 4673 cyc les , c o m p a r e d w i t h o n l y 2 9 8 8 cyc l es fo r the batch beh ind F igu re 8.6 . It 

was a lso observed w h i l e ana l ys i ng the convergence speed that the t r a i n i n g sessions w i t h l o w 

lea rn ing rates ach ieved the m i n i m u m M S E near the exhaus t i ve t r a i n i n g l i m i t ( 1 0 0 0 0 cyc l es ) , 

w h i c h suggests that the n e t w o r k m a y have been i n s u f f i c i e n t l y t ra ined in these cases. T h i s 

exp la ins the relatively h i g h va lues fo r M S E fo r l o w l ea rn ing rates, v i s i b l e in F igu re 8.16 

( b o t t o m ) . 

A f t e r r u n n i n g the t w o batches, the m i n i m u m M S E was 0 .0225312 , ob ta ined f o r 

( i l , T , p , c )= (0 .07 ,0 .0 ,0 .5 ,0 .1 ) , ob ta ined a f te r 9 1 0 0 cyc les . T h i s c o m b i n a t i o n o f var iab les w a s used 

fo r the rema inde r o f the loss subset va l i da t i on sect ion . 

8.5.3 Data scaling 

T h e M S E resu l ts ob ta ined d u r i n g the p r e l i m i n a r y tests us ing the loss subset appeared to be less 

e n c o u r a g i n g than the ones f r o m the no- loss subset. In o rde r t o p r o v i d e bet ter results, a d d i t i o n a l 

ef l fort w a s put in to i m p r o v i n g the o ther steps o f the ana lys is , pa r t i cu la r i y the ones f r o m the p re 

p rocess ing stage. Data sca l i ng w a s cons ide red to be one o f the steps that m a y be i m p r o v e d , 

cons ide r i ng the fact that the du ra t i on o f connec t ions ranged be tween [ 0 . I s ; 1 2 . 0 5 s ] even a f te r 

2 7 2 



Chapte r 8 - V a l i d a t i o n o f T C P pe r f o rmance p red i c t i on m e t h o d 

filtering. W i t h an a p p r o x i m a t e 1/100 ra t io be tween the ex t rem i t i es o f the ou tpu t va r iab le , i t is 

apparent that l inear sca l ing w i l l lead to h igh relative er rors f o r l o w e r va lues. In [Nagend ra 1998] 

i t was suggested that o ther sca l ing a l g o r i t h m s m a y p e r f o r m bet ter than l inear sca l ing : l o g a r i t h m i c 

sca l ing m a y he lp t o c o m p a c t larger in te rva ls o r va lues, w h i l e exponen t i a l is su i tab le f o r sma l l 

in terva ls o r va lues. Fur ther , [ S w i n g l e r 1996] proposes softmax sca l ing as a poss ib le a l te rna t i ve , 

f o r a s ta t i s t i ca l l y spread va r iab le . T h i s is w h y a l l f o u r t ypes o f sca l ing ( l inear , l o g a r i t h m i c , 

exponen t i a l , and s o f t m a x ) we re app l i ed to the data in o rder t o p rov i de a bet ter fit it in the neura l 

n e t w o r k , us ing the (TI,T,H,C) c o m b i n a t i o n f r o m sect ion 8.5.2. The d i s t r i bu t i ons ob ta ined are 

presented in F igu re 8.17. 

% of connections 
100 

1e-08 1e-07 1e^5 0 0001 0 001 
Scaled value 

F i g u r e 8.17 - D i s t r i b u t i o n s o f va l ues a f t e r u s i n g ( a ) l i n e a r , ( b ) l o g a r i t h m i c , (c) e x p o n e n t i a l , 

a n d ( d ) s o f t m a x s c a l i n g t o t h e U o P t r a c e loss subse t 

T h e above figure ind ica tes an i m p r o v e m e n t in the d i s t r i b u t i o n o f scaled va lues w h e n us ing 

l o g a r i t h m i c sca l ing , as it compac ts the in terva l o f the va r iab le to p red ic t . A t the o ther e x t r e m e is 

the exponen t ia l m a p p i n g , w h i c h cannot be used due to the fact that it expands the range o f the 

scaled var iab le . A 10000 cyc les exhaus t i ve t r a i n i ng session was run on each o f the f ou r ob ta ined 

(sca led) datasets to de te rm ine w h i c h o f t hem p e r f o r m s better. T h e c u m u l a t i v e d i s t r i bu t i ons fo r 

relative er rors ob ta ined a f te r the fou r t r a i n i ng sessions is presented in F igu re 8.18 

2 7 3 



Chapte r 8 - V a l i d a t i o n o f T C P pe r f o rmance p red ic t i on m e t h o d 

% of connections 
100 

1e-06 0 0001 0 001 001 0.1 
Relative enor 

F i u u r e 8.18 C u m u l a t i v e d i s t r i b u t i o n o f r e l a t i v e e r r o r as r e s u l t i n g a f t e r a p p l y i n g (a ) l i n e a r , 

( b ) l o g a r i t h m i c , (c ) e x p o n e n t i a l , a n d ( d ) s o f t m a x s c a l i n g to t h e U o P t r a c e loss subse t 

It m a y be seen that the l o g a r i t h m i c sca l ing p rov ides s l i g h t l y bet ter resul ts than the l inear sca l i ng : 

the average e r ro r decreased from 1.307 fo r l inear to 0.913 w h e n us ing the l o g a r i t h m i c 

conve rs i on . The o ther t w o sca l ing methods p roduced wo rse M S E f igures . 

8.6 Validation tests -connections with losses 

8.6.1 NS traces 

T h e NS loss subset had 3396 samples (a f ter f i l t e r i ng ) and it was generated us ing 200 rounds o f 

s imu la t i ons ( i n c o m p a r i s o n , the dataset used fo r in 8.4.1 had o n l y 501 samples, even be fore 

f i l t e r i ng , and was generated us ing 100 rounds ) . T h e c o n d i t i o n s o f the s imu la t i ons had to be 

changed o n l y s l i gh t l y t o p roduce m o r e connec t ions w i t h losses: the o n l y d i f f e rence be tween the 

t w o batches o f s imu la t i ons was that , f o r the first r o u n d , the s i m u l a t i o n t i m e was l i m i t e d to 5 

seconds w h i l e f o r the second r o u n d the s imu la t i ons were a l l o w e d to run fo r 10 seconds. 

274 



Chapter 8 - V a l i d a t i o n o f T C P pe r f o rmance p red ic t i on m e t h o d 

T h e neura l n e t w o r k was t ra ined w i t h the 4 -4 -2 neura l n e t w o r k , us ing the c o m b i n a t i o n o f 

parameters (TI,T,^,C)=(0.07,0.0,0.5,0. I) . T h e n e t w o r k conve rged re la t i ve l y q u i c k l y , i n 4 1 6 0 

cyc les , t o an M S E o f 0 .0288793 . F igure 8.19 shows a p lo t o f the real va lues vs. the ou tpu t o f the 

neura l n e t w o r k m o d e l 

Estimated value [s] 
9 

8.5 

8 t-

7.5 

7 

6.5 

6 

5.5 

5 

4.5 

4 

3.5 
6 7 

Actual value [s] 
10 

F i g u r e 8.19 - P l o t o f t he r e a l va l ues vs. t he n e u r a l n e t w o r k e s t i m a t e d va lues , as r e s u l t i n g 

f r o m the IVS loss subse t 

T h e subset was app l i ed in para l le l t o an i m p l e m e n t a t i o n o f the ma thema t i ca l mode l in o rder to 

compare the accuracy o f the t w o so lu t ions . The c o m p a r i s o n was made , s im i l a r to the no- loss 

sect ion , by b u i l d i n g the c u m u l a t i v e d i s t r i bu t i on o f the re la t ive er rors , resu l t i ng f r o m the t w o 

mode ls . The resu l t i ng d i s t r i bu t i ons are presented in F igure 8.20 

275 



Chapte r 8 - V a l i d a t i o n o f T C P pe r fo rmance p red ic t i on m e t h o d 

% of connections 
100 

le-05 0 0001 0 001 0 01 0 1 
Relative error 

F i g u r e 8.20 - C u m u l a t i v e d i s t r i b u t i o n s o f t he r e l a t i v e e r r o r r e s u l t i n g f r o m u s i n g t h e (a ) 

m a t h e m a t i c a l m o d e l a n d ( b ) n e u r a l n e t w o r k m o d e l w i t h t he loss subse t 

The neura l n e t w o r k o u t p e r f o r m e d the ma themat i ca l m o d e l t h roughou t the dataset, a fact v i s i b l e 

in the average va lues s h o w n b e l o w in Tab le 8.4. 

M o d e l A v e r a g e re la t i ve e r ro r S tdev . o f re la t i ve 
e r ro r 

C o r r e l a t i o n 

M a t h e m a t i c a l 0 .488822 0 .469931 0 .429845 

Neu ra l n e t w o r k 0 .126957 0 .108608 0 .761171 

T a b l e 8.4 C o m p a r i s o n o f t he r e s u l t i n g a v e r a g e f i g u r e s f o r t h e NS loss subse t , u s i n g the 

m a t h e m a t i c a l a n d t he n e u r a l n e t w o r k m o d e l 

T h e stat is t ical t - test p roduced s l i gh t l y l o w e r va lues than the c o m p a r i s o n run fo r the no- loss 

subset: D = 0 . 3 6 8 9 4 4 , 5 - = 0 . 0 0 8 5 1 1 7 7 , but the t - va lue o b t a i n e d , / = — = 4 3 . 3 4 5 2 , is s t i l l 

above the 0 . 0 1 % th resho ld PQIS = 3 . 2 9 0 5 . T h e c o n c l u s i o n was that the errors f r o m the neura l 

n e t w o r k m o d e l w e r e 3 6 . 8 % l o w e r in compa r i son to the ma thema t i ca l m o d e l , w i t h 9 9 . 9 % 

con f i dence l i m i t s o f 3 4 . 7 % and 3 9 . 1 % . 

276 



Chapte r 8 - V a l i d a t i o n o f T C P pe r f o rmance p red ic t i on m e t h o d 

8.6.2 UoP traces 

T h e va l i da t i on test repeated the o p t i m u m t r a i n i ng session f r o m 8.5.2. T h e U o P subset c o n t a i n i n g 

o n l y connec t ions that encoun te red losses, c o u n t i n g 5991 samples , was t ra ined w i t h the 5 -10-5-1 

neura l n e t w o r k , us ing the c o m b i n a t i o n o f parameters (T l .T , ^ , c )= (0 .07 ,0 .0 ,0 .5 ,0 . I ) . F i gu re 8.21 

shows a compa r i son be tween the real va lues and the ou tpu t o f the neura l ne two rk m o d e l . 

Estimated value [s] 
10 

0.1 
01 1 

Actual value [s) 
10 

F i g u r e 8.21 - P lo t o f t h e r e a l va l ues vs. t h e n e u r a l n e t w o r k e s t i m a t e d va lues , as r e s u l t i n g 

f r o m the U o P loss subse t 

It m a y be seen that the above p lo t does not i l lus t ra te a ve ry g o o d m a p p i n g between the ac tua l and 

es t imated values. T h e m a p p i n g a lso seems to be i n c o m p l e t e f r o m a d o m a i n perspect ive : a large 

p r o p o r t i o n o f the ac tua l va lues are s i tuated in the [ 0 . l s ; I . O s ] d o m a i n , w h i l e the es t ima ted va lue 

seems to have a l o w e r - b o u n d a round the va lue o f I s . T o d e t e r m i n e whe the r the p r e d i c t i o n is 

accurate fo r the rest o f the va lues , a p lo t o f the re la t i ve er rors vs. the actual va lues was p roduced 

in F igu re 8.22 

277 



Chapte r 8 - V a l i d a t i o n o f T C P pe r f o rmance p red ic t i on m e t h o d 

relative error 
100 

0.1 

0.01 t: 

0.001 

0 0001 
01 1 

time [s] 
10 

F i g u r e 8.22 - P l o t o f t h e r e a l va lues vs. t he r e s u l t i n g p r e d i c t i o n r e l a t i v e e r r o r , as r e s u l t i n g 

f r o m the U o P loss subse t 

The p lo t shows that , a l t hough the m e t h o d p e r f o r m s bad l y f o r connec t i ons w h i c h lasted less than 

1 second, it p rov ides better accuracy f o r the rest o f data, w i t h v i r t u a l l y a l l relative er rors b e l o w I . 

S i m i l a r conc lus ions m a y be d r a w n f r o m the d i s t r i bu t i ons o f the actual and est imated va lues ; the 

d i a g r a m w i t h the t w o var iab les is s h o w n b e l o w in F igu re 8.23 

278 



% of connections 
100 

Chapter 8 - V a l i d a t i o n o f T C P pe r f o rmance p red ic t i on m e t h o d 

IOC 

Value [s] 

F i g u r e 8.23 - C u m u l a t i v e d i s t r i b u t i o n s o f t he (a ) a c t u a l va l ues a n d ( b ) e s t i m a t e d v a l u e s 

f r o m the U o P loss subse t 

T h e above d i s t r i bu t i ons re f lec t the fact that the neura l n e t w o r k s do not manage, in sp i te o f the 

l oga r i t hm ic sca l ing , to stretch ove r the ent i re d o m a i n o f the es t imated va lues. A s expec ted , th i s 

imp rope r m a p p i n g leads to worse results w h e n ca l cu la t i ng the re la t ive e r ro r o f the p r e d i c t i o n 

m e t h o d and c o m p a r i n g it w i t h the ma themat i ca l m o d e l . T h e accuracy o f the t w o mode l s is 

presented in F igu re 8.24 

% of connections 
100 

le-05 0 0001 0 001 0 01 0.1 
Relative error 

100 

F i g u r e 8.24 A c c u r a c y o f t he ( b ) N N m o d e l a n d (a) m a t h e m a t i c a l m o d e l f o r t he U o P loss 

subse t 

T h e f i gu re shows that the neura l n e t w o r k manages to o u t p e r f o r m the ma thema t i ca l m o d e l f o r 

m o r e than h a l f o f the connec t i ons . T h i s is l i ke l y to be the reg ion una f fec ted by the m a p p i n g 

2 7 9 



Chapte r 8 - V a l i d a t i o n o f T C P pe r f o rmance p red ic t i on m e t h o d 

p r o b l e m discussed ear l ier . U n f o r t u n a t e l y , w h i l e the ma thema t i ca l m o d e l appears to be l i m i t e d t o 

a m a x i m u m re la t ive e r ro r o f I , the neura l n e t w o r k does increase above that leve l . These er ro rs , 

v i s i b l e in F igu re 8 .22, w e r e a l l at least pa r t i a l l y due to the l i m i t e d e f f i c i e n c y o f the neura l 

n e t w o r k . T h e d i f f e rence be tween the t w o mode l s appears i n the i r average values l o o , s h o w n in 

T a b l e 8.5: 

M o d e l A v e r a g e re la t i ve e r ro r S tdev . o f re la t i ve 
e r ro r 

C o r r e l a t i o n 

M a t h e m a t i c a l 0 .584002 0 .748376 0 .467215 

N e u r a l n e t w o r k 0 .915117 1.34159 0 .604007 

Table 8.5 Comparison of the resulting average figures for the UoP loss subset, using the 

mathematical and the neural network model 

T h e stat is t ical t-test c o n f i r m e d the reduced accuracy fo r the neura l m o d e l . T h e hypo thes is made 

was that the neura l n e t w o r k m o d e l led to h igher re la t ive er rors than the ma themat i ca l m o d e l . T h e 

resu l t i ng figures f r o m the ca l cu la t i ons w e r e : D = 0 . 3 3 l 114 , s- = 0 . 0 1 8 3 2 7 8 , w h i c h p r o d u c e d a 

l -va lue o f / = — = 1 8 . 0 6 6 3 . It was therefore c o n c l u d e d that w a s that the neural n e t w o r k m o d e l 

p roduced re la t ive er rors w h i c h we re 3 3 . 1 % h ighe r i n c o m p a r i s o n t o the ma themat i ca l m o d e l , 

w i t h 9 9 . 9 % con f i dence l i m i t s o f 2 8 . 3 % and 3 7 . 8 % . 

C o r r e l a t i n g F igu re 8.24 w i t h F igu re 8.22, i t can be conc l uded that the er ror is due to the 

er roneous a p p r o x i m a t i o n o f the < l s connec t i ons . T h e o n l y so lu t i on to ame l io ra te th is e r ro r 

w o u l d be to use a sca l ing so lu t i on that w o u l d o u t p e r f o r m the resul ts ob ta ined f r o m l o g a r i t h m i c 

sca l ing o r to sp l i t the du ra t i on o f the va r iab le i n to decades and p roduce separate m o d e l s f o r each 

decade. B o t h these so lu t ions are m e n t i o n e d in Chap te r 9, as part o f the fu ture w o r k . 

280 



Chapte r 8 - V a l i d a t i o n o f T C P pe r f o rmance p red ic t i on m e t h o d 

8.7 Applications 

A s an ove ra l l conc lus i on f r o m the p e r f o r m e d va l i da t i on tests, the proposed neura l -based m o d e l 

p rov ides a better a l te rna t i ve to ma themat i ca l mode l s in te rms o f accuracy . T h e increased 

accuracy , together w i t h the robustness o f the m e t h o d , p rov i des a bet ter descr ibed relationship 

be tween app l i ca t i on pe r fo rmance and the cond i t i ons that i n f l uence i t . T h i s i m p r o v e m e n t opens 

n e w avenues in the areas that relate to pe r fo rmance p r o v i s i o n i n g , such as: 

- N e t w o r k p l a n n i n g , A p re - t ra ined neura l n e t w o r k can be e m p l o y e d i n p r e l i m i n a r y 

stages o f n e t w o r k p l a n n i n g , to es t imate the app l i ca t i on p e r f o r m a n c e based on ce r ta in 

sets o f n e t w o r k c o n d i t i o n s and spec i f i c endpo in t imp lemen ta t i ons . 

- N e t w o r k c o n t r o l . T h e m o d e l m a y be use as a p red i c t i ve e lement in n e t w o r k 

managemen t schemes w h e n v a r y i n g the parameters o f t he n e t w o r k . F o r e x a m p l e , i t 

m a y p rov i de a set o f a l te rnat ives to ba lance the de lay and loss in t roduced by r o u t i n g 

queues in o rder to ma in ta i n cer ta in pe r fo rmance fo r the above app l i ca t ions . 

- T C P I m p l e m e n t a t i o n s tes t ing . T h e presented approach m a y be used to s tudy the 

app l i ca t i on pe r f o rmance p r o v i d e d by n e w types o f T C P imp lemen ta t i ons . T h r o u g h i ts 

adapt i ve character , the neura l -based m e t h o d m a y be used t o c o m p a r e the e f f i c i e n c y o f 

n e w i m p l e m e n t a t i o n s versus t rad i t i ona l ones. 

8.8 Summary 

T h i s chapter presented d ie v a l i d a t i o n tests used to benchmark the T C P pe r fo rmance m o d e l l i n g 

m e t h o d proposed in Chap te r 7. T h e va l i da t i on s tud ied the accuracy o f the p roposed neura l 

n e t w o r k m o d e l w h e n app l i ed o n t w o types o f t races: p u r e l y syn the t i c T C P connec t i ons and T C P 

connec t i ons cap tu red f r o m real t r a f f i c . 

281 



Chapte r 8 - V a l i d a t i o n o f T C P pe r f o rmance p red i c t i on m e t h o d 

T h e ana lys is started b y d i scuss ing the obstac les me t d u r i n g the data co l l ec t i on stage and the 

issues that we re l i k e l y to i m p a i r the m o d e l accuracy , but w h i c h we re i den t i f i ed and m i n i m i s e d 

d u r i n g the data ana lys is stage. 

T h e ava i l ab le traces f r o m each source (A'5*-generated, R V L , a n d U o P ) w e r e each sp l i t i n t o t w o 

subsets each, one c o n t a i n i n g connec t i ons w i t h losses and one c o n t a i n i n g connec t i ons w i t h o u t 

losses. T h e loss-no loss sp l i t was requ i red due t o the d i f f e rences in the mode l s f o r connec t i ons 

w i t h and w i t h o u t losses. T h e t w o types o f data, w i t h o r w i t h o u t losses, we re s tud ied in separate 

rounds o f tests. Each r o u n d c o m m e n c e d w i t h a p r e l i m i n a r y s tudy that de te rm ined best va lues fo r 

the o p t i m u m fo r the t ra in ing - tes t i ng sp l i t , the t r a i n i n g a l g o r i t h m and neura l n e t w o r k s t ruc ture t o 

use, the s topp ing c r i te r ia , and the o p t i m u m neura l n e t w o r k l ea rn ing parameters 

T h e v a l i d a t i o n tests cons is ted o f us ing the resu l t i ng parameters to t r a i n the respect ive dataset, 

then to test its accuracy . T h e resul ts we re then observed and c o m p a r e d w i t h the ou tpu t o f a 

ma thema t i ca l m o d e l i m p l e m e n t a t i o n . T h e va l i da t i on tests have s h o w n that the proposed m o d e l 

p rov ides an ove ra l l better accuracy w h e n c o m p a r e d against the ma thema t i ca l m o d e l u s i n g the 

three factors m e n t i o n e d above . T h e tests p e r f o r m e d on the no- loss subsets ind ica ted a near i y t e n 

f o l d i m p r o v e m e n t o f the average re la t i ve e r ro r i n the case o f A ' ^ -gene ra ted data be tween the 

ma thema t i ca l and the neura l -based m o d e l . T h e i m p r o v e m e n t was a lso h igh in the case o f R Y L 

traces, whe re the re la t ive e r ro r ob ta ined w i t h the ma thema t i ca l m o d e l decreased by 

a p p r o x i m a t e l y 7 0 % w h e n a p p l y i n g the neura l m o d e l , and by 4 0 % in the case o f real t r a f f i c 

co l l ec ted f r o m the U o P backbone . T h e resul ts ob ta ined f r o m the t race subsets that i n c l u d e d 

connec t i ons w i t h losses were t w o - f o l d : the A '5 -genera ted trace led to a 7 5 % reduc t i on o f the 

ove ra l l re la t ive e r ro r be tween the t w o m o d e l s . U n f o r t u n a t e l y , the U o P loss subset led to bet ter 

p red i c t i on resul ts w h e n a p p l y i n g the ma thema t i ca l m o d e l . H o w e v e r , a f te r ana l ys i ng the p lo ts o f 

the va lues a n d o f the co r respond ing re la t i ve errors ( F i g u r e 8.21 a n d F igu re 8 .22 ) , i t w a s 

282 



Chapte r 8 - V a l i d a t i o n o f T C P pe r f o rmance p red i c t i on m e t h o d 

conc l uded that the poo r accuracy m a y have been caused by l im i t a t i ons o f the neura l n e t w o r k . 

T h i s c o n c l u s i o n was susta ined a lso b y the d i s t r i b u t i o n o f the re la t i ve e r ro r f o r the t w o m o d e l s 

(F i gu re 8 .24) . 

T h e last part o f the chapter l is ted some o f the poss ib le app l i ca t i ons o f the neura l -based m o d e l , 

r ang ing f r o m n e t w o r k p l a n n i n g to n e t w o r k con t ro l and T C P i m p l e m e n t a t i o n tes t ing . 

T h i s chapter conc ludes the desc r i p t i on o f the research under taken as part o f th is research p ro jec t . 

T h e f o l l o w i n g chapter w i l l present the ach ievemen ts o f the research together w i t h the l i m i t a t i o n s 

encoun te red , and w i l l i d e n t i f y several p r o m i s i n g d i r ec t i ons the fu ture w o r k a r i s i ng f r o m th i s 

p ro jec t . 

283 



Chapter 9 - Review, future work, and conclusion 

Chapter 9. Review, future work, and conclusion 

284 



Chapter 9 - Review, future work, and conclusion 

9.1 Achievements 

In this thesis, novel research in two areas has been presented: network monitoring and 

performance prediction. The two areas relate strongly to recent trends o f moving Internet access 

provisioning towards quality provisioning. The results provide the first two steps in this 

migration: evaluate current end-to-end network performance and relate the observed network 

characteristics to the resulting performance. 

The research programme led to six significant outcomes: 

1. A detailed understanding o f the current state o f the art in areas closely related to traffic 

analysis and performance modelling 

The research illustrated the emerging need for Internet quality provisioning, in spite o f the 

lack o f support from IP, its core protocol. As a result of the emerging need for quality, traffic 

performance evaluation and monitoring was identified as an important research theme. Based 

on these observations, a taxonomy of existing network performance measurement methods 

was produced, each category covering various aspects of inferring the network 

characteristics. The analysis identified the limitations of these methods and gathered them in 

a sum of characteristics relevant for the current Internet conditions and complexity. 

On a separate stream, the studies identified in the area o f TCP modelling followed a single, 

mathematical-based, approach. The tests to validate such models were typically performed 

using synthetic environments or controlled endpoints and were based on long data transfers. 

In addition from the sound mathematical proof, the models found were suitable for steady-

state transfers, implying long connections - which are unlikely to exist in current web traffic 

285 



Chapter 9 - Review, future work, and conclusion 

conditions. 

2. A novel monitoring technique that allows single-point, non-intrusive, online TCP 

performance analysis, which aims to overcome some of the disadvantages of existing 

techniques, typically based on intrusive methods. 

The technique used elements from existing tools to propose a novel method of TCP analysis 

that would bring together a comprehensive subset of the current requirements for trafHc 

performance monitoring. The method included several novel elements, such as TCP 

timestamp analysis and congestion window evaluation. The TCP timestamp then provided 

the means for non-intrusive inference of bonleneck bandwidth for the monitored traffic. 

The novelty of the proposed traffic analysis method was to provide comprehensive 

information about the end-to-end parameters of the network path transited by the packets 

from a single point of capture, without injecting any traffic. The only source of information 

was the packet arrival sequence for each flow combined, where necessary, with assumptions 

about the network characteristics or/and endpoint behaviour. The analysis also supplied 

means of localising any degradation/change in the network conditions by splitting the end-to-

end path into two sub-paths, between the monitor and each of the endpoinls, based on the 

analysed traffic. The approach was designed to function online, underiining the importance 

o f continuous monitoring. 

3. A prototype to benchmark the efficiency and accuracy of the proposed method. 

The sof^are prototype was developed under Linux due to the flexibility offered by the OS 

environment. The software was tested and adjusted throughout its development in order to 

286 



Chapter 9 - Review, future work, and conclusion 

interpret correctly the results of the observed packet arrival sequence. The program was 

developed specifically for online analysis but, due to the lack of large sources o f traffic and 

the need for repeatability, it included built-in support for trace analysis, which constituted its 

main application during this research programme. 

The irafTlc analysis method was applied to traces o f traffic produced in a controlled 

environment; the purpose was to determine whether the inferred parameters match the actual 

network and endpoint parameters. The method was tested using two types of environments: 

emulated and simulated network conditions. In spite of some limitations o f the environments 

used, the validation tests indicated that the method is accurate when estimating the end-to-

end network parameters as inferred by the endpoints rather than the actual values. While the 

delay values were well approximated, some of the loss figures incurred significant errors due 

to the TCP endpoints erroneously inferring loss events. The proposed method was therefore 

extended to identify, subject to the position of the monitor, some of the erroneous 

retransmission events. In addition, statistical analysis revealed with a confidence factor o f at 

least 99.9% that, for the analysed packet traces, TCP timestamp-based measurements provide 

more accurate RTT estimation when compared to acknowledgment-based measurements. 

4. A viewpoint of end-to-end Internet paths characteristics, as seen from the perspective o f the 

HTTP traffic collected from one point (the University of Plymouth) situated at the edge of 

the network, using exclusively non-intrusive analysis. 

Continuing from the encouraging benchmarking results, the method was successfully applied 

on a combination of semi-controlled and real traffic packet traces in order to provide a 

snapshot o f end-to-end characteristics of Internet paths and average values o f TCP 

connection parameters at a specific moment, as observed through the perspective o f TCP 

287 



Chapter 9 - Review, future work, and conclusion 

data transfers,. In spite of a wide variety o f previous research, this study included several 

elements o f novelty: 

- it analysed traffic produced by an edge network consisting mainly of clients; 

- it led to a detailed analysis of the typical figures for TCP congestion window; 

- it observed the distribution of end-to-end path characteristics, bottleneck bandwidth 

in particular, as encountered by actual TCP clients from the edge network studied 

- it performed a statistical evaluation of how the observed end-to-end path parameter 

distributions evolved in time. 

The analysis focused on HTTP transfers due to the wide availability of such traffic, both to 

retrieve in the semi-controlled traces and to capture real traffic transfers. While investigating 

the results, the method was adjusted and improved in order to accommodate specific network 

and application protocol behaviour, while maintaining its robustness. 

The traffic study was run offline on collected packet traces in order to provide repeatable 

results, available for further analysis. The trace collection included semi-controlled random 

web page retrievals in the first phase, followed by backbone data collection towards the end. 

The study concluded that, from the point of collection perspective, the packets from the 

analysed connections appeared to have been transported over network paths with high values 

for bottleneck bandwidth, paths that introduced low loss and delay for the transiting traffic. 

The conclusions were supported by average values and distribution analysis, while statistical 

tests were employed to investigate the variations over time for the studied parameters. The 

statistical tests identified changes in the end-to-end path parameters between two rounds of 

measurements with a statistical confidence o f at least 99.9%, One o f the likely causes o f 

these changes, consisting o f improvements in terms o f inferred delay and bottleneck 

288 



Chapter 9 - Review, future work, and conclusion 

bandwidth, was a network connectivity upgrade that occurred between the two rounds o f 

measurements. Also, the connection size analysis indicated that the typical HTTP interaction 

involved short-lived TCP connections. It also indicated that the conclusions ft-om a small 

amount o f traffic scale well for large traces analysis, as long as collection was made fi-om 

similar environments, relatively closely spaced in time. Finally, certain recommendations 

were made, aimed to improve the efficiency o f TCP under the current network conditions. 

5. A novel model for inferring the relationship between TCP throughput and its influencing 

parameters, based on performance observed for prior connections. 

The approach used a neural network to approximate the relationship between TCP's resulting 

throughput and the factors that influence it, unlike previous models which used mathematical 

emulation of the TCP sender behaviour. The prediction used a relevant set of parameters, 

extracted using the traffic analysis stage: delay-related, loss-related, and TCP behaviour-

related. The predicted variable in all cases was the duration of the data transfer. The 

prediction involved three major stages: data pre-processing, core neural network analysis, 

and interpretation of the results. 

6. An assessment o f the accuracy o f the proposed model based on a series o f evaluation tests, 

applied on various sources o f traffic. 

The neural network model was tested separately on three types of packet traces: synthetic, 

semi-controlled, and real traffic. Two neural network models were produced, one suitable for 

predicting performance for connections without losses and one for predicting performance 

for connections that encountered losses. The relative error results have shown that the neural 

network led to more accurate results than the mathematical models for all types o f traces in 

289 



Chapter 9 - Review, future work, and conclusion 

the case of connections without losses. The neural network model for connections with losses 

also led to better results than the mathematical model when trained and tested using the 

synthetic trace. The superiority o f the neural network approach was confirmed in each case 

by statistical analysis, which involved paired T-tests applied to the relative errors produced 

by each model. A l l tests confirmed the initial conclusions, with a statistical confidence o f at 

least 99.9%. However, the neural network failed to produce lower relative errors than the 

mathematical model when tested on real traffic traces which included connections with 

losses, issue which wil l be highlighted in the next section. 

9.2 Limitations 

There are a number o f limitations o f the study, as summarised below: 

1. Complexity o f the environments used for testing the monitoring method. 

It was observed that neither of the two environments used for evaluating the proposed traffic 

analysis method were fully satisfactory. The synthetic traces lacked realism in terms of 

endpoint interaction, such as implementation characteristics and processing delays, while the 

emulated environment lacked accuracy in terms o f reproducing network events, such as 

bandwidth limitations and queuing. A hybrid approach, using the mixture o f the two, may 

have been beneficial for the various tests performed. Unfortunately, as observed with the 

network emulation, the more complexity is added into the network, the more difficult it is to 

account for all sources o f impairments. 

2. Differences between the inferred network parameters and the real values 

The proposed traffic analysis technique provides a good approximation of the end-to-end 

path parameters as inferred by the TCP endpoints. However, the validation tests run for the 

290 



Chapter 9 - Review, future work, and conclusion 

method highlighted that the inferred parameters (loss in particular) may differ from the actual 

network parameters. Further research to establish the relationship between the TCP inferred 

parameters and the end-to-end path parameters would improve the accuracy of the method 

proposed. 

3. Scalability, focus, targeted traffic, and timeliness o f the end-to-end paths characteristics 

study 

The snapshot o f the end-to-end path parameters was produced from a single endpoini, the 

UoP network, which had relatively good Internet connectivity. This configuration produced a 

collection of end-to-end paths all converging to the collection point, rather than a mesh 

between distinct endpoints, logically and geographically remote. More conclusive results 

would have been obtained, had a mesh infrastructure of points been employed in the analysis. 

Unfortunately, throughout the study, there was no opportunity to compare the resulting 

values from the UoP traffic with end-to-end results obtained from other endpoints, apart from 

overall results presented by other network measurement studies, which appeared to yield 

comparable average results. For this reason, it is difficult to evaluate how the presented 

results would scale for wider studies, collected from more than one edge network. However, 

while one o f the endpoints was fixed (the collection point), the position of the remote host 

varied, which led to variations in the remote end o f the path. On the positive side, the 

connectivity solution used had the advantage that it did not introduce any local bottlenecks 

(as a poorly connected network may have been), which led to an unbiased snapshot o f the 

analysed end-to-end paths. 

The method used for TCP analysis, although providing detailed infonmation about the end-to-

end parameters, included no means for localising the source of the impairments, apart for the 

EastAVest split o f the end-to-end path. This lack o f localisation did not allow for any 

291 



Chapter 9 - Review, future work, and conclusion 

clustering of the results, as there were no means to aggregate any path segments. Brief path 

analysis using traceroute on a subset of remote hosts indicated a high number of different 

paths, all originating from a low number o f distinct IP addresses. 

The observed characteristics for the analysed paths are also subject to timeliness. While the 

analysis o f the network traces provided a detailed view of end-lo-end paths parameters as 

seen from the University of Plymouth viewpoint, there is no indication about how these 

parameters may vary in time. This limitation was actually highlighted in the study by the 

differences between the two rounds of experiments, as the average values for the analysed 

parameters changed for the traffic captured within the associated packet traces. Further 

research, as proposed in section 9.3, may provide indications about the timelines of such 

performance snapshots. 

4. Neural network modelling limitations. 

The proposed neural network model looked only at some of the aspects that may improve the 

resulting accuracy of the method. Further avenues should be explored, such as using other 

types of neural network, in order to optimise the results. As detailed in chapter 8, the results 

revealed that the neural network exhibited high errors when modelling connections with 

losses, which were likely to be due to limitations o f the neural network modelling capability. 

Further exploration into the causes of these high errors wil l be considered as a valid direction 

for future research in the next section. Another limitation of the neural network study was 

that the mathematical model was not considered as a possible input; while this decision 

provided clear separation between the two approaches, usage of the mathematical inference 

may have yielded more accurate results. 

The neural network validation was also limited in the sense that all data analysed was 

292 



Chapter 9 - Review, future work, and conclusion 

collected from the same environment. It is, therefore, difficult to assess the scalability o f the 

neural network model, as no comparison term was available. In order to investigate the 

ability of the model to adapt to a collection of distinct environments, encompassing different 

sets o f network conditions, further analysis o f data from such environments would be 

necessary. 

9.3 Future work 

A number o f promising areas for further research were identified that were outside the scope of 

the current study: 

1. The combination o f TCP analysis and HTTP analysis. This would provide advantages in two 

directions. The first is TCP profiling: the TCP analysis would be improved by including a 

level of profiling for specific TCP implementations. Although not completely accurate, there 

is a relationship between HTTP server implementations and corresponding TCP 

implementations. The server type from the HTTP headers would provide the initial 

information in building this correspondence. The profiling could be further strengthened 

using other characteristics o f the TCP client, such as timestamp resolution. A second area is 

idle period inference: interpretation of the HTTP headers would allow clear identification o f 

the idle periods between the download o f successive objects. This would also increase the 

accuracy of timeout losses inference. 

2. Analysis of network characteristics over time. This subject was approached in previous 

studies from an active perspective, but non-intrusive analysis would broaden the number o f 

monitored paths. Also, in comparison, the non-intrusive approach would still require a single 

connectivity point, unlike active measurement that needs exponential increase in the number 

293 



Chapter 9 - Review, future work, and conclusion 

of probes deployed over the Internet and additionally stresses the network. The information 

about network parameter variations can then be used to predict or, at least, bound the future 

characteristics o f the nenvork. A direct application o f such a technique to the scope of this 

project would be to predict the quality of a VoIP call based on data exchange during the 

initial TCP signalling. This apriori estimation of the quality o f the network may help to 

assess whether the application is likely to be successful (in the above example, whether the 

quality o f the voice call wil l be satisfactory). The estimation may be based on either a 

mathematical, Markov-based, interpretation or a neural-network based model. A second, 

more generic application would be to study the aging speed of such network information in 

order to provide lime-based performance prediction, rather than parameter-based. 

3. Integration o f the proposed monitoring method into a system that would control and improve 

the resulting performance. There are two possible directions o f research in this area, both 

aiming to improve the user experience and related to dynamic management: either induce 

changes in the network characteristics or induce changes in the client behaviour. The first 

option would see the network parameters connected to a network management system. Under 

such a scheme, variations in a certain parameter would lead to variations in the controllable 

characteristics o f the managed network: increase/decrease queues, modify policies at the 

routers, or balance traffic between alternative routes, A preferred approach for the second 

option, changing client behaviour, would be to apply changes transparently, using a proxy 

server that has knowledge o f the past and current network characteristics. Such a proxy 

server would introduce additional delay or loss to force network decongestion; at the other 

extreme, it would modify the acknowledging or the congestion window increase policy to 

improve performance o f short-lived flows over a reliable path. 

4. Further research into the neural network prediction. A prime area o f research should resolve 

294 



Chapter 9 - Review, future work, and conclusion 

the prediction errors encountered for connections with losses. Various avenues may be 

explored to improve the prediction, such as deeper analysis o f the connections incurring 

losses and combination o f the neural network inputs with information resulting from the 

mathematical model. A second area of research relates to the TCP profiling discussed before. 

The neural network model would produce better accuracy i f provided with some indication 

about specific implementation characteristics. Such characteristics should be mapped from 

their categorical scale onto a numerical scale in order to be presented as an input to the neural 

network. A third area o f research would look into transferring the neural network model fi-om 

network planning to network management. The model would provide management 

architectures with information about how network changes, e.g. increasing network delay 

with a certain percentage (through increasing queue sizes or redirecting traffic through 

alternate routes), would impact on the performance o f the future transfers. 

9.4 Conclusion 

The concept o f quality wi l l become increasingly important as the Internet continues to evolve. 

This quality wi l l be achieved not through controlled mechanisms, which are difficult to deploy 

throughout connected networks, but over the quality-unaware environment that IP provides. In 

this environment, the need to evaluate performance becomes critical, as customers want to 

establish whether they are provided with the quality that they pay for and, i f not, to identify the 

weak links of their connectivity infrastructure. 

This project bridges the gap between customers interested in the performance o f their 

applications and the performance-unaware network environment. Through the proposed novel 

monitoring architecture, network management entities may evaluate the parameters o f the live 

traffic flowing through the network and may take the appropriate decisions. The proposed 

295 



Chapter 9 - Review, future work, and conclusion 

analysis method was used within the research to produce a holistic image of Internet paths, as 

observed through traffic transiting a backbone collection point. Aside from the information 

provided, the observed network characteristics led to a series o f recommendations that may 

improve current application performance. 

With an increasing network quality awareness and need for performance throughout the Internet, 

the proposed work wil l help to evaluate the parameters of the network infrastructure and wil l 

provide a basis for improving the performance of current and emerging network applications. 

296 



References 

References 

297 



References 

[Actema 2003] • , DataAnalyser 3600 homepage, 

http://www.actema.com/united_kingdom/Products/descriptions/DA-3600/3600_traffic.html 

[Agilent 2003] *, Agilent Advisor homepage, 

http://0nenetworks.comms.agilent.com/lananaly2er/default.asp 

[Aleksander and Morton 1990] Aleksander, I . , Morton, H., "An Introduction to Neural 

Computing", Chapman and Hall, London, 1990 

[Allman ei al 1999] Allman, M. , Paxson, V., Stevens, W., "TCP Congestion Control", Request 

forComments 2581, April 1999 

[Allman and Paxson 1999] Allman, M. , Paxson, V., "On Estimating End-to-End Network Path 

Properties", SIGCOMM 99, Cambridge, Massachusetts, September 1999 

[Allman and Falk, 1999] Allman M. , Falk A., "On the Effective Evaluation of TCP" ACM 

Computer Communication Review, October 1999. 

[Allman 2000] Allman, A., "A Web Server's View of the Transport Layer", ACM Computer 

Communication Review, 30(5), October 2000 

[Amari et al 1996] Amari, S., Chen, T.P., Yang, H.H., "Statistical theory o f overtraining - Is 

cross-validation asymptotically effective?" Advances in Neural Information Processing 

Systems, vol. 8, pp. 176-182, Cambridge, MA, MIT Press, 1996 

[Amari ei al 1997] Amari, S., Murata, N., Muller, K. R., Finke, M. , and Yang, H. H., 

298 



References 

"Asymptotic Statistical Theory o f Overtraining and Cross-Validation", IEEE Transactions on 

Neural Networks, Vol. 8, No. 5, pp. 985-996, 1997. 

[AMP 2003] Active Measurement Project homepage, http://watt.nlanr.net/ 

[ARPA 1981a] *, "Internet Protocol", Request For Comments 791, September 1981 

[ARPA 1981b] *, "Transmission Control Protocol", Request For Comments 793, September 

1981 

[Asaba et al 1992] Asaba, T., Claffy, K., Nakamura, O., and Murai, J., "An analysis of 

international academic research network traffic between Japan and other nations", Inet '92, pp. 

431-440, June 1992 

[Balakrishan ei al 1997] Balakrishnan, H., Padmanabhan, V., Seshan, S., Stemm, M. , and Kalz, 

R., "Analyzing Stability in Wide-Area Network Performance", Proceedings A C M 

SIGMETRICS Conference on Measurement and Modeling of Computer Systems, June 1997 

[Balakrishan et al 1998] Balakrishnan, H., Padmanabhan, V., Seshan, S., Stemm, M. , and Kalz, 

R., "TCP behavior o f a busy Internet server: Analysis and improvements". Proceedings o f the 

IEEE INFOCOM, pages 252-262, March 1998 

[Bemers-Lee et al 1996] Bemers-Lee, T., Fielding, R., and Fryslyk, H., "Hypertext Transfer 

Protocol - HTTP/1.0.", Request For Comments 1945, May 1996. 

[Blake et al 1998] Blake, S., Black, D., Carlson, M. , Davies, E., Wang, Z., Weiss, W., Request 

for Comments 2475, "An Architecture for Differentiated Services", December 1998 

299 



References 

[Boiot 1993] Bolot, J-C., "End-to-End Packet Delay and Loss Behavior in the Internet," 
Proceedings ofSIGCOMM '93, pp. 289-298, September 1993 

[Borella 2000] Borella, M. , "Measurement and Interpretation of Packet Loss" Journal of 

Communications and Networking, Vol. 2, No. 2, pp. 93-102, Jun. 2000 

[Borella 2003] Borella, M. , "ipgrab homepage", http://ipgrab.sourceforge.net, 2003 

[Bortzmeyer 2003] Bortzmeyer, S., echoping home page, http://echoping.sourceforge.net/ 

[Braden 1989] Braden, R., 'Requirements for Internet Hosts - Communication Layers', RFC 

1122, Network Information Centre, SRI International, MenIo Park, CA, October 1989. 

[Braden et al 1997] Braden, R., Zhang, L., Berson, S., Herzog, S., Jamin, S., RFC 2205, 

"Resource ReSerVation Protocol (RSVP) - Version 1 Functional Specification", September 1997 

[Bruce 2003] Bruce, A. M. , pchar home page, 

http://www.employees,org/-bmah/Software/pchar/ 

[CAIDA 2003] "the Cooperative Association for Internet Data Analysis", 

http://www.caida.org, 2003 

[Cardwell et al 2000] Cardwell, N . , Savage, S., Anderson, T., "Modelling TCP Latency", 

Proceedings of IEEE INFOCOM, Tel Aviv, Israel, March 2000 

300 



References 

[Carson 1997] Carson, M. , "Application and Protocol Testing through Network Emulation", 
Internetworking Technologies Group, NIST, September, 1997, available from 
http://snad.ncsl.nist.gov/itg/A75'7'A'e//slides/index.htm 

[Carson 2003] Carson, M. , ''NIST Net home page", http://snad.ncsl.nist.gov/itg/A'/5r A^£// 

[Catania et al 1996] Catania, V., Ficili, C , Pallazo, S., Panno, D., "A Comparative Analysis o f 

Fuzzy Versus Conventional Policing Mechanisms for A T M Networks" IEEE/ACM 

Transactions on Networking, vol. 4, no. 3, June 1996 

[CERT 1999] CERT practice: Configure firewall packet filtering, 

http://www.cert.org/security-improvement/practices/p058.html, July 1999 

[Cheng and Chang 1996] Cheng, R.G., Chang, C.J., "Design of a Fuzzy Traffic Controller for 

A T M Networks", IEEE Transactions on Networking, vol. 4, no.3, June 1996 

[Chester 1990] Chester, D. L., "Why two layers are better than one". International Joint 

Conference on Neural Networks, vol. 1, pp. 265-268, Washington, DC, 1990 

[Cochran and Snedecor 1980] Cochran, W. C , Snedecor, G. W., "Statistical methods", Iowa 

State University Press, 1980 

[Clark 1982] Clark, D., "Window and Acknowledgment Strategy in TCP", Request For 

Comments 813, July 1982. 

[Clevertools 2003] *, Netboys homepage, http://www.clevertooIs.com/products/netboys/ 

301 



References 

[CoralReef 2003] *, "CoralReef Software Suite", 

http://www.caida.org/tools/measurement/coralreef 

[Crovella and Bestavros 1996] Crovella, M. , and Bestavros, A., "Self-Similarity in 

WorldWideWeb Traffic: Evidence and Possible Causes," Proceedings of SIGMETRICS '96, 

Philadelphia, May 23-26, 1996 

[Crowcroft and Wakeman, 1991] Crowcroft, J. and Wakeman, I . "Traffic Analysis o f some UK-

US Academic Network Data," Proceedings oflNET '91, Copenhagen, June 1991 

[Deering and Hinden 1998] Deering, S., Hinden, R., "Internet Protocol Version 6 (IPv6) 

Specification", Request for Comments 2460, December 1998 

[Donnelly 2001] Donnelly S., "limestamping accuracy", e-mail to tcptrace users mailing list 

http://irg.cs.ohiou.edu/software/tcptrace/archive/01 lO.html, April 2001 

[Doulgeris and Develekeros 1997] Doulgieris, C , Develekeros, G., 'TMeuro-Fuzzy Control in 

A T M Networks", IEEE Communications Magazine, may 1997 

[Dovrolis 2003] Dovrolis, C , pathrate home page, 

http://ww\v,cis.udel.edu/"-dovrolis/bwmeter.html 

[Evans 2001] Evans, M. , "A Model for Managing Information Flow on the World Wide Web", 

PhD Thesis, University o f Plymouth, 2001 

302 



References 

[Fall and Varadhan 2003] Fall, K., Varadhan, K , "The ns manual", 
http://www.isi.edu/nsnam/ns/doc/, 2002 

[Fayyad et al, 1996] Fayyad, U., Shapiro, G. P., Smyth, P., "From Data Mining to Knowledge 

Discovery in Databases", A I Magazine, Fall 1996 

[Fielding et al 1997] Fielding, R., Irvine, U.C., Gettys, J., Mogul, J., Frystyk, H., Bemers-Lee, 

T., "Hypertext Transfer Protocol - HTTP / 1.1", Request for comments 2068, January 1997 

[Floyd and Fall, 1999] Floyd, S. and Fall, K., "Promoting the Use o f End-to-End Congestion 

Control in the Internet", IEEE/ACM Transactions on Networking, Vol . 7, No. 4, pp. 458-472, 

August 1999 

[Floyd and Padhye 2001] Floyd, S, and Padhye, J., "On inferring TCP behaviour", Proceedings 

of the ACM SIGCOMM 2001 Conference on Applications, Technologies, Architectures, and 

Protocols for Computer Communication, August 27-31, 2001, San Diego, CA, USA. ACM, 2001 

[Fraleigh et al 2003] Fraleigh, C , Moon, S., Lyles, B., Cotton, C , Khan, M. , Moll, D., Rockell, 

R., Seely, T., Diot, C , IEEE Network, 2003.) 

[Funahashi 1989] Funahashi, K., "On the approximate realisation of continuous mappings by 

neural neuvorks, Neural Networks, vol. 2, pp. 183-192, 1989 

[Garibaldi 1998] Garibaldi, J., 'Data Mining Algorithms: Applicability to Data Set Types', 

Proceedings of International Network Conference, Plymouth, 1998 

303 



References 

[Garibaldi el al 1998] Garibaldi, J.M., Bum-Thornton, K.E., and Mahdi, A.E., "Pro-Active 
Network Management using Data Mining", in Proceedings o f IEEE GLOBECOM 98, pp. 1208-
1211, Sydney, Australia, 1998. 

[Gaynor 1996] Gaynor, M. , "Proactive Packet Dropping Methods for TCP Gateways, October 

1996", http://www.eecs.harvard.edu/-gaynor/final.ps 

[Haykin 1999] Haykin, S., "Neural networks: a comprehensive foundation" 2"^ edition. Prentice 

Hall, 1999 

[Hammer 2003] ***, Hammer Voice Quality Test Suite technical datasheet, 

http.7/www.empirix.com/NR/Empirix/NCResources/datasheet_ngnt_vqtestsuite_0302.pdf 

[Heidemann et al 1997] Heidemann, J., Obraczka, K., Touch, J., "Modeling the Performance of 

HTTP Over Several Transport Protocols", ACM/IEEE Transactions on Networking, 5 5, 616-

630, October, 1997 

[Hertz and Krogh 1991] Hertz, J., Krogh, A., Palmer, R.G., "Introduction to the Theory o f 

Neural Computation", Addison Wesley, 1991 

[Hiramatsu 1990] Hiramatsu, A., " A T M Communications Network Control by Neural 

Networks", IEEE Transactions on Neural Networks, vol. I , no. I , march 1990 

[Hyun et al 2003] Hyun, Y, Broido, A, Claffy, C."On Third-party Addresses in Traceroute 

Paths", Passive and Active Measurement Workshop, April 6-8, 2003, La Jolla, California 

304 



References 

[InterMapper 2003] *, InterMapper: Network Monitoring and Alerting Software - website, 
http://w\vw.intermapper.com 

[ I B M 2000] • , "HTTP Server: Persistent Connections", IBM iSeries HTTP server 

documentation, http://www-1 .ibm.com/servers/eserver/iseries/software/http/services/persist.htm 

[ISC 2003] *, "Internet Domain Survey", Internet Software Consortium website, 

http://www.isc.org 

[ITU 2002] *, "Abstract Syntax Notation One (ASN.I) - Specification of Basic Notation", ITU-

T Rec. X.680 (2002) | ISO/IEC 8824-1:2002 

[ITU 1999] *, 'Recommendation H,323 - Packet-based multimedia communications systems', 

H.323 ITU Recommendation', ITU, September 1999 

[Jain and Dovrolis 2003] Jain, M. , Dovrolis, C , "End-to-End Available Bandwidth: 

Measurement methodology, Dynamics, and Relation with TCP Throughput", IEEE/ACM 

Transactions in Networking, August 2003 

[Jacobson et al 1992] Jacobson, V., Braden, R., Borman, D., T C P Extensions for High 

Performance*, Request for Comments 1323, May 1992 

[Jacobson and Karels 1988] Jacobson, V., Karels, M. , 'Congestion Avoidance and Control', 

Proceedings of ACM SIGCOMM '88, ACM, Stanford, CA, Aug 1988 

[Jacobson 1990] Jacobson, V., 'Berkeley TCP Evolution from 4.3 Tahoe to 4.3 Reno', 

305 



References 

Proceedings of the 18th Internet Engineering Task Force, Vancouver, September 1990 

[Jacobson 2003a] Jacobson, Wpathchar source code , ftp://ftp.ee.lbl.gov/pathchar 

[Jacobson 2003b] Jacobson, V., tcpdump source code, ftp://ftp.ee.lbl.gOv/tcpdump.tar.Z 

[Jacobson 2003c] Jacobson, V., traceroute source code, ftp://ftp.ee.lbl.gov/traceroule.tar.gz 

[Kam and Partridge 1991] Kam, P., Partridge, C , "Improving Round-Trip-Time Estimates in 

Reliable Transport Protocols", ACM Transactions on Computer Systems, Vol. 9, No. 4, 

November 1991, pp 364-373 

[Kennington 2003] Kennington A., "Simulation software links", 

http://www.topology.org/soft/sim.html 

[Keshav 1991] Keshav, S., "A Control-Theoretic Approach to Flow Control", Proceedings of 

ACM SIGCOMM, September 1991. 

[Kleinrock 1976] L. Kleinrock, "Queueing Systems, Volume I I : Computer Applications," John 

Wiley & Sons, 1976. 

[Kumar and SpafTord 1994] S. Kumar and E. Spafford, "An Application of Pattern Matching in 

Intrusion Detection," Technical Report 94-013, Department o f Computer Sciences, Purdue 

University, March 1994. 

[Lai and Baker 2000] Lai, K., Baker, M. , "Measuring Link Bandwidths Using a Deterministic 

306 



References 

Model o f Packet Delay", Proceedings of ACM SIGCOMM '00, Stockholm, Sweden, August 
2000 

[Leiand et al 1994] Leiand, W., Taqqu, M. , Willinger, W., and Wilson, D., "On the Self-Similar 

Nature of Ethernet Traffic (Extended Version)," IEEE/ACM Transactions on Networking, 2(1), 

pp. 1-15, February 1994. 

[LBNL 2003] ***, Mibpcap 0.7.1', Lawrence Berkeley National Laboratory - Network Research 

Group, ftp://ftp.ee.lbl.gOv/libpcap.tar.Z 

[McCreary and Clafly 2000] McCreary, S, Clafly, K., 'Trends in wide area IP traffic patterns -

A view from Ames Internet Exchange,", in ITC Specialist Seminar, Monterey, CA, 18-20 Sep 

2000 

[McDanie! 2001] McDaniel, B., T C P Timestamping - Obtaining System Uptime Remotely', e-

mail message, http://securityfocus.eom/archive/l/l68637, March 11, 2001 

[Morgan and Bourlard 1990] Morgan, N., Bourlard, H., "Continuous speech recognition using 

multilayer perceptrons with hidden Markov models", IEEE International Conference on 

Acoustics, Speech, and Signal Processing, vol. 1, pp. 413-416, Albuquerque, 1990 

[MCI 2003] *, MCI (Microwave Communications, Inc.), "About MCI: Our Network: IP Latency 

Statistics", http://global.mci.com/about/network/latency/ 

[Mills 1992] Mills, D., "Network Time Protocol (Version 3): Specification,Implementation and 

Analysis," RFC 1305,Net\vork Information Center, SRI International, Menio Park, CA, Mar. 

307 



References 

1992. 

[MFN 2003] •, "MFN backbone architecture", 

http://www.mfn.com/network/ip_networkmaps.shtm, May 2003 

[Microsoft 2000] *, "Microsoft Windows 2000 TCP/IP Implementation Details", white paper, 

http://www.microsoft.com/windows2000/techinfo/howitworks/communications/networkbasics/tc 

pipjmplement.asp 

[Minshal 1997] Minshal, G., tcpdpriv, ftp://ila.ee.lbl.gOv/software/tcpdpriv-l.l.IO.tarZ 

[Mogul 1992] Mogul, J., "Observing TCP Dynamics in Real Networks," Proceedings of 

SIGCOMM '92, pp. 305-317, August 1992 

[Muuss 2003] Muuss, M.,/j/wg source code, flp://ftp.arl.army.mil/pub/ping.shar 

[Mukherjee 1994] Mukherjee, A., On the Dynamics and Significance o f Low Frequency 

Components of Internet Load, Internetworking: Research and Experience, Vol. 5, pp, 163-205, 

December 1994 

[Nagendra 1998] Nagendra, S., "Practical Aspects of Using Neural Networks: Necessary 

Preliminary Specifications", GE internal report 97CRDI73, January 1998 

[NIMI 2003] *, National Internet Measurement Infrastructure homepage, 

http://www.ncne.nlanr.net/nimi/ 

308 



References 

[NIST Net 2003] *, NIST Net mailing list archive, http://snad.ncsl.nist.gov/itg/NIST Net/NIST 
Nel.archive.gz 

[NNRI 2003] *, The National Regulatory Research Institute (NNRI), "Residential Perceptions of 

Internet Service Quality: Results of a Survey", January 2003. 

[NS 2003] *, "The Network Simulator - ns2 homepage", http://www.isi,edu/nsnam/ns/ 

[NYI 2003] *, The New York Internet company (NYI), "Super ping - N Y I network status page", 

http://whatsdown.net/superping.shtmI 

[Osterman 2003] Ostermann, S., tcptrace homepage, http://www.tcptrace.org 

[Ott et al 1996] Ott, T., Kemperman, J. H. B., Malhis, M. , "The Stationary Behavior o f Ideal 

TCP Congestion Avoidance". ftp://ftp.belIcore.com/pub/tjo/TCPwindow.ps , August 1996. 

[Padhye et al 1998] Padhye, J., Firoiu, V., Towsley, D., Kurose, J. - "Modelling TCP 

Throughput: A Simple Model and its Empirical Validation", Proceedings o f SIGCOMM '98, 

Vancouver, CA, 1998 

[Pappalardo 2002] Pappalardo, D, "Cable & Wireless ups latency SLAs in North America, 

Europe", Network World, June 2002, hllp://www.nwfusion.com/news/2002/132261 _05-06-

2002.html 

[Paxson 1997a] Paxson, V,, "Measurements and Analysis o f End-to-End Intemet Dynamics", 

PhD thesis. Computer Science Division, University o f California, Berkeley, April 1997 

309 



References 

[Paxson 1997b] V. Paxson, "Automated Packet Trace Analysis of TCP Implementations", 
Proceedings of ACM SIGCOMM '97, September 1997, Cannes, France 

[Paxson 1997c] Paxson, V., "End-to-End Routing Behavior in the Internet", IEEE/ACM 

Transactions on Networking, 5(5), pp. 601-615, Oct. 1997. 

[Paxson I997d] Paxson, V., "Why We Don't Know How to Simulate the Internet", Proceedings 

of the 1997 Winter Simulation Conference, Atlanta GA, U.S.A., Dec. 1997 

[Paxson 1998] Paxson, V., "On calibrating measurements o f packet transit times", Proceedings 

of ACM SIGMETRICS '98, pp. 11-21, Madison, Wl , June 1998 

[Paxson et al 1998] Paxson, V., Mahdavi, J,, Adams, A., Mathis, M . "An Architecture for Large-

Scale Internet Measurement", IEEE Communications, v.36, no.8, pp 48-54, August 1998, 

[Paxson 1999] Paxson, V., "End-to-end internet packet dynamics", IEEE/ACM Transactions on 

Networking, Volume 7, Issue 3 , June 1999, pp 277-292 

[Paxson et al 1999] Paxson, V., Allman, M. , Dawson, S., Fenner, W., Griner, J., Heavens, I . , 

Lahey, K., Semke, J., Volz, B., Request for Comments 2525, "Known TCP Implementation 

Problems", March 1999. 

[Paxson et al 2000] Paxson, V., Adams, A., Mathis, M. , "Experiences with N I M I " , Proceedings 

of Passive and Active Measurement, 2000 

310 



References 

[PIPEX 2003] *, PIPEX, "PIPEX - Latency Statistics", 
http://www.connection.pipex.net/support/network/latency.shtml 

[Popescu and Shankar, 1999] Popescu, C. T., Shankar, A. U., "Empirical TCP Profiles and 

Application", 7th Intl. Conf on Network Protocols (ICNP'99), Toronto, 1999 

[Postel 1980] Poslel, J., "User Datagram Protocol", Request For Comments 768, August 1980 

[PMA 2003] •, Passive Measurement and Analysis homepage, http://pma.nlanr.net/PMA/ 

[Prechelt 1998] Prechelt, L., "Automatic early stopping using cross validation: quantifying the 

criteria". Neural Networks, I I , 1998, pp. 761-767 

[Quallaby 2003] *, Quallaby corporation website, http://www.quallaby.com 

[Ramaswamy and Gburzynski 1999] Ramaswamy, S., Gburzynski, P., "A Neural Network 

Approach to Effective Bandwidth Characterization In { A T M } Networks", in Performance 

Analysis of A T M Networks, IFIP vol. 4, Demetres Kouvatsos, editor, Kluwer Academic 

Publishers, 1999. 

[Savage 1999] Savage, S., "Sting: a TCP-based Network Measurement Tool", Proceedings of the 

1999 USENIX Symposium on Internet Technologies and Systems, pp. 71-79, Boulder, CO, 

October 1999 

[Schemers 2003] Schemers, R. J., fping home page, 

http://www.stanford.edu/-schemers/docs/fping/ 

311 



References 

[Securiteam 2001] *, "TCP Timeslamping - Obtaining System Uptime Remotely", 
http://www.securiteam.com/securitynews/5NP0CI53PI.html, March 2001 

[Shenker et al 1990] Shenker, S., Zhang, S., Clark, D., "Some Observations on the Dynamics o f 

a Congestion Control Algorithm" ACM Computer Communication Review, 20(4):3(^39, 

October, 1990 

[Shunra 2003] *, Shunra*s Network Simulation and Emulation Solutions, http://www.shunra.com 

[Silberschatz and Tuzhilin 1995] Silberschatz, A., and Tuzhilin, A. 1995. "On Subjective 

Measures o f Interestingness in Knowledge Discovery", Proceedings o f ICDD-95: First 

International Conference on Knowledge Discovery and Data Mining, 275-281. MenIo Park, 

Calif : American Association for Artificial Intelligence. 

[Schulzrinne et al 1996] Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V., "RTP: A 

Transport Protocol for Real-Time Applications", Request For Comments 1889, January 1996 

[SNNS 2003], *, "Stuttgart Neural Network Simulator", http;//www-ra.informatik.uni-

tuebingen.de/SNNS/, 2003 

[Stevens 1995] Stevens, R., Wright, G., "TCP/IP Illustrated, Volume 2: The Implementation". 

Addison Wesley Professional. 1995 

[Stevens 1997] Stevens, R., Request For Comments 2001 "TCP Slow Start, Congestion 

Avoidance, Fast Retransmit, and Fast Recovery Algorithms", January 1997 

312 



References 

[Sun and Ifeachor 2000] Sun, L., Ifeachor, E., "Perceived Speech Quality Prediction for Voice 
over IP-based Networks" Proceedings of IEEE International Conference on Communications 
(IEEE ICC'02), New Yoik, April 2002, pp.2573-2577. 

[Swan and Bacher 1997] Swan, A., and Bacher, D., rtpmon I.0a7, 

ftp://mmftp.cs.berkeley.edu/pub/rtpmon/. University o f California at Berkeley, January 1997 

[Swingler 1996] Swingler, K., "Applying Neural Networks - A Practical Guide", Academic 

Press, 1996 

[UUNET 2003b] *, "UUNET Latency statistics", 

http://www 1 .woridcom.com/uk/about/network/latency 

[UKERNA 2003] *, UKERNA (United Kingdom Education & Research Networking 

Association) and JANET (Joint Academic Network) Home page, http://www.ja.net 

[TDSLink 2003] *, TDSLink website, http://www.tdslink.com 

[Thompson and Miller 1997] Thompson, K., Miller, G.J. 'Wide-Area Intemet Traffic Patterns 

and Characteristics', IEEE network, November 1997 

[TIRC 2003] *, The Insight Research Corporation, "IP Telephony: Service Revenue and OSS 

Expenditures for Voice over Packet Networks 2002-2007 - a market research report", October 

2002 

313 



References 

[Wakeman c. al 1992] Wakeman, I . , Lewis, D., and Crowcroft, J., "Traffic Analysis o f Trans-

Atlantic Traffic," Proceedings of INET '92, Kyoto, Japan, 1992 

[Wassenaar 2003] Wassenaar, E., Nikhef ping source code, 

ftp://ftp.nikhef.nI/pub/network/ping.tar.Z 

[Weigend et al 1990] Weigend, A.S., Huberman, B., Rumelhart, D., "Predicting the future: A 

connectionist approach" International Journal of Neural Systems, vol. 3, pp. 367-375, 1990 

[Wendland 2000] Wendland, R., "Re: a question about the deployment of SACK and NewReno 

TCP", e-mail message to end2end-interest mailing list, March 2000 

[Wendland 2003] Wendland, R., "How prevalent is Timestamp option and PAWS?", e-mail 

message to endlend-interest mailing list, May 2003 

[Willinger et al 1995] Willinger, W., Taqqu, M. , Sherman, R., and Wilson, D., "Self-Similarity 

Through High-Variability: Statistical Analysis o f Ethernet LAN Traffic at the Source Level," 

Proceedings of SIGCOMM '95, pp. 100-113, Cambridge, MA, September 1995. 

[Woods 2000] Woods, D., "Fishy Business", Network Computing, 

http://www.networkcomputing.eom/l 114/11 l4fl.html?is=NCJS_l I I4bt , July 2000 

[wget 2003] "GNU wget homepage", http://wget.sunsite.dk 

[Yajnik et al 1999] Yajnik, M. , Moon, S., Kurose, J., Towsley, D., "Measurement and Modeling 

o f the Temporal Dependence in Packet Loss," Proceedings o f IEEE INFOCOM *99, March 1999 

314 



References 

[Yahoo 2003] *, "Random Yahoo Link page", http://random.yahoo.com/bin/ryl 

[Zell et al 1994] Zell, A., Marnier, G., Vogt, M. , Mach, N., Huebner, R., Herrmann, K.U., Soyez, 

T., Schmalzl, M. , Sommer, T., Hatzigeogiou, A., Doering, S., Posselt, D.: SNNS Stuttgart Neural 

NeKvork Simulator, User Manual. University o f Stuttgart (1994) 

[Zhang et al 1991] Zhang, L., Shenker, S., Clark, D., "Observations on the Dynamics o f a 

Congestion Control Algorithm: The Effects of Two-Way Traffic", Proceedings o f ACM 

SIGCOMM '91, Zurich, Switzeriand, September 1991 

[Zhang et al 2000] Zhang, Y., Paxson, V., Shenker, S, "The Stationarity o f Internet Path 

Properties: Routing, Loss, and Throughput", ACIRI Technical Report, May 2000 

[Zhang et al 2001] Zhang, Y., Duffield, N. , Paxson, V., Shenker, S, "On the Constancy o f 

Internet Path Properties", Proceedings of ACM SIGCOMM Internet Measurement Workshop, 

November 2001. 

315 



Appendix A - Real-time traffic monitor 

Appendices 

316 



Appendix A - Real-time traffic monitor 

Appendix A - Real-time traffic monitor 

The aim of this project with regards to real-time traffic was to gather the parameters that would 
provide a measurement architecture with the necessary network image in order to asses the 
performance of various real-time applications. Constructing such an image would require 
information about the following parameters: 

- Delay - the time elapsed between the sending of a packet and its arrival at the destination; 
- Jitter - the variance of the delay value; 
- Packet loss - the number of lost packets, reported in the time elapsed, and the burstiness 

of the loss events. 

Transport QoS has two main areas: end-to-end measurements and, in case there are changes in 
the level of parameters, fault localisation. Based on the diagram from Figure 3.1, a traditional 
approach of fault localisation for UDP traffic would require a 3-device configuration: two placed 
right at the endpoints and one along the path of the flows. This is due to the fact that UDP does 
not provide any reception feedback from the receiving (remote) endpoint. As a result, the 
endpoint devices would infonm about end-to-end parameters and fault location would result from 
comparative measurements made by the third device. In the simplest case, the third device (the 
one placed along the path of the flows) would serve also as data gathering point, collecting the 
information provided by the endpoint-placed devices. This 3-device measurement configuration 
has two clear disadvantages: it would be intrusive (in the best case scenario, the endpoint clients 
need to send the data to the server even if they are doing non-intrusive monitoring) and it would 
require privileged positioning, i.e. at the endpoints, for some of the monitoring devices. 

The QoS for transport can be determined from the audio flows within a call (which run on RTP). 
Current tools, such as Hammer VTQS (Voice Quality Test Suite) [Hammer 2003], Agilent (IP 
Telephony) Analyser [Agilent 2003], and rtpmon [Swan and Bacher 1997], base their 
calculations upon parsing both the RTP and/or RTCP and displaying the available data. Because 
they do not combine the two types of analysis, none of them can establish fault location without 
using the traditional approach mentioned above. 

Each of the two flows, i.e. RTCP and RTP, has its own advantages and disadvantages when 
analysing the transport. RTCP does provide enough information to determine the end-to-end 
performance, but it has two drawbacks: it informs only about end-to-end parameters, therefore it 
cannot be used for localising faults and it has a poor granularity, because of its scalability 
requirements, for conferences with multiple participants. RTP has a very good granularity, but it 
is limited to the network sub-path sender-monitor (i.e. Endpoint A —*• Monitoring point and 
Endpoint B —• Monitoring point in Figure 3.1), without being able to infer anything for the rest 
of the path (i.e. Monitoring point —• Endpoint A and Monitoring point —* Endpoint B in the same 
figure). 

This section proposes a method to obtain a better view of the network performance, without 
using several devices and without injecting additional traffic into the network. To achieve its 
aim, the method monitors the RTP and RTCP flows and correlates the information they provide 
to reveal both the end-to-end performance and the fault localisation (when the monitored 
parameters change their value along the route 

317 



Appendix A - Real-time traffic monitor 

A.l Monitoring procedure 

The monitoring procedure comprises three steps: capture (and parsing), parameter inference / 
extraction, and correlation. First, the real-time flows (RTP) are identified and captured. The 
capturing module was described in section 3.5; identification of the RTP flows will be described 
in the next sub-section. In the inference phase, die parsed information from the RTP header 
fields and the RTCP reports is analysed / interpreted to obtain the performance parameters. The 
last phase, correlation of RTP and RTCP, is used to establish the location of the network 
degradation, if any. 

A. 1.1 Identification of the real-time flows 

The monitor must first determine the ports on which the RTP flow(s) will be running within a 
VoIP call. The actual procedure depends heavily on the application used. For example, in the 
case of a VoIP call, the monitor must decode the call signalling, because the ports are 
dynamically allocated by the two endpoints during the call initiation. Even after narrowing the 
applications to VoIP, it depends on the stack used (e.g. Session Initiation Protocol (SIP, 
[Handley et al 1999]), or H.323 [ITU 1999]). In the case of SIP, the addressing and syntax are 
the same with HTTP; as a result, port identification can be performed by parsing the text tags 
from the call initiation messages. The case of H.323 is more complex, as the entire signalling 
dialogue between the corresponding endpoints is encoded using ASN.I syntax [ITU 2002] 

The task of identifying the flows via any of the above techniques was considered to be outside 
the scope of this project, due to the implementation time it required and the lack of novelty. 
During the validation process, section 6.1, the RTP port identification was done using the 
characteristics of the H.323 implementation involved. It was observed that Netmeeting, the client 
used to generate the H.323 test traffic, allocated ports for RTP flows using the even numbers 
starting with 48000. Also, the RTCP port for a specific real-time flow n is allocated next to the 
RTP port, portRTCPn = portRTPn + 1. Using this information, the parsing module was set to 
interpret as RTP / RTCP all the UDP traffic on even / odd ports above 48000, and to pair them 
according to the above rule. 

A.2 Parameter inference and extraction 

There are two types of analysis during this phase: one using the RTP packet headers, based on 
inference of the network events that lead to this succession of packets, and one using the RTCP 
reports, which involves only parsing and interpretation, as the parameters are already provided 
by these packets. Aside from the RTP header / RTCP reports, the monitor also uses the arrival 
timestamp of each packet to perform the timing calculations. 

The monitor retrieves the associated flow object from the Connection database in order to 
perform the analysis. The RTP/RTCP flow objects in the Connection database contain the 
following information: 

- Flow status: to indicate whether the flow is active or not. The variable was introduced in 
the proof-of-concept monitor developed, but no mechanisms were developed to modify 
it, due to the unavailability of an ASN.I decoding facility. 

- Flow information (FlowEnds): to identify the RTP/RTCP flow. Although, as mentioned 
in section 3.2, there is an unique correspondence between a flow and its corresponding 

318 



Appendix A - Real-time traffic monitor 

object in the database, this correspondence was slightly altered in the case of R T P / R T C P 
to simplify the analysis. Each R T P / R T C P pair was associated to a single object, as the 
two flows work together and the information provided by them needs to be correlated in 
the last part of the analysis. 

- Packet accounting variables 
- Number of R T P packets reported lost by the receiving end, from the R T C P receiver 

reports 
- Number of lost RTP packets at the monitor, RTP sequence number of the last RTP 

packet 
- Timing variables 

- Timestamp of the first / last captured RTP packet within the flow 
- Timestamp of the last RTP packet identified as lost. 
- RTP timestamp of the last captured RTP packet within the fiow 

- Delay variables 
- RTP timestamp resolution, based on the payload type field within the RTP header, 

used to convert the RTP timestamp in time units 
- Inter-arrival delay /jitter at the endpoinl, from pair R T C P receiver reports 

Last / average inter-arrival delay at the monitor 
- Inter-arrival / one-way jitter at the monitor 
- Timestamp of the last SR sent 

- One-way jitter (ovv _/';7rer), inter-arrival jitter (/aJitter) 
- Misordering information 

Skip sequences (SkipSeqno) - array used to determine if a packet is a duplicate or an out-
of-order one. With the simplifying assumptions introduced, the array was subsequently 
removed from the analysis. 

In addition to the flow-associated object, the following RTP fields were involved in the analysis: 
- R T P sequence number (RTPph) - to identify lost / out-of-order segments 
- RTP timestamp (tSpia) - to determine user timing information 
- Payload type - to determine whether the sender changed the codec used since the last 

captured RTP packet. 

The algorithm starts from the assumption that there are only five possible alternatives for each 
captured packet: in-sequence, 'future', out-of-order, lost, or duplicated segment. The monitor 
determines to which of these four categories the current packet belongs by comparing its R T P 
sequence number (RTPpm) with the expected R T P sequence (RTPexpcct=RTPiasi+l) and with the 
content of the SkipSeqno. The packet is: 
- in-sequence, if RTPpt, is equal with the expected sequence number 
- future, indicating either one / several connected losses or a miss-ordering event, if RTPptt is 

higher than RTPexpect- To simplify the analysis, it is assumed that the packets carrying the 
missing sequence number were lost but they are marked as skipped in SkipSeqno 

- out-of-order, if RTPp^t is lower than RTPexpect and the sequence number is listed in 
SkipSeqno. 

- duplicate, if RTPpi^ is lower than RTPcxpca and the sequence number is not listed in 
SkipSeqno. 

- lost, if RTPpkt is lower than RTPexpect and the sequence number is not listed in the SkipSeqno 

The proposed states are valid from a theoretical perspective, but they are difficult to implement 
in practice due to the technical limitations. Unlike T C P , which retransmits all the lost segments, 
UDP, which provides the transport for R T P / R T C P , does not perform any recovery if segments 
are lost. As a result, SkipSeqno, that carries all the sequence number streams which were lost or 
misordered, will fill up if packet loss exists, no matter how large the array is (in fact, making it 

319 



Appendix A - Real-time traffic monitor 

large only for this purpose would increase the monitor's memory requirements uselessly). One of 
Paxson's Internet studies [Paxson 1999] has shown that packet duplication is a very rare network 
phenomenon and indicates severe routing problems, network conditions under which the 
proposed method does not function properly anyway, because it might not capture all the 
packets. If it is assumed that packet duplication does not happen, there are only two types of 
network events to identify: packet misordering, where two / several successive packets arrive at 
the monitor in a different order than the one they were sent, and packet loss, where one / several 
packets are lost between the sender and monitor and will never arrive at the monitor. As a result, 
when the monitor captures a packet with a sequence number lower than expected, the packet is 
automatically interpreted as misordered and the number of lost packets is decremented. With this 
simplification, the SkipSeqno array is not required at all; the monitor can distinguish between the 
network events without historical knowledge of the transfer. 

Once the associated How object is retrieved from the database, the monitor, depending on the 
packet type, runs an analysis of the RTP header in conjunction with the flow object or parses the 
RTCP header using the above assumptions, then updates the flow variables. In the following, the 
case of RTP analysis will be discussed, as RTCP parsing is of less interest. A schematic diagram 
of the RTP algorithm is given below in Figure A.0.1. 

320 



Appendix A - Real-time traffic monitor 

RTP packet capture 

NO 
RTPpkt=RTPiast+l 

Y E S 

OWJittercn=(tSat-tScn_src)- (tSbsrtSbsi.src) 
ow_short_jittercrt= owshortjittercn+dowjittercn)- ow_shortJinercrt)/l6 

Ooopkt 
Lost_pkt 

Y E S ia_delaycrt=tscn-tsiast 

; 
iajittercrt= ia_delayCTt-ia_delayiast 

ia_delayiasi = ia_delayCTi 

Lost_pkt += (RTPpki-RTPiasi+l) 
loss_burstcn = (RTPpkt-RTPiast+l) 

burstcounl ++ 

Legend: 
tScrt/cn_sn:%sttoa_sn: - timcstamp values, recorded for current packet at monitor / current packet at 
sender / last packet at monitor / last packet at sender, 
owjittercrt - current measurement of one-way jitter 
owshortjittercn - current value of short term one-way jitter [Schulzrinne et al 1996] 
owjitterjjkts - number of one-way jitter samples 
RTPpkiflast - R T P timestamp of current / last packet 
ia delay - inter-arrival delay, as recorded at the monitor 
ia delaycn - current inter-arrival delay, as recorded at the monitor 
iajittercrt - current inter-arrival jitter, as recorded at the monitor 
ia_delay_pkts - number of samples for inter-arrival delay jitter calculation 
lost_pkt - number of lost packets 
Ioss_burstcTt - number of packets lost in the current loss burst 
burst count - counter of the number of loss bursts 
ooo_pkt - number of misordered packets 

Figure A.0.1 - Network parameter inference based on RTP analysis 

There are two types of parameters can be determined using the RTP header fields and the arrival 
timestamp of each packet: delay-related (inter-arrival delay, inter-arrival jitter, and one-way 
jitter) and accounting-related (lost packets and out-of-order packets). TTie inter-arrival delay is 
determined by subtracting the capture timestamps of successive in-order packets. The average 
value will be equal with the inter-send delay, unless there is skew or drift, as defined in [Mills 
1992], between the clocks at the sender and receiver. 

The one-way delay jitter would ideally relate to the absolute position of the packet in the stream; 
unfortunately, the monitor does not have any reference for establishing the absolute packet 

321 



Appendix A - Real-time traffic monitor 

position. Using a single reference, such as the first captured packet, would slide the figure for the 
entire stream with the jitter of that packet. To solve this problem, the previous packet is used as 
reference; in the diagram in Figure A.O.I, istasi src and tScn_src are the limeslamps of the current 
and last packet, calculated using the RTP sequence number, and tstet and tScn are the capturing 
timestamps of the two packets. The algorithm is similar to the one used by RTCP to calculate 
and report jitter and it requires knowledge of the codec used, i.e. the inter-send delay between 
successive RTP packets. In addition, the monitor also calculates an inter-arrival delay Jitter. The 
value is calculated by comparing the previous delay with the actual one; the resulting value is not 
affected by clock drift, but it is subject to the time delays between successive packet arrivals; it 
also cannot provide a jitter estimate in the case of packet misordering / loss. There are two one
way jitter variables: one carrying a short term value (ow shortJitter), indicating the short-term 
jitter, and ow_jitter, which is a sum of modules of the jitter values. The ow_shortJitter is 
calculated using the formula recommended in [Schulzrinne et al 1996], in order to allow 
comparison with the short-term end-to-end jitter provided by RTCP. 

The lost and out of order packets are both determined using the RTP sequence number: when a 
packet is captured, its sequence number is compared with the expected sequence number, falling 
in one of the categories previously mentioned. In addition, the monitor calculates the burstiness 
of losses, using the burst joss variable, which measures the size of the current burst. At the end 
of the connection, the average size of a burst may be determined by dividing the number of lost 
packets with the burst loss. The mechanism includes a short-term protection to account for 
misordering events, where one / several RTP presumed-lost packets arrive later and must be 
discarded as losses. If the current burst of presumed-loss packets arrives later, a lossjyurstcrt 
variable, initially carrying the size of the burst, is decreased with each packet; when it reaches 
zero, the bitrstjoss is also decremented. The mechanism works only as long as there is only one 
misordered packet / train of packets at one time; for more complex misordering schemes, the 
algorithm would require an array of lossburstcn values instead of a single variable. 

From the obtained variables, the one way jitter, loss, and the inter-loss delay are of interest for a 
voice quality model. In addition, the average inter-arrival delay may be used to detemiine an 
eventual clock skew benveen the clocks at the sender and at the monitor. Also, out-of-order 
packets, depending on the policy of the receiver, would either be considered lost or, if the 
receiver has a long queue and they arrive in time, delayed packets with high jitter. 

The RTP specification provides an option for codecs to stop sending RTP packets during the 
silence periods in order to reduce the amount of traffic produced'. Such silence periods have to 
be detected, otherwise they would be interpreted by the monitor as very high inter-arrival delays. 
The detection is made using the (silence) marker field from the RTP packet which, when set in a 
packet, indicates the end of a silence period. 

A.2.1 Correlating RTP analysis with RTCP parsing 

By correlating the two sets of parameters, obtained from RTP and RTCP, it is possible to 
detemiine whether or not a specific problem (e.g. a high packet loss rate) is caused by a problem 
which exists in the East Subnetwork or the West Subnetwork. Figure A.0.2 presents the captured 
flows. 

' An alternative is receiver-generated comfort noise, based on spectral information provided by the sender. 
322 



Appendix A - Real-time traffic monitor 

Endpoint 

A^TtB cqntrpL(end;tO:end parameters) _ 

BTiA.comro! (enjj-tp^end p 

A—•B audio I 

B—•Aaudio 

Endpoint 

Monitoring point 
Legend: 

•> RTP flows 
•> RTCP flows 

Figure A.0.2: R T P and R T C P flows monitoring 

The RTP streams, as captured on the monitoring point, are: A—"B (after passing through the 
West sub-network, see Figure 3.1) and B—>A (after passing through the East sub-network). 
Therefore, by measuring the parameters of these flows, we can determine the performance of the 
West sub-network (from the A—•B flow) and the East sub-network (from the B—•A flow). 
Meanwhile, as mentioned, RTCP provides the end-to-end parameters, i.e. the performance of the 
entire A~*B and B—^A routes, but it has no indication about how these parameters change on the 
route (i.e. cannot establish where a faulty behaviour of the network determined a change in the 
values of the parameters). 

Putting together the two sets, the parameters for the following segments result: 
- A—B and B->A, end-to-end - from the RTCP flows 
- A—^monitoring point and B—•monitoring point - from the RTP flows 

monitoring point—•B and monitoring point—•A - by subtracting the RTP obtained values 
from RTCP end-to-end parameters. 

Therefore, by using both RTP and RTCP, the method provides both the end-to-end and the end-
to-monitoring point parameters for a monitored real-time flow. 

A. 3 VoIP validation 

The following set of parameters (symmetric for the two directions) was set on the N/ST Net 
machine: 5% packet loss, 300 ms delay, 25 ms delay jitter, unlimited bandwidth, normal 
distribution for loss and delay. The measurements were based on a long capture session, with 
approximately 20,000 packets captured. 

The software tools used in the experiment were: Netmeeting, for generating the flows, running at 
the two endpoints, tcpdump, for packet capturing, running at the monitoring station. The H.323 
call used the G.723.1, 6400 bits/second codec. In order to avoid repeating the test due to errors in 
the monitor, the entire session was captured using tcpdump and stored for offline analysis. 

The process used the packet trace and the VoIP analysis implementation, and it included two 
stages. First, the RTP and RTCP flows within the trace were analysed, using the method 
described in section 3.3, to estimate the inter-arrival jitter and the packet loss. For each direction 
there were nvo different sets of results, one from the RTP analysis, indicating the properties of 
the path segment between the sender and the monitor, and one resulting from the RTCP parsing, 
which was showing the end-to-end properties of the path. In the second stage, the two sets of 
parameters were combined to identify the sub-path where the network conditions had degraded. 

323 



Appendix A - Real-time traffic monitor 

The trace analysis produced a set of results summarised in Table A . l . The unimpaired column 
indicates the measured values without any impairments (i.e. the network emulator does not 
introduce any delay, jiner, or/and loss). The 7ms delay was created by the testbed conditions: 
even without introducing any degradation, NetMeeting sending behaviour produced a 3ms delay 
jiner. and each of the two Subnets (East and West) created an additional 2ms jitter delay. 

Parameter unimpared 
RTP results RTCP results 

Parameter unimpared 
A ^ B B-*A A-^B B—A 

packet loss [%] 0 0 5 5 5 
jitter [ms] 7 5.4 28.6 30.9 31.1 

Table A. l - Throughput and packet loss statistics 

Based on Table A . l . the loss estimation and localisation is straightforward. For the B—•A 
direction, the end-to-end path value (5%) equals the value for the Endpoint A-to-monitor path; 
from here, the entire loss on this direction happens on the Endpoint A-to-monitor path. Similarly, 
the A—•B values indicate that there is no alteration on the Endpoint A-to-monitor path, as the 
loss is 0% on that segment, but 5% on the end-to-end path. 

The inter-arrival jitter, at the monitor, was also measured from the RTP flow, and used the 
receiver reports to calculate the end-to-end value. Comparing again the values obtained, it was 
observed that the A—»B direction has a 5.4ms jitter delay, which would approximate the ideal 
2+3 ms behaviour, due to sender and the West Subnetwork. The estimation for the 25ms overall 
jiner from A to B was slightly less accurate. The total figure of 30.9ms leads to a value of 
23.9ms additional jiner (after removing the 7ms generated even during ideal conditions). 
Similariy, in the reverse direction, the value of the jitter is high for both end-to-end and subnet 
east measurements, giving a value of only 2.5ms (near the 2ms value observed under unimpaired 
conditions) for the West Subnetwork. 

The jitter involved additional post-analysis, in order to determine whether the measurement was 
accurate throughout the call. Figure A.0.3 displays the resulting jitter distributions. 

Jitter distribution (B->A) 

140 
o 120 

Jitter value [sec] 

Legend: 
the injected jitter (approximate shape) 
the measured jitter 

Figure A.0.3: RTP B-*A jitter distribution (from RTP analysis) 

324 



Appendix A - Real-time traffic monitor 

The injected jitter was evaluated by sending ping packets with 1 second inter-send delay, 
between the two hosts, followed by examination of the inter-arrival values. The resulting graph 
from Figure A.0.3 was named approximate because it was produced by rounding the actual 
values. 

The jitter distribution for the A—>B flow, which is captured after passing through the West 
Subnetwork, did not show any distribution, except a main spike at 2ms, produced by the network 
behaviour previously mentioned. 

In the RTCP parsing, the values were extracted from the RTCP report blocks (the "inter-arrival 
jitter' value). 

Jitter distribution B->A 

c/) 

u 
03 
CL 

r i^ rg> nfb 
O < 

Value [sec] 

Jitter distribution A->B 

^ Ci- Qi- Qi- Cb-

Value [sec] 

Figure A.0.4: RTP jitter distribution (from R T C P parsing) 

As can be seen from Figure A.0.4, the distribution for the B—^A flow can be approximated with 
a Normal (Gaussian) one, while the A—^B flow shows no distribution of the jitter. 

Considering the absolute values for the jitter, it results an average value of 28.6 ms, which, if 
subtracting the 3 ms caused by NetMeeting behaviour and the 2 ms due to Subnetwork East, 
leads to a value of 23.4 ms, which approximates the value of the emulated link, i.e. 25 ms. 
Concluding, the method identified the 5% loss and 25 ms jitter generated by the right side of the 
monitored route. 

A.3.1 Limitations 

As can be seen, the inference proved to be more accurate for packet loss than jitter. One of the 
minor causes of this may be the errors in the jitter measurement. However, the error is likely to 
have been caused by NI ST Net behaviour, which, as described in section 5.2, produces packet 
misordering when it introduces jitter. As typical queuing should not lead to misordering, except 
for the case of alternate routes, the jitter was not calculated for misordered packets in order to 
speed up the analysis. 

325 



Appendix B - Scripts 

Appendix B - Scripts 

Appendix B.I - Neural network processing scripts 

9.4.1.1. B.I .I Main processing script (nn.sh) 

# ! / b i n / s h 
S s c r i p t t o p r e p a r e , run and d i s p l a y the r e s u l t s when a p p l y i n g a n e u r a l n e t t o 
a d a t a f i l e 
# w r i t t e n by Bogdan G h i t a 25/07/01 

#usage nn.sh d a t a _ f i l e n e u r a l ^ n e t 
cdir='Vhome/bogdan/nn" 

echo $0 $* 

#s e t the i n i t i a l v a l u e s 

zero=0 
batch=0 
s i n g l e = 0 
b c y c l e s = l 

logdata=0 
expdata=0 
softmax=0 
plmin=10 
p2min=0 
plmax=1000 
p2max=1000 
#p3min=100 
#p3max=1000 

a r g l _ s t e p = 5 0 
a rg2_step=10 
#arg3_step=10 

c y c l e _ s t e p = 1 0 0 0 
c r t c y c l e s = $ c y c l e _ s t e p 
t t = 0 

f i l t e r = 0 
m i n _ o u t _ a t t r = 0 
max_out_attr=100 
min_out_var=0 
max_ou t _ a 11r=10 0 

randomise=0 
n o _ s c a l l i n g = 0 
outmax=0 

t e s t _ p r c = 1 0 
decimate=0 
t e s t n e t = 0 

326 



Appendix B - Scripts 

s e l f _ s n n s = 0 
s e l f _ e r r = 0 
s e l f _ c o r r = 0 
s e l f _ b o t h = 0 

e r r o r _ s t e p = 0 . 0 0 1 
s q e r r _ p r e v = 0 
s q e r r _ c r t = 0 
c o r r _ p r e v = 0 
c o r r _ c r t = 0 

echo "0" > $ c d i r / r u n / t e s t _ s q e r r . tunp 
echo "0" > $ c d i r / r u n / t r a i n _ s q e r r . t m p 
echo "0" > $ c d i r / r u n / t e s t c o r r . t r a p 

usage {) { 
echo "usage: 

nn.sh - f d a t a _ f i l e [-logdata I -softmax I -expdata ] -n n e u r a l n e t 
o r 
nn.sh - t t t r a i n ^ f i l e t e s t _ f i l e -n n e u r a l _ n e t i 

O p t i o n s : 
[-r] - randomise d a t a s e t 

[-tp t e s t _ p e r c e n t ] - d e f i n e the p e r c e n t a g e o f t e s t s u b s e t from the 
d a t a s e t 

[-ca m i n _ o u t l i e r _ p e r c e n t s m a x _ o u t l i e r _ p e r c e n t s ] - remove o u t l i e r s 
o f a t t r i b u t e s 

[ - C V m i n _ o u t l i e r _ p e r c e n t s m a x _ o u t l i e r _ p e r c e n t s ) - remove o u t l i e r s 
o f v a r i a b l e t o e s t i m a t e 

[-d d e c i m a t e _ p e r c e n t ] ~ reduce the d a t a s e t t o d e c i m a t e _ p e r c e n t 
p e r c e n t s 

[-b c y c l e s [-pi paraml_minimum paraml_maxiraum] ( - s t e p _ p l 
p a r a m l _ s t e p ] [-p2 param2_minimum param2_maximura] [-step_p2 param2_stepl 

[ — b a t c h _ o u t l i e r s m a x _ o u t l i e r _ t o _ r e m o v e ] ) 
[ - c _ s t e p c y c l e _ s t e p ] 

[ - S paraml param2 c y c l e s ] 

[ - C C ] - a p p l y c r o s s v a l i d a t i o n ( s p l i t t r a i n i n g s e t i n t o 80% 
e s t i m a t i o n + 20% v a l i d a t i o n ) 

[ - s e l f _ e r r (-e e r r o r _ s t e p ] ] - a p p l y s e l f c o n t r o l u s i n g the 
v a r i a t i o n i n a v e r a g e s q u a r e e r r o r , w i t h a margin of e r r o r _ s t e p 

t - s e l f _ c o r r [-e e r r o r _ s t e p ] ] - a p p l y s e l f c o n t r o l u s i n g t h e 
v a r i a t i o n i n c o r r e l a t i o n , w i t h a margin o f e r r o r _ s t e p 

( - s e l f combined (-e e r r o r _ s t e p } J - a p p l y s e l f c o n t r o l u s i n g t h e 
v a r i a t i o n o f both c o r r e l a t i o n and a v e r a g e s q u a r e e r r o r , w i t h a margin o f 
e r r o r _ s t e p 

A d d i t i o n a l o p t i o n s : 
- - n o _ s c a l l i n g - do not p e r f o r m s c a l l i n g o f the v a l u e s t o the m i n _ v a l u e 

- max v a l u e i n t e r v a l , but t o 0.0 - max v a l u e i n t e r v a l 

w h i l e t r u e 
do 

c a s e "$1" i n 
327 



Appendix B - Scripts 

h) usage 
e x i t ; ; 

•logdata) l o g d a t a = l 
s h i f t ; ; 

•expdata) e x p d a t a = l 
s h i f t ; ; 

•softmax) s o f t n i a x = l 
s h i f t ; ; 

• t t ) t t = l 
t r a i n d a t a = " $ 2 " 
t e s t d a t a = " $ 3 " 
data="$4" 
s h i f t 4;; 

- f ) data="$2" 
s h i f t 2;; 

•cc) c r o s s = l 
s h i f t ; ; 

•ca) f i l t e r = l 
min_ou t _ a 11 r " $ 2 " 
max_ o u t _ a t t r = " $ 3 " 
s h i f t 3;; 

-cv) f i l t e r = l 
m in_out_var="$2" 
ma x_ou t _ v a r="$ 3" 
s h i f t 3;; 

-n) net="$2" 
s h i f t 2;; 

-b) b a t c h = l 
b c y c l e s = $ 2 
s h i f t 2;; 

-c_s t e p ) c y c l e _ s t e p = $ 2 
c r t _ c y c l e s = $ 2 
s h i f t 2;; 

-pl)plmin="$2" 
plmax="$3" 
s h i f t 3;; 

-step_j>l) a r g l _ s t e p = " $ 2 ' 
s h i f t 2;; 

-step_p2) arg2_step="$2* 
s h i f t 2;; 

-p2)p2min="$2" 
p2max="$3" 
s h i f t 3;; 

-q) q u i e t = " t r u e " 
d e v t t y = ' V d e v / n u l l " 
s h i f t ; ; 

- r ) randomise=l 
s h i f t ; ; 

- s e l f _ e r r ) s e l f _ e r r = l 
s h i f t ; ; 

- s e l f c o r r ) s e l f _ c o r r = l 
s h i f t ; ; 

- s e l f _ s n n s ) s e l f _ s n n s = l 
s h i f t ; ; 

-e) e r r o r _ s t e p = " S 2 " 
s h i f t 2;; 

-tp) t e s t _ p r c = " $ 2 " 
s h i f t 2;; 

-s) s i n g l e = l 
paraml=$2 
parani2=$3 
b c y c l e s = $ 4 
s h i f t 4;; 

• t e s t ) t e s t n e t = l 
328 



Appendix B - Scripts 

s h i f t ; ; 
•d) d e c i m a t e = l 

d ec_percent=$2 
s h i f t 2;; 

-v) v e r b o s e = " t r u e " ; s h i f t ; ; 
• - n o _ s c a l l i n g ) n o _ s c a l l i n g = l 

s h i f t ; ; 
-*) echo " r u n . s h : *$1' unexpected"; usage ; e x i t 
*) b r e a k ;; 

e s a c 
done 

i f [ $ t t -eq 0 ] 
then 

echo " d a t a s e t = S d a t a . d a t a " 
e l s e 

echo " t r a i n d a t a s e t = $ t r a i n d a t a . d a t a / t e s t d a t a s e t = $ t e s t d a t a . d a t a " 
f i 

echo " n e t = $ n e t . n e t " 

rm - f $ c d i r / r u n / * 

i f (t - 2 $data J I I [ -z $net 1) && ([ -z $ t r a i n d a t a ] I 1 [ -z $ t e s t d a t a ) ) 
then 
usage; 
e x i t 
f i 
i f ( ! ( [ -e $ c d i r / d a t a / $ d a t a . d a t a ] ) && ([ $ t t -eq 0 ] ) ) 
then 
echo " d a t a s e t $data not found" 
e x i t 
e l i f ([ $ t t -eq 1 ] ) 
then 

i f ! ( [ -e $ c d i r / d a t a / t t / $ t r a i n d a t a . d a t a ]) 
then 

I s $ c d i r / d a t a / t t / $ t r a i n d a t a . d a t a 
echo " t r a i n d a t a - $ c d i r / d a t a / t t / $ t r a i n d a t a . d a t a not found" 
e x i t 

f i 

i f ! ( [ -e $ c d i r / d a t a / t t / $ t e s t d a t a . d a t a ] ) 
then 

echo " t e s t d a t a - $ c d i r / d a t a / t t / $ t e s t d a t a . d a t a not found" 
e x i t 

f i 
f i 

i f ! ( [ -e $ c d i r / n e t s / $ n e t . n e t ] ) 
then 
echo "network $net not found" 
e x i t 
f i 

rm - f *__norm.pat 
rm - f * _ c l e a n . p a t 
rm - f $ c d i r / $ d a t a . s n n s . o u t 
touch $ c d i r / $ d a t a . s n n s . o u t 

329 



Appendix B - Scripts 

#work i n the *run' d i r e c t o r y 
c d $ c d i r / r u n 

cp $ c d i r / d a t a / $ d a t a . d a t a $ c d i r / r u n / 
cp S c d i r / d a t a / $ d a t a . d a t a $ c d i r / r u n / S d a t a . o r i g 

i f ( $ t t -eq 0 ] 
then 

# cp $ c d i r / d a t a / $ d a t a . d a t a $ c d i r / r u n / 
§ cp $ c d i r / d a t a / $ d a t a . d a t a $ c d i r / r u n / S d a t a . o r i g 

cd $ c d i r / r u n 

e l s e 
cp $ c d i r / d a t a / t t / $ t r a i n d a t a . d a t a $ c d i r / r u n / 
cp $ c d i r / d a t a / t t / $ t e 3 t d a t a . d a t a $ c d i r / r u n / 

f i 

cp $ c d i r / n e t s / $ n e t . n e t $ c d i r / r u n / 

irm - f ./* 

n l i n e s = " n l -n I n S c d i r / r u n / $ d a t a . d a t a | t a i l -1 | t r - s ^ M t r - s * \ t ' | 
c u t - f l -d' 
i f t S t t -eq 0 ] 
then 
# decimate the f i l e 

i f [ $deciinate -eq 1 ] 
then 

echo "keep o n l y $ d e c _ p e r c e n t % o f the f i l e -
$ ( ( S n l i n e s * $ d e c _ p e r c e n t / 1 0 0 ) ) out o f S n l i n e s " 

c a t $ c d i r / s h e l l / f i l t e r . a w k I sed s / n l i n e s / $ n l i n e s / g | sed 
s / m i n l i m i t / O / g I sed s / m a x l i m i t / $ d e c _ p e r c e n t / g > f i l t e r . a w k . t m p 

c a t $ c d i r / r u n / $ d a t a . d a t a I awk - f f i l t e r . a w k . t m p > $data.tmp 
cp f i l t e r . a w k . t m p tmp.awk 

cp $data.tmp S c d i r / r u n / $ d a t a . d a t a 
rav $data.tmp $d a t a - d e c i m a t e 

f i 
i f f i l t e r the d a t a f i r s t , i f r e q u i r e d 

i f [ $ f i l t e r -eq 1 ] 
then 

S s w i t c h temporary t o s h e l l d i r e c t o r y 
cd $ c d i r / s h e l l 
cp S c d i r / r u n / $ d a t a . d a t a $ c d i r / s h e l l / 
#do the f i l t e r i n g 

# . / f l i t e r . s h $ d a t a . d a t a $min_out $max_out 
. / f i l t e r _ a l l . s h S d a t a . d a t a $ m i n _ o u t _ a t t r $ m a x _ o u t _ a t t r $rain_out_var 

Smax_out_var 
#mv d a t a . f l i t d a t a . f i l t e r e d 
Smove the r e s u l t f i l e s t o the run d i r e c t o r y 
cp d a t a . f i l t $ c d i r / r u n / $ d a t a . d a t a 
cp d a t a . f i l t $ c d i r / r u n / $ d a t a . f i l t e r 

f i 

c d $ c d i r / r u n 

# randomise the d a t a s e t 
i f [ $randomise -eq 1 ] 
then 

#count how many l i n e s the d a t a f i l e has 
n l i n e s = * n l -n I n $ c d i r / r u n / $ d a t a . d a t a I t a i l -1 | t r - s ' M t r - s 

'\t' I c u t - f l -d' *̂ 

^ g e n e r a t e a column w i t h random v a l u e s w i t h the s i z e o f the d a t a f i l e 
330 



Appendix B - Scripts 

$ c d i r / c / r a n d $ n l i n e s > random.tmp 

i r e a r a n g e the f i l e i n the randomised o r d e r 
p a s t e -d * * random.tmp S d a t a . d a t a > tmp.data 
s o r t -g tmp.data I c u t - f 2 - -d' > $ d a t a . d a t a 
cp S d a t a . d a t a $data.random 

rm tmp.data 
f i 

#produce the two n e u r a l n e t p a t t e r n f i l e s 

g s c a l e the d a t a , e i t h e r from [minvalue;maxvalue) t o [0.0;1.0] 
§use l o g a r i t h m s i f r e q u i r e d 
i f ( $ l o g d a t a -eq 1 ] 
then 

$ c d i r / t c l / s c a l e . t c l $ c d i r / r u n / $ d a t a . d a t a l o g d a t a 
e l i f [ $expdata -eq 1 1 
then 

$ c d i r / t c l / s c a l e . t c l $ c d i r / r u n / $ d a t a . d a t a expdata 
e l i f [ $softmax -eq 1 ] 
then 

$ c d i r / t c l / s c a l e . t c l $ c d i r / r u n / $ d a t a . d a t a softmax 
e l s e 

S c d i r / t c l / s c a l e . t c l $ c d i r / r u n / S d a t a . d a t a 
f i 

# produce the two f i l e s 
i f [ $ t e s t _ p r c -eq 0 ] 
then 
$ c d i r / t c l / c o n v l s n n s . t c l $ c d i r / r u n / $ d a t a . s c a l e d $ t e s t _ p r c 
e l s e 
$ c d i r / t c l / c o n v 2 s n n s . t c l $ c d i r / r u n / S d a t a . s c a l e d $ t e s t _ p r c 
f i 

Send o f [ $ t t -eq 0 ] 
f i 

# c r e a t e a l o g f i l e and put a header 
echo "#Batch s t a r t e d a t " ^ d a t e ' # » ./ $ d a t a " " $ n e t . l o g 

#batch p r o c e s s i n g 
i f [ $batch -eq 1 ] 
then 

echo " b a t c h p r o c e s s i n g " 

S i n i t i a l i s e t he network 
c a t $ c d i r / b a t c h / b a t c h _ m u l t i p l e _ i n i t . b a t I sed s / n n e t / $ n e t . n e t / g > 

b a t c h _ m u l t i p l e _ i n i t . tmp 
batchman -q - f b a t c h _ m u l t i p l e _ i n i t . t m p 

gprepare a temporary b a t c h s c r i p t w i t h c u r r e n t d a t a 
i f [ $ t t -eq 0 ] 
then 

i f [ $ s e l f _ s n n s -eq 1 ] 
then 

i f [ $ t e s t _ p r c -eq 0 ] 
then 

c a t $ c d i r / b a t c h / s n n s _ r a u l t i p l e . b a t I s e d 
s / s t r a i n / $ d a t a " _ t r a i n . p a t " / g I sed s / s t e s t / $ d a t a " _ t r a i n . p a t " / g > 
$ c d i r / b a t c h / b a t c h . t m p 

e l s e 
331 



Appendix B - Scripts 

c a t $ c d i r / b a t c h / s n n s _ m u l t i p l e . b a t I sed 
s / s t r a i n / $ d a t a " _ t r a i n . p a t " / g I sed s / s t e s t / $ d a t a " _ t e s t . p a t ' V g > 
Sc d i r / b a t c h / b a t c h . tunp 

f i 
e l s e 

i f ( $ t e s t _ p r c -eq 0 1 
then 

c a t $ c d i r / b a t c h / b a t c h _ m u l t i p l e _ n o t e s t - b a t I sed 
3 / s t r a i n / $ d a t a " _ t r a i n . p a t " / g I sed s / s t e s t / $ d a t a " _ t e s t . p a t ' V g > 
$cdir/batch/batch.tmp 

e l s e 
c a t $ c d i r / b a t c h / b a t c h _ m u l t i p l e . b a t | sed 

s / s t r a i n / $ d a t a " _ t r a i n . p a t " / g I sed s / s t e s t / $ d a t a " _ t e s t . p a t ' V g > 
$cdir/batch/batch.tmp 

f i 
f i 

e l s e 
c a t $ c d i r / b a t c h / b a t c h _ m u l t i p l e . b a t I sed s / s t r a i n / $ t r a i n d a t a . d a t a / g 

I sed s / s t e s t / $ t e s t d a t a . d a t a / g > Scdir/batch/batch.tmp 
f i 
mv $cdir/batch/batch.tmp $ c d i r / r u n 

#run the batch and l o g i t 
a r g l = $ p l m i n 

arg2=$p2min 
arg3='date +%s' 

o u t c r t = 0 
cd $ c d i r / r u n 

S count the number o f columns 
ncols='head -1 $data.data I wc -w' 

# determine t he minimum and maximum f o r the ( l o g a r i t h m ) values o f the 
v a r i a b l e t o be determined 

i f [ $ n o _ s c a l l i n g -eq 1 ] 
then 

echo -n "0.0" > minmax.tmp 
e l s e 

echo -n ^cat $ c d i r / r u n / $ d a t a . d a t a I s o r t -g -k$ncols I u n i q -c -
f $ ( ( $ n c o l s - l ) ) I t r -s ^ M t r ^ \ t ' ̂  M c u t - f 3 - -d' M head -1 I c u t -
f $ n c o l s -d' > minmax.tmp 

f i 
echo -n " " >> minmax.tmp 
echo "cat $ c d i r / r u n / $ d a t a . d a t a I s o r t -g -k$ncols 1 u n i q -c -

f $ ( ( $ n c o l s - l ) ) I t r -s * M t r * \ t ' ' ' I cut - f 3 - -d' M t a i l -1 | c u t -
f $ n c o l s -d' >> minmax.trap 

w h i l e t e s t $ a r g l - l e Splmax 
do 

w h i l e t e s t $arg2 - l e Sp2max 
do 

i f [ $ s e l f _ s n n s -eq 1 ] 
then 

c a t ./batch.tmp | sed s / a r g l / $ a r g l / g I sed s/arg2/Sarg2/g I 
sed s / e r r o r _ s t e p / $ e r r o r _ s t e p / g | sed s/bcycles/$cycle_step/g > 
./batch.gen.tmp 

batchman -s -q - f ./batch.gen.tmp >> Scdir/$data.snns,out #> 
/ d e v / n u l l 

c r t c y c l e s = ' t a i l -3 $cdir/$data.snns.out I head -1 I c u t - f 5 -
d' '̂ 

echo -n " s a t u r a t i o n $ a r g l .$arg2 $ c r t c y c l e s t r a i n " 
332 



Appendix B - Scripts 

$ c d i r / t c l / e v a l . t c l t r a i n . r e s 'cat minraax.tmp' 
cp corr.tmp c o r r _ t r a i n . t m p 
i f [ 0 - I t $ t e s t _ p r c ] 
then 

echo -n " s a t u r a t i o n $ a r g l $arg2 $ c r t c y c l e s t e s t " 
$ c d i r / t c l / e v a l . t c l t e s t . r e s *cat minmax.tmp* 
§$cdir/tcl/correlation.awk c o r r _ t e s t . t m p 

f i 
$ c d i r / t c l / c o r r e l a t i o n . a w k c o r r _ t r a i n . t r a p 
i r m $ c d i r / r u n / t e s t _ s q e r r . t m p 

e l s e 
8...do the w h i l e - c y c l e s l o o p 

w h i l e t e s t $ c r t c y c l e s - l e $bcycles 
do 

c a t ./batch.tmp | sed s / a r g l / $ a r g l / g I sed s/arg2/$arg2/g I 
sed s/3number/Sarg3/g I sed s / b c y c l e s / $ c r t c y c l e s / g > ./batch.gen.tmp 

batchman -s -q - f ./batch.gen.tmp » $cdir/batchman,out §> 
/ d e v / n u l l 

# save the r e s u l t i n g net 

§ cp tmp_net.net n e t _ $ a r g l . $ a r g 2 . $ c r t c y c l e s . n e t 

ft begin a n a l y s i s 

ft update the o l d values b e f o r e r u n n i n g a n a l y s i s 

s q e r r _ p r e v = $ s q e r r _ c r t 
c o r r _ p r e v = $ c o r r _ c r t 

ftthe snns e a r l y s t o p p i n g method does not r e q u i r e any 
e v a l u a t i o n 

ft p r i n t r e s u l t s f o r the t r a i n s et 
echo -n " $ a r g l $arg2 $ c r t c y c l e s " 
echo -n " t r a i n 

ft determine the average a b s o l u t e and r e l a t i v e e r r o r 

minmax='cat minmax.tmp' 
i f [ $logdata -eq 1 ] 
then 

$ c d i r / t c l / e v a l . t c l t r a i n . r e s l o g 'cat minmax.tmp' 
e l i f [ $expdata -eq 1 ] 
then 

$ c d i r / t c l / e v a l . t c l t r a i n . r e s exp 'cat minmax.tmp' 
e l i f [ $softmax -eq 1 ) 
then 

$ c d i r / t c l / e v a l . t c l t r a i n . r e s softmax 'cat minmax.tmp' 
'cat meandev.tmp' 

e l s e 
$ c d i r / t c l / e v a l . t c l t r a i n . r e s "cat minmax.tmp' 

f i 

# save the r e s u l t s 
# cp t r a i n _ e v a l _ v a l . r e s t r a i n . $ a r g l . $ a r g 2 . $ c r t c y c l e s . r e s 
ft determine the c o r r e l a t i o n between a c t u a l data and p r e d i c t e d 

$ c d i r / t c l / c o r r e l a t i o n . a w k corr.tmp 
cp corr.tmp c o r r _ t r a i n . t m p 

i f { 0 - I t $ t e s t _ p r c ] 
333 



Appendix B - Scripts 

then 
§ p r i n t r e s u l t s f o r the t e s t set 
echo -n *'$argl $arg2 $ c r t c y c l e s " 
echo -n " t e s t 

§ determine the e r r o r and c o r r e l a t i o n f o r the c u r r e n t 
t e s t set 

i f [ $logdata -eq 1 ] 
then 

$ c d i r / t c l / e v a l . t c l t e s t . r e s l o g *cat minmax.tmp' 
e l i f ( $expdata -eq 1 J 
then 

$ c d i r / t c l / e v a l . t c l t e s t . r e s exp "cat minmax.tmp' 
e l i f [ $softinax -eq 1 J 

then 
$ c d i r / t c l / e v a l . t c l t e s t . r e s softmax 'cat minmax.tmp' 

'cat meandev.tmp' 
e l s e 

$ c d i r / t c l / e v a l . t c l t e s t . r e s 'cat mimnax.tmp' 
f i 
cp corr.tmp c o r r _ t e s t . t r a p 

# determine the c o r r e l a t i o n between a c t u a l data and 
p r e d i c t e d f o r the t e s t set 

$ c d i r / t c l / c o r r e l a t i o n . a w k corr.tmp 
c o r r _ c r t = ' $ c d i r / t c l / c o r r e l a t i o n . a w k c o r r . t m p ' 
cp corr.tmp c o r r _ t e s t . t m p 
s q e r r _ c r t = * c a t $ c d i r / r u n / t e s t _ s q e r r . t m p ' 

e l s e 
#run the t e s t s u s i n g the whole ( t r a i n ) d a t aset 
c o r r _ c r t = ' $ c d i r / t c l / c o r r e l a t i o n . a w k corr.tmp' 
cp corr.tmp c o r r _ t e s t . t m p 
s q e r r _ c r t = ' c a t $ c d i r / r u n / t r a i n _ s q e r r . t m p ' 

f i 

Ssave the r e s u l t s 
#cp t e s t _ e v a l _ v a l . r e s t e s t . $ a r g l . $ a r g 2 . $ c r t c y c l e s . r e s 
Sep c o r r _ t e s t . t m p c o r r _ t e s t . $ a r g l . $ a r g 2 . $ c r t c y c l e s . t m p 
Sep c o r r _ t r a i n . t m p c o r r _ t r a i n . $ a r g l . $ a r g 2 . S c r t c y c l e s . t m p 
S g n u p l o t -geometry 700x700 - p e r s i s t $ c d i r / p l o t / c o r r . p l o t 

#check whether s a t u r a t i o n was reached u s i n g e i t h e r square 
e r r o r o r c o r r e l a t i o n . 

S 4 methods o f e a r l y s t o p p i n g 
# s e l f _ s n n s - use MSE, as r e p o r t e d by SNNS (above) 
ft s e l f _ e r r - use MSE, as c a l c u l a t e d u s i n g e v a l . t c l 
# s e l f _ c o r r - use c o r r e l a t i o n , as c a l c u l a t e d using e v a l . t c l 
ft s e l f both - use b o t h MSE and c o r r e l a t i o n , as c a l c u l a t e d 

by e v a l . t c l 

two cases 

$ e r r o r s t e p ' 

§ note: e r r o r must reach 0 and c o r r e l a t i o n must reach 1; 
ft t h i s i s why the comparison (compare) i s o p p o s i t e f o r the 

i f t $ s e l f _ e r r -eq 1 ] 
then 

err_res='$cdir/c/compare $sqerr_prev $ s q e r r _ c r t 

ftecho " $ s q e r r _ p r e v $ s q e r r _ c r t $ e r r o r _ s t e p => $ e r r _ r e s ' 

i f [ $ e r r _ r e s -eq 0 ] 
then 

334 



Appendix B - Scripts 

c a t b u f f . t m p 
c r t c y c l e s = $ b c y c l e s 
i r m $ c d i r / r u n / t e s t s q e r r . tmp 
sqerr_prev=0 
sq e r r c r t = 0 

e l s e 

b u f f . t m p 

b u f f . t m p 

> b u f f . t m p 

bu f f.tmp 

b u f f . t m p 

b u f f . t m p 

b u f f . t m p 

bu f f.tmp 

echo -n " s a t u r a t i o n $ a r g l $arg2 $ c r t c y c l e s t r a i n " > 

$ c d i r / t c l / e v a l . t c l t r a i n . r e s 'cat minraax.tmp' » 

$ c d i r / t c l / c o r r e l a t i o n . a w k c o r r _ t r a i n . t m p » b u f f . t r a p 
i f [ 0 - I t $ t e s t _ p r c ] 

then 

echo -n " s a t u r a t i o n $ a r g l $arg2 $ c r t c y c l e s t e s t 

$ c d i r / t c l / e v a l . t c l t e s t . r e s 'cat minmax.tmp' » 

5 c d i r / t c l / c o r r e l a t i o n . a w k c o r r _ t e s t . t m p » b u f f . t m p 

f i f i 
f i 

i f [ $ s e l f _ c o r r -eq 1 ] 
then 

err_res=*$cdir/c/compare $ c o r r _ c r t $ c o r r _ p r e v S e r r o r s t e p 
#echo " $ c o r r _ p r e v $ c o r r _ c r t $ e r r o r _ s t e p => $ e r r _ r e s " 

i f [ $ e r r _ r e s -eq 0 ] 
then 

c a t b u f f . t m p 
c r t c y c l e s = $ b c y c l e s 
itrm $ c d i r / r u n / t e s t _ s q e r r . t m p 
corr_prev=0 
c o r r _ c r t = 0 

e l s e 
echo -n " s a t u r a t i o n $ a r g l $arg2 $ c r t c y c l e s t r a i n " > 

$ c d i r / t c l / e v a l . t c l t r a i n . r e s 'cat minmax.tmp' » 

$ c d i r / t c l / c o r r e l a t i o n . a w k c o r r _ t r a i n . t m p » b u f f . t m p 
echo -n " s a t u r a t i o n $ a r g l $arg2 $ c r t c y c l e s t e s t " > 

$ c d i r / t c l / e v a l . t c l t e s t . r e s 'cat minmax.tmp' » 

$ c d i r / t c l / c o r r e l a t i o n . a w k c o r r t e s t . t m p » b u f f . t m p 

f i 
f i 

$ e r r o r s t e p 

i f [ $ s e l f _ b o t h -eq 1 ] 
then 

corr_res='$cdir/c/compare $ c o r r _ c r t $ c o r r _ p r e v $ e r r o r _ s t e p 
err_res='$cdir/c/compare $sqerr_prev $ s q e r r _ c r t 

#echo " $ c o r r _ p r e v $ c o r r _ c r t $ e r r o r _ s t e p => $ e r r _ r e s " 

i f [ $ ( ( $ e r r _ r e s + $ c o r r _ r e s ) ) -eq 0 ] 
then 

cat b u f f . t m p 
335 



Appendix B - Scripts 

c r t c y c l e s = S b c y c l e s 
Srm $ c d i r / r u n / t e s t _ s q e r r . t m p 
corr_prev=0 
c o r r c r t = 0 

e l s e 

b u f f . t m p 

b u f f . t m p 

b u f f . t m p 

b u f f . t m p 

echo -n " s a t u r a t i o n $ a r g l $arg2 $ c r t c y c l e s t r a i n " > 

$ c d i r / t c l / e v a l . t c l t r a i n . r e s 'cat minmax.tmp' » 

$ c d i r / t c l / c o r r e l a t i o n . a w k c o r r _ t r a i n . t m p » b u f f . t r a p 
echo -n " s a t u r a t i o n $ a r g l $arg2 $ c r t c y c l e s t e s t " >> 

$ c d i r / t c l / e v a l . t c l t e s t . r e s "cat rainraax.trap' >> 

$ c d i r / t c l / c o r r e l a t i o n . a w k c o r r t e s t . t m p » b u f f . t m p 

f i 
f i 

§ end a n a l y s i s 

c r t c y c l e s = S ( ( $ c r t c y c l e s + $ c y c l e _ s t e p ) ) 
done 

8...end o f the w h i l e - c y c l e s loop 
f i 

c r t c y c l e s = $ c y c l e _ s t e p 
arg2=$(($arg2+$arg2_step)) 
#This i s VERY i m p o r t a n t : don't f o r g e t t o r e - i n i t i a l i s e the network 

a f t e r each r u n ; 
#Otherwise, the new round o f experiments uses the o l d values 
batchman -q - f b a t c h _ m u l t i p l e _ i n i t . t m p 

done 

c r t c y c l e s = $ c y c l e _ s t e p 
arg2=$p2min 
a r g l = $ ( ( $ a r g l + $ a r g l _ s t e p ) ) 
done 

f i 

# s i n g l e p r o c e s s i n g 
i f t $ s i n g l e -eq 1 ] 
then 

echo " s i n g l e p r o c e s s i n g " 

#prepare a temporary batch s c r i p t w i t h c u r r e n t data 
#cd $ c d i r / r u n 
argdate='date +%s' 
c a t $ c d i r / b a t c h / b a t c h _ s i n g l e . b a t I sed s/nnet/$net.net/g I sed 

s / s t r a i n / $ d a t a " _ t r a i n . p a t " / g I sed s / s t e s t / $ d a t a " _ t e s t . p a t ' V g |\ 
sed s/argl/$paraml/g I sed s/arg2/$param2/g I sed 

s/bcycles/$bcycles/g I sed s/snumber/$argdate/g > $cdir/run/batch.tmp 

batchman -s -q - f batch.tmp 
#»./$data" " $ n e t . l o g 

# begin a n a l y s i s 
336 



Appendix B - Scripts 

fisecond p a r t : do the a n a l y s i s o f the t e s t f i l e 

8 count the number of columns 
ncols="head -1 $data.data I wc -w' 

ft determine the minimum and maximum f o r the ( l o g a r i t h m ) values o f the 
v a r i a b l e t o be determined 

i f [ $ n o _ s c a l l i n g -eq 1 ] 
then 

echo -n "0.0" > minmax.tmp 
e l s e 

echo -n 'cat $ c d i r / r u n / $ d a t a . d a t a I s o r t -g -k$ncols I u n i q -c -
f $ ( ( $ n c o l s - l ) ) I t r -s ^ M t r ^ \ t ' * ^ | c u t - f 3 - -d' M head -1 I c u t -
f $ n c o l s -d' '̂ > minmax.tmp 

f i 
echo -n " " » minmax.tmp 
echo 'cat $ c d i r / r u n / $ d a t a . d a t a I s o r t -g -k$ncols I u n i q -c - f $ ( ( $ n c o l s -

t r -s ' M t r * \ t ' ' ' I c u t - f 3 - -d' N t a i l -1 I c u t - f S n c o l s -d' 
» minmax.tmp 

ft determine t he average a b s o l u t e and r e l a t i v e e r r o r 
echo -n " t e s t : 

i f [ $logdata -eq 1 ] 
then 

$ c d i r / t c l / e v a l . t c l t e s t . r e s l o g 'cat minmax.tmp' 
e l i f [ $expdata -eq 1 ] 
then 

$ c d i r / t c l / e v a l . t c l t e s t . r e s exp 'cat minmax.tmp' 
e l i f ( $softmax -eq 1 } 
then 

$ c d i r / t c l / e v a l . t c l t e s t . r e s softmax 'cat minmax.tmp' 'cat meandev.tmp' 
e l s e 

$ c d i r / t c l / e v a l . t c l t e s t . r e s 'cat minmax.tmp" 
f i 

ft determine the c o r r e l a t i o n between a c t u a l data and p r e d i c t e d 
$ c d i r / t c l / c o r r e l a t i o n . a w k c o r r .tmp 
cp corr.tmp c o r r _ t e s t . t m p 

ftecho -n " $ a r g l $arg2 $ c r t c y c l e s " 

i f [ $logdata -eq 1 ] 
then 

$ c d i r / t c l / e v a l . t c l t r a i n . r e s l o g 'cat minmax.tmp' 
e l i f [ $expdata -eq 1 ] 
then 

$ c d i r / t c l / e v a l . t c l t r a i n . r e s exp "cat minmax.tmp' 
e l i f t $softmax -eq 1 ] 
then 

$ c d i r / t c l / e v a l . t c l t r a i n . r e s softmax 'cat minmax.tmp' 'cat meandev.tmp 
e l s e 

$ c d i r / t c l / e v a l . t c l t r a i n . r e s 'cat minmax.tmp' 
f i 
$ c d i r / t c l / c o r r e l a t i o n . a w k corr.tmp 
cp corr.tmp c o r r _ t r a i n . t m p 

g n u p l o t -geometry 700x700 - p e r s i s t $ c d i r / p l o t / c o r r . p l o t 

337 



Appendix B - Scripts 

# end a n a l y s i s 

f i 

ft f o o t e r f o r the l o g f i l e 
echo "SBatch ended a t 'date'" 8 » ./$data" "Snet.log 

ftclear the temporary f i l e s 
rm $ c d i r / r u n / * 

9.4.1.2. B. 1.2 Script to convert C S V files to SNNS format (conv2snns.lcl) 

ft!/usr/bin/tclsh 
ft co n v 2 s n n s . t c l 
ft c o n v e r t t o format s u i t a b l e f o r SNNS use. 
ft s p l i t f i l e t o two f i l e s 
§ one i s f o r t r a i n i n g and another i s f o r t e s t ( * _ t r a i n . p a t , * _ t e s t . p a t ) 

s e t l o g d a t a 0 
set noscale 0 

i f { ($argc > 2) } { 
e r r o r "Usage: conv2snns.tk o r i g i n a l f i l e " 

) 

# percentage o f t e s t data 
set percent 10 

i f ( ($argc = = 2 ) } { 
set percent [ l i n d e x $argv 1] 

ft puts "$percent percents t e s t d a t a " 
1 
p u t s "$percent percents t e s t d a t a " 

s e t f i l e _ i n [ l i n d e x $argv 0] 
set f i n (open $ f i l e _ i n r ] 

set basename [ s t r i n g range $ f i l e _ i n 0 [expr [ s t r i n g l a s t . $ f i l e _ i n ] -1] 
set f i l e _ o u t l [ f o r m a t "%s%s" $basename " _ t r a i n . p a t " ] 
set f i l e _ o u t 2 [ f o r m a t "%s%s" $basenarae " _ t e s t . p a t " ] 

set f o u t l [open $ f i l e o u t l w] 
set f o u t 2 [open $ f i l e _ o u t 2 w] 

set count 0 

set I 0 
se t i _ t e s t 0 
set i _ t r a i n 0 
set c o u n t _ f o r _ t e s t 0 
set c o u n t _ f o r _ t r a i n 0 
set e r r l i n e 0 

do p r e l i m i n a r y a n a l y s i s o f the data 
gets $ f i n l i n e 
s p l i t $ l i n e 
set l e n g t h [ l l e n g t h $ l i n e l 

338 



Appendix B - Scripts 

set count 1 
w h i l e { ( g e t s $ f i n l i n e ] >= 0 } ( 

# count i s the t o t a l number o f samples 
i n c r count 

S check f o r samples w i t h wrong number o f f i e l d s 
s p l i t $ l i n e 

i f i $ l e n g t h != [ l l e n g t h $ l i n e n { 
i n c r e r r l i n e 
e r r o r "Wrong number o f f i e l d s a t l i n e $ e r r l i n e : $l e n g t h f i e l d s 

expected, [ l l e n g t h $ l i n e l o b t a i n e d " 
) 

} 
seek $ f i n 0 

S set the s i z e s o f the t r a i n / t e s t s e t s 
set c o u n t _ f o r _ t e s t [expr $count * $percent/100] 
set c o u n t _ f o r _ t r a i n fexpr $count - $ c o u n t _ f o r _ t e s t ] 
p u t s s t d o u t " p a t t e r n s : a l l = t r a i n + t e s t : Scount 

$count f o r t e s t " 
$count f o r t r a i n + 

cr e a t e the headers 
set date [exec date] 
puts $ f o u t l "SNNS p a t t e r n d e f i n i t i o n f i l e V I .4" 

'generated a t $date \n\n" puts $ f o u t l 
p u t s $ f o u t l 
puts $ f o u t l 
p u t s $ f o u t l 
p u t s $fout2 
puts $fout2 
p u t s $ f o u t 2 
p u t s $ f o u t 2 
p u t s $ f o u t 2 

'No. o f p a t t e r n s 
'No. o f i n p u t u n i t s 
'No. o f ou t p u t u n i t s 
'SNNS p a t t e r n d e f i n i t i o n f i l e VI.4 
'generated a t $date \n\n" 

$ c o u n t _ f o r _ t r a i n " 
[expr $ l e n g t h - 1 ] " 
l \ n " 

'No. o f p a t t e r n s 
'No. o f i n p u t u n i t s 
'No. o f out p u t u n i t s 

$ c o u n t _ f o r _ t e s t " 
[expr $ l e n g t h - 1] 
l \ n " 

produce the f i l e s 
w h i l e { [ g e t s $ f i n l i n e ] >= 0 } { 

i n c r I 
s p l i t $ l i n e 

i f { [ e x p r $ i % ( 1 0 0 / $ p e r c e n t ) ] == 0 && $ i _ t e s t < $ c o u n t _ f o r _ t e s t } { 

S w r i t e t o t e s t data s et 
i n c r i _ t e s t 
s e t f o u t $ f o u t 2 

puts $ f o u t "# I n p u t p a t t e r n $ i _ t e s t : " 

s e t c r t a r g 0 
w h i l e { $ c r t a r g < [expr $ l e n g t h - 1 ] } { 

puts -nonewline $ f o u t " [ l i n d e x [ s p l i t $ l i n e ] $ c r t a r g ] " 
i n c r c r t a r g 

} 
p u t s $ f o u t "" 
puts $ f o u t "S Output p a t t e r n $ i _ t e s t : " 
p u t s $ f o u t ( l i n d e x $ l i n e [expr $ l e n g t h - 1 ] ] 

1 e l s e { 

S w r i t e t o t r a i n data set 
i n c r i _ t r a i n 
s e t f o u t $ f o u t l 
p u t s $ f o u t "# I n p u t p a t t e r n $ i _ t r a i n : " 
set c r t a r g 0 

339 



Appendix B - Scripts 

w h i l e { $ c r t a r g < [expr $ l e n g t h - 1] 1 { 
puts -nonewline $ f o u t " ( l i n d e x [ s p l i t $ l i n e ) $ c r t a r g j 
i n c r c r t a r g 

p u t s $ f o u t "" 
puts $ f o u t "# Output p a t t e r n $ i _ t r a i n : " 
puts $ f o u t [ l i n d e x $ l i n e [expr $ l e n g t h - 1 11 

} 
1 

c l o s e $ f i n 
c l o s e $ f o u t l 
c l o s e $ f o u t 2 

B. 1.3 Script to normalise input data (scale.tcl) 

# ! / u s r / b i n / t c l s h 
# t c l s c r i p t t o normalise the i n p u t data - t r a n s l a t e data from 
[minvalue;maxvaluel t o [0.0;1.01 
^ w r i t t e n by Bogdan Ghita 6/08/2001 

ifusage s c a l e . t c l d a t a s e t [ l o g d a t a I softmax] 

se t s h i f t 1.0 
set l o g d a t a 0 

set expdata 0 
set softmax 0 

set noscale 0 
set lambda 1 

i f I {$argc > 2) } [ 
e r r o r "Usage: s c a l e . t c l o r i g i n a l f i l e \ [ n o _ s c a l e \| logdata \| 

expdata \ ] " 
1 
f o r e a c h o p t a r g $argv { 

s w i t c h $optarg { 
no_scale ( set noscale 1 } 
logd a t a { set l o g d a t a 1 } 

expdata { set expdata 1 } 
softmax { set softmax 1 ) 

} 
} 

set f i l e _ i n [ l i n d e x $argv 0] 
set f i n [open $ f i l e _ i n r ] 

1)1 
set basename [ s t r i n g range $ f i l e _ i n 0 [expr [ s t r i n g l a s t . $ f i l e _ i n l 

set f i l e _ n o r m [ f o r m a t "%s%s" $basename ".scaled"] 
set fmean [open "meanstd.tmp" wl 

set fnorm [open $ f i l e _ n o r m w] 

set count 0 

# normalise the f i l e ; the a t t r i b u t e s and the o u t p u t have t o have values 
between 0 and 1 

8 get the number o f columns 

340 



Appendix B - Scripts 

g e t s $ f i n l i n e 
s p l i t $ l i n e 
s e t l e n g t h ( l l e n g t h $ l i n e j 
seek $ f i n 0 

ft se t the minimum and maximum i n i t i a l values f o r a l l the columns 
f o r { s e t c r t a r g 0} { $ c r t a r g < $ l e n g t h } f i n e r c r t a r g ) ( 

set m i n v a l ( $ c r t a r g ) 1000000.0 
set m a x v a l ( $ c r t a r g ) 0.000001 

set sum2($crtarg) 0.0 
set sum($crtarg) 0.0 
set mean($crtarg) 0.0 
set s t d e v ( $ c r t a r g ) 0.0 

} 

ft determine maximum and minimum values f o r each o f the columns 
w h i l e { [ g e t s $ f i n l i n e ] >= 0 ) { 

set count [ expr $count + 1 ] 
f o r ( s e t c r t a r g 0} ( $ c r t a r g < Slength} ( i n c r c r t a r g } [ 

set v a lue [ expr ((1.0 * [ l i n d e x [ s p l i t $ l i n e ] $ c r t a r g ] ) + $ s h i f t ) 

set sum2($crtarg) (expr ( $sum2(Scrtarg)+ $value*$value ) ] 
set sum($crtarg) [expr ( $sum($crtarg)+ $value ) ] 
i f ( Smaxval{$crtarg) < $value ) ( 

ftupdate maxval 
set m a x v a l { $ c r t a r g ) $value 

) 
i f [ $ m i n v a l ( $ c r t a r g ) > $value } { 
ftupdate m i n v a l 

set m i n v a l ( $ c r t a r g ) $value 
} 

} 
seek $ f i n 0 

f o r ( s e t c r t a r g 0} ( $ c r t a r g < $ l e n g t h } { i n c r c r t a r g } { 
set mean($crtarg) [ expr ($sum($crtarg)/(1.O*$count)) ] 
set t l [ expr $sum2($crtarg)/(1.O*$count) } 
set t 2 ( expr (2*$mean($crtarg)*$sum($crtarg))/(1.O*$count) ] 
set t 3 [ expr $mean($crtarg)*$mean($crtarg) ] 
ftset s t d e v ( $ c r t a r g ) [ expr ( $ s u m 2 ( $ c r t a r g ) / ( $ c o u n t * $ c o u n t ) ) -

(2 * $ m e a n ( $ c r t a r g ) * $ s u m ( $ c r t a r g ) ) / ( $ c o u n t * $ c o u n t ) ) + 
( ( $ s u m ( $ c r t a r g ) * $ s u m ( $ c r t a r g ) ) * ( $ s u m ( $ c r t a r g ) * $ s u m ( $ c r t a r g ) ) ) / ( $ c o u n t * $ c o u n t ) 
) 

set s t d e v ( $ c r t a r g ) ( expr s q r t ( $ t l - $t2 + $t3) ] 
puts " $ c r t a r g -

$ m i n v a l ( $ c r t a r g ) \ t $ m a x v a l ( $ c r t a r g ) \ t $ m e a n ( $ c r t a r g ) \ t $ s t d e v { $ c r t a r g ) " 
ft = $ t l + $t2 + $ t 3 " 

} 

ftnormalise t o [0.0,1.0] based on m i n v a l , maxval, mean, stdev 
ftlinear: y = (x-m i n v a l ) / ( m a x v a l - m i n v a l ) 
#lo g : y = ( l o g ( x ) - l o g ( m i n v a l ) ) / ( l o g ( m a x v a l ) - l o g ( m i n v a l ) ) 
ftexp: y = l o g l O ( ( 9 * ( l O x - l O m i n v a l ) / ( l O m a x v a l - l O m i n v a l ) ) + 1 ) 

lOx <=> pow (10,x) 
ftsoftmax: y = 1/(1+exp(-(x-mean)/((lambda*stdev)/6.28318))) 

w h i l e { ( g e t s $ f i n l i n e ] >= 0 } { 
f o r ( s e t c r t a r g 0} ( $ c r t a r g < [expr $ l e n g t h - 1] } ( i n c r c r t a r g } 

set v a lue [expr ( [ l i n d e x [ s p l i t $ l i n e ] $ c r t a r g ] + $ s h i f t ) ] 
341 



Appendix B - Scripts 

i f { $logdata == 1 } { 
i l o g s c a l i n g 
p u t s -nonewline $fnorm "(ex p r ( ( l o g l O { $ v a l u e ) -

l o g i c ( $ r a i n v a l ( $ c r t a r g ) ) } / ( l o g l O ( $ m a x v a l ( $ c r t a r g ) ) -
l o g l O ( $ m i n v a l ( $ c r t a r g ) ) ) ) ] " 

} e l s e i f { $expdata == 2 } { 
§exp s c a l i n g 
p u t s $value 
puts e x p ( $ m a x v a l ( $ c r t a r g ) ) 
puts -nonewline $fnorm " [ e x p r l o g ( ( 1 . 7 1 8 2 8 * ( e x p { S v a l u e ) -

exp($ininval ( $ c r t a r g ) ) ) /(exp($maxval ( $ c r t a r g > ) -exp($minval ( S c r t a r g ) ) > ) + l .0) J 
} e l s e i f { Ssoftmax = 1 } { 

#softmax s c a l i n g 
SxSigma = sx2 - 2 * xmean * s x l + N*xmean*xmean 
puts -nonewline $fnorm " [ e x p r { 1 / ( 1 + e x p { - ( $ v a l u e -

$ m e a n ( S c r t a r g ) ) / { { S l a m b d a * $ s t d e v ( $ c r t a r g ) ) / 6 . 2 8 3 1 8 ) ) ) ) ] " 
} e l s e { 

# l i n e a r s c a l i n g 
p u t s -nonewline Sfnorra " ( e x p r ( ( $ v a l u e - $ m i n v a l ( $ c r t a r g ) ) / 

($ma x v a l ( $ c r t a r g ) - $ m i n v a l ( $ c r t a r g ) ) ) ] " 
} 

set value [expr ( [ l i n d e x $ l i n e (expr $ l e n g t h - 1] ] + S s h i f t ) ] 
i f { $logdata == l } { 

#log s c a l i n g 
p u t s $fnorm " [ e x p r ( ( l o g l O ( $ v a l u e ) - l o g l O ( $ m i n v a l ( S c r t a r g ) ) ) / 

( l o g l O ( S m a x v a l ( S c r t a r g ) ) - l o g l O ( S m i n v a l ( S c r t a r g ) ) ) ) ] " 
) e l s e i f { Sexpdata == 1 ) { 

#exp s c a l i n g 
p u t s Sfnorm " [ e x p r l o g ( { ( 1 . 7 1 8 2 8 * ( e x p ( S v a l u e ) -

e x p { S m i n v a l ( S c r t a r g ) ) ) ) / ( e x p { S m a x v a l ( S c r t a r g ) ) - e x p ( S m i n v a l { S c r t a r g ) ) ) ) + 1 . 0 ) ] 
I t 

} e l s e i f { Ssoftmax == 1 ) { 
Ssoftmax s c a l i n g 
puts Sfnorm " [ e x p r (1/{1+exp(-(Svalue-Smean((expr Slength -

l ] ) ) / ( ( $ l a m b d a * S s t d e v ( [ e x p r Slength - l ] ) ) / 6 . 2 8 3 1 8 ) ) ) ) ] " 
} e l s e { 

# l i n e a r s c a l i n g 
p u t s Sfnorm " [ e x p r ({Svalue - S m i n v a l { S c r t a r g ) ) / {Smaxval{Scrtarg) 

- S m i n v a l ( S c r t a r g ) ) ) ] " 

I 

} 

p u t s Sfmean "$mean([expr Slength - 1 ]) S s t d e v ( [ e x p r Slength - 1 ] ) " 

seek S f i n 0 
cl o s e S f i n 
c l o s e Sfnorm 

B. I A Script to evaluate the accuracy of the neural network output (eval.tcl) 

! / u s r / b i n / t c l s h 
program t o c a l c u l a t e the e r r o r produced by a n e u r a l network c a l c u l a t i o n 
w r i t t e n by Bogdan Ghita 1/08/2001 

342 



Appendix B - Scripts 

§ i n p u t has t o be an SNNS-produced r e s u l t f i l e 
ft the format o f the f i l e should be: 
# some header 
# 8pattern_number 
ft t r a i n e d o u t p u t 
ft a c t u a l o u t p u t 

§ usage: e v a l . t c l r e s u l t f i l e \ [ l o g \| softmax\] m i n v a l maxval [mean stdev; 
ft m i n v a l , maxval - the l i m i t s o f the o r i g i n a l domain (from which i t was 
t r a n s l a t e d t o \[0.0 ; 1.0\] 

set l o g 0 
set exp 0 
set softmax 0 
set lambda 1 
set s h i f t 1.0 

forea c h o p t a r g $argv ( 
s w i t c h $optarg { 

lo g d a t a { set l o g 1 } 
expdata { set exp 1 } 
softmax ( s e t softmax 1 } 

i f ($argc == 1) { 
set m i n v a l 0.0 
set maxval 1.0 

# puts "Using d e f a u l t values: minval $minval maxval = $maxval" 

} e l s e i f {$argc == 3} { 
set m i n v a l ( expr [ l i n d e x $argv 1] + $ s h i f t ] 
set maxval [expr [ l i n d e x $argv 2] + $ s h i f t ] 
puts "Using i n p u t values: m i n v a l = $minval maxval = $maxval' 

} e l s e i f {$argc == 4} { 
set minval [expr ( [ l i n d e x $argv 2] + $ s h i f t ) ] 
set maxval [expr ( [ l i n d e x $argv 3] + $ s h i f t ) ] 
puts "Using i n p u t values ( l o g a r i t h m i c d a t a ) : minval 

$maxval" 
$minval maxval 

} e l s e i f {$argc == 6} { 
set softmax 1 
set m i n v a l [ l i n d e x Sargv 2] 
set maxval [ l i n d e x $argv 3J 
set mean [ l i n d e x $argv 4] 
set stdev ( l i n d e x $argv 5] 

ft puts "Using i n p u t values ( l o g a r i t h m i c d a t a ) : minval = [expr 
e x p ( $ m i n v a l ) ] maxval = [expr e x p ( $ m a x v a l ) ] " 
) e l s e 1 

e r r o r "usage: e v a l . t c l r e s u l t f i l e \ [ l o g \| softmax\] m i n v a l maxval 
\tmean s t d e v \ ] 
) 

ftif [ $ l o g == 1) 
§ puts "minval = $minval / exp(minval) = [expr e x p ( $ m i n v a l ) ] 
$maxval / exp(maxval) = [expr e x p ( $ m a x v a l ) ] " 
8) e l s e [ 
8 puts "minval = $minval maxval = $maxval" 
ft} 

maxval 

set f i l e _ i n ( l i n d e x $argv 0] 
set f i n [open $ f i l e i n r ] 

343 



Appendix B - Scripts 

set i 0 
set pat 0 
set e r r 0 
set errsum 0.0 
set avgsum 0.0 
set r e l e r r s u m 0.0 
set abserrsura 0.0 
set sqabserrsum 0.0 
set s q r e l e r r s u m 0.0 
set avgabssqerr 0.0 
set a v g r e l s q e r r 0.0 

set basenarae [ s t r i n g range $ f i l e _ i n 0 [expr [ s t r i n g l a s t . S f i l e _ i n l - 1 ] ] 
set f i l e r e s l [ f o r m a t "%s%s" $ba3ename " _ e v a l _ v a l . r e s " ] 
s e t f i l e r e s S a [ f o r m a t "%s%s" $basename " _ e v a l _ r e l e r r . r e s " 1 
set f i l e r e s 3 b [ f o r m a t "%s%s" $basename " _ e v a l _ a b s e r r . r e s " ) 
set f i l e r e s 4 "corr.tmp" 
set f i l e r e s S [ f o r m a t "%s%s" $basename " s q e r r . t r a p " ] 
set f i l e r e s 6 "corr_raw.tmp" 

set f o u t l [open $ f i l e r e s l w] 
8set f o u t 2 [open S f i l e r e s 2 w] 
set f o u t 3 a [open $ f i l e r e s 3 a wl 
set f o u t 3 b [open S f i l e r e s 3 b w] 
set f o u t 4 [open $ f i l e r e s 4 w] 
s e t f o u t S (open $ f i l e r e s 5 wj 
set f o u t 6 [open $ f i l e r e s 6 w] 

w h i l e ( [ g e t s $ f i n l i n e ] >= 0 } { 
i n c r i 

i f [ s t r i n g match fi* S l i n e ] { 
i n c r p a t 

i f ( 91og =^ 1} ( 

# s c a l i n g : y = { l o g ( x ) - l o g ( m i n v a l ) ) / ( log(maxval) -
l o g ( m i n v a l ) ) 

({reverse: x = exp ( l o g (minval) - y* l o g (minval) + y*log (raaxval) ) 
gets $ f i n l i n e 
p u t s -nonewline $ f o u t 6 " $ l i n e " 
set v a l [expr ( p o w ( 1 0 , ( $ l i n e * ( l o g l O ( $ m a x v a l ) -

l o g l O ( $ m i n v a l ) ) + l o g l O ( $ m i n v a l ) ) ) - $ s h i f t ) ] 
gets $ f i n l i n e 
p u t s $ f o u t 6 " $ l i n e " 
s et pred [expr ( p o w ( 1 0 , ( $ l i n e * ( l o g l O ( $ r a a x v a l ) -

l o g l O ( $ m i n v a l ) ) + l o g l O ( $ m i n v a l ) ) ) - $ s h i f t ) ] 

} e l s e i f ( $exp == 1 ) [ 
gets $ f i n l i n e 
p u t s -nonewline $ f o u t 6 " $ l i n e " 
puts $ l i n e 
ftputs [expr ( ( ( e x p ( $ m a x v a l ) - e x p ( $ m i n v a l ) ) * ( e x p ( $ l i n e ) -

e x p ( $ m i n v a l ) ) / I . 7 1 8 2 8 ) + exp($minval)) - $ s h i f t ] 
set v a l [expr l o g ( ( ( e x p ( $ m a x v a l ) - e x p ( $ m i n v a l ) ) * ( e x p ( S l i n e ) -

1.0)/1.71828) + exp($m i n v a l ) ) - S s h i f t ] 
gets $ f i n l i n e 
puts Sfoute " S l i n e " 
gset pred [expr l o g ( { ( e x p ( $ m a x v a l ) - e x p ( $ m i n v a l ) ) * ( e x p ( $ l i n e ) -

1.0)/I.71828) + exp($m i n v a l ) ) - $ s h i f t ] 
set pred [expr l o g ( ( ( e x p ( $ m a x v a l ) - e x p ( $ m i n v a l ) ) * ( e x p ( $ l i n e ) -

1.0)/1.71828) + exp($m i n v a l ) ) - $ s h i f t ] 
} e l s e i f { Ssoftmax == 1 J ( 

#reverse: x = raean + ( l a m b d a * s t d e v * 0 . 5 * l o g ( - 1 + ( 1 / ( 1 - y ) ) ) / P I ) 
344 



Appendix B - Scripts 

§0.5/PI=0.15915 
ge t s $ f i n l i n e 
i f { $ l i n e == 1.0 } [ 

set l i n e 0.99999 
} 
set v a l [ expr $mean + 0. 1 5 9 1 5 * $ l a m b d a * $ s t d e v * l o g ( - 1 + ( 1 / ( l - $ l i n e ) ) ) 

gets S f i n l i n e 
i f 1 $ l i n e == 1.0 } { 

set l i n e 0.99999 
) 
set pred ( expr $mean + 0.159l5*$lambda*$stdev*log(-1+(1/(1-

$ l i n e ) ) ) ] 

) e l s e 1 
gets $ f i n l i n e 
s e t v a l [expr $line*($maxval-Sminval)+$minval - $ s h i f t ] 
gets S f i n l i n e 
s e t pred [expr $ l i n e * ( $ m a x v a l - $ m i n v a l ) + $ m i n v a l - $ s h i f t ] 

1 
set r e l e r r [expr ( a b s ( $ v a l - $ p r e d ) ) / S v a l ] 
set abserr [expr ( a b s ( $ v a l - $ p r e d ) ) ] 
set sqabserr [expr ( $ v a l - $ p r e d ) * ( S v a l - $ p r e d ) J 
set s q r e l e r r [expr ( $ v a l - $ p r e d ) * ( $ v a l - $ p r e d ) / ( $ v a l * $ v a l ) ] 

set avgsum [expr ($avgsum+$val)] 
set abserrsum [expr (Sabserrsum+$abserr)] 
set r e l e r r s u r a [expr ( $ r e l e r r s u m + $ r e l e r r ) ] 
set sqabserrsum (expr ($sqabserrsum+$sqabserr)J 
set s q r e l e r r s u m [expr ( $ s q r e l e r r s u m + $ s q r e l e r r ) ] 

puts $ f o u t l "$val $pred $ r e l e r r " 
ft puts $ f o u t l " $ v a l $pred $ e r r $sqabserr" 

puts $fout3a " $ r e l e r r " 
puts $ f o u t 3 b "$abserr" 
p u t s $fout4 " $ v a l $pred" 

set a v g r e l e r r [ expr ( $ r e l e r r s u m * l . 0 / $ p a t ) ] 
set avgabserr ( expr ($abserrsum*1.0/$pat) ] 
set avgabssqerr [ expr ($sqabserrsum*l.0/$pat) ) 
set a v g r e l s q e r r [ expr (Ssqrelerrsum*!.0/$pat) ] 

puts $ f o u t 5 "$avgabssqerr" 
ftputs -nonewline " [ e x p r ($avgsum/$pat)] $ a v g r e l e r r $avgabserr 

$ a v g r e l 3 q e r r Savgabssqerr 
puts -nonewline "$pat $sqabserrsum $ a v g r e l s q e r r $avgabssqerr 

c l o s e $ f i n 
c l o s e $ f o u t l 
c l o s e $fout3a 
c l o s e $fout3b 
c l o s e $fout4 
c l o s e $ f o u t 5 

345 



Appendix B - Scripts 

Appendix B.2-NSscripts 

B.2.1 Simulation script for a three-tier topology (net.tcl) 

ftCreate a s i m u l a t o r o b j e c t 
s e t ns [new S i m u l a t o r ] 

ftDefine d i f f e r e n t c o l o r s f o r d a t a f l o w s ( f o r NAM) 
$ns c o l o r 1 B l u e 
$ns c o l o r 2 Red 
$ns c o l o r 3 Green 
$ns c o l o r 4 Y e l l o w 
$ns c o l o r 5 Orange 
$ns c o l o r 6 Orange 

ftEnable t r a c e s u p p o r t 
T r a c e s e t show_tcphdr_ 1 

ftEnable random s e e d 
s e t ns-random-seed 0 
s e t rng [new RNG] 
$rng s e e d 0 

ftSet topology p a r a m e t e r s - s t a t i c 
ftset L a n S i z e 30 
ftset QueueLimit 20 
ftset QueueLimitBackbone 20 

S s e t bw_core 10Mb 
ftset bw_core_bneck 5MB 
ftset b w _ a c c ess 10Mb 
ftset bw a c c e s s bneck 2Mb 

ftSet topology p a r a m e t e r s - random 
s e t L a n S i z e [expr 2 * (10 + [ $rng i n t e g e r 20 ] ) 
s e t QueueLimit [ expr $ L a n S i z e / 2 ] 
s e t QueueLimitBackbone [ expr 3 * $ L a n S i z e / 2 ] 

s e t bw_core 10000000 
s e t bw_core_bneck 5000000 
s e t b w_access 10000000 
s e t bw_access_bneck 2000000 

s e t d e l a y _ a c c e s s 0.01 
s e t delay^gw 0.05 
s e t d e l a y _ c o r e 0.1 

ftOpen the NAM t r a c e f i l e 
s e t nf (open out.nam w] 
$ns n a m t r a c e - a l l $nf 

ftOpen th e T r a c e f i l e 
s e t t f (open o u t . t r w] 
$ns t r a c e - a l l $ t f 

346 



Appendix B - Scripts 

#Create nodes 
puts -nonewline " c r e a t i n g the topology - LANs w i t h SLanSize nodes..." 

SBackbone nodes 
set rO [Sns node] 
set r l [Sns node] 

^Gateways 
set gwO [Sns node] 
set gwl [Sns node] 
set gw2 (Sns node) 
s e t gw3 [Sns node] 

#Endpoints 
f o r ( s e t i 0 ) { S i < SLanSize } { i n c r i J { 

set a _ t c p { S i ) [Sns node] 
set b _ t c p ( S i ) [Sns node] 
set c _ t c p { S i ) [Sns node] 
set d _ t c p ( S i ) [Sns node] 

J 

puts "topology c r e a t e d " 

^Create l i n k s 

p u t s -nonewline " C r e a t i n g the l i n k s . . . " 

Sbackbone l i n k 
Sns d u p l e x - l i n k SrO S r i [Srng u n i f o r m Sbw_core_bneck Sbw_core] [Srng 

u n i f o r m ( expr S d e l a y c o r e / 2 ] Sdelay_core ] Dro p T a i l 

»gateway-core l i n k s 
Sns d u p l e x - l i n k SgwO SrO [Srng u n i f o r m Sbw_access_bneck Sbw_access] 

$delay_gw DropTail 
Sns d u p l e x - l i n k Sgwl S r i [Srng u n i f o r m Sbw_access_bneck Sbw_access] 

$delay__gw D r o p T a i l 
Sns d u p l e x - l i n k Sgw2 S r i [Srng u n i f o r m Sbw_access_bneck $bw_access] 

Sdelay_gw Dr o p T a i l 
Sns d u p l e x - l i n k Sgw3 SrO (Srng u n i f o r m Sbw_acce33_bneck $bw_access] 

Sdelay_gw DropTail 

#access l i n k s 

f o r { s e t i 0 } { Si < SLanSize ) { i n c r i } { 

#setup u s i n g s t a t i c parameters «Sns d u p l e x - l i n k SgwO Sa_ _ t c p ( S i ) Sbw_ access Sdelay access 
Dr o p T a i l 

SSns d u p l e x - l i n k Sgwl Sb_ _ t c p ( S i ) Sbw_ access $delay_ access 
Dr o p T a i l 

#Sns d u p l e x - l i n k $gw2 _ t c p ( $ i ) Sbw_ access $delay_ access 
Dr o p T a i l 

#Sns d u p l e x - l i n k Sgw3 Sd _ t c p ( S i ) Sbw_ access Sdelay_ access 
Dr o p T a i l 

Ssetup u s i n g random parameters 
Sns d u p l e x - l i n k SgwO S a _ t c p { $ i ) Sbw_access [Srng u n i f o r m ( expr 

$delay_access / 2 ] Sdelay_access ] DropTail 
Sns d u p l e x - l i n k Sgwl Sb_ t c p { S i ) Sbw_access [Srng u n i f o r m [ expr 

Sdelay_access / 2 ] $delay_access ] Dro p T a i l 
Sns d u p l e x - l i n k Sgw2 S c _ t c p { $ i ) Sbw_access [Srng u n i f o r m [ expr 

347 



Appendix B - Scripts 

$delay_access / 2 ] $delay_access ] DropTail 
$ns duplex-link $gw3 $d_tcp($i) $bw_access [5rng uniform [ expr 

$delay_access / 2 ] $delay_access 1 DropTail 
} 

puts " l i n k s created" 

§Set Queue Size of access l i n k s to 10 
$ns queue-limit $gwO SrO $QueueLimit 
$ns queue-limit $gwl $ r l $QueueLirait 
$ns queue-limit $gw2 $ r l $QueueLimit 
$ns queue-limit $gw3 $rO $QueueLirait 
Sns queue-limit $rO $ r l $QueueLimitBackbone 

§Monitor the queues (for NAM) 
$ns duplex-link-op SgwO $rO queuePos 0.5 
Sns duplex-link-op $gwl $ r l queuePos 0.5 
$ns duplex-link-op $gw2 $ r l queuePos 0.5 
$ns duplex-link-op $gw3 SrO queuePos 0.5 
Sns duplex-link-op SrO S r i queuePos 0.5 

#TCP settings 
Agent/TCP/FullTcp set i n t e r v a l _ 100ms 
Agent/TCP/FullTcp set segsperack_ 2 

puts -nonewline "Creating the c l i e n t s . . . " 

f o r {set i 0 1 { Si < SLanSize ) { i n c r i } { 

#Setup aO-bO TCP connection 
#net a 
#a - sender 

ffsetting the i n t i a l window 
set i n i t w i n [ expr [Srng integer 3] + 1 ) 
Agent/TCP/FullTcp set initial_window S i n i t w i n 

set tcp_a{Si) (new Agent/TCP/FullTcp] 
Stcp_a(Si) set class_ 2 
Stcp_a(Si) set packetSize 1460 
Sns attach-agent Sa_tcp($i) Stcp_a($i) 

Snet b 
#bO - sink 
set sink_b($i) [new Agent/TCP/FullTcp] 
Ssink_b(Si) set segsperack_ 2 
Sns attach-agent $b_tcp(Si) Ssink_b(Si) 
Ssink_b(Si) l i s t e n 
Sns connect Stcp_a($i) Ssink_b($i) 
Stcp_a(Si) set f i d _ 1 

§Setup aO-bO FTP appli c a t i o n 
set f t p _ a ( S i ) (new Application/FTP] 
$ftp_a(Si) attach-agent Stcp_a(Si) 
Sftp_a($i) set type_ FTP 

348 



Appendix B - Scripts 

iSetup cO-dO TCP connection 
§net c 
§cO - sender 

set tcp_c($i) [new Agent/TCP/FullTcp] 
$tcp_c($i) set class_ 2 
$ns attach-agent $c_tcp($i) $tcp_c($i) 

inet d 
§dO - sink 
set sink_d($i) [new Agent/TCP/FullTcp] 
Ssink d($i) set segsperack_ 2 
$ns attach-agent $d_tcp($i) $sink_d{Si) 
$sink_d($i) l i s t e n 
$ns connect $tcp_c($i) $sink_d($i) 
$tcp c ( $ i ) set f i d 2 

#Setup cO-dO FTP appli c a t i o n 
set f t p _ c ( $ i ) [new Application/FTP] 
$ f t p _ c ( $ i ) attach-agent $tcp_c($i) 
$ f t p _ c ( $ i ) set type_ FTP 

in c r i 

flSetup a l - c l TCP connection 
#net a 
Sa - sender 

set tcp_a($i) [new Agent/TCP/FullTcp] 
$tcp_a($i) set class_ 2 
$ns attach-agent $a tc p ( $ i ) Step a($i) 

net c 
c l - sink 

set sink_c($i) [new Agent/TCP/FullTcp] 
$sink_c($i) set segsperack_ 2 
$ns attach-agent $c_tcp($i) $sink_c($i) 
$sink_c($i) l i s t e n 
$ns connect $tcp_a($i) $sink_c{$i) 
$tcp a($i) set f i d 3 

Setup a l - c l FTP appli c a t i o n 
set f t p _ a ( $ i ) [new Application/FTP] 
$f t p _ a { $ i ) attach-agent $tcp_a($i) 
$ f t p a($i) set type_ FTP 

Setup b l - d l TCP connection 
#net b 
#b - sender 
set tcp_b{$i) (new Agent/TCP/FullTcp] 
$tcp_b($i) set class_ 2 
$ns attach-agent $b_tcp($i) $tcp_b($i) 

Snet d 
#d - sink 
set sink_d($i) [new Agent/TCP/FullTcp] 
$ s i n k d ( $ i ) set segsperack_ 2 
$ns attach-agent $d_tcp($i) $sink_d($i) 

349 



Appendix B - Scripts 

$sink_d($i) l i s t e n 
$ns connect Stcp_b($i) $sink_d(Si) 
$tcp_b($i) set f i d _ 4 

#Setup b l - d l FTP app l i c a t i o n 
set f t p _ b ( $ i ) [new Application/FTP] 
$f t p _ b { $ i ) attach-agent $tcp_b($i) 
$ f t p b ($i) set type FTP 

puts " c l i e n t s created" 

iSet simulation l i m i t s 
set m i n _ s t a r t _ l i m i t 0.0 
set max_ s t a r t _ l i m i t 1.0 
set min_duration_limit 1.0 
#set max_duration_limit 5.0 
set max_duration_limit 10.0 

fo r {set i 0 } { $ i < $LanSize } { in c r i } { 

#Control a-c TCP 

set time [$rng uniform $min_duration_limit $raax_duration_limit 
set s t a r t t i m e [$rng uniform $ m i n _ s t a r t _ l i m i t $max_start_limit ; 

set s t a r t ( $ f t p _ a ( $ i ) ) [expr $starttime] 
set s t o p ( $ f t p _ a ( $ i ) ) texpr $starttime + $timej 
$ns at $ s t a r t ( $ f t p _ a ( $ i ) ) " $ f tp_a($i) s t a r t " 
$ns at $stop($ftp a ( $ i ) ) "$ftp a($i) stop" 

Control b-d TCP 
set time [$rng uniform $min_duration_limit $max_duration_limit ] 
set starttime t$rng uniform $ m i n _ s t a r t _ l i m i t $max_start_limitJ 

set s t a r t ( $ f t p _ c ( $ i ) ) [expr $starttime] 
set s t o p ( $ f t p _ c ( $ i ) ) [expr $starttime + $time] 
$ns at $ s t a r t { $ f t p _ c ( $ i ) ) " $ f t p _ c ( $ i ) s t a r t " 
$ns at $s t o p ( $ f t p _ c { $ i ) ) " $ f t p _ c ( $ i ) stop" 

ffControl a-c TCP 
set time [$rng uniform $min_duration_limit $max_duration_limit ] 
set s t a r t t i m e [$rng uniform $ m i n _ s t a r t _ i i m i t $max_start_limit) 

set s t a r t { $ f t p _ a ( $ i ) ) [expr $starttime] 
set stop($ftp_a(Si)) [expr $starttime + $time] 
$ns at $ s t a r t ( $ f t p _ a { $ i ) ) " $ f tp_a($i) s t a r t " 
$ns at $stop{$ftp_a($i)) "$ftp_a($i) stop" 

SControl b-d TCP 
set time [$rng uniform $min_duration_limit $max_duration_limit 
set s t a r t t i m e [$rng uniform $ m i n _ s t a r t _ l i m i t $max_start_lirait] 

set s t a r t ( $ f t p _ b ( $ i ) ) [expr $starttime] 
350 



Appendix B - Scripts 

set s t o p ( $ f t p _ b ( $ i ) ) [expr $starttime + $time) 

$ns at $ s t a r t { $ f t p _ b ( $ i ) ) " $ f t p _ b ( $ i ) s t a r t " 
$ns at $stop($ftp b ( $ i ) ) "Sftp b ( $ i ) stop" 

#Run the simulation 
puts -nonewline "Start simulation. 
$ns run 
puts "simulation f i n i s h e d " 

B.2.2 Loop script to produce a batch o f traces (loop.sh) 

#!/bin/bash 
#script to produce a batch of ns simulation rounds 
#syntax: loop.sh rounds 

i=0 
rm *.save 
while [ $ i - I t $1 1 
do 

echo " i = $ i " 
echo " i = $ i " »crti.save 
echo "'date' - s t a r t " 
../ns n e t . t c l 
echo "'date' - f i n i s h e d " 
cp o u t . t r o u t _ $ i . t r 
t a r -cvzf out_$i.tar.gz o u t _ $ i . t r 
rm o u t _ $ i . t r 
cat o u t . t r I grep " 0 1 " > res 
cat o u t . t r I grep " 1 0 " » res 
sort -g -k2 res > trace 
cp trace trace_$i 
i=$( ( $ i + l ) ) 

done 

351 



Appendix B - Scripts 

Appendix B.3 - wget data collection script 

B.3.1 Main data collection script (ryl.sh) 

§!/bin/bash 
Sshell to r e t r i e v e random l i n k s from r y l - Random Yahoo Link 
rm counter 
rm exp.crt 
touch output_trap.wget 
count=l 
echo "$count" > exp.crt 
tstarap='date +%y-%m-%d-%H.%M' 
echo "$tstamp" > tstamp 
rakdir ./$tstamp 2> /dev/null 
mkdir ./$tstamp/pages 2> /dev/null 
crtdir=./$tstamp 
#mkdir -/tmp/ryl 

http_client=wget 
http_client_opts="—cache=off — t r i e s = l -A "*.html,*.htm" — d i r e c t o r y -
prefix=./$tstamp/pages -a ./$tstamp/wget.log http://random.yahoo.com/bin/ryl" 
h t t p c l i e n t _ o p t s = " ./$tstamp/wget.log http://random.yahoo.com/bin/ryl —dump-
header $crtdir/headers_tmp.wget — i n c l u d e —max-time 120 — o u t p u t 
\"$crtdir/output_tmp.wget\" —show-error — h t t p l . O — s t d e r r 
$crtdir/error_tmp.wget -L" 
ht t p _ c l i e n t _ o p t s = " http://random.yahoo.com/bin/ryl --dump-header 
thishost='hostname - i ' 

k i l l a l l -9 tcpdump 1» ./tmp.log 2> ./tmp.log 

tcpdump -iethO -w ./$tstamp/ryl.dump host $thishost and port 80 1 » ./tmp.log 
2 » ./tmp.log & 
tcpdump -iethO -w ./$tstamp/ryl_srv.dump host $thishost -s 300 and port 80 
1 » ./tmp.log 2 » ./tmp.log & 
tcpdump -iethO -w ./$tstarap/ryl_bk.dump host $thishost and not port 80 1 » 
./tmp.log 2» ./tmp.log & 

k i l l a l l -9 k i l l e r . s h 1 » ./tmp.log 2 » ./tmp.log 
. / k i l l e r . s h 1 » ./tmp.log 2 » ./tmp.log & 

echo 'date' - Batch s t a r t e d » ./$t9tamp/ryl_out.log 

while [ $count - l e "cat ./exp.max' ] 
do 

echo "$count" > exp.crt 
date_start="'date +%s'" 
echo -e -n "$count\t'date +%H:%M:%S'" » ./$tstamp/ryl_out.log 

# 3 t a r t _ s t o p . l o g 

$ h t t p _ c l i e n t $ h t t p _ c l i e n t _ o p t s 1>> $crtdir/pages/$count.wget 2 » 
$crtdir/stderr.wget 

cat $crtdir/headers_tmp.wget >> $crtdir/headers.wget 
cat $crtdir/output_tmp.wget » $crtdir/output.wget 
cat $crtdir/error_tmp.wget » $crtdir/error.wget 

date_end="$(('date +%s'-$date_start))" 

352 



Appendix B - Scripts 

echo -e "Nt^date +%H:%M:%S'\t$date_end" » ./$tstamp/ryl_out.log 
#start_stop.log 

sleep 5 
count=$(($count+l)) 
k i l l a l l -15 k i l l e r . s h 

done 

B.3.2 Thread maintenance script (killer.sh) 

§!/bin/sh 
# s c r i p t t o k i l l wget c l i e n t i n case i t takes longer than 2 minutes to 
download a f i l e . 
expno='cat exp.crt" 
tstamp=*cat tstamp' 
echo " k i l l e r . s h s t a r t e d " 
counter=120 
while [ $expno - I t 10000 ] 
do 

i f [ 'cat exp.crt' -eq $expno ] 
then 

i f [ $counter - I t 5 ] 
then 

k i l l a l l -9 wget 
echo "date +%H:%M:%S " exp $expno - wget k i l l e d " » 

. /$tstainp/wget. log 
echo 'date +%H:%M:%S'" exp $expno - wget k i l l e d " » 

. /$tstainp/ryl_out, log 
counter=125 

else 
counter=$({$counter-l)) 
echo $counter > counter 

f i 
sleep 1 
else 
expno='cat exp.crt' 

echo 'date +%H:%M:%S'" exp $expno fin i s h e d - $((120-$counter))" » 
./$tstamp/ryl_out.log 

counter=125 
f i 

done 

353 



Appendix C - Publications 

Appendix C - Publications 

354 



Appendix C - Publications 

The list below presents the papers written and published during the PhD work programme. Those 

highlighted with a **' are not included in this appendix but are available from the Network 

Research Group website (http://www.network-research-group.org). 

* "Endpoint study o f Internet paths and web pages transfers", Mr Bogdan V. Ghita, Dr Steven 

M . Fumell, Dr Benn Lines, Prof. Emmanuel Ifeachor Campus Wide Information Systems, 

vol. 20, no. 3, pp90-97, 2003 

"Endpoint study o f Internet paths and web pages transfers", Mr Bogdan V. Ghita, Dr Steven 

M . Fumell, Dr Benn Lines, Prof. Emmanuel Ifeachor, Proceedings of the Third International 

Network Conference (INC 2002), Plymouth, UK, 16-18 July 2002, pp26l-270, 2002 

"Non-intrusive IP Network Performance Monitoring for TCP Flows", Mr Bogdan V. Ghita, 

Dr Benn Lines, Dr Steven M . Fumell, Prof Emmanuel Ifeachor Proceedings of IEEE 

ICT200I, Bucharest, Romania, pp290-295, 4-7 June, 2001 

"NeUvork Quality of Service Monitoring for IP Telephony", Mr Bogdan V. Ghita, Dr Steven 

M. Fumell, Dr Benn Lines, Mr Dominique Le Foil, Prof. Emmanuel Ifeachor, Intemet 

Research, vol. 11, no. 1, pp26-34, 2001 

* "IP Networks Performance Monitoring of Voice Flows for IP Telephony", Mr Bogdan V. 

Ghita, Dr Steven M . Fumell, Dr Benn Lines, Mr Dominique Le Foil, Prof. Emmanuel 

Ifeachor, Proceedings of the Second International Network Conference (INC 2000), 

Plymouth, UK, ppl45-155, 3-6 July, 2000 

* "Measurement of IP Transport Parameters for IP Telephony", Mr Bogdan V. Ghita, Dr 

355 



Appendix C - Publications 

Steven M . Fumell, Dr Benn Lines, Prof. Emmanuel Ifeachor, Proceedings of PG Net 2000 -

I St Annual Postgraduate Symposium on the Convergence of Telecommunications, 

Networking and Broadcasting, Liverpool, UK, pp3l-36, 19-20 June, 2000 

"Procede D'Evaluation de la Bande Passante D'Une Liaison Numerique" Pattent pending, 

no. 03 50056, 19/03/2003, applied for by Actema IPMS. 

356 



Endpoint study of Internet paths and web pages transfers 

B. V. Ghita, S. M . Furaell, B. M . Lines, E. C. Ifeachor 

University of Plymouth, Plymouth, United Kingdom 
e-mail: bghita@jack.see.plymouth.ac.uk 

Abstract 

This paper presents the findings of a pilot study to provide information about the characteristics of current 
networks and data transfers. The main aim of the study was to infer the properties of a large number of network 
paths. In addition, the study produced statistics relating to the average size of a typical web page and both under 
the restriction of a single-point connection. The study was performed in two steps: trace collection followed by 
TCP per-flow analysis. The trace collection used the functionality of a random link generator, combined with an 
automatic HTTP retrieval tool. The TCP analysis was applied to the collected traces and it involved an offline 
TCP per-flow method developed in previous research. 

Keywords 

TCP connection analysis, Internet characteristics, web page size, web transfer features. 

1 Introduction 

The current status of the Internet is one of the issues being researched intensively. The first 
concerted initiative to evaluate the properties of the Internet belongs to Paxson. He deployed 
his Network Probe Daemon (NPD), established a measurement mesh to evaluate the 
characteristics o f network paths, and generated and analysed the transfers running through this 
mesh (Paxson, 1999). Several bodies, such as the Active Measurement Project (AMP, 2002) 
and the National Internet Measurement Infrastructure, built on the concept of NPD) ( N I M l , 
2002) projects aim to describe the Internet from a holistic perspective by employing complex 
measurement infrastructures. A different view is embraced by passive traffic surveys, which 
capture and analyse data from backbone segments / endpoint networks (Thompson and Miller, 
1997). The need for such information comes from both the research and commercial domains. 
The rationale is similar for the two cases: the marketing directions, as well as the 
improvements o f current Internet-related technologies, have to be based on actual information 
rather than assumptions or previous studies. 

A l l of the aforementioned measurement initiatives are very successful in their place, and they 
aim to answer the question 'How does the overall Internet behave?'. The study presented in 
this paper seeks to discuss the Internet characteristics from a different perspective: how the 
Internet is seen from an endpoint network and what are the characteristics of the data that may 
be retrieved from the Internet by other hosts connected to that respective endpoint network. 
Concluding, the question that this study aims to answer is 'How does Internet behave for my 
Internet traffic?', as would be asked by an endpoint network user / administrator. 



2 Traffic collection 

The study discussed by this paper presents analysis results based on two data sources: real 
traffic and artificially generated traffic. In both cases HTTP was used as the focused 
application for reasons of availability and convenience. It was observed before starting the 
experiments that most of the network TCP traffic is web browsing, which confirms the results 
o f previous studies 5*axson, 1999). Also, as wi l l be discussed later, artificial and random 
HTTP traffic was convenient to produce. 

For the first option, i.e. capture real traffic, the hosts (approximately 15) within the Network 
Research Group (NRG) at University of Plymouth were used. The connectivity of the 
machines within the NRG is convenient for traffic capture, as they are all connected to a 
switch, and the capture machine was attached to the uplink of the switch through a hub. The 
traffic collection was performed continuously during spring 2002 for a period of nvo weeks 
and included only web traffic between the hosts in the NRG and hosts outside the UoP 
network. The second option, i.e. generate artificial traffic, allowed a more controlled approach 
to the data collection. The traffic was produced using the Random Yahoo Link page (RYL, 
2002) from the Yahoo website, a CGI script that redirects a request to a random WWW page, 
taken from the Yahoo search engine database. The HTTP client used to perform the requests 
was wget (wget, 2002), a command-line HTTP retrieval tool, and the requests were controlled 
through a Linux shell script. The experiments in this case were also performed in two stages, 
but separately from the neUvork segment traffic capture discussed above. It is known that at 
least one major event, in terms of network infrastructure changes, happened between the two 
experiments: an upgrade of the UoP network from a 100MB backbone / 10MB access speed 
to 1000MB backbone / 100MB access speed. As wil l be seen in the results section, all the 
network parameters (bandwidth, loss, delay) are improved for the second set o f results. For 
both experiments, the traffic was captured using tcpdump (tcpdump, 2002), which was set to 
keep only the HTTP connections (using a tcp and port 80 fil ter expression). The level of the 
monitored traffic was low in all cases and tcpdump did not report any dropped packets 
throughout the experiments. In all experiments, the traces were filtered offiine in order to 
remove the unfinished or reseted connections, which could not be used for consistent analysis; 
the resulting figures are presented in Table 1. 

Traffic type 
Number of connections collected 

Traffic type 2001 20 02 Traffic type 
Raw Filtered Raw Filtered 

Wgei generated 15106 12469 16844 13674 
Real - - 14288 11322 

Table 1 - Capture statistics for the traffic collection cxperinients performed 

3 Analysis 

One of the aims of this paper is to advance the traffic analysis from an overall study, currently 
preferred for convenience and simplicity, to per-flow examination, in order to get an insight 
of the network conditions that are behind the traffic. The overall analysis studies present only 
the total figures of traffic (overall throughput in bytes, packets, or fiows per second), the 
distribution of traffic per application (based on the port numbers), or the distribution of the 
packet lengths. The only concerted efforts in the area of TCP per-fiow analysis were the ones 



made by Paxson in (Paxson, 1997a), (Paxson, 1999), which are quoted by most articles when 
discussing current characteristics of the Internet. 

Two types of analysis were applied to the collected traces: network performance-related, to 
reveal the end-to-end network paths characteristics, and connection-related, to classify the 
web pages in terms o f size and content. The network performance analysis was performed 
using a previously developed tool, described in (Ghita et al, 2001); the method employed is 
similar to other TCP flow analysers, like icpanaly (Paxson, 1997b) and tcptrace (Osterman, 
2002), with improvements for single point monitoring and network parameters inference. The 
connection analysis investigated the size and the content (object-wise) of the web pages for 
two reasons: to determine the average size of a page (together with the containing objects, e.g. 
images) and to establish the efficiency in practice of the HTTP l . l pipelining capabilities. 

4 The Random Yahoo Link experiments - Results 

4.1 Network topology 

The UoP network is connected to the Intemet, as mentioned before, via the UK academic 
network, JANET. As a result, the first 8 hops of all paths are part o f the JANET infrastructure, 
and, implicitly, were common for all connections but the routes diverged at the exit from 
JANET, depending on the destination host. A separate experiment was carried out to estimate 
the number of individual paths explored within the performed experiments. A traceroute was 
run on a random subset of the sites (350 out of the 2744 unique servers which were used 
during the spring 2002 round of experiments) to see the number of different individual paths. 
The results are shown in Figure 1. 

The number of routes differing by at least one hop was found to be as high as 180, figure that 
is approximately half of the number of hosts probed (the number of unique hops decreases 
towards the end of the graph due to path size, with an average hop count o f 22.2 hops). 
Concluding, although the study was performed from a single point, this additional 
measurement indicates that the survey analysed a fairiy large number o f different Intemct 
paths. 

Kuwber of di f f e r e n t routes 
Leo, 

Hop nuMber 

Figure 1 - Routing distrihution, spring 2002 experiments 



4.2 Round Tr ip Time results 

The distribution of the RTT for the two sets o f experiments is presented in Figure 2 (left). As 
can be observed, in both cases the average RTT values are very low for most o f the 
connections, with an overall average o f 200.5 ms for the first round of experiments and 136.5 
ms for the second round. The difference between the figures may be associated with the 
neUvork upgrade mentioned previously (unfortimately, there was no path information 
collected during the autumn 2001 experiments), as the shape of the distribution remained the 
same for the two sets of results. 

flows [ Z ] 
too flows ez) 

1001 

200 300 400 
ftvcrape RTT 

500 600 700 20 40 60 eo 100 120 
RTT standard deviation 

140 IGO 

Figure 2-left - RTT average |ms| cumulative distribution for: a) autumn 2001, b)spring 2002; right -
RTT standard deviation |ms| cumulative distribution for: a) autumn 2001, b) spring 2002 

Aside from the actual value o f the RTT, the standard deviation of the RTT throughout a 
connection was calculated; the result is shown in Figure 2 (right). The average value o f the 
standard deviation was 22.3 ms (10.4 % of the RTT averages) for the autumn 2001 round and 
7.8 ms (4.7 % of the RTT averages) for spring 2002. The data results from spring 2002 
indicate that, for 87% of the flows, the RTT standard deviation was 10 ms. This value is 
relevant as, at the moment, it is the default resolution for timers, at least for Linux based 
systems. Future work, aims to analyse the implications of these low figures for RTT 
estimation within the TCP clients, since the RTT variation plays an important role in the TCP 
retransmission mechanism (Jacobson and Karels, 1988). Since successive connections were 
made to different sites, conclusions could not be drawn with regard to the long / short term 
autocorrelation of cither RTT average or RTT standard deviation. 

4.3 Loss 

Due to its self-adjusting behaviour (Jacobson and Karels, 1988), TCP perfomiance is 
critically affected by loss. Nevertheless, previous studies J^axson, 1997a) have shown thai 
packet loss is low, at least for the analysed mesh of Intemet paths. One of the purposes of this 
paper is to produce a similar study, but based only on traces collected from a single point and 
with no control over the senders. It may be argued that the surx'cy carried out as part of this 
study was somehow limited, as the wget client does not support HTTP 1.1. As a result, the 
objects from a page are downloaded in separate connections, which leads to smaller 



congestion windows. Further, the resulting figiu-es for loss may be lower than the ones 
obtained for a long-lived connection, with larger congestion windows. The losses were split 
into visible retransmissions and inferred retransmissions. The first category, visible 
retransmissions, is represented by losses which are indicated by anomalies in the TCP 
segments sequence. The second category, inferred retransmissions, includes the losses that are 
not apparent from the sequence o f succesive TCP segments (more details on this subject are 
given in (Ghita et al, 2001)). The second category was named inferred because the process o f 
identifying a loss is not based on sequencing, but only on packet spacing. The technique is 
reliable for a simple HTTP I.O retrieval, where the reply is a single object. Additional 
problems arise i f HTTP 1,1 is used, due to spacing introduced between retrievals o f 
successive objects within the same connection. In this case, the method requires 
comprehensive information from the application layer; since this is currently under analysis, it 
is reserved for future work. 

LOO 

0.3 

Figure 3 - Packet loss distribution for a) / b) visible retransmissions 2002 / 2001, c) / d) inferred 
retransmissions 2002 / 2001, e) / 0 all losses 20O2 / 2001 

The distributions for both types of losses, as well as their sum, are displayed in Figure 3. The 
average figures for loss were: 0.18 / 0.83 / I . l % . (visible / inferred / total) for the 2001 
experiments and 0.16 / 0.47 / 0.63 % (visible / inferred / toial) for the 2002 trace. It is 
noticeable that the inferred losses accounted for the vast majority of the total loss, which may 
be caused by the short-lived character of most connections. This may be due to the small 
number o f packets / connection which, again, leads to low values for congestion window and, 
implicitly, loo few acknowledgements returned for triggering a retransmission when a loss 
happens. 

The short-lived connections have an additional undesired effect: the accuracy of the 
measurement cannot go beyond the granularity of the download due to the low number of 
packets exchanged. For example, having a transfer consisting o f 10 packets, the minimum 
detectable loss is 0.1, a situation also described in (Paxson, 1997a). To reduce this error 
granularity, we calculated the loss based on the total number o f packets. The year 2001 tests 
had a total o f 137297 packets, with 295 visible and 1033 inferred retransmissions, producing 
the overall packet loss figures 0.21 / 0.75 / 0.96 % (visible / inferred / total). For the 2002 
tests, a number of 297 packets were visible retransmissions and 604 packets were inferred 
retransmissions; comparing this with the total o f 129404 packets, results in an overall packet 
loss of 0.22 / 0.46 / 0.68 % (visible / inferred / total). 



4.4 Bandwidth 

An estimate of the total bandwidth was produced for each connection. The estimate used 
delay between pairs of consecutive packets inferred to be sent in a back-to-back maimer, and 
it was based on the method proposed by Keshav in (Keshav, 1991). The problems that may 
occur due to clock granularity were avoided by using a microsecond kernel timer, the Kansas 
University Real-Time Linux (KURT) (Niehaus, 2002). The obtained figure might be affected 
by the problems associated with packet-pair bandwidth inference but, due to the unknown 
behaviour of the senders, it was not possible to apply the Receiver Based Packet Pair as 
described in (Paxson, 1997a) to avoid these problems. 

flours t x ) 
LOO 

2000 4000 6000 8000 
bandwidth [KB/s] 

10000 1200C 

Figure 4 - Bandwidth cumulative distribution for a) autumn 2001 and b) spring 2002 

From all network characteristics, the network upgrade mentioned earlier affected bandwidth 
the most. It can be noticed in the distribution from Figure 4 that bandwidth reached a 
maximum of approximately I.2MB/s for the autumn 2001 round of experiments. This 
matches, in fact, the configuration of the network: at the time of the experiment, the 
connectivity of the desktops was 10Mb L A N . For the spring 2002, the maximum figure is 
12MB/S, which reflects the tenfold increase in desktop bandwidth. 

4.5 Congestion window analysis 

The congestion window inference includes a high level of assumption in terms of TCP 
connection analysis. In our case, the task had an increased level o f difficulty due to the 
characteristics o f the monitored transfers: unknown senders, receiver-based capture, and no 
control over the cndpoints / transfer. The fact that the senders use an unknown TCP 
implementation does not allow any inference in regards to profiling of the congestion window 
evolution. The intention was to produce a rough estimate of the congestion window, not to 
compete with tcpanaly (Paxson, 1997b), which includes more complex analysis but also 
requires traffic capture at / near the endpoints. The receiver-based capture brings with it 
uncertainty in regards to if, when, and as a response to what acknowledgement, the sender 
transmitted a data segment. Due to the variety of window increase policies and the uncertainty 
of which acknowledgements reached the serx'er, the congestion window inference was based 
exclusively on timing between different trains of packets rather than acknowledgement 
dialogue. The actual method focused on isolating groups of packets that appear to be 



transmitted as part of the same round, based on the distance between successive in-sequence 
packets. The third problem, no control over the endpoints, differentiates the study from 
Internet measurement efforts (Paxson, 1999), ( N I M I , 2002). Within measurement 
infi^structures, endpoints rumiing dedicated clients transfer large files between them at 
regular intervals in order to determine the network characteristics. Within this study, all the 
senders were remote sites on the Internet and the objects transferred were various web pages 
residing on the servers; as a result, there was no control over the size / timing o f the 
connections. 

5 10 I S 20 25 
congestion windou s i z e [packets] 

Figure 5 - Cumulative distribution of the a) initial, b) average, and c) maximum congestion window size 

The resulting distribution is displayed in Figure 5. The average figures for the three variables 
(initial/average/maximum congestion window) were 1.91 /3 .47 / 4.95 for 2001 
experiments and 1.77 / 3.16 / 4.52 for the 2002 experiments round. The difference between 
the figures can be attributed, again, to the network upgrade that reduced the packet loss and 
delay figures, as mentioned before. 

5 The NRG network traces 

5.6 Page content analysis 

When the first round of experiments was run, the latest version at the time did not allow for a 
ful l download of the web pages (e.g. for a page with 4 images, only the HTML file was 
retrieved). At the second round of experiments, the newer version of wget had the facility to 
parse web pages and download the objects hosted on the same server with the page), which 
allowed a rough estimation of the actual content of the page. In the case of a HTTP 1.1 client, 
these objects would be downloaded in a single connection. This gives an approximate 
indication of the actual length, in terms of size, of a connection. 



flews [r] 
LOO 

100000 200000 300000 400000 500000 60000 
BLjtcs / page 

10 35 40 45 15 20 25 30 
Objects / page 

Figure 6 - Distribution of page content in bytes / page and objects / page 

Figure 6 shows that most web pages have relatively large size (for some of his experiments, 
Paxson considered 100 KB files to be satisfactory for evaluating the properties of Internet). 
Also, from the distribution of objects per page, it may be concluded that full usage of HTTP 
1.1 request pipelining would considerably reduce the overall time to retrieve the web page. 
The average figures for Figure 6 are 72607 bytes / page and 10.5 objects / page. 

5.7 Connection analysis 

Although a convenient and comprehensive tool, even the latest version of wget does not 
include some major functionality such as supporting frames and request pipelining (according 
to the author, there are no plans to expand it in the future in these areas). The set of traces 
captured from the traffic produced by the NRG members was therefore used for the 
connection analysis. The machines in the NRG were running either on a flavour of Linux 
(RedHat or SuSE) or Windows (NT4 or 2000 Professional), with Netscape Navigator 4.76-
4.77 or Internet Explorer 5.0-5.5 as correspondent web clients. Al l the mentioned versions 
have H T T P l . l enabled as standard, therefore they all should pipeline the requests whenever 
possible. The analysis of the captured traffic focused on the connection length, in order to 
determine the average length of an HTTP retrieval for the real traffic case. It may be argued 
that the amount o f users involved in the study was relatively small; however, for future, it is 
aimed to compare these figures with results obtained from bigger, backbone collected traces. 
The result o f the connection size analysis is displayed in Figure 7. It was observed that 
approximately three quarters of the fiows had a download size of under 5ICB with average 
numbers o f 6220 bytes / connection and 7.12 packets / connection. These are very low 
figures, considering the previously estimated average of 72607 bytes / page obtained from the 
Random Yahoo Link experiments, and indicate that, in spite of the rich content of the 
Internet, the HTTP pipelining capabilities are not efficiently used. 



20 30 40 50 BO 
kbytes / connection 

70 80 

Figure 7 - Cumulative distribution of connection size 

6 Conclusions 

This paper presented the findings fi-om an endpoint-based network per-flow trace analysis. In 
spite of its limited scope, the proposed analysis allowed characterisation of a fairly large 
number o f network paths. The traffic was studied with a two-fold purpose: to evaluate the 
network conditions experienced by the fiows and to determine the characteristics o f a web 
page in terms of total content and number of elements per page. For the analysis, artificial 
traffic was mainly used. The experiment was carried out in two rounds: autumn 2001 and 
spring 2002. It used a random page generator combined with a command line HTTP retrieval 
tool, which was preferred instead of the real traffic due to the complexity in interpreting 
HTTP 1.1 pipelined transfers. Nevertheless, in order to evaluate the size characteristics o f real 
transfers, a pilot traffic capture in a limited environment was performed. 

The TCP analysis revealed a loss-free image of the Internet, with an average loss of 1.1% for 
the first round of experiments and 0.63% for the second round. The overall figures indicated 
even a smaller loss probability, of 0.96% and 0.96% respectively. The round trip delay values 
were also fairiy low, with an average 200.5 ms for autumn 2001 and 196 ms for spring 2002 
experiments and a standard deviation of 22.3 ms and 7.8 ms (4.7 % of the RTT averages) 
respectively. The page content analysis revealed that the average page size is approximately 
70 KB, with an average of 10 objects / page that ftilly justify usage of HTTP I . I pipelining. 
However, the real network traffic showed much lower figures, of only 6220 bytes / 
connection and 7.12 packets / connection, which indicates that either the HTTP 1.1 pipelining 
mechanisms are inefficiently used or that current web pages are not suitable for pipelined 
requests. 

For future work, it is primarily aimed to reduce the uncertainty of packet loss estimation and 
to expand the analysis towards connecting the TCP analysis with the HTTP retrieval, in order 
to be able to isolate individual retrievals of objects. Also, i f possible, the per-flow analysis 
wil l be applied to larger traces to determine whether or not these findings are scalable and 
may be applied to traffic collected from core internet links. 



7 References 

AMP, The Active Measurement Project (AMP) homepage, http://moat.nlanr.net/AMP/, 2002 

Ghita, B., Lines, B, Fumell, S., Ifeachor, E., "Non-intrusive IP Network Performance Monitoring for TCP 
flows", Proceedings of IEEE ICT2001, 2001 

Jacobson, V., Karels, M., 'Congestion Avoidance and Control', Proceedings ofSIGCOMAf '88,1988 

Keshav, S., "A Control-Theoretic Approach to Flow Control," Proceedings o/SIGCOMM '91, pp. 3-15, 1991. 

NIMI, The National Internet Measurement Infrtistructure homepage, http://ncne.nlanr.net/nimi/, 2002 

Niehaus. D., "KURT-Linux: Kansas University Real-Time Linux", http://www.ittc.ku.edu/kurt/, 2002 

Osterman S., 'tcptrace homepage", http://www.tcptrace.org, 2002 

Paxson, v., "Measurements and Analysis of End-to-End Internet Dynamics", PhD thesis, 1997 

Paxson, v., "Automated Packet Trace Analysis of TCP Implementations", Proceedings ofSlGCOMM '97, 1997 

Paxson v., "End-toend internet packet dynamics", IEEE/ACM Transactions on Networking, vol 7, no 3, 1999 

Random Yahoo Link (RYL), Random Yahoo Link Page, http://random.yahoo.com/bin/ryl, 2002 

tcpdump, tcpdump public repository, http://wvw.tcpdump.org/, 2002 

Thompson K., MillerG.J. *Wide-Area Internet Traffic Patterns and Characteristics', IEEE network, nov 1997 

Wget, GNU Wget home page, http.7/www.gnu.org/software/wget/, 2002 



Non-intrusive IP network performance monitoring for TCP flows 
B. Ghita, B.M. Lines, S.M. Furnell, E.G. Ifeachor 

Department o f Communications and Electronic Engineering, University of Plymouth, 
Plymouth, UK 

{b.ghila, sfumeil@jack.see.plym.ac.uk}, {e.ifeachor,b.lines@plymouth.ac.uk} 

Abstract: The expansion of the Internet in the past 
two decades has led to a large amount of traffic being 
carried over IP (Internet Protocol) networks, most of 
which is due to web browsing. Unfortunately, the 
Internet revolution was not accompanied by an 
improvement in monitoring. Until recently, the main 
problem that affects TCP (Transmission Control 
Protocol) performance was considered to be the 
available bandwidth and, in turn, bandwidth was less of 
an issue when compared to network availability. This 
paper presents a method that allows offline, single point, 
non-intrusive performance measurement for TCP 
connections. The method avoids all the limitations of 
present monitoring solutions, i.e. intrusive and / or 
complex, and offers in-depth information about the 
performance parameters. This is a first step in defining, 
evaluating and measuring network Quality of Ser\'ice for 
TCP transfers. Test results show that the method is 
correct for measuring throughput and has an accuracy 
greater than 95% when determining RTT (Round Trip 
Time) values, but may have errors of up to 30% when 
estimating packet loss, due to uncertainty in detennining 
certain events and to differences between various TCP 
implementations. 

I INTRODUCTION 
In the last two decades, the unprecedented 

expansion of the Internet has led to a large amount of 
traffic being carried over IP networks. According to 
recent studies on large networks and backbone segments, 
[1], [2], the majority of Internet traffic is produced by 
web browsing. Additionally, the content of the web 
pages has moved from text to multimedia, e.g. images, 
and even pseudo-real-time traffic, leading to new loss 
and delay issues. The transport performance of web 
browsing depends exclusively on the perfonnance of its 
underlying protocol: TCP. In order to cope with these 
new requirements, the Internet should be, besides 
ubiquitous, also fast and ideally loss-free. This is not the 
case at present, mainly due to the best effort character of 
its core protocol, IP. The first step in improving the 
current situation would be to evaluate the performance. 
Unfortunately, until now, little has been done to 
detennine the quality of individual Internet TCP 
cormeclions, which would give the performance of web 
irafTic; current perfonnance measurement methods are 
either intrusive, or indicate only tlie overall quantity of 
traffic. Intrusive measurement methods are accurate, but 
they have several inconveniences: they often require an 
infrastructure being deployed al the points where lesi 
traffic is injected into the network, the measurement is 
limited to the injected traffic and it is presumed that all 

the traffic types (e.g.: TCP and ICMP, Internet Control 
Messaging Protocol) encounter the same behavior from 
routers. 

This paper presents a method that allows single 
point, non-intrusive performance measurement for TCP 
connections, together with an implementation which was 
developed as a proof of concept for this method. The 
method avoids all the inconveniences of current 
monitoring solutions, i.e. intrusive and complex, and 
offers in-depth information about the performance 
parameters. This is a first step in defining, evaluating 
and measuring network Quality of Service for TCP 
transfers. 

The rest of the paper is organized as follows: in 
section II the current state-of-the-art in performance 
measurement is presented, together with the limitations 
and disadvantages they include. Section HI then 
describes the underlying'mechanisms of TCP. Section IV 
describes the proposed measurement method, while 
section V outlines an accompanying proof-of-concept 
implementation of the method, section VI discusses 
results of preliminary benchmarking tests and, finally, 
section V({ presents overall conclusions and ideas for 
ftiture work. 

n CURRENT M O N I T O R I N G EFFORTS 
There are three main types of methods to determine 

the performance of traffic: intrusive, pseudo-non-
intrusive, and non-intrusive. The Cooperative 
Association for Internet Data Analysis (CAIDA) 
maintains evidence of the efforts related to network 
monitoring [3]. At present, most of the methods that 
measure the performance parameters of the network are 
intrusive. The most commonly used subset of these 
techniques is based on ICMP messages. They involve 
two stages: first a probe packet being sent from the 
monitoring station over the network to a specific target 
host, then a reply being produced by the target and sent 
back to the monitoring station. The monitor then 
determines the parameters of the network by examining 
timing information of this request / response dialogue. 
Examples of monitoring tools based on this mechanism 
are ping and iraceroute, [A]. A more advanced subset of 
these techniques bases its measurements on TCP 
transfers, instead of ICMP exchanges, which makes the 
results equivalent with the real web browsing traffic (as 
will be described later, TCP behavior is not *bulk 
transfer*, but governed by certain rules). Examples of 
network monitors that use such techniques are 
pathchar[4], treno (described in [5]), and j » H g [6]. 

The second category of monitoring techniques can 
be termed pseudo-non-iiurusive methods. They do not 



send traffic in order to measure it, but request 
management information from other hosts to build an 
image of the network performance. For example, they 
can interrogate routers about the statistics of the traffic 
running over the network using SNMP (Simple Network 
Management Protocol). They are related more to 
management issues than monitoring itself, as the data is 
obtained by interrogating databases. 

The main advantage of the above categories is that 
they provide accurate measurement of the focused 
variables other than probe effect. Unfomjnateiy, both 
approaches have several disadvantages. The main 
problem resides in the fact that they inject additional 
traffic in the network, either to measure it (as intnisive 
methods do), or to exchange information, which 
occupies network resources. The two categories also 
have deployment issues: they require access, to run, to 
update and to collect data from dedicated software at the 
*other' end (i.e. measurement client). Also, in most of 
the cases, the remote end is inaccessible, therefore a 
measurement architecture using such methods can easily 
be brought near failure [7]. 

Non-intrusive monitoring is the third category of 
network monitoring methods. The methods included do 
not send any traffic into the network, but only capture 
and analyze the traffic transiting die point where the 
monitoring station is connected. They could represent 
the perfect solution for continuous monitoring, as they 
eliminate the disadvantages of previous methods. The 
main disadvantage is that these methods infer the 
required parameters from the observed packet flows; 
their accuracy is strongly related to how the packet 
exchanges are interpreted. 

Unfortunately, the Internet revolution was not 
accompanied by an improvement in monitoring. Until 
recently, the main factor that affects TCP performance 
was considered to be the available bandwidth, as 
network parameters such as loss and delay were less of 
an issue than availability and bandwidth. Therefore, the 
vast majority of the existing non-intrusive monitoring 
methods are geared towards measuring the overall used 
bandwidth of a network; the other parameters (loss, 
delay) can be determined only i f the U ĉes are analyzed 
by a network specialist. The most advanced tools to 
analyze and interpret TCP traces are the trace analyzers, 
such as tcptrace [8] and tcpanaly [9]. but they 
concentrate more on the TCP behavior than on network 
performance, therefore they are less suitable for 
monitoring. Now the problem has changed: broadband 
access is widely deployed to Internet hosts and the 
content of the Internet has become multimedia-rich. No 
matter how much the locally available bandwidth 
expands, the delay of the packet flows, as they transit the 
intermediate networks (e.g. satellite links), and loss rate, 
due to network congestion, remain problematic issues. 
As a result, the quality, i.e. performance, offered to each 
packet flow not quantity should be measured. This paper 
proposes a technique that evaluates non-intnisively the 
performance of the traffic u^siting the network as 
observ'ed from a single-point. 

ni TCP MECHANISMS 
The performance of TCP transfers is determined by 

the download speed. Being a reliable protocol, TCP 
provides for loss recovery and in-sequence data delivery. 
In order to perform these ftmctions, the TCP 
specification [10] includes mechanisms for data 
ordering, acknowledging and retransmission. 

When a TCP minsfer takes place, two unidirectional 
packet flows are established: a download flow, from the 
sender to the receiver, which carries the actual data 
transferred, and an acknowledge flow, from receiver to 
sender, which confirms the data segment. The 
acknowledge flow allows the sender to determine when / 
i f a data segment arrived at the receiver, and to 
retransmit it i f necessary. There are two indications of 
packet loss [11]: 

double acknowledges - the receiver confirms 
repeatedly older data segments; newer packets arrive 
at the receiver, but there is one of them missing, and 
the receiver is requesting that one; i f the number of 
double-acknowledges for a segment is higher than a 
threshold, the segment is re-sent; 
timeouts - a mechanism that estimates the average 
and deviation of RTT exists within TCP clients, 
based on the lime when data is being senl / 
acknowledged; if no acknowledge is received in a 
time higher than the timeout estimate, the data 
segment is re-sent. 
TCP, besides being a reliable protocol, is self-

tuning: it evaluates the network status, based on the 
delay and loss characteristics of the acknowledgement 
packets, and adjusts its transmission rate accordingly 
[ I I ] . The sender cannot transmit all the available data, 
but only segments up to an adjustable congestion 
window. Events in die network negatively affect the 
dimension of the congestion window, e.g. a lost packet 
halves it. Under these conditions, even if bandwidth is 
sufficient, i f a high delay occurs (i.e. it takes a long time 
for die acknowledges to reach the sender) or a congested 
network is transited (i.e. increased packet loss), the TCP 
speed will be reduced radically. 

I V M E A S U R E M E N T M E T H O D 
The aim of the proposed method is to evaluate the 

network performance parameters of the TCP 
connections. The monitor is positioned somewhere along 
the path which is transited by the packets. If we consider 

end-to-end 

Receiver 

West 
Subnet 

East 
Subnet' 

I Sender 

Monitor 

the server/client character of the web traffic, we can 
divide the end-to-end path of the flow into two virtual 
segments, called IVest and East, as in Figure 1. 

Figure 1 - Measurement for a sender-receiver 
configuration 



The TCP monitoring process has three steps: 
1. Capture the packets (the input). 
2. Divide overall flow onto connections, using the IP 

addresses and transport ports, perfonn per-flow 
analysis; 

3. Determine the perfonnancc parameters (the output). 
A list of general network parameters includes: one-way 
delay, one-way delay jitter, packet loss, and throughput. 
Due to the characteristics of the measurement, which is 
single point, there is no method to determine one-way 
delay infomiation; the delay and delay jitter have to be 
replaced by RTT and RTT jitter. 

The TCP monitor is built similarly to a TCP end-
client. The theory behind the monitor was based on the 
TCP standard and its enhancements, thoroughly 
described in [10], as well as on the 4.x BSD (Berkeley 
Software Design) TCP/IP stack implementation, 
presented in [12]. ft is a state machine which has as 
inputs the packet arrivals and emulates the processing of 
packets being *sent' and 'received' as happens within the 
sender or the receiver part of the TCP client The only 
outputs it produces are the obtained performance 
parameters. The monitor is different from the TCP end-
client for several reasons, mainly the inputs of a TCP 
end client, which include user calls, packet arrivals and 
time-outs. Because, at the monitoring point, there is no 
access to the user-TCP interaction, there is no access to 
user calls and no information about when the timers are 
set/expire at the endpoint. The states from the original 
TCP diagram were maintained, but the transition triggers 
were modified in order to adapt to these unknowns. The 
transitions in the monitor follow the transitions that 
happen at the endpoinU and they are due to: packet 
arrival from the endpoint (most of them), specific 
transition of the corresponding endpoint (for the 
transitions which have no outputs, and a packet arrival or 
a user call as an input), or unconditional (due to expiry 
of a timer - different implementations might have 
different settings for the timer). In addition to the TCP 
transition diagram, there were added two additional state 
machines: 

sender: NO_DATA (the sender received 
acknowledgements for all the data segments sent) 
and WAIT ACK (the sender previously sent data 
which has not been acknowledged yet) 
receiver: NORMAL (the receiver is acknowledging 
data), DUPL1CATE_ERR (the receiver sent the 
same acknowledgement twice), 
DUPLICATE_ERRI (the receiver sent the same 
acknowledgement three times) 
The sender machine indicates whether or not the 

sender is idle, while the receiver machine flags packet 
losses advertised by the receiver. 

The main ftinctioning principle is that the TCP 
monitor emulates the TCP client. Therefore, the monitor 
maintains relevant infonnation about: 

connection variables (e.g. connection state, 
sequencing infonnation); 
current values for perfomiance parameters of that 
specific flow, which is accessed / modified each 
time when a packet is received; 
infonnation related to past behavior: a memory of 
'skipped' segments which contains all the 

apparently skipped segments, i.e. segments older 
than current sequence number which have not been 
passed by the monitoring point yet. 
Parameter update depends on the packet status 

(whether or not it is a 'good for update' packet, or not). 
By comparing the sequence/acknowledgement number 
in the TCP header of the packet with the sequence 
variables of the flow to which it belongs, determines a 
variable called PacketStatuSy which defines the data 
segment within the packet; in parallel, the 
acknowledgement number informs the receiver part of 
the flow about the status of data sent. 

Several categories are defined to describe data 
segments, depending on their status: 

correct = segment of data in sequence, following 
last sent segment 

- future = out-of-order data; the sequence number of 
the packet is higher than the expected sequence 
number 
retransmitted = old data segment which was 
transmitted at some moment in the past, and now is 
retransmitted, probably due to a packet being lost 
inverted = old data segment which was misordered 
(followed a future data segment, but it is only out-of 
order, not retransmitted). 
In addition, two types of acknowledgements are 

defined: 
correct ACK - there is no data to be acknowledged, 
or the acknowledgement number acknowledges the 
last transmitted segment); 

- duplicate ACK - the sender still has 
unacknowledged data and the acknowledgement 
number does not acknowledge highest sequence 
number sent. 
The steps of the data analysis are as follows: 

1. Determine i f the ACK in the packet is correct. 
2. Determine what type of data is inside the packet. 
3. Update the flow variables, depending on the data 
contained by the packet (if packet is not empty). 
4. Separate out-of-order packets fre>m lost-before-
monitor packets within the inverted data category. 
5. Calculate RTT; update the RTT average and jitter. 

For a Sender-to-Receiver flow, as pictured in Figure 
I , the output parameters of the method are: 

lost packets - two variables: packets lost before the 
monitoring point and packets lost afler the 
monitoring point; 
out-of-order packets; 
total number of transmitted packets (including 
retransmissions); 
RTT average; 
RTT jitter; 
useful data throughput - related to the amount of 
valid data that was received; 
total data throughput - related to the total amount of 
data that was sent to the receiver (including 
retransmissions). 
The data throughput measurements have 100% 

accuracy, as they are obtained by subtracting last 
transmitted sequence number and initial sequence 
number. 

The implemeniaiion consists of a program written in 
C-H-, which captures the packets, parses the packet 



headers and identifies the fields of interest, identifies the 
flow to which the packet belongs, based on the IP 
addresses and ports fields within the IP and TCP 
headers, perfonns the analysis, and displays the result in 
a text form. It is not the purpose of this paper to discuss 
the characteristics of the software program itself, but, 
during the development phase, relevant issues were 
raised related to TCP monitoring. 

V ERROR SOURCES 
Two main sources of errors were observed: 
limitations due to the monitor position, which made 
some of the packet loss events invisible and affected 
RTT measurements; 
differences within the variety of TCP 
implementation that exist, which made packet loss, 
timeout and congestion window estimations 
inaccurate. 
The monitor is positioned, as pictured in Figure I , 

somewhere along the path transited by the packet flow. 
Because of this, the packets being exchanged by the two 
endpoints allow RTT measurement only for the East 
network, because no (or little) data is sent from the 
receiver to the sender, and TCP does not perform 
acknowledgement-of-acknowledgement. This affects the 
measurement dramatically i f the monitor is 'near* the 
receiver, as no significant RTT measurements are 
possible in this case. 

Differences between TCP implementations were 
identified to create large changes in TCP behavior in 
earlier studies, such as [9]. The method proposed was to 
profile / identify each type of implementation. This 
approach is valid at a certain time, but it has to be 
renewed later, when new implementations, with different 
behaviors, are released. The differences between 
implementations are part of the TCP philosophy 'be 
conservative in what you do, be liberal in what you 
accept from others' [ I I ] , and the endpoints can adapt to 
it, but it removes the packet arrival patterns which exist 
within observed data transfer. Therefore, this method 
aims to identify as accurately as possible the events that 
produce the behavior of the monitored TCP transfers, 
while maintaining a generic aspect. 

Initially, the method included a mechanism lo 
follow the congestion window evolution at the sender. 
Unfortunately, the TCP client from Windows 98 had a 
strange evolution, even under no-impairments 
conditions: instead of being maintained high, the 
congestion window was exponentially raised from 1 
segment to a maximum of 4 segments, according to the 
acknowledgements, then it was reset to a single segment. 
It is difficult to detennine if this was a bug in lhat 
specific implementation or a congestion window 
limitation. 

There were also differences between the Windows 
98 and Linux TCP implementations. Linux 
implementation used SACKs (selective 
acknowledgements): i f a single packet is lost, in the 
middle of a congestion window, the Linux TCP sender 
transmits the packet, adjusts the congestion window, 
then continues (i.e. waits for the next acknowledgement). 
In contrast, the Windows 98 TCP implementation did 

not implement this feature, therefore retransmitted the 
entire remaining window; this introduces an error factor 
in the monitoring method, as the TCP client retransmits 
packets which were not lost 

Timeout estimation is another feature that proved to 
be unusable because of both of the mentioned categories. 
I f variance occurs and caimot be detected (such as 
variance in the RTT measurement for the East segment, 
as described above) the estimated timeout of the monitor 
is different from the one of the sender. The timeout is a 
binary decision: i f an acknowledgement does not arrive 
in time, the packet is considered lost. This type of 
decision requires a very fine granularity of the 
measurement, which cannot be achieved under such 
configuration. This limitation affects also the packet loss 
estimation: lost packets due to a timeout events cannot 
be observed, therefore the measured value is different 
from the real one. 

In spite of its ability to provide important data, 
acknowledgement interpretation was not used. The 
decision was taken due to tu'o factors: implementations 
differences (acknowledging policy, e.g. delayed 
acknowledging, depends on the receiver TCP 
implementation) and reverse path packet loss (while lost 
data packets are retransmitted, lost acknowledges are 
not). 

V I V A L I D A T I O N TESTS 
The method was continuously benchmarked using a 

Ethernet network testbed, pictured in Figure 2, which 
emulates various network conditions, using the facilities 
of a ne^'ork emulation tool, NISTNet [13]. 

For transfers, the two station used, alternatively, 
two types of TCP implementation: Windows 98 and 
Linux OS, each of them with its own TCP 
implementation. The two links fi-om Figure 2 are, in fact, 
two routers with NISTNet [13] installed on them, which 
delay and / or discard packets according to the rules 
specified by the user. As the monitoring station was 
placed in the middle, Figure 2 can be mapped onto 
Figure 1: Lirtk I is West Subnetwork, and Link 2 is East 
Subnetwork. 

Client Link I Server 

Qubnet I j Qsubnet 2) subnet) 

Monitor Link 2 
Figure 2 Test configuration 

First, preliminary tests were performed to 
determine the propagation times of the teslbed when no 
impaimients are introduced using NISTNet. Two 
simplifying hypothesis were introduced: 

the data packets (from Sender to Receiver) are all 
full (1518 bytes frames) and the acknowledges 
(from Receiver to Sender) are all empty (64-bytes 
frames); therefore the RTT can be computed as: 



end-to~end ~ 2 
( i ) 

the network is symmetric (the two subnetworks. 
West and East, have the same properties): 

RTT\ end-to-end 
(2) 

The tests consisted of sending batches of 100 ping 
packets with frame size of 1518 bytes (fiill data frames) 
between the two stations, with delays between packets 
that correspond to a throughputs between 10 kB/s and 
500 kB/s. The test was then repeated for 64-byte frames 
(empty acknowledgement frames). From the preliminary 
tests it was concluded that, without introducing any 
degradation, the following approximate values can be 
considered: 
- end-to-end RTT for the network testbed is 10ms 
- end-to-end RTT jitter is 0.1 ms 

Three tests were performed, in order to determine 
the accuracy of the method. A large file (2.6 MB) was 
chosen to be transmitted in order to: eliminate the 
transient effects from the beginning (i.e. slow start) and 
obtain more accurate average values. The transfer was 
realized via FTP (the application layer does not influence 
TCP behavior). The tests consisted of setting certain 
values for delay or jitter, making the transfer and 
monitor it using the method implementation, then read 
the results. 

/. Test J 
Conditions of testing: no degradation 
Results of measurement: 

- RTT average = 7.17 ms 
RTTjitter= 6.65 ms 

- RTT packets = 48 
lost packets east / west = 0/61 
number of data packets = 1009 
inverted packets = 0 
Conclusion: the RTT and jitter measurement values 

have the same order with previous findings, based on 
ping measurements; the aim is not to obtain a higher 
precision for these values, because the area is near the 
actual propagation and processing time required under 
no network degradation. 

Observations (will be detailed in next test): 
the number of reported lost packets is non-zero, 
although no lost actually occurred; 
the number of RTT packets is low. 

2. Test 2 
Conditions of testing: constant delay, variable 

deviation, no packet loss; delays introduced: 
- R1(B ->A) = 400 ms; 
- R 1 ( A ^ B ) = 300 ms; 
- R2(B ->A) = 200 ms; 
- R2(A->B)= 100 ms. 

The measurable RTT value is: 

RTT=R\B_,^-i-R2^^g + R =l\Oms (3) 

The measurement results are presented in Table 1: 

Jitter introduced 0 10 50 100 
Jitter measured 21.2 48.5 167.8 96.4 
RTT measured 728.4 741.2 705.3 695.0 
RTT error 2.62 4.45 -0.6 -2.14 
RTT packets 17 32 15 14 
Lost pkts (East) 0 0 0 0 
Lost pkts (West) 1 125 230 250 

Units: jitter [ms], error [%] 

Table 1 - Delay and jitter measurement results 

Conclusions: 
RTT is estimated correctly (i.e. with less than 5% 
error) in most of the situations; 
RTT measured jitter varies from the introduced jitter 
- this metric is differently measured from the value 
produced by NISTNet\ see also observations below. 
Observations: 
the number of RTT measurement packets is 
relatively low (the total number of data packets was 
around 2000 packets). This is because RTT is 
determined only for ACK arrived for the last data 
packet seen, i.e. acknowledgements of entire packets 
/ congestion windows. This makes the jitter value, as 
measured by the method, different from the jitter 
introduced by NISTNet; 
although no packets are lost, the number of packets 
presumed lost in West subnetwork is non-zero, and 
it is actually increasing up to 10% of the number o f 
transmitted data packets. As only the losses for 
B-)A are measured, this is actually the number o f 
'lost-after' packets. The TCP analysis method 
considers Most-after* all packet retransmissions 
visible to the monitor. These retransmissions are not 
actually due to packet losses, but due to TCP 
erroneous retransmission timeout (RTO) estimation 
at sender, i.e. sender does not receive a confirmation 
for the packet in a time lower than the estimated 
RTO and redundantly sends the segment again. 
It must be said that, although the erroneous RTO 

calculation events are not due to 'lost packet', they have 
the same impact on the transfer as a lost packet: 

the sender adjusts its congestion window as i f a 
timeout occurred; 
the bandwidth is additionally loaded; 
the second reception of the packet is ignored at the 
receiver (the segment is discarded) - the 
transmission is useless. 

3. Test 3 
Conditions of testing: no delay or jitter introduced; 

variable, symmetric loss, set at 1%, 2% and 5%. The 
tests for losses higher than 5% failed, because the TCP 
connection timed out - the TCP sender retransmits the 
same segment a number of times, if loss was due to 
timeout, then gives up and closes the connection. 

NISTNei maintains the number of lost packets, 
facility which was very useful in this case, as it allows 
comparison between the reported number of discarded 
packets (by NlSTNet), and the measured (estimated) 
number of lost packets, as determined by the method. In 
Table 2 summarizes the conditions of the test by the 



packet loss set and reported columns, and estimation 
results by the measurement column. A comparison 
between the estimated and the reported values is made in 
the Error colunm. 

Packet loss Error 
Subnet set reported measured [%1 

f % l [pktsl [pktsl 
East 1 24 21 12.5 
West 1 23 30 30.4 
East 2 40 36 10.0 
West 2 39 43 10.2 
East 5 102 90 11.7 
West 5 112 116 3.57 

Table 2 - Packet loss measurements 

4. Conclusions: 
The differences between the values introduced and 

the ones measured are very high. In all the cases, the 
measured loss for East Subnetwork (packets lost before 
the monitor - between the Sender and the monitor) is 
lower than the loss introduced, while for the West 
Subnetwork, (packets lost after the monitor - between 
the monitor and the Receiver) the measured loss is 
higher than the loss introduced. 

The differences for the 'lost after' category result 
from differences between TCP behavior: The monitor 
carmot determine whether the packets were lost or not, 
so it considers diem all lost and retransmitted. This also 
applies for 'lost after' category. 

The differences for the Most before' category result 
from following situations: 

i f there is a multiple loss (a packet is lost repeatedly 
more than once) before the monitor, die monitor can 
identify only a single loss; 
i f a timeout occurs due to the last packet in a 
transmission window being lost before the monitor, 
the sender retransmits the packet. Still, no apparent 
inversion can be detected, because (he sender did 
not transmit any other packets between the two 
transmissions of the timed-out packet. 

V I I CONCLUSIONS AND FUTURE 
W O R K 

The article presented a method to determine non-
intrusively the performance parameters of individual 
TCP connections. The method represents an important 
contribution to the network monitoring area, as current 
methods are intrusive, therefore create additional traffic, 
and require different degrees of cooperation from the far 
end. 

The validation tests evaluated the accuracy of the 
method; they were performed in a controlled 
enviromnent, using two Windows 98 / Linux TCP clients 
which exchanged data via a TCP connection over an 
emulated network (NISTNet). They proved that the 
method is exact for measuring throughput and has an 
accuracy higher than 95% when determining RTT 
values. Unfortunately, errors up to 30% can appear when 
measuring packet loss. These errors are due to 
uncertainty in detennining certain events, such as 

timeout, and to differences between various TCP 
implementations. Several possible enhancements within 
the method that would allow a better understanding o f 
the TCP behavior had to be suspended because of the 
identified differences. 

Future work will concentrate mainly on improving 
the esumation of packet loss. A first step will be to 
produce an estimate of the timeout, based on an 
intelligent analysis method, such as fuzzy logic, of the 
connection a posteriori; this approach would produce a 
better estimate of packet loss. The next step will be to 
determine the relationship between throughput, as an 
overall measuire of the performance, and packet loss and 
delay, as performance parameters, adjustable from Uie 
management point of view. 

Acknowledgments: We are grateful to Actema for 
supporting this work. 

REFERENCES 
[ I ] Thompson K... Miller G.J., Wilder R. * Wide-Area 

Internet Traffic Patterns and Characteristics', in 
IEEE netyvork, nov-dec 1997 
Hwang A., 'Observation of Net\s'ork Traffic 
Patterns at an End Network: Harvard University', 
BA Thesis, Harvard college, April 1998 
CAIDA, 'The Cooperative Association for Internet 
Data Analysis website', http://www.caida.org 
Jacobson V., Paxson V., 'LBNL's Network 
Research Group homepage', hltp://ww^v-
nrg.ee.lbl.gov 

[5] Mathis M., Mahdavi J., 'Diagnosing Internet 
Congestion with a Transport Layer performance 
Tool', in Proceedings oflNET '96, June 1996 
Savage S., 'Sting: a TCP-based Network 
Measurement Tool, in Proceedings of the 1999 
USENIX Symposium on Internet Technologies and 
Systems, October 1999 
Paxson V. et al, 'Experiences with NIMI ' , in 
Proceedings of Pasive and Active Measurement. 
April 2000 
Ostermann S., 'tcptrace home page', 
http://www.tcptrace.org 
Paxson v., 'Automated Packet Trace Analysis o f 
TCP Implementations', in Proceedings of 
SIGCOMM '97, September 1997 

[lOJDARPA, 'Transmission Control Protocol - RFC 
793', September 1981 

[ I I ] Stevens W., Wright G., 'TCP/IP Illustrated. Vol 1 -
The Protocols', Adison-Wesley, 1994 

[121 Stevens W., Wright G , 'TCP/IP Illustrated. Vol 2 -
The Implementation', Adison-Wesley, 1995 

[13]Carson M., "NISTNet network emulator 
homepage", http://snad.ncsl.nisi.gov/iig/nisinei/, 
2001 

[2] 

[3] 

[4] 

[6] 

[7] 

[8] 

[9] 



Nehvork Quality of Service Monitoring for IP Telephony 

B.V.Ghita', S.M.Fumell*, B.M.Lines'. D.Le-Foll\ E.C.Ifeachor^ 

* Network Research Group, School of Electronic, Communication & Electrical Engineering, 
University of Plymouth, Plymouth, United Kingdom 

^ Wavetek Wandel (joltermann, Plymoudi, United Kingdom 
^ SMART Systems Research Group, School of Electronic, Communication & Electrical 

Engineering, University of Plymouth, Plymouth, United Kingdom 

Abstract 

This paper presents a non-intrusive method of determining nehvork perfomiance parameters 
for voice packet flows within a VoIP (Voice over IP, or Internet Telephony) call. An 
advantage of the method is that it allows not only end-lo-end performance monitoring of 
flows, but also makes it possible to inspect the transport parameters a specific network or link 
when delay sensitive traffic transits dirough i t The results of a preliminary test, to check the 
validity of die method, are also included. 

KeyAvords 

Voice over IP, Quality of Service parameters, non-intmsive monitoring. 

Introduction 

Over the last two decades, the Internet has evolved from a few interconnected networks that 
linked research laboratories, universities, or military infiastructure, to an everyday tool which 
is easy to access and use by many people. The dramatic evolution can be assessed in terms of 
growth in tlie number of hosts and Intemet applications. The initial use of the Internet was 
different to that of today. Contrasting two studies of Intemet activity, from 1991 (Caceres ^ 
al, 1991) and 1997 (Thompson et al, 1997), it can be seen that the nature of activity has 
changed from applications such as tehiet or file transfer to become dominated by web 
browsing (75%). The increased computational power of end-user stations has allowed new 
types of applications to be implemented. In addition, the speed and reliability of the Intemet 
itself has been substantially enhanced due to the new technologies used. These advances have 
allowed application content to move from text to multimedia and real-time. 

A major challenge in Intemet development is how to support real-time applications, typified 
by Intemet Telephony, within tlie existing structure, btemet Telephony aims to replace die 
traditional concept in telecommunications from data over voice to voice over data. The 
method for achieving this is to use the Internet as a transport carrier for voice, instead of the 
PSTN (Public Switched Telephone Network). The most obvious advantage is the low cost for 
long-distance phone calls. 



An important barrier in tfie development of VoIP is the Intemet Protocol (IP). IP worfcs as a 
best-effort connectionless protocol. It was designed for data files that can tolerate delays, 
dropped packets and retransmissions; there are no guarantees about the delivoy time or the 
reliability of a packet being transferred over the Intemet The most important aspects, when 
considering an audio conference are exacdy those that Intemet cannot guarantee: time and 
bandwidth. The quality of the resulting conference depends upon the satisfaction o f these 
requirements. Within this context, the concept of Quality of Service (QoS) was introduced. 
Although the Internet represents an environment in which the QoS cannot be guaranteed, 
there are measurable parameters for a specific service, as presented in a QoS overview study 
(Stiller, 1995). 

This paper presents an offline method of determining network performance parameters for 
voice packet flows within a VoIP call. An advantage of the mediod is that it allows not only 
end-to-end performance monitoring of the flows, but also makes it possible to inspect the 
behaviour of the network when faced with delay sensitive traffic. 

QoS concept for VoIP and current state of monitoring 

The QoS is the overall rating for a service. Measurement of QoS essentially inchides 
measuring a number of application dependent parameters and then gathering them in a 
weighted sum. I f we consider QoS for VoIP, the object of the analysis is the voice at the 
receiving end, with its two main characteristics, sound and interactivity. There are two main 
sources o f impairments for the voice heard by the receiver. The first is the codec, which 
compresses the speech flow in order to send it over the network at a lower bandwidth than 
original. Aside from the positive result in terms of bandv^ndth utilisation, this pnx«ss 
degrades the quality of die speech. The second source of impairment is the transport. After 
encoding, the audio flow is packetised and sent over the Internet. However, because o f the 
Internet's structure, the arrival of die packets at destination cannot be guaranteed. The paper is 
focused upon a consideration of this latter impairment. 

Building a list of performance parameters for a service should start by identifying the 
application that requires that specific service. For example, i f the targeted apptication is a file 
transfer tiien the delay or jitter parameters are abnost iirelevanl when compared to throughput 
or packet loss. In a similar manner, for a real-time application, delay is far more important 
tlian the other parameters. The paper does not intend lo prescribe a specific weighting here, 
but it is good to bear in mind their priorities when assessing the overall performance. 

When considering QoS for VoIP applications, a network-related view of the perfomiance 
should include the following parameters: 

- delay - the time elapsed between the sending of a packet and its arrival at die 
destination; 

- jiUer - the variance of the delay value; 
packet loss - Uie number of lost packets, reported in the time elapsed; 
throughput - the amount of data transferred from one place to another or processed in 
a specified amount of time. 



There are several suggested methods that can improve or guarantee the QoS for transport, 
such as DiflGerv (Differentiated Services) (Nichols et al, 1998), Tenet (Ferrari et al, 1994), or 
QoS Routing combined with RSVP (Reservation Protocol) (Crawley et al, 1998). 
Unfortunately, none of them are applied on global basis because of the scale and complexity 
of the Internet Therefore, it is vital to detennine in such an environment whether or not a 
specific connection meets the requirements of a VoIP call. 

Transport QoS has two main areas: end-to-end measurements and, in case there are changes 
in the level of parameters, fault localisatioa An example is given in Figure I which shows, 
for an arbitrary division of the entire route of the packets, the end-to-end parameters, and two 
sets of parameters, 'East' and 'West'. The latter can be used to localise a foull in either 'East' 
or 'West* sub-network, by comparison with the end-to-end parameters. 

Endpoini Endpoini 

End-to^nd parameters 

Internet 

Sub-network West Sub-network East 

East parameters West parameters 

Endpoint Endpoint 

Monitoring point 

Figure I : The Perfonnance parameters for a general example of monitoring 

hi a traditional approach, the two aims would require a 3-tool configuration. For end-lo-end 
measurements, testing clients should be put al both ends and, for fault location, a testing 
server should be placed at the monitoring point After that, trafBc should be collected by the 
end stations, then sent to the server, in order to be analysed and compared with the data 
collected by it. There are two main disadvantages with this approach: 

- it is intmsive; in the best case, even i f the endpoint clients are just monitoring, they 
have to send the data to the server in order to be analysed; 

- it requires placement of monitoring devices at both ends. 

The QoS for transport can be determined fi-om the audio flows within a call (which run on 
RTP, Real Time Protocol). Current tools (e.g. Hammer VoIP Analysis System, HP Internet 
Advisor, rtpmon (Bacher and Swan, 1996)) base their calculations upon parsing both the RTP 
and/or die accompanying control flows (running on RTCP, Real Time Control Protocol) and 
displaying tlie available data. Tlie main disadvantage is tliat none of these tools can establish 
fault location without using the traditional approach mentioned above. More than that, they do 
not build atiy relation behveen the end-to-end parameters, obtained fi"om the RTCP flows, and 
the end-to-monitoring-poini parameters, obtained from the RTP monitoring. 



Considering these limitations, we aim to obtain a better view of the network perfomiance, 
without using several devices and without injecting additional traffic into the netwoit This 
paper presents a non-intrusive mediod of detemiining the transport performance parameters 
for the real-time traffic within a VoIP call, using a single point of monitoring. The proposed 
method can reveal both the end-to-end perfomiance and the fault localisation, i f the monitored 
parameters change their value along the route, and also avoids both of the disadvantages 
identified. 

Description of H.323 calls 

VoIP is a relatively new concept and, therefore, most of the work perfomied in this area is 
still at a (fevelopmental stage. From the large range of standards for VoIP, the H.323 protocol 
stack (ITU, 1998), developed by ITU, was selected as the basis for the work presented in this 
paper. 

The focus of the QoS for transport is, as mentioned, on the audio flows. Because of the H.323 
call structure, which will be detailed below, these flows cannot be identified unless the entire 
call is monitored. The information exchanged in a H.323 conference is classified in streams, 
as follows: audio (coded speech), video (coded motion video), data (computer files), 
communication control (control data), and call control (signalling data). 

We will consider the simplest case - a direct connection beuveen two computer terminals, 
similar to a classic phone call. The call begins with a call signaUing phase - signalling 
messages (Q.931 using H.225 specification) arc exchanged, on specific ports. At the end of 
this phase, the call is established and a call control channel is opened, on ports dynamically 
allocated. The control channel then provides for various functions: capabilities exchange, 
logical channel signalling, mode preferences, master - slave determination. After the 
terminals decide which of them will act as a master for the call (in order to easily resolve 
conflicts), they exchange their capabilities and open an audio channel, using logical channel 
signalling. The logical channel is also opened on a dynamically allocated port, decided within 
the control messages. The audio flows run on the opened logical channel. When one of the 
users wants to terminate the call, the logical channel is closed, using call control, then specific 
call signalling messages are exchanged, and the call is closed. 

The audio (as well as video) flows within an H.323 conference arc transported using RTP, as 
it provides end-to-end network transport fionctions suitable for applications transmitting real
time data over multicast or unicast network services (Schulzrinne et al, 1996). It does not 
address resource reservation and does not guarantee quality-of-service for real-time services. 
In fact, the whole protocol is conceived not as a separate layer, but as a fi*amework, to be 
integrated witliin otlier applications. RTP is usually run on top of UDP (User Datagram 
Piotocol), an unreliable transport protocol TCP (Transport Control Protocol), although 
reliable, brings additional delay problems, by delivering die packets in order and recovering 
the lost packets, and, Ihereforc, is not recommended for carrying real-time flows. 

RTCP is the control protocol for RTP. One of its fianctions is to provide infonnation about the 
packets loss and inter-arrival jitter for the accompanying RTP flow. The infomiation is 
provided periodically by all the senders / receivers within a conference using specific packets, 
and is based on the RTP flow measurements. The RTCP flow also runs on UDP. 



Experimental method and implementation 

iMonitoring procedure 

The monitoring procedure comprises three steps. First, the voice flows (RTP) are identified 
and then captured using one of the apture programs. In the monitoring phase, the RTP header 
fields and the RTCP packets are used to determine the perfomiance parameters. Then 
correlation of RTP and RTCP is used to establish the location of die problem area The stages 
are described in more detail in the following paragraphs. 

Identification of the audio flows 

The analysis is targeted on the audio streams. The ports on which the audio streams run can 
be determined only by capturing the connection establishment phase, then parsing the setup 
and control messages, which contain the audio stream ports as parameters. The parsing 
process is not straightforward, as the content of die setup and control messages is not header
like (using fields), but encoded using ASN. 1 syntax. 

Parameter measurement using RTP monitormg and RTCP parsing 

The header fields of RTP packets are used as input to the analysis, together widi the 
timestamp of the packet arrival, given by the capture program. The structure of die RTP 
header, as described in (Schulzrinne et al, 1996), is shown in figure 2. 

0 

V=2 P X CC M PT sequence number 
timestamp 

synchronisation source identifier (SSRQ 
contributing source identifiers (CSRC) 

Figure 2 The RTP packet format 

The description of die fields is as follows: 

- V - version of RTP (currently used is 2) 
- P - padding, for indicating the existence of padding octets (last octet of padding indicates 

how many octets should be ignored) 
- X - extension (there is a header extension after die fixed header) 
- CC - number of CSRC identifiers that follow 
- sequence number - is incremented by one for each RTP data packet sent, and may be used 

by die receiver to detect packet loss and to restore packet sequence 
- timestamp - reflects die sampling instant of the first octet in the RTP data packet 
- SSRC ~ synchronisation source; the source of a stream of RTP packets, in order to make 

the sources independent upon die network address. 



- CSRC - Contributing Sources; source of a stream of RTP packets that has contributed to 
the combined stream produced by an RTP mixer 

Note: to the existing RTP data packet header can be added a RTP header extension. 

Although the RTP packet has the timestamp field, this is less used in the analysis; it is an 
integer, and it is measured in sampling units (depending on the codec used). It is put by the 
sender and used by die receiver as a reference for the stream playing. The time analysis 
perfomied is based on die timestamp of the packet, put by the capturing device, at the 
monitor. 

The following types of parameters can be detemiined using the RTP header fields and the 
arrival timestamp of each packet, taken from the packet capture program: 

a. delay-related parameters: 
- inter-arrival delay - by subtracting the capture timestamps of successive packets 
- inter-arrival jitter - by comparing the previous delay with die current one 
- one-way delay jitter - by comparing the inter-arrival delay with the sender delay (die 

interval between sending two sequential packets). 

b. packet-accounting parameters 
- lost packets and out of order packets - by comparing the expected sequence number 

with the sequence number of the incoming packet. The lost packets variable is 
increased, but the presumed lost packets sequence numbers are memorised, in case the 
packets were not lost, but only misordered. 

c. flow speed parameters 
- throughput - detemiined by dividing the actual received number of bytes by the time 

of die connection 

The RTCP packets can be used as an instrument for end-to-end measurements. Their fields 
provide the values for inter-arrival jitter and lost packets; their structure is also defined in 
(Schul2rinne et al, 1996), but the header is stmctured, and too complex to be detailed within 
diis article. RTCP flows perform die following functions: 

to provide feedback on tlie quality of the data distribution 
- to help tlie receivers to associate and to synchronise multiple data streams torn a 

given participant 
to allow each participant to keep track of all the other participants in the conference 
to convey minimal session control information 

The RTCP reports are a very convenient tool for monitoring and Uiey are, as mentioned, 
currently used in die available products. Nevertlieless, die following observations can be 
made in relation to using RTCP to analyse the flows: 

- it runs on UDP and, therefore, it is possible tliat a number of packets will not arrive, so 
no data will be available for that period of time. 

- it has scalability problems (Rosenberg and Schulzrinne, 1998). The RTCP messages 
are limited to 5% of die whole traffic. In the case of a many-to-many conference, on 



normal behaviour, there would be a low number of RTP messages per-terminal (in 
order to maintain the 5% limit) (Schulzrinne et al, 1996). 

- it returns only end-to-end parameters and, therefore, cannot locate the cause of 
parameter changes (this problem exists regardless of the conference characteristics) 

Note: the analysis is performed on a 'per-flow' basis. I*rior to perfomiing the analysis, the 
incoming packets (from several audio channels) are split into flows (each flow rq3resenting a 
channel). When saying successive packets, we refer to packets belonging to the same flow. 

Correlating RTP analysis with R T C P content 

By correlating the two sets of parameters, obtained from RTP and RTCP, it is possible to 
determine whether or not a specific problem (e.g. a high number of lost packets) is caused by 
a problem which exists in the East sub-network or the West sub-network. Figure 3 presents 
the captured flows. 

A? B control (end-to-end parameters) 

endpoint 

B? A control (end-to-end parameters) 
I 

A? B audio I 
• ! 

I 
I 

B? A audio 
endpoint 

Monitorine point 
Legend 

^ RTP flows 
• RTCP flows 

Figure 3: RTP and RTCP flows monitoring 

The RTP streams, as captured on the monitoring point," are: A? B (after passing thnDugh the 
West sub-network) and B? A (after passing through the East sub-ne^vo^k). Tlierefore, by 
measuring the parameters of these flows, we can determine the perfomiance of the West sub
network (from the A? B flow) and the East sub-ne^vork (from the B? A flow). 

We have to bear in mind that the A? B direction does not fully characterise the behaviour of 
the network, as it can be very good for one direction and bad for the other (it does not have to 
be symmetrical in terms of performance). Meanwhile, as mentioned, RTCP provides the end-
to-end parameters, i.e. the perfonnance of the entire A? B and B? A routes, but it has no 
indication about how these parameters change on the route (i.e. cannot establish where a 
faulty behaviour of the network determined a change in the values of the parameters). 

Putting together the two sets, we obtain parameters for the following segments: 

A? BandB? A, end-to-end - from llie RTCP flows 
A? monitoring point and B? monitoring point - from the RTP flows 
monitoring point? B and monitoring point? A - by subtracting the RTP obtained 
values from RTCP end-to-end parameters. 



Therefore, by using both RTP and RTCP, we obtain both the end-to-end and die end-to-
monitoring point parameter for the monitored flows. 

Implementation 

In the first instance, die tcptrace program (Ostermann, 2000) was used within the monitoring 
module. Tcptrace is an offline analysis program, which uses tcpdump traces as input. 
Although the program had limited support for UDP (it was able to separate die UDP flows), 
and no support for RTP, it was considered a useful tool because of its per-flow analysis 
capabilities. The module was subsequently migrated to ipgrab (Borella, 2000) to reduce the 
complexity of the program (tcptrace includes a lot of functions, spread over various modules, 
most of them related with TCP analysis). Most of the analysis (e.g. the distributions), as 
described in the following section, was performed offline, under Microsoft Excel. As no 
equipment to simulate several calls was available, the analysis was performed for only a 
single VoIP call. The module will work for more than one call, but a proper filtration of the 
output should be added. In addition, the re&esh period of the analysis (i.e. each packet) could 
create computational problems for a high number of flows. A proper solution would be to 
display the parameters at certain intervals (e.g. every second). 

Special attention is given to the marker, payload type and timestamp fields within the RTP 
header. During a VoIP call, i f there is no speech from the user, an endpoint does not send 
RTP packets. Therefore, when calculating die flow speed and the delay parameters, the 
silence periods should be ignored. The silence periods can be identified using die marker 
field: an RTP packet widi the maricer field set signals the end of a silence period. Also, i f die 
payload characteristics are known (e.g. each RTP packet contains a 30ms fi^e), the delay 
beUveen successive packets at die sender can be detemiined. Thus, by subtracting diis value 
fiom the inter-arrival delay, we obtain die one-way delay jitter. 

Validation 

Experimental testbed configuration 

A network testbed was constructed in order to validate die proposed method. Figure 4 
presents die testbed configuration, which included two networks, connected dirough a faulty 
link. The monitoring point is placed on die route, at die exit point (after die router) of one of 
die networks. 

141.163.49.232 141.163.49.0 
link 14 . 63.50.0 141.163.50.234 

Monitoring 

Figure 4: Network testbed configuration 

The link is emulated using die NlSTNet program (NISTNet, 2000). NlSTNet emulates 
various network problems by forwarding packets, under specific parameters like packet loss, 
delay or jitter, between two network interface cards, on a Linux station. For our test, we used 



the following parameters (symmetric for the two directions): 5% packet loss, 300 ms delay, 
25 ms jitter, unlimited bandwidth, nomial distribution. The measurements were based on a 
capture session; number of packets captured: --20000 (some of them were removed in order to 
eliminate the transitional behaviour). 

The software tools used for generating, capturing and monitoring the VoIP flows were: 

- NetMeeting (WinNT) - to establish and mn a H.323 VoIP caU; 
- codec: Microsoft G.723.1, 6400 bits/second, continuous speech; 
- tcpdump, ipgrab (Linux) - to capture packets transmitted over the netu'ork (between 

the two VoIP endpoints); 
- the analysis module (Linux) - first developed within Icptrace, then transferred to 

ipgrab, to allow online capturing. 

The measurements aim to locate the jitter and the packet loss by dividing the route of the 
packets, as presented in Figure 3 into sub-network East (network 141.163.49.0), and sub
network West (emulated link and network 141.163.50.0). After obtaining the various 
parameters, we will try to identify the fault location on the 141.163.50.0 network and link side 
of the route, hi the following paragraphs, we will refer at 141.163.49.232 station s A and at 
141.163.50.234 as B. 

Results and value comparison 

Table I presents the following information: 

nomial - the normal behaviour, on a network without any loss; 
- RTP results - the values determined torn the RTP monitoring; 
- RTCP results - the va ues determined from the RTCP parsing. 

Parameter normal RTP results RTCP results Parameter normal 
A? B B? A A? B B? A 

throughput [bytes/sec] 800 800 760 760 760 
packet loss [%] 0 0 5 5 5 

Table 1: Throughput and packet loss statistics 

A. Throughput and packet loss 
The RTCP throughput is determined from the RTCP sender reports, using the ^sender octet 
count* which indicates how many octets were transmitted since the beginning of the call. The 
RTCP reports also, include report blocks, which give the performance parameters of the 
senders 'heard' by the emitter of the report. The RTCP packet loss is determined from these 
report blocks, using the 'cumulative number of packets lost' field. 

It can be noticed that the B? A values differs, which indicates a 5% packet loss on that 
direction, located in the right side of the route. Also, the >^ B values indicate that there is no 
alteration, in term of packet loss, in the left side of the route (the 141.163.49.0 network). 

B. Jitter 
From the RTP monitoring, the jitter was detemiined by subtracting the average interarrival 
delay from the interarrival delay for tlie current packet. The results are presented in Figure 5. 



Jitter distribution (B->A) 

I 140 
o 120 
§. 100 
^ 8 0 -

60 
40 
20 

0 
E 

Jitter value [sec] 

Legend: 

Jitter distribution A->B 

$ 1400 
o 1200 
2. 1000 
^ 800 
^ 600 
^ 400 
E 200 
^ 0 

5̂s> 5>5P ̂ ^̂ ^ o • • 
Jitter value [sec] 

the injected jitter (approximate shape) 
the measured jitter 

Figure 5: RTF jitter distribution (from RTF monitoring) 

Note: In the left graph, the thick line indicates the shape of the average distribution (based on 
separate measurements on same environment). It can be seen that tlie measurements arc valid. 

In tlie RTCP parsing, the values were extracted from the RTCP report blocks (the *interarrival 
jitter' value). The results are presented in Figure 6. 

E 3 

Jitter distribution B->A 

10 

5 

0 . . . i 

^ ^ ^ < ^ ^ ^ 

Value [sec] 

Jitter distribution A->B 

D 14 

Value [sec] 

M^ure 6: R I P jitter distribution (from RTCP parsing) 

As can be seen from Figure 5, the distribution for the B? A flow can be approximated with a 
Nonnal (Gaussian) one (the interval (-inE-0.6) could not be reprcxiuced because of some 
measurement limitations), while tlie A? B flow shows no distribution of the jitter For both of 
the flows, tliere is an addilit)nal 3 ms jitter, caused by NelMeeting behaviour: although the 



packets inter-airival delay should be constant (60 ms), from time to time, the program 
transmits a voice packet after 30 ms. The measurement is more accurate for packet loss han 
jitter because of the errors in the measurement of jitter, as well as because die out-of-order 
packets were not considered in the analysis. 

I f we consider the absolute vahies for the jitter, it results an average value of 28 ms, which, i f 
we extract he 3 ms caused by NetMeeting behaviour, it results the value of the emulated link: 
25 ms. As a conclusion, the tool, together with the results analysis, identified the 5% loss and 
25 ms jitter generated by the right side of the monitored route. 

Although the monitoring tool was built, and these preliminaiy tests were perfomied, a full 
assessment requires further analysis in a real or simulated VoIP environment Such an 
environment would include several simultaneous conferences, running between endpoints 
situated at different locations, over various routes. 

C o n c l u s i o n s a n d f u r t h e r w o r k 

This paper has described an off-line method to measure the QoS transport parameters for a 
H.323 VoIP call from a single point, by non-intrusive monitoring, and we presented a test 
performed in order to validate our method. The jitter and packet loss analysis seems 
promising, but further work is required to determine, monitor and analyse the other 
parameters. Also, a specific change in the performance parameters group can be related with a 
specific network event (e.g. a congested router). Therefore, analysis of the dynamics of the 
calculated parameters is required. 

There are also other parameters still to be measured. In measurement systems for POTS 
(Plain Old Telephone Systems), a useful parameter for the call performance is the round trip 
time (RTT) delay (i.e. the time needed by a signal to go &X)m one end to the other and then 
back). There is no direct possibility to determine such a parameter for H.323. calls because the 
standard is built for multicast conferences (multi-to-muiti conferences), and so it does not 
include mechanisms for single end-to-end connection; the flows between the endpoints do not 
run in pairs, there is no correlation bet\veeii them (they run independently). There are several 
methods to determine RTT for VoIP calls: 

- Using the setup and control messages; they mn on TCP, and the values obtained might 
differ from the (theoretical) ones for UDP 

- Using RTCPs* 'delay since last source report(SR)' field. 
- Correlating the RTP and RTCP flows. The RTCP packets include a 'extended highest 

sequence number received' field. If the value of this field is correlated with the sequence 
number of the sender, together with its timestamp, the RTT can be measured. 

As fijture work, we aim to: 
- refine the described method in order to cover all the possible situarions; e.g.: due to 

method limitation, we were not able to identify conrectly jitter higher than tlie inter-
arrival time, 

- determine a good estimate for RTT, based on the RTCP reports, 
- advance the correlation of RTP and RTCP flows in order to narrow the region of fault 

locarion from EastAVest network down to a link or a sub-network, 



- investigate, using inteUigent analysis methods, i f the traffic performance parameters at 
one moment can give an estimate for the future level of performance 

The method presented, together with the additional objectives above, aims to achieve the 
perfect monitoring approach, which has to be single point, non-intnisive, measures all the 
performance parameters, frilly locates the source of neUvork degradation, and predicts the 
future behaviour of the network- By doing this, we can detwrnine i f the IP network offers, 
currently as well as in the future, to the IP telephony users the quality they require, and, i f not, 
where the problem resides. 

References 

Bacher D. (1996), 'rtpmon: A Third-Party RTCP Monitor', ACM Multimedia '96. 

Borella M. (2000), Mpgrab homepage', 
http://home.xnetcom/-<athmike/MSB/Software/index.html. 

Caceres R., Danzig P.B., Jamin S., and Mitzel D.J. (1991), 'Characteristics of Wide-Area 
TCP/IP Conversations', Proceedings of ACM SIGCOMM '91. 

Ferrari D., Banerjea A., and Zhang H. (1994), 'Network Support for Multimedia - A 
Discussion of the Tenet Approach', Computer Networks and ISDN Systems, December 1994. 

ITU. (1998), 'Packet based multimedia communication systems', H.323 ITU 
Recommendation, February 1998. 

Nistnet. (2000), 'The NIST Net home page', http://snad.ncsl.nisLgov/itg/nistnet/index.html 

Ostermann S. (2000), 'tcptrace homepage', 
http://jarok.cs.ohiou.edu/sofhvare/tcptrace/tcptrace.html. 

SchulzrinneH.,CasnerS., Frederick R., and Jacobson V.(I996). RFC 1889- ' R T P - A 
Transport Protocol for Real-Time Applications', RFC depository, January 1996. 

Crawley E., Nair R, Rajagopalan B., and Sandick H. (1998), RFC 2386 - 'A Framework for 
QoS-based Routing', RFC depository, August 1998. 

Nichols K., Blake S., Baker F., and Black D. (1998), RFC 2474 - 'Differentiated Semces 
Field', RFC depository, December 1998. 

Rosenberg J. and Schulzrinne H. (1998), Timer Reconsideration for Enhanced RTP 
Scalability', Proceedings of IEEE Infocom 1998, March 29 - April 2 1998. 

Stiller B. (1997), 'Quality of Service Issues in Networking Environments', internal report, 
http://\v\vw.cl.cam.ac.uk/flp/papers/reportsyTR380-bs20l-qosjsues.ps.gz, September 1995. 

Thompson K., Miller G.J., and Wilder R. (1997), 'Wide-Area Internet Traffic Patterns and 
Characteristics', IEEE network, November-December 1997. 



R P r \ I t s 

m 
n° 03 50056 
du 19/03/2003 

pour : PROCEDE D'EVALUATlON DE LA BANDE PASSANTE D'UNE LIAISON NUMERIQUE I ' r«J>o«iNit u UIME 

au nom de : ACTERNA IPMS ' 
SP22335/HM 

3 . R u i D u [ > o c T E w L M K E < » W i x - 7 5 0 0 8 PARis Si 3 5 ( 0 J I S5 8 5 9 A 0 O a 9 
^ I 33iO)t *5 6je5J3r 
^ SI 0 b f « . < f ' f I ctyp 

b r e ' , ? t i p a c e m i t b r e v j i e . c s - n 

m a r q u e i t r i ( » e f P » f \ $ t b r e v a l f . c m 

SOC ( I f M C 0 N 5 F . L i EN P f C r P £T( l r . v , : T F f U I I s C L S T ^ I M P P O f f l l T Y A T T M N M F W M 

_ ' ; * R L ' J . C . r T M O ( 1B6 0 0 0 E L 1 . M RCS P M J 1 D 5 1 5 1 6 J 7 • I V A W r P ^ t u i c . 



10 

15 

20 

2 5 

30 

PROCEDE D'EVALUATION DE LA BANDE PASSANTE D'UNE LIAISON NUMERIQUE 

D E S C R I P T I O N 

Domaine technique 

L ' i n v e n t l o n se s i t u e dans l e domaine des 
t616communications et concerne plus sp6cifiquement un proc6d6 
d * 6 v a l u a t i o n de l a bande passante e n t r e un premier et un deuxifeme 
p o i n t s u s c e p t i b l e d'^changer des paquets de donnfies v i a une 
l i a i s o n num6rique dans un r6seau- de t616communication comportant 
une p l u r a l i t y de sous-r6seaux. 

L * i n v e n t i o n concerne 6galement un d i s p o s i t i f d e s t i n 6 
d mettre en oeuvre l e proc6d6, 

L'invention trouve une a p p l i c a t i o n dans l e s r6seaux 
de telecommunication t e l s que l e r^seau I n t e r n e t . 

ETAT DE LA TECHNIQUE ANTERIEURE 

Une mfethode connue pour ^valuer l a bande passante 
dans un r^seau de telecommunication c o n s i s t e d transmettre d*un 
premier p o i n t du r6seau un f i c h i e r v i a l e pr o t o c o l e FTP {pour F i l e 
T r ansfer Protocol) comportant un marquage temporel e t d mesurer l a 
V i t e s s e de recep t i o n de ce f i c h i e r par un deuxieme p o i n t d u d i t 
reseau. L'emission d'un f i c h i e r de grande t a i l l e v i a l e p r o t o c o l e 
FTP dans une l i a i s o n genfere une surcharge du r6seau. Par a i l l e u r s , 
l a charge gen6r6e par l e s u t i l i s a t e u r s du rfeseau au moment de l a 
mesure etant inconnue, un t r a n s f e r t de f i c h i e r de p e t i t e t a i l l e 
v i a l e protocole FTP he g a r a n t i t pas une u t i l i s a t i o n optimale de 
l a bande passante d i s p o n i b l e . Tous ces f a c t e u r s c o n t r i b u e n t d 
rendre a i e a t o i r e l a mesure de l a v i t e s s e de r e c e p t i o n des 
f i c h i e r s , e t pa r t a n t , l a bande passante d i s p o n i b l e au moment du 
t r a n s f e r t v i a l e pro t o c o l e FTP par l e deuxifeme p o i n t du r6seau. 

Une autre methode connue dans I ' a r t antferieur 
c o n s i s t e A mesurer l e temps absolu de tr a n s m i s s i o n d'un f i c h i e r de 
donn6es entre les deux p o i n t s du r6seau dont l e temps est mesure 

35 en chaque p o i n t avec l a plus grande p r e c i s i o n p o s s i b l e . Cette 
methode est certes plus precise raais pr6sente un coOt 61eve dans 

S P 2 2 3 3 5 HM 



l a mesure ou e l l e nfecessite 1 ' u t i l i s a t i o n d'un syst^me de mesure 
du temps de grande p r e c i s i o n d cheque extr6mit6 du r6seau t e l que 
d61ivr6e par exemple par un systfeme de transmission du type GPS 
(pour Global P o s i t i o n n i n g System). 

5 Le but de 1'invention e s t de • p a l l i e r l e s 
inconv6nients de I ' a r t a n t ^ r i e u r d 6 c r i t s ci-dessus au moyen d'une 
m6thode et d'un d i s p o s i t i f simple^ peu coQteux et s u s c e p t i b l e s 
d ' e t r e u t i l i s e s e n t r e n'importe quels po i n t s du r6seau. 

Un a u t r e but de I ' i n v e n t i o n est d ' i s o l e r e t de 
10 l o c a l i s e r sans ambigult6 un p o i n t de congestion lorsque l e s 

donnfies 6chang6es entre deux p o i n t s d'un r6seau t r a n s i t e n t par 
p l u s i e u r s sous-r6seaux. 

15 
EXPOS£ DE L'INVENTION 

L ' i n v e n t i o n pr6conise un proc6d6 d'Evaluation de l a 
bande passante e n t r e un premier p o i n t e t un deuxi^me p o i n t 
comportant des terminaux susceptibles d'6changer des paquets de 
donates num6riques dans un r^seau de telecommunication comportant 

20 une p l u r a l i t 6 de sous-r6seaux. 
Le proc6d6 selon I ' i n v e n t i o n comporte l e s 6tapes 

suivantes : 
pour chaque sens de transmission ek t r a v e r s 1' un au 

moins desdits sous-r^seaux, 
25 a. associer aux paquets femis quasi-simultan6ment un m§me 

i d e n t i f i a n t , 
b. horodater et e n r e g i s t r e r l es paquets regus, 
c. i d e n t i f i e r e t t r i e r l es paquets regus avec l e m§me 

• i d e n t i f i a n t , 
30 d. s61ectionner l e plus grand nombre entie.r p o s s i b l e ra de 

groupes de paquets ayant l e m§me i d e n t i f i a n t , 
c. raesurer les i n t e r v a l l e s de temps s6parant l e s i n s t a n t s de 

reception par l e deuxifeme p o i n t des paquets des groupes 
s61ectionn6s, 

35 f. c a l c u l e r l a bande passante en f o n c t i o n du nombre de paquets 
des groupes s61ectionn6s et de l a dur6e t o t a l e de 
transmission de ces paquets. 

S P 2 2 3 3 5 HM 



20 

25 

En i d e n t i f i a n t des paquets 6mis quasi-simultan6ment 
dans l e f l u x transmis du premier vers l e deuxi^me p o i n t de l a 
l i a i s o n , on se place dans l e s c o n d i t i o n s rfeelles d ' u t i l i s a t i o n des 
usagers du r6seau dans l e s q u e l l e s 1'estimation de l a bande 
passante mesur6e r e f l a t e 1'encombrement r 6 e l de l a l i a i s o n au 
moment de l a raesure. 

Dans un mode p r 6 f 6 r 6 de r e a l i s a t i o n , l a bande 
passante e s t c a l c u l ^ e par 1'expression suivante : 

10 W _ I 

oCi 

• l i , m repr6sente l a longueur du paquet de rang i du m'*°* 
groupe de paquets, 

• t i repr6sente l e marquage temporel du paquet de rang i du 
15 ra^*"" groupe de paquets, 

• t i + 1 reprfisente l e marquage temporel du paquet de rang i + 1 
du m**" groupe de paquets, 

• nm repr^sente l e nombre de paquets du m̂ *°® groupe de paquets. 
Pour amfeliorer l a p r e c i s i o n de 1'Evaluation, l e 

proc6d6 est appliqu6 sur un nombre de groupes de paquets sup6rieur 
A 1. 

Dans one premiere v a r i a n t e de r e a l i s a t i o n de 
1' i n v e n t i o n , 1'Evaluation de l a bande passante est r 6 a l i s 6 e en 
temps r 6 e l . 

Dans une deuxiEme v a r i a n t e de r e a l i s a t i o n , 
l * 6 v a l u a t i o n de l a bande passante est r 6 a l i s 6 e en en temps 
d i f f f e r e . 

Dans une. a p p l i c a t i o n p a r t i c u l i f e r e du proc6d6 de 
I ' i n v e n t i o n , l e r6seau de telecommunication e s t du type IP. 

30 L*invention concerne 6galement un d i s p o s i t i f 
d ' evaluation de l a bande passante entre un premier p o i n t et un 
deuxieme p o i n t s u s c e p t i b l e d'6changer des paquets de donn6es 
numeriques dans un rEseau de telecommunication coraportant une 
p l u r a l i t e de sous-reseaux. 

35 Ce d i s p o s i t i f comporte : 

S P 2 2 3 3 5 HM 



10 

20 

« des moyens de raarquage des paquets emis, 
• des moyens d'horodatage des paquets regus, 
• des moyens de t r i des paquets regus, 
• des moyens pour raesurer les i n t e r v a l l e s de temps separant 

l e s i n s t a n t s de rece p t i o n par l e deuxieme p o i n t des paquets 
emis, 

• des moyens pour c a l c u l e r l a bande passante. 

BRfcVE_DESCRIPTION DES DESSINS 

D'autres c a r a c t 6 r i s t i q u e s et avantages de 
1' i n v e n t i o n r e s s o r t i r o n t de l a d e s c r i p t i o n qui va s u i v r e , p r i s e A 
t i t r e d'exemple non l i m i t a t i f en reference aux f i g u r e s annex6es 
dans l e s q u e l l e s : 

15 • l a f i g u r e 1 i l l u s t r e sch6matiqueraent une l i a i s o n num6rique 
dans un reseau de telecommunication dans i e q u e l e s t mis en 
oeuvre l e precede selon 1'invention, 

• l a f i g u r e 2 est un sch6ma bloc d'un module d*analyse de 
paquets selon 1'invention. 

EXPOSfc DtTPilLht DE MODES DE REALISATION PARTICULIERS 

L' i n v e n t i o n va maincenant 6 t r e d 6 c r i t e dans une mise 
en oeuvre dans l e r6seau I n t e r n e t . 

25 La f i g u r e 1 i l l u s t r e schematiquement une l i a i s o n 
numerique b i d i r e c t i o n n e l l e 1 entre un premier t e r m i n a l A e t un 
deuxieme t e r m i n a l B connectes respectivement t un premier reseau 
l o c a l 4 e t d deuxidme reseau l o c a l 6 et echangeant des donnees 
numeriques d t r a v e r s un premier sous-reseau 6 et un deuxieme sous-

30 reseau 8 selon l e mode TCP (pour Transmission c o n t r o l Protocol) ou 
selon l e mode UDP (User Datagram P r o t o c o l ) . A chaque ex t r e m i t e de 
l a l i a i s o n numerique 1 entre les terminaux A et B sont agences 
respectivement un premier et un deuxieme modules (10, 12) de 
marquage des- paquets de . donnfees 6mis par l e t e r m i n a l A 

35 (respectivement B) et uh module d'analyse (14, 16) des paquets de 
donnees re<?u6 par l e t e r m i n a l A 
(respectivement B). 

S P 2 2 3 3 5 HM 



La f i g u r e 2 i l l u s t r e un schema bloc d'un module 
d'analyse selon un mode p r 6 f 6 r 6 de r e a l i s a t i o n comportant une 
i n t e r f a c e d'adaptation 20 r e l i v e d l a l i a i s o n IP 1 v i a un coupleur 

5 22, un module 24 d ' e x t r a c t i o n de paquets de donnfees de l a l i a i s o n 
1, un module 26 d ' a c q u i s i t i o n d e s d i t s paquets, un module 28 
d'horodatage des paquets e x t r a i t s destine A associer A un groupe 
de paquets 6mis quasi-simultanement un mSme i d e n t i f i a n t temporel, 
une memoire 30 destinee A stocker l e s paquets horodates, un module 

10 32 de t r i des paquets ayant l e m%me i d e n t i f i a n t temporel, un 
module 34 de s e l e c t i o n d e s t i n e d i s o l e r l e s groupes de paquets 
ayant l e mfime i d e n t i f i a n t temporel e t l e plus grand nombre de 
paquets regus, un module 36 de mesure du temps de t r a n s f e r t i n t e r 
paquet et un module 38 de c a l c u l de l a bande passante. 

15 En fonctionnement, chacun des terminaux A ou B peut 
d t r e simultan6ment 6metteur et recepteur. Les donnSes 6changees 
t r a n s i t e n t par l e s reseaux 6 et 8 dont l e s encombrements 
r e s p e c t i f s d un i n s t a n t donne dependent du nombre d ' u t i l i s a t e u r s 
connectes. Le marquage des paquets est obtenu s u i t e A une'requete 

20 envoy6e par l e t e r m i n a l r6cepteur au t e r m i n a l eraetteur, I I peut 
e t r e r e a l i s e , par exemple, par I ' a c t i v a t i o n de I ' o p t i o n 
d'horodatage d 6 c r l t e dans l a norme RFC 1323. 

Pour evaluer l a bande passante d i s p o n i b l e de bout en 
bout, l e module 24 d ' e x t r a c t i o n i s o l e l es paquets de donn6es 

25 transmis pendant un laps de temps trSs court du t e r m i n a l emetteur 
vers l e te r m i n a l recepteur e t transmet ces paquets au module 
d'horodatage 28 qui associe A chaque paquet une date d'emission. 
Les paquets sent ensuite atockes dans l a m6moire 30. Le module 32 
t r i e l es paquets p o r t a n t l a mSme date d'envoi e t les transmet au 

30 module 34. Ce d e r n i e r seiectionne un nombre e n t i e r de groupes 
parmi l e s groupes t r i e s comportant l e plus grand nombre de paquets 
et transmet ces groupes au module de mesure 36 qui mesure les 
i n t e r v a l l e s de temps separant l a recep t i o n des d i f f 6 r e n t s paquets 
su c c e s s i f s . Les i n t e r v a l l e s mesure's sont ensuite transmis au 

35 module 38 de c a l c u l de l a bande passante q u i c a l c u l e en temps r e e l 
l a bande passante de l a l i a i s o n en f o n c t i o n de l a longueur t o t a l e 
des paquets analyses et de l a dur6e de transmission de' ces 
paquets. 

S P 2 2 3 3 5 HM 



Pour 6v^luer l a bande passante d i s p o n i b l e dans 
chaque sous-r6seau, I'analyse des paquets recus est e f f e c t u 6 e par 
l e t r o i s i ^ m e module 18 agenc6 entre les sous-r6seaux 6 et 8. 

5 

S P 2 2 3 3 5 HM 



REVENDICATIONS 

1. Proc6de d'evaluation de l a bande passante e n t r e 
un premier p o i n t et un deuxiEme point s u s c e p t i b l e d'echanger des 

5 paquets de donnees numeriques dans un r6seau de teiEcommunication 
comportant une p l u r a l i t e de sous-rEseaux, procEde c a r a c t E r i s 6 en 
ce q u ' i l comporte les etapes suivantes : 
pour chaque sens de transmission d t r a v e r s I'un au moins d e s d i t s 
sous-r6seaux, 

10 pour chaque sens de transmission A t r a v e r s I'un au 
moins d e s d i t s sous-reseaux, 

a. associer aux paquets Emis quasi-simultanement un mErae 
i d e n t i f i a n t , 

b. horodater et e n r e g i s t r e r les paquets regus, 
15 c. i d e n t i f i e r et t r i e r les paquets regus avec l e meme 

i d e n t i f i a n t , 
d. s e i e c t i o n n e r l e plus grand nombre e n t i e r p o s s i b l e m de 

groupes de paquets ayant l e mEme i d e n t i f i a n t , 
e. mesurer l e s i n t e r v a l l e s de temps sEparant les i n s t a n t s de 

20 r e c e p t i o n par l e deuxiEme p o i n t des paquets des groupes 
. - • • 1 ... seiectionnEs, 

f . c a l c u l e r l a bande passante en f o n c t i o n du nombre de paquets 
des groupes seiectionn6s et de l a duree t o t a l e de 
transmission de ces paquets. 

25 
2. ProcEdE selon l a r e v e n d i c a t i o n 2, c a r a c t E r i s e 

en ce que l a bande passante est calcul6e par 1'expression 
suivante 

1 m 1 L 
rim / ( ( + I ) n " f ( . r . 

30 ou : 
. • l i , m reprEsente l a longueur du paquet de rang i du m̂*''° 

groupe de paquets, 
• t i reprEsente l e marquage temporel du paquet de rang i 

du m""" groupe de 
35 • paquets, 

S P 2 2 3 3 5 HM 



10 

1 5 

• t i + 1 represente l e marquage temporel du paquet de rang 
i + 1 du m"" groupe 

• de paquets, 

• nm represente' l e nombre de paquets du m̂ '°* groupe de 
paquets. 

4. Precede selon l a r e v e n d i c a t i o n 4, c a r a c t e r i s 6 
en ce que l e nombre m est superieur ou egal d 1. 

5. Proc6de selon I'une des revendications 1 5 4, 
c a r a c t e r i s e en ce que l e marquage des paquets de donn6es est 
r e a l i s e au p o i n t d'emission sur requSte du p o i n t de r e c e p t i o n . 

6. Procede selon I'une des revendications 1 d 5, 
c a r a c t e r i s e en ce que 1'evaluation de l a bande passante est 
r 6 a l i s 6 e en temps r e e l . 

1. Procede selon I'une des revendications 1 5 5, 
c a r a c t e r i s e en ce que 1'evaluation de l a bande passante e s t 
r e a l i s 6 e en temps d i f f e r e . 

8. Precede selon I'une des revendications 
pr6c6dentes, c a r a c t e r i s e en ce que l e r6seau de telecommunication 
est d u t y p e IP. 

20 9. D i s p o s i t i f d'6valuation de l a bande passante 
en t r e un premier p o i n t et un deuxieme p o i n t echangeant des paquets 
de donn6es dans un reseau de telecommunication comportant un 
module de marquage des paquets emis et un module d'analyse des 
paquets regu, c a r a c t e r i s e en ce que l e module d'analyse comporte : 

25 • des moyens d'horodatage des paquets regus, 
• des moyens de t r i des paquets regus, 
• des moyens pour mesurer l e s i n t e r v a l l e s de temps s6parant 

l e s i n s t a n t s de r e c e p t i o n par l e deuxieme p o i n t des paquets 
emis, 

30 • des raoyens pour c a l c u l e r l a bande passante. 
10. Module d'analyse de paquets de donn6es regus 

dans un r6seau de telecommunication, c a r a c t e r i s e en ce q u ' i l 
comporte : 

• des moyens d'horodatage des paquets regus, 
35 • des moyens de t r i des paquets regus. 

S P 2 2 3 3 5 HM 



•' des moyens pour mesurer l e s i n t e r v a l l e s de temps s6parant 
l e s i n s t a n t s de r e c e p t i o n par l e deuxl^me p o i n t des paquets 
6mis, 

• des moyens pour c a l c u l e r l a bande passante: 

S P 2 2 3 3 5 HM 



A B R E G E D E S C R I P T I F 

L ' i n v e n t i o n concerne un proc6d6 d' 6 v a l u a t i o n de l a 
bande passante entre un premier p o i n t e t un deuxidme p o i n t 

5 s u s c e p t i b l e s d'6changer des paquets de donn6es nuniSriques dans un 
r^seau de t616communication comportant une p l u r a l i t y de sous-
r^seaux. 

Le proc6d6 selon 1'invention comporte l e s 6tapes 
suivantes 

10 pour chaque sens de transmission ^ t r a v e r s I'un au moins d e s d i t s 
sous-r6seaux, 

• associer aux paquets 6mis quasi-simultan6ment un meme 
i d e n t i f l a n t , 

• horodater et e n r e g i s t r e r l e s paquets regus, 
15 • i d e n t i f i e r e t t r i e r l es paquets regus avec l e m6me 

i d e n t i f i a n t , 
« sfelectionner un nombre e n t i e r m de groupes de paquets ayant 

l e m§me i d e n t i f i a n t , 
• mesurer l e s i n t e r v a l l e s de temps s6parant l e s i n s t a n t s de 

20 reception par l e deuxi^me p o i n t des paquets emis, 
• c a l c u l e r l a bande passante en f o n c t i o n du nombre de paquets 

des groupes s61ectionn6s e t de l a d i t e dur6e t o t a l e de 
transmission desdits paquets. 

S P 2 2 3 3 5 HM 



FIG. 1 

y 
ro 
ro 



2 / 2 

32 

38 

36 

TJ 
30 

IT 
20 

34 

28 

24 

26 

CIRCUIT IP 

22 

FIG. 2 


