PERFORMANCE CHARACTERISATION OF IP NETWORKS
by

BOGDAN VLADIMIR GHITA

A thesis submitted to the University of Plymouth
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Computing, Communications, and Electronics
Faculty of Technology

February 2004

Universiy .27 Flymeouth
Library

Item No.

Qoo bGAY 24

Shelfmarl:

THESS 00w G|

Abstract

Performance characterisation of IP networks

Bogdan Vladimir Ghita

Abstract

The initial rapid expansion of the Internet, in terms of complexity and number of hosts, was
followed by an increased interest in its overall parameters and the quality the network offers.
This growth has led, in the first instance, to extensive research in the area of network monitoring,
in order to better understand the characteristics of the current Intemet. In parallel, studies were
made in the area of protocol performance modelling, aiming to estimate the performance of

various [ntenet applications.

A key goal of this research project was the analysis of current Internet traffic performance from a
dual perspective: monitoring and prediction. In order to achieve this, the study has three main
phases. It starts by describing the relationship between data transfer performance and network
conditions, a relationship that proves to be critical when studying application performance. The
next phase proposes a novel architecture of inferring network conditions and transfer parameters
using captured traffic analysis. The final phase describes a novel altemative to current TCP
(Transmission Control Protocol) models, which provides the relationship between network, data
transfer, and client characteristics on one side, and the resulting TCP performance on the other,

while accounting for the features of current Internet transfers.

The proposed inference analysis method for network and transfer parameters uses online non-
intrusive monitoring of captured traffic from a single point. This technique overcomes
limitations of prior approaches that are typically geared towards intrusive and/or dual-point
offline analysis. The method includes several novel aspects, such as TCP timestamp analysis,
which allows bottleneck bandwidth inference and more accurate receiver-based parameter

Abstract

measurement, which are not possible using traditional acknowledgment-based inference. The

the results of the traffic analysis determine the location of the eventual degradations in network
conditions relative to the position of the monitoring point. The proposed monitoring framework
infers the performance parameters of network paths conditions transited by the analysed traffic,
subject to the position of the monitoring point, and it can be used as a starting point in pro-active

network management.

The TCP performance prediction model is based on the observation that current, potentially
unknown, TCP implementations, as well as connection characteristics, are 100 complex for a
mathematical model. The model proposed in this thesis uses an artificial intelligence-based
analysis method to establish the relationship between the parameters that influence the evolution
of the TCP transfers and the resulting performance of those transfers. Based on preliminary tests
of classification and function approximation algorithms, a neural network analysis approach was

preferred due to its prediction accuracy.

Both the monitoring method and the prediction model are validated using a combination of
traffic traces, ranging from synthetic transfers / environments, produced using a network
simulator / emulator, to traces produced using a script-based, controlled client and uncontrolled
traces, both using real Internet traffic. The validation tests indicate that the proposed approaches
provide better accuracy in terms of inferring network conditions and predicting transfer
performance in comparison with previous methods. The non-intrusive analysis of the real
network traces provides comprehensive information on the current Intemet characteristics,
indicating low-loss, low-delay, and high-bottleneck bandwidth conditions for the majority of the

studied paths.

Overall, this study provides a method for inferring the characteristics of Internet paths based on

Abstract

traffic analysis, an efficient methodology for predicting TCP transfer performance, and a firm

basis for future research in the areas of traffic analysis and performance modelling.

Table of contents

Table of contents

AABSTRACT oo eereeeaeaseoessstsssssssems seesassessnesssassansasssearass d sIe inbnaess shnabese e st masba dam e aas Samemraseonsorerr SR A AERR LA RS RO R SR e st son e n
TABLE OF CONTENTS teeuueerremneeerasirernnsaesosriesserarsssssssssssssssssaestbsssrssnssssstsssessssnssitttnsisssnnssersmsrassesaertoisitansissenanammmssisiens v
TABLE OF FIGUREScoveueiemiteeteiestesesseaereseereesronerearotsssessasassnsasssiassasstas asamssrstsstassssssssissnsiosastatissssasssosacssissasssess Xi
ACKNOWLEDGMENTSovoeetueeurarrsrrseseasasacemamsssestasnssmssssss 444 488 aEssamas st aset Eamtt s st s b L bE s a e b e es 44 424 Sammb s s hns e Xvi
GLOSSARY ...eeteveueimemarsessssseeseseatessesasasesasassssessssensensshasssssassss arsssaamesammsd et st aE s e dh o AR e ST E s b AR s b e b SR a s s s s m e s XVIII
CHAPTER 1. INTRODUCTION .1
1.1 ATMS AND OBJECTIVES 1. vvuuitvueeeensenseemmssrmsserssernnssssssmassmnsssbsssinstsnstasasassssssssonsiaasessnsonnnssnnssennnred0esesetnssscsassanennarnnnes 4

1.2 THESIS CONTENT .cveeeeteerrmesiisesisssss st emesessesssessesesnsessosasasssrsssssssssssmsssssstess sbasssssusbansansrer v st siosans e s e b e b s ran s E s g s e st s 5
CHAPTER2. TRAFFIC ANALYSIS AND PERFORMANCE MODELLING 9
2.1 INTRODUGCTION ceeeeeeeetrtnseerseeeseessnsmenasssrrassetietsssstsnmssionsisssesstesssasenssssssnnnsssttasssssnssymsstssatestnrrssisistoanntssiisseanininaans 10
2.2 THE INTERNET PROTOCOLSuiivrtriemreencrmaniscranseerreeessasennsrrrnnssssasnmassannrnsssiiissssimsssssetaaseenermitesiasasesrmsoesstansiinrass 11
2.2 0 IEEEREE PFOLOCO . c.....oooveeeeeeeeeeeeeeee oo ettt e tserat s b e s b e s e e e s e e s oE oo R e et s e et s s e n et st s s s 12

2.2.2 Transmission Conrol Protocol.................cconiiiieseismeseeee et 13

2.2.3 HyperText Transfer Protocol ... s 17

2.3 TRAFFIC AND NETWORK ANALYSIS TRENDS: FROM INTERNET EXPERIMENTS TO MONITORING......ccvverieuiisnirannnns 18
2.3.]1 The rieed 10 MONITOr BEOWOTK SIQIUSc.ccocooiveiiireriteieisit e sraessesnnssa s e ssb st s s n s st a e s 18

2.3.2 The evolution of netwark performance QRAIYSIS...........eeeeeeieecorireccicr i st 20

2.4 TAXONOMY OF TRAFFIC ANALYSIS TECHNIQUES........coruiiiirmasinimnsnnssaiessestesisssssmsssssssassnasssasssasssn s st sasesnensaceis 23
2.4.1 INIGPACHION IAXONOMYooeeeecviieiieiit e eneassssesnses e s s s s e e et s e sS4 e R e ee s bed 100 s e s 23

2.4.2 TMPOTAI HAXONMOMY........c.cooeeeeevnee oo bttt 27

2.4.3 INfOrmGION HOXOMOMYooomeoectsemitssessisessts st e b Rt 28

2.5 TCP MODELLING — CURRENT STATE OF THE ART ...cuviiiiiictncmnnmnnnenseetessen b bbb st se e ot osen o s s 29
2.5 TMIPO@UCTION. c..o.eoeeeeeeeeeeeeseee e ctetas st esee e eeaeceeseneemaasebe s emsaean s sras e R TR 28 £ E 2SS S e e s he s n s b e e 29
2.5.2 The influencing parameters for TCP tRroughpul ... 30

2.5.3 Current TCP mathematical MOAEIS.................cccoeevviiiiiiinineeeeeieice e 37

2.6 CLASSIFICATION OF DATA SOURCEScoccoirritiieesisirns i sesstsssssssetstsseasattsesssan st st sasas s bsb st sesas st st s s sonsssains 44
2.7 SUMMARY c.ooecereeeeeneresescrtrarsssesrsssasasstacesssaesemsatsessssss ssrsss st seserssssstas oaeasssas et s imtssatasst iEsss shat s Ea s aan e R g sa s s st st 47
CHAPTER 3. A NOVEL APPROACH TO MONITORING 49

A%

Table of contents

3.1 INTRODUCTION .eceeeceeertrsetssemeesenesssssssssrssssssrasestossstarsmssssnasnsessessusssess stsssst sassronoihs s ahbatar e e e s s sttt s s n s h s s s 50
3.1 1 ideal mormioring MetROd..................ooiieeeiieee e 30
3.2 PROPOSED ONLINE, SINGLE-POINT, NON-INTRUSIVE MONITORING METHOD ...coirieiiirmerniimeiimacetnsacnenenssrennsnsans 54
3.2.0 TAPGEIEA ITGTIC eeeeneeeeecec e v b bbb e e L R 54
3.2.2 GeNEral dESCriPIION. ... ecueeueeeecurerrresneeeeecstos s eSS0 LS s R 56
2.3 JMPEACE ..o eesae s s bbb k8RR R R0 38
3.3 THE REAL-TIME TRAFFIC MONITORcceovernscusocerammssnmsmsmessasnssesesentssessacsnssnrstsbabossss sonssssnssstsrassssasasasansssassssnassssas 59
3.4 THE TCP TRAFFIC MONITORoeesererneererrstssrsiessracssmsamssanssnssssssssasssansststasetensasttssins hsssesssasast srssassas sosssatassssesasanss 60
3.4.1 Method — TCP endpoint @MUIAIIONot st st 60
3.4.2 S181E QREALYSIS........ooeeeeceecoeciiiia st R 61
3.4.3 S2qUENCE ANAIYSIS ..o b e 65
3.4.4 Timestamp oplions-based TCP QRAIYSIS..........ocowvm ettt 79
344.1. CONEESLOM WINAOW......ccerreriissirssinsresssssassssses s cssssassees st bbas b s s R e R s A 80
3442, Bottleneck bandwidth..........ccociiiriiminnnininnnen e it 80

3.4.5 THE MEASUIEd PATAIMCIREScoeeeereeceecesas et b s e R0 82
34,6 FAUN JOCQUSQIION ... eeeeeeeteeeeseeaees et s et s s et prs oAb TR a bt st s 34
3.5 METHOD IMPLEMENTATION «..cveueuececesesnestassssasstessssssas sassassss et satasassses i samasss shat s s s et ae s 00202020 s s 86
350 BIOCK €iIBIQMI.....cc.eenreereeeeee et R S e 86
BUG SUMMARYcovictiisveresiereeesssrassesecasasseesbestsbinssbenessssEs4 e AR e RnREHER et St aE LR r e S LR A a4 ST n S d e R E AR T e R B SRS 92
CHAPTER 4. ISSUES RELATED TO THE PROPOSED TCP ANALYSIS 94
A1 ROUND TRIP TIME w.cviurveurrrrissessssestrssms saemesssssssessassessas st st asasens sess s dae a0 damisssssias hosssesaatatass sasassusansnsssssisssananns 96
4.2 PACKET LOSS veneveeeaereeemamtstasessssensansssessssatasesessssssassbest sssas sosssssnsasst stassusisestasssssomessbsianisssssss ransassnanssrsssasantnsacss 101
4.2.1 Limitations while identifying oss and misordering ... 107
4.2.2 Avoidance of estimation errors due o Identification field wrap-around...............nvniccininiinn. 108
3.3 CONGESTION WINDOW ...ceevvvvreniiseeiarmmscsnnesssimmimmmeasssssesiostnesstnssssrmstaressrsniaiissssisssimettsmesnssiieimeassmeetiassssismmmmmrsis 110
4.4 BOTTLENECK BANDWIDTH. . .cuuiterieariiiiraimmaestsestnestassrettstsrmnmsesnsnseettistitsnssonsimasiossiosrssmisoieinsersisntaaseessertsstasinees 113
4.4.1 Errors due 10 Nerwork COMMILONS.c.couioviiiveiiii it st bbb e s 114
4.4.2 Limitations and errors due (0 implement@ion ISSUES...................covveeiiiiinn e 1135
4.4.3 Evaluate TCP 1timeStamps FESOIMIIONccoiviiiieneiiii ettt s 118

4.5 FAULT LOCALISATION|20

4.6 SEPARATION BETWEEN HTTP V1.1 SESSTONS AND TIMEOUT LOSSESccvetiiieninerntiiissosesniniiersiesss s neens vanees 122

Vi

Table of contents

.7 SUMMARY ..ooeveeeeeeeeessesesrssrouanssseseoessssssssssssnesesssesssmesnssasssseestssbtassessesss siasstentessnasssnseasestesntsomsuraanseseasaetsstsnsssnsvanis 123
CHAPTERS. VALIDATION OF MONITORING METHODS ... eeeeeeeeemnenesmrsccsssssssssnssssssnnsessssanes 124
5.7 INTRODUGCTION «.ueeereeeeceeesssesssersassersmssesssessesssasomtanessseastsmstossensissssensssssnrsstsesssssessssstssonsssibas st aa st seataseasansansasnass 125
5.2 TESTBED DATA — THE NIST NET NETWORK EMULATORcovviccermeeecosstnmssnsssssnssessssesansasarssssnssnansssnssaransssssess 126

5.3 SYNTHETIC DATA — THE NS ENVIRONMENT «..covreaeeemnerisreememessssesssrsssnsssisssssssssesinssseussrasessemnessssssnssseransensssess £ 30

530 TOPOIORY -ttt A A 132
5.8 INIST INETTESTS....ocuieeeeeesssssessssseessssesiaesastsresestssas s ssassesasset o0 et sasasard Sbd LR EE RS S E LSRR LE Lo R SRnan et s n st e 133
5.4.1 RTT IEASUFEIMENLccooeeeaseeaseeeosseeateassenteaaeas e st sse s ressr et s R aa S 2 s S e o2 s R e S e S e e e sEE LS anRE 18 s et e sae s aeata b 135
5.4.2 LOSS MEASUFGITIENLoeieeuasesssseeneeneseenesncanesasansorsasssseasasssae et 1L e Do bbb R LS e AL LRt 414 a2 139
5.4.3 Bottleneck BandhwidlB EASUrEnIeNL............c.occceoeeeereeiiiiiinrinisen ansssss st et e 141

BB d CORCIUSIONS..........ceooeoeeoeeiesee et e e e s et st e et et e e e s e e sE o et m o m s H b eSS A AR SRR s h st 143
5.5 NS TESTS .eoveeeveceeeeeecesermeeestasessssesessssanssessesassnassesessssses satsessasissstssas s et st et at et s e s as s anE St aestssas bR s rasssra mmnssasansss 144
R o A LT OO VSTV PRI R R 144
5.5.2 LOSS 1SS co.osevsveeeeeeeetcatasesseneess e s ab s et et e et e et e e e AR AR SR eeeEeEeaEeAEeAEaE e naeeaene e e 146
5.5.3 CONEESHON WIRHOWocooievi ittt et ettt e s s 149
5.6 SUMMARY.....covvreteenmerestressesentseemsssteseesasssasseesassssassssessssesesees 4255454500 SE 10400 LA AL HEhaa 82 E A eE AR s s R e e e a0 S0 8 152
CHAPTER 6. ANALYSIS OF INTERNET TRACES.coivnvnisissnnsssncnnnsener e 154
6.1 INTRODUCGTIONoeeviueinvenensnesensrrrrrrsasstesssserasssesstassssmssessessssnsstassastasssmsassasastassssessd BAeLsissnsasnssssssassasaassannastsossacas 155
6.2 THE RYL TRACES ..o eutiuiieeeisereerrenssesessassssssassassssassesssesssssssssssmssssssanasassssssssests s tpssssstessamssssssssmasssnsssssensassanans 155
6.3 THE REAL NETWORK TRACES ...ccutetrstessescessasscsossassmssmrnrones ossssssssssssssnt s1400 100 seastastesassnsansssassussbeshsassanssassussasesss 157
6.4 RANDOM YAHOO LINK TRACES ANALYSIS ccvouiiinitirtisinesssrssesonsinessssassstsssesesemtsssssisnsssssstsosesassssssnssasssss st sasanns 161
6.4.1 Network 1opology and CORRECHIVIIYcouiieiiinrinenre et s ks 161
6.4.2 ROUNA TriP TIME SIQUSHCSooccovoeuveeecisisiiniteie s ests s tasss st bbb et st 166
6.4.2.1. Ack-based RTT vs. TCP timestamp-based RTT eStMALIONSoveeeveiermrrinnesransnnnssstsinssnenns s ssanssanas 170
6.4.2.2. Effect on curment TCP implemMenlalionsccomeemecccsieisisssnsseares st ssncss s ssss e sssss s s ssssssssasas s 173

6.4.3 BANAWIGI Rcooooveeeeeeeaeee et e ee e e ettt et a bR aea s 175
G4 4 LOSSooeoeeeeeeseeee e etetessesuesasseeeeas st s neeaeaneans s e e se s £ s AR AT TR e e e e eoeaCeaE e ETEAE et s e e 176
6.44.1. Visible 10S5.....cocciemevnncsenercinrricinenas eteetssReseerseseiateteratet RSt e enE S ra RS EA A e bR R £ re e e ae s st e ne st e 178
6.44.2. TINTETTEA LOSS .oe.cececvreecsseasnses s asesasssnsvassessemsstonsassast st aae s L s AL b e e b e bad e e s 48 AnR R Rs T e S ar e s Suean e umae s eat e s A s e v 181
6.4.4.3. OVETA LSS ..vcveieieereieeennsteessssessre s sanseemenesesesreesssreemsetssbs et onssssas mamasessesnsressnss dbassasstssnsntsutsanss asarnssnsans 182
6444, RELTAMSITIISSION EITOTS. c....cueruruueersersemsessesesseseaststssesesecssesesssimssasasssmses mraesomshess s s s e ne s SRS RSB e b s 182

Table of contents

G 4.5 CORMPCHION SIT€ oo eeteeeseeeeseeneeetaassaneeseeeatesaessasracsse s iAba s s ea T e R Ta s S eE e 1R a2t e st e Een S am e sb s sa s m bR S et 184
6.4.6 CONGESIION WIOWooovveeereeeeisseee e b 185
B.9.7 THFOUGAPULoovoeenereeeanieseesre s bR 8L st 188
6.9.8 EIOPSEA HIRE ...t eeeee st et sa R RS 192
6.9.9 POEE COMEBNL.......ceeereemeereeecosime s eanmes e sesa a1t e E eSS Lo 194
6.5 LOP TRACES ANALYSIS....c.0evesriaeeesmcessaracsesemaseacacsntstsssssesssssasasassasassasaasessstonsessin iasasssmssdsrobasassstasasssesassacstsaness 195
F T € it OO OO OO U OOV DO PP ISPPE SO 196
B.5. 2 LOSS e eeoeeoeeeeteeeee e eeaesmeemeeteetsteeeaeeaerteatanaesEeat et eR s e bR RS bR RS RESRe e ass e e LeAteaaTaeeRn R e meeeenan bbb 200
B.5.3 BORAWIEIN «.....eeoe e eeveeeee e asaracnes e e e setnaese e et s b e b aas se e e b e b e e 42 £os ettt s e e s 201
6.5.4 CONMBCIION ST e eeveeeeveeseeeesbssesbasbassengeae st arssasshe s b it e R e s s e e s e rb e A s aR T aE £ s LA E e b s b S s S E s bR R as e b et s e b e s Rd s et et e 202
6.5.5 COMBESIION WIREOW ..ottt bbb b8 L0 204
6.5.6 THEOUGRPUL. ..ottt 2 e bR bR 206
6.5.7 EIADSE HHM@......cooceuetieeeceececeies e oh e b R e s s 208
6.5.8 ISSUES QRA BIIIQITONSo.oeneeeeeeeeeveti sttt ettt e s s s s e n e bbb bbb et 209
6.6 SUMMARY ...o.oetiiiititiseesteresnassessssessaraasessesesstostsssssessesssnmsssassasssassataas sasassas et 10t HassrErTIrsastasnerraastaresaseasencntsasane s 210
CHAPTER 7. TCP PERFORMANCE PREDICTION MODEL BASED ON IDA 214
T 1 INTRODUCTION .oiiiituiiiuitanereasrnmaermneernnstosstnaeseensssssssnrsnnrsynrssbtsasssonssnsstesstesstoestnnsmetaettuarrenttoasstonosrrrrbisibinantsarsaaes 215
7.2 LIMITATIONS OF EXISTING MATHEMATICAL MODELSoorriiiiiinni it sssatmin st ssme st s ne s g sa s 215
7.3 WHY USE IDA7 .. ceeeeeeeeerersseseessesressesestatsasesessestat shses e sosessasssssrsshs e sant 10 ssasmsmsad s oh e sa s LTS RSS2 st b0 219
7.3.0 The SIPHCIURE Of IDA ..ottt e et et e s s st em e bt et 220
7.3.2 IDA JOI HRiS PPOJECHooieterencaeiin s es et st e iR S 222
7.4 WHY USE A NEURAL NETWORKS APPROACH?......ceieieer ittt istie st rn st nsen et dn s s esmn s s s s b e na s s 224
7.5 APPLYING IDA TO TCP PERFORMANCE MODELLINGcoitimmiimirrenttntineenneeeens s ninnness s s seasanaarnna g g s s n s snn s ons e 228
7.5.1 Data collection and pre-proCessing ...ttt s 228
7.5.2 Data analysis — procedure and GIGOTHAIMS oo 231
7.5.3 Interpretalion Of the FESUIIS. ...t et et s s 234
F.0 IMPLEMENTATION .11 cuuieeriurieereneeermeesereranssrsssssssessenssrossssstamsurrrnnetttssssssssssossetsoniitnesssentntsasaenmnnssatisassrmmnsrstssssaninns 236
T.T SUMMARYcouiuerernvossscssssssasssssssssasnsasatsasasssarsesssssseneatssssssnseasrasses s tadsees st arnoE AL S b seaa R E e BBt s R s e e 238
CHAPTERS. VALIDATION OF TCP PERFORMANCE PREDICTION METHOD 239
B OBSTACLES ..uceeuiererenresirsreensesssssesaasssesevstis st ssinssrssssenss st ses s r e s e R e e s R e e R A £ s e e ST s R e E S ae e R e s e T oL AR AR SRS n R am e s st ae st st s 240
8.2 IIATA ANALYSIS c.curirurereeecrreraeraensessassessmesersrssssssttissssssessssass sanssnessssensssasanessassmessisstssmisrerbvitastiasaasstinssintaossionss 241

Table of contents

CHAPTERY.

REFERENCES

APPENDICES

8.3 PRELIMINARY TESTS — CONNECTIONS WITHOUT LOSSES
8.3.1 Neural network structure
8.3.2 The stopping criteria
8.3.3 The optimum parameters for a set network

8.4 VALIDATION TESTS — CONNECTIONS WITHOUT LOSSES
8.4.1 The NS dmaset
8.4.2 The RYL dataset
8.4.3 Generalisation — 1the UoP dataset

8.5 PRELIMINARY TESTS - CONNECTIONS WITH LOSSES ..ot rrevtinan ittt tn e rissaas s s somsas bana nnae
8.5.1 Neural nerwork structure and stopping criteria

8.5.2 The optimum parameters for a set network

8.5.3 Data scaling

8.6 VALIDATION TESTS ~CONNECTIONS WITH LOSSES

BB I NSIFACESovveiieeeeeeeiirreereeeeimeeeaeervrenvacenaes

BE.2UOPIFACES ... oeevveeeeeeeeeeean s isevessnneessaneasaaas

8.7 APPLICATIONS .ccuereeremveceneneessnnerssssssssssssssssnmmssssnsssssrens

8.8 SUMMARY ccoeenneiciemsriierareseseceesenresanseesaasemsensrssneessssssns

9.1 ACHIEVEMENTS -...viiiieercnmsrararcessnemssnssssnassseeasesassessnssssns

0.2 LIMITATIONSoovvviiieesiseessnverssseessssmersnsnssessesasmsesmesnes

0.3 FUTURE WORK ..cooeiuteirrrerrersrseeresseerssnseeraensassasassnssssssnss

9.4 CONCLUSIONiitiienieenessnesrnessmessnesssrasasssssasansesanesinss

REVIEW,FUTURE WORK, AND CONCLUSION

APPENDIX A — REAL-TIME TRAFFIC MONITOR
A. 1 Monitoring procedure
A.1.1 Identification of the real-time flows

A.2 Parameter inference and extraction
A.2.1 Correlating RTP analysis with RTCP parsing

A.3 VolP validation

Table of contents

A3.1 Limitationsccconeene eeemteeemeeteseseeatiteseresesesebissesemtemecesiesiimatEerhsree erease eansnnnanaesar bt s 325
APPENDLX B = SURIPTS c.veueuereeieeerseenesaeeseeraeestonnsrisisiiessnsesmsssmsasnnsssasstistesmsssssssssssrmtsaiisiamiisesseossiomttateoosrsassestsentnonnss 326
Appendix B.] — Neural network processing SCripIS ...t oottt 326
9411 B.1.1 Main processing SAPL (INSh)......cuuerorirmmssssees s misessiit s e ns sttt s s sses s 326
94.1.2. B.1.2 Script to convert CSV files to SNNS format (COnv2SnnS.ACH) co..coivevemimneemmiresries e ecstissenss 338

B.1.3 Script to normalise input data (SCRIEACT). oottt 340

B.1.4 Script to evaluate the accuracy of the neural network output (evalicl) ... 342
APPENAIX B.2 = NS SCHIPIS.......covviniresmunsiemsessscasesrsst i seses s s L0 346
B.2.1 Simulation script for a three-tier 10POlOZY (MELLCT. ... eceieenirerstcets et 346

B.2.2 Loop script to produce a batch of traces (100p.sh) ... vccenvierrinnnns 351
Appendix B.3 — wget dat@ ColleCtion SCTiPL.............cocooc.oovmmimmmminiei st s 352
B.3.1 Main data collection Seript {FYLsh) ..ottt b e 352

B.3.2 Thread maintenance script (Killersh}c.occovvvervinicnne, . SN 353
APPENDIX € — PUBLICATIONS . cerecteiiierrerssasissanmmsssoestmistemmanmmnnmsssisssiesteas iieeie e st et assaaastasssaaarmesstrtrnossssanrnnsssassnasns 354

Table of Figures

Table of Figures
Figure 2.1 — The header of an HTTP FeSPONSEcecuviiiimiiiieeec e 35
Figure 3.1 — Degradation position in relation 10 the MONIMON.........coviiiiiii s 58
Figure 3.2 — The TCP monitor sState diagram............cooieuvmnminuemnmsieee e 64
Figure 3.3 — HTTP 1.1 SESSION ...oocurtetitieiereieerts et e 70
Figure 3.4 — Initial GET request from a client...........coooviiinimi e, 71
Figure 3.5 — lllustrating connection window evolution through sequence numbers................... 73

Figure 3.6 — Estimated congestion window based on identifying transmission window peaks ... 76

Figure 3.7 — Estimated congestion window based on identifying packet trainsocoorveeeenee 78
Figure 3.8 — The components of loss and delay for the monitoring configuration...........cocccc.... 85
Figure 3.9 — Traffic analyser — main blocks diagram ... 87
Figure 4.1 — Configuration example for RTT measurement. ... 97
Figure 4.2 — Position of the monitor in relation to the packet 10SS.........cvvreiniiiiiiiiis 102

Figure 4.3 — Example of sender experiencing a mixture of packet duplication and misordering

(top); a zoomed view of the circled area (BOUOM) ...coooveviiiiniiiimiieee 108
Figure 4.4 — Example of wrap-around SEQUENCE..........oreereieciieminiisice et 109
Figure 4.5 — Procedure to avoid false out-of-order sequences caused by wrap-around............ 109
Figure 5.1 — The NIST Net testbed configuration...........c.ccvviiiiin e 127
Figure 5.2 — TeSt CONfIGUIALIONcvcveiimiiitetei et e 128
Figure 5.3 — NS generated network SITUCIUFE...........cooiieiennmniiirie i 133

Figure 5.4 — Cumulative distribution of the (a) acknowledgment-based and (b) TCP-timestamp—
based RTT estimation errors for the NIST Net delay experimentscooveeecenecnncnnninn 136
Figure 5.5 — Plot of relative errors of TCP timestamp based inference as a function of delay
INtroduced by NIST Vet ..ottt e e 138

Figure 5.6 — Cumulative distribution of the acknowledgment-based RTT samples / TCP-

X1

Table of Figures

timestamps-based RTT samples ratio for the NIST Net dataset.cccmiirrciicnininnnes 139
Figure 5.7 — Relative error between the inferred and reported losses for (a) LostBefore and (b)
LOSIASIEr 10SS EVENS. ...cvvvimiimiminiieaccsa s tss s sceseni bbbt s 140
Figure 5.8 — Cumulative distribution of relative error for the bottleneck bandwidth estimation
USING @ 64KD/S DOMIENECKooveveeeeiecicteici e st s 142
Figure 5.9 — NS configuration used for RTT tests — path comprising three types of links: access
(4-2 and 3-5), aggregation (2-0 and 1-3), and core (0-1). ..ocvmemnriiniinicicciinns 144
Figure 5.10 — Cumulative distribution of the relative error between the sum of links delay and the
L1141 0= 1L B OO RSP PSSP PRSSPPFRISIPRPIRIRR 145
Figure 5.11 — Cumulative distribution of the relative error between the sum of links delay and the
ESHIMALEA RTTT <.oeiieieiceeeteecteeetes s esebaeeese st as s anneras s eaneea s s esabea s s e e e sh s aanr e an s e b e e n s s a e e e s 146
Figure 5.12 — Network topology used for losses — two 10-host 10MB/s networks connected via a
2Mb/s backbone link (between nodes 0 and 1) ... 147
Figure 5.13 — Plot of the lost data packets for each connection (+) as resulting from the TCP
analysis and (x) as reported by the NS trace...c...veoviieeiiiii e 148
Figure 5.14 — Plot of (+) sequence numbers from sender, (x) acknowledgments numbers from
receiver within a connection exhibiting erroneous retransSmissionsceevreiiiessisen. 148
Figure 5.15 — Plot of the relative sequence numbers for a connection with congestion window
limited by the TECEIVET.......ouieeeeeiit et st 150
Figure 5.16 — Plot of congestion window values, as resulting from (+) NS internal variable
cwnd_ and (x) TCP analysis inference (based on the connection from Figure 5.1) I 150
Figure 5.17 — Plot of the relative sequence numbers for @ CONNECHON.........oooeureviriiieiiiccnnns 151
Figure 5.18 — Plot of congestion window values, as resulting from (+) NS internal variable
cwnd_ and (x) TCP analysis inference (based on a connection with losses).............cc...... 152
Figure 6.1 Part of the traceroute output from UoP network to www.hotmail.com.................... 159

Figure 6.2 — Path distribution for the (a) all_probes and (b) good_probes scts, spring 2002

X1

Table of Figures

EXPETIMIENLS.vveeecmcuisisescnnsrnesessesass e e s b s cb s b e en e d e e e e L s E e E e E St st s 164
Figure 6.3 — Distribution of connections/unique 1P address.........cooocvininmnionninnicniiines 166
Figure 6.4 —RTT average [ms] cumulative distribution for: (a) autumn 2001, (b) spring 2002. 167

Figure 6.5 — RTT standard deviation [ms] cumulative distribution for: a) autumn 2001, b) spring

Figure 6.7 — TCP timestamp resolution for a) autumn 2001 b) spring 2002...........ccoveirireneceee 173
Figure 6.8 — Bottleneck bandwidth cumulative distribution for a) autumn 2001 and b) spring
2002. The two grey markers indicate ¢) the T1 (1.544Mb/s) boundary and d) the 10Mb/s
DOUNAATY ..ttt sttt st SRS s 176
Figure 6.9 — Packet loss rate distribution for visible loss events (a) 2001 and (b) 2002............ 178
Figure 6.10 — The sender packets from a page retrieval example from the 2002 round of

experiments (each packet is represented by the relative sequence number of the first byte)

... 179
Figure 6.11 — Packet loss distribution for inferred loss events (a) 2001 and (b) 2002............... 181
Figure 6.12 — Erroneous packet retransmission distribution (a) 2001 and (b) 2002.................. 183

Figure 6.13 — Cumulative distribution of connection size for a) autumn 2001 b) spring 2002..185
Figure 6.14 — Cumulative distribution of the initial congestion window size for the a) 2001 and
D) 2002 AALASELSooeeiceiccniie ettt e b s 187
Figure 6.15 — Cumulative distribution of the maximum congestion window size for the a) 2001
ANA b) 2002 dAtASELS....co.cveuerirererieiereerece i s et 187
Figure 6.16 — Throughput distribution for the a} autumn 2001 dataset and the subsets of: b) 2-
packet c) 3-packet, and d) 4-or-more-packets CONNECLONS..........ccoveuvueriniininrinesrinnienenaes 190
Figure 6.17 — Throughput distribution for the connections with at least 4 data packets for the a)

autumn 2001 and b) Spring 2002 trACEScooveveerrrremiereieisieessre ettt st s 191

Table of Figures

Figure 6.18 — Cumulative distribution of the a)/c) connection time, b)/d) data connection time for
the autumn 2001 / Spring 2002 trACESoieemeriivreirecesest st 193
Figure 6.19 — Distribution of page content in (top) bytes / page and (bottom) objects / page ... 194
Figure 6.20 — RTT average distribution for the UoP backbone traces............ccoevevevccciniencenns 196
Figure 6.21 — RTT standard deviation distribution for the UoP backbone traces.............c.c...... 196
Figure 6.22 — RTT average values for a traceroute to cnn.com using a host from a) UoP network
b) Pipex ISP (the initial 30ms difference is due to the ADSL connectivity, compared with
the 100MDBY/S UOP @CCESS)vvivvevrearenseesieeseeermercestessessasesssesnrenasstssssesmtsasssnss s sassssanssanenes 197
Figure 6.23 — Distribution of RTT samples based on acknowledgments vs. RTT samples based
on TCP timestamp for the UoP dataset..........ccovrieiieinininenee e 199

Figure 6.24 — TCP timestamp resolution of the a) TCP clients and b) TCP servers for the UoP

Figure 6.25 — Packet loss rate cumulative distribution for (a) visible, (b) inferred, and (c)
avoidable loss events within the UoP dataset............cooueeviiimiieiminieevenaees 201
Figure 6.26 — Bottleneck bandwidth cumulative distribution for the UoP dataset. The three grey
markers indicate a) the T1 (1.544Mb/s) boundary, b) the E1 (2.048Mb/s), and d) the 10Mb/s
DOURAANY ...ttt ba e r e e e st bbb RS e e 202
Figure 6.27 — Connection Size analysisccieeeieieieiinioneniit ettt e 203
Figure 6.28 — Cumulative distribution of the (a) initial and (b) maximum congestion window size
fOF LhE UOP IFACES ...oovvivvieceviceibeesaeeeeeeeeree et et sesesassr e aesab s e san s s sbbnar e sm et e sm s amn et en 205
Figure 6.29 — Thput distribution for a) entire UoP dataset and b) only 4+ packets connections
from the UOP dataSel.........oeeceeiieeecceciieieer ettt e e s s s s ss s st s s e 207
Figure 6.30 — Connection exhibiting a possible timestamp errorc.ccomeienmicesnsiciaiinnanes 207
Figure 6.31 — Cumulative distribution of the a) total and b) data transfer only duration of
connections from the UoP datasetcoeeeermiiriiiiiiiiiniiesieceee e 208

Figure 7.1 — IDA processing diagram — basic representation (adapted from [Fayyad et al, 1996])

X1V

Table of Figures

Figure 7.2 — IDA processing diagram — basiC representationoceoeeueieninneneinincnsienes 222
Figure 8.1 — The structure of the 3-6-3-1 neural network used during the preliminary tests..... 247
Figure 8.2 MSE=f{cycles) for exhaustive training of the RYL. dataset, with a 10% testing (a) and
90% training (b) split, using n=0.01, v=0.0, p=0.1, ¢=0.1 (left) and n=0.1, ==0.0, p=0.1,
o T I (71 119 FOU OO OSSOSO PP PRI SR SRR 249
Figure 8.3 — MSE=f(cycles) for exhaustive training of the RYL dataset, using (a) n=0.01, =0.0,
1=0.1, ¢=0.1, (b) n=0.1, 1=0.0, p=0.1, ¢=0.1, and (c) n=0.9, =0.0, p=0.1, ¢=0.1 250
Figure 8.4 MSE=f(cycles) for two different learning processes: (left) slow convergence, with

1=0.1, =0.0, p=0.1, c=0.1, and (right) fast convergence, with n=0.5, t=0.0, p=0.7, c=0.1

... 251
Figure 8.5 MSE=f(n,p) for ne[0.1;0.9] and pe[0.1;0.9] (v=0.0, c=0.1)cccerrnrinreens 253
Figure 8.6 — MSE=f{n,p) for ne€[0.01;0.1] and pe[0.1;0.9] (x=0.0, c=0.1) ..ccevrrrrniiiirncens 254

Figure 8.7 — Plot of the real values vs. estimated values, as resulting from the NS dataset 256
Figure 8.8 Cumulative distribution of the relative error for the RYL dataset using the (a) neural
network model and (b) mathematical model ... 258
Figure 8.9 Plot of the real values vs. estimated values, as resulting from the RYL dataset....... 260
Figure 8.10 Error distribution for the RYL dataset using the (a) neural network model and (b)
mathematical MOE]vvvieiiirreere ettt ey e s eb st esa s 261
Figure 8.11 Results from 100 training SESSIONSc.cecneeeienincciinti s 263
Figure 8.12 Plot of the real values vs. estimated values, as resulting from the UoP dataset....... 265
Figure 8.13 Eror distribution for the UoP dataset using the (a) neural network model and (b)
mathematical MOdelcoomeeeiii i e 266
Figure 8.14 — The structure of the 5-10-5-1 neural network used during the preliminary tests . 268
Figure 8.15 — MSE=f(cycles) for exhaustive training of the UoPx dataset, with a 6% testing (a)
and 94% training (b) split, using n=0.01, t=0.0, p=0.1, ¢=0.1 (left) and n=0.1, v=0.0, p=0.1,
XV

Table of Figures

Fo R G111 YOO PO OO OR OO 269
Figure 8.16 — MSE=f(n,p) for (top) ne[0.1;0.9] and pe[0.1;0.9] and (bottom) ne[0.1;0.9] and
HE[0.150.9] (T=0.0, €=0.1) o.ooimiriieictiieteeeieicr ettt 271
Figure 8.17 — Distributions of values after using (a) linear, (b) logarithmic, (c) exponential, and
(d) softmax scaling to the UoP trace 1088 SUDSELc.comrimmiiimieniiriiees 273
Figure 8.18 Cumulative distribution of relative error as resulting after applying (a) linear, (b)
logarithmic, (c) exponential, and (d) softimax scaling to the UoP trace loss subset............ 274
Figure 8.19 — Plot of the real values vs. the neural network estimated values, as resulting from
LhE VS 10SS SUDSEL.........viieiiirivriseeesieeirtecsreeacessee e s iessesesaassraasbbassha s eamta s nasis s e et s s ms et 275
Figure 8.20 — Cumulative distributions of the relative error resulting from using the (a)
mathematical model and (b) neural network model with the NS loss subset..........c.......... 276
Figure 8.21 — Plot of the real values vs. the neural network estimated values, as resulting from
ThE QP 10SS SUDSEL ...c..veievieeeecieieeieeeetbess e seses e ae s secmee s be s sas e s assrn s meaa s e sanaa s arenan s e an st ssnns 277
Figure 8.22 — Plot of the real values vs. the resulting prediction relative error, as resulting from
the UOP 0SS SUDSELeeviiireiieeeecieeeeteeeeiecsibbes st e e e sabt e e s enaae s sarsa s samssae s s samen et bbsenan 278
Figure 8.23 — Cumulative distributions of the (a) actual values and (b) estimated values from the
LJOP 10SS SUDSEL ... veeeunreeeeniieeeiiie e ece st e te st een e res s bt s s s s e e sa s e e sa s e e as st s s amnesansssaatessemeasanabes 279

Figure 8.24 Accuracy of the (b) NN model and (a) mathematical model for the UoP loss subset

... 279
Figure A.1 — Network parameter inference based on RTP @nalysis..........cooemrenininiiniiciiinns 321
Figure A.2: RTP and RTCP flows MONIOTINg........cceiniiieiiiiiieiet st 323
Figure A.3: RTP B—A jitter distribution (from RTP analysis).........cccooeovcniciiininniennns 324
Figure A.4: RTP jitter distribution (from RTCP parsing)cc.occvenninnnennns reeneeeeereraesrneas 325

XVi

Acknowledgments

Acknowledgments

I would principally like to acknowledge the contributions of the following people:

Professor Emmanuel Ifeachor, my director of studies, for his guidance in research and for

setting a high standard, both for this project and for my entire research.

Dr. Steven Furnell, for his technical and professional advice, his personal support

throughout the project, and for his patience while reading countless drafi versions of the

thesis.

Dr. Benn Lines, for his technical advice and encouragements.

Dominique LeFoll, from Actemna, for providing me the opportunity of pursuing this

research and for his input and guidance during the monitoring part of the research.

My colleagues from the Network Research Group for their friendship and for their help,

whenever requested.

My family and Oana, my girlfriend, for their support and encouragements, without which

this thesis would never have been written.

XVl

Glossary

Glossary
ACK Acknowledgment
ANN Artificial Neural Network(s)
AMP Active Measurement Project
BSD Berkeley Software Distribution
CBR Constant Bit Rate
IDA Intelligent Data Analysis
ITU International Telecommunication Union
ISP Internet Service Provider
LBNL Lawrence Berkeley National Laboratory
MolP Multimedia over IP
MSE Mean Square Error
MSS Maximum Segment Size
NIMI National Internet Measurement Infrastructure
NAI Network Analysis Infrastructure
NAT Network Address Translation

NLANR National Laboratory for Applied Network Research

NS [IS1] Network Simulator

(0N Operating System

PMA Passive Measurement and Analysis
PSTN Public switched telephone network
RFC Request For Comments

RTCP Realtime Transport Contro! Protocol
RTO Retransmission TimeOut

RTP Realtime Transport Protocol

XVl

Glossary

RTT

RYL

SLA

SNNS

VolP

Round Trip Time (delay)

Random Yahoo Link

Service Level Agreement

Stuttgart Neural Network Simulator
Time To Live

Voice over IP

X1X

Author’s Declaration

AUTHOR'S DECLARATION

At no time during the registration for the degree of Doctor of Philosophy has the author

been registered for any other University award.

This study was financed with funding from Acterna and the University of Plymouth.

Relevant scientific seminars and conferences were regularly attended at which the work
was presented. Contacts from Acterna provided technical advice and guidance,
particularly in the early stages of the project. Details of the published papers are listed in

the Appendices

XX

Chapter 1 - Introduction

Chapter 1. Introduction

Chapter 1 - Introduction

Since its inception, the Internet has witnessed an exponential increase in the number of hosts it
interconnects. A series of network studies has shown that the number of allocated IP addresses
increased substantially between 1993 and 1999, growth that slowed down in the last few years
[ISC 2003]; while this slowdown may have a variety of causes, such as connectivity via Network
Address Translation (NAT) devices, one of the reasons may also be the saturation of Internet
provisioning. This is one of the reasons why, during the past few years, the networking area
tumed from providing connectivity to providing quality, change reflected in application
performance. In this context, Internet Service Providers (ISPs) and customers focused their
interest towards observing, understanding, and controlling the performance characteristics of

their network and their connectivity to their neighbours [NYI 2003] [MCI 2003], [Pipex 2003].

The increased interest to control network and application performance was hindered by the ‘best-
effort’ character of IP (Internet Protocol), which does not provide any quality guarantees. This is
why the focus of the research moved towards observing the network paths features and

estimating performance.

Current monitoring approaches use active monitoring or passive offline analysis of stored traffic
1o obtain a precise image of the network status. Although successful in their purpose, such
methods present several disadvantages. They require an infrastructure of active probes and
capturing devices deployed throughout the studied internet and typical tests involve traffic
exchanged between these probes, traffic that adds to the network congestion. As the Internet has
became more complex, such infrastructures become less viable due to their scalability issues and
the resulting amount of traffic. Also, these infrastructures provide information regarding the
aggregation and core segments of the network, where the probes are likely to be located, rather

than the quality parameters for the end-networks, which are of interest for the end-user. With

Chapter | - Introduction

regards to offline trace analysis, the result lacks timeliness: the characteristics of the studied
internetwork are likely to change between the time when the traces were collected and the

present.

One of the aims of the project on which this thesis is based is to propose a novel, online, non-
intrusive method to analyse traffic, using a single-point of capture, in order to reduce or
eliminate the disadvantages of current network monitoring solutions. The proposed method aims
to overcome the above-listed limitations and to allow a new approach for observing network

conditions such as loss, delay, and bottleneck bandwidth.

In parallel with studying the properties of the Internet, there is a growing interest in the area of
protocol behaviour modelling. TCP is a typical focus for such research, particularly due to its
network status awareness and self-adjusting nature. Various studies aimed to characterise
mathematically the behaviour of data transfers in order to improve efficiency and to allow
performance prediction. The models are all based upon the same theoretical concept: evaluate
the throughput by emulating the variations in transmission pace during a TCP connection. This
mathematical approach appeared to be accurate when validated, but it was designed for long
connections, atypical for current typical Internet traffic, and it requires comprehensive
knowledge about the behaviour of the endpoints. Because of this, the method requires prior study
for any new TCP implementations and, more important, it cannot provide reliable estimates for

senders with unknown behaviour.

This research aims to improve the area of performance modelling by proposing a neural network
based model to evaluate TCP performance. The goal is to provide a model that describes
accurately, relative to the mathematical models, the relationship between network parameters

and the resulting transport performance.

Chapter 1 - introduction

The users’ demand for quality is likely to increase in the near future. In such a performance-
focused environment, the areas of network monitoring and quality evaluation will occupy a
critical role. There is a need to improve existing methods in these areas or to propose novel
approaches that offer a better alternative in terms of accuracy. The learning capabilities of the
neural network will make it possible for the model to be adapted for future implementations or

application requirements.

1.1 Aims and objectives

This thesis advances the understanding of current Internet characteristics and transfer
performance. Two main areas of study have been identified: network monitoring and

performance prediction.

The first aim of the thesis is to provide a novel approach to the area of traffic monitoring. The
proposed method infers the current status of network paths in a non-invasive manner, using
online analysis of existing traffic. 1t will be shown that, although current active measurement
architectures are successful in examining and describing network characteristics, the complexity

of the Internet is likely to make them costly in terms of network resources.

The second aim of the thesis is to provide a novel robust alternative, using a neural network
based approach, to current performance prediction methods. The research aims to observe that
current, mathematical models, the only alternative of inferring application performance, although
successful in explaining the theoretical behaviour, may perform poorly when dealing with real
traffic. The proposed method uses a neural network model to approximate the relationship

between network parameters and data transfer performance. The proposed approach will be

4

Chapter | - Introduction

evaluated in terms of accuracy relative to the existing mathematical models.

To achieve these aims, the research programme had the following specific objectives:

1. To identify the current state of the art in the areas of network conditions analysis
(encompassing topics such as monitoring, traffic analysis, or network probing) and TCP
performance modelling.

2. To present a novel method of single-point, non-intrusive, online traffic analysis and
monitoring that overcomes the disadvantages of existing analysis techniques.

3. To produce and evaluate a prototype for the proposed traffic analysis method, using
synthetic and controlled traffic.

4. To produce a snapshot of Internet paths conditions, as seen from the University of
Plymouth connectivity perspective by applying the developed traffic analysis method
onto sources of uncontrolled traffic.

5. To propose a novel TCP performance model, based on knowledge of prior connections,
that overcomes limitations of existing mathematical models and provides better accuracy.

6. To evaluate the accuracy of the proposed model, using a combination of synthetic and

uncontrolled traffic.

1.2 Thesis content

The thesis begins with an overview of the current state of the art for the areas of traffic
monitoring and performance modelling. This overview, presented in Chapter 2, starts with a
brief description of several essential TCP/IP core protocols, which collectively form the focus of
the monitored traffic. This is continued with a review of the current efforts in the area of network

monitoring, together with the focus of these studies and their purpose, followed by a taxonomy

Chapter 1 - Introduction

of the techniques described. The third part of the overview discusses the efforts in the area of
TCP modelling, starting from early TCP steady state models up to recent models slightly adapted
for short-lived connections. The section concludes with an outline of environments that may be
used for validating traffic analysis and modelling methods. It is noted that such environments
range from traffic with a synthetic element, generated using either a network simulator or a
network emulator, through semi-controlled traffic, produced with the aid of a random link

generator, up to real traffic, collected from a network backbone

Chapter 3 builds upon the monitoring overview from Chapter 2 in its first section. It provides a
summary of characteristics that would contribute to an ideal monitoring method, all aiming to
overcome the limitations of existing methods. The chapter then continues by presenting the
proposed monitoring method, which uses the issues highlighted in the previous section. The
discussion includes the targeted traffic and then follows with the framework and theoretical
aspects of the technique. The chapter describes the details of TCP and real-time analysis, the
target protocols of the proposed method. The chapter finishes with an overview of the

achievements of the proposed method.

The proposed monitoring method is analysed throughout Chapter 4. The structure of the study
follows the inferred network parameters. Each section highlights advantages or limitations of the
method. The advantages are presented by comparing the method with previous approaches. The
limitations consist of particular cases when the inference routines may lead to errors by

misinterpreting certain network events.

Chapter 5 presents the validation tests run to evaluate the accuracy of the method described in
Chapter 3. The chapter starts by identifying supervised simulated or emulated environments that

may be used to validate the accuracy of the method, based on the outline from section 2.6. The

Chapter 1 - Introduction

validation process uses these environments and takes into consideration the limitations

highlighted in Chapter 4.

Chapter 6 reveals the use of the proposed TCP monitoring method to obtain a holistic view of
current Internet paths and web page transfer characteristics. The study starts by describing semi-
controlled and real traffic sources, together with the scalability issues involved. The remainder of
the chapter provides an image of the Internet, as viewed through the analysed traces. Concluding,
the discussion highlights the fact that the images provided by the two types of sources are very
similar, showing the Internet to be dominated by low-delay low-loss paths, and short-lived TCP

connections.

Chapter 7 advances the research to the next level, from studying network monitoring to building
the relationship between network conditions and application performance. The chapter proposes
a novel TCP performance prediction model, based on Intelligent Data Analysis. After starting
with a justification for using DA, the chapter presents the entire process, starting with data pre-

processing, followed by core analysis, and ending with interpretation of the results.

Chapter 8 compares the accuracy of the IDA-based TCP models proposed in Chapter 7 with the
results obtained using a traditional mathematical approach. Two separate models are provided,
one for connections without losses and one for connections that encountered losses. The
validation tests are separately performed on a wide range of traffic conditions, ranging from
simulated traffic to real network traffic. The results are encouraging, particularly for connections
without losses; the discussion also highlights the simplicity of synthetic traffic and the

difficulties encountered when modelling connections with losses.

Chapter 9 concludes the thesis. It highlights the achievements of this research programme in the

Chapter 1 - Introduction

areas of monitoring and modelling, as well as the limitations encountered throughout the studies

performed. Finally, it summarises a number of promising directions for future work.

The thesis includes three appendices to provide further clarification of the issues presented.
Appendix A provides details regarding the real-time traffic analysis method; the presentation
starts by describing the method itself, it continues with details on its implementation, and it
concludes with the validation tests run to benchmark it. Appendix B includes several scripts
written during various stages of the research for automating the neural network processing of
traces (Appendix B.1), generating synthetic packet traces using a network simulator (Appendix
B.2), and retrieving web pages using a command-line web client (Appendix B.3)'. Finally,

Appendix C includes copies of selected research papers arising from the project.

! The implementation of the proposed traffic analysis method was considered too large to be included in the
appendices, but exists in electronic form on the attached CD.

Chapter 2 - Traffic analysis and performance modelling

Chapter 2. Traffic analysis and performance modelling

Chapter 2 - Traffic analysis and performance modelling

2.1 Introduction

The literature survey covers four areas that were involved in this research programme: network
protocols, network monitoring, performance modelling, and sources of traffic. In order to
understand the domain of traffic analysis, the review will commence with the theory basis for
Internet communication — the protocols. For each protocol, the presentation will expand on its
functionality and will highlight the characteristics that are likely to influence its behaviour and

performance.

The second part of the literature review will focus on the state of the art achieved in studying
network traffic. The discussion will start by justifying the increasing need for monitoring, caused
by the evolution of Internet provisioning from basic customer connectivity towards offering
quality to network applications. The section will then expand on state of the art for network
analysis methods from the historical approaches to the present days. These methods will be then

grouped in a taxonomy based on three criteria:

— interaction between the monitoring tool and the measured environment, i.e. fow the
method obtains its output data

— timeliness of the obtained information, i.e. when is the method applied onto the studied
environment

— information resulting from applying the method, i.e. what the method provides as a result

of the analysis

The third part follows the understanding of traffic by studying the relationship between the
achieved performance and the parameters which influence it. After previously presenting the

rules of transferring data and describing how current approaches manage to identify the network

10

Chapter 2 - Traffic analysis and performance modelling

conditions, the discussion continues with an overview of performance modelling. The section
describes the efforts made towards producing a mathematical model to estimate the performance
achieved by TCP connections. The presentation will follow the improvements that various
studies brought to the initial idea of formalising the TCP transfer based on the changes that loss
and delay inflict on the amount of unacknowledged data that the sender may transmit at one

time.

The fourth part of the chapter overviews the types of traffic sources that may be used when
validating a monitoring method or evaluating the parameters of the Intemet. The section
identifies several types of sources, ranging from synthetic traffic, produced without releasing any
actual packets on a network, through controlled network or endpoint conditions, up to real,
uncontrolled traffic, produced by unknown endpoints. As it will be highlighted, each of these
sources is used in one of the project stages, either to validate a proposed method, or to infer the

current status of the Intemnet.

The last section of this chapter summarises the gathered information and opens the way towards

the proposed methods and models within this research programme.

2.2 The Intemet protocols

A series of studies run since 1993 [ISC 2003] has shown that the Internet has become a more and
more complex collection of networks through its exponential increase in terms of host numbers.
From a human perspective, this success is most likely due to the ease that the Internet has shown
in disseminating knowledge, allowing virtually everybody to publicise and access information.
This openness was strongly encouraged in the past decade by unifying the access methods

through the advent of the World Wide Web.

11

Chapter 2 - Traffic analysis and performance modelling

From a technical perspective, this fast expansion was made possible only due to the robustness
and efficiency of the protocols involved in transporting the information. The protocols gathered
within the TCP/IP stack, currently running the Internet, were standardised in the early 1980s;
their principles, with add-ons to improve efficiency, are still in place, governing present transfers
of data. This section discusses only five of them, relevant to the focus of this study. The first
discussed is the Intemnet Protocol (IP) [ARPA 1981a), providing connectivity at the network
layer, followed by the main choice for reliable transport protocol, Transmission Control Protocol
(TCP) [ARPA 1981b]. The discussion ends with a short overview of HyperText Transfer

Protocol (HTTP) [Ficlding ef al 1997], which provides the functionality for WWW.

The following sections assume a basic level of familiarity with the TCP/IP stack and the
described protocols. If certain aspects may be insufficiently expanded, the recommended sources

for further clarifications are the documents listed as sources in each section.

2.2.1 Internet Protocol

IP, the core of the Internet, provides an addressing infrastructure for the network and basic
mechanisms of error detection and fragmentation-and-reassembly [ARPA 1981a]. Although its
header inciudes functionality for preferential service of traffic, due to the complexity of the
Internet and the peering character of its carriers (both of them discouraging end-to-end quality of
service provisioning), it is only used as a best-effort protocol. From the point of view of this
project, IP provided valuable information in two areas. First, it helped defining unique flows,
through the combination of IP addresses and ports described in section 3.2. Second, it allows,
through its fragmentation functionality, differentiation between packet misordering and packet

loss, via an inference mechanism presented in section 3.3.

12

Chapter 2 - Traffic analysis and performance modelling

2.2.2 Transmission Control Protocol

From a technical perspective, TCP is a connection-oriented transport protocol which provides for
end-to-end reliable transfer, and includes self-tuning according to the conditions of the network
[ARPA 1981b], being the most complex from the protocols described in this section. The
positive side of its complexity is its robustness and flexibility; it is based on Jon Postel’s
philosophy “be conservative in what you do, be liberal in what you accept from others” [ARPA

1981b].

The connection-oriented character of TCP is achieved through a state machine, thoroughly
described in the defining Request For Comments 793 [ARPA 1981b]. The state machine
includes 11 states: one for inactivity (CLOSED), three for connection initiation (LISTEN, SYN
SENT, SYN RCVD), one for data transfer (ESTABLISHED), and six for connection closing
(FIN WAIT-1, CLOSING, TIME WAIT, CLOSE WAIT, LAST-ACK). The transitions between
states are determined by system calls (CLOSE, passive OPEN), arrival of packets with set
control bits (SYN, FIN, ACK, RST), or expiration of timers (Maximum Segment Lifetime). In
order to identify the lifespan of a TCP connection based on the packets exchanged, this state
machine must be replicated.

The reliable transfer is achicved through data segmenting and sequencing. The transfer of a data
object/stream is realised by splitting the information into segments. The sender associates a
sequence number 1o each transmitted byte from the data stream; to simplify the mechanism, each
transmitted segment carries the sequence number associated with the first data byte it carries.
The receiver returns acknowledgment numbers to confirm the next data byte expected. This
process uses a mechanism known as delayed acknowledgments to reduce the number of

acknowledgment packets returned to the sender: rather than sending an acknowledgment for

13

Chapter 2 - Traffic analysis and performance modelling

each data segment, the receiver produces an acknowledgment for every n data segments; in case
the sender has less than n segments to send, the receiver will send an acknowledgment at the
expiration of an associated timer. Current implementations use #=2, which is why this policy is
also known as every-other acknowledging. Loss is identified through duplicate acknowledgments
or retransmission timeout (RTO). The first category of losses is detected when the receiver
repeatedly acknowledges (through duplicate acknowledgments) a data byte that bears a sequence
number lower than the last byte sent'. The retransmission is triggered when d=3 duplicate
acknowledgments are received (this is to eliminate minor misordering events). The second
category of losses is detected when a sent data segment is not acknowledged before a timer

expires.

The timer, known as RTO timer, is subject to a relatively coarse resolution (which will be
discussed in section 2.5.2) and is calculated using an RTT estimate. This estimate indicates the
maximum delay that a data segment and its acknowledgment can encounter as they transit the
network path between the two endpoints. The value is computed by the TCP client using the

following algorithm, as thoroughly explained in [Stevens 1995]:

— Determine a smoothed RTT (SRTT):

SRTT « SRTT+g-|RTT - SRTT)| 2.1

where RTT is the last measured RTT, and g is a gain factor; set to 1/8

! ‘There is the choice, enabled and functional in approximately a quarter of servers — 28% according to [Floyd 2001]
or 14% according to [Wendland 2000], of Selective ACKnowledgments (SACK), [Mathis er af 1996] where, rather
than sending duplicate acknowledgments to indicate the loss of a segment, the receiver sends a SACK packet to
indicate the missing data segment,

14

Chapter 2 - Traffic analysis and performance modelling

— Determine the RTT variation (RTTyq):

RTT, gy RTT,,, +h-|RTT - SRTT| 22

where h is the gain factor for RT Ty, set to 0.25

— Compute the refransmission timeout (RTO) as:

RTO =SRTT + B-RTT,,, 2.3

where P is the delay variance factor, specified to be 2.0 in [Jacobson and Karels 1988], then

afier further research, changed to 4.0 in [Jacobson 1990]

- Apply exponential back-off if the packet is lost more than once.

Even at the sender a loss is inferred rather than announced by the arrival of a packet and section
4.2 discusses some of the difficulties encountered in the inference process based upon

observation of the packet arrival sequence.

The success of TCP is due to its network-aware, self-tuning character. The number of data
segments a sender may transmit at any time, providing that the sender has a large amount of data
to transmit, is limited by an upper-bound, called congestion window and measured typically in
data segments (some implementations use bytes). This limit is controlled by the
acknowledgments received from the corresponding TCP entity, which are regarded as an
indication of the current network status, i.e. delay and loss. The congestion window is increased,
after a policy dependent on the historical network conditions (described below) every time new

acknowledgments are received, and decreased every time a data loss is inferred.

15

Chapter 2 - Traffic analysis and performance modelling

Acknowledgments are generated when new data segments arrive at the receiver and the transport
of both the data segments and acknowledgments is subject to the network bandwidth and delay.
As a result, the amount of data that a TCP sender injects into the network is determined by the

network conditions and limitations in the congestion window imposed by the receiver.

The packet loss is inferred through the mechanism described above, while the network delay
results from the fact that an acknowledgment for a data segment will arrive at the sender only
after a certain delay, named the Round Trip Time (RTT) delay. The RTT is defined as the time it
takes for the data segment to travel from the sender to the receiver plus the time it takes for the
acknowledgment to propagate back, from the receiver to the sender. From the TCP perspective,

the RTT govems the pacing of packets during the data exchange.

This is why, in spite of the fact that the data transfer is continuous, TCP transfers may be divided
into transmission rounds [Padhye ef a/ 1998]. A transmission round can be characterised by the
data segments belonging to a congestion window and the associated acknowledgments: a sender
cannot transmit newer data in a round before receiving (at least some of) the acknowledgments

for the data already sent.

The essence of the self-tuning character of TCP lies in its congestion window update algorithms.
The congestion window is initiatised at the start of the data transfer by the sender with an
implementation-dependent value (the initial congestion window) [Floyd 2001]. Another preset
variable is the receiver advertised window (rwnd), advertised throughout a TCP connection. The
initial phase of the update, used from the beginning of the data transfer until a loss occurs, is
governed by the slow start algorithm. During this phase the sender increments the congestion
window for every received acknowledgment. As a result, the congestion window increases

exponentially over each round. The second algorithm, congestion avoidance allows linear

16

Chapter 2 - Traffic analysis and performance modelling

increases (one data segment per round) and is triggered by packet loss. The two algorithms,
based on the way that loss is detected, alter the value of the congestion window and its update
policy. When a loss occurs, the congestion window is reset to its initial value; slow start is used
until the congestion window reaches half of the value it was before the loss occurred, then

congestion avoidance is initiated

The two algorithms described above were later refined by two more in order to account for the
specific network conditions [Stevens 1997]. The first refinement, fast retransmit, stated that a
retransmission should occur if three or more duplicate acknowledgments are received, regardless
of the retransmission timers. In addition, the second refinement, fasf recovery, recommended that
the congestion window should be halved rather than reset to the initial value and congestion

avoidance should be used after that.

2.2.3 HyperText Transfer Protocol

HTTP is the application protocol used by web browsing applications, based on a request (named
method in the HTTP specification) — response mechanism [Fielding et al 1997]. Typically, the
method is a (web) client request for an object from a (web) server; the response is the server
returning the object to the client. The initial protocol [Bemners-Lee ef al 1996] had a major
limitation: it required opening a new connection for each object retrieved from the server. With
the additional 6 packets and 3 RTT required for opening and closing each TCP connection, this
behaviour had a negative impact on the download speed for e.g. web pages incorporating
multiple images. This problem was adjusted in HTTP v1.1 [Fielding er al 1997], which allows
TCP connections to transport multiple objects, a feature named persistent connections. The new
version also does not force downloads to be sequential (i.e. having to wait for an object to

download before requesting further ones) by allowing multiple requests to be made — pipelined

17

Chapter 2 - Traffic analysis and performance modelling

requests. The impact that these add-ons have on performance was studied before [Heidemann er
al 1997}, but a part of this study, section 6.5, will look at the overall results obtained in practice

from HTTP v.1.1 client-server interaction.

2.3 Traffic and network analysis trends: from Intemet experiments to monitoring

2.3.1 The need to monitor network status

The growth of the Internet was not followed by similar advances in understanding and predicting
its evolution. Until recently, the Internet was still being seen as a developing service due to its
novelty and, because of that, the connection / link / network monitoring implied only availability
tests. More recently, the nature of the information travelling on the Intemet has changed.
Technology evolution, expressed mainly in bandwidth increments, and new emerging
applications have moved the content of the data exchanged from mainly-text to multimedia-rich
and even real-time. The multimedia and real-time applications, aside from opening new avenues
for information publishing or broadcasting on the Internet, also brought in new requirements for
the network characteristics. Timing and packet loss, which were less of a problem for browsing
small web pages or transiting e-mail messages, became an issue when downloading or streaming

large multimedia files.

This move impacted on the perception of the Internet service, with beneficiaries requiring and
Internet providers offering boundaries for the parameters of their connection [Woods 2000],
[Pappalardo 2002], [UUNET 2003b]. It is interesting to note that the need for quality of service
reached even the residential customers. A survey run in 2001 on 14,000 residential Internet users
found that 70% of the respondents would switch to a different ISP due to the quality that their

current provider offers [NNRI 2003].

18

Chapter 2 - Traffic analysis and performance modelling

In recent years, two main directions emerged in the area of Internet quality provisioning:
integrated services (intserv) and differentiated services (diffserv). Intserv, a concept that is
behind the Resource Reservation Setup Protocol (RSVP) [Braden et al 1997], is based on a
circuit reservation infrastructure. RSVP requires an intemet with intelligent nodes, capable of
signalling between them and reserve resources based on requests placed by receivers. The
approach is currently considered unscalable to larger networks due to the signalling
infrastructure and traffic overheads required for its functionality. At the other extreme, diffserv
[Blake et al 1998] has a more simplistic approach, traffic classification: set for each packet a
certain priority, then instruct the transiting nodes to obey these priorities. Diffserv is based on
redefining the Type of Service field used in the IP version 4 header [ARPA 198la] and
providing functionality to the Traffic Class field in the IP version 6 header [Deering and Hinden

1998], both designed to differentiate between traffic priorities.

In spite of all these initiatives, the current situation is still a best-effort 1P governing the Internet,
due to complications that quality provisioning would introduce (one of the typical problems
being billing between peering networks). This is why, in order to balance the need for quality
with the lack of support, the ISPs have to start paying attention to the quality their networks offer
to the transiting traffic. In this context, the first step is to evaluate the network parameters in a
manner that should reflect the quality that end-users receive. Such tests currently may include
network status information such as latency and packet loss, using network probing to peering
networks [NYI 2003) [MCI 2003], [Pipex 2003]. This is far from satisfactory, as it provides
information only at the core of the network, without expanding on the access segment parameters
and, of similar importance, to the parameters for the rest of the path. Starting from these
commercial indicators of interest, this section will expand on the research directions proposed in

the area of network monitoring and, at the end, will lead to a proposed traffic monitoring

19

Chapter 2 - Traffic analysis and performance modelling

approach that aims to satisfy the requirements of current and future network monitoring needs.

2.3.2 The evolution of network performance analysis

The network and traffic analysis started in the late 60s — early 70s with Internet experiments that
aimed to provide information about the typical behaviour of the Intemnet [Kleinrock 1976]. Until
mid 90s, the studies aimed to describe the entire Internet; due to its size at the time. Such an aim
could be considered satisfied if the study analysed the traffic over a set of international link
characteristics, such as [Wakeman e. al 1992], [Asaba ef al 1992], or the behaviour of Internet
paths for generated traffic, as in [Bolot 1993]. The international links traffic analysis was limited
in the sense that the studies analysed only aggregate information of the traffic, such as link
utilisation, data volume, connections rate, percentage of traffic per protocols, etc. This provided
valuable information with regards to the amount and nature of the traffic travelling over the
Internet, but did little in the area of studying the properties of the paths involved. On the other
hand, the method used in [Bolot 1993] aimed precisely to determine the path characteristics, loss
and delay, but used generated traffic to achieve this; further, the traffic was constituted from ping
ICMP requests, which were emulating a Constant Bit Rate (CBR) source rather than TCP traffic
(due, for example, to the generic bursty behaviour of TCP traffic). An important study was the
one made by Mogul in [1992], where he laid the foundation for offline analysis of TCP traces.
The study indicated the issues that may be encountered (most of them relating to the
computational limitations at the time) as well as the analysis procedure and provided basic

information about the characteristics of the studied paths.

As the Internet evolved, with the web boom starting in the mid-90s, holistic studies of the
Internet network properties became more expensive to perform in terms of setup and complexity.

Recently, the most well-known individual research attempt was made by Paxson between 1995

20

Chapter 2 - Traffic analysis and performance modelling

and 1997, who probed a mesh of Intemet paths. The results were extensively described in
[Paxson 1997a] and various aspects were summarised or expanded in [Paxson 1997b-c). After
this large scale experiment, Paxson observed [1997d] the complexity of the Internet then
proposed and developed [Paxson ef a/ 1998] a monitoring infrastructure (NIME — National
Internet Measurement Infrastructure), as part of The National Laboratory for Applied Network
Research (NLANR), to continue the study [Paxson et al 2000] of the Internet in a holistic way.
All his experiments, including NIMI, were based on an intrusive method, which consisted of

multiple file transfers followed by offline trace analysis.

Most of the published studies from the recent years based their results on end network traffic
analysis. Starting with 93-94, they looked at end networks, either on a theoretical basis, as in
{Leland ef al 1994], or, most common, trace based, as in [Willinger e al 1995] and [Crovella and
Bestavros 1996], analysing self similarity in particular. They were continued by trace-based
studies such as the ones based on major web servers traffic, either a busy one, such as the Atianta
Olympics server, studied in [Balakrishan er al 1997, 1998] or an undisclosed one, monitored for
a long period of time (one and a half years) in [Allman 2000). These studies indicate a definite
trend in Internet traffic analysis: while 10-15 years ago a brief experiment was sufficient to
define typical behaviour on the Internet, the current complexity and dynamics of the Internet

[Paxson 1997d] no longer allow for such generic conclusions to be drawn.

Special attention has 1o be paid to papers analysing the variation of Internet paths properties in
time. Studies from this category start with the previously mentioned analysis made by Bolot in
[1993]), where he looked at the short-term correlation between packet losses, followed by
Mukherjee’s study [Mukherjee 1994], where he modelled the delay with a Gamma distribution
whose parameters depended on the path analysed and time, followed by Yajnik [1999], who

applied Markov Chain models to packet losses and found correlaticns of up to Is for the loss on

21

Chapter 2 - Traffic analysis and performance modelling

the analysed paths. More recent are the studies have been made by Zhang, [2000, 2001], that
looked at the stationarity of network properties for a set of Internet paths; the study also included

a comparison with earlier measurements made by Paxson [1997c].

Aside from the end network studies, there are currently several initiatives of Internet
measurement for research purposes. One of them is NIMI [NIMI 2003], already mentioned
above, which includes a mesh of probes that perform intrusive measurements between them to
establish the characteristics of the network. NIMI uses Paxson’s Network Probe Daemon
[Paxson er al 1998], running at each of the participating endpoints, to perform the connections,
analyse the data, and dispatch the results to the central database. Another two projects, running
also within NLANR are AMP (Active Measurement Project) [AMP 2003] and PMA (Passive
Measurement and Analysis) [PMA 2003]. The two projects, both running on a mesh
infrastructure called NAl (Network Analysis Infrastructure), fulfil complementary purposes.
AMP uses the traditional ping between probes at end networks and performs intrusive analysis of
the paths performance, while PMA has a set of trace agents placed at the core of the network that
collect the traffic transiting through those points. These three measurement infrastructures are
not an exhaustive list, but only exponents of the current interest for Intemet monitoring. Even
when using these infrastructures, the results are limited to the size and complexity of the mesh:
NIMI has probes placed in 6 countries (with the majority of the probes located in the US), while
NAI spreads over the US and has only two probes outside it, one in Korea and one in New
Zealand. From this perspective, a study / measurement infrastructure will describe only a
punctual behaviour in terms of network topology, depending on the complexity of the mesh, and
time, subject to the length of the experiments. The conclusions drawn may be totally erroneous

for a different end network or may be outdated at any time, even for the same network'.

' A good example of such dynamics is presented within this thesis in section 6.5. It was cbserved that the parameters
of an end network changed dramatically in an interval of only a few months, all most likely due to a network
upgrade.

22

Chapter 2 - Traffic analysis and performance modeiling

It may be concluded that the ever-changing Internet requires continuous examination in order to
develop its QoS-awareness, promoted in the recent years. This, in terms of traffic analysis, points
to a transition from offline trace analysis and / or intrusive methods to passive traffic monitoring.
The remainder of this chapter offers an overview of the available tools for network analysis and

then closes with a set of requirements for an ideal traffic analysis method.

2.4 Taxonomy of traffic analysis techniques

The evolution of the network analysis was accompanied, as expected, by a wide range of
analysis methods and accompanying tools to support the studies. Due to the variety of purposes
that led to the development of these methods, a linear classification is impossible to make. This
is why this section, aiming to offer an overview of the network analysis proposed methods, is
split into three taxonomies (interaction, temporal, and information), with examples that highlight
the advantages and disadvantages for each category. The classifications will focus mainly on the
methods and tools that relate to performance measurement, in order to follow the focus of this
project. A generic overview of existing networking tools may also be found on the Cooperative

Association for Internet Data Analysis (CAIDA) website [CAIDA 2003].

2.4.1 Interaction taxonomy

The first characteristic to discuss when considering an analysis method is whether it generates
traffic in order to determine the network conditions. From this point of view, there are three main

categories of methods and / or tools: intrusive, pseudo-non-intrusive, and non-intrusive.

Intrusive methods cover the majority of the network analysis spectrum. They all use the same

23

Chapter 2 - Traffic analysis and performance modelling

principle: send a probe packet / initiate probe traffic to a remote host, receive the response to the
probe packet / traffic and analyse. The main purpose of these tools is to determine whether the
remote host is reachable and to measure the latency and availability of that host. In the most
common case, the probe is an ICMP ECHO_REQUEST packet to which the remote end replies
with an ICMP ECHO_REPLY. The best example of a tool that uses this mechanism is the ping
[Muss 2003] utility and variants, such as fping [Schemers 2003], echoping [Bortzmeyer 2003},
Nikhef ping [Wassenaar 2003), etc. A more powerful utility, based on the same principle but
using UDP packets with a controlled Time To Live (TTL) value instead of ICMP, is Jacobson’s
traceroute [Jacobson 2003], which measures the latency and availability of all the hops between
the source and the remote host. Finally, on the highest level of complexity for this class, are the
TCP-based measurement tools, which generate TCP traffic and measure the characteristics of the
network based on that traffic, such as sting [Savage 1999). In parallel with this evolution of
tools, from ping to sting, a new class of active measurement tools emerged: bandwidth
estimators. These tools, such as pathchar [Jacobson 2003], pathload {Jain and Dovrolis 2003],
and pchar [Bruce 2003], worked on the same principle: the packet-pair probing scheme,
described by Keshav in [1991]. The scheme uses the assumption that two packets sent back-to-
back by the source have a high probability to be queued in sequential positions along their route
to the destination. As a result, the time spacing between their arrivals at the destination will

indicate the bottleneck bandwidth of the path transited by the flow.

The intrusive measurement methods have two important advantages: accuracy and ease of use.
The accuracy comes from the complete control: the tool used controls one of the endpoints,
therefore the packets arriving, with the correspondent delays, are guaranteed to inform about the

end-to-end, round-trip conditions of the transited network path.

The main disadvantage is the fact that they must generate additional traffic in order to evaluate

24

Chapter 2 - Traffic analysis and performance modelling

the network properties. The amount of traffic produced depends on the method used, from low
(in the case of ping and traceroute) through medium (in case of sting) and up to very high (in the
case of the bandwidth estimators). Aside from the less-obvious Heisenberg uncertainty that some
of the methods generating high-traffic may introduce’, the injected traffic requires bandwidth to
evaluate the network. In the case of a low-bandwidth end network, with Intemet connectivity in
the dial-up to ISDN range, this may end up using a significant amount of the bandwidth, which

could degrade the service itself.

The second issue is the actual target (the remote endpoint) of the test. In a generic case, the
clients in a network will connect to a variety of servers (web servers in the case of HTTP traffic);
an exclusively active method cannot follow all these connections and will attempt to evaluate
only the parameters between that endpoint host / network and a single / group of remote hosts. It
is appropriate, from this point of view, to monitor the activity on a single specific path, but this
will provide no information about the end-to-end quality that users get from the paths they use to
connect to the remote endpoints. Finally, the third disadvantage is the type of traffic used for the
tests: the majority of methods use ICMP or UDP traffic, which are not TCP shaped, i.e.
controlled by a congestion window. Even if the traffic is shaped in a TCP-like form, a QoS-
aware environment may treat it differently from the TCP traffic. Also, recent recommendations
1o configure firewalls, such as [CERT 1999], suggest that network administrators should reject

UDP / ICMP packets, in order to avoid possible attacks of the network they manage.

The second category of methods, based on their interaction, is the pseudo-non-intrusive ones.
Such methods, relating more to management issues then monitoring itself, require a strong
cooperation from the other devices along the way, e.g. using SNMP messages to interrogate MIB

databases on routers. Most of the tools available from this category are commercial products,

! Once additional traffic is introduced in the network, the actual network characteristics change.

Chapter 2 - Traffic analysis and performance modelling

such as Provisio [Quallaby 2003}, InterMapper [InterMapper 2003], or TDSLink [TDSLink
2003]. The main advantage of these methods is their accuracy: the results are correct both in
terms of figures and in localisation capabilities. Their disadvantage is their dependency' on the
information they receive from the network devices. This raises no problems if the segments of
interest are managed by the same organisation that does the monitoring, but introduces
insurmountable problems if some of the interrogated devices are placed outside the managed
zone, as it is highly unlikely that a network device will reveal such information to an external
party. In addition, there is the inconvenience of additional traffic due to messages exchanged

between SNMP entities, minor due to the amount of traffic involved.

The third category of methods is the non-intrusive ones. They do not inject any traffic into the
network, but capture and / or analyse packets to infer or measure characteristics of the traffic
itself (such as traffic volume) or of the network path transited (such as delay and packet loss).
This category covers a wide range of subsets, starting from packet parsers / analysers, followed
by traffic capacity analysers, then, at the highest level, performance inference methods. The
packet parsers / analysers do not produce any analysis outputs, but only study the content of the
packets and output the header fields 1o the user; most packet capturing programs (e.g. fcpdump
[Jacobson 2003b}, ipgrab [Borella 2003]) may perform such analysis. At the next level, there
are commercial packages, such as the DataAnalyser [Acterna 2003] from Actema, or the Agilent
Advisor suite [Agilent 2003) from HP/Agilent, that include, aside from packet decoding,
complex functionality for monitoring of the overall workload or determining traffic figures for
each protocol. Neither of these two subsets includes the functionality provided by performance
inference tools. The methods used in this category aim to evaluate the network parameters by

inferring the events that led to a certain traffic sequence. For example, a packet loss is inferred to

' This highlights the difference between light cooperation, as required by intrusive tools (ranging from an ICMP
ECHO_RESPONSE, ICMP_TIMXCEED, or PORT_UNREACHABLE to a web server response), and strong
cooperation, which requires the device to reveal internally stored information.

26

Chapter 2 - Traffic analysis and performance modelling

have happened in a TCP connection if a data segment is captured more than once by the
capturing / analysing device. There are only a few tools developed in last subset, with fcpanaly
[Paxson 1997b] and teptrace [Osternam 2003] being the best known ones, both suited for offline
analysis, with tcpanaly requiring, in addition, a capturing device placed near to / at the

endpoints.

The advantages of the tools listed in this category are clear: they do not interfere with the
network traffic, do not need any cooperation from the endpoints that produce the analysed
traffic, and do not need network resources to draw any conclusions. From the performance
analysis point of view, the last category mentioned, the performance inference tools, is the most
interesting, as it aims to provide information about the actual parameters of the network from
observations of real traffic. On the other hand, the non-intrusive tools, particularly the inference-
based ones, have an inherent disadvantage: the inference methods have as input only the
captured traffic and the assumptions made may lead to erroneous conclusions about the network
events which, in turn, will lead to a lower accuracy. In many cases, as it will be revealed later in
Chapter 4, the resulting parameters are the result of a balance between level of information

obtained and the assumptions made.

2.4.2 Temporal taxonomy

An important characteristic of a measurement system / infrastructure is its timeliness, i.e. how
recent are the results produced by the method. From this criterion, the output of the results can be
made either near instantaneously (online) or at a later time (offline). The first category of tools
may be used for network / traffic monitoring, while the second is more appropriate for Internet
studies based on trace analysis. If considering the products / programs mentioned in the previous
section, it can be noticed that the focus was split into two main classes of methods: intrusive

online tools, ranging from ping, simplistic, and up to sting, which involves complex analysis, and

27

Chapter 2 - Traffic analysis and performance modelling

non-intrusive online / offline tools, starting with the commercial real-time traffic analysers and
ending with the tcptrace-tcpanaly pair, appropriate for offline study of traffic. From an
implementation perspective, the offline analysis, particularly the TCP analysis, is more
convenient for complexity reasons, as the fixed amount of data allows multiple parsing of each
connection, with fewer concerns regarding computational resources; online analysis does not

allow retrospective analysis or any form of accumulation in time (unless the output is logged).

The difference between the two categories comes back to the applicability of network
measurement: while in the past performance analysis was geared towards understanding the
Internet, future network managers will require pro-active schemes, that will act in a timely
manner when the network status changes. It was shown, at the beginning of this range of
taxonomies, that the characteristics of an end-to-end internet path do change in time and that the
variations of these characteristics may range from stability [Zhang er a/ 2000] and long-term
oscillations [Mukherjee 1994], to short-term [Yajnik et a/ 1999] correlation. This is why
timeliness, as previously highlighted, is critical for the validity of a path measurement: a pro-
active QoS management infrastructure, relying on the data provided by a measurement scheme,

would require real-time results in order to make useful changes in the network configuration.

2.4.3 Information taxonomy

This last taxonomy looks at the type of analysis used by a measurement method, focused on the
TCP traffic characteristics. The two categories of tools, based on this criterion, are aggregate and
per-flow analysis. The aggregate analysis category encompasses network monitors that provide
cumulative information such as statistics on traffic or number of concurrent flows per port
numbers. The analysis methods used from this category make no distinction between the

characteristics of different flows and have no per-flow information available. The per-flow

28

Chapter 2 - Traffic analysis and performance modelling

analysis is based on splitting the captured traffic on flows' and analysing each flow individually
in order to extract path performance information. The outputs of the two categories are very
different: per-flow analysis, based on to the complex analysis performed, provides information
such as loss and delay for the transited path, while aggregate analysis offers only throughout
information for the captured traffic. The taxonomy separates research tools and current
commercial products. Research-lead tools, particularly TCP-based ones such as sting, tcptrace,
and fcpanaly, were specifically designed to run per-flow analysis of the traffic captured; on the
other hand, current commercial products, aiming to provide a generic real-time picture of the
traffic transiting the network, look only at the overall proprieties of the traffic, being, in fact,

more appropriate for workload rather than performance analysis.

Overall analysis should not be ruled out as being primitive or inaccurate. It is true that in certain
cases, such as real-time UDP flows, the traffic levels or throughput are irrelevant when the flow
characteristics are unknown (e.g. a high-bandwidth video streamed over a path with a high
packet loss will still have a much higher throughput than an audio stream running on the same
path), but for TCP the main quality characteristic remains throughput. In this context, an overall
low throughput per stream for an end-network would indicate that the traffic encounters a
problem. Unfortunately, with overall analysis, this is the maximum level of information that can

be obtained, with no further details of what makes the throughput low.

2.5 TCP modelling — current state of the art

2.5.1 Introduction

The previous sections from this chapter introduced the first step into the process of gaining full

' A TCP flow may be identified by the (source IP address, source port, destination IP address, destination port)
29

Chapter 2 - Traffic analysis and performance modelling

knowledge of the network conditions and the performance of the endpoints. The presentation
described the current problem facing current as well as future networks: a network administrator
has to know what quality the users are getting from the network. This new approach, due to the
evolution of the Internet, as well as to the evolution of the services that are being run on top of it,
is leading towards qualitative monitoring, as opposed to connectivity (‘is the network
connected?’), availability (‘is the remote host available?’), or quantitative (‘is it too much traffic

running through the network?’) monitoring.

The quality of a TCP transfer is represented by the resulting throughput: how fast the file / data
object is transferred between two endpoints. The calculation of the value itself is straightforward
(with a few notable exceptions, e.g. idle times, described in section 4.6): divide the number of
transmitted bytes by the time elapsed. The challenge is to model the performance of these
transfers — to determine the relationship between a throughput and a set of parameters. This
section examines which parameters influence the performance of a TCP transfer, along with the

currently available models and how well these models can be mapped onto real situations.

2.5.2 The influencing parameters for TCP throughput

The evolution of a TCP connection can be seen as a function of three main categories: the
network conditions, which can dramatically affect the TCP transfer through loss, delay, and
bandwidth, the behaviour of the TCP sender, which decides the pace at which data segments
should be sent, and the behaviour of the TCP receiver, which, through its acknowledgments,
returns an indication about the quality of the connection, and forces the sender to adjust. In
addition to these three categories, this section will also discuss the impact that file size has on

TCP performance.

quadruple, which uniquely specifies the exchange of data at a moment in time.

30

Chapter 2 - Traffic analysis and performance modelling

One of the main attributes of TCP is the fact that it is self-adjusting (as presented in section
2.2.2): the TCP sender endpoints infer the conditions of the network through the
acknowledgments they receive from the pairing endpoints and adjust the transmission pace
accordingly. This mechanism makes the network conditions to be the main influence factor in
the TCP performance. The sum of these network conditions is reflected in the variable that
controls the pace of a TCP transfer: the congestion window. This behaviour, while providing
awareness of the network status, generates the above-mentioned strong relationship between the

network conditions and the resulting throughput.

The network conditions, and the way they are perceived by the endpoints, relate to the TCP
sender characteristics and lead to the second category of parameters. It is worth noting that the
network conditions inferred by a TCP sender do not always coincide with the real network
conditions, a difference that will be highlighted in section 3.2. Further, from the TCP client point
of view, it is the inferred parameters that really count towards a certain throughput, and not the
real ones'. This is not a big issue for two TCP clients that have the same rules / implementation
code: there is, indeed, a difference between the real loss and the inferred one, but the two TCP
clients will react the same to such an event, leading to the same throughput. The real issue is that,
as noted in several studies such as [Dawson er al 1997], [Floyd and Padhye 2001], the TCP
protocol was implemented differently within the various TCP/IP stacks. Some of these
differences went against the defining document [ARPA 1981b], and refinements [Braden 1989,
such as generic ‘broken retransmission behaviour’ of TCP clients. However, some of them did
not violate the specification, but only varied within the proposed limits, such as the

retransmission timeout (RTO) clock resolution, discussed next.

31

Chapter 2 - Traffic analysis and performance modelling

A good debate on the accuracy of network conditions inference, focused on the retransmission
timeout and available bandwidth parameters, is offered in [Allman and Paxson 1999]. Aside of
the conclusions, the authors give an example of the impact that behaviour of the TCP client has
on the dynamics of the TCP transfers. They consider two extreme cases of a setting the RTO and
explain the consequences. On one side, a client may set the RTO to a very high value, e.g. |
minute, and never mistakenly retransmit a single packet, but reduce drastically the overall
efficiency of the connection. At the other extreme, a very aggressive client can set the RTO to 1
ms and, while reducing to minimum the amount of time spent while expecting for possible
timeouts, it would congest the network due to unnecessary retransmissions, locking it
completely. It is true that such cases do not exist in real-life implementation, but differences do
exist between implementations; for example, the RTO clock resolution of a Linux sender is 100
ms, while a Solaris endpoint has this value set at 500 ms. As a result, an acknowledgment
received with a delay in the (RTO + 100 ms, RTO + 500 ms) interval will trigger an unnecessary
retransmission in a Linux client, impacting on the congestion window as well, while a timeout-
inferred loss would delay the Solaris client an additional 400 ms before taking any action. On the
other hand, the Solaris RTO is initialised to a very low value of 300 ms, [Dawson er al 1997],
which makes it very ineffective for connections with high RTT and produces a large number of
RTOError packets at the beginning of a connection [Paxson 1997a]%. The situation perpetuates
due to the Karn’s algorithm [Kam and Partridge 1991] that forbids RTT estimates for
retransmitted packets, so the client might never infer the real RTT within the connection, and
erroneously retransmit every single data segment several times. Although it is beyond the scope
of the project to determine “what is better” or “what is normal” in terms of implementation

efficiency, it must be mentioned that, when it comes to variations from the suggested behaviour

' This is very convenient from the perspective of this project, as the measurement method proposed in Chapter 3,
due to its characteristics, outputs exactly these inferred parameters.
2 The two timers are positioned at opposite extremes: while, at the beginning, the sender will throtile the network
with unnecessary retransmissions due to inferred losses, overloading the network, at steady state it would react very
slowly to the real losses, decreasing the performance of the transfer

32

Chapter 2 - Traffic analysis and performance modelling

and values in [Braden 1989], it is not a question of “ideal implementation”. For example, in the
above-blamed Solaris, all the studies that incriminated it admitted that, while less efficient for
‘normal’ delay and loss values the Internet, the implementation was well-suited for LANSs, or, in

general, for networks with short delays and large bandwidths.

Ideally, this sender modelling requires defining a set of parameters that fully describe the
behaviour of each implementation. Previous work, [Paxson 1999], [Floyd and Padhye 2001],
proposed solutions to identify the behaviour of a TCP sender, but none of them is suited for a
non-intrusive single-point analysis method. The main problem is the amount of inference
required while observing the TCP transfer. While this obstacle was avoided, with some notable
exceptions for the network parameters', the TCP sender characteristics are more intimate and,
therefore, their impact on the transfer performance is rather transparent to the monitor, ¢.g. the
delayed acknowledgment policy. Further, it is difficult to separate the actual behaviour of the
TCP client from the sender activity: e.g. a data segment produced after a long delay might be due
to either to a TCP timeout or due to the TCP server being busy with several other connections
(this difference is spotted by network sniffer detectors, such as antisniff [LOpht 2001]). Different
implementations would react differently to a certain event, with similar short-term impact, but
leading to different long-term consequences. For example, in the RTO example above, the Linux
client will infer and react faster than the Solaris one for a lost packet when reaching steady state.
As a result, both of them will retransmit the packet, but the Linux client will start with a
congestion window of one segment and slow start, while the Solaris client will start with a

halved congestion window and will switch to congestion avoidance.

Two possible directions can be pursued 1o achieve the desired leve! of information about a TCP

sender: inferring the TCP implementation from its behaviour or retrieve information that

33

Chapter 2 - Traffic analysis and performance modelling

categorises TCP in a certain class

The first option is to define a comprehensive set of parameters that fully describe TCP
behaviour. While being the ideal, this aim is virtually impossible to achieve for uncertainty
reasons. The nearest proposed method, implemented in fcpanaly by Paxson [1997b], classifies a
TCP sender as belonging to one of a predefined set of known classes or defines a new class if it

does not match any known one.

The second option is very similar: define a minimal set of parameters that define a specific TCP
implementation. This is in fact the approach used by current sender identification tools, starting
with efforts from hacker groups, [Fyodor 1998], up to the research within the #bif project [Floyd
and Padhye 2001]. These methods generate a specific succession of packets, and analyse the
response coming from the corresponding TCP endpoint to determine its implementation.
Another study worth mentioning here, using a non-intrusive approach is from [Popescu and
Shankar 1999], which profiled the throughput versus the TCP implementation of the sender; in
this case, the authors modelled the dependency using an empirical formula and validated it only

in a synthetic environment.

An alternative derived from the second option and proposed by this research is to obtain
information that classifies a server application running at the sender into a particular class. This
method is based on the assumption that a certain version of an application runs on a certain
platform. An example would be a Microsoft 11S web server, which can run only on a Microsoft
Windows operation system. The problem in this case resides at a different level: the analysis

becomes application-dependent, as it will require information provided by the application layer.

! These exceptions will be described in section 3.4.3

Chapter 2 - Traffic analysis and performance modelling

From the above options, only the latter one is appropriate for the proposed method of analysis.
The first solution succeeded with privileged positioning of two monitoring devices, while the
second one required intrusive analysis. Because of this, the usage of such sender information
would restrict the method to analysing a specific type of application; due to its popularity and
usage levels, the chosen application protocol to exemplify the technique was HTTP. The client
information is laid relatively conveniently within the data segment: the data segment carrying the
HTTP response, “OK 200", carries in one of the tag fields the version of the web server that

holds the requested web page, as shown in Figure 2.1

HTTP/1.1 200 OK

Date: Fri, 05 Qct 2001 18:52:19 GMT

Server: Apache/1.3.12 (Unix) {Red Hat/Linux)
Last-Modified: Thu, 11 Nov 1999 10:15:07 GMT
ETag: "8139b-bde-382a972b"

Accept-Ranges: bytes

Content-Length: 3038

Figure 2.1 — The header of an HTTP response

As can be seen in this case, the Server tag indicates the HTTP server type (Apache) and
version (1.3.12), and even the operating system (Red Hat/Linux). This tag may be parsed if the
captured packet has a snaplen large enough to hold the entire HTTP header and may be

associated with the corresponding TCP connection for further processing.

This last method, although flexible, has several disadvantages that are worth detailing:
- It is assumed that the owners of the machine did not alter its default configuration. The
parameters of TCP clients within current operating systems can be modified by the user
(e.g. altering the RTO values or acknowledgment policy), leading to a different
behaviour, but this should not happen unless the default configuration generates major

performance problems.

35

Chapter 2 - Traffic analysis and performance modelling

- All OSs suffered changes in their evolution. Each flaw noticed in Solaris
implementations was corrected in the following versions, the TCP clients evolved within
each Linux kemel, and Microsoft implementers improved the core of their TCP client
with every version of Windows. All these changes produce a strong variation between
different versions of the same operating system, leading to erroneous profile predictions.
In this case the simplification is generated by the progress itself: each new version of OS
is (or at least claims to be) better than the previous one, forcing users to upgrade; each
new version of a web server is likely to be incompatible with, or at least not optimised
for, older versions of the operating system, again forcing to upgrade. As a result, a certain
combination of web server — operating system should be fairly focused towards the latest

implementation at one moment in time

In a similar manner, the behaviour of the receiver has also a strong impact upon the resulting
connection throughput. It is reasonable to consider that current TCP implementations use the
delayed acknowledgment policy: an acknowledgment should be transmitted for every other data
segment. Nevertheless, in the cases when only one data segment is received at a moment in time,
the receiver uses a timer expiration to produce an acknowledgment to that segment. Again, this
timer depends on the implementation. For example, although both BSD-derived [Stevens 1995]
and Microsoft Windows [Microsoft 2000] TCP clients use a 200ms timer, the implementations
differ in the way they use the timer. The timer from BSD-derived implementations resets itself
every 200 ms, but is not influenced by the actual retransmissions. This leads to delayed
acknowledgments being sent with a delay that has a uniform distribution between
[0.0ms;200.0ms]. On the other hand, the Microsoft Windows timer for delayed
acknowledgments is set by data segments arrival. This leads to delayed acknowledgments being
delayed for exactly 200ms. With compulsory usage of this timer at least once per connection for

senders with initial sender congestion window of 1 Maximum Segment Size (MSS), the policy

36

Chapter 2 - Traffic analysis and performance modelling

will impact on the resulting throughput figure as well.

The last parameter that influences the transfer is the size of the data object (file) that is being
transferred. As previously detailed in section 2.2.2, the TCP client requires a certain amount of
data segments to increase its congestion window depending on its bandwidth x delay product,
until reaching steady state. For a considerable proportion of traffic, as will be revealed in Chapter
6, this does not happen because the objects transferred within connections are too small to allow
the TCP client to reach steady state. However, because initial and transient behaviour is more
difficult to model, current TCP models assume that the TCP connection reaches steady state and

focus mostly on the network-related parameters.

To summarise, there are three categories of factors that affect the performance of TCP transfers:
network conditions, endpoints (sender and receiver) behaviour, and file size. The parameters
listed within these categories are used by the current TCP models to determine what influences

TCP throughput, as will be presented in the following sections.

2.5.3 Curremt TCP mathematical models

TCP modelling efforts aim to determine the relationship between throughput and its influencing
factors by describing the behaviour of TCP endpoints, as affected by them. This section gives an
overview of 3 proposed TCP models, each of them with its limitations and assumptions required.
These models assume certain network characteristics, as well as client behaviour, and then build
up a model of TCP data transfer. Their result is a description of throughput as a function of the

network conditions and client characteristics.

The first model that formalised the TCP behaviour appeared in a note within Bellcore Labs in

37

Chapter 2 - Traffic analysis and performance modelling

1996 [Ott er al 1996]. It describes the evolution of an idealised congestion window in time
during the congestion avoidance phase in order to estimate the value of the resulting data
throughput. The authors made a series of assumptions which allowed them to interpret the
congestion window evolution as a stochastic process, and to determine its evolution by studying
its stationary distribution. The resulting formula, 2.4, determines the resulting throughput (named
bandwidth, BW in the paper) as a function of Maximum Segment Size (MSS), Round Trip Time
(RTT), packet loss (p) and a constant C, dependent on the acknowledging policy (every / every-

other packet) and on the loss process (periodic / random):

L
RIT J7 2.4

The model is based on an ideal TCP connection, as stated in the title of the article. In order to
model the congestion avoidance exclusively, the model eliminates any other influence in the data
transfer by using several simplifications that do not always hold in a real-life situation:

- Low rate loss and independent losses — the first assumption can be considered true in
today’s traffic, as it was proven by various Internet experiments, but not in relation to the
second assumption. A typical drop-tail router drops all the packets which it cannot hold
in its queue(s); as a result, there is a high probability for successive losses to be related
and, further, to occur within the same transmission round.

- Infinite sender and stationary state — HTTP traffic is not likely to obey such assumptions,
as it typically encompasses short data transfers, therefore most of the connections will
never reach stationarity.

It is in fact admitted, within the paper, that the proposed model fails in several situations, none of
them uncommon in real-life situations:

- The receiver advertises a small window (RWND) — if the connection path has a high

bandwidth x delay product, the advertised window is an important limitation that the
38

Chapter 2 - Traffic analysis and performance modelling

following models accounted for.

- The sender always has available data to send - it is very common during HTTP 1.1
connections for the sender to ‘pause’ during the connection, either waiting for a request
from the receiver or expecting data from the application layer, as will be shown in section
4.6

- The sender never times out (all the losses are signalled by double acknowledgments and
the recovering procedure is fast retransmission) — the loss of a data segment may trigger a
timeout. The probability of a loss being detected through a timeout depends on the

window size, as will be observed and modelled by the next studies.

It is apparent that the model is fairly limited in respect to real traffic. The study included no real
traffic validation and the authors limited the tests to simulation traces analysis. However, it
represents the basis for the following studies in the area, as each of them came with

improvements but they all used equation 2.4 as a starting point.

The second model, described in [Padhye er al 1998], extends the analysis of the congestion
window evolution in order to account for losses produced by timeouts as well, aside from the
ones inferred by double acknowledging. It also accounts for limitations due to the size of the
window advertised by the receiver. The resulting formula for the resulting throughput B(p), 2.5,
includes, aside from the loss and delay parameters of the previous model, the acknowledgment
rate (resulting from the receiver policy), b, the timeout value, T, and the advertised window

size, W

B(p) = min W max ! 25

RTT’
RTT\/% +T, min(l,3\/§ls)—p)p(1+32p%)

39

Chapter 2 - TrafTic analysis and performance modelling

The model is closer to reality compared to the previous one, due to the encompassed timeout loss
events and the reduced number of assumptions made (e.g. only losses from independent rounds
are considered independent, while losses from the same round are correlated, due to the drop-tail
behaviour of the router). The validation part analyses real network traces and shows that the
proposed formula is a better estimator of the throughput when compared to equation 2.4. Within
this part the limitations of the model can be noticed, which relate mostly to the length of the
connection. Because, as the previous one, it focuses on the stationary behaviour of TCP, the
model was validated using connections spanning long periods; the number of data segments sent
was in the range of tens of thousands up to hundred of thousands per connection. With an MSS
of 1500 bytes, these figures translate into files between 15 MB and 150 MB, both very far from

‘usual’ network transfers.

The third model, presented in [Cardwell es al 2000], expands further on the previous ones, by
accounting for the establishment and slow-start phases of a TCP connection. The proposed
model additions are based on the observation that most of current TCP data transfers are short-
lived and carry a small amount of data. There is a high probability for such flows, when they
follow a path with low loss rate, to have a zero packet loss and, implicitly, to remain in slow-start
for their entire duration. Further, if they carry an amount of data that can be carried in only a few
rounds, the actual connection establishment represents a high percentage of the entire connection
life. The model aims to determine the duration of the transfer, instead of the obtained throughput.

The resulting formula for the estimated time of a connection, E[T), is shown in equation 2.6

E[T] = E[Tss]+ E[T-'oss]+ E[Tca]+ E[Tdelack] 2.6

where:

40

Chapter 2 - Traffic analysis and performance modelling

E[Ts] — estimated time spent in slow-start

E{Tioss] — estimated time spent recovering from loss at the end of slow-start period

E[Te] — estimated time spent in congestion avoidance

E[Tgetzck] — estimated time for a receiver 1o sent a delayed acknowledgment

The model used to determine E[Tq] is the one from equation 2.5, and the E[Tqetaci] time is taken

100 ms for BSD-derived TCP endpoints and 150 ms for Windows TCP endpoints. The model for

E[Ts] is given in equation 2.7.

E[Tss]=)

where:

Rﬂ-[logy(ﬁb—:‘x—]+ I+ WI (E[dss]—MH when E[W > Winax

y—1

max

2.7

RT}”-log},(—E%l(f—Q+ 1) when E[W] € Wy

RTT — the round trip time average

y - the congestion window increase factor, due to the acknowledgment rate of the receiver

(e.g. 1.5 for the delayed, every-other acknowledging policy)

Wona — the receiver advertised window size (in segments)

W, — initial congestion window (in segments)

E[dss] — the estimated number of segments sent in the slow-start phase

E[dss]=[a§l(l—p)" -p-k}r(l—p)d-d=(l_(]—p3dh_p)+l 2.8
k=0

41

Chapter 2 - TrafTic analysis and performance modelling

E[Ws] — the estimated congestion window (in segments) at the end of the slow-start phase;

determined using equation 2.9, based on the E[ds] estimator resulting from 2.8

E[Wss]'_‘E[diKL——l)'*"W_l 2,9
14

4

The time to recover form the first loss, EfTs/ is determined using the theory behind [Padhye er

al 1998], based on:

the probability of a loss occurring, /s(p,d), as a function of packet loss rate, p, and

number of data segments to transmit, d, as shown below in equation 2.10
lo=1-(1-p)f* 2.10

the probability of a sender to detect a loss with a timeout, Q(p,w), as a function of packet

loss rate and congestion window size, w, equation 2.11

0(p,w)= min{ 1 1= pPl- - p)7) 2.11
’ ’ 1-(1-p)*

1-(- py

the expected cost of an RTO, E[Z"), as function of packet loss rate and average timeout,

Ty

42

Chapter 2 - Traffic analysis and performance modelling

2.12

E[ZTO]= k=0

With the variables resulting from the above equations, the EfTjae/ €stimator results as:
E[Tlass]= lgs - (Q(p:E[WssD' EIZTOI+ (l —Q(p’E[Wss) er) 2.13

Q(p,E[Wss]) — the probability of a sender to detect a timeout at the estimated end of the slow start

phase

Due to its complexity, the model allowed testing in all the possible configurations: simulations,
controlled internet measurements, and live HTTP measurements. The results of the validation
tests show that the proposed model is much more accurate for connections that suffer no loss and
has similar accuracy with [Padhye et al 1998] when the flow encounters packet loss. The study
used simplifications and hard-coded values for the live HTTP measurements: the loss rate due to
timeout was inferred from mis-ordered packets which were delayed for more than 200 ms or in-

order packets spaced more than 1 second.

It is apparent that the TCP model proposed by Ott went through radical improvements until the
one introduced by Cardwell, in spite of the similarity of the mathematical support used. While
the conclusions from the first study considered exclusively the TCP transfer reaching steady-
state, the last one focused specifically on short-lived connections and aimed to describe fully
their evolution. However, all authors were reluctant to test their theories on real traffic, which

highlights the limitations of the models proposed.

43

Chapter 2 - Traffic analysis and performance modelling

2.6 Classification of data sources

Network data collection encompasses a wide range of techniques, from interrogating routers to
establish their queue sizes to sampling traffic and packet capturing. From these techniques, due
to its main objective, i.e. to build a robust non-intrusive monitoring and prediction mechanism,
this project focused on data obtained by capturing packets. This section gives an overview of the
data sources available when studying network traffic, first by classifying these sources in terms
of their approximation of real traffic. Chapter 5 and Chapter 6 will describe how and when each

of these categories was used with different stages in the research.

I. Synthetic data — packet traces generated by network simulators. This is the artificial type of
network data. There is only an approximate relation with reality, as all the components of the
simulated transfer are modelled, and each of the models is an idealisation of the real cases. In
addition, the simulator, no matter how complex, still has a limited size in terms of nodes and
in terms of network topology as well. All the other categories are using capiured network
traces instead of generated traces, i.e. the trace is obtained by capturing real packets instead

of artificially producing them.

2. Testbed data — packet traces generated using a limited, controlled, and isolated network
environment (a network testbed). This is different from the previous category in the sense
that it uses emulation instead of simulation of the network environment. The difference
between the two, according to Carson [1997] is that simulation reproduces an environment

by modelling the behaviour of the entities, including the TCP endpoints, while emulation

Chapter 2 - Traffic analysis and performance modelling

uses real traffic, generated by real TCP endpoints, over a simulated network.'

The advantage is that the amount of idealised components is reduced — the endpoints are real,
the traffic is actually produced, but the network conditions are reproduced using an
emulation agent running within a router. Also, because of the fact that ail the traffic is in fact
generated and the endpoints are real, the topology of the network can be only as large as the
available endpoints (and most of the time limited to two endpoints and one or two routers)'.

The position of the capturing device is somewhere within the testbed.

Controlled data — packet traces resulting from transfers between real endpoints, both known
and controlled by the person who runs the experiment. This is the step that makes the
transition from the laboratory environment to the real world. It is, if put in a crude way, a
testbed with the Internet in the middle. The network conditions are no longer simulated /
emulated, the data is being passed through the Internet; the entire route of the packets is over

a real network; the improvement is radical when compared to the previous two sources.

Using this type of data does have two drawbacks. Firstly, the results cannot be reproduced as
the network conditions change continuously. Secondly, such a measurement topology is
limited, implicitly the network paths also form a finite mesh; the best example of such a
measurement initiative is afore mentioned Active Measurement Project [AMP 2003]. The
AMP infrastructure includes 130 endpoints, spread throughout the US. The problem with
such configurations is their stability over time. It was shown by Zhang in [2001] that network

conditions for certain paths tend to persist (i.e. their characteristics remain constant in time),

' To complete the picture, the real network testbed case should be mentioned. Such an environment would
encompass only real components; real endpoints, connected via a real network, all under the control of the person
that manages the experiment. While the environment may have controllable delay, by altering the speed of the links
that form it, the loss would have to be emulated by dropping specific packets in the routers,

45

Chapter 2 - Traffic analysis and performance modelling

which, implicitly, limits the result in a narrow range of values.

4. Semi-controlled data — packet traces using an automatic retrieval tool. This takes the network
conditions one step nearer to reality; the receiving endpoint remains constant, which,
implicitly, limits the range of resulting endpoints combinations, but, in this case, the network
paths are virtually unlimited - all the paths do have a common end, i.. the receiver, but they
can expand anywhere in the other direction. Due to the characteristics of this method, i.e.

single point that makes all the requests, the capturing point is right at the retrieval point®.

5. Uncontrolled data - packet traces produced by real network traffic. There is no more
artificial / controlled element involved; all the connections are due to genuine (human)
requests from the endpoints. The network paths are limited only by the position of the
capturing device, i.e. the requesting endpoints can be, still, grouped within a single, local

network (e.g. University of Plymouth network).

The data collected for this research project spanned through all the five categories, except
controlled data, although not in the mentioned order. The trace collection process was performed
in parallel with implementing the TCP monitoring methods presented in Chapter 3. In the
beginning, testbed and semi-controlled traces were used to ensure the correctness of the results
by comparing the manual analysis results with the results provided by the implementation. The
necessity to collect larger network traces became clear once the implementation was finatised.
The study of these traces had a double aim: to observe the characteristics of current Internet

paths, and to provide a database of TCP connections in order to build a knowledge-based TCP

' Progress in the area has been achieved by network simulators (such as Network Simulator) which encompass a
network emulation agent

? The other possible alternative for this category is to monitor the traffic at a web / file server. In this case, there
would be an additional disadvantage: the resulting behaviour of TCP depends more on the behaviour of the sender
than on the behaviour of the receiver, therefore the diversity of scenarios would be further limited.

46

Chapter 2 - TrafTic analysis and performance modelling

model. In Chapter 5 and Chapter 6 the trace collection process will be detailed for each category,

as well as the rationale behind choosing each of them.

2.7 Summary

The literature survey revealed a wide spectrum of issues, all relating to the area of traffic analysis
and performance evaluation. The presentation started by introducing the basics of data transfer of
the Internet. The description focused on the protocols which were used within this research

project and expanded on the algorithms that govern TCP behaviour.

The second part of the survey presented the state of the art in the area of traffic analysis. The
section started by describing the Internet as a performance-dependent environment, due to
emerging applications and increased customer demands. In parallel, the section pictured the lack
of end-to-end quality support within the current Internet, in spite of existing initiatives. These
two contradictory facts led to the necessity of evaluating the network status in order to determine
whether the provided quality is satisfactory for potential customers. The section then continued
with a list of the methods and tools for traffic analysis. The first part of the description was
historical, starting from the early probing programs and ending with recent TCP emulation
methods. The second part, presented in a separate section, distinguished between the presented
tools based on functionality criteria. The proposed three criteria considered the defining
questions for the output of a network analyser: what, how, and when to measure. The resulting
taxonomy will be used in the next chapter to identify the missing characteristics from current
tools and build upon them to depict the features of a virtually ideal network monitoring method.
In turn, these features will be used as a basis to define the objectives of the monitoring method

proposed in this following chapter.

47

Chapter 2 - Traffic analysis and performance modelling

The third part of the survey looked at the next level of the network knowledge domain. It
described the existing series of mathematical approaches that aim to model the relationship
between the TCP throughput and the influencing network and endpoint characteristics. The
presented series ended with the model considered to provide the best accuracy when evaluating

the TCP performance.

Finally, the fourth part of the survey overviewed the data sources which may be used in the
validation process for monitoring and modelling methods. The description briefly described the
advantages and disadvantages for each of the identified types of environment. Such

environments will be further presented in later sections, while validating the proposed methods.

The following chapter proposes a novel approach to network monitoring by online analysis of
the traffic. The method attempts to overcome some of the disadvantages of current network
analysis tools, observed in section 2.3, such as intrusiveness and complexity of the monitoring
architecture, by using a single-point method. The method builds upon previous studies, but also
introduces new concepts such as inference of network parameters based on TCP timestamp

analysis.

48

Chapter 3 - A novel approach to monitoring

Chapter 3. A novel approach to monitoring

49

Chapter 3 - A novel approach to monitoring

3.1 Introduction

The previous chapter discussed the various historical and current approaches towards network
monitoring, highlighting their advantages and limitations. This chapter will start by summarising
a virtually ideal solution for network monitoring, based on the conclusions drawn from existing
techniques. Using this ideal collection of requirements, the chapter will introduce a novel
approach to traffic analysis and monitoring, proposed by this research project. The proposed
method builds on the area of per-flow traffic analysis, with improvements in regards to the
focused traffic, e.g. real-time traffic, the inferred parameters, e.g. bandwidth, the method, e.g.
usage of TCP timestamps, and the robustness of the analysis. The method is considered in terms
of its novelty, its main characteristics and functionality, the advantages it brings, and its

limitations.

3.1.1 Ideal monitoring method

The previous sections presented the networking world as an evolving domain. Under the
pressure of the newer applications, Internet provisioning had to develop from simple availability
towards quantity, and recent years and present status took this migration towards quality. Due to
these changes, network managers also had to shift their responsibilities from observing network
availability to measuring overall bandwidth and throughput. Further, ISPs and customers are
bound by a Service Level Agreement (SLA), which, if breached, may lead to legal liability. The
set of requirements contained by the SLA for the provided connectivity solution may range from
availability conditions to network parameters boundaries. In this context, monitoring also has to
transit from measuring availability and quantity towards measuring the quality of the network, as

transited by the traffic. In the dynamic market that governs Internet provisioning, a network

50

Chapter 3 - A novel approach to monitoring

provider should, aside from optimising the traffic through its own network, check whether the
providers he connects to also respect their SLAs; the only solution to satisfy all these

requirements is to continuously measure or estimate the quality of the network paths.

The previous section presenied a wide range of alternatives with regards to measuring or
assessing the parameters of a network path, together with their advantages and disadvantages.
From this overview it is apparent that monitoring methods also migrate from evaluating
availability and basic path characteristics, as in the case of ping and fraceroute, towards complex
examinations of traffic to infer as much as possible about the transited path, with tools such as
pathchar and tcpanaly. For each of the taxonomies suggested, the resulting performance
information proved to be a compromise between accuracy and one of the following three factors:
network interference (intrusive vs. non-intrusive), cooperation of remote endpoints (pseudo-non-
intrusive vs. non-intrusive), traffic aggregation (overall vs. per-flow), or real-time computational
load (online vs. offline). It is true that accuracy is one of the defining factors for any
measurement / monitoring method, but the proposed solution has to be based on reality. From an

end-user or access ISP perspective, the reality is:

— high number of users, all connecting to a wide variety of remote endpoints, virtually
impossible to profile;

— backbone ISP / ISPs that the access ISP cannot interact with, as the inter-ISP connectivity
is based exclusively on peering agreements, with no control over the necighbouring
infrastructures;

— increasing need to evaluate the performance for all users, either per-user or overall, and,

if possible, 1o determine what causes a performance decrease.

Future monitoring tools will have to provide a satisfactory level of accuracy when evaluating the

51

Chapter 3 - A novel approach to monitoring

network status and when estimating the level of variation if the network parameters vary. All
these requirements will have to be satisfied under the restrictive conditions imposed above:
dynamic network conditions, large number of paths to test (although all routes may have a
common path segment, through one of the international backbone carriers), no guarantees of
cooperation from remote endpoints, and no traffic injected. Comparing these requirements with

the presented taxonomies, such a tool will have 1o be:

0) Online - to provide real-time feedback information to management entities about
the network conditions

(i) Single point — to avoid elaborate configurations and eliminate traffic between
devices

(iii) Non-intrusive — to avoid network overloading

With regards to the targeted traffic, the monitoring should focus on the type of applications that
generate most of the traffic today and are likely to produce high levels of traffic in the future
networks. It has been shown by previous network studies, such as [Thompson and Miller 1997],
[McCreary and Claffy 2000], that web browsing accounts for the majority of the traffic. Because
of the simplicity of the HTTP protocols, as described in section 2.2.3, the analysis should focus
primarily on TCP and interpret HTTP only to identify correctly the data exchange (e.g. observe
persistent and / or pipelined connections). Due to the simplicity of HTTP, the monitor will also
offer the possibility to evaluate the network performance for other applications that use TCP. A
second direction of traffic to analyse is suggested by the recent trends of real-time applications,
generically named MolP (Multimedia over IP). Such applications {ITU 1999] started to replace
traditional communication means such as audio or data-over-audio (i.e. the traditional modems),
all part of the PSTN existing infrastructure, with an everything-over-IP environment. [n such an

environment, all the communication (data, audio, and video) will be done over the existing IP

52

Chapter 3 - A novel approach to monitoring

network infrastructure, using either a QoS-aware Internet or a separate Internet, with strict

quality requirements. In any case, the traffic will have to be monitored to ensure the quality of

the system and to respond promptly to any degradation.

The above guidelines should be taken as strict for a proposed monitoring method. In addition to

them, if possible, a monitoring system should be able to predict the performance offered by a

network (path) to transiting traffic. There are two areas that an ideal method should cover:

Performance-wise — predict the resulting quality of the applications, based on a set of
network conditions. This type of prediction is based on performance modelling and
would allow a network manager to estimate the results of the alternative changes that can
be made in the network configuration. A simple example would be to compare the effect
of reducing or increasing the queues size in routers. While the reduction would lead to
higher packet loss and reduce the pace of the TCP clients, leading to a fairer environment
for short-lived flows, incrementing the queues size would reduce packet loss but increase
RTT values, leading to greater congestion windows and better environment for long-lived
transfers.

Time-wise — predict the future quality of the network, based on present status and past
experience. This is, indeed, the final aim of network monitoring: infer future degradation
of network conditions based on the current and historical information gathered. Several
studies were made with regards to network self-similarity of traffic and models were

proposed to predict future network conditions, mostly based on Markov models.

This project aims to produce a single-point, non-intrusive, on-line, accurate, robust, and

predictive monitoring method. First, it will propose a technique to analyse from a single point,

online, the information provided by the packet flows and infer the performance parameters of the

53

Chapter 3 - A novel approach to monitoring

traffic. Secondly, an Al-based model will be proposed which, using knowledge about the
network, can model TCP transfers and can estimate the performance that a TCP connection

would have over a network path with given parameters.

3.2 Proposed online, single-point, non-intrusive monitoring method

3.2.1 Targeted traffic

The technique proposed by this study focuses on two main types of traffic: TCP connections and
real-time-based streams. This subsection details the rationale behind focusing on these two

categories of network transfers.

The choice for TCP was straightforward and imposed by the current status of the Internet. It has
been shown by previous network studies, such as [Thompson and Miller 1997, [McCreary and
Claffy 2000], that most of the current traffic is HTTP/TCP; even more recent studies [Fraleigh ef
al 2003] indicate that, in spite of the increase in peer-to-peer usage, HTTP still accounts for the
majority of the traffic This indicates large availability of information to process by a non-
intrusive monitoring point but also stresses the necessity of such a monitoring point from a
network manager’s perspective. Also, TCP had proven to be a very good alternative for studying
the properties of Internet as a whole, as shown by previous studies which used TCP as a vehicle
to estimate the network conditions [Paxson 1997a]. While being a good point to start, the subject
of TCP traffic analysis is challenging due to the large amount of previous work relating to TCP
performance analysis, as presented in the section 2.3. The success of the TCP study depended on
the amount of novelty brought in by the proposed method; this is why, aside from making the
analysis online, the main focus was to improve the various prior approaches either in terms of

robustness or ability to locate a network disfunction, and to propose altemative ways of

54

Chapter 3 - A novel approach to monitoring

analysing TCP transfers.

An additional aim was to evaluate real-time traffic performance, by combining the analysis of
the two protocols that typically carry such traffic — the Real-time Transport Protocol and the
Real-time Transport Control Protocol [Schulzrinne er al 1996]. The research within this study
elaborated therefore on the weaknesses of a RTCP-only analysis: the lack of localisation details
when using the RTCP stream and the reliability of the RTCP information. The solution proposed
is a combined RTP/RTCP analysis, which balances the weaknesses and strengths of both types
of performance inference. The only issue that obstructed the finality of this strand was the
purpose of IP telephony: the application is used to convey voice between two parties, therefore
its main indicator is the audio / voice quality, as perceived at the receiving end, and the
interactivity of the dialogue. While the second results directly from the delay between the two
endpoints, the first depends heavily on the subjective opinion of the human listener and cannot

be mapped directly to network parameters.

The aim of the project was 10 build a technique that would achieve as many goals as possible
from the list shown in section 3.1.1. This is where the novelty of the method stands: gather as
much network performance information as possible without injecting traffic or modifying /
knowing the behaviour of the nodes. The main characteristics of this method were aimed to be:
robust, single-point, non-intrusive, online, and able to localise faults. Each of these features was
approached by previous studies, but they have not been grouped yet into a single method, mainly
due to the (still) evolving trend of network monitoring. The proposed TCP analysis method has a
common ground with two main previous tools, Osterman’s fcptrace and Paxson’s fcpanaly, but
it differs from them in several areas. Firstly, it is designed for online analysis, unlike fcpirace
and tcpanaly, which are both designed for off-line analysis of network traces. This opens the

path for continuous monitoring of the network conditions and it allows closing the loop with

55

Chapter 3 - A novel approach to monitoring

continuous network adjustments for optimising the levels of traffic. Secondly, extensive effort
was put into the area of TCP timestamp options based analysis, a topic unexplored by any
previous monitoring approaches: TCP timestamps proved to bring information that allowed a
parallel inference of the network parameters, as opposed to the traditional use of
acknowledgments. Thirdly, the method proposed infers as much information as possible from the
captured traffic: identify time-out losses and estimate congestion window size, as an indication

of the connection’s health over time.

The main issue of single-point non-intrusive analysis is accuracy: how much can be inferred
about the network events and endpoints behaviour that may have caused a certain pattern in the
captured packet sequence at the endpoint? The presentation will highlight in this context the
permanent trade-off between the robustness of the method and its accuracy, together with the

decisions taken.

3.2.2 General description

The structure of the proposed method is common to most per-flow analysis. The first level is
capture and parsing, common for most traffic analysers. The input for the analysis consists of the
network traffic passing through the point where the monitor is placed. The monitor captures
packets belonging to certain flows, based on a packet filter, and then forwards them to a header

parsing module.

The packet headers, at the output of this module, are used for the actual flow analysis, which is
specific for the two types of traffic. Besides the header fields of each packet, the per-flow
analysis uses an object associated with the flow to which the packet belongs, object that holds

historical information of the flow which is vital to the analysis. The analysis is interpreting the

56

Chapter 3 - A novel approach to monitoring

headers and emulating the endpoint, with the aim of inferring the network events that lead to an
observed packet arrival pattern. The output of the analysis is the group of inferred network and
connection-related parameters, as encountered by the TCP connection: the RTT delay and
average, loss, bottleneck bandwidth, and congestion window evolution. Discrete sets of results,
produced at the end of each TCP connection, were used throughout the TCP analysis. For each
TCP connection, the output is a single set of parameters, indicating overall figures of the network
performance for each connection, and may be used for further analysis, as will be shown in

Chapter 6.

If a problem occurs on a network path, the first step is to highlight its existence through the
traffic analysis. However, the purpose of network monitoring is twofold: to identify and locate,
both to a certain extent, degradation of a network segment. While the previous section gave an
overview of the parameters that can be measured/estimated using the proposed method, which
solves the first issue of the problem, this section will describe how these parameters can be used
to narrow the location of a possible degradation of the network path in relation to the position of

the monitor.

The issue can be discussed starting from the simplistic concept of a local network (LAN / WAN)
connected via a link to the rest of the Internet, with a monitoring station placed somewhere on
this link, then expanding to a generic case. In the case of a LAN with a single Internet
connection, there is no transit traffic through the connection point; all the monitored flows have
as either source or destination an endpoint in the local network and the other endpoint on the
Internet. Based on this division, the Internet network can be split in two sub-networks — the East

sub-network, and the West sub-network, as shown in Figure 3.1

57

Chapter 3 - A novel approach to monitoring

End-to-end parameters

Internet

Sub-network Endpoint

B

Endpoint
A

West parameters East parameters

Monitoring point

Figure 3.1 - Degradation position in relation to the monitor

With this split in place, the local network may be mapped onto the West sub-network and the
‘rest’ of the Internet, i.e. the collection of network paths and segments that exist outside the local
network, would be mapped onto the East sub-nenwvork. This diagram will be used to explain how
the fault localisation is applied when monitoring the real-time traffic (see Appendix A), and the

TCP traffic, section 3.4.6.

3.2.3 Impact

The method proposed in this chapter allows a network manager or management system to
monitor in real-time the health of the network. The main problem with offline analysis traces is
the reaction speed of the management. If a transitory problem is noticed (e.g. the average RTT
value doubling for two hours, then coming back to the original figure), there is nothing a
network manager can do that would remedy the dissatisfaction of the customers, nor guarantee
that whatever measures will be taken will remedy the problem in the future. With online
analysis, the management loop may be closed, i.e. decisional factors may be informed
continuously about the network status and certain measures may be taken to attenuate / eliminate

the problems.
58

Chapter 3 - A novel approach to monitoring

On a different strand, this method may inform systems about the network status for different
network paths, so the endpoints, running either a real-time application or a TCP-based transfer,
may gather the network status prior to the actual connection. These decisions will all be time
based, subject to the network stationarity. Because this is a very wide area, it was reserved for

future work, as presented in section 9.2.

3.3 The Real-time traffic monitor

Real-time traffic initially played a very important role in this research project, as the focus was
mainly towards assessing the quality of multimedia over [P communications. But, as the project
developed, it became apparent that QoS evaluation relates closer to analysis of the vocal signal
rather than network research. Therefore, this part was considered to be outside the scope of this
project and it was pursued by a parallel research project. The work further studied the
relationship between inferred network parameters and the resulting voice quality of a VolIP call
and has been summarised in several papers such as {Sun and Ifeachor 2000]. From this
perspective, this part would require integration with the voice analysis when looking at the
overall aim of this project, i.e. assessing the resulting quality of service for various network
applications (where the interpretation of QoS depends on the application studied), but the work
included here may constitute part of a future architecture to predict the quality of a voice call
based on the network status, measured non-intrusively from a single point. An overview of the
real-time traffic analysis, together with the validation tests performed, may be found in Appendix

A.

59

Chapter 3 - A novel approach to monitoring

3.4 The TCP traffic monitor

3.4.1 Method — TCP endpoint emulation

The TCP monitor emulates or infers the behaviour of a real endpoint involved in a TCP
connection, based on the packets it captures from that TCP connection. As explained in section
2.3.2, there are tools available which attempt to determine the parameters of the TCP transfer by
analysing the captured packets and emulate the TCP endpoint behaviour, but the approach used
differs in each case. Firstly, the tools mentioned include techniques optimised for offline traces
study, such as double pass through each connection, which makes them inappropriate for online
analysis. Secondly, they aim to determine the end-to-end parameters of the TCP transfer and do
not isolate the location of eventual network degradation in relation with the monitor. Thirdly,
both programs are positioned at the extremes from the inference point of view. fcptrace does not
perform any inference on the captured packets to estimate values for e.g. evolution of congestion
window', timeout losses, or bandwidth. At the other extreme, fcpanaly includes profiling
routines, allowing specialised TCP analysis for each type of TCP implementation. This
approach, which is providing very accurate results, relies on prior knowledge of the origin for the
captured traffic, unfeasible for monitoring traffic produced by unknown remote endpoints.
Finally, it is relevant to mention an additional inconvenient for fcpanaly: some parts of its
analysis routines rely on data retrieval from both the sender and the receiver, which makes it

inappropriate for single point analysis.
The proposed TCP analysis method is described in the following section. It includes a general

approach and architecture designed specifically for single-point online monitoring, aiming to

balance between inference and robustness. In particular, the technique introduces several

60

Chapter 3 - A novel approach to monitoring

innovative procedures for parameter estimation, such as congestion window inference and

timestamp options-based analysis.

3.4.2 State analysis

The TCP monitor is built similarly to a TCP end-client: a state machine, simulating the
processing of packets ‘sent’ and ‘received’ having as inputs the flags from the captured packets.
Meanwhile, the monitor is different from the TCP client for several reasons, mainly due the
inputs of a TCP end client, which include user calls, packet arrivals and timer expirations.
Because at the monitoring point there is no access to the user-TCP interaction, there is no access
to user calls and no information about when the timers are set/expire at the endpoint, resulting in
some of the transitions, as will be explained, being inferred or unconditional. The presentation
will use the term flow to describe each of the two directions of a TCP connection. In order to
fully understand the transfer of data, the monitor requires the two flows belonging to the same
TCP connection to be paired in a single entity. The processing will use events such as packet
arrivals that appear on one of the directions to modify the current status or / and the parameters

of the corresponding direction, named pair flow in the discussion that follows.

The states from the original TCP diagram [ARPA 1981b] were maintained, as shown by Figure
3.2, but the transition triggers were modified in order to adapt 1o the unknown conditions. The

transitions in the monitor follow the transitions that happen at the endpoints and they are due to:

A. Packet arrival from the endpoint. Most of the transitions were adapted to this event; in the

original TCP diagram, after a transition happens in the client, a specific packet is sent. The

! The program evaluates congestion window based on thc number of unacknowledged bytes. The technique is
accurate if the capturing point is near the sender, but completely unreliable if the capturing is done nearby the
receiver.

61

Chapter 3 - A novel approach to monitoring

monitor captures that packet and makes the transition as well.

Example 1. The user sends a ‘CLOSE’ message to the TCP client, which is in the
ESTABLISHED state. The TCP client switches to FIN-WAIT-1 state and sends a packet with
the FIN bit set. The monitor, when receiving this packet, also switches the monitored client from

ESTABLISHED to FIN-WAIT-1 because the FIN bit is set.

Example 2. The endpoint switches from ESTABLISHED state to CLOSE_WAIT state when it
receives a packet with the FIN bit set. After the transition, the endpoint sends an
acknowledgment of the FIN. The monitor, when receiving an acknowledgment, checks the state
of the corresponding endpoint. If the corresponding endpoint is in FIN_WAIT] state, it switches

the endpoint state from ESTABLISHED to CLOSE-WAIT.

B. Specific transition of the corresponding endpoint. Some of the transitions have a packet
arrival or a user call as an input and do not have any outputs, therefore they are performed from
the pair flow. Although some of them might not happen as inferred by the monitor, they are
bound to happen in the future, prior to any other events, in order for the connection to finish
correctly. For example, if a packet that was supposed to trigger a transition is lost after the
monitar, it will have to be retransmitted in order to trigger it; the monitor will make the transition
when it captures the packet first time, while the receiver will perform it at the second
instantiation. Nevertheless, the connrection will remain in the same condition until the packet
arrives successfully or, in the worst-case scenario, if the packet is lost too many times, it will fail

completely.

Example |. When the endpoint switches from SYN_RCVD to ESTABLISHED, there is no

output; this transition is made together with the transition of the corresponding point from SYN-

62

Chapter 3 - A novel approach to monitoring

SENT to ESTABLISHED. If the packet is lost afier the monitoring point there will be some
supplementary transmissions that indicate this transition but the transition is performed when the

sending succeeds. In this case, the monitor transition precedes the endpoint transition.

C. Unconditional. There is one transition (from TIME_WAIT to CLOSED) that was made
unconditional, as it is the only one possible from the TIME_WAIT state and, in the TCP client,
is due to expiry of a timer. This timer is defined in the TCP specification as 2 x Maximum
Segment Life (or MSL), with MSL = 2 minutes. The TIME_WAIT state is only for the endpoint
to make sure that the correspondent TCP client received the last FIN packet. While this transition
could indicate eventual losses of the last FIN packet, it would keep the TCP object in memory
for another 4 minutes, which would affect the memory requirements of the monitor.
Additionally, the data transfer finished before this packet was issued, and therefore it does not

affect the useful throughput of the connection.

All the above cases can be identified in Figure 3.2, which pictures the state diagram of the TCP

monitor

63

Chapter 3 - A novel approach to monitoring

CLOSED

S SYN && (ACK of SYN)

SYN SENT SYN_RCVD

P

(Pair.State = SYN_RCVD)&&
(ACK of SYN)

ESTABLISHED

(Pair.State = FIN_WAIT&&
(ACK of FIN)

Fi
FIN_WAITI (Pair.State = FIN_WAIT1) CLOSE_WAIT
T &&(ACK of FIN)
Pair.State: ESTAB — |
CLOSE_WAIT N FIN
FIN_walT2 | [_CLOSNG
//
(Pair.State = LAST_ACK) / Pair.State: ESTAB — LAST ACK
&& (ACK of FIN) Y, FIN WAITI > -
- 7
/ rd
7
TIME_WAIT r //
-7 PairState: TIME_WAIT —
- i CLOSED
unconditional e
X
CLOSED

Legend - types of transition triggers:

SYN /ACK of SYN / FIN — an incoming packet that has the mentioned flag set

- Pair.State = X — the pair flow is in state X

- Pair.State: X — Y — the transition is actually set from the pair flow, when it transits from
state X to state Y (that is why these transitions are marked with dotted lines)

- unconditional — the transition is decided at the endpoint by the TCP client and does not

have any output

Figure 3.2 - The TCP monitor state diagram
64

Chapter 3 - A novel approach to monitoring

Additionally, aside from the main TCP state diagram, within the ESTABLISHED state, the two

parts of the TCP monitor, the ‘sender’ and the ‘receiver’ require a state machine:

Sender state machine:

IDLE — the sender received acknowledgments for all the data it sent

WAIT_ACK - the sender previously sent data which has not been acknowledged yet

Receiver state machine:

IDLE - the receiver acknowledged all the data it received

NORMAL - the receiver is acknowledging data

DUPLICATE_ERR - the receiver sent twice the same acknowledgment
DUPLICATE_ERRI1 — the receiver sent three times the same acknowledgment

DUPLICATE_ERR2 - the receiver sent four times or more the same acknowledgment

3.4.3 Sequence analysis

As mentioned, the TCP monitor structure is similar to the structure of a TCP client. Therefore,

the analysis performed by the monitor is similar to the analysis performed when an event

happens in the TCP client. The phases of this analysis are summarised as follows:

()
(i)

(i)

Check flags field and update accordingly the memorised state of the endpoint;

Check the sequence numbers and update the byte accounting parameters (e.g.: bytes
transmitted, useful bytes transmitted). If the packet is apparently out of sequence use
the sequence numbers, in conjunction with the Identification field from the IP header
to determine if the packet is indeed an out-of-order packet or a retransmission; update
the packet accounting parameters (e.g.: lost packets, out-of-order packets);

Check the timestamp, correlate it with the previous timestamp and with the sequence

65

Chapter 3 - A novel approach to monitoring

numbers and update the lime-related parameters (e.g.: RTT, jitter).

It is worth mentioning that the Identification field mentioned above has a different functionality
in the [P header, where it is used, together with the More Fragmenis flag, to reassemble
datagram fragments. Unfortunately, it cannot be a means of identifying losses by itself because it
is incremented every time the host sends a datagram and therefore it can be used as a sequencing
reference only if the host has only one active TCP connection at a given moment in time (which

is not the case for virtually any TCP endpoint).

The analysis applied to the packet depends on its status (whether or not the data from the packet
is new, in-order, or out-of-order). The status is determined by comparing the
sequence/acknowledgment number in the TCP header of the packet with the sequence variables
of the flow to which it belongs. In parallel, the acknowledgment number informs the receiver
part of the flow about the status of data sent. In the following, the terms o/d and future relate to
captured data segments that have a sequence number lower / higher than the expected sequence

number of the flow to which they belong,.

According to their status, captured data segments were separated into five categories:

~ Correct data = segment of data in sequence, following highest sequence number sent, i.e.
matching the expected sequence number (IN_ORDER_DATA);

— Future data = out-of-order data; the sequence number of the packet is higher than the
expected sequence number (FUTURE_DATA),

~ Retransmitted data = old data segment which was transmitted at some moment in the
past, and now is retransmitted, probably due to a packet being lost (RETRS_DATA),

~ Newer data = segment of data which includes both retransmitted data and in order data;

66

Chapter 3 - A novel approach to monitoring

when detecting a lost segment, TCP can retransmit it by concatenating it with a valid
segment; although the number of packets is the same as in a no-loss situation, still, there
was a packet lost in the process of transmission, and this event has to be identified
(NEWER_DATA);

— Inverted data = old data segment which was mis-ordered (INVERTED_DATA) such that
a segment follows after a future data segment, but it is only out-of order, not

retransmitted.

In relation to these categories, the method can determine two types of losses: visible and
inferred. A visible loss is detectable using only sequence analysis to estimate a loss. This is
possible either because the monitoring point is close enough to the sender in order to see both
instances or because the sender transmits other data segments before retransmitting the segment.
The second category, inferred losses, uses packet spacing instead of sequencing to identify
losses. The technique relies on the fact that the sender will always have data to send; because of
this, there should never exist a pause larger than RTTaveraget4*RT Tyariance (based on a slightly

adapted version of [Karn and Partridge 1991]).

The steps of the data analysis are the following: determine what type of data is inside the packet,
determine idle periods, calculate delay-related variables, and estimate the congestion window.
The processing uses two arrays of information, named SkipData and BufferData in the following
discussion and in section 3.5.1, when discussing the implementation. The role of SkipData is to
memorise past intervals of sequence numbers that appear to be missing from the captured flow;
BufferData maintains records of past captured data segments. Throughout these steps, the flow

variables are updated. The following list describes each of these steps.

(i) Determine what type of data is inside the packet.

67

Chapter 3 - A novel approach to monitoring

This step uses the expected sequence number and the SkipData structure to identify the

visible losses. The first check compares the sequence number of the captured data

segment with the expected sequence number. If the received sequence number is higher

than the expected one, then the segment contains in order data or future data. Else, the

segment carries old data, and the SkipData list in conjunction with the Identification

information are required to make a distinction between mis-ordered packets, packets lost

before the monitor and packets lost after the monitor. The following checks are

performed:

If the segment is not listed in SkipDara, then is a lost-after-monitor segment
(LostAfter)— it was transmitted previously and both of the instantiations were
captured;
If the segment was already acknowledged by the receiver (i.e. the expected sequence
number of the receiver is equal to or higher than the last sequence number contained
in the data segment), then the packet was erroneously retransmitted by the sender
(RTOError), although no loss happened. This may be due to the acknowledgment that
indicated the successful receipt of the segment being either lost or to a late (arriving
to the sender after the retransmission timeout expired).
If the segment is listed in the SkipData, then its Identification field, from the IP
header of the incoming packet, is compared with the Current ID (which indicates the
most recent value of the Identification field sent) of the flow:
- If Identification is lower than Current 1D, the packet is a genuine out of order
packet (Inverted), as the sender had released it before sending the previously
received packet (which Identification updated last time the flow Current ID);

- If Identification is higher than Current [D, the packet is a retransmission of a lost-

68

Chapter 3 - A novel approach to monitoring

(i)

before-monitor segment (LostBefore), as the packet is in order from the 1P point

of view (was transmitted after the previously received packet).

Determine idle periods.

In addition to the above analysis, additional checks are performed to determine whether
or not the current packet arrives after an idle period. An idle period is defined in this
context as time during which neither the sender, nor the receiver, have any outstanding
data segments or acknowledgments to transmit. A sender reaches this state if there is no
more incoming data from the application it serves; the receiver in this state acknowledged
all the data it received. It is not a case mentioned in the traditional TCP behaviour
modelling literature, where the sender always has data to transmit [Ott er al 1996] or it
transmits all the available data without any pause. Nevertheless, such behaviour, i.e. with
pauses within the connection, is not uncommon in a real-life situation, even for file
transfer protocols such as HTTP and FTP. The best example of such a situation is a TCP
connection providing data to an HTTP 1.1 web browsing application. HTTP 1.1, as
mentioned in section 2.1.3, uses a single pipelined TCP connection to transport all the
objects from a page / website, as opposed to HTTP 1.0, that opens a connection for each
object. In the HTTP 1.1 case, when a user browses a website, there will be large gaps
within the established TCP connection, for example due to the browsing activity: the user
opens a page, reads its content, then follows a link to a next page. This does not impact
on the overall TCP dynamics, but it affects performance evaluation of the transfer. An

example is given in Figure 3.3.

69

Chapter 3 - A novel approach to monitoring

Se%%%%%e number (relative)
T T 1 T 1 l L i

70000 E d .
60000 | : . -
50000
40000
30000
20000
10000

0

1 L 1 (] L 1

0 20 40 60 80 100 120 140
time [s]

Figure 3.3 - HTTP 1.1 session

The above figure displays the trace resulting from a 6-page web browsing session. Each
of the transfers was normal, with a high throughput, but the analysis would reveal a very
fow figure, due to the pauses that the user made on each page. This is why such a
connection must be properly analysed; the monitor, in this case, has to account for each

of the mentioned gaps and to eliminate that time from the total time of the transfer.

The method to determine idle periods is based on identifying the gaps between different
object transferred. A period between two packets within a TCP connection is considered

as idle if:

(a) The time elapsed between the two packets, At, satisfies the rule

At 2max(2RTT opd —10—end 2 5€€) 3.1

The 2 second limit aims to eliminate from this counting the gaps between a train of

acknowledgments and the next train of packets, sent due to these acknowledgments,

while the 2RTT limit protects the high-delay connections from the 2 second rule. This
70

Chapter 3 - A novel approach to monitoring

timing information has an impact on the timeout estimation: if a packet timeouts
several times, enough to go above the 2 seconds interval, it will be considered as
coming from a different object, instead of being lost. It is an accuracy trade off but,
on the other hand, such gaps will happen within a normal HTTP 1.1 web browsing

session, while repeated timeouts are rather exceptional events [Paxson 1997a].

(b) Both the sender and the receiver are in IDLE state, as defined in 3.4.2, when
capturing this packet. This rule reduces the impact that idle periods can have on the
overall performance estimation if a connection encounters a severe network outage;
when there is still data pending to be acknowledged or retransmitted, the connection

cannot be during an idle period.

(c) The packet has a non-zero data length. A new object transfer has to start with new

data being sent.

Special attention was given to the first idle period within an HTTP connection. A typical
HTTP retrieval starts with the following data exchange between the server and the client,

see Figure 3.4.

tl - Client: GET /index.htm HTTP/1.1 (HTTP tags)
t2 - Server: [empty ACK for the GET request]
t3 - Server: HTTP/1.1 200 OK [HTTP tags, packet content]

Figure 3.4 - Initial GET request from a client

The difference (t3 —), where 1; is the capture timestamp of the packet i, represents the
server response lime. In the ideal case, this time difference should be virtually null if the

capturing point is positioned right at or nearby the server. However, if the server is busy,

71

Chapter 3 - A novel approach to monitoring

(iii)

it may be substantial and the server might issue first an empty acknowledgment (either
immediately or delayed, depending on the prior evolution of the associated TCP
connection) and produce the response only later on. In any case, the estimate indicates
the server performance as part of the overall TCP performance; it does not affect the
dynamics of the TCP traffic, but it has the same impact on the observed performance (i.e.

“How fast a page is loaded”) as degradation in network conditions.

Calculate delay-related variables.

The RTT estimation is based on matching the acknowledgment number carried by the
packet with a last sequence number from a buffer location. The rationale behind it is that
an acknowledgment is produced by the receiver immediately when it gets a data segment
eligible for acknowledgment (in fact it is every other data segment, as receivers - should -
use delayed acknowledging). The acknowledgment is valid for RTT estimation if the data
segment was not acknowledged before and the segment was not retransmitted; the two
conditions ensure that the acknowledgment was produced in normal transfer conditions,
and not due to losses or mis-ordering, and they are similar in a real TCP client. The RTT

estimation uses the BufferData to obtain historical information:

(@) The acknowledgment number is searched in the list.

(b) If the last sequence number of a segment (i.e. the segment’s sequence number
plus its length) is equal to the acknowledgment number less | unit (because the
acknowledgment indicates the next expected sequence number), the
acknowledgment was sent for that segment; in addition, following checks are

performed:

72

Chapter 3 - A novel approach to monitoring

The dotted ellipses indicate which packets were likely to have been sent in the same
congestion window; to visualise better, beside the ellipse is also written the number of

packets in that particular congestion window.

The ideal method would be to emulate the four TCP algorithms [Stevens 1997] at the
monitor, and modify the congestion window accordingly, but this would be difficult to
achieve, mainly because of the unknowns in the sender behaviour. Two other approaches
were considered: estimate the congestion window as the number of data packets in flight
at a moment or estimate the separation between different congestion windows using the
time elapsed between two consecutive captures of data segments belonging to the same
flow. The following paragraphs will describe each of the mentioned methods. The notion
of flight (of packets) will be used, with the meaning of a sequence of packets all

transmitted within an RTT, as defined in {Paxson 1997a).

1. Emulate the behaviour of the sender
TCP, as presented in 2.1.2, includes four algorithms for performance optimisation.
Based on capturing the data segments and acknowledgments of a connection, the
monitor emulates the evolution of the congestion window and determines a
congestion window estimate (CWE), as it happens at the sender. The summary of this

type of emulation is:

- slow start mode: start CWE at 1, when first data segment is captured and every
time an acknowledgment / a data segment is captured, increment / decrement
CWE;

- congestion avoidance mode: increment CWE by 1/CWE every time an

acknowledgment is captured;

74

Chapter 3 - A novel approach to monitoring

- loss (detected via multiple duplicate achnowledgments): reduce CWE to
((CWE/2)+3) segments and start congestion avoidance. Increase the CWE by one
segment for each duplicate acknowledgment received;

- loss (detected via a timeout): reset CWE to | segment and then increment in slow

start mode.

The above algorithm, offers not an estimate, but the actual value of the congestion
window, under ideal conditions (full knowledge of the packets that arrive at the
sender and of its TCP behaviour). The method was successfully implemented in
[Paxson 1997b], but only by considering two essential aspects. Firstly, in order to
correctly foliow the evolution of the TCP sender, the capturing point had to be placed
right at that endpoint. Secondly, the analysis program was aware about the alterations
from this policy existing within the TCP implementation studied. None of these
aspects exists within the scope of this project; the proposed method should not be
limited to known senders or/and known conditions at the sender. For these reasons,
the algorithm emulation was considered to be unsuitable for congestion window

estimation within this analysis method.

Identify transmission window ‘peaks’

The second type of congestion window inference, based on the number of packets in
flight, is less demanding compared to the one described above. It is performing
inference instead of emulation: it does not make any assumptions about the sender
behaviour, but it tries to estimate the number of packets in flight. The rationale
behind this is that the size of the congestion window is equal with the number of
packets in flight, as the sender can transmit up to the minimum of the congestion

window and the advertised window [Stevens 1997]. In order to determine this

75

Chapter 3 - A novel approach to monitoring

3.

number, the monitor determines the ‘peaks’ of the number of unacknowledged
packets evolution by comparing each three consecutive values of them. A better
understanding of the method can be gained by looking at a graphical example. Figure
3.6 presents the evolution of the number of unacknowledged packets, as seen by the
monitor; the updates are performed each time when a data/acknowledgment packet is

received.

Esn'mgted congestion window [data segments]
2.

T T T T Y
2 - + + + + ++ -
15+t .
1F + + + + + s -
0‘5 1 1 L 1 1
0.2 04 0.6 08 1 1.2 1.4
time [s)

Figure 3.6 - Estimated congestion window based on identifying transmission

window peaks

It may be seen that the number of unacknowledged packets oscillates between | and 2
packets. This is because, in this case, the position of the monitor was very
unfavourable for this method: at the receiver. Because of this, the monitor will see the
acknowledgments being sent every other packet the latest, leading to an estimate
oscillating between | and 2. The method is clearly more robust when compared to the
previous but is, clearly, prone to errors, due to the uncertainty introduced by the

position of the monitor.

[dentify packet trains — time based

76

Chapter 3 - A novel approach to monitoring

The third proposed option to determine the congestion window is robust, but less
accurate, particularly for long file transfers. It is based on the observation that, for
short data transfers and high values of the (bandwidth x delay) product, the sender
never achieves efficient utilisation of the available bandwidth, due to the speed of the
slow start algorithm that, even though it increases the congestion window
exponentially, has a low number of data segments to reach full utilisation. As a result,
a sender transmits data segments belonging to the same round in an almost back-to-
back fashion, distanced by Atintm-tmin packers €volution visible in Figure 3.5 between the
circled groups of segments, and then it waits for the receiver to acknowledge these
segments. Because of the delay between successive data segments belonging to
different flights, Atigeramin packess, they can be visually observed in the figure.
Translated in numerical terms, the method must identify this gap by comparing the

inter-arrival delay with a defined value, using a relation such as equation 3.2

Alinter—train packets >> Mintra—train packets 3.2

This best value for Atiger.imin packes Was considered to be RTT/2, considering that a
flight of packets is all being sent back to back at the beginning of an RTT period,
then, approximately one RTT later, when the acknowledgments arrive, the sender
transmits the next flight'. The result of this estimation, applied on the transfer from

Figure 3.5, is shown in Figure 3.7.

! Choosing a figure too low may lead to incorrect splits in the middle of a train of packets; a figure too high might
erroneously gather segments from more than one packet train.

77

Chapter 3 - A novel approach to monitoring

Estimated congestion window [data segments]
35

. T T . T T .
30 b i
25 | .
20 | . 1
15 .
10 | 1
5L . -

0 i 1 1 (1 L] 1
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6

time [s]

Figure 3.7 - Estimated congestion window based on identifying packet trains

The problems for this method come from a different direction: the TCP functionality
itself. It is apparent from the TCP specification [ARPA 1981b], that its primary aim is
to fill the available bandwidth for each connection. However, in the real case TCP is
not aware of the network conditions at the start of the connection. Therefore it has to
probe the available bandwidth through the slow start algorithm, and only then to
stabilise at the resulting throughput, not always accurately, during the congestion
avoidance phase. It is due to this unawareness that the proposed congestion window
estimation works: the TCP client is still in the slow start phase or had a packet loss
rate that forced it to keep the congestion window low. As a result, the TCP client does
not fill the available bandwidth x delay product, which leads to the spacing between

windows visible in Figure 3.5

The main drawback of the method is that it is suited only for short connections. As
the size of the congestion window increases, the channel reaches its limits, increasing
the probability of missing the inter-packet-train gaps. More details about this
drawback are presented in section 4.2.1."In addition, another limitation of this method
is that it produces the estimate of the congestion window based on the distance

between packets as they arrive at the monitor. If the monitor is placed by the receiver

78

Chapter 3 - A novel approach to monitoring

and the distance between packets belonging to the same train is substantially altered
because of queuing, the method will not be able to identify successive packets from
the same window. Ideally, the monitor should have information about the distance
between successive packets as they leave the sender, regardless of its position. This

limitation is solved in the following section, 3.4.4.

3.4.4 Timestamp options-based TCP analysis

A parallel analysis of the network performance and sender parameters is performed using the
timestamp options from the TCP header. Timestamp options were defined as an add-on of the
TCP standard in [Jacobson ef al 1992], and one of their main purposes is to allow the sender to
obtain a better estimate of the RTT. The RFC defined two timestamp fields included in the
typical timestamp option: the TSval (timestamp value), which is obtained from a local clock, and
TSecr (timestamp echo reply), which echoes the T'Sval of the most recent data segment received.
The monitor uses these exchanged timestamp values in order to determine the RTT, as defined in

section 3.4.3, and bottleneck bandwidth.

The timestamp-based analysis uses the same information objects as the previous (the flow-
related object, containing the current information, as well as the BufferData and the SkipData
structures). The differences appear when pairing the correspondent packets from the two
directions of a connection. While in the ‘traditional’ method, this mechanism was based on the
acknowledgments produced in response to data packets, with this method it is the timestamps
that allow identifying which packets were sent as response to certain packets, and determine the
RTT value. The BufferData must store, besides the boundaries of the data segment, the TSval
and TSecr values for each TCP segment. When a data segment is captured, if it is an IN-ORDER

packet, the value of its TSecr field is searched among the TSval values. The TSvai values are

79

Chapter 3 - A novel approach to monitoring

retrieved from the historical information stored in BufferData; the search starts with the most
recent segment to minimise the number of searched locations. When the segment is found, the
RTT is computed as the difference between the capture timestamps of the two packets. The
method has the major advantage of estimating RTT for data segments sent in response to
acknowledgments (fact that was impossible for the normal sender-receiver configuration, as all
the TCP segments acknowledged the same sequence number, i.e. Initial Sequence Number+| for
the acknowledging flow); this radically increases the accuracy of the overall RTT estimation in

the cases where the monitor is placed near the receiver, as will be described in section 4.1.

344.1. Congestion window

TCP-timestamps-based analysis may also contribute to the congestion window analysis. The
values carried by TSval are directly proportional to the time when the packet was transmitted by
the sender. The only information required to convert the difference between these values into
time is the resolution of the TCP timestamp of the sender; because the information is needed
during the connection, the SYN-ACK resolution estimate is used. The resulting values for inter-
packet spacing are then compared with RTT/2 to identify the trains of packets as they leave the
sender. This provides a better congestion window estimate,as the TCP timestamps are not

affected by the queuing between sender and monitor.

3.4.4.2. Bottleneck bandwidth

One of the studies laying the foundation for bottleneck bandwidth estimation was [Shenker et al
1990], where the distribution of packet inter-arrival times was analysed, then continued in
[Keshav 1991], where the packet pair method was proposed to intrusively determine bottleneck
bandwidth. The method was further refined in [Mogul 1992] and, more recently in studies such

as [Lai and Baker 2000]. The theory behind all these alternatives relates to measuring the
80

Chapter 3 - A novel approach to monitoring

spacing between packets and estimate, based on this measurement, the boitleneck bandwidth. It
considers a pair of (generic) packets of size x bytes sent back-to-back from an endpoint A and
received at an endpoint B. When the ACKSs arrive at host A, due to the bottleneck segment, the
spacing between them is changed to Ar > 0. The rapport between the size of the packets and the

resulting spacing gives the bottleneck bandwidth:

bottieneck bandwidth = ﬁ 33

There is at the moment a variety of tools for bandwidth measurement, virtually all of them
focused on active measurement, as described in section 2.3. The nearest to the scope of this
project can be considered the Packer Bunch Method (PBM) proposed by Paxson in [1997a), in
which he identified ‘bunches’ of data segments using monitors both at source and destination
and fully following the behaviour of the sender. The aim of this project is to have a single point
estimation, and, as previously mentioned, this eliminates the possibility of establishing the
sender behaviour (additionally, the actual implementation of the sender is unknown, which
complicates matters). In all the cases, the problematic quantity is the inter-send time between
successive packets at the sender; most of the approaches eliminate it by sending back-to-back
packets (which also increases the probability for these packets to be queued sequentiaily in the
routers), or, in PBM case, determine what this value is by capturing the data at the sender as
well. This project proposes a novel approach, which is gathering this information from the
timestamp options. Inde;:d, the TSval is produced based on the local clock of the sender;
although there is no absolute timing information, due to the fact that the clocks of the sender,
monitor and receiver are not synchronised, there is still relative information that can be gathered
by subtracting the TSval values from successive packets. This is how, without producing any
additional traffic, the monitor is able to infer which of the data segments sent by an endpoint

may have been transmitted back-to-back. For satisfactory results, the resolution must be high

81

Chapter 3 - A novel approach to monitoring

enough to differentiate between two separate ‘bunches’ of back-to-back packets and, if

necessary, also low enough to be unable to distinguish between two back-to-back packets

belonging to the same ‘bunch’. Section 4.4 provides a detailed overview of the resolution

estimation for the TCP timestamps, as well as the limitations that the proposed method has.

3.4.5 The measured paramelers

This subsection details the actual variables that are measured/inferred using the presented

method. There are two main categories of parameters resulting from the analysis: network-

related and performance-related.

(i)

Network-related parameters. This category of parameters aims to describe the status of

the network path transited by the packets belonging to a flow. This category includes:

RTT average and RTT variation — together aim to inform about the delay encountered

by the packets when transiting the network.

Y RIT

ico estimation i .) . 34
RTT pverage = - , where n is the number of estimations
a=1
ZIRTTI:HJ'MB'OH i~ RTTeJdmn'on i-1 3.5
RTTmn‘mian = L=l

n—1

Bottleneck bandwidth (MinimumBW) - represents an estimator of the lowest
bandwidth segment from the network path transited by the data segments. It can be
determined only if the TCP endpoints are producing the TCP timestamp option (see

section 3.4.4.2):

82

Chapter 3 - A novel approach to monitoring

=1
m

m-1 | - I
— N 3.6
; [,,-. ’Z(’(H-I)Jn ln,m)J

“_st

where:

m — the number of packet trains observed

lim — the length of packet i from the m" train of packets

t;m — the timestamp of packet i from the m™ train of packets

nn — the length (in packets) of the m™ train of packets

Lost packets — includes three component losses:

— LostBefore — packets lost on the path segment between sender and monitoring
point

— LostAfter — packets lost on the path segment between monitoring point and
receiver

— Timeout — packets lost and retransmitted due to a timeout

Each of them represents the loss on one of the path sub-segments; their sum is an
inference of the end-to-end losses, either true or due to erroneous behaviour of the
TCP sender. In addition, a subset of the LostAfier category is determined: RTOErrors
(retransmission timeout errors). These are data segments that were retransmitted
although an acknowledgment to confirm their receipt was captured by the monitor in

the time between first and second instance of the data.

— Out-of-order packets (Inverted) — the number of genuine mis-ordered packets;
— Total number of transmitted packets (including retransmissions);

— Timing information:

83

Chapter 3 - A novel approach to monitoring

o Connection time — the time elapsed between the first and the last transmitted
packets

o Data transfer time - the time elapsed between the first and the last transmitted
data packets

o ldle time — the total amount of idle time within the duration of a connection

(ii) Performance information (throughput and duration) — all the parameters below are
obtained using the connection / data transfer duration minus the idle times. This ensures
that the resulting figures reflect directly the performance of the TCP transfer, as
described in 3.4.3.

— Valid data throughput — the amount of valid data that was received (obtained by
subtracting last transmitted sequence number and initial sequence number)
reported 1o the duration of the data transfer

— Connection duration — the time elapsed between capturing the first packet and the
last packet from the connection

— Data transfer duration — the time elapsed between capturing the first data packet

and the last data packet from the connection

3.4.6 Fault localisation

The previous section provided a list of parameters that may be obtained from the TCP analysis.
In tumn, these parameters may be mapped onto the two logical subnetworks defined in section
3.2.2, to give an indication about the location of the measured parameters. As most of the
Internet traffic today is based on client-server communications (e.g. HTTP), the generic model
of a connection can be considered the sender-receiver case, where one of the endpoints

(Endpoint A in Figure 3.1) sends data and the other one (Endpoint B in Figure 3.1)

84

Chapter 3 - A novel approach to monitoring

acknowledges it. With this configuration, the loss and delay parameters were split as pictured in
Figure 3.8 This model also matches peer-to-peer downloads, which are on the increase in current

network usage figures [Fraleigh et al 2003]:

~ RTT delay - RTT West and RTT East

— loss — outgoing West loss, outgoing East loss, incoming East loss, incoming West loss

East sub-network

D RTT East

incoming East loss

West sub-network

RTT West C

outgoing West loss

outgoing East loss

incoming West loss

SN SN SN EI R

Monitoring point

Figure 3.8 — The components of loss and delay for the monitoring configuration

Using the notations from Figure 3.1 and Figure 3.8, for Endpoint A acting as sender, the

following parameters may be inferred:

— Subnetwork West A—B packet loss rate <> outgoing West loss « packets lost before the
monitor

— Subnetwork East A—B packet loss rate <> incoming East loss «— packets lost after the
monitor

— Subnetwork West A—B packet inversion rate <> outgoing West misordering « inverted

packets

85

Chapter 3 - A novel approach to monitoring

— Subnetwork East RTT < RTT East — RTT measured
— Subnetwork West RTT < RTT West — RTT measured of the reverse flow (with a lower
confidence factor, as described in 4.1)

— Subnetwork West A—B < West bottleneck «— estimated bottleneck bandwidth

Additionally, if B sends data as well, there can be also determined:

— Subnetwork West B—A packet loss rate <> outgoing East loss «— packets lost before the
monitor

— Subnetwork East B—A packet loss rate <> incoming West loss «— packets lost after the
monitor

- Subnetwork West RTT < RTT West «— RTT measured

- Subnetwork East B—A packet inversion rate «— inverted packets

— Subnetwork East B—A <= East bottleneck «— bottleneck bandwidth

3.5 Method implementation

3.5.1 Block diagram

The primary aim of the monitor is to reveal an estimative picture of the network performance, as
encountered by the analysed packet flows. The common part of the monitor performs only the
header parsing and forwards the information to the analysis blocks, together with prior
information, retrieved from a connections database. A schematic view of the monitor is given in

Figure 3.9. The analysis is triggered every time a packet is captured.

86

Chapter 3 - A novel approach to monitoring

Frame
capiurer
TCP analyser
3
- State analyser C ti Pos
—— :Jjn:l:; lons processing
Frame atabase unit
Sequence analyser ‘
A
Database
maintainer

Figure 3.9 — Traffic analyser - main blocks diagram

The Frame capturer and Frame parser components have the obvious role to capture the
frames passing through the monitoring point and decode their content. The output of the Frame
parser is used for two purposes: to start the analysis of a current frame by the TCP analysis and
to retrieve information from the Connection database about the flow associated with the current

packet.

The Connection database is a structured collection of objects, each of them containing
information about each analysed flow. It uses the quadruple (source IP address, source TCP
port, destination IP address, destination TCP port) as a means to uniquely identify a TCP flow at
a moment in time. For each monitored flow, the database maintains an object that memorises its
relevant data. The information held can be split into two headings: connection-related parameters
and performance parameters,. The connection-related parameters are used in the TCP analysis,
which inform about the initial and current status of the connection; the performance parameters
are the actual outputs of the analysis and will be forwarded, when requested, to the Post-

processing unit.

Although a TCP connection has two flow objects associated with it, one for each direction,

87

Chapter 3 - A novel approach to monitoring

analysis of a packet belonging to any of the directions requires both objects. The pair flows have
to work in conjuction within the monitor, for several reasons. Firstly, some of the transitions of a
flow can be made only based on packets sent by the other flow in the pair. Secondly,
acknowledgment numbers of a flow acknowledgment data sent by the pair flow. Thirdly, RTT
can be computed only by combining the timestamp of the sent data packet with the timestamp of
the returned acknowledge. In fact, in the actual TCP client implementations, the two flow objects
are paired in a single structure [Stevens 1995}, but the monitor has a different view of each
connection. While an endpoint maintains information about one sender and one receiver (the
ones at that endpoint), the monitor must keep the information regarding two senders and two
receivers (i.e. a sender-receiver pair for each of the endpoints). It was therefore preferred, for

clarity reasons, to keep the two directions of a connection separate.

The TCP analysis block uses the two inputs (the headers of the current packet and the past
information) to update the current details of the flow and it uses the sequencing and timing
information provided by the current packet to update the parameters of the associated flow from
the Connection database. The analysis requires two blocks: a State analyser, required to infer
the current state of the connection according to the TCP state diagram, and a Sequence analyser,

used to evaluate and update the current status of the data transfer.

The Database maintainer periodically polls the database and removes the flows which are in
CLOSED state. It uses a timer to decide whether a flow should be kept in the database, using its
inactivity period - the time elapsed since capturing the last packet associated with this flow. This
is a critical block for the traffic analyser, as it removes unused flows from the database, therefore
keeping the memory usage to a low value. The actual value of the timer results as a balance
between the TCP and HTTP timers on one side and the memory limitations on the-other side. As

defined in [ARPA 1981b], a connection can be kept open indefinitely, as long as senders

88

Chapter 3 - A novel approach to monitoring

generate periodically packets to check whether or not the connection is still opened at the
corresponding endpoint; according to [Braden 1989], the duration between two keep-alive
packets should be at least 2 hours (the figure of the monitor trigger was doubled to account for
clients with longer keep-alive timers). Based on this specification, the monitor should set the
flow removal timer to a value of 2 hours, which would increase massively the amount of
memory that the monitor requires. During the implementation, the preferred value was of 5
minutes, which, although it might remove such connections, it considers another type of
inactivity periods. These are the ones produced by HTTP version 1.1, which may re-use the same
connection to transfer several objects, behaviour detailed in section 3.4.3 (subject to the duration

of the monitoring and the amount of traffic captured).

The Post-processing unit takes the role to take the information from the Connection database
and either provides it to a control entity or display it to the user. Depending on the chosen output
method, the performance information may be presented either continuously or discretely. For
continuous output, the current values for the network parameters are presented every time a
packet is received; in this case, the post-processing unit will output performance data afier every
captured packet. For discrete output, the output is triggered indirectly from the analysis blocks
every time a flow is closed. The continuous output is more appropriate for real-time flows, as
they may last for a long time and the instantaneous or short-term performance average values are
more relevant than the long-term averages. On the other hand, discrete output is the preferred
form of sampling for TCP flows, as their performance is best evaluated at the end of the

connection.

The Frame capturer component was implemented using the peaplib packet capturing library
[LBNL 2003], library used for most of today’s network analysis programs. The library includes

functions to get a handle of the capturing device, filter the captured packets (e.g. retain and

89

Chapter 3 - A novel approach to monitoring

forward for analysis only the http traffic - TCP port 80 - from the entire traffic passing a
monitoring point). The output of the frame capture is a structure including a pointer to the
captured frame, time of the capture and the length captured (for TCP analysis, only the
information up to and including the TCP header is used, and the actual data content of the packet
is discarded). The Frame parser is called with this mechanism and, from the raw frames
provided by the Frame capturer, determines the fields of the IP and TCP headers. These two
preliminary phases are common for most of the available TCP monitors / analysers / parsers,

such as the well-known tcpdump [Jacobson 2003b],

As the monitor has to work in real time, it is important that the retrieval of the information
related to a connection to be fast, on one side, but also, from the same reason, the database must
be efficiently organised, in order to occupy as little space as possible in memory. The first
requirement, i.e. speed, points towards an array, with each location uniquely identifying a TCP
connection; but this would require an array with, roughly, 255%#655357 locations to encompass
for all the possible combinations of IP addresses and ports quadruples, which is unfeasible for
the obvious physical memory limitations. The second requirement, space, can be satisfied using
a chained list of the current connections, which would impede dramatically the performance if
the number of monitored connections were high. A combined hash-based and chained lists
indexing was chosen as a compromise solution to satisfy both of these conditions. As a result,
the connection database is organised as an array of hash values, and each of the locations of the
array points to the beginning of a chained list of objects. The mechanism of determining the
location of the flow is a two-step one. First, a hash value, HashID, from the (source IP address,
source TCP port, destination IP address, destination TCP port) quadruple is determined. The
hashing function treats the quadruple as a 12-byte string split into 6 16-bit integer values. It then
produces a number, HashValue by summing these integers. The hash value is calculated as the

remainder of the division between the HashValue number and the size of the table. Second, the

90

Chapter 3 - A novel approach to monitoring

chain list at location HashiD is followed in order to find the requested object. The size of this

table, HashTableSize, was set to 1024 in order to avoid the chained lists becoming too long.

The State analyser module has the role to follow the evolution of TCP connections, as a state
machine. The module infers the evolution of a TCP client based on the packet arrival events or
timer expirations. The functions of this module implement the method described in section 3.4.2.
The need for this module comes from two directions, relating to evaluating the duration of the
TCP connection. The first reason is to correctly determine the start of the data transfer. Secondly,
knowing the connection lifespan optimises the resources usage of the monitor. Once the
connection is successfully completed, its associated object can be discarded and the summary of

the connection either saved or forwarded to the Post-processing unit.

The Sequence analyser module implements the algorithms presented in sections 3.4.3 and 3.4.4.
Its purpose is to infer the events, such as latency and dropped packets, that led to the captured
sequence of packets and to extract the corresponding network parameters from the monitored

connection. In order to fulfil its objectives, the module includes several variables:

- BufferData - a circular array that memorises the sequence, timing, acknowledgment,
and retransmission information for last 256 data segments captured. The roles of this
array are to identify whether there were any (multiple) retransmissions and to provide
timing information for RTT calculation (particularly for TCP timestamp-based delay
inference)

- SkipData — a circular array that memorises the last 10 intervals of data that appears to
have been skipped. This array helps to separate between misordered and retransmitted
data segments. The array has a complementary role to the BufferData. Its

functionality may be replaced by BufferData, but it was maintained as a separate

o1

Chapter 3 - A novel approach to monitoring

structure for speed and simplicity reasons, as the BufferData memory is larger. It also
provides a mechanism to determine whether there might have been any packets
dropped by the interface during the capturing. This is because, once TCP closes
gracefully a connection, all the data transferred was correctly received by the remote
end. If there still exist any entries in the SkipData list after such a connection, it is
likely that those segments were dropped in the capturing process, only by the
interface, rather than dropped by a router.

- PacketStatus — a variable that characterises the data segment contained in the packet,
according to the categories defined in 3.4.3 (IN_ORDER_DATA, FUTURE_DATA,

RETRS_DATA, NEWER_DATA, INVERTED_DATA)

A third option, not fully explored during the project but important as a future research avenue, is
10 determine whether or not the connections follow the correct evolution, in order to identify
potential faulty TCP implementations. This direction relates more to the overheads that TCP
clients must sustain than to the network conditions. A TCP server that does not implement the
TCP state machine correctly will overload its memory and/or the network. Firstly, by not
gracefully closing the TCP connections, the endpoint will have to memorise a larger number of
associated objects. Secondly, the endpoint will create additional traffic due to forced closing of

connections (e.g. through RST — reset packets).

3.6 Summary

This chapter presented a method that allows non-intrusive, single-point, online analysis of traffic.
The description of the method started with an overview of the requirements that current network
analysis has from monitoring and it built a list of characteristics based on these requirements,

which was used as a list of aims for the developed traffic analysis.

92

Chapter 3 - A novel approach to monitoring

The presentation continued with a detailed view of the assumptions and processing involved
when analysing TCP connections. The discussion described the two main parts that form the
TCP analysis: the emulation of the TCP state machine and the inference of network events. The
proposed method is a combination of elements from previous studies, such as TCP client
emulation, but it also brings clear improvements, such as the online support, TCP timestamps-
based analysis, and means to localise network degradation. As a generic conclusion, due to the

objectives of the research, robustness prevailed in front of accuracy within the analysis.

The last part of this chapter provided an overview of a software program that implements the
described method. The overview included the block structure of the program and some of the

variables involved in the analysis.

The following chapter will expand on the issues raised by the proposed analysis method in terms
of limitations and possible sources of errors. The discussion will analyse the problems that may
come up for each of the estimated variables, discussing various configurations where the
measurement is likely to be less reliable, as well as particular sequences that may not be

interpreted correctly by the proposed method.

93

Chapter 4 - Issues related to the proposed TCP analysis

Chapter 4. Issues related to the proposed TCP analysis

Chapter 4 - Issues related to the proposed TCP analysis

The monitoring method proposed in chapter 3 aims to represent a robust alternative to TCP
analysis. It was intended to be generic rather than accurate, especially because it has to predict
network conditions encountered by TCP endpoints with unknown implementations. It was
observed in previous studies, [Paxson 1997b), [Floyd and Padhye 2001] that current or past TCP
implementations do not follow current standards, such as [Braden 1989] or [Stevens 1997], for

various reasons. Among the problems relating to TCP implementations, there are:

- ‘Bugs’, with the meaning of faulty behaviour which does not improve the performance
under any reasonable conditions and was probably caused by an error that slipped in the
source code (e.g. the Solaris bug revealed in [Paxson 1997a]),

— Tailoring for specific networks (e.g. Solaris delayed acknowledgment policy, [Paxson
1997a], which performs well for LAN/low-delay environments but brings the connection
near to a ‘stop-and-wait’ behaviour for high RTTs);

— Missing algorithms (e.g. Windows 95/98/NT, which do not perform fast retransmit
[Floyd and Padhye 2001]);

— Diversions from the standard (e.g. generic broken TCP retransmission, observed in

[Floyd and Padhye 2001] which leads to a range of erroneous behaviours).

Besides these implementation issues, there are also issues related to uncertainty due to position
of the monitor, that will be detailed in the subsequent sections. These two are the main reasons
why some of the detailed directions of analysis, such as TCP algorithms inference, were not

pursued.

Aside from the multiple sources of errors associated with each of the estimated parameters, this

section presents various improvements to the previously described algorithms, improvements

95

Chapter 4 - Issues related to the proposed TCP analysis

that should increase the overall accuracy when certain assumption are made in regards to the
network behaviour. Therefore, it is aimed to be more than an enumeration of the cases in which

the presented method fails to provide correct figures for the inferred parameters.

4.1 Round Trip Time

RTT inference accuracy depends on the number of estimations obtained (the more estimations
produced, the higher the accuracy in assessing the actual value). The discussion will be based on
a Server - Client configuration, as depicted in Figure 4.1, in which one of the stations (i.e.
Server) mainly sends data, and the other station (i.e. Client) mainly sends acknowledgments to
the received data. This model is considered because the majority of the traffic is produced in the
current networks by client-server protocols, such as HTTP. The client connects to the server and
requests files, then the server sends the files back to the client; in any of the cases, the client-to-
server amount of data sent is very small (or non-existent) in comparison with the server-to-client

data (the model also applies for peer-to-peer downloads).

As mentioned in the previous section, the monitor relies on the acknowledgment mechanism to
determine RTT values. The main problem arising is that TCP senders, in order to avoid
‘acknowledging acknowledgments’, do not confirm the empty acknowledgments and, if the
receiver does not send any data, there are no segments to confirm. As a result, in the worse case
scenario, when the receiver does not send any data, the sender produces only two
acknowledgments that can trigger RTT estimation: one in the synchronisation sequence and one

in the closing sequence.

The end-to-end round trip delay, RT T, can be split, in relation with the monitoring station,

into two components, as depicted in Figure 4.1:

96

Chapter 4 - [ssues related to the proposed TCP analysis

— RTT.ue — based on acknowledgments produced by the Server in response to data sent by
the Client;
— RTTes — determined from acknowledgments produced by the Client in response to data

sent by the Server.

With the observations above, in a Client-Server configuration, the monitor can obtain a number
of RTT estimations for RTTes; and only two measurements for RTTue. The limited number of
estimations itself does not lead to errors’, but, in conjunction with other factors, can lead to
major errors. The worst-case scenario happens when both of the packets that should trigger the
RTT .. measurement (the acknowledgment to SYN and the acknowledgment to FIN} are lost
before the monitor (i.e. in the West Subnetwork). In this case, there is no apparent out-of-order
in the TCP arrival sequence (simply because the actual data transmission either has not started or
finished already), and the monitor erroneously interprets the second instantiation of the packet as

good-for-RTT and the resulting estimate is in fact (RTTyy + retransmission timeout).

i‘ R’]Tf_gml

RTTWesl RTT&:SI

Server < Client
(mainly sender) (mainly receiver)

L

Monitor

Figure 4.1 - Configuration example for RTT measurement

97

Chapter 4 - Issues related to the proposed TCP analysis

Uncertainty due to the position of the monitor, as described above, represents a technical
limitation of the described monitoring method. The monitor, due to its position, cannot
determine properly the pairs of sends and acknowledgments, in order to calculate the RTT. But,
even in an ideal situation, when all the packets would provide ‘pairing’ information, is the
resulting figure the actual delay introduced by the network? The answer is NO. In order to

analyse the obtained figure, the whole route of the information must be considered:

Inferred delay = nerwork delay + processing delay + implementation-related delay

The nenwork delay refers to the time the packets spend in the network to reach from the source
host to the destination host. It is, under ‘normal’ conditions, the term with the highest value in
the equation, and therefore the inferred delay can be approximated with it. It has three

components:

— Propagation delay, caused by the finite speed of the electromagnetic field (e.g. a bit of
information travelling through a copper wire for 1000 km is delayed for 1000/(2.5*1 0% =
2.75 ms). [t reaches high values for satellite connections;

— Transmission delay, due to the finite capacity of the path of links between the endpoints
(e.g. a full Ethernet frame, 1514 bytes sent over a [0Mb LAN is delayed 10000/(1.514*8)
= 1.21 ms). It introduces high figures for delay if the capacity of the bottleneck (the
smallest capacity link from the path) is low, mainly in modem-connected endpoints;

— Queuing delay, due to congestion - n sources of packets that have to be forwarded by a
router on the same segment have to queue and wait forwarding (e.g. 10 sources

producing each back-to-back trains of 10 Ethemnet full-sized 1.5 KB frames each,

' The higher number of estimators is required so that the TCP endpoint may follow more closely the changes in the
network. Therefore, for a connection with a low or non-existent RTT variance, the number of delay estimators does
not influence the evolution of the state machine associated with a TCP connection.

98

Chapter 4 - Issues related to the proposed TCP analysis

queuing at the router to be forwarded on a 10Mb link can introduce a delay of up to
100*1.21 = 121 ms). It represents a generic introduced delay, dependent on the traffic
levels at the moment when the connection takes place. As there was no term to categorise
the overall traffic level, Paxson defined [1999] the concepts of busy and quiescent
network to define the overall volume of traffic, based on his observations that the Internet

traffic follows 24 hour and 7 day patterns, due to the human activity.

The second term, processing delay, depends on the activity that takes place at the endpoint,
mainly sender. If HTTP is considered, as it is the predominant type of traffic in current Internet
(section 3.2.1), the web server has, depending on the task required by the client, to perform a
certain number of actions. These actions can vary from a simply file retrieval from the hard disk
(for a simple text-and-images page) to a complex query, followed by formatting of the resulting
web page (for a search on a search engine). Each of these sets of actions requires a certain
amount of time to be processed by the machine on which the web server runs. Although
optimised for such operations, a large number of concurrent clients can produce a high
processing delay, leading to additional time required by the web server to provide the responses.
There is a clear difference between data acknowledging and page retrieval, as detailed in section

34.3:

— A server can, if configured, first acknowledge the GET request, then, at a later time,
produce and send the requested page to the client; in this case, the RTT will be correctly
estimated, and the monitor will be able to identify the server response time, as in 3.4.3.
Otherwise, if the server does not produce any empty acknowledgments, the RTT
estimation will be erroneous, as it will include the server response time within it;

— The server can be overloaded due to concurrent TCP connections. The delay resulting

from this is transparent to the monitor in all the circumstances.

99

Chapter 4 - Issues related to the proposed TCP analysis

The third term, implementation-related delay, indicates the fact that the TCP senders themselves
can introduce delay due to their operating rules. As specified in [Braden 1989], a TCP endpoint
must produce delayed acknowledgments, i.e. an acknowledgment is produced either after not
more than x ms (where x is e.g. 200 for Windows and Linux and 500 for Solaris) from the last
data segment received or for every two full MSS segments, in order to lower the number of
acknowledgments produced (for large data transfers, the number of produced acknowledgments
is halved) and to avoid undesired behaviour such as the silly window syndrome [Clark 1982].
This does not affect the timing measurements for large data transfers, as the TCP sender has
always data to transmit and the connection reaches full utilisation, but it can introduce an
additional delay for small congestion windows values or, in general, for underutilised paths,
when the window includes an odd number of packets. Unfortunately, this is not unusual for
current picture of the internet, with average figures for from page web files of 10-20 KB, fact
noticed in [Cardwell er a/ 2000] and analysed using a larger study in Chapter 6, for both

experimental and backbone traces.

As presented, none of the terms has a definitive contribution to the overall figures, but they all
depend on various factors, all of them transparent to the monitoring process, such as overall
Internet activity and TCP implementation at the endpoints. All these suggest that the monitor
provides a very crude estimate of the actual network performance, but informs about the sum of
the network parameters AND the adjacent terms. The remark is correct; if all the ‘worst case
scenarios’ are combined, the actual network contribution to the value of the measured delay can
be very low. But, even in these conditions, the actual view from the TCP endpoint perspective
must be considered. As with the monitor, the TCP endpoint obtains all its information from the
arrival sequence of the data segments / achnowledgments, it does not know if a delay is due to

network congestion or due to high load at the server, and it adjusts its parameters based on this

100

Chapter 4 - Issues related to the proposed TCP analysis

seen sequence. Summarising, the monitor, in extreme conditions, does not provide information
about the actual network delay, but it offers an accurate image of the network as seen by the

TCP endpoint.

4.2 Packet loss

There are several categories of estimation errors relating to packet loss measurement that can

occur in the network parameter estimation.

The first category of error sources are the ones that do not exist within current implementations,
yet can appear in future ones. A good example of such a source is the Identification IP header
field, used to determine apparent mis-ordering as mentioned in section 3.4.3. The TCP protocol
specification includes an enhancement that can obliterate this algorithm: “TCP protocol modules
may retransmit an identical TCP segment, and the probability for correct reception would be
enhanced if the retransmission carried the same identifier as the original transmission since
fragments of either datagram could be used to construct a correct TCP segment” [ARPA
1981b]'. Although beneficial, this would require tighter cooperation between the transport and
network protocols (in order for the first to inform the second about a segment being a
retransmission or not) and the enhancement, or behaviour generated by it, was never discussed as

a possible alternative in the literature.

While possible future error sources do not affect loss estimation for current TCP
implementations, there is a range of errors produced by insufficient information at the monitor,
due to its position in relation to the losses. As mentioned, there are two indications of a packet

being lost: ‘visible’ retransmission and ‘apparent’ out-of-order. In the following paragraphs, a

101

Chapter 4 - Issues related to the proposed TCP analysis

hypothetical connection evolution shown in Figure 4.2, will be discussed.

Sender data 1| ! Receiver

i

P — |
Timeout I ata 21 :
i ! | |

‘ |

: ! |

' : I

; data 2, :

|

Timeout 2 - -» |
mf\q

Monitor position A Monitor position B

Figure 4.2 - Position of the monitor in relation to the packet loss

Note: There are several possible cases for retransmission, and they include acknowledgments
from the other direction, but this is the most generic case if neglecting the acknowledgments.

Based on Figure 4.2, in order to detect all the losses, a monitor has to:

— capture both of the transmissions of the packet; (e.g. the first two transmissions of data 2,
as captured in the monitor position A)

and

— identify an apparent out-of-order sequence of data segment arrivals as an actual packet
retransmission; e.g. the data 2, data 4, data 5, data 3 sequence, as captured in the
monitor position B)

and

! Although no implementations appear to use it at the moment, this recommendation was repeated in [Braden 1989).

102

Chapter 4 - Issues related to the proposed TCP analysis

— identify a retransmission timeout by following the sender time-out procedure; e.g. (the

datal, data 2 - third retransmission - captured in the monitor position A).

Loss is successfully identified in most of the cases for the first two categories:

— the retransmission is identified by comparing packets containing ‘past data’ with the
segments from the SkipDara array
— the apparent out-of-order sequence is identified by comparing the Identification of a

presumed out-of-order packet with the last Identification captured on this flow

The third category of losses requires, as mentioned, inference of the retransmission timeout. An
endpoint starts / restarts a timer afier releasing each packet on the network; if it does not receive
any acknowledgment for the sent data until the timer expires, the sender considers the packet lost
and retransmits it. In the following paragraphs, it will always be considered the case when the
loss happens before the monitor, because, if the first instance of the data segment is visible, the
monitor would be in the position A (with the conventions from Figure 4.2) and the case reduces

to identifying repeated instances of same data segment in the packet arrival sequence.

It is important to understand under what conditions a timeout occurs, and in which of the cases it
is undetectable using out-of-order identification. A TCP sender retransmits a data segment in two

Ccascs:

— If it receives more than a number of n (with n = 3 , as recommended by the standard)
duplicate acknowledgments for that segment (duplicate acknowledging);
— If it does not receive an acknowledgment for that segment in a time longer than the RTO

(timeout).

103

Chapter 4 - Issues related to the proposed TCP analysis

There are three types of situations when a loss can occur, in relation to the status of the TCP

connection at that moment in time:

— Beginning of a connection. When the connection begins, the congestion window is small,
therefore it triggers a small number of achnowledgments, and the sender is more likely to
retransmit due to timeout than due to duplicate acknowledging. For example, considering
a ‘correct implementation’, a sender must receive 3 duplicate acknowledgments to a lost
segment in order to retransmit it, as mentioned above. Therefore, for example, if the
current window is 2 or 3 packets, there will not be enough double acknowledgments to
trigger a retransmission, and the sender will have to timeout;

— Steady state (concept used in earlier studies such as [Padhye et al 1998]. In this stage, the
TCP connections have a large(r) congestion window, due to the slow-start increase. The
available bandwidth is ‘filled’ with data segments and achnowledgments. If a packet is
lost, the event is flagged to the TCP sender by multiple double acknowledgments and it is
unlikely in this case for a timeout to happen; |

— End of a connection. The sender has no more data to send, and waits for the
acknowledgment to the last data segment sent. Because there is no more data ahead, there

are no double acknowledgments and the sender times out.

In relation to all the above cases, a loss will be transparent to the monitor if there are no more
data segments between the two transmissions of the lost data segment. From the three situations
presented, the second one is the only that creates no confusion: the monitor identifies the loss by
observing the apparent mis-ordering in the data segments sequence. In the first case, it depends
on the size of the congestion window whether or not the loss will lead to a timeout or to a

transmission due to double acknowledging. In the other two cases, the sender will either timeout

104

Chapter 4 - [ssues related to the proposed TCP analysis

and stop transmitting any further data, as it had used the entire available congestion window, as
in the first category, or simply has no more data to be sent, as in the third one; it is these two

cases that require a solution to identify timeouts.

During the testing stages of the method, attempts were made to follow the above algorithm, but,
besides problems interpreted as ‘broken retransmission’ in senders or the previously mentioned
errors in estimating the RTT, there was still an essential unknown variable: the time when the
first transmission occurred; without it, there is nothing to compare the RTO with. A slightly
different approach was therefore considered, relating to time spacing between consecutive
packets. It was mentioned that the monitor is unable to detect the timeout only if there is no data
being sent between the two transmissions of the packet. In addition, as long as the sender has
data to send, there should be no gaps longer than an RTT between transmitting two consecutive
packets. However, this does not guarantee identification of all losses, due to TCP’s backoff
retransmission policy. Without having thorough knowledge about the sender, it was impossible
to infer the value of the initial timeout and policy used at the sender. To exemplify from prior
studies, the solution chosen by Cardwell in [2000] was rather coarse: hardcode the delay between
packets and identify gaps longer than 1 second as retransmissions due to timeouts. Due to the
complexity of the traces used, which may have included HTTPI.1 connections or, slow-
responding senders, the inference mechanisms were slightly expanded. Based on the above
assumptions, the monitor follows the gaps between consecutive packets and determines whether
or not there could have been drops between two apparent normally transmitted packets. The
analysis also ignored delayed first-packets in a connection, as they could be caused by a busy

sender and it also eliminated gaps when the receiver had acknowledged all the data transmitted.

This method to determine retransmission timeouts should not be considered 100% reliable by

any means, and this is why it is presented here, as an issue together with its possible solution,

105

Chapter 4 - Issues related to the proposed TCP analysis

instead of being part of the previous section. There is, first of all, the obvious case in which there
are simply delayed packets, without any timeout, in which a high variation in the network
conditions is interpreted as a timeout. Another source of errors, with an even higher probability
of happening, is usage of HTTP v1.1 protocol for web transfers which, as previously mentioned
within the idle time analysis, section 3.4.3, uses persistent connections. While the idle time
identification can flag inactivity periods that are longer than 2 seconds, the monitor will interpret
shorter periods between object retrievals as timeouts. In fact, if the first data segment within a
new retrieved object is lost before the monitor and timeouts, the event is completely transparent
for the monitor, even if an additional module to decode and interpret the HTTP dialogue is

implemented.

At the end, it is worth mentioning that sometimes even the TCP sender erroneously estimates the
RTO, and does unnecessary retransmissions. These retransmissions can be observed by the
monitor and flagged as RTOError packets, as mentioned in 3.4.3; the closer the monttor is to the
receiver the more chances it has to determine such a condition (at the other extreme, if the
monitor is right at the sender, it cannot see any such event, as the sender itself would adjust its
values correctly). Unfortunately, the resulting figure for RTO errors can be higher than the real
one due to, again, uncertainty generated by the position of the monitor. The monitor sees the
acknowledgment that shows that the packet arrived at the receiver and was confirmed but there is
no guarantee that also this acknowledgment arrived at the sender to inform about the successful
transmission. In fact, due to the fact that acknowledgments are not confirmed, there is no way to
determine whether or not this one arrived at the sender or not; the only solution, used by Paxson
in his analysis [Paxson 1997b], would be to have two devices, one placed at the sender and one
at the receiver, and to use them to determine whar packets are lost or, if they arrive, when that

happens.

106

Chapter 4 - Issues related to the proposed TCP analysis

The main problem faced during the Internet traces analysis phase, in relation to this timeout
inference, was validation. In the ‘visible’ case of (possible) loss, the proof of packet
retransmissions exists (the multiple occurrences of the same data segment or the apparent data
mis-ordering) but, in this situation, even the retransmission (not the loss) is inferred, so there are
no obvious means to check the validity of the assumption. The method used was to randomly
select the connections which may have contained timeout inferences and determine, based on the
timestamp numbers and on the (visual) evolution of the window whether or not the assumption

was correct.

4.2.1 Limitations while identifying loss and misordering

Itis &ue that, according to TCP specification [ARPA 1981b), retransmitted packets may have the
same identification number as the previous instances, as the transport layers may control how the
Identification field is incremented. However, the practical implementations do not reuse the
identification numbers, but increment them for each IP datagram sent [Stevens 1995]. This is
why a second instance of a packet with the same identification was considered to be due to
duplication rather than loss-and-retransmission. An example of such behaviour is presented in

Figure 4.3

Sequence number
40000

+
1

35000
30000 -
25000
20000
15000
10000
5000

0 1 1 L PR

-+

-‘_f#++1+9fvftll
L

FE e

o

time [s]

107

Chapter 4 - Issues related to the proposed TCP analysis

Sequence number

32000 T L] ¥ 1 L] T 1 v
++
30000 | ..]
28000 | #__\: .]
S
26000 - P C) 7
e
24000 + 4 3) i
22000 | .. 1
+ 4

2000 (2) . . .
18000 | ’1 — T 1

= i 1 1 1 L 1

000
2.1245 2125 2.1255 2.126 2.1265 2127 21275 2.128 2.1285 2.129
time [s]

Figure 4.3 — Example of sender experiencing a mixture of packet duplication and

misordering (top); a zoomed view of the circled area (bottom)

Judging by the spacing of the packets in Figure 4.3 in the top graph, it is clear that the circled
packets are not part of a retransmitted window: the trains of packets are equally spaced and the
congestion window is larger than the previous one. Also, the bottom graph shows the pairs of
packets that appear to be retransmitted are closely spaced and in total there are 13 pairs of

packets, figure that matches a slow start increase from the previous window (7 packets long).

The mechanism implemented to verify the ordering of the packets uses the Identification 1P
header field of the last captured packet. Because of this, it does work only for strong-coupled
duplication, i.e. where duplicate packets are closely spaced. An example of such behaviour exists
e.g. between the pairs of packets (3) and (4) from the connection presented in Figure 4.3, which
the algorithm is able to correctly identify as duplicate. However, the pairs of packets (1) and (2)
from the connection do not obey the previous rule and, as a result, the second packet from pair

(2) is reported as retransmitted.

4.2.2 Avoidance of estimation errors due to Identification field wrap-around

In relation to the usage of the Identification field to identify mis-ordering, there is a potential

108

Chapter 4 - Issues related to the proposed TCP analysis

wrap-around problem. The field is only 16 bit long, so it takes values in the interval 0-65535.
Therefore, considering a web server, with three flows, i, j, and &, (between the server and one,

two, or three different clients), the sequence shown in Figure 4.4 is possible:

i

tl - flow i; ID 66534; segno n

t2
t3

1

flow j; ID = 65535
flow k; ID = 0;

t4 - flow i; ID = 1; segno n+l

Figure 4.4 - Example of wrap-around sequence

It can be noticed that the datagram sent at t4, although in sequence, is interpreted by the monitor
as an apparent out-of order, when it compares the IDs of the two datagrams. In the
implementation, a light protection mechanism was introduced, see Figure 4.5, to avoid this
happening, which works if the server sends less than 32768 (= 65536/2) datagrams between two

consecutive segments which belong to a specific flow

if(Pkt.PID >= CurrentPID+1)
{
//in-order PID
CurrentPID = Pkt.PID;
} else {
if{{CurrentPID - Pkt.PID) < 32768)
{
//inverted packet
InvertedIP++;
} else {
//in order PID, wrap around
CurrentPID = Pkt.PID;

Figure 4.5 - Procedure to avoid false out-of-order sequences caused by wrap-around

109

Chapter 4 - Issues related to the proposed TCP analysis

4.3 Congestion window

The estimation of the congestion window includes, by far, the largest amount of guesswork from
the inferred parameters. The method used by Paxson in fcpanaly, i.e. follow the evolution of the
congestion window based on the specification, is far from achievable in a single-point
monitoring configuration, especially if the capture point is positioned ‘somewhere’ along the
path of the packets, i.e. not even at one of the endpoints. In the single-point configuration, there

is no guaranteed information about whether or not:

- a packet was transmitted — the sender might have transmitted it, but it was lost in the
sender-to-monitor segment and the loss was transparent even to the timeout identification
routine;

~ an acknowledgment was received — the receiver sent it and it might have been lost in the
monitor-to sender segment;

— a packet was received — the receiver might have received it, but the acknowledgment was
lost in the receiver-to-monitor segment;

- an acknowledgment was sent — the receiver might have sent it, but it was lost in the

receiver-to-monitor segment.

The first two transparent situations described above trigger a different, unknown, transition in the
sender, leading to a particular evolution of the congestion window: each timeout switches the
sender to slow start sending and each acknowledgment received updates the size of the
congestion window. The last two cases, although not affecting the sender directly, can have an
impact on the evolution of the congestion window: if the lost acknowledgment was flagging an
apparent mis-ordering due to a previous loss, the sender will timeout instead of detecting double-
acknowledging. In addition, the receiver is anonymous, therefore has an unknown

acknowledgment policy. Under certain conditions, i.e. a low value of the delayed
110

Chapter 4 - Issues related to the proposed TCP analysis

acknowledgment timer at the receiver, together with a low bandwidth x delay product, the
receiver acknowledges every segment instead of the desired ‘every-other’ policy, situation

highlighted in [Paxson 1997a] and [Floyd and Padhye 2001].

With all these unknown quantities in place, it becomes apparent why Paxson’s method cannot be
applied for single point observation. A novel approach, described in 3.4.3, was considered:
identify the trains of packets, either based on the number of unacknowledged packets, or based
on the spacing between packet trains. In the following paragraphs there will be highlighted the

issues that each of these methods raises.

The second method to determine congestion window, described in 3.4.3 is based on counting,
every time a packet is captured, the number of unacknowledged data segments at that moment.
The accuracy of the method is affected mostly by the location of the monitor in relation with the
sender and the receiver: the closer the monitor is to the sender, the higher is the accuracy of the
estimated congestion window; at the other extreme, the congestion window estimate is
inaccurate if the monitor is near the receiver. The reason behind this uncertainty can be discussed
by comparing the packet exchange, as seen by the monitor, in the two extreme cases. If the
monitor is near the sender, it will be able to identify correctly the ‘peaks’ in the variations of the
number of unacknowledged segments, peaks that mark congestion window rounds, because the
acknowledgments arrive only after the entire congestion window was transmitted. On the other
hand, when the monitor is at / near the receiver, it will capture, at most, groups of two packets
and their correspondent acknowledgment, inferring continuously a value of not more than 2
packets for the size of congestion window (which is due only to the delayed acknowledging of

the receiver). The situation was exemplified in Figure 3.6.

The conclusion is that the position of the monitor in relation to the endpoints must be determined

111

Chapter 4 - Issues related to the proposed TCP analysis

in order to enable or not the usage of this method. As all the near-far relationship mentioned
before relate to the network delay between the respective hosts, the best way to determine these
‘distances’ is by comparing, either continuously or retrospectively, the RTT for the two sub-
networks, East and West, see 3.4.6. If Subnetwork West RTT >> Subnetwork East RTT then the
monitor is ‘near’ the sender, and the method can be used; otherwise, the monitor is ‘near’ the

receiver, and the inferred value will be inaccurate.

The third method, identifying the packet trains based on the spacing between consecutive
packets, is not affected by the position of the monitor in relation to the endpoints. This is due to
the fact that the relation between time differences from equation 3.2 is not affected by the

absolute network delays.

It is clear that the third proposed method will not work in the stationary case, e.g. for large file
transfers, but it may succeed for smaller transfers. The following example will examine a
connectivity example and try to determine the approximate size of a connection for which the

method is still usable.

E.g. Ethernet LAN connected via El link to Internet:

— bottleneck bandwidth: BBW = 2 Mb/s =256 KB/s

— delay: RTT = 250 ms

- maximum segment size: MSS = 1460 bytes/frame

For the above values, the resulting congestion window (CWnay) that would produce a contiguous

stream of packets is:

112

Chapter 4 - Issues related to the proposed TCP analysis

CW, . = BBW-RTT = 256-0.25 = 51.2 KB = 36* MSS 4.1

The congestion window has to reach 36 MSS in order for the sender to transmit continuously.
Because the inter-train time value used in 3.2 is RTT/2, the transmission window should be
halved too. Even using the slow start algorithm, it will require 48 MSS (2+3+5+8+12+18, each
of the figures representing the number of packets transmitted during a single round) to reach this
limit. Based on the Fthernet MSS, the figure translates into approximately 70 KB. Above this
size, the method would stop working for the given conditions; however, as shown in Chapter 6,
typical bottleneck bandwidth figures are higher, leading as well to longer transfers. Also, this
rationale applies in the ideal case where no loss occurs; if losses appear, the congestion window

will be reduced, allowing the method to work even for larger data transfers.

Further, in the generic case of an unknown congestion window increase policy at the sender, the
monitor determines continuously if the current (estimated) value is a valid one by comparing it
with the possible maximum. The monitor can determine both the total RTT delay and the
bottleneck bandwidth; therefore it can calculate the maximum detectable congestion window. If
the currently estimated congestion window is larger than the maximum, this is probably due to
the algorithm not being able to identify anymore between two consecutive congestion windows,

and the value is discarded.

4 4 Bottleneck bandwidth

There are two types of issues in regards to bottleneck bandwidth estimation, from the error
source point of view. The first category of errors relates to the unknown nature of the network,

while the second is due to the TCP implementation at the endpoints.

113

Chapter 4 - Issues related to the proposed TCP analysis

4.4.1 Errors due to network conditions

Estimation of bottleneck bandwidth may be affected by a network condition called queue
draining, [Zhang et al 1991], which may lead to ACK compression or/and data compression.
Queue draining is caused by the way packets are being queued in the routers. In normal
conditions, two packets sent with a certain delay Ar; between them, due to going through
bottleneck links with a speeds lower than the bandwidth of their source point, arrive at the
destination with a spacing Ar, > A1,. However, when a group of packets arrives at a router, its
spacing will be affected by the size of the queue and the speed of the outgoing link. For example,
two distanced data segments which are placed in successive slots in the queue will be forwarded
back-to-back at the speed of the next link; as a result, their spacing due to the link they came
from is cancelled. Depending on the position of the bottleneck links and draining queues, the
inter-arrival time of the packets, Af;, will be smaller than the one created in normal conditions,
leading even to the case when Ar; < 4i;. In, [Mogul 1992], and [Bolot 1993], the authors
observed the phenomenon of ACK compression, where the affected packets were the returning
{(empty) acknowledgments. On the other hand, data compression was observed in [Paxson 1999].
This time, the affected packets were not ACK but data packets, with the same consequence: due
to queuing, under certain circumstances, the spacing between successive packets can be lost as

the train of packets travels to destination.

The proposed method relies only on data packets to estimate the bottieneck bandwidth, because
the packets need to be transmitted back to back from the sender As a result, data compression
does affect the measurement. However, a prior study found this phenomenon to be “relatively
rare and small in magnitude” [Paxson 1999)]. Nevertheless, to reduce the impact of such a
condition onto the accuracy of the estimation, the processing will involve outlier removal from

the initial estimation and averaging.

114

Chapter 4 - Issues related to the proposed TCP analysis

4.4.2 Limitations and errors due to implementation issues

The second category of issues, implementation-related, is of higher concern. The bottleneck
bandwidth estimation, based on the TCP timestamp option, depends highly on the TCP
implementation of the endpoints. The main source of errors in this case is the resolution of the
internal clock, defined as “a (virtual) clock that we call the ‘timestamp clock’ ™ with values “at
least approximately proportional to real time, in order to measure actual RTT.” [Jacobson et a/
1992]. This definition allows the TCP implementation to choose any resolution for the
timestamp clock, as long as it is “proportional to the real time”. What is not mentioned in the
specification, and makes room for differences in the implementations, is the minimum /
recommended / maximum values for the timestamp clock resolution. The following presents two
cases of such clocks that might, in fact, impede the accurate measurement of the RTT values, for

a generic case RTT=400 ms.

— 100ms resolution. In this case, the tsval (the TCP timestamp echo value carried by a
packet) will differentiate between packets belonging to different transmission rounds, but
the packets belonging to the same flight of packets will carry all the same tsval. As a
result, the other endpoint will be able to determine the average values for RTT, but, due
to packets with the same tsval spanned over an interval of up to 100ms, these values will
include an error factor and, further, the RTT variations will be virtually undetectable;

— Is resolution. Applying the timestamp RTT estimation does more harm than good in this
case; packets belonging to different rounds will carry the same tsval, and they will not be
able to provide any reliable estimate of the actual values for the RTT average or

variation,

If considering only the sender timestamp the estimate for the bottleneck bandwidth can be only

as accurate as the resolution of the intermal clock. For a certain resolution of the TCP

115

Chapter 4 - Issues related to the proposed TCP analysis

timestamps, the maximum reliable bottleneck bandwidth estimator BWma would be:

BW, . = max(pkt _size) _ max(pks_size) 42

resolution] ~ min(resolution)

For an Ethemet environment (where the maximum frame is approximately 1500 bytes), and a

resolution of 10ms, the resulting maximum for correctly measurable bottleneck is:

BWryax Etherner = 120+8 = 1200000 b/5 = | Mbps 43

Using such an environment, anything above this speed, e.g. an El link (2Mb/s), would lead to an
unreliable estimate. To overpass this limitation, an assumption was made that the sender is using
delayed acknowledgments (current implementations of Microsoft and Linux to satisfy this
assumption). If this is the case, the sender will transmit back-to-back a pair of data packets, every
time a new acknowledgment is received. The distinctive mark of these pairs will be that they will
carry the same secr (TCP timestamp echo reply) value. This allows for the inference mechanism
to work as long as the combined sender and receiver TCP timestamps include a reasonable

timestamp.

The original theory behind packet-pair measurement, [Keshav 1991], suggested that packets
should be sent back-to-back at the sender, both to simplify the calculations, but, more important,
to increase the probability of the packet pair to be queued at successive positions in the routers; it
is aimed to maintain this requirement in the proposed analysis method, but there are two

obstacles:

— The resolution of the TCP timestamp clocks at the endpoints has to be known; otherwise,

116

Chapter 4 - Issues related to the proposed TCP analysis

no proper decision can be taken regarding the accuracy of the measurement;

-~ The only information about spacing of the sender is gathered through the TCP
timestamps values. If their resolution is too low, there is no direct method to determine
which of the packets were sent back-to-back and which belong to different back-to-back

trains.

These two requirements still exist even in the case where the sender and receiver timestamps are
combined. This is because, if both the sender and receiver resolution are too low, then the

measurement might still fail.

The first problem relates to determining the timestamp resolution of a remote point. First, an
implementation case study about the resolution on a few systems will be discussed, followed by
a method to determine the resolution for a pair of endpoints, from a third point, i.e. the
monitoring point. Several main sources of information were identified for the implementations
used during the various experiments conducted within this project, i.e. Linux and Windows.
Linux is an open source operating system, therefore its TCP/IP implementation is freely
available. In addition, the actual source code was presented in several publications, such as the
in-depth analysis made by Stevens in [Stevens 1995] for 4.4 BSD. Although there are slight
implementation changes between the various versions of the Linux kernel, the principles, as well
as the majority of the code explained, remained the same: in 4.4BSD, TCP resolution was set to
500 ms, while in newer versions of the Linux kernel, e.g. 2.2.x and 2.4.x, the variable was

reduced to 10 ms.

At the other extreme is the Windows TCP/IP implementation: its code is not publicly
documented (hermetic development is one of the reasons why, until recent versions, the

Windows TCP clients had several bugs, highlighted particularly in [Floyd and Padhye 2001]).

117

Chapter 4 - Issues related to the proposed TCP analysis

The most comprehensive source of information regarding the Windows implementation of the
TCP/IP stack was found in [Microsoft 2000). Nevertheless, the document provides little
information about the algorithms used to implement various TCP functionalities, and insists on

listing information on how to tune their values.

None of the above mentioned sources includes an overview of various operating systems and
their correspondent resolutions. The most detailed information regarding this subject was found
in [McDaniel 2001] and [Securiteam 2001)". Therefore, amongst other information, the article

gives a list of the timestamp resolutions for various operating systems, list summarised in Table

4.1
Operating system Ticks / second Resolution [ms]
4.4BSD, Irix, Solaris’ 2 500
Linux 2.2+, Windows 2000 100 10
Cisco 10S 1000 |

*More recent versions of Solaris use a 100 ms resolution.

Table 4.1 — TCP timestamps resolution for various operating systems (compiled from

[McDaniel 2001])

4.4.3 Evaluate TCP timestamps resolution

To overcome the variety of available sources, a method was proposed to empirically determine

' It is interesting 1o note that the subject of the two articles was not TCP performance, but IT security. The author
noted in both sources that the usage of timesiamp resolution may represent a security flaw. By observing the
timestamp values and their resolution, an attacker can identify the operating system of a remote computer as
belonging to a certain subset of alternatives.

118

Chapter 4 - Issues related to the proposed TCP analysis

the resolution of the Linux / Windows TCP options timestamps. The resolution may be obtained
by comparing the timestamps of two transmitted packets (pkt/ and pkt2) with the timestamps of
their capture. As a result, the resolution of the TCP timestamp clock is determined using the

formula in 4.4

) timestamp pp,9 — timestamp pi)
Resolution = P P

tsval —lsvalpk” 4.4

The method was tested on short file transfers (10KB) between Linux 2.2.14 and/or Windows
2000 hosts, using the first and the last packets in the connection as pkt/ and pkt2. The calculation
indicated a resolution of 10 ms for Linux and 100 ms for Windows, which matches the figures

from Table 4.1.

The problem is that, in order for the analysis method to function online, the resolution must be
identified during the connection, not affer it. In the above formula, the resolution was determined
after the connection, by reporting the difference of capture timestamps for the first and the last
packets to the difference of fsval values for the same packets. The advantage in doing the
difference between the last and the first packet is twofold: the resolution is averaged for the
duration of the connection and the two packets are distant enough in order to neglect the
differences caused by changes in the packet spacing due to bottleneck bandwidth. The following

assumption is made:

The resolution of a timestamp clock does not vary in time during a connection’

' It is known that errors of clock timing may appear which lead to variations in the actual values produced. The
assumption does not refer to these variations, which should be very small relatively to the TCP timestamp
resolution, but to the actual value set in the TCP client to use with a connection.

119

Chapter 4 - Issues related to the proposed TCP analysis

The implication is that the timestamp resolution can be determined using equation 4.4 on two
packets. The only recommendation is that the time elapsed between the two captures should be
high enough to eliminate the errors due to packet spacing changes (e.g.: if the two packets are
successive, the impact of bottleneck bandwidth on the result is very high). The best alternative to
satisfy this condition, while performing a useful measurement for the evaluation of the
connection, is to use the first two packets produced by an endpoint during that connection: a
SYN packet and its correspondent acknowledge. The advantage of this particular choice is that,
after transmitting the SYN, each of the endpoints must wait for the other end to acknowledge the
packet before transmitting anything else. In this situation, the time elapsed between the two

packets will be | RTT, enough to eliminate the impact of the bottleneck bandwidth.

To compensate for any errors that may appear, the apriori resolution, obtained at the beginning
of the connection from the SYN packets, is compared at the end with the value obtained from the
first and last packet of the connection. If the difference between the two figures is too high, the

bandwidth estimation should be considered unreliable for that particular connection.

Based on all these observations, the bottleneck bandwidth can be predicted with a good accuracy
using the TCP timestamp, allowing the measurement of bottlenecks of up to 100Mb/s, as will be

detailed in the trace analysis in Chapter 6.

4.5 Fault localisation

As section 3.4.6 discussed, the results gained from the network analysis are twofold. First to
identify and measure/infer the current transport parameters of a network transited by the
monitored traffic, then to localise the extent of the possible degradations from the plurality of

paths to a subset of the Internet space. The main problem in interpreting the monitoring results is

120

Chapter 4 - Issues related to the proposed TCP analysis

represented by data summarising: the large number of independent flows must be converted into

a limited number of classes, which would allow displaying them as a whole.

Furthermore, the network (Intermet) may be split into two domains, such as the monitored
network (inbound domain) and the rest of the internet (outbound domain). The monitor can work
out the distinction easily, as, in the typical case, the local network has a defined range of
addresses (e.g. University of Plymouth has allocated the subnet 141.163.0.0). The separation
between the two domains is straightforward in this case: a single ‘if’ rule, which compares a

given IP address with the specified range and determines to which of the domains it belongs.

Expanding the case for any link in the Internet is more cumbersome due to IP localisation issues.
Considering, for example, the above.net infrastructure [MFN 2003], a core network provider that
connects Europe and the United States, the traffic passing through its segments is only transit
traffic. An IP address, in order to be mapped to a West/East configuration, should be localised
geographically into one of the two continents, which would involve a lookup in the table of
allocated sub-networks. Even in that case, a company could register an 1P network in US and
have an office in Europe, a fact that would confuse the matters even more. Concluding, this
division, although not fully scalable, is satisfactory for monitoring in points that connect a

defined network to the Internet.

At the other end, it can be argued that this type of mapping is too generic. The ‘rest of the
Internet’ can be either just a hop away from the monitored link, leading to very low figures for
loss and delay, or remote, as far as 20-30 hops away, which would lead to high values for the
same parameters. But the purpose of this domain division is to provide a first-degree localisation

of possible network condition degradation to the monitored network or the rest of the Internet.

121

Chapter 4 - Issues related to the proposed TCP analysis

As will be shown in later chapters, for the real network traffic collection, the collection host was
connected either in a local network or hierarchically above it, in a local backbone segment.
Because of this positioning, one of the logical sub-networks presented in Figure 3.
encompassed only the local network. Implicitly, the localisation analysis identified the sources of
loss and delay mostly in the East sub-network (i.e. the path between the collection point and the
remote endpoints). However, the theory was successfully tested in Chapter 5 using a controlled

environment.

4.6 Separation between HTTP v1.1 sessions and timeout losses

The loss timeout technique is reliable for a simple HTTP 1.0 retrieval, where the reply is a single
object. Problems arise if HTTP 1.1 is used, due to the spacing introduced between retrievals of
successive objects within the same connection. For such transfers, there are two choices: involve
HTTP analysis or infer object boundaries. The first solution requires combining the TCP analysis
with information provided from analysis of the application layer (HTTP). Full parsing and
interpretation of the HTTP headers was considered to be beyond the scope of this project and
was reserved for future work (see Chapter 9). The second choice, infer object boundaries, was

the solution preferred for this project.

The solution used to avoid confusion between HTTP 1.1 sessions and timeout losses was based
on the assumption that a receiver should acknowledge all data before the sender would start
transmitting the next object. As a result, the sender should be in IDLE state between transmitting
consecutive objects with longer pauses between them, such as the session pictured from Figure
3.3. This is why the monitor, besides doing all the comparisons with the RTT values, also checks
whether the sender is in an IDLE state. If the sender is not in an IDLE state and a gap longer than

RTTovemge*R TTvarimion appears between two successive data packets, the delayed packet is

122

Chapter 4 - Issues related to the proposed TCP analysis

considered a retransmission due to timeout. Otherwise, the monitor interprets the sequence as

normal.

4.7 Summary

This chapter presented a list of issues associated with the TCP analysis. Most of the discussed
topics emphasised limitations of the proposed method or possible sources of errors, either due to
certain network events or due to uncertainty. The encountered problems were ordered according

to the inferred vartable.

The discussion started with the errors that may appear in the RTT and loss estimation,
highlighting the components of the RTT value and the uncertainty sources when inferring the
loss events. The argument focused then on the congestion window issues, insisting on the
limitations of the proposed monitoring method when analysing long-lived connections. The last
inferred variable to be discussed was bottleneck bandwidth; the section observed the two types
of factors that may influence the accuracy when measuring this variable: network conditions and

implementation specifics.
The last two sections examined how fault localisation may be applied to a real network
connectivity case and how to separate between successive HTTP v1.1 objects and timeout losses,

events that lead to similar sequences of packets.

Chapter 5 will use some conclusions drawn from this discussion in order to evaluate the accuracy

of the method through validation tests.

123

Chapter 5 - Validation of monitoring methods

Chapter S. Validation of monitoring methods

124

Chapter 5 - Validation of monitoring methods

5.1 Introduction

This chapter presents the tests run to validate the TCP analysis method proposed in Chapter 3.

The tests consisted of three stages:

- Produce connections using controlled network conditions and endpoints with known
characteristics. The validation required a reference that can be compared with the
proposed method in order to determine the accuracy of the estimation

- Apply the method on the obtained connections.

- Compare the input (known) network and endpoint parameters with the ones resulting

from the analysis.

The first step, producing connections with known parameters, required a controlled network
environment. As briefly introduced by section 2.6, there are two alternatives that may be used for
such requirements: simulation or emulation of network conditions. The first section of this
chapter will provide a detailed overview of the implementation choices used for this study. The
second step, applying the method on the resulting packet traces, will use the implementation
described in section 3.5. The comparison between the reference and the inferred parameters will

take into consideration the observations made in Chapter 4.

The validation of the TCP analysis method required network traces since its implementation
phase, in order to provide validation daia. The traffic had to be generated within an environment
with controlled network parameters in order to allow comparison between the output of the
implementation and the actual network conditions. In addition, a controlled environment could
introduce network conditions/impairments over a wide range of values; in comparison, the

available real network did not offer that much diversity, as will become apparent from the results

125

Chapter 5 - Validation of monitoring methods

presented in section 6.3. The two choices of controlled environments to satisfy the above
requirements were network simulation (resulting in synthetic traces) and network emulation
(resulting in real traces over a simulated environment). The following two sections will introduce
these two types of environment, while the rest of the chapter will discuss the validation tests

results.

5.2 Testbed data — the NIST Net network emulator

Two network emulators were identified as appropriate for this study: NIST Net [Carson 1997], a
freely available product, and Shunra [Shunra 2003], of commercial origin. NIST Net was
preferred because of the flexibility offered (the software, although under development at the time
when the experiments were made, was continuously improved by the research community) and
financial reasons (the price quotations for Shunra were around the figures of £5-20K). NIST Net
is a software program that runs under Linux and emulates various network conditions (e.g.
satellite delay, congestion, loss) by forwarding packets between the interfaces of a router. The
program emulates all network impairments:
- packet loss, by dropping packets, either randomly or in a correlated manner, based on a
loss rate and a correlation factor (losscorr). |
- network delay, by deferring the forwarding of packets, using a delay distribution with
specified mean and standard deviation values; the vaiues of delay may be either
uncorrelated or correlated, using a correlation factor (delaycorr).
- bandwidth, by limiting, on a per-second basis, the amount of data being forwarded

between its network interfaces

In addition, the program also emulates DRD (Derivative Random Drop) router queuing policy

[Gaynor 1996], through two defining parameters: drdmin and drdmax (the minimum and

126

Chapter 5 - Validation of monitoring methods

maximum thresholds for which a queue drops packets with a probability of p, 0.0<p<1.0).
However, for simplicity and consistency with current Intemmet conditions, the traditional

DropTail policy was used for queues.

The built testbed consisted of 2 endpoints connected via 2 routers, as shown in Figure 5.1. All
the machines (Routers, Monitor, and Endpoints) were running flavours of Linux (either Suse 6.4

or RedHat 7.2).

Endpoint A Router 1 Router 2 Endpoint B

Monitor

Figure 5.1 - The NIST Net testbed configuration

Both Router I and Router 2 were running NIST Net. The purpose of the testbed was to emulate a
range of network conditions using the two routers running NIST Net, and to transport traffic
between the two endpoints through this emulated network path. The rationale of using two
emulation boxes was to ensure a higher complexity of the path (by combining the network
parameters emulated in the two routers) and to offer the possibility of capturing packets along
the path as opposite to right at the endpoints. Figure 5.2 presents the logical perspective for the

above configuration.

127

Chapter 5 - Validation of monitoring methods

Client

Monitor Server

Figure 5.2 - Test configuration

As the monitoring station was placed in the middle, Figure 5.2 can be mapped onto the
previously-mentioned East-West configuration from section 3.1.2, Figure 3.1. The West
Subnetwork consists of (Link 1 + Subnet 1), and East Subnetwork is formed by (Link 2 + Subnet

3).

The traffic was generated using a command-line HTTP retrieval tool, wger [wget 2003] at one of
the endpoints and an Apache web server at the other end. The tool was running on one of the
endpoints and was requesting files placed on the other endpoint, which was set-up as a web
server. The resulting traffic was collected at the Monitor and at the two endpoints using
tcpdump. The parallel packet capturing from the three points allowed full comparison between
inferred network events (e.g. loss), and the actual conditions (e.g. determine whether or not a

packet loss actually happened).

The generation / collection of NIST Net traces was script based and allowed full control of the
process remotely, from the monitoring station. Due to the functionality of NIST Net,
independent network conditions could be defined for each direction at each router. As a result,
four sets of parameters had to be specified for each experiment, each of them containing values

for delay, jitter, delay correlation, loss, loss correlation, bandwidth, queue parameters, and the
128

Chapter 5 - Validation of monitoring methods

file size to be transmitted. These parameters ranged as follows for each segment:

- Delay: [10ms; 1500ms]

- Jitter: [Oms; 400ms]

- Loss: [0%; 20%]

- Bandwidth: [40000 b/s; 10 Mb/s)

- File length: 1KB, 10KB, 100KB

Initially, NIST Net proved to be a very good testing environment as it provided the project with
testbed data, as defined in 2.6. However, the results from the tests highlighted several problems.
The main issue was the size of the emulated environment: NIST Net required hardware
endpoints for extension, endpoints that required either remote or manual control. In the testbed
configuration used, i.e. with only two endpoints, the amount of traffic produced could not
replicate a large network with a large number of aggregating connections. Of similar importance
was the realism of the network conditions: for each incoming packet, VIST Net determined
whether or not the packet should be dropped (according to the drop percentage and correlation),
delayed (due to delay or/and bottieneck bandwidth emulation). This approach, although aiming

to reproduce real network conditions, introduced errors when producing delay and bandwidth.

The delay emulation represented the highest source of errors. NIST Net calculated the delay for
each packet separately; by treating packets independently, the program produced out-of-order
packets when emulating variable delay. The simplest example of such behaviour was when two
back-to-back or closely spaced packets arrived at the router and the first one was delayed more
than the second one; in that case, the two packets would come out reordered from the router.
This behaviour had no impact for the monitoring part (the method was able to account for

reordered packets), but it was affecting the response of the TCP endpoint, which could interpret

129

Chapter 5 - Validation of monitoring methods

certain reordering events (i.e. a data segment being shifted by more than two slots) as losses and
start congestion avoidance without an actual loss happening. This situation was, in fact, flagged

by other users on the NIST Net mailing list [NIST Ner 2003].

NIST Net also introduced errors when emulating bandwidth, because the bandwidth estimation
was performed on a per-second basis. This produced non-realistic packet spacing, i.e. different
from how it should be when packets pass through a slower link. This problem was less of an
issue for the TCP endpoint behaviour, as the emulated figure for bandwidth was correct
macroscopically, but could potentially lead to erroneous figures when trying to determine the

bottleneck bandwidth using the TCP monitoring method.

5.3 Synthetic data — the NS environment

All the above experiments provided data from real transfers, encompassing transmission of real
packets through either a controlled or uncontrolled environment. From this point of view, they
were all superior when compared to a synthetic environment, which only simulates the transport
of the packets, which makes them much more appropriate for training a trace-based model.
Nevertheless, they all suffered to some degree from at least one of the two limitations: traffic
aggregation and diversity of network environments, depending on the controlled or uncontrolled
nature of the environment. Both of these limitations may be removed using a simulated
environment, which allows reproduction of a virtually unlimited number of sources, connected

via any combination of networks.

There are several choices for a network simulator (an extensive but not exhaustive list can be
obtained from [Kennington 2003]), but the choice was rather simple, based on the prior work in

the area of TCP protocol design and modelling; the majority of the authors working in this

130

Chapter 5 - Validation of monitoring methods

domain used the Berkeley Network Simulator (ns) suite to implement, test, and / or validate their
concepts. NS is, as described by its authors, ‘a discrete event simulator targeted at networking
research’ and provides ‘substantial support for simulation of TCP, routing, and multicast
protocols over wired and wireless (local and satellite) networks’ [NS 2003]. Beyond this short
description, NS is a collection of models that simulate the behaviour of various protocol entities,
(named agents, e.g. TCP agent), network components (e.g. links and router queues) and specific
network environments (e.g. wireless links, satellite links, etc). The user builds a script with
specific NS commands to create a network topology and to introduce traffic through it using the
available agents. The script is interpreted and run by the NS environment. The result is a trace of
the simulated transfers, consisting of the events that happened during the simulation, e.g.
queuing, de-queuing, and dropping. The NS suite includes several TCP agents that can be used
to simulate the behaviour of TCP endpoints. From the existing choices (Reno, NewReno, Tahoe,
etc) the FullTCP agent was preferred, because it was the nearest to a complete TCP client,
including features such as TCP timestamp options, vital for the functionality of the trace

analysis.

A problem was encountered when using the NS package to produce network traces: the output of
NS was different from the pcap capturing structure. NS tracing support has a very simple design:
the resulting output is oriented towards indicating the packets as they travel between endpoints
rather than their headers. NS produces a plain text trace, with fields corresponding to packet
fields (e.g. there is a field for the number of the packet, which, by multiplying with the size of
the packet, gives the sequence number). This is satisfactory for the main purpose of ns, which is
protocol efficiency or model accuracy validation, but improper for trace analysis. The only
attempt to transform the output of NS into a usable form was a contributed module within
tcptrace [Osterman 2003], but, at least at the time, it was both incomplete (it did not account for

all the fields) and out of date (the format of the NS traces changed along the version). This

131

Chapter 5 - Validation of monitoring methods

module, was, nevertheless, used as a starting point to add to the trafTic analysis tool the ability to

use NS traces.

3.3.1 Topology

NS has the ability to simulate large topologies, but does not include the support for generating
them. Although there are several programs which perform this task, it was preferred to integrate

the topology generation with the simulation scripts for simplicity.

As a result, the NS traces were obtained by randomly generating network infrastructures. The
simulation aimed to include a complex structure, with three levels of connectivity: a backbone
running at a random speed (1), having two sub-networks connected to each of its ends through
random speed links (2). Each sub-network had a random number of clients connected to it, all
having the same access speed (3), but random delays. TCP connections were established at
random start times over this infrastructure between clients from all four subnetworks. The trace
collection gathered data from the backbone link and, for the TCP analysis, only the arrival events
were kept for one of the backbone ends, in order to simulate packet capturing by an interface.
Details about the program used to generate the simulation may be found in Appendix D. An

example of such a structure may be seen in Figure 5.3.

132

Chapter 5 - Validation of monitoring methods

conditions, in order to thoroughly verify whether the method infers correctly the TCP behaviour.

The combination of figures for file size, network delay and jitter, loss, and bottleneck bandwidth
described in section 5.2 led to a number of 456 usable connections. Each test consisted of a
single transfer between the two endpoints using a certain set of emulated network values (delay,
jitter, loss, and bandwidth). The transfer was captured using fcpdunp, then analysed with the
method described in Chapter 3. The results from the set of traces produced were then filtered to
keep only the useful data (some of the connections failed due to timeouts or finished abnormally
and produced no results). At the end, the results of the inference were compared with the results

of the measurement.

The jitter and bottleneck bandwidth estimations, initially part of the validation, were removed in
the final stages, for different reasons. The jitter estimation was removed due to the measurement
characteristics: any measured jitter metric would have been different from the metric introduced
by NIST Net. For NIST Net, the jitter was applied to each packet and it depended on the set
parameters (distribution and correlation) and the jitter applied to the previous packet. On the
other hand, the monitor did not measure the jitter for every packet, but only for the data segment
- acknowledgment pairs that satisfied the RTT measurement conditions. In addition, the
measured jitter is obtained by combining the jitter from two sets of NIST Net emulations. For
example, in the case of A acting as sender and B as receiver, the RTT measured on the route
monitor - host B - monitor, will be affected by the link 2, direction AB (the data segments) and
link 2, direction BA (the acknowledgments). Depending on how each of the two jitter
instantaneous values combine, the resulting jitter may be anywhere between 0 and the double of
the value set. The bottleneck bandwidth calculations were removed due to the errors introduced
by NIST Net. The analysis of the resulting data showed only minimal correlation between the set

bandwidth limitations and the estimated figures. To overcome this problem, connections were

134

Chapter 5 - Validation of monitoring methods

made over a controlled path that included a low-speed (ISDN) link, followed by analysis of the

results.

5.4.1 RTT measurement

The RTT measurement section included, after filtering the experiments that did not yield any
meaningful results, a number of 72 samples, using various figures for the delay. During this
round of experiments there were no bandwidth impairments introduced via the NIST Net boxes.
This was because, by introducing bandwidth impairments, it would have been impossible to
obtain the real delay figures (produced by the combined action of added delay and bandwidth-
limitation delay). Previous studies and tools [Paxson 1997b], [Ostermann, 2003] used
measurement of round trip times based on TCP acknowledgments as a reliable estimator.
However, as shown in Chapter 3, the TCP timestamps based measurement has the potential to be
more accurate, as it allows a collection of more RTT samples, regardless of the position of the
monitor. This is why, as well as determining the validity of the method for actual traffic (rather
than synthetically generated one), the purpose of this test was to compare how accurate the two
methods are when estimating the RTT. Figure 5.4 below shows the cumulative distribution for

the two evaluation methods throughout the dataset.

135

Chapter 5 - Validation of monitoring methods

i and the average TCP timestamps RTT estimate for connection /.

- The t quantity from Student’s t distribution:

b
Sp

= 5.2

The resulting value for t was then compared with values from lookup tables (the above
mentioned [Cochran and Snedecor 1980] includes such tables in the appendices section) in order

to evaluate the statistical significance of the hypothesis.

Based on the data from Figure 5.4, the resulting values were: D =0.0825434, 55 = 0.0315989,

and r=2=2.61222. Using the lookup table, this value is situated between the 2.5%
Sp

probability, 7, ,, =2.29, and the 1% probability, F,, =2.648, for a measurement with 70
degrees of freedom. It may be therefore concluded that acknowledgment-based RTT

measurements lead to relative errors 0.08 higher than the TCP timestamps-based RTT

measurements with a statistical confidence of more than 97.5%.

To further clarify the results, it was investigated whether the high error values may have been
produced by other factors rather than errors in the inference mechanism. Examples of such
factors may be additional delays, such as processing delays, which become significant for low
values of the introduced delays. To determine whether this is the case, a graph was produced to

observe how the inference relative errors varied as a function of the introduced delays.

137

Chapter 5 - Validation of monitoring methods

Relative error
1

" T¥ T
+ *; +
. 4+ . b *
+, L e - o +
01} ; L I 3
-1 i + - .
+ ¢ - *
001 | * L i
0.001 ! 1 .
10 100 1000 10000

Delay introduced [ms}

Figure 5.5 - Plot of relative errors of TCP timestamp based inference as a function of delay

introduced by NIST Net

Figure 5.5 shows the relationship between the introduced delay and the relative errors when
using TCP timestamps-based inference. It may be seen that higher error values appeared only for
low delays, where it is likely that the influence of other delay sources was relevant for the result.
Overall, for the entire dataset, the traditional, acknowledgment-based inference had an average
relative error of 23.1%, while the TCP timestamp based method produced errors of only 13.8%.
One of the causes for this difference in accuracy is the advantage that TCP timestamp inference
brings in terms of number of samples, as highlighted in Chapter 3. To illustrate the difference
between the number of samples, Figure 5.6 below shows the distribution of the ratio between the
number of samples obtained with each of the two methods for the entire set of experiments (the
whole set was used for these statistics because the actual RTT values were not relevant, but the

number of RTT samples obtained for each connection).

138

Chapter 5 - Validation of monitoring methods

The graph does indicate that, although for 40%-50% of the connections the method appeared to
be accurate, errors appeared throughout the rest of the samples. In fact, 20% of connections
appeared to have more than 100% errors in the estimation. It is true that some of these errors
may have been genuine mis-interpretation of the TCP monitor. However the basic support that
NIST Net provided for reporting loss, cumulative number of losses, did not allow any further
analysis into the sources of the errors. To determine the problems, some experiments were run
with data collected at the sender. Based on manual analysis of these traces, it was concluded that
the errors may have been the result of other events that generated packet loss unaccounted for by

NIST Net:

- events leading to higher estimates than the reported figures: packets dropped by the
routers, losses on the reverse path (dropped acknowledgments, forcing the sender to
timeout and retransmit), erroneous retransmissions (an example of such retransmissions
will be presented in section 5.5.2)

- events leading to lower estimates than the reported figures: multiple drops of the same

packet, drops of non-data packets.

Due to these multiple uncertainty sources it was decided to expand on the accuracy of the loss
inference in the NS tests, which offered a better controlled environment, with fewer sources of

error and comprehensive reporting functionality.

35.4.3 Bouttleneck bandwidth measurement

As mentioned in the introduction section, the bottleneck bandwidth experiments failed to show

any relevant results. To overcome the lack of results, a round of 50 experiments was run within

141

Chapter 5 - Validation of monitoring methods

observation of any possible variations in the average per-connection figures.

5.4.4 Conclusions

The NIST Net experiments offered a comprehensive image for the evaluation of the RTP
monitor. The analysis indicated that the monitor was able to identify the location of the
degradation in relation to the monitoring point based on the combined RTP-RTCP analysis.
Also, both measured parameters (packet loss and jitter) were synonymous with the introduced

degradation.

The results were less encouraging when evaluating the TCP connections using the TCP monitor,
mainly due to the various sources of error that NIST Net introduced. The delay experiments
encountered variations in the RTT estimation error, but indicated that the TCP-timestamp-based
estimation produced a more accurate estimate of the RTT. This was due to the higher number of
estimation samples for each connection. The errors recorded for some of the experiments
appeared to increase for smaller values of the introduced delay. It was concluded that they may
have been caused by factors relating the actual network used for testing. The loss experiments
were more affected, with high errors between the estimated losses and the actual figures recorded
by NIST Net. A list of likely causes behind these errors was presented, all indicating that
synthetic traces may prove to be a better alternative for loss evaluation. Finally, as described in
Chapter 5, the bandwidth estimation did not produce any reliable results due to the microscopic
behaviour of NIST Net. However, a batch of connections was used as an alternative means of
testing and indicated that the bandwidth estimation was reliable, generating a relatively high
number of samples even for small file transfers and producing accurate estimates throughout the

batch of connections.

143

Chapter 5 - Validation of monitoring methods

5.5 NS tests

5.5.1 RTT tests

The structure from Figure 5.10 was used to generate 100 different batches of connections. The
network reproduced a 3-tier structure: access (links 4-2 and 5-3), aggregation (links 2-0 and 3-1),

and core (link 0-1). The links were set with the following parameters:

- Access / aggregation / core bandwidth — variable 1-10 / 10-100 / 10-100Mb
— Access / aggregation / core delay — variable 0.01-0.05/0.01-0.05 / 0.05-0.1 s

- Gateway / Core router queue limit — 10 slots

© O

Figure 5.10 - NS configuration used for RTT tests — path comprising three types of links:

access (4-2 and 3-5), aggregation (2-0 and 1-3), and core (0-1).

The word ‘variable’ indicates that the parameters were generated randomly with a uniform
distribution for each experiment, using the internal NS random number generator. The two

figures for each variable indicate the boundaries between which the respective variable was

144

Chapter 5 - Validation of monitoring methods

Figure 5.13 - Network topology used for losses — two 10-host 10MB/s networks connected

via a 2Mb/s backbone link (between nodes 0 and 1)

The above topology was used to run several simulations, leading to a total number of 100
connections collected. The traces were collected from the receiver side of the backbone (node 1).
Due to the logging capabilities of NS, it was possible to include in the trace the packer drop
events. The results from the TCP analysis of the VS traces were then compared with the number

of dropped packets, as reported by NS. The results are shown below in Figure 5.14

147

Chapter 5 - Validation of monitoring methods

Out of the last 20 segments transmitted in order after 1.6s, only 6 of them were dropped. The 6
dropped packets are the ones reported by NS (1%, 4 712%™ 14" 17"™), while some of the rest,
although not lost, were incorrectly retransmitted by the sender due to receiver not returning any
acknowledgments. It is worth noting that the 7 erroneous retransmissions were avoidable, but
they were caused by to the position of the lost packets rather than faults in the retransmission
timeout calculation. For example, the 2-segment window arrived at 2.8s, included | dropped
segment (the 7 from the original window), plus one erroneous retransmission (the 8" segment,

not lost during the first transmission).

Summarising, the method provides an estimate of the loss rate as perceived by the receiver
rather than the acrual loss rate, as existing in the network. However, as visible in Figure 5.14,

the two figures coincide for small transfers and reduced number of losses.

5.5.3 Congestion window

There is no monitoring mechanism within NS that allows monitoring of the congestion window;
the trace support outputs only header fields, not agent status. However, the TCP client used for
the simulations (TCPFull) did include an internal variable cwnd_ that indicates the size of the
current congestion window. In order to observe the evolution in time, the source code was
modified to print in a separate trace the values of the cwnd_ variable. Unlike RTT, bandwidth,
and loss values, which require an average figure, congestion window estimation should reflect
the evolution of the variable in time. This is why the best choice to compare the inferred values
with the actual figures was considered to be graphical comparison. To illustrate the comparison,

a connection example was used below in Figure 5.16

149

Chapter 5 - Validation of monitoring methods

real environment, produced with a network emulator and a variety of synthetic environments,

based on a network simulator (NS).

The network emulation round led to a mixture of results for the TCP analysis. The RTT tests led
to low relative errors, increasing only towards lower delay values, likely to be due to the network
propagation and additional processing delays. According to the tests, the method appeared to
estimate less accurately the packet loss, with only less than 50% of the connections leading to
correct estimates. It was observed that, aside from the incorrect interpretation of the packet
sequence by the TCP monitor, there were multiple sources of errors, all likely to affect the result
of the packet loss figures reported by NIST Net. Finally, the bandwidth tests were inconclusive
due to emulation limitations within NIST Net. To compensate, a round of tests was run in a real
environment with controlled endpoints. The results were very good, indicating very low relative

errors in the bottleneck bandwidth estimation.

The results obtained from the synthetic traces indicated high accuracy for delay, bandwidth and
congestion window estimation. The trace support provided the means to study the differences
between the estimated packet loss and the logged loss events. The analysis revealed that the
estimated loss is in fact, as highlighted in section 4.2, a better approximation of the network loss
as inferred by the client. This figure, although it does not indicate the real number of lost

packets, is more relevant when evaluating the performance achieved by a connection.

After benchmarking the accuracy of the method proposed throughout this chapter, the next
chapier will apply the developed implementation on real traces. The discussion will present the
characteristics and limitations of the environment used, then will describe the findings of the

trace analysis, aiming to offer a holistic image of Internet paths and web transfers.

153

Chapter 6 - Analysis of Internet traces

Chapter 6. Analysis of Internet traces

154

Chapter 6 - Analysis of Intermet traces

6.1 Introduction

This chapter presents the results obtained when applying the TCP analysis method proposed in
Chapter 3 onto real network traces. The aim is to obtain an image of Intemet paths parameters, as

observed from a single collection point.

The traffic produced employed two different methods: either provide a web client that includes
scripting support with a list of web pages to visit, or use actual traffic, as produced by real users.
The two alternatives correspond to the “semi-controtled data” and “real data” cases introduced in
section 2.6. The traffic was collected and stored in packet traces for offline analysis. It is true
that offline trace analysis does not make use of the online capabilities of the developed method,
but it allows repeatability of the analysis and changes if certain algorithms appear to introduce

CITOrS.

The study of the results will follow the range of network- and endpoint-related parameters that
the method can infer: packet loss, round-trip delay, bottleneck bandwidth, and congestion
window values. It is aimed to observe whether influencing factors are reflected in the resulting
distribution, particularly when analysing the variation of delay. The images obtained from the
two sources of data (semi-controlled and real) will be compared to determine whether the overall

network characteristics are affected by the amount and diversity of data collected.

6.2 The RYL traces

The semi-controlled data collection was based on the idea used by Neil Cardwell to prove the

efficiency of his TCP performance model in [Cardwell er al 2000]. He used the Random Yahoo

155

Chapter 6 - Analysis of Internet traces

Link (RYL) [Yahoo 2003], a Common Gateway Interface (CGI) script within the Yahoo website
that redirects the HTTP client to a random web page, to connect to a few web-siles and use the
resulting traces to validate his model. The same principle was used for this project, i.e. the
functionality of RYL, but on a much larger scale, as the purpose was not only to validate the

TCP model, but also to build it.

The RYL-based experiment was run in two rounds, the first during the autumn 2001 and the
second during spring 2002. The resulting traces were filtered repeatedly to remove unfinished,
reset, and incomplete connections, (which were considered inappropriate for TCP analysis), as
well as |-packet object transfers (which were producing inconsistent throughput figures and did
not indicate any TCP behaviour). The filters applied depended on the purpose of the analysis; as
will be shown in section 7.1, bottleneck bandwidth analysis, for example, required TCP
timestamps present, and any connections that did not use them had to be removed from the
bandwidth statistics. However, RTT estimation did not require them; therefore such connections

were kept in the delay statistics.

The retrieval used wget, the command-line HTTP client used previously in the NIST Net
experiments, and was automatic, controlled with a script described in Appendix B.3. The capture
was performed, as in previous cases, using fcpdump; all the processes (control, retrieval, and
capture) were running on the same computer. When the first round of experiments was run, the
latest version of wger at the time did not allow for a full download of the web pages (e.g. for a
page with one or more images or embedded objects, only the HTML file was retrieved). At the
second round of experiments, the newer version of wgef had the facility to parse web pages and
download the objects hosted on the same server with the page), which allowed a rough
estimation of the actual content of the page. In the case of an HTTPIL.1 client, these objects

would be downloaded in a single connection, which gave an approximate indication of the actual

156

Chapter 6 - Analysis of Internet traces

length, in terms of size, of a TCP connection making full use of HTTPI.1. Even at the second
round of experiments, after all the enhancements, wget still proved to be restrictive for the RYL
experiments due to its limited capabilities. [ts latest version did not include some major
functionality such as the support for frames, persistent connections, or pipelining', all because

the program did not support HTTP v1.1

The resulting traces were successfully used in the model training and testing, as they contained
all the necessary data for analysis (the snaplen variable within tcpdump, which controls the
number of bytes saved from each captured packet, was set to 300 to retrieve, aside from the

TCP/IP headers, some of the HTTP tags).

6.3 The real network traces

NIST Net introduced, as seen in the previous section, several errors when reproducing real
network environments, in spite of emulating network conditions, errors that affected the
accuracy of both monitoring and prediction methods. In order to overcome this problem, the data
collected had to be real traffic, produced by real clients in real networks — real traces or

uncontrolled data, according to the above taxonomy.

The procedure of traffic collection is straightforward for 10/100Mbps Ethernet networks:
connect a computer at the tapping point and capture all the packets going to the uplink. The
capture requires only a computer equipped with an Ethernet network card and it can be done

using, as in previous case, fcpdump, the Linux packet capturing program.

The main problem relating to network trace analysis is gaining access to an aggregation point.

I According to the author, there are no plans to ex%n_,g it in the future in these areas

Chapter 6 - Analysis of Internet traces

The two main concerns of a network administrator when allowing such a device to be connected
in his/her network relate to service disruption and privacy. Service disruption may occur only at
the hardware setup time, if a hub must be connected to the network core, and along the
monitoring process, if the hardware used to interconnect the capturing computer (the cables and
the hub) is of inferior quality and degrades the system. These issues are less important when
compared to privacy: the saved traces will contain all / parts of user data that travelled through

the network.

The trace collection required a trusting relationship between the network administrator and the
person collecting the data. Due 1o the limited contact with ISPs, the only place it was possible to
collect traces was the University of Plymouth network backbone. The capturing used port
mirroring at one of the routers that connect the UoP end-network to the JANET uplink. The
program used for capturing was fcpdump, with a port 80 filter applied, in order to collect only

the HTTP traffic

The UoP trace collection, in spite of appearing to be the ideal solution, had several limitations,
relating to the size of the environment, OS characteristics, and diversity of the studied
environment.

It may be argued that the browsing behaviour and the type of websiles accessed may be
considered rather limited, because the network users (students, lecturers, and researchers), may
have had similar interests. The question is whether conclusions drawn from this network are

comparable with results provided by larger traces, collected from higher aggregation points.

The second issue, OS characteristics, impacted only one of the estimated parameters, network
bandwidth; the problem was caused by a limitation in the monitoring method rather than a

problem of the network. The method uses the TCP timestamp options header to estimate the

158

Chapter 6 - Analysis of Internet traces

bottleneck bandwidth, as explained in section 3.4.3.2. Windows 2000 was the typical desktop OS
at the time when the traces were collected. Although the TCP client includes implementation of
TCP timestamps, their use was not enabled by default. However, recent versions of Linux
distributions have all TCP timestamps implemented and enabled in the TCP client. As a result,
the resulting bottleneck bandwidth estimation is likely to have been produced only by the

requests from the Linux machines.

The third problem encountered was the variety of the environment. Regardless of the amount of
aggregate traffic collected, the topology of the environment was rather static: the University of
Plymouth network was connected to the Internet, through the Joint Academic Network (JANET)
— the network that connects the education organisations throughout the UK [UKERNA 2003]. As
a result, the first 8 hops of all paths were within the JANET infrastructure, as shown in Figure
6.1 by a traceroute run from the computer on which some of the RYL tests were run to
www.hotmail.com. Because of this, the first 8 hops were common for all connections, but the

routes diverged at the exit from JANET, depending on the destination host.

bogdan@tester:~ > traceroute www.hotmail.com

traceroute to www.hotmail.com (64.4.54.7), 30 hops max, 40 byte
packets

141.163.77.253 (141.163.77.253) 1 ms O ms O ms
141.163.7.14 (141.163.7.14) O ms O ms O ms
141.163.58.250 (141.163.58.250) 1 ms 1 ms O ms
man-gw-1.bwe.net.uk (194.82.125.177) 6 ms 5 ms 4 ms
bristol-bar.ja.net (146.97.40.101) 4 ms 4 ms 4 ms
pol3-0.bris-scr.ja.net (146.97.35.29) 4 ms 4 ms 4 ms
po0-0.read-scr.ja.net (146.97.33.10} S ms 5 ms 5 ms
london-bar3.ja.net (146.97.35.126) 6 ms 6 ms 6 ms

:—uCDx]O\U‘lnDLle—‘

Figure 6.1 Part of the traceroute output from UoP network to www.hotmail.com

As a result, the performance of the resulting traffic was exclusively influenced by the position of
the remote endpoint. For remote endpoints connected in ‘similar or better’ networks (i.e.

159

Chapter 6 - Analysis of Internet traces

networks connected to UoP through paths with comparable or larger bandwidth and low RTT),
the distributions obtained for loss, delay, bandwidth, and, implicitly, for throughput, are fairly
narrow. More details on the network environment limitations and on the impact they may have
had on the resulting statistics are offered in section 7.1.1. It is worth mentioning here that the
connectivity parameters did change in time, as the UoP network went through a major internal
upgrade in the autumn-winter of 2001. This upgrade had a radical impact on the quality of the

network, improving the end-10-end parameters as it will be seen throughout section 7.1

With regards to the public traces, the only source identified was the Passive Measurement and
Analysis initiative [PMA 2003]. The PMA holds an archive of relatively large network traces
collected from 31 different locations using various physical network technologies to connect, all
‘sanitised’ to protect the identity and privacy of the users that created the traffic. The advantages
are obvious with regards to this source of data: variety of environments, amount of collected
traffic (which lead to a higher possibility to find traffic generated from non-Windows clients).
However, there were three main issues when using this traffic for analysis: the data formats, the

way the data flows were collected, and the content of the packets in the trace.

1. Data formats. The traces from NLANR (the umbrella of PMA and AMP, as explained in
section 2.3) come from different network environments (e.g. ATM, FDDI, Packet over
SONET) and were captured using different programs / hardware (coral, DAG3, etc),
which lead to a variety of formats for data. This obstacle was easy to overcome, as the
NLANR website provides a wide range of tools that allow conversion from any of the
capturing formats to pcap, the format used by the implemented traffic analyser.

2. Data collection. Because they were collected more for overall analysis (e.g. number of
flows, number of bytes per flow, number of bytes per packet), a lot of the traces,

especially from ATM, include the traffic only one direction, rendering any TCP analysis

160

Chapter 6 - Analysis of Internet traces

impossible. Some of the traces, the ones captured using the CoraiReef suite [CoralReef
2003] were bi-directional but, nevertheless, they had a clock drift between the two
interfaces, which lead to erroneous figures for the delay statistics.

3. Captured content. All the traces were ‘sanitised’ for privacy purposes; as a result, none of
them included any TCP extensions or data content. This affects the performance
estimation, as no inference can be made in regards to the bottleneck bandwidth (using the
TCP timestamps options) or the server that generated the traffic (using the HTTP

headers).

For the above reasons, the real trace analysis was limited to studying the UoP traces. Details on
the actual statistics obtained are presented in section 7.1. The traces were also used in the
validation process of the proposed TCP performance prediction method, described in details in

Chapter 8.

6.4 Random Yahoo Link traces analysis

6.4.1 Network topology and connectivity

It is fair to admit that the RYL analysis was limited in the sense that there was a single
connection point, the UoP network. Further, the UoP network is connected to the Internet, via a
single link to the UK academic network, JANET. This is why, after the spring 2002 round of
connections, an experiment was carried out in order to estimate the diversity of individual paths
explored by the RYL connections. The experiment consisted of running traceroute on a random
subset of the sites - 350 out of the 2744 unique servers which were contacted during this second
round. It is true that the experiment was not carried during the data collection but after it, which

may have introduced slight alterations to the results. In spite of the time difference, it may be

161

Chapter 6 - Analysis of Internet traces

assumed that the overall distribution did not change considerably (its shape resembles the one

from prior studies such as [Hyun et al 2003]).

Due to the topology characteristics, all the routes were the same for the first 8 hops (up the Janet

backbone). Because of this, the traceroute command was started each time with an initial TTL of

9, to reduce the number of packets generated. Some of the traces failed to reach the destination

due to one of the following reasons:

~ Long path. The path up to the remote endpoint was longer than 30 hops. Such traces

showed no errors and a valid IP address at the last hop, but this last hop was different
from the targeted address. This category could have been removed by using the “-m”
option of traceroute but, unfortunately, the option was not considered at the time of the
experiment

Administrative prohibitions. Routers that did not respond to the traceroute probes (or
dropped them altogether). Such traces included valid [P addresses up to a certain hop,
then either no response for any of the following hops (up to hop 30) or an
administratively prohibited flag. This is one of the reasons why traceroute-based path
measurement tests may prove to be less successful in comparison with non-intrusive TCP
analysis.

Host unreachable errors. A remote router would report that the requested host is

unreachable.

Out of the 350 sites, 23 probes failed due to administrative prohibitions, 22 paths were longer

than 30 hops, and in 91 cases one of the routers along the path dropped the probe. These 136

probes, although not complete, indicated the route up to the router that was prohibited / did not

respond / reported a host unreachable. This is why, when evaluating the variety of paths, they

162

Chapter 6 - Analysis of Internet traces

were taken into consideration up to the router that stopped the probe.

Two sets of paths were created: one containing all the 350 probes (but with the faulty entries
removed), referred to here as all_probes, and one containing only the 210 probes that reached
their destination, named good_probes. The paths from the two sets were then compared hop-by-
hop, i.e. hop 9 from all routes, then hop 10 from all routes, and so on, up to the last router before
destination, to determine the number of unique IP addresses for each hop. The method is not
100% accurate, as some paths might use two or more alternative sub-paths between the same two
nodes for load balancing, but gives a rough estimate of the number of unique paths followed by
the packets. Also, in the case of the all_probes dataset, some of the routes were incomplete,
indicating that even higher variety could be found in the paths. The experiment is somewhat
similar to that run by Paxson in [Paxson 1997a] to estimate the characteristics of the Internet but,
in this case, the only purpose is to provide information about the topology of the remote sites in

relation with the collection point (UoP network).

163

Chapter 6 - Analysis of Internet traces

redundancy may be seen below in Figure 6.3. The values beyond the value of 100 (connections /
unique 1P address) were due to only three addresses', but it also shows that more than 80% of
connections were made to unique hosts. In order to avoid redundancy, the resulting datasets
should be run through a filter to keep only one sample from each IP address. However, this
approach is inconvenient for the second round of experiments, due to the fact that each query
requested all objects from a page and such an [P-only filter would keep only one of the
connections®. A second type of filter may be applied in order to keep all the unique objects
retrieved from an IP address, which works similarly to a cache memory: remove duplicate

samples by comparing their source web server and the size of the retrieved object.

None of the two filters represents the perfect solution. The first one, IP-only based, provides
accurate path information (particularly delay), but it would not reflect true characteristics of the
traffic, particularly with the second round of experiments. The second filter, IP-and-size based,
distinguishes between different objects retrieved from the same IP address, which allows a better
analysis for typical page transfers, but it may bias the path-related results. This is why, for the
analysis, the RTT subset was extracted using the [P filtering, while the loss and congestion

window analysis used the IP-and-size filtering.

' All three addresses were hosting at the time sites likely to be popular sources of data: one of them was resolved as
news.bbc.co.uk website and the other two were resolved as www.cnn.com
? The kept connection is also likely to be the shortest one the one - the html text rather than e.g. the images on the

page.
165

Chapter 6 - Analysis of Internet traces

s = 6.1

o X, and X, are the overall average RTT values for the autumn 2001 and,
respectively, spring 2002 measurements round
o n,and n, are the number of connections yielding RTT values for the autumn

2001 and, respectively, spring 2002 measurements round

- The variance for the difference of the wo measured variables:
’ n+n
..S'x—,l_',‘.—z = Sz 42 62
hn,

X-¥,

- Thet quantity, 1 = , that follows Student’s t distribution

n-x
The calculation for RTT average returned the following values for the above variables:

s? =29786, s._'.-x_,=4'07957’ and r=10.9325. The value for t is higher than the 0.1%

probability, P, ,,, = 3.2905, for a measurement with o degrees of freedom. This leads to the

conclusion that the average RTT for the autumn 2001 dataset was higher than the average RTT

for the spring 2002 dataset by 44.6 ms with 99.9% confidence limits 31.17 ms and 58.02 ms

The same method was applied to the RTT standard deviation, yielding s*=9352.36,

Syox = 2.28595, and ¢=8.35606. Using the 0.1% probability value, £, =3.2905, the

conclusion was that the standard deviation of the RTT for the autumn 2001 dataset was higher
than the average RTT for the spring 2002 dataset by 19.1 ms with 99.9% confidence limits

11.57 ms and 26.62 ms.

The results obtained for RTT average may be compared with Allman’s findings [2000] and show
169

Chapter 6 - Analysis of Internet traces

an improvement in the connectivity, as that study found that 85% of connections had an RTT in
the 15-500 ms interval'. In this study, the [0;500]ms interval tends to cover nearly all the
spectrum (95% for autumn 2001 and 98% for spring 2002), while 85% of connections had an
average RTT of less than 350ms in the spring 2002 dataset and less than 170ms for the autumn

2001 dataset.

The analysis method presented in Chapter 3 allows RTT measurements based on the TCP
timestamp option. Unlike the case of sequence-number-based RTT, TCP-timestamp-based
measurement produces an estimate for virtually each acknowledgment / every-other data packet,
based on the pairing of the timestamp values returned in each packet. The main disadvantage of
this method is that the remote endpoint may not implement the TCP timestamps mechanism
correctly (or at all), in which cases the RTT estimate(s) should be discarded. In the autumn 2001
round of experiments, the sequence-based RTT inference produced estimates for 10394
connections to unique remote IP addresses. On the same trace, the TCP-timestamp-based
allowed estimates only for 5343 connections. Still, this situation may be remedied in the future,
with an increasing percentage of TCP clients implementing TCP timestamps®. A good example
of such an evolving client is the Microsoft Windows TCP/IP stack, which did not include

support for TCP timestamps before the Windows 2000 version [Microsoft 2000].

6.42.1. Ack-based RTT vs. TCP timestamp-based RTT estimations

The expected outcome of the timestamp-based RTT measurement was, as indicated in RFC1323
[Jacobson et al 1992], a substantially larger number of RTT inferences for each connection.

Figure 6.6 presents the distribution of the sequence-based vs. the timestamp-based RTT

: There is no information in the study about average values or the percentage of connections with RTT<15 ms,
? According to a series of studies from Netcrafi, the estimated percentage of web servers that implemented to TCP
timestamps option increased from 38.1% in 2000 to 80.5% in 2003 [Wendland 2003]

170

Chapter 6 - Analysis of Internet traces

- 3-way handshake to open the connection — | RTT estimate / direction
- client transmits the request; server acknowledges and transmits 2 back-to-back
packets; client replies with 1 acknowledgment — 1 RTT estimate / direction

- 3-way handshake to close the connection — | RTT estimate / direction

resolution of the TCP timestamp. The timestamp-based inference cannot produce more
than | estimate for each unique timestamp, i.e. a new RTT estimate can be produced only
when the value of the timestamp increases. This impediment affects the number of
inferences and it may have an effect on the average RTT value obtained for a connection
only if the RTT throughout that connection varies considerably. The sequence-based
analysis indicated an average of nearly 100 ms for the spring 2002 dataset. If the
resolution of the sender-gencrated timestamps is lower than the RTT values, several
packets (in some cases, for low-delay and high-bandwidth paths, even all packets) may
carry all the same TCP timestamp, reducing the number of estimations for that
connection. Figure 6.7 presents the distribution of the timestamp resolution for the two
rounds of experiments. It may be noticed that the majority of connections (around 68% of
the probed websites during autumn 2001 and 82% of the sites from spring 2002) were
produced by senders with a 10ms resolution of the TCP timestamp. It is interesting to
note, according to the distribution, that the difference between the two figures was made
up of senders that had a 100ms resolution for the TCP timestamps. It is difficult to
determine whether this difference was made up of websites that upgraded to a newer
version of operating system (one which came with more accurate timestamps) or these
are only websites which have not been probed during the spring 2002 experiments'. The
rest of the senders had timestamps of at least 100 ms, with almost 20% of the TCP
senders using a resolution of at least 200ms, comparable with the RTT values for autumn

2001. With such values, aside from limitations induced in the RTT measurement, the

172

Chapter 6 - Analysis of Internet traces

connection, but these samples were placed at the beginning and at the end of the connection,
which gives a good indication about how much the delay changed throughout the transfer.
Considering the average RTT value of 136ms from April 2002, a TCP sender will have to wait
another 6*RTT before retransmitting the lost segment. It is true that the analysed connections
were generated in a privileged environment, but, again, at least for such low-delay environments,
the minimum RTO should be changed to an lower limit of, at most, 500 ms. This change should
not affect the initialisation value for RTO, which may remain at 3 seconds in order to

accommodate high-delay environments such as satellite links.

The main issue when looking at RTO is how often the timeout mechanism is likely to be used.
The retransmission policy depends, as explained in Chapter 2, on how the loss is observed. Due
the way congestion window evolves, for paths experiencing low figures for packet loss, the
larger a file is the more likely it is for losses to be recovered through by fast retransmission,
because more acknowledgments are in flight at any moment in time. At the other extreme, short-
lived connections will experience small congestion windows and the TCP senders are likely to
recover losses through timeout instead of fast retransmission. Unfortunately, the connection
analysis performed as part of this study (section 6.4.5) showed that most flows are short-lived
and the congestion window experiences at low values, which indicate that, on a path
experiencing loss, TCP senders are likely to timeout instead of fast retransmit for typical web

transfers.

Our observations can be compared with the findings of Allman and Paxson, who modified the
proposed values for granularity and RTO in [Allman and Paxson 1999]. The conclusions of this
study were that, over the analysed mesh of Internet paths, a coarse timer (e.g. 500 ms) would

reduce by half the time spent while waiting for the retransmission timer to expire but would

"n only mentions that a fine granularity, defined ‘?STIESS than 100 ms, performs better than a coarse one

Chapter 6 - Analysis of Internet traces

double the number of bad retransmissions (i.e. retransmissions due to an erroneous low RTO).
The increase was even higher when a lower figure was chosen for the minimum RTO but, as
Allman observed, one of the main reasons why this happened (and, generalising, why the
minimum RTO should not be changed on its own) was the timing of delayed acknowledgments.
According to the recommendations [Braden 1989], delayed acknowledgments should be delayed
for at most 500 ms, a rule that allows the receiver to delay the receipt of a data segment for up to
500ms. In fact, [Paxson 1997a] and [Allman and Paxson 1999] are the most quoted studies that

critically analysed the effect of the proposed values on Internet TCP transfers.

6.4.3 Bandwidth

The estimation was based on identifying back-to-back packets using the TCP timestamp option,
as described in section 3.4.4.2. The position of the monitor was extremely favourable for this
type of measurement, as the data packets coming from the server were captured right at the
receiver, i.e. at the end of the path, allowing identification of the bottleneck for the download
path. Some of the senders had coarse TCP timestamp clocks, therefore the estimation used both
of the timestamp values within each data segment in order to determine the back-to-back pairs.
The rationale behind using both values is that back-10-back packets should be transmitted due 10
the same acknowledgment, therefore they should carry the same tsres value. Unfortunately, only
approximately 50% of the connections produced a reliable bandwidth estimate in each round of
experiments, statistics likely to be due to erroneous implementation of the TCP timestamps at the
senders, or due to connections with too few packets. The result of the measurement is illustrated

in Figure 6.8.

175

Chapter 6 - Analysis of [nternet traces

from a single point. From this perspective, the survey may appear similar to [Allman 2000], but,
in this case, there is no control over the senders ~ rather than have “one server and many clients”,
this project used the “one client and many servers” approach. it may be argued that the survey
carried out was somehow limited, as the client used, wget, did not support HTTP1.1. As a result,
the objects from a page were downloaded in separate connections, a fact that led to smaller
congestion windows. Further, the resulting figures for loss may be less accurate than some
obtained for long-lived connections, due mainly to larger congestion windows and better

resolution, as will be detailed later in this section.

The approach used when analysing the loss results was similar with the one for RTT evaluation.
As explained in section 3.4, losses rely on RTT and information, obtained at least from
acknowledgments if not from TCP timestamp options too. Also, the loss analysis does not
perform well for very short lived connections (i.e. connections lasting for less than | RTT). This
is why a filter was applied to the datasets to remove any connections that have these
characteristics. The initial datasets were reduced through filtering to 11337 samples (2001) and

8585 samples (2002).

There were 3 categories of losses, as defined in section 3.4.5: visible (LostBefore and LostAfter
events), inferred timeouts (LostTO events), and errors (losses due to either erroneous timeout at
the sender or due to lost acknowledgments from the receiver). The events from the third
category, although not produced by genuine losses, have the same effect on the sender -
reduction of the congestion window. The remainder of the section will present, for each
category, the number of connections that exhibited the event, as well as the associated

distribution of losses, measured in packets/connection.

177

Chapter 6 - Analysis of Internet traces

only 29056 bytes for 2002, which indicates that losses seemed to have happened in shorter
connections during the second round of experiments (more details about the distribution of the
file sizes is given in section 7.1.5. A second argument comes to justify both apparent anomalies —
the higher packet loss during shorter connections for the 2002 dataset. With | packet lost out of
the 77 data packets transmitted, the overall loss rate for this retrieval was 1.29%. Using the same
rationale, the minimum visible packet loss for the first object would have been | packet out of
the 11 transmitted, equivalent with 9.09%. The above statistics are based on the page size, a
variable that may have played an important role in the difference between loss figures. Another
variable, not available for study from the perspective of this research, is the actual configuration

of the paths beyond Janet that may have changed between the two experiments.

The conclusion is that the 2002 dataset led to better resolution of loss rates for the probed
websites/IP addresses. First argument for this is that the 2002 experiments produced longer
connections due to some of the objects from a web page being larger than the first object (the
one that would have been retrieved using the 2001 method). The second argument is that, by
retrieving all objects from a page, the 2002 experiments always retrieved a larger amount of data
from each probed page in comparison with the 2001 experiments. These differences indicate that
it is difficult to draw a line between path properties and the traffic properties. It is true that the
primary target of a holistic Internet study is to look at unique paths rather than packet traces.
However, while specific analysis of paths may show relative stability in time, the picture offered
by overall traffic analysis may show high variations of the loss figures. This discrepancy may
appear due to the higher/lower usage of certain websites' or due to the content of the web pages,
both of these causes being able to bias the analysis. To expand on this last issue, higher usage of
a website will bias the network characteristics towards the path that connects the analysis point

with that website. Also, larger web pages will lead to higher number of exchanged packets,

180

Chapter 6 - Analysis of Internet traces

6.4.4.3. Overall loss

The First observation to be made is that the image offered by these experiments is virtually loss-
free. The main reason for this is, apart from the characteristics of the connectivity point, the
actual average size of the objects transferred. The short-lived connections allow only small
increase of the congestion window and, implicitly, do not impose stress on the path between

server and client.

The short-lived connections have an additional undesired effect: the accuracy of the
measurement cannot go beyond the granularity of the download due to the low number of
packets exchanged'. For example, having a transfer consisting of 10 packets, the minimum
detectable loss is 0.1, a situation also described in [ARPA 1981b]. To reduce this granularity
error, the total number of losses was compared to the total number of packets captured. The year
2001 connections subset had a total of 166325 packets, with 206 visible and 10 inferred packet
retransmissions, producing the overall packet loss figures 0.123 / 0.006 / 0.129% visible /
inferred / total). For the 2002 tests, 232 packets were visible retransmissions and 4 packets were
inferred retransmissions; comparing this with the total of 125960 packets, results in an overall

packet loss of 0.184 /0.003 / 0.187% (visible / inferred / total).
Due to the low figures obtained, losses were considered to be rather exceptional (inferred losses

in particular) throughout the two traces. However, more consistent results were obtained for the

backbone traces, analysed in section 6.5

6.4.4.4. Retransmission errors

it became obvious during the analysis that the monitor had an unfortunate position (i.e. at the

182

Chapter 6 - Analysis of Internet traces

- Some of the apparent errors may have been unavoidable. The retransmissions were, for
this category of losses, due to loss on the reverse path: the acknowledgment sent by the
receiver might have been lost on the receiver-sender path.

- Some of the apparent errors may have been not genuine losses, but rather packet arrival
sequences that the TCP analysis interpreted as a retransmission, as shown by one of the
examples from section 3.4. Further refinements of the TCP analysis may reduce this
erroneous interpretation from the analysis method, but would also slow the speed of

analysis.

The statistical t-testing also confirmed the graphical results, with s? =0.000806,

Sy.E = 0.000286, and r=7.28229, indicating that the spring 2002 yielded a 0.2% higher ratio
of erroneous packet retransmissions than the autumn 2001 dataset with 99.9% confidence limits

0.11% and 0.3%.

6.4.5 Connection size

It was considered that connection analysis would be irrelevant for the RYL traces, as the HTTP
client used, wget, did not include HTTP v1.1 support. All current web browsers (with Internet
Explorer and Netscape Navigator being the typical examples) have HTTPI.1 implemented and
enabled by default, therefore they all should [Fielding er al 1997] use persistent connections to
retrieve web pages. However, in order to be able to compare the RYL results, obtained using
HTTP 1.0, with any others, resulting from HTTP1.1 browsers, the analysis included the
distribution of data object sizes, as retrieved during the two rounds of experiments. The result of

the connection size analysis is displayed in Figure 6.13.

184

Chapter 6 - Analysis of internet traces

connection analysis. In this case, the task had an increased level of difficulty due to the
characteristics of the monitored transfers: unknown senders, receiver-based capture, and no
control over the endpoints / transfer. The fact that the TCP implementations of the senders were
unknown did not allow any inference with regards to the congestion window evolution profiling.
The intention was to produce a rough estimate of the congestion window, not to compete with
1cpanaly [Paxson 1997b], which includes more complex analysis but also requires traffic capture
at / near both endpoints. The receiver-based capture introduces uncertainty with regards to if,

when, and due to which acknowledgment has the sender transmitted a data segment.

Due to the variety of window increase policies and the lack of knowledge about which
acknowledgments reached the server, the congestion window inference was based exclusively on
timing between different trains of packets rather than acknowledgment dialogue (the third
method of congestion window estimation from section 3.4.3). The third problem, no control over
the endpoints, differentiates the study from Internet measurement efforts such as [NIMI 2003],
also expanded in [Paxson 1999]. Within measurement infrastructures, endpoints are running
dedicated clients transfer large files between them at regular intervals in order to determine the
network characteristics. Within this study, all the senders were remote sites on the Internet and
the objects transferred were various web pages residing on the servers; as a result, there was no

control over the size / timing of the connections.

As described in Chapter 3, the timing between successive packets may be estimated using
several methods. For this trace analysis, the chosen one involved the packet spacing analysis,
based on the captured timestamps. The alternative, which was to combine this analysis with TCP
options timestamps, was avoided due to reasons relating to the actual TCP implementations. As
presented in section6.4.2.1, not all the senders had implemented / enabled TCP timestamp

options, and, from the ones that did, the coarse resolution used by some of the senders would

186

Chapter 6 - Analysis of Internet traces

characteristics of the data transfers were similar between the two experiment rounds, in spite of
the difference in the method used. It is also interesting 1o observe that the great majority of
senders did implement a 2MSS initial window, a fact that is visible in Figure 6.14. This speeds
up the start of the TCP connection as it avoids the time-delayed acknowledgment which the

receiver will produce after an initial IMSS window.

Similar statistical t-tests tests were applied for both the initial and the maximum congestion
window, using the hypothesis that the spring 2002 dataset produced generated higher values for

initial/maximum congestion window in comparison with the autumn 2001 dataset. In the case of

the initial congestion window, the analysis produced s’ =0.557532, SE.T =0.011666, and

t =11.4324, which confirmed the hypothesis and indicated a difference of 0.1333 segments
between the two datasets, with 99.9% confidence limits 0.095 segments and 0.172 segments. The
hypothesis was also confirmed for the maximum congestion window, where 52 =11.778678,

s =0.05364, and r =3.60128; in statistical terms, the t value indicated the same confidence

x-X;

level, 99.9%, an overall difference of 0.193 segments with confidence limits 0.0166 and 0.370.

6.4.7 Throughput

From all the parameters, data throughput should be the easiest one to evaluate: the number of
data bytes divided by the elapsed time between the first and the last packet of the connection.
The first unclear issue is the elapsed time: which packets should be considered to mark the
beginning of the connection? It was considered throughout this study that considering the entire
connection time would not present any interest from a throughput perspective. Inclusion of the
SYN/FIN packets does not illustrate data efficiency but only combines the data throughput with
the time spent to establish / close a connection. This is why the throughput was measured using

the interval between the capture of the first and last data segments with non-zero payload.
188

Chapter 6 - Analysis of Internet traces

A second problem is the behaviour of the endpoints throughout the connection. In the case of an
HTTP 1.1 persistent connections it is rather difficult to define the connection time, because the
client is expected to leave the connection open for further requests / downloads'. The time
between two such downloads is spent by both endpoints in an idle state, therefore it should not
be accounted for when calculating the elapsed time. To support persistent connections, the loss
inference mechanism had an upper bound to account for the idle time between retrieving two

successive objects and the sum of idle periods was removed from the total elapsed time.

A third problem exists in relation to determining the throughput of a very small data transfers.
Connections that carry such objects may have all the data transmitted in the first congestion
window, in a single back-to-back train of packets. When this happens, the resulting value for
throughput is actually comparable to the value of the bottleneck bandwidth. To exemplify, the
traces were split into two-packet connections, three-packet connections and at-least-four-packet
connections. The split was based on the results from section 6.4.6, which showed that that the
vast majority of the analysed TCP senders did not have an initial congestion window larger than

three packets. The results are illustrated in Figure 6.16

! Although not an issue for the RYL. analysis, it may be a consistent problem for real packet traces

189

Chapter 6 - Analysis of Intenet traces

two datasets of 20163B/s and with 99.9% confidence limits 13591 B/s and 26734 B/s.

It is difficult to say whether the throughput distribution of 4-or-more-packet connections from
Figure 6.17 should be considered the correct one. The rationale used in this section aimed to
identify transfers with genuine throughput, in the sense that the RTT had a role to play during the
associated TCP connections. Additional analysis, not included here, on a packet-by-packet basis
up to 9 packets showed a similar picture to the one in Figure 6.16, with the 5-, 6-, 7-, 8-, and 9-
or-more-packets connections distribution having similar shape and values with the one for 4-or-
more-packets. However, a 4-packet connection in the case of a sender with an initial window of
3 packets was only delaying the 4" packet from transmission by one RTT, making this case a
particular one as well. Expanding from this, in an ideal world, only connections reaching steady
state, e.g. as defined in [Padhye er al 1998], should be considered for throughput measurement.
But, in the case of the RYL traces, the 2- and 3-packet connections represent a considerable
percentage of the connections, accounting for approximately a third of the total number of
connections (for autumn 2001, 21% of connections were 2-packet connections and another 13%
were 3-packet connections; the spring 2002 set registered even higher figures, with 21% 2-
packet connections and 19% 3-packet connections). The only reason for not resolving this
dispute here is because it can be argued that the two traces used HFTP 1.0 traffic only and
persistent connections introduced by HTTP 1.1 would radically increase the connection size. A
similar study was performed in the backbone traces in section 6.5 where, this time, the clients

were real hosts, running actual web browsers, therefore creating a more credible environment.

6.4.8 Elapsed time

Two time-related variables were extracted from the traces for analysis: the connection time,

indicating the time elapsed between the moments when the first and the last packet were

192

Chapter 6 - Analysis of Internet traces

Figure 6.19 shows that a considerable amount of the retrieved web pages had relatively large
sizes (previous studies, such as [Paxson 1999], considered 100 KB files to be sufficiently large
for demonstrating all aspects of TCP). Also, from the distribution of objects per page, it may be
concluded that full usage of HTTP 1.1 request persistent connections would considerably reduce
the overall time to retrieve the web page. The average figures for Figure 6.19 are 57506 bytes /

page and 9.15 objects / page.

6.5 UoP traces analysis

In the autumn of 2002 an opportunity appeared, thanks to the University of Plymouth (UoP)
Computing Services, to collect data from the connectivity point between the UoP network and
Janet. This allowed a thorough comparison between the distributions obtained for network paths
and TCP connections parameters during the RYL experiments and larger amounts of real traffic
data. The results in this section were produced using traces collected from the UoP backbone
using port mirroring technique on one of the core switches from the UoP network infrastructure.
Five half-hour traces were collected at the end of November 2002, all of them during daytime.
The traces were sanitised using tcpurify and analysed offline similarly to the RYL traces, as
described in 6.1. The data was filtered also using the same techniques as in the RYL case: 1P-
only filter to build a subset for path characteristics (RTT and bandwidth) and IP-and-size filter to
extract a subset for traffic characteristics (loss, congestion window, and throughput values). The
following sections give an overview of the findings, and compare them, where appropriate, with

the RYL results.

195

Chapter 6 - Analysis of Internet traces

introduce a ~10ms RTT delay.
- Hops 15-16, corresponding to the Sprintlink transatlantic segment, with an associated
~70ms delay

- Hops 17-23, corresponding to US carriers, introducing an additional ~20ms delay

The three figures lead to a total approximate RTT detay of 100ms. It is difficult to generalise
from this experiment to the overall results due to other factors that may have influenced the RTT,
such as the time of day — the data was collected during day time over several days. However, it is
believed that US sites are likely to be located in the >100ms RTT interval (the reverse — all the
>100ms sites are located in US - does not apply, because there are likely to be poorly connected

sites in Europe as well).

If the assumption presented in this section is true, then it may be concluded that the RYL
experiments were biased towards US-based websites. However, as seen in Figure 6.20, even real

traces exhibit a large number of connections to sites bearing the same delay characteristics.

The ratio between the number of ack-based and TCP timestamp-based RTT inferences is shown

in Figure 6.23. The shape of the distribution is similar to the ones obtained during the RYL

experiments, as was the average ratio of the distribution - 0.92.

198

Chapter 6 - Analysis of Internet traces

similar to the one obtained during the RYL tests, with approximately 80% of hosts using a 10ms
resolution, while the rest of the TCP implementation in the rest of the servers uses a >100ms
timestamp. The ‘default’ desktop PCs at UoP were running, at the time, Windows 2000, which
does implement TCP timestamps but it does not have them enabled by default [Microsoft 2000].
Customised hosts, typically machines used by researchers, were running, in addition to / instead
of Windows, a flavour of Linux (e.g. the Network Research Group connected to the UoP through
a NAT host, running Smoothwall - a dedicated Linux-derived firewall). Working by elimination,
the web clients which produced the diagram are most likely various flavours of Linux, all using a

BSD-derived TCP implementation

6.5.2 Loss

The rate of data from the backbone capture was, as expected, much higher than during the RYL
experiments. Due to the hardware used (PentiumIl 450MHz machine with off-shelf PCI network
interface card and default Linux installation), the logs had multiple reports of network card
malfunction during the capture (“too much work at interrupt”). This affected the results of the
analysis (such as the number of data packets captured during each connection), but it did not
impact strongly on loss figures. This is because lost packets are identified when the
retransmission occurs, not when there is a gap in the continuity of data transmitted (this also
allows separation between misordering and retransmission); as a result, such gaps are ignored by

the analysis and the loss figures are not affected.

The loss figures were higher in comparison with the RYL results. Cumulative distributions of the

visible, inferred, and avoidable losses are presented below in Figure 6.25

200

Chapter 6 - Analysis of Internet traces

window size and congestion window policy. It must be stressed that both sides make justified
claims, but also may lead to undesired results. Changes in current TCP algorithms, while
improving the evolution of TCP transfers, will alter the self-tuning character of TCP and may
lead to higher overall congestion. On the other side, strict recommendations will keep the current
balance of Internet transfers, but, as shown in this section and the next one, which discusses
congestion window average size, do impact on the performance obtained for current HTTP

traffic.

It was not possible to determine whether the clients connecting to the websites disabled the
HTTP1.1 option' but this is rather unlikely. The most likely conclusions are that either the HTTP
persistent connections functionality is not efficiently / correctly used or that the web servers have
disabled the feature in order to have better connection management. The first category of issues
relates to incorrect implementations and is likely to be eliminated in the future. The second one,
however, relates to configuration of web servers: depending on the loading of the server,
administrators may choose to disable the persistent connection feature in order to reduce the

associated overheads [IBM 2000]

6.5.5 Congestion window

The congestion window analysis produced estimates for 107176 connections within the 1P-and-

size filtered UoP dataset. The cumulative distribution is presented in Figure 6.28.

' This would have required saving the HTTP headers, which may have been seen as breaching the users’ privacy

204

Chapter 6 - Analysis of Internet traces

RTT 1.544-10° 0.15
Weisible ST'B W=)

= 5 =14475Bytes = 10MSS) MSS=1460Bytes 63

The formula is based on the assumption that paths are symmetric; an assumption which does not
always hold, but it is difficult to asses the asymmetry of the two path directions. This is why the
RTT is divided by 2, to account for the fact that half of the RTT is the forward path, used for
data transmission, while the other half is the reverse one, used for acknowledgments. As a result,
windows above 10MSS are more likely to be the result of reaching steady state rather than
genuine congestion window growth in case of a T connection. However, as shown in the
diagram, this was a rare event judging by the fact that 81% of the inferred maximum congestion
windows were lower than the above 10MSS and that the estimate provided used a throughput

much lower than the average one observed in 6.5.3.

6.5.6 Throughput

The throughput filtering used the same criteria as described in 6.4.7. The 2- and 3-Packet
connections were separated from the overall set; the resulting distributions (with and without

these connections) are presented in Figure 6.29.

206

Chapter 6 - Analysis of Internet traces

spent in establishing and closing the connection because clients may be keeping the connection

open to avoid establishing a new one in case other requests are coming.

6.5.8 Issues and limitations

One disadvantage of the study was probably the difference in the sources that produced the three
datasets. Although the two rounds of RYL experiments were grouped, the retrieval ;;rocess was
different between them. Due to the limitations of wger at the time, the first round allowed
retrieval of only HTML objects, without the additional objects (e.g. images), while the program
evolved until the second round and allowed full retrieval of pages. Still, none of the wget
versions included a HTTP v1.1 tool, which would allow persistent connections and, implicitly,
longer TCP transfers. In comparison, the UoP dataset offered the image of the real trafTic, but,

due to privacy implications, did not allow an in-depth study of the HTTP retrievals.

A limitation of the study was also the lack of diversity in the studied environment. All traces
were collected from within the University of Plymouth and, besides a network upgrade that
happened between the two rounds of RYL experiments, the connectivity remained the same
throughout the datasets. This limited the network paths results in the sense that, rather than
analysing a mesh of independent paths, the connections happened between one fixed point,
connected via a single technology, and a variety of remote endpoints. However, this may also be
seen as an advantage because, with the exception of the first round of RYL experiments, the
connectivity characteristics did not appear to affect the results of the measurement (e.g. a low

access bandwidth would have limited the visible spectrum of bottleneck bandwidth).

209

Chapter 6 - Analysis of Internet traces

6.6 Summary

This chapter presented the findings resulting from the analysis of three sets of network traces,
collected from the same end network, the University of Plymouth. The traces were captured
using tcpdump and analysed with an implementation of the method described in Chapter 3. The
traffic for the first two sets of traces, grouped under the term “RYL experiments” was produced
in autumn 2001 and spring 2002 by connecting to random web pages. The third set, referred to as
“UoP dataset”, was traffic produced by real clients and was collected during autumn 2002 from a

UoP backbone node.

The analysis attempted to profile three main issues: the Intermet paths characteristics, the
evolution of TCP connections, and the web page transfer features. The paths characteristics were
defined by the round trip delay (RTT) and bottleneck bandwidth encountered by the analysed
flows. The analysis also looked at packet loss; it was shown that, although related to the path
characteristics, this variable had strong links to the transfer features. The evolution of TCP
connection focused on its two boundaries, the sizes of the initial congestion window and of the
maximum congestion window. Finally, the analysed transfer features were the size of web pages
and the size / efficiency of TCP connections / HTTP retrievals. Throughout the analysis of the
UoP dataset, the results between the two collection methods were compared to determine
whether the findings from the artificial RYL experiments were similar with the results from the

real traffic. The RYL experiments were also analysed in terms of redundancy and variability.

In terms of Internet paths characteristics, the two datascts have shown a very similar image:
fairly low delay, proportionally low standard deviation, and high bandwidth paths. The RTT
average distribution was dominated by a strong increase around the 100ms delay value. It was
shown that one of the main possible causes for this increase could have been the large number of

US-based websites, all incuring a 70-100ms transatlantic and US-continental delay. The
210

Chapter 6 - Analysis of Internet traces

analysis also compared the resolution of ack-inferred vs. TCP options timestamp inferred RTT
averages. It was shown that for most flows (and on average) the TCP options timestamp offers a
higher number of estimates, in spite of the unfavourable position of the capturing device in all
the cases. However, the TCP options timestamp analysis showed that a considerable number of
websites still used a clock with a 100ms resolution. With RTT averages being of comparable

values, this diminishes the benefits provided by TCP timestamp usage.

The bandwidth analysis appeared to be accurate in the vast majority of cases, being able to reveal
several features of the analysed environment. The analysis of the RYL experiments was able to
identify the tenfold network bandwidth upgrade, an event that happened between the two rounds,
revealing a bottleneck distribution asymptotic to the local access speed. Also, the analysis of the
UoP dataset revealed three peaks corresponding to typical connectivity solutions (El, T1, and

10Mb LAN).

The loss analysis focused on three types of loss-related events: visible losses, inferred losses, and
avoidable losses. Overall, the image offered by the traces was a loss-free environment for the
vast majority of the connections, with a considerable number of avoidable losses and very few

genuine timeout events.

The results for web page size, TCP transfer size, and congestion analysis were closely related.
The RYL spring 2002 analysis showed that web pages were fairly large in terms of total size, but
they also included on average a large number of objects to account for that size resulting in
typically short connection sizes. The congestion window analysis has shown that almost all
senders were using 2 MSS or 3 MSS initial congestion windows, allowing faster transfers by

eliminating the first delayed acknowledgment.

211

Chapter 6 - Analysis of Internet traces

The analysis of the transfer speeds focused on throughput, with a brief discussion about
connection duration for the UoP dataset. The results were similar for all traces, with low average
throughput figures, due to the low average values of maximum congestion window transfers

which did not allow for proper usage of bandwidth.

Overall, the results obtained from the RYL experiments scaled well to the backbone study, in
spite of the various limitations. This indicates that such short studies may be used to provide
detailed information about Internet paths and typical web pages. The results of both types of
traces have shown, through the UoP Internet perspective, good path connectivity in terms of

bandwidth, delay, and loss.

In conclusion, the proposed analysis method was successfully used to produce an image of
Internet paths parameters, as observed from a single collection point. The study was performed
on packet traces collected from a single connectivity point and focused exclusively on HTTP
object retrievals. Based on the resulting Internet characteristics, fast and virtually loss-free paths,
coupled with transferred objects features (short-lived TCP connections) several discussions and

recommendations were produced.

In the context of this study, this chapter represented the final stage of monitoring — applying
proposed TCP analysis on real traffic in order to observe current network conditions. The next
step is to try and use the information obtained in order to build the relationship between network
and endpoint conditions on one side and the resulting performance on the other side. The study
of this relationship will be attempted next, with Chapter 7 proposing a novel approach for
tackling the TCP performance modelling, then, throughout Chapter 8, benchmarking the

proposed approach using various sources of traffic.

212

Chapter 7 - TCP performance prediction model based on IDA

213

Chapter 7 - TCP performance prediction model based on IDA

Chapter 7. TCP performance prediction model based on IDA

214

Chapter 7 - TCP performance prediction modei based on IDA

7.1 Introduction

This chapter presents the top level of the research undertaken as part of this programme. The first
stage aimed to identify the state of the art and the associated problems within the performance
analysis area, with a particular focus on monitoring and modelling. The second stage proposed a
novel approach to monitoring, based on elements of existing techniques. The proposed method
used non-intrusive analysis on single-point captured traffic to provide timely results using online
monitoring. As part of this traffic analysis stage, the method was applied to semi-controlled and

real traces in order to build a holistic image of the Internet.

This last stage is concerned with modelling the performance of TCP transfers. The proposed
model aims to overcome the lack of robustness from current mathematical approaches but also to
produce a higher accuracy when predicting performance. This first section of this chapter will
highlight the limitations of current methods in terms of both robustness and accuracy. The
second section will then introduce a knowledge-based approach that aims to provide better
results to performance modelling. The introduction of the tool will link the limitations of a
mathematical approach with the capability of knowledge-based techniques to learn from past

examples and will present previous successes of such methods in the area of networking.

7.2 Limitations of existing mathematical models

Section 2.5 presented the attempts made to date to produce a comprehensive and robust model
that describes the evolution and, implicitly, the performance of a TCP connection. In order to fit
their proposed models to pseudo-real clients / environments, the theories described are based on

several simplifications:

215

Chapter 7 - TCP performance prediction model based on IDA

1.

The clients have all the same behaviour / use the same implementation (e.g. TCPReno),

either of them being fully known

This assumption provides a precise evolution of the connection, due to the predefined
characteristics of the clients. Unfortunately, this assumption does not apply to real-world
cases, where the TCP senders belong to different implementations, running under various
operating systems. Because of this, such models are bound to fail when confronted with a
different implementation. The task of determining the implementation itself is cumbersome,
as shown in [Paxson 1997b], but necessary, if an accurate model is desired. In regards to the
differences between various implementations, in [Popescu and Shankar, 1999] the authors,
after profiling 3 TCP implementations, all allegedly based on TCPReno (NetBSD 1.2,
Windows 4.0 SP3, and SunOS 5.5), remarked “the differences between these [the studied]
profiles are so large that we wonder whether the overall performance in the Internet can be

improved merely by just implementing TCP more carefully”

. The test environments are either controlled or semi-controlled.

This assumption relates somewhat to the first one. The validation data for the currently
proposed models comes mainly from two sources: synthetic connections and controlled
connections. The first category encompasses connections produced typically using NS
(Network Simulator) [NS 2003], the network simulator described and used as part of the
validation in Chapter 5. The second category is represented by connections going through
real networks, but under controlled conditions: both of the ends are known and the amount of
data transferred is predefined and typically large. A good example for this type of

experiments is series run in [Padhye er al 1998] to validate the proposed model.

216

Chapter 7 - TCP performance prediction model based on IDA

Both of the above mentioned solutions highlight different aspects of the real network, but are
they sufficient? A good start of the discussion regarding the appropriateness of NS, or, in
general, simulation environments, as a reliable TCP investigation tool is made in [Allman and
Faik, 1999). As the scope of the study is to propose a methodology for analysing the
performance of real TCP, it highlights all the pluses and minuses of simulation. It is true, also
according to the above-mentioned study, that NS proved to be the favourite environment for
researchers to test their theories as it offers a wide range of scenarios. Due to its synthetic
character, it may reproduce or generate any network conditions or generate environments which
would be very expensive, money- and time-wise, to obtain in reality. Nevertheless, aside from all
these advantages, it is just a simulator. It offers flexibility, as the parameters of the endpoints can

be modified as desired, but its behaviour differs from the real case in several ways:

— The one-way TCP clients available under NS are based on the Tahoe, Reno, NewReno,
or TCP Vegas specification; a better choice, especially when trying to reproduce real
transfers, is the two-way (FullTCP) TCP client from NS, which is based on NewReno
[NS 2003]. All these clients are fully compliant with the standards; there is nothing
wrong with this, from the point of view of testing TCP implementations but, as observed
in [Popescu and Shankar, 1999] or [Floyd and Padhye 2001] the real clients vary their
behaviour from operating system to operating system, and even from version to version,
aiming towards pure specifications (like TCPReno), but never converging. In fact,
[Paxson et al 1999] even standardised the errors likely to appear in implementations,
while [Floyd and Fall, 1999] warned about the negative effects that such implementations
may have;

— Endpoints without processing delays. The endpoints lack processing delays due to e.g.
high load, which eliminates some of the timing variations;

— Limited environment. The topologies generated with ns are basically limited only by the

217

Chapter 7 - TCP performance prediction model based on IDA

software constraints. Within this project, topologies with up to hundreds of hosts were
created, in order to provide a near-reality effect. This is far better than configurations or
topologies that can be built using real testbeds. Nevertheless, as argued in [Paxson
1997d], the variety of conditions on the Internet and their variations can rise above any
type of simulation. On top of this, the limited topologies reflect also in the traffic load:
what is the correct size of the routers buffers for a good replication of the reality: small
buffers to produce high losses, ruining the overall performance; large buffers that never
fill, therefore there is no loss in the simulated network, but the delay is unrealistically

high.

Having discussed the above, it is very convenient to validate the TCP model, built on the TCP
Reno specification on a simulation environment that runs exactly the same implementation. The
remark probably sounds a bit harsh; the aim is not to suggest that the authors biased the
validation conditions to be in agreement with their proposed models, but to highlight their

limitations.

To overcome the limitations due to simulation environments, recent models, such as [Padhye e/
al 1998), included a certain degree of validation in semi-controlled environments: a number of
computers, running various operating systems, exchanged large files between them. In this case,
while the degree of realism is high in regards to the network, the experiments were rather far
from reality in regards of the dimension of the transferred files. As was expanded in Chapter 6,
the average dimension of the files transferred within HTTP transactions is around 10-20KB,
which is several degrees smaller than the transferred data within these validation experiments
(each TCP connection lasting for 100 seconds). The reason behind this is the actual purpose of
the models. As explained in Chapter 2, the declared aim of the above-mentioned study, as well as

[Ott er al 1996] was not to determine the overall performance of the download, but to model the

218

Chapter 7 - TCP performance prediction model based on IDA

stationary behaviour of the congestion avoidance algorithm. Nevertheless, they are currently the
landmark papers for defining TCP performance based on the network parameters. Later on, with
the extensions brought by his study [Cardwell et al 2000}, Cardwell attempted the closest
experiment to uncontrolled environments: connections to a mixture of popular websites and
random web pages. Unfortunately, it is precisely the results of these experiments that he did not

detail in his paper, for reasons which are unknown.

Summarising the above observations, there is a clear tendency of the mathematical models to
limit to the theoretical / simulated situations. The reasons behind this are multiple; they relate to
the limitations of the models and they were discussed in some detail in this section, as well as in

the previous one:

1. The models are less aimed at performance, but at congestion window evolution in time,
in particular in the stationary stage.

2. The behaviour modelled is not likely to appear in real traffic conditions.

3. The models are heavily relying on knowledge of the TCP behaviour of the endpoints; in
fact they use an idealised TCP implementation (the TCPReno specification) as a starting

point for the models.

7.3 Why use [DA?

This project aims to overcome the TCP modelling limitations listed in previous section by
proposing a novel prediction model, based on intelligent data analysis (IDA) techniques. The
approach used aims o bridge the relationship between network and transfer conditions on one
side and the resulting performance on the other. After judging the features that range beyond

mathematical models, such as unknown client behaviour and uncertain network events, this

219

Chapter 7 - TCP performance prediction model based on IDA

approach was built on Intelligent Data Analysis (IDA). IDA, also known as Knowledge
Discovery in Databases (KDD) [Fayyad er al, 1996), is a process of extracting features from raw
data, encompassing techniques for preparing, transforming the data, extracting the features then

analysing them.

Current models all use a theory-to-reality approach to define the TCP behaviour. This way of
thinking proved beneficial in terms of understanding and following the TCP evolution in time.
One of the successful outputs resulted from the comparison between real clients behaviour and
the idealised/modelled behaviour, which allowed possible errors / problems in the
implementation details to be identified. They also led to proposing improvements, such as
emerging TCP improvements or new TCP algorithms and implementations, all aiming to be
friendlier to the other traffic and, implicitly, networking environment (i.e. less aggressive, more
lenient, optimum for the traffic conditions). But, behind all these, remained the reality: a wide
range of unknown TCP clients, short transfers, and Internet users interested in the throughput
values resulting from these conditions. All these were less of a concern for the conclusions of the
existing models. This is why, within this project, the proposed approach takes a different view of

performance when compared to the mathematical based models:

Analyse the performance of a comprehensive range of current traffic from real networks and,
based on this knowledge, predict the performance of TCP traffic for any combination of network

conditions within the known scope.

7.3.1 The structure of IDA

This section describes the typical stages of an IDA procedure. The purpose of this description is

to have a generic view of the process, a view that will be customised for the requirements of this

220

Chapter 7 - TCP performance prediction model based on IDA

research programme in the next section. The model used is the one proposed in [Fayyad ef al,

1996], displayed below in Figure 7.1.

Interpretation

Selection e~ Preprocessing fe

Transformation [«- Data mining ¢

*
Target Preprocessed ﬂ_ Transformed u Patterns
dataset dataset dataset

Data Knowledge

Legend:

—— Data flow
=== Qperations to be applied to data

____________ + Feedback flow

Figure 7.1 - IDA processing diagram — basic representation (adapted from [Fayyad et al,

1996])

The IDA process, as described in [Fayyad er a/, 1996], includes 9 stages:

1. Build prior knowledge of the domain to study

2. Produce a target (raw) dataset that will be used as the basis for analysis

3. Pre-process raw data: remove noise

4. Project data onto the problem — identify the relevant variables

5. ldentify the actual process, such as classification, regression, clustering

6. ldentify the optimum analysis to use — determine the best combinations of analysis
methods and input/output parameters

7. Apply the data mining itself — perform the pattern/knowledge discovery

8. Interpret the knowledge.

221

Chapter 7 - TCP performance prediction model based on IDA

The process follows the successive transformations applied in order to extract useful knowledge
from raw information. Typically, from all 8 steps, the focus falls on the middle stages (5-7), with
less attention to the pre-processing and post-processing stages. However, as will be shown in
section 7.5.1, preparing data for the analysis represents a considerable part of the process, as

applied to this study.

7.3.2 IDA for this project

The IDA concept uses a very generic approach to data analysis. It aims to analyse raw data and
to extract patterns and knowledge with a degree of novelty and/or interestingness [Silberschatz
and Tuzhilin 1995]. The applications of the process vary from classification of data into known
categories to clustering data into previously unknown categories. In this case the IDA model was
adapted for the needs of this study, resulting in the schematic diagram from Figure 7.2. The

meaning of the processing blocks from the diagram below will be detailed in the reminder of this

section.
r Y
: Performance
Raw packets Network and transfer parameters estimate
v E L
Network —» TCP. ¥l Pre-processing > l?a.ta POSt. > Accuracy
traffic analysis mining processing ,
A
A i A |
] e e e I _________ J
Legend

Information flow
——————— Feedback flow

.......... Data content

Figure 7.2 - IDA processing diagram — basic representation

222

Chapter 7 - TCP performance prediction model based on IDA

The input to the process is the Nerwork traffic, representing the raw data captured from the
headers of the packets. The capturing can be done for either live processing (where data is fed to
the IDA right away) or offline processing — the content of the packets which is stored in a file

and analysed at a later time by the IDA.

The raw header content is unusable for data mining. The next step is to acquire knowledge and
transform data in a meaningful format, using TCP analysis. This was achieved through the
research associated with network monitoring, Chapter 3, which provided the mechanisms to
understand and interpret the data exchange within TCP connections (section 3.4). The process
also requires targeting the relevant data and variables: having determined the domain knowledge
(TCP behaviour), it must be decided what data would be useful to use in the analysis. At this
step, described in section 2.5.2, the actual variables that will constitute the input of the analysis

have to be chosen.

The next step, Pre-processing, is essential for the performance of the entire algorithm: the
parameters obtained from the raw input during the previous step must be put in a form suitable
for the data-mining algorithm. It is at this stage where data may be transformed, filtered, scaled
in order to fit the chosen algorithm. Due to the various steps involved in this task, details about

the actual processing are provided separately in section 7.5.1.

Data mining is, aside from highlighting the importance of data pre- and post processing, the core
of the IDA process. The aim of this stage is o determine a relationship between different
instances of the input parameters and the variable that is predicted and classified. The methods
used within this project are detailed in section 7.5.2. The process includes two sub-stages:
training and testing. During the training phase, the IDA does not generate any output, but only

produces a set of rules / a function to map the TCP behaviour onto resulting performance based

223

Chapter 7 - TCP performance prediction model based on IDA

on the (filtered) Nenvork and transfer parameters samples that it is presented with. Following
training, in the test phase the data mining engine is presented with unseen samples. The set of
rules and functions established in the training phase is then used to provide at the output an
estimated value, the Performance estimate. Network and transfer parameters represents an
instance of the set of variables that define a connection (network conditions, endpoint types, and
file size). They are extracted using the proposed monitoring method from a network trace, in the

same way as it happens during the training phase.

The output of the data mining algorithm may require further processing in order to interpret its
significance. It is the combined task of the data mining output and the Post processing block to

perform this further analysis in order to evaluate the success of the method.

As shown in Figure 7.2, the process has, aside from the forward flow of data, a feedback flow,
where the resulting accuracy is used as an indicator for the efficiency of each step involved. This
reverse flow allows identification of sources of error and, if possible, remedies them. It is worth

noting that this is a logical flow and requires extemal interaction.

7.4 Why use a neural networks approach?

As explained in the previous section, the prediction model proposed as part of this study aims to
approach the relationship between the network and connection characteristics and the resulting
connection duration from a different perspective: predict the performance based on prior
knowledge, rather than attempt to model the evolution of the connection. The rationale behind
this change is supported by the variety of uncertainty sources when studying the TCP data
transfer: the variations between the mathematical model and the existing implementations, the

differences between actual network parameters and their values, as inferred by the TCP

224

Chapter 7 - TCP performance prediction model based on IDA

endpoints, or the preferred steady-state behaviour of the model versus the typical short-lived real

connections.

Due to the nature of this approach and the uncertainty sources, the model is required to learn the
relationship between TCP performance and its influencing factors. The closest concept to match
this task is the artificial neural network, which is designed specifically to acquire knowledge
from the studied environment via a learning process and to store this knowledge in the

interneuron connection strengths [Aleksander and Morton 1990].

The neural network consists of a number of neurons, connected via synaptic weights in a
structured manner. The model of a neuron, as presented in [Haykin 1998], is shown in Figure

7.3:

Inputs Induced

Bias local field

X1

Xz Output
Activation
function L 5 Y
o(x)

Figure 7.3 The model of a neuron (based on [Haykin 1998])

The neuron has n of inputs, x;,i= I,_n, added into a weighted sum - v, the induced local field of

the neuron:

225

Chapter 7 - TCP performance prediction model based on [DA

n
v= 3 wx;+b 7.1

The role of the bias is to adjust the input of the activation function. It may be modelled through

an input v that is added to the sum via the weight wo=b.

The induced local field is then applied to an activation function, which varies from the threshold
(Heaviside) function, employed in neural networks used for binary decisions, to the sigmoid

function:

(p(v): l_w 7.2
l+e

where a is the slope of the function. The sigmoid function is preferred as activation function

particularly when the neural network is required to map onto a continuous domain.

Neural networks approaches have been extensively used in recent years in the networking area.
A few examples of successful applications were obtained particularly regarding network errors
classification and decision making. Since early 1990s, [Hiramatsu 1990], {Cheng and Chang
1996], [Catania et al 1996], until recently [Ramaswamy and Gburzynski 1999}, neural networks
were proposed as an alternative to improve QoS control in ATM networks. The studies, although
performed in slightly different area of networking, have shown that a knowledge-based approach
may lead to better results when faced with the variable nature of traffic, in comparison with

statistical approaches.

Based on the above-mentioned studies, neural network-based solutions are likely to overcome

typical limitations of the mathematical approaches when dealing with complex relationships
226

Chapter 7 - TCP performance prediction model based on IDA

between the influencing variables. Within this project, it is expected that the neural network
based TCP model will provide better accuracy than the existing mathematical approach, and
also, due to its learning capability, will perform better in terms of robustness and flexibility.
Robustness is probably the weakest point of all the previous models: they are only able to cope
with certain types of TCP endpoints / file sizes / traffic conditions. An ideal model should be
able to cope with any combination of these characteristics. The flexibility will prove to be

advantageous when the model will be applied on furure implementations of TCP.

It is virtually impossible, due to the diversity of possible combinations, to address these two
issues within a model by using a mathematical approach. To build a TCP model using
mathematical reasoning would require some sort of consistency throughout the range of TCP
endpoints and network conditions, consistency which at least currently does not exist. This is, in
fact, the fundamental distinction between mathematical models and the performance prediction
model proposed in this project: use prior knowledge to predict overall performance instead of

trying to determine the evolution of the TCP connection.

It must be stressed that the primary aim of the proposed model is not to compete with the
mathematical models, but to cover a different area of TCP performance analysis by using a
different approach. The proposed solution does not provide any information about the evolution
of a connection in time, but only about the overall performance (in terms of connection duration)

that is likely to be achieved, based on the network and endpoint conditions.

The next section will detail the Pre-processing, Data Mining, and Post processing blocks of the

[DA process, as applied within this research programme.

227

Chapter 7 - TCP performance prediction model based on IDA

7.5 Applying IDA to TCP performance modelling

7.5.1 Data collection and pre-processing

The first two stages of the 1DA process are essential for the success of the IDA approach.
Previous sections already described the various sources and methodologies for obtaining the raw
data, ranging from synthetic to real network traces, to use for training / testing the proposed
model. This section will focus on how this data is pre-processed before entering in the prediction

model.

The first issue is what data should be fed into the data mining algorithm. From the studies that
developed mathematical TCP models (see section 2.5) and the overall behaviour of TCP clients,
it is clear that network parameters, as seen by the endpoint, have a vital impact on the
performance of the transfer. In the case of this study, the data collection provides a network
trace, which is only a list of the captured packets with their headers; it does not provide any
information about the network parameters or status. This is where the TCP analyser, described in
Chapter 3, comes into place to interpret the connections within the raw trace and infer the
network conditions that were in place during the time of the transfer. The output of the TCP
analysis includes the average values for delay (round trip time) and loss (probability, measured

in lost data packets per total number of packets transmitted).

A second category of parameters that affect the throughput are connection parameters: the initial
and maximum values for congestion window and the file size. Their usage as inputs may be seen
as a limiting factor for the robustness of the model (aimed to predict performance only on
network parameters). However, due to the major impact they have on the connection evolution, it

is impossible to obtain an accurate prediction without including them in the analysis.

228

Chapter 7 - TCP performance prediction model based on IDA

Finally, a third set of parameters completes the picture: aside from the network status, which
models the behaviour of TCP, and the amount of information transmitted, which allows TCP to
adjust properly to the network conditions, the performance depends on the behaviour of the
endpoints. This project did not include in its scope to profile the behaviour of the TCP senders or
receivers. However, it provided an easier solution to retrieve the sender information for HTTP
transfers by extracting relevant fields from the HTTP headers, as presented in section 2.5.2. The
main problem encountered while extracting the sender information was how to map it onto a
numerical variable. The issues come from the differences between different implementations:
there is no better/worse relationship between them (e.g. a Linux-based TCP client, inferred from
an Apache Linux server tag, is not better or worse than a Windows-based TCP client, inferred
from an IIS tag, they are simply different). Further, different versions of the same
implementation have different characteristics (for example, IIS 4 is likely to run on a Windows
NT4 server, while an 11S 5 server will be running most likely on a Windows 2000 / XP server,

resulting in differences between the TCP implementations).

Considering the above-listed factors, but also the inputs used by the mathematical models
described in section 2.5, two types of models were proposed: one for loss-free connections and

one for connections that encountered losses.

Initial congestion

window
Model for
Round trip time ——» connection ————» Connection duration
without losses (estimate)

Data object size ——— |

Figure 7.4 - Block diagram of the TCP model for connections without losses

As shown in Figure 7.4, the TCP model used for connections without losses takes three inputs
229

Chapter 7 - TCP performance prediction model based on IDA

for each connection: the initial congestion window, the average round trip time, and the size of
the object to be transferred. Using these inputs, the model produces a duration estimate for that

particular connection.

Initial congestion
window

Round trip time ————

Model for
Data object size —— connection |, Connection duration
Loss rate
Timeout ——P

Figure 7.5 - Block diagram of the TCP model for connections with losses.

The TCP model for connections that encountered losses, as presented in Figure 7.5, uses the
three inputs from the no-loss model and two additional ones (loss rate and timeout), to account

for the behaviour of the TCP client when packet loss occurs.

The second part of the data pre-processing relates to filtering. Ideally, both the input variables
and the output predicted performance should be uniformly distributed in the sample space; in the
real case, for the environments studied, at least for the delay and throughput, the distribution is
concentrated in a narrow spectrum but is long-tailed, as was illustrated by the analysis performed

in Chapter 6. The problems with such distributions are two-fold:

- Normalisation. The neural network requires the input and output vaiues to be normalised
to the interval [0.0, 1.0]. As a result, the larger the interval, the lower the accuracy
relative to the overall average value of the throughput. In order to reduce the errors

introduced by this issue, four different methods of scaling were tested to reach the

230

Chapter 7 - TCP performance prediction model based on IDA

optimum accuracy. The results of the tests are presented in section 8.5.3.

- Training. The neural network requires sufficient values to be trained throughout the
definition domain of the values; if there is insufTicient data in a specific sub-interval of
this domain, the neural network will perform poorly or, at least, will be biased by the rest

of the domain.

To limit the effect of these two issues, the output data from the TCP analysis was filtered to

remove the extremities of the distribution. Two types of filtering were applied:

- Simple — remove only the extreme values for the output variable (throughput)
- Comprehensive — remove the extreme values for throughput ard the input variables

(delay, loss, congestion window)

The second filter was obviously more aggressive, as it removed the extreme values from all
domains, not only the output one. In the end, a biased version of this filter was used: eliminate
the extreme 1% from the input variables domains and the extreme 5% of the output variables
domains. It is worth mentioning that the filters were not additive, but simultaneous — the filter for
each variable was applied to the original dataset, not on the remaining data. All these measures

aimed to balance between excessive removal of data and reduction of the prediction errors.

7.5.2 Data analysis — procedure and algorithms

The crucial problem within the data mining step is deciding what method to use. In informal
discussions regarding IDA, there are three main issues arising: ‘use good data’, ‘understand your
problem’, and ‘explain your results’. From the three, the second step is the one that is reflected in

the data mining choice: the algorithm itself is nothing but number crunching; what is important is

231

Chapter 7 - TCP performance prediction model based on IDA

to ‘understand the problem’, to clarify what results are expected at the output of the algorithm.

As shown in Figure 7.4 and Figure 7.5, two separate sets of IDA analysis engines were used,
depending on whether the connections encountered any packet loss or not. In spite of the
differences between the number of inputs and, implicitly, the structure of the chosen data
analysis method, the main characteristics of the two associated data sets remained largely the

sameg:

- Small number of inputs. The number of inputs was either 3 or 5, depending whether loss
was modelled or not

- Large number of samples. Aside from a notable exception, lack of connections with loss,
the number of collections analysed was fairly large — at least thousands of samples. As
will be shown in Chapter 8, this also had an impact on the way data was split into training

and a testing subset.

The starting point was to compare the learning capability of a neural network with the
relationship between the performance of TCP and its influencing parameters. Neural networks
may be employed to reproduce this relationship by modelling a function that bridges between the
variations of the output (TCP throughput) and the inputs that caused it (network and transfer
parameters). This is due to the fact that function approximation is one of the six typical learning
tasks for Artificial Neural Networks (ANNs) (the others being pattern association, pattern
recognition, control, filtering, and beamforming) [Haykin 1999]. Some of these tasks have

already proven the ANN’s superiority in the networking area, as indicated in section 7.4.

One main IDA toolset was identified when approaching the task of deciding for a processing

technique: SNNS, the Stuttgart Neural Network Simulator (SNNS) [SNNS 2003], a generic

232

Chapter 7 - TCP performance prediction model based on IDA

neural network engine that includes a comprehensive list of neural network algorithms to use for
specific prediction / classification tasks. SNNS was preferred as the environment to test the
efficiency of the neural network due to its complexity and maturity. The product began its
development in the early 90s [Zell er a/ 1994]; at the time when it was used within this project, it
included all major types of neural networks and came with a powerful environment that allows
loading/training/testing/accuracy evaluation of a neural network on a dataset and with a full GUI
to perform all these tasks. The project had a limited need for the GUI support, as it used
batchman, the SNNS scripting environment to automate the testing/training of neural networks;
in fact, the entire data processing, from raw form to final post-processing output, was built

within a script, included in Appendix C.

The accuracy of various neural networks was tested intensively for the available datasets. The
evaluation included analysis to determine the optimum for: the split for training/testing subsets,
the algorithm and type of network to use, and, finally, the training parameters for that specific

algorithm.

The aim of this section is only to describe the steps involved in the IDA processing model. This
is due to the fact that, although the actual processing is performed using known techniques and
available software packages, the approach itself, i.e. building a TCP performance model using
IDA, is novel and so is the entire process involved (extraction and preparation of input
parameters and output variable, the analysis, and post-processing of the results). A detailed
description of the experiments performed and their results will be given later on in Chapter 8 as
part of the validation tests, together with an accuracy comparison between the proposed IDA-

based model and the existing mathematical models.

233

Chapter 7 - TCP performance prediction model based on IDA

7.5.3 Interpretation of the results

In both of the cases, JGDM and SNNS, the output of the analysis method was improper or
incomplete for the proposed method. This is why it was preferred to save the evaluation results
in a rather raw form in each case and in the post-processing phase to apply a different analysis on

the results.

First, for both of the methods used, the visual (graphical) comparison was used to determine how

well the predicted values follow the real values. This involved plotting each of the n real values

s; versus the predicted values p;: f(s;)=p;.i =1,n. In the ideal case, 100% accurate

prediction, the result is the identity function, f(x)=x. Although convenient, the graphical method
cannot be used for analytical purposes and the accuracy has to be evaluated using mathematical

tests, relating to the relative errors between the above-mentioned s; and p;.

In the JGDM case, due to the integration of the toolset, the overall classification result had the
same format for all the algorithms: indicating the percentage of correct classification. This type
of output is exactly what is required by a classification method: how many samples were
correctly classified and how many were erroneously classified. What this overall result does not
tell is the error, the ‘distance’ between the real value and the predicted one. This is because the
classification algorithms used were designed for unrelated output variables (e.g. classifying fruits
in apples, pears, plums, etc) and there is no metric to uniformly describe their domain. This is
why, during the post processing phase, the comprehensive format was preferred, which provided
information about how the variables were classified and it consists of a square table that has on

columns the real values of the output variable and on rows the classes as resulting from the

234

Chapter 7 - TCP performance prediction model based on IDA

classification method'.

The SNNS toolset included a much more convenient facility: output the predicted value for each
data sample tested. This allows a simpler comparison between the real values and the predicted
ones to obtain the average relative error. However, the relative error is not relevant for the
accuracy of the prediction if the domain of the variable is very narrow (which is the case for
some of the throughput values in the validation datasets from Chapter 5), because the prediction
domain will be similar with the real domain. This is why, aside from the relative error, the
accuracy of the prediction was evaluated using the correlation r between the predicted values and

the real ones.

Summarising, three indicators were used to determine the accuracy of the SNNS prediction:

- graphical, very good but human-observation based, therefore unusable for analysis;

- average relative error, to determine whether or not the predicted values are similar with
the real values;

- correlation factor, to eliminate the inaccurate prediction cases undetectable through

relative error due to narrow domains.

' The actual table representation was used also for graphical estimation of the resuiting error of the algorithm. The
narrower and closer to the top-lefi-bottom-right diagonal is the area of non-zero values, the more accurate the
algerithm is.

235

Chapter 7 - TCP performance prediction model based on IDA

7.6 Implementation

An actual implementation of the IDA process was produced only for the SNNS-based analysis.
As was mentioned before, the classification approach did not lead to satisfactory outcomes,
therefore the JGDM toolset was used while experimenting rather than during consolidation of the

results. The aim of this section is to overview the components of the SNNS-based processing.

The input used for the processing was the raw network traces, captured with fcpdump. The actual
process of collecting the traces and the various sources of traffic used were detailed in Chapter 5

and Chapter 6.

The implementation followed the three stages of IDA processing:

I. Pre-processing.
This stage included scripts and programs to perform the required tasks to produce a database
of TCP connection samples. Each sample included network performance and transfer
parameters, as well as the resulting duration of the data transfer, recorded for a specific
connection. The analysis of the network trace and the parameter extraction were performed
using the method described in section 3.4. After obtaining a raw database of samples, further

processing was required to provide an optimum dataset for training and testing:

- Connection filtering - remove reset/unfinished connections or very short lived
connections.

- Parameter filtering — remove samples with parameters that take values considered
outliers.

- Randomising — in order to avoid estimation errors due to different domains of definition

for parameters that varied in time.

236

Chapter 7 - TCP performance prediction model based on IDA

- Scaling — normalise the dataset in order to make it appropriate for the data mining engine
- Splitting and formatting — separate the dataset into a testing subset and a training subset;

produce a format compatible with the method used for analysis.

2. Processing — included scripts to communicate with barchman, the SNNS programming

environment

- Train the neural network with the training dataset, using parameters defined by the user.

- Test the neural network with the testing dataset after each n training epochs, as defined
by the user.

- Provide mechanisms for early stopping. The scripts allowed various training process

scenarios:

- Exhaustive training — do not apply any early stopping mechanisms

- Early stopping using a single Mean Square Error (MSE) / correlation factor test —
stop the training if the resulting MSE / correlation factor is below a certain value.

- Early stopping using multiple MSE /correlation factor tests — stop the training if the

resulting MSE /correlation factor is below a certain value for x successive tests

3. Post-processing — included scripts to evaluate the efficiency of the prediction

- Extract MSE and calculate the correlation factor

- Plot the prediction graph

All the programming was produced under Linux, using shell, tcl, and awk scripting language.

The content of the scripts and further functionality details are given in Appendix C. The

237

Chapter 7 - TCP performance prediction model based on IDA

results of applying the neural networks on various types of data will be presented in Chapter

8.

7.7 Summary

This chapter began by listing the limitations of current TCP modelling efforts. It was observed
that existing mathematical models, while accurately describing the behaviour of TCP transfers,
may not map correctly in the case of real network conditions and traffic. As a result, Intelligent
Data Analysis has been developed as a valid alternative for estimating TCP performance based

on network and transfer parameters.

The chapter described the content of a generic IDA process and applied that description onto the
case of TCP performance prediction, as used within this project. Four main stages were
identified within the IDA process, as applied to this project: data collection, connection analysis

and pre-processing, data mining, and post processing.

Chapter 8 will describe the results of the validation tests of the IDA approach, using all available

sources of data, processed using the implementation described in this chapter.

238

Chapter 8 - Validation of TCP performance prediction method

Chapter 8. Validation of TCP performance prediction method

239

Chapter 8 - Validation of TCP performance prediction method

8.1 Obstacles

The development of an accurate prediction method has to consider several possible obstacles: the
lack of useful / correct network data/traces, the filtering criteria that should be in place when
processing the connection data, the accuracy of the TCP analysis method itself, and the

evaluation of its inherent accuracy.

The amount of (relevant) data is critical to ensure the success of an intelligent-based prediction
method as the function that approximates the output is based on the available data. In the case of
this project, the data consisted of raw network packets, captured from an aggregation point. The
best source of such data in terms of generalisation is represented by publicly available raw
network trace archives, with the best example being the traces maintained by NLANR.
Unfortunately, since privacy laws such as the Data Protection Act were established, capturing
raw network traffic has been regarded as a breach of the user’s privacy, unless anonymised and
sanitised. In order to obey the privacy requirements, research projects that dealt with data
gathering had to revise their policy of distributing data. Three solutions were found: stop making
publicly available network traces that captured uncontrolled traffic', as happened in the case of
LBNL; switch to infrastructure-based measurements [AMP 2003]; reduce the amount of
information contained in the raw traces [PMA 2003]. The third alternative, while being a
theoretically partially viable option, (still unsuitable at its best for the full proposed TCP
analysis?) was only very recently (e.g. 2001-2002 for NLANR) extended towards formats

suitable for TCP analysis. Older traces, due to collection characteristics such as separate

' This category does not include measurement infrastructures, as they generate synthetic connections (e.g. fixed
sized objects). Traces from such experiments reflect accurately the network characteristics, but do not provide an
accurate image of the typical end-user traffic.

2 The typical capture includes a fixed header, with the largest available size including only the 40 bytes on top of the
link layer (enough for minimum IP and TCP headers). This eliminates any scope for TCP timestamp-based analysis.

240

Chapter 8 - Validation of TCP performance prediction method

collection and anonymisation for inbound and outbound traffic, were appropriate only for

workload analysis.

The remaining option was to analyse traces collected from the NRG/UoP backbone. The
advantage in this case was having full control over the amount of information that has to be
removed, without breaching the privacy laws, via the use of software tools such as tcpurify or
tcpdpriv that allow trace sanitisation without removing the options carried by the TCP header,
such as the TCP timestamp options) with the downside of analysing only a smaller network

environment (but, still, a large amount of traffic at it became apparent).

The dataset was passed through pre-processing in order to remove outliers, in two phases: first
was the removing of the connections containing outliers of the variable to be predicted, then the
connections including outliers of any of the inputs, as explained in Chapter 7. The boundaries for
two sets of filters were set at 5% (i.e. keep the 5%-95% interval) for the predicted variable and

1% (i.e. keep the 1%-99% interval) for each of the attributes.

8.2 Data analysis

One of the main objectives of the TCP analysis was to produce a tool with online capabilities,
which would be able to study in real-time the TCP connections and output the results. This may
secem to contradict the prediction part of the project, which used throughout the experiments
offline analysis. The decision was taken due to two factors. First, the volume of data
generated/collected in real time was not large enough to stress the monitoring tool; only towards
the end, during capture of the backbone traces, wouild the volume of data have been sufficiently
high to test the analysis implementation. Second, both the TCP analysis method and the

prediction method required repeatable analysis during both development and finalising stages.

241

Chapter 8 - Validation of TCP performance prediction method

The TCP method required numerous adjustments, most of them based on visual analysis of the
traces (e.g. to observe the evolution of the congestion window), while the neural network
required time for training using the connection samples. In spite of this approach, offline analysis
fulfilled also the stress requirements, as the traces, which were collected over longer or shorter

periods of time, were streamed to the analysis program.

The training/testing data came from three main sources: NS simulations, the RYL experiments
and, as an opportunity appeared towards the end of the project, the UoP backbone traces. Each
dataset was split into two subsets, based on the evolution of the data transfer, with one dataset
including only connections without losses, while the other consisted of connections with losses.
The two subsets differed not only in complexity of their evolution in time (connections without
losses do not vary the policy of the congestion window increase) but also in the number of

inputs.

The transfer during connections without losses is affected only by the congestion window
characteristics (initial value), the amount of data to transfer, and the round trip delay between the
two endpoints. As a result, the model for these connections used only three inputs: the amount of
data to transfer, the initial value of the congestion window (both in bytes), and the estimated
round trip delay (in milliseconds). Initially, the maximum value of congestion window was
added to the list, to consider the case when the congestion window increase is limited by the
receciver advertised window. However, the connection analysis revealed that this did not happen
throughout any of the datasets, due to the value of the advertised window itself (32120 bytes,
equivalent to 22 full 1460-byte packets)' and the small amount of data transmitted during each

connection (which did not allow the congestion window to increase too much). Some of the

242

Chapter 8 - Validation of TCP performance prediction method

receivers from the UoP dataset had implemented, however, a window scale mechanism

[Jacobson er al 1992] to avoid such limitations.

On the other hand, connections with losses had several loss characteristics that may have been
added to the list of parameters: the fast retransmit loss rate, the timeout loss rate, and the first
occurrence of loss. However, as shown throughout section 2.5, mathematical models require
only the loss rate and the (estimated) timeout in order to predict the loss events that happen
during a connection. In addition, it would be impossible to predict, from a total loss rate, which
proportion of it will have secondary effects such as timeout events. To make the neural network
model comparable with the mathematical one and, more importantly, to allow its usage on
generic loss rates, the list of loss-related parameters included only two variables: the total loss
rate and the estimated timeout. The total loss rate was a sum of the visible and inferred fast
retransmissions and inferred timeouts. The estimated timeout period was almost impossible to
extract due to reasons explained in section 3.5.2. It was instead replaced with the total duration
of timeouts; this had a small impact on the mathematical model too, as the E[Z™] term from
equation 2.9 had to be replaced with the measured total timeout, as produced by the TCP
analysis. The mathematical model of connections with losses was different in the sense that it
used segments rather than bytes to describe the amount of data transferred. These two issues led
to the following list of inputs for the connections with losses: the amount of data to transfer
and the size of the initial congestion window w; (both measured in segments), the round trip
delay RTT and the estimated timeout 75 (measured in seconds), and the loss rate (ratio between

the number of retransmitted bytes and the number of useful data bytes transmitted)

! This may appear contradictory to Balakrishan’s findings from [Balakrishan er af 1997], where he observed that in
14% of observed connections the congestion window reached the level of the receiver advertised window. However,
as observed by the author, the data collection was server-based, resulting in a variety of remote receivers with some
of them having maximum advertised windows as low as 4KB.

243

Chapter 8 - Validation of TCP performance prediction method

These differences imposed the development of two individual neural network-based models, one

suitable for loss-free transfers and one designed for connections that encountered losses'.

The Internet traces were subjected to an additional filter in order to consider the connections that
might have experienced delayed acknowledgments. As identified in [Cardwell e al 2000],
connections with a start window of 1 packet will experience delayed acknowledgments and the
actual delay of the acknowledgment depends on the implementation used. To eliminate

heuristics, such connections were removed from the traces.

A problem identified from the TCP connection analysis stages was the availability of data. Due
to the characteristics of (at least) the environment where the traces were collected, most of the
connections were loss free, a phenomenon described during Chapter 6. Because of this, while the
neural network training had enough of samples even after removing some of the data, training of
the neural network model for connections with losses required all traces available in order to

produce a sizeable dataset.

Each subset (i.e. with or without losses) was first filtered and then fed to the corresponding
neural network. The following sections start by describing identification of the optimum model.
This first part of the process required analysing the impact of several variables, ranging from the
structure of the neural network to the training parameters used in each case. Certain assumptions
were made during these preliminary stages in order to simplify the analysis, such as using values
recommended by literature for certain training parameters. Also, the analysis limited the scope of

randomness in order to reduce the time required to study all alternatives.

! In the preliminary stages it was aitempted to produce a single nerwork that would be able to deal with both types of
connections, but its output had low accuracy for both kinds of connections.

244

Chapter 8 - Validation of TCP performance prediction method

The estimation results from the neural network models were compared with the current existing
mathematical models in order to assess whether they are superior in terms of accuracy and
robustness. The comparison was made in terms of relative error, both in the average value and

actual distribution, as well as using the correlation factor from the two methods.

8.3 Preliminary tests — Connections without losses

The purpose of the preliminary analysis was to evaluate which neural network (in terms of
structure, algorithms, and parameters) is likely to lead to a greater accuracy for a set of
connections that do not encounter any loss events. All tests from this section used the no-loss
connections subset of the RYL dataset, as a compromise solution between the synthetic nature of
the NS simulations and the variety of the UoP traces. To increase the number of samples in the
dataset, the two rounds of experiments were combined in a single dataset which included 16865
samples. This also added an element of robustness to the problem as the network environment

changed between the two sets of experiments.

There were three main parameters to vary when applying a neural network to a dataset: the
structure of the network, the method applied, and the amount of data to be fed to the network.
The structure of the network included variables relating to the number of hidden layers, the
connectivity between neurons, and the number of neurons for each hidden layer. The method
applied was the most complex part, with several sub-divisions: establishment of the training
algorithm together with the initialisation and update functions, identification of the optimum
parameters for the chosen network, followed by detection of the early stopping decision that

would lead to highest accuracy.

245

Chapter 8 - Validation of TCP performance prediction method

8.3.1 Neural network structure

The design of the networks started by considering the number of input and output neurons, and
then produced several alternatives of hidden layer(s). For the loss-free case, the dataset included
samples with three inputs: the connection size and initial congestion window (both measured in
bytes), and the round trip delay (measured in seconds); the network had a single output — the
duration of the data transfer (measured in seconds). Based on these inputs/outputs, three neural
networks were generated, all fully connected: 3-2-1 (a single hidden layer with two neurons), 3-
6-3-1 (two hidden layers, first layer with six neurons, second layer with three neurons, shown in
Figure 8.1), and 3-12-6-3-1 (three hidden layers, first layer with twelve neurons, second layer
with six neurons, and third layer with three neurons). The reason for using neural networks with
two hidden layers was that some previous studies, such as [Funahashi 1989] and [Chester 1990],
have shown that neural networks with two hidden layers may perform better than classical 1-

hidden layer topologies.

With regards to the first set of parameters, i.e. the structure of the network, there was no unique
set of guidelines with regards to the number of hidden layers or the complexity of each layer.
This is why the preliminary tests were performed using the 3-6-3-1 network, with the structure

shown in Figure 8.1

246

Chapter 8 - Validation of TCP performance prediction method

tests. All these would impact on the ability of the network to stop before overfitting'. These
decisions made extensive use of the prior research in the area of neural network training. A good
start was provided by [Morgan and Bourlard 1990), [Weigend e al 1990] and [Amari ef al 1997)
which describe the phenomenon of overfitting while training a neural network, advocating the
split of the dataset into a training subset and a testing subset, in order to perform early stopping.
In addition, the mathematical modelling from [Amari er al 1996] provided the optimum testing

ratio ¢ for networks with a number of m network parameters to be

\

n=1
t = VTR where m =Y (n, +)n,,, 8.1

=l

for a network with (n-2) hidden layers and n; neurons in the i" fayer. In the case of the network

used to train the dataset (3-6-3-1),

m=3+1)-6+(6+1)-3+(3+1)-1=46 1= =0.10425 8.2

1
Vv2-46
The figure was rounded to 0.1, resulting in a ratio of 10% testing and 90% training.

However, [Amari er al 1996] also describes the other extreme: if the size of the datasets is large
compared with the number of free network parameters, early stopping will provide only a
marginal improvement in the generalisation error. This case, named asympiotic in the study,
happens when number of samples # is much larger than the number of free network parameters

m that satisfied the 8.3 formula

! The process of training a network using a dataset results in a decrease of the relative error when applying the
neural network on that dataset. However, after a certain number of training epochs, the network will start to overfi
the dataset by leaming the noise contained in the data rather than the determining features. This will lead to lower

248

Chapter 8 - Validation of TCP performance prediction method

The two experiments were stopped using the same criteria: the resulting MSE decreased by less
than 0.00001 in five consecutive tests. The advantage of evaluating the errors over several tests
becomes clear for the slow-converging network shown on the left in Figure 8.4. Although the
error oscillated in the short term, it had an obvious decreasing trend, which stabilised over 1000
cycles and started to oscillate around a constant level, then increased. On the downside, for the
fast—converging network, pictured in the right diagram, the training was stopped long after the
convergence {which appeared at 60 cycles), because the error did not increase monotonically
from 0.007 to 0.030. In this case it may be admitted that exhaustive training was performed but
the minimum value was recorded. In these cases, the early stopping proposed rule is not efficient

and the training mode reverts 10 exhaustive training, which was limited to 5000 cycles.

8.3.3 The optimum parameters for a set network

The method applied to the network involved a wider range of issues. Firstly, the training
algorithm had to be chosen and, afler testing various algorithms, it was decided to use back
propagation with momentum and flat spot elimination. The decision was motivated by three
factors: the nature of the problem (i.e. time-independent mapping function), which eliminated
e.g. the memory-based algorithms, generic recommendations for back-propagation algorithms
[Haykin 1999], and recent developments into such algorithms. Indeed, the chosen variant of
back-propagation has two improvements when compared with its predecessors: the momentum
term u that absorbs any eventual oscillations of the resulting error and the flat spot elimination
term ¢, which allows the network to surpass possible flat spots (local minima) on the error
surface. Aside from these two terms, the algorithm also includes the typical leamning rate 5 and
tolerance threshold 7, which define back propagation. The weights of the neural network were
initialised with random values in all experiments; the only particular feature was maintaining the

same seed for network initialising throughout a single batch of tests. This allowed proper

252

Chapter 8 - Validation of TCP performance prediction method

It may be observed that the graph exhibits a similar trend with the one in Figure 8.5, i.e. MSE
decreases for lower values of n and p. However, the decrease was not monotonic, as the
minimum MSE = 0.00658841, obtained for n=0.03, t=0.0, p=0.3, c=0.1, after 9660 training

cycles.

Based on the batches of training session described, it was concluded that the

(n,7,11,6)=(0.03,0.0,0.3,0.1) parameter set was the combination that would lead to best accuracy.

8.4 Validation tests — Connections without losses

The first part of this section is based on the RYL traces, while the second part provides an
indication of whether generalisation of the problem, based on the UoP backbone traces, affected

the results.

8.4.1 The NS dataset

The NS dataset was obtained by generating network infrastructures using random values for the
network characteristics. As explained in section 5.5.1, the simulations produced a variety of
environments, with up to three levels of connectivity. These environments were used to transport
TCP connections starting and finishing at random moments, therefore exchanging data objects of

difTerent sizes.

The variety of the clients was the only problem that occurred when processing the VS traces. NS
had a generic type of TCP implementation, called TCPfull, which had set parameters for all TCP
client variables. Although the documentation [Fall and Varadhan 2003] indicated methods to

vary some of these variables, the traces did not exhibit any variations when varying the initial

255

Chapter 8 - Validation of TCP performance prediction method

The neural network followed the real values accurately, as exhibited by the graph in Figure 8.7,

with only a few significant errors appearing towards larger values of the spectrum.

The next step was to apply the NS dataset to Cardwell’s model in order to determine how
accurate the mathematical model is when compared with the neural network model. The results
produced by this second model were then compared with the results from the neural network
model. The statistical results of the comparison are presented in Table 8.1. It may be observed
that, on average, the neural network model outperforms the mathematical model in terms of
accuracy. The table also includes a column for the correlation between the predicted values and
the real values in order to illustrate that the accuracy of the neural network was not due to the
narrow spectrum of the output variable, but to learning the variations in transfer duration

produced by changes in the amount of data transferred and the RTT values.

One final test was run in order to determine whether a simpler network configuration would lead
to better results. A neural network with only 2 hidden neurons, placed in 1 hidden layer, was
trained under the same conditions (same parameters, dataset, and initialisation seed). The results

from the model were introduced in Table 8.1, the neural network (3-2-1) entry, for comparison

purposes.
Model Average relative error Stdev. of relative Correlation
error
Mathematical 0.292689 0.184215 0.969077
Neural network 0.0305206 0.0478511 0.987012
Neural network (3-2-1) 0.0454152 0.0527412 0.985258

Table 8.1 Comparison of the resulting average figures for the NS dataset, using the

mathematical and the neural network models

Tableé 8.1 shows that the neural network models lead to lower average error values. 1t may be

257

Chapter 8 - Validation of TCP performance prediction method

observed also that the 3-2-1 neural network, although still superior to the mathematical model, it
shows a 50% higher figure for the average relative error when compared with the results from
the 3-6-3-1 neural network. This led to the conclusion that simpler structures may be used for the
neural network with similar qualitative results, but they would impact on the quantitative results
obtained. The following and conclusions were exclusively based on the 3-6-3-1 neural network

structure, unless otherwise stated.

A second graph was produced to illustrate how the neural network and mathematical models
perform throughout the dataset. The graph, shown in Figure 8.8, compared the relative error

produced by the two models.

% of connections
100 ———— I

80

T

60 +

40 |

20

1 e

0
1e-05 0.0001 0.001 0.01 01 1 10
Relative error

Figure 8.8 Cumulative distribution of the relative error for the RYL dataset using the (a)

neural network model and (b) mathematical model

The figure above confirms the average figures, indicating that the neural network model
outperformed the mathematical model throughout the vast majority of the dataset. The figure
also reveals the outliers from Figure 8.7: the neural network error values increase sharply for a
small number of connections towards the top of the distribution. The high errors produced by the

neural network appear also in Table 8.1, where the standard deviation of the relative error for the

258

Chapter 8 - Validation of TCP performance prediction method

neural network model is relatively high compared to its average.

The statistical t-test was applied to the two datasets to evaluate the differences between the
resulting relative errors. The two models aimed to reproduce the same actual values, fact that
allowed for the resulting samples to be paired. As a result, the t-test used was similar to the one
used in Chapter 5. The hypothesis made was that the neural network model produced lower
relative errors in comparison to the mathematical model when estimating the actual values for
the duration of TCP connections. Using equations 5.1 and 5.2 and the data from Figure 8.8, the
Db

Sp

resulting values were: D =0.223293, s; =0.00461539, and f=—=60.414. The obtained 1

value is situated beyond the 0.1% probability, P, ., = 3.2905, for a measurement with o degrees

of freedom. The conclusion drawn was that, overall, the neural network model produced
estimates of the connection duration with relative errors lower by 22.3% in comparison to the

mathematical model, with 99.9% confidence limits of 21.3% and 23.2%.

The results obtained from the NS dataset indicated that neural networks may provide better
performance estimate, compared to mathematical models, of TCP transfers that encountered no
losses. However, the other main objective of the method is to provide a robust estimator. This is
why the next step was to apply and test the neural network on a more realistic environment, i.e.

the dataset produced from the RYL connections.

8.4.2 The RYL dataset

The training process was similar and used the same dataset with the preliminary tests run in
section 8.3. Unlike the NS traces, the senders from this dataset had different values for the initial
congestion window and, as a result, the 3-6-3-1 network, displayed in Figure 8.1, was used in the

process. The dataset used was the same with the one from section 8.3, produced by joining the
259

Chapter 8 - Validation of TCP performance prediction method

Finally, a plot of the relative error distributions, as produced by the two models, is shown in
Figure 8.10. Although this is less visible in the graph below, the neural model has higher error
values than the mathematical model at the top of the distribution. This is again due to the lack of

examples at the edges of the transfer duration domain.

% of connections

100 —— T
80 -
20 .
0 1 Ly
1e-05 0.0001 0.001 10
Relative emor

Figure 8.10 Error distribution for the RYL dataset using the (a) neural network model and

(b) mathematical model

The average figures and the graphical representation of the resulting errors were also confirmed

by the statistical t-test. The hypothesis and the test used were the same with the ones from

section 8.4.1. In this case, the resulting values were: 5:0.4067]5, s; =0.00349869, and

t= b 116.248. The obtained t value is situated beyond the 0.1% probability, £, ., = 3.2905,

Sp
for a measurement with o degrees of freedom. The conclusion drawn was that, overall, the
neural network model produced estimates of the connection duration with relative errors lower
by 40.6% in comparison to the mathematical model, with 99.9% confidence limits of 39.7% and

41.5%.

261

Chapter 8 - Validation of TCP performance prediction method

It may be noticed from Table 8.2 that the resulting figure for MSE does not match the figure
obtained during the preliminary tests. This is due to the fact that the two training sessions used
different seeds, generated at the beginning of the batch of experiments for the preliminary tests
and at the beginning of the training session from this section. These generated seeds were used,
in each case, to initialise the network and to randomise the examples. A separate batch of 100
training sessions was run to determine what results will be obtained when using other values as
seeds while keeping the same training parameters. The batch was run using random values for
the seeds but the same values for training parameters: (,1,1,¢)=(0.03,0.0,0.3,0.1). The random
seeds were obtained using the same function as previous experiments, setseed(x), which, when
invoked with an empty argument, provides a random value using the clock of the system. The
result of these sessions may be seen in Figure 8.11. The figure indicates that the accuracy of the
model depends rather heavily on the initialisation values for the links in the neural networks, at
the beginning of the experiment, and on the order that the samples are fed to the neural network,
throughout the training. However, the graph still indicates that these values tend to lead to low

values in the learning process, with an average value for MSE of 0.00681869 for the entire batch.

262

Chapter 8 - Validation of TCP performance prediction method

MSE

0.0074

0.0072

0.007

0.0068

0.0066

0.0084

T T Y T
4
+
= N p
+
+ ot
.
+ +
» . s+ E
LA
+ + + e * +
-
* + + + o+
+ ot +* + +
L + . + . - R
+
+ - + ¥ *
+
+ > *e + +
.
* * + + - + "'+ -
- + + - + +* -
3
+ MR
+
1 1 Il
20 40 60 80 100
Experiment no.

Figure 8.11 Results from 100 training sessions

This batch indicates that accuracy depends strongly on the initialisation values used. This would

impact on the resulting figures from training, but it was decided to limit the scope of this study to

the qualitative results of the analysis. One of the reasons behind this decision was the duration of

the tests: a single exhaustive training' (10000 cycles) experiment lasted approximately 20-30

minutes. Each of the batch tests from section 8.3.3 required 100 experiments (based on

modifying two parameters, each of them taking 10 values); running each combination of values

for 100 times, as in the experiment above, would have required 150-200 days. It was, therefore,

decided to determine mainly whether a neural network solution would provide better results

compared to the mathematical model, using only a first degree of tuning. However, this area

appeared to be an interesting direction to follow and, therefore, it is highlighted as one of the

potential directions of research in the further work section.

! Applying early stopping would only halved the resulting value, while could have impacted on slow-converging

combinations.

263

Chapter 8 - Validation of TCP performance prediction method

The analysis of the RYL traces showed that the trained neural network performed better than the
mathematical model. The final test was to check whether the neural model may be generalised

for backbone traces.

8.4.3 Generalisation — the UoP dataset

This dataset was expected to provide the full generalisation for the efficiency of the method.
With the NS dataset, the senders and receivers all had the same behaviour (not influenced by the
attempts to vary it); with the RYL dataset, the senders varied and used unknown
implementations, but the receiver used the same TCP implementation throughout the
experiments (the TCP/IP implementation from SuSE Linux). In comparison with these two
datasets, the UoP data resulted from connections with unknown entities at both ends, using most
likely a variety of implementations. The only indication to narrow the variety of receivers was
that the typical host at University of Plymouth was running the Microsoft Windows 2000
(professional edition) operating system at the time when the captures were made. However, there
were several people, particularly researchers, who had different Linux distributions installed on

their computers.

The dataset used was generated from a 1-hour trace and had 21629 samples, reduced to 18545
after filtering. The dataset was applied 1o a 3-6-3-1 neural network (such as the one from Figure
8.1) for 10000 cycles, reaching a minimum MSE of 0.0133164 after 1770 cycles. The decrease

in accuracy may be observed in Figure 8.12

264

Chapter 8 - Validation of TCP performance prediction method

It may be observed from the above table that the difference between the mathematical and neural
models is smaller in comparison with the previous datasets. Nevertheless, the average error
produced by the mathematical model is approximately 60% higher than the one resulting from
the neural model. The results also indicate that the improvement provided by a more complex
neural network, i.e. the 3-12-6-1 network, is only marginal. Finally, the comparison of the
relative errors, as obtained from the neural network model and the mathematical model,

throughout the dataset is presented in Figure 8.13.

% of connections
100 — T ——

80
60
40 |
20

1 Lozaz===

0 iz
1e-05 00001 0.001 0.01 0.1 1 10
Relative error

Figure 8.13 Error distribution for the UoP dataset using the (a) neural network model and

(b) mathematical model

The figure confirms the average results, showing that the accuracy of the neural model is higher
than the one resulting from the mathematical model. In addition, the statistical t-test produced

D

Sp

the following values: D =0.393518, s5 =0.00363978, and r=—=108.116. The figures

indicated that the errors from the neural network model were 39.3% lower in comparison to the

mathematical model, with 99.9% confidence limits of 38.4% and 40.2%.

266

Chapter 8 - Validation of TCP performance prediction method

8.5 Preliminary tests - Connections with losses

The preliminary tests for connections with losses differed from the procedure from connections
without losses due to data availability. After applying all filters to the three traces collected, NS,
RYL, and UoP, it appeared that none of them had enough data to train the neural network. This
problem could be resolved for the NS traces by simulating more network structures and for the
UoP traces by collecting more data. Unlike the two other cases, generating data for the RYL
connections was more tedious, involving slow generation of a limited number of queries (slow —
to allow traces time to finish and limited - preferably non-threaded - to avoid raising network
alarms). In addition, the downloaded objects during the RYL experiments were small-sized, a
fact that further reduced the possibility to lead to loss events for low levels of loss rates. The two
combined RYL traces had only 142 usable samples of connections with losses after filtering.
This is why, rather than using the RYL traces, the preliminary tests for connections with losses
were based on larger UoP traces. A set of 5 traces, each lasting for approximately 30 minutes,

were combined to obtain a larger dataset, encompassing almost 10000 samples after filtering.

8.5.1 Neural network structure and stopping criteria

The design of the neural network structure used some of the conclusions drawn from section 8.3.
The main problem faced was to balance the complexity of the network with the amount of data
available. The overview made in section 2.5 showed that the mathematical model for
connections with losses is much more complex than that for slow start. Similarly, a neural model
for connections with losses might require a more complex network structure, e.g. more hidden
nodes, compared with the one produced in section 8.3.1. On the other hand, the availability of

data led to a smaller network, which could be within the asymptotic convergence region (as

267

Chapter 8 - Validation of TCP performance prediction method

expected, the accuracy of the test subset has the same evolution as the one from the train subset.
This leads to the conclusion that the given dataset may be used for exhaustive training of the

neural network from Figure 8.14 without overtraining it.

8.5.2 The optimum parameters for a set network

The next phase of preliminary tests followed the procedure from 8.3. Afier establishing a
network structure and the stopping criteria, the network was trained using the extended UoP
subset that contained connections with losses. The training ran in two batches, by varying the

values for the training rate n and the momentum p.

In the first batch, both 1 and u were varied in the [0.1;0.9] interval with a 0.1 step, while the
other two parameters were kept constant (1=0.0, ¢=0.1). The second batch covered the
[0.01;0.09] interval for 1, at a 0.01 step, with varied in the same interval [0.1;0.9] and T and ¢

maintained constant to the same values as before. The results from these batches are presented in

Figure 8.16

270

Chapter 8 - Validation of TCP performance prediction method

the network to train fully, or the value of the initial seed influenced the results. The first factor,
MSE having only small variations, can be one of the causes if considering the small variance in
results. The standard deviation of the MSE values from Figure 8.16 (bottom) was only 0.00037,
and the [MSEnn;MSEmax] interval was only 0.002893. The interval size is, however, comparable
with the one obtained in the batch associated with Figure 8.6 which, although not monotonous,
exhibits a trend. The second factor, dependence on seed, will be considered later on using a
similar experiment with the one that produced Figure 8.11. Finally, the third factor is also likely
to influence the results: the minimum MSE was obtained throughout the n[0.01;0.09] batch
after an average 4673 cycles, compared with only 2988 cycles for the batch behind Figure 8.6. It
was also observed while analysing the convergence speed that the training sessions with low
learning rates achieved the minimum MSE near the exhaustive training limit (10000 cycles),
which suggests that the network may have been insufficiently trained in these cases. This
explains the relatively high values for MSE for low learning rates, visible in Figure 8.16

(bottom).

After running the two batches, the minimum MSE was 0.0225312, obtained for
(m,7,1,)=(0.07,0.0,0.5,0.1), obtained after 9100 cycles. This combination of variables was used

for the remainder of the loss subset validation section,

8.5.3 Data scaling

The MSE results obtained during the preliminary tests using the loss subset appeared to be less
encouraging than the ones from the no-loss subset. In order to provide better results, additional
effort was put into improving the other steps of the analysis, particularly the ones from the pre-
processing stage. Data scaling was considered to be one of the steps that may be improved,

considering the fact that the duration of connections ranged between [0.1s;12.05s] even after

272

Chapter 8 - Validation of TCP performance prediction method

problem discussed earlier. Unfortunately, while the mathematical model appears to be limited to
a maximum relative error of 1, the neural network does increase above that level. These errors,
visible in Figure 8.22, were all at least partially due to the limited efficiency of the neural

network. The difference between the two models appears in their average values too, shown in

Table 8.5:
Model Average relative error Stdev. of relative Correlation
error
Mathematical 0.584002 0.748376 0.467215
Neural network 0.915117 1.34159 0.604007

Table 8.5 Comparison of the resulting average figures for the UoP loss subset, using the

mathematical and the neural network model

The statistical t-test confirmed the reduced accuracy for the neural model. The hypothesis made

was that the neural network model led to higher relative errors than the mathematical model. The

resulting figures from the calculations were: D=0.331114, sz =0.0183278, which produced a

t-value of ¢ =2 =18.0663. It was therefore concluded that was that the neural network model
Sp

produced relative errors which were 33.1% higher in comparison to the mathematical model,

with 99.9% confidence limits of 28.3% and 37.8%.

Correlating Figure 8.24 with Figure 8.22, it can be concluded that the error is due to the
erroneous approximation of the <is connections. The only solution to ameliorate this error
would be to use a scaling solution that would outperform the results obtained from logarithmic
scaling or to split the duration of the variable into decades and produce separate models for each

decade. Both these solutions are mentioned in Chapter 9, as part of the future work.

280

Chapter 8 - Validation of TCP performance prediction method

8.7 Applications

As an overall conclusion from the performed validation tests, the proposed neural-based model
provides a better alternative to mathematical models in terms of accuracy. The increased
accuracy, together with the robustness of the method, provides a better described relationship
between application performance and the conditions that influence it. This improvement opens

new avenues in the areas that relate to performance provisioning, such as:

- Network planning. A pre-trained neural network can be employed in preliminary
stages of network planning, to estimate the application performance based on certain
sets of network conditions and specific endpoint implementations.

- Network control. The model may be use as a predictive element in network
management schemes when varying the parameters of the network. For example, it
may provide a set of alternatives to balance the delay and loss introduced by routing
queues in order to maintain certain performance for the above applications.

- TCP Implementations testing. The presented approach may be used to study the
application performance provided by new types of TCP implementations. Through its
adaptive character, the neural-based method may be used to compare the efficiency of

new implementations versus traditional ones.

8.8 Summary

This chapter presented the validation tests used to benchmark the TCP performance modelling
method proposed in Chapter 7. The validation studied the accuracy of the proposed neural
network model when applied on two types of traces: purely synthetic TCP connections and TCP

connections captured from real traffic.

281

Chapter 8 - Validation of TCP performance prediction method

The analysis started by discussing the obstacles met during the data collection stage and the
issues that were likely to impair the model accuracy, but which were identified and minimised

during the data analysis stage.

The available traces from each source (NVS-generated, RYL, and UoP) were each split into two
subsets each, one containing connections with losses and one containing connections without
losses. The loss-no loss split was required due to the differences in the models for connections
with and without losses. The two types of data, with or without losses, were studied in separate
rounds of tests. Each round commenced with a preliminary study that determined best values for
the optimum for the training-testing split, the training algorithm and neural network structure to

use, the stopping criteria, and the optimum neural network leamning parameters

The validation tests consisted of using the resulting parameters to train the respective dataset,
then to test its accuracy. The results were then observed and compared with the output of a
mathematical model implementation. The validation tests have shown that the proposed model
provides an overall better accuracy when compared against the mathematical model using the
three factors mentioned above. The tests performed on the no-loss subsets indicated a nearly ten-
fold improvement of the average relative error in the case of NVS-generated data between the
mathematical and the neural-based model. The improvement was also high in the case of RYL
traces, where the relative error obtained with the mathematical model decreased by
approximately 70% when applying the neural model, and by 40% in the case of real traffic
collected from the UoP backbone. The results obtained from the trace subsets that included
connections with losses were two-fold: the NS-generated trace led to a 75% reduction of the
overall relative error between the two models. Unfortunately, the UoP loss subset led to better
prediction results when applying the mathematical model. However, after analysing the plots of

the values and of the corresponding relative errors (Figure 8.21 and Figure 8.22), it was

282

Chapter 8 - Validation of TCP performance prediction method

concluded that the poor accuracy may have been caused by limitations of the neural network.
This conclusion was sustained also by the distribution of the relative error for the two models

(Figure 8.24).

The last part of the chapter listed some of the possible applications of the neural-based model,

ranging from network planning to network control and TCP implementation testing.

This chapter concludes the description of the research undertaken as part of this research project.
The following chapter will present the achievements of the research together with the limitations
encountered, and will identify several promising directions the future work arising from this

project.

283

Chapter 9 - Review, future work, and conclusion

Chapter 9. Review, future work, and conclusion

284

Chapter 9 - Review, future work, and conclusion

9.1 Achievements

In this thesis, novel research in two areas has been presented: network monitoring and

performance prediction. The two areas relate strongly to recent trends of moving Internet access

provisioning towards quality provisioning. The results provide the first two steps in this

migration: evaluate current end-to-end network performance and relate the observed network

characteristics to the resulting performance.

The research programme led to six significant outcomes:

A detailed understanding of the current state of the art in areas closely related to traffic

analysis and performance modelling

The research illustrated the emerging need for Interet quality provisioning, in spite of the
lack of support from IP, its core protocol. As a result of the emerging need for quality, traffic
performance evaluation and monitoring was identified as an important research theme. Based
on these observations, a taxonomy of existing network performance measurement methods
was produced, each category covering various aspects of inferring the network
characteristics. The analysis identified the limitations of these methods and gathered them in

a sum of characteristics relevant for the current Internet conditions and complexity.

On a separate stream, the studies identified in the area of TCP modelling followed a single,
mathematical-based, approach. The tests 1o validate such models were typically performed
using synthetic environments or controlled endpoints and were based on long data transfers.
In addition from the sound mathematical proof, the models found were suitable for steady-

state transfers, implying long connections — which are unlikely to exist in current web traffic

285

Chapter 9 - Review, future work, and conclusion

conditions.

. A novel monitoring technique that allows single-point, non-intrusive, online TCP
performance analysis, which aims to overcome some of the disadvantages of existing

techniques, typically based on intrusive methods.

The technique used elements from existing tools to propose a novel method of TCP analysis
that would bring together a comprehensive subset of the current requirements for traffic
performance monitoring. The method included several novel elements, such as TCP
timestamp analysis and congestion window evaluation. The TCP timestamp then provided

the means for non-intrusive inference of bottleneck bandwidth for the monitored traffic.

The novelty of the proposed traffic analysis method was to provide comprehensive
information about the end-to-end parameters of the network path transited by the packets
from a single point of capture, without injecting any traffic. The only source of information
was the packet arrival sequence for each flow combined, where necessary, with assumptions
about the network characteristics or/and endpoint behaviour. The analysis also supplied
means of localising any degradation/change in the network conditions by splitting the end-to-
end path into two sub-paths, between the monitor and each of the endpoints, based on the
analysed traffic. The approach was designed to function online, underlining the importance

of continuous monitoring.

A prototype to benchmark the efficiency and accuracy of the proposed method.

The software prototype was developed under Linux due to the flexibility offered by the OS

environment. The software was tested and adjusted throughout its development in order to

286

Chapter 9 - Review, future work, and conclusion

interpret correctly the results of the observed packet arrival sequence. The program was
developed specifically for online analysis but, due to the lack of large sources of traffic and
the need for repeatability, it included built-in support for trace analysis, which constituted its

main application during this research programme.

The traffic analysis method was applied to traces of traffic produced in a controlled
environment; the purpose was to determine whether the inferred parameters match the actual
network and endpoint parameters. The method was tested using two types of environments:
emulated and simulated network conditions. In spite of some limitations of the environments
used, the validation tests indicated that the method is accurate when estimating the end-to-
end network parameters as inferred by the endpoints rather than the actual values. While the
delay values were well approximated, some of the loss figures incurred significant errors due
to the TCP endpoints erroneously inferring loss events. The proposed method was therefore
extended to identify, subject to the position of the monitor, some of the erroneous
retransmission events. In addition, statistical analysis revealed with a confidence factor of at
least 99.9% that, for the analysed packet traces, TCP timestamp-based measurements provide

more accurate RTT estimation when compared to acknowledgment-based measurements.

A viewpoint of end-to-end Internet paths characteristics, as seen from the perspective of the
HTTP traffic collected from one point (the University of Plymouth) situated at the edge of

the network, using exclusively non-intrusive analysis.

Continuing from the encouraging benchmarking results, the method was successfully applied
on a combination of semi-controlled and real traffic packet traces in order to provide a
snapshot of end-to-end characteristics of Internet paths and average values of TCP

connection parameters at a specific moment, as observed through the perspective of TCP

287

Chapter 9 - Review, future work, and conclusion

data transfers,. In spite of a wide variety of previous research, this study included several

elements of novelty:

- it analysed traffic produced by an edge network consisting mainly of clients;

— it led to a detailed analysis of the typical figures for TCP congestion window;

— it observed the distribution of end-to-end path characteristics, bottleneck bandwidth
in particular, as encountered by actual TCP clients from the edge network studied

— it performed a statistical evaluation of how the observed end-to-end path parameter

distributions evolved in time.

The analysis focused on HTTP transfers due to the wide availability of such traffic, both to
retrieve in the semi-controlled traces and to capture real traffic transfers. While investigating
the results, the method was adjusted and improved in order to accommodate specific network

and application protocol behaviour, while maintaining its robustness.

The traffic study was run offline on collected packet traces in order to provide repeatable
results, available for further analysis. The trace collection included semi-controlled random
web page retrievals in the first phase, followed by backbone data collection towards the end.
The study concluded that, from the point of collection perspective, the packets from the
analysed connections appeared to have been transported over network paths with high values
for bottleneck bandwidth, paths that introduced low loss and delay for the transiting traffic.
The conclusions were supported by average values and distribution analysis, while statistical
tests were employed to investigate the variations over time for the studied parameters. The
statistical tests identified changes in the end-to-end path parameters between two rounds of
measurements with a statistical confidence of at least 99.9%. One of the likely causes of

these changes, consisting of improvements in terms of inferred delay and bottleneck

288

Chapter 9 - Review, future work, and conclusion

bandwidth, was a network connectivity upgrade that occurred between the two rounds of
measurements. Also, the connection size analysis indicated that the typical HTTP interaction
involved short-lived TCP connections. It also indicated that the conclusions from a small
amount of traffic scale well for large traces analysis, as long as collection was made from
similar environments, relatively closely spaced in time. Finally, certain recommendations

were made, aimed to improve the efficiency of TCP under the current network conditions.

A novel model for inferring the relationship between TCP throughput and its influencing

parameters, based on performance observed for prior connections.

The approach used a neural network to approximate the relationship between TCP’s resulting
throughput and the factors that influence it, unlike previous models which used mathematical
emulation of the TCP sender behaviour. The prediction used a relevant set of parameters,
extracted using the traffic analysis stage: delay-related, loss-related, and TCP behaviour-
related. The predicted variable in all cases was the duration of the data transfer. The
prediction involved three major stages: data pre-processing, core neural network analysis,

and interpretation of the results.

An assessment of the accuracy of the proposed model based on a series of evaluation tests,

applied on various sources of traffic.

The neural network model was tested separately on three types of packet traces: synthetic,
semi-controlled, and real traffic. Two neural network models were produced, one suitable for
predicting performance for connections without losses and one for predicting performance
for connections that encountered losses. The relative error results have shown that the neural

network led to more accurate results than the mathematical models for all types of traces in

289

Chapter 9 - Review, future work, and conclusion

the case of connections without losses. The neural network model for connections with losses
also led to better results than the mathematical model when trained and tested using the
synthetic trace. The superiority of the neural network approach was confirmed in each case
by statistical analysis, which involved paired T-tests applied to the relative errors produced
by each model. All tests confirmed the initial conclusions, with a statistical confidence of at
least 99.9%. However, the neural network failed to produce lower relative errors than the
mathematical model when tested on real traffic traces which included connections with

losses, issue which will be highlighted in the next section.

9.2 Limitations

There are a number of limitations of the study, as summarised below:

Complexity of the environments used for testing the monitoring method.

It was observed that neither of the two environments used for evaluating the proposed traffic
analysis method were fully satisfactory. The synthetic traces lacked realism in terms of
endpoint interaction, such as implementation characteristics and processing delays, while the
emulated environment lacked accuracy in terms of reproducing network events, such as
bandwidth limitations and queuing. A hybrid approach, using the mixture of the two, may
have been beneficial for the various tests performed. Unfortunately, as observed with the
network emulation, the more complexity is added into the network, the more difficult it is to

account for all sources of impairments.

Differences between the inferred network parameters and the real values
The proposed traffic analysis technique provides a good approximation of the end-to-end

path parameters as inferred by the TCP endpoints. However, the validation tests run for the

290

Chapter 9 - Review, future work, and conclusion

method highlighted that the inferred parameters (loss in particular) may differ from the actual
network parameters. Further research to establish the relationship between the TCP inferred
parameters and the end-to-end path parameters would improve the accuracy of the method

proposed.

. Scalability, focus, targeted traffic, and timeliness of the end-to-end paths characteristics
study

The snapshot of the end-to-end path parameters was produced from a single endpoint, the
UoP network, which had relatively good Internet connectivity. This configuration produced a
collection of end-to-end paths all converging to the collection point, rather than a mesh
between distinct endpoints, logically and geographically remote. More conclusive results
would have been obtained, had a mesh infrastructure of points been employed in the analysis.
Unfortunately, throughout the study, there was no oppertunity to compare the resulting
values from the UoP traffic with end-to-end results obtained from other endpoints, apart from
overall results presented by other network measurement studies, which appeared to yield
comparable average results. For this reason, it is difficult to evaluate how the presented
results would scale for wider studies, collected from more than one edge network. However,
while one of the endpoints was fixed (the collection point), the position of the remote host
varied, which led to variations in the remote end of the path. On the positive side, the
connectivity solution used had the advantage that it did not introduce any local bottlenecks
(as a poorly connected network may have been), which led to an unbiased snapshot of the

analysed end-to-end paths.

The method used for TCP analysis, although providing detailed information about the end-to-
end parameters, included no means for localising the source of the impairments, apart for the

East/West split of the end-to-end path. This lack of localisation did not allow for any

291

Chapter 9 - Review, future work, and conclusion

clustering of the results, as there were no means to aggregate any path segments. Brief path
analysis using traceroute on a subset of remote hosts indicated a high number of different

paths, all originating from a low number of distinct IP addresses.

The observed characteristics for the analysed paths are also subject to timeliness. While the
analysis of the network traces provided a detailed view of end-to-end paths parameters as
seen from the University of Plymouth viewpoint, there is no indication about how these
parameters may vary in time. This limitation was actually highlighted in the study by the
differences between the two rounds of experiments, as the average values for the analysed
parameters changed for the traffic captured within the associated packet traces. Further
research, as proposed in section 9.3, may provide indications about the timelines of such

performance snapshots.

Neural network modelling limitations.

The proposed neural network model looked only at some of the aspects that may improve the
resulting accuracy of the method. Further avenues should be explored, such as using other
types of neural network, in order to optimise the results. As detailed in chapter 8, the results
revealed that the neural network exhibited high errors when modelling connections with
losses, which were likely to be due to limitations of the neural network modelling capability.
Further exploration into the causes of these high errors will be considered as a valid direction
for future research in the next section. Another limitation of the neural network study was
that the mathematical model was not considered as a possible input; while this decision
provided clear separation between the two approaches, usage of the mathematical inference

may have yielded more accurate results.

The neural network validation was also limited in the sense that all data analysed was

292

Chapter 9 - Review, future work, and conclusion

collected from the same environment. It is, therefore, difficult to assess the scalability of the
neural network model, as no comparison term was available. In order to investigate the
ability of the model to adapt to a collection of distinct environments, encompassing different

sets of network conditions, further analysis of data from such environments would be

necessary.

9.3 Future work

A number of promising areas for further research were identified that were outside the scope of

the current study:

I. The combination of TCP analysis and HTTP analysis. This would provide advantages in two
directions. The first is TCP profiling: the TCP analysis would be improved by including a
level of profiling for specific TCP implementations. Although not completely accurate, there
is a relationship between HTTP server implementations and corresponding TCP
implementations. The server type from the HTTP headers would provide the initial
information in building this correspondence. The profiling could be further strengthened
using other characteristics of the TCP client, such as timestamp resolution. A second area is
idle period inference: interpretation of the HTTP headers would allow clear identification of
the idle periods between the download of successive objects. This would also increase the

accuracy of timeout losses inference.

2. Analysis of network characteristics over time. This subject was approached in previous
studies from an active perspective, but non-intrusive analysis would broaden the number of
monitored paths. Also, in comparison, the non-intrusive approach would still require a single

connectivity point, unlike active measurement that needs exponential increase in the number

293

Chapter 9 - Review, future work, and conclusion

of probes deployed over the Internet and additionally stresses the network. The information
about network parameter variations can then be used to predict or, at least, bound the future
characteristics of the network. A direct application of such a technique to the scope of this
project would be to predict the quality of a VolP call based on data exchange during the
initial TCP signalling. This apriori estimation of the quality of the network may help to
assess whether the application is likely to be successful (in the above example, whether the
quality of the voice call will be satisfactory). The estimation may be based on either a
mathematical, Markov-based, interpretation or a neural-network based model. A second,
more generic application would be to study the aging speed of such network information in

order to provide time-based performance prediction, rather than parameter-based.

Integration of the proposed monitoring method into a system that would control and improve
the resulting performance. There are two possible directions of research in this area, both
aiming to improve the user experience and related to dynamic management: either induce
changes in the network characteristics or induce changes in the client behaviour. The first
option would see the network parameters connected to a network management system. Under
such a scheme, variations in a certain parameter would lead to variations in the controllable
characteristics of the managed network: increase/decrease queues, modify policies at the
routers, or balance traffic between alternative routes. A preferred approach for the second
option, changing client behaviour, would be to apply changes transparently, using a proxy
server that has knowledge of the past and current network characteristics. Such a proxy
server would introduce additional delay or loss to force network decongestion; at the other
extreme, it would modify the acknowledging or the congestion window increase policy to

improve performance of short-lived flows over a reliable path.

Further research into the neural network prediction. A prime area of research should resolve

294

Chapter 9 - Review, future work, and conclusion

the prediction errors encountered for connections with losses. Various avenues may be
explored to improve the prediction, such as deeper analysis of the connections incurring
losses and combination of the neural network inputs with information resulting from the
mathematical model. A second area of research relates to the TCP profiling discussed before.
The neural network model would produce better accuracy if provided with some indication
about specific implementation characteristics. Such characteristics should be mapped from
their categorical scale onto a numerical scale in order to be presented as an input to the neural
network. A third area of research would look into transferring the neural network model from
network planning to network management. The model would provide management
architectures with information about how network changes, e.g. increasing network delay
with a certain percentage (through increasing queue sizes or redirecting traffic through

alternate routes), would impact on the performance of the future transfers.

9.4 Conclusion

The concept of quality will become increasingly important as the Internet continues to evolve.
This quality will be achieved not through controlled mechanisms, which are difficult to deploy
throughout connected networks, but over the quality-unaware environment that IP provides. In
this environment, the need to evaluate performance becomes critical, as customers want to
establish whether they are provided with the quality that they pay for and, if not, to identify the

weak links of their connectivity infrastructure.

This project bridges the gap between customers interested in the performance of their
applications and the performance-unaware network environment. Through the proposed novel
monitoring architecture, network management entities may evaluate the parameters of the live

traffic flowing through the network and may take the appropriate decisions. The proposed

295

Chapter 9 - Review, future work, and conclusion

analysis method was used within the research to produce a holistic image of Internet paths, as
observed through traffic transiting a backbone collection point. Aside from the information
provided, the observed network characteristics led to a series of recommendations that may

improve current application performance.

With an increasing network quality awareness and need for performance throughout the Internet,

the proposed work will help to evaluate the parameters of the network infrastructure and will

provide a basis for improving the performance of current and emerging network applications.

296

References

References

297

References

[Acterna 2003] * DataAnalyser 3600 homepage,

http://www.acterna.com/united_kingdom/Products/descriptions/DA-3600/3600_traffic.htm|

[Agilent 2003] ., Agilent Advisor homepage,

http://onenetworks.comms.agilent.com/lananalyzer/default.asp

[Aleksander and Morton 1990] Aleksander, I., Morton, H., “An Introduction to Neural

Computing”, Chapman and Hall, London, 1990

[Allman er al 1999] Allman, M., Paxson, V., Stevens, W., “TCP Congestion Control”, Request

for Comments 2581, April 1999

[Allman and Paxson 1999] Allman, M., Paxson, V., "On Estimating End-to-End Network Path

Properties”, SIGCOMM 99, Cambridge, Massachusetts, September 1999

[Allman and Falk, 1999] Allman M., Falk A., “On the Effective Evaluation of TCP” ACM

Computer Communication Review, October 1999.

[Allman 2000] Allman, A., “A Web Server's View of the Transport Layer”’, ACM Computer

Communication Review, 30(5), October 2000

[Amari et al 1996] Amari, S., Chen, T.P., Yang, H.H., “Statistical theory of overtraining — Is
cross-validation asymptotically effective?”, Advances in Neural Information Processing

Systems, vol. 8, pp. 176-182, Cambridge, MA, MIT Press, 1996

[Amari et al 1997] Amari, S., Murata, N., Muller, K. R,, Finke, M., and Yang, H. H,

298

References

“Asymptotic Statistical Theory of Overtraining and Cross-Validation”, IEEE Transactions on

Neural Networks, Vol. 8, No. 5, pp. 985-996, 1997.

[AMP 2003] *, Active Measurement Project homepage, http://watt.nlanr.net/

[ARPA 1981a] *, “Internet Protocol”, Request For Comments 791, September 1981

[ARPA 1981b} *, “Transmission Control Protocol”, Request For Comments 793, September

1981

[Asaba et al 1992] Asaba, T., Claffy, K., Nakamura, O., and Murai, J., “An analysis of
international academic research network traffic between Japan and other nations”, Inet '92, pp.

431--440, June 1992

[Balakrishan e a/ 1997] Balakrishnan, H., Padmanabhan, V., Seshan, S., Stemm, M., and Katz,
R., “Analyzing Stability in Wide-Area Network Performance”, Proceedings ACM

SIGMETRICS Conference on Measurement and Modeling of Computer Systems, June 1997

[Balakrishan e/ a/ 1998] Balakrishnan, H., Padmanabhan, V., Seshan, S., Stemm, M., and Katz,
R., “TCP behavior of a busy Internet server: Analysis and improvements”, Proceedings of the

IEEE INFOCOM, pages 252--262, March 1998

[Bemners-Lee er al 1996] Berners-Lee, T., Fielding, R., and Frystyk, H., "Hypertext Transfer
Protocol -- HTTP/1.0.", Request For Comments 1945, May 1996.
[Blake et al 1998] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W., Request

for Comments 2475, “An Architecture for Differentiated Services”, December 1998

299

References

[Bolot 1993] Bolot, J-C., “End-to-End Packet Delay and Loss Behavior in the Internet,”

Proceedings of SIGCOMM ‘93, pp. 289-298, September 1993

[Borella 2000] Borella, M., “Measurement and Interpretation of Packet Loss” Journal of

Communications and Networking, Vol. 2, No. 2, pp. 93-102, Jun. 2000

[Borella 2003] Borella, M., “ipgrab homepage”, http://ipgrab.sourceforge.net, 2003

[Bortzmeyer 2003] Bortzmeyer, S., echoping home page, http://echoping.sourceforge.net/

[Braden 1989] Braden, R., ‘Requirements for Internet Hosts - Communication Layers’, RFC

1122, Network Information Centre, SRI International, Menlo Park, CA, October 1989.

[Braden er al 1997] Braden, R., Zhang, L., Berson, S., Herzog, S., Jamin, S., RFC 2205,

“Resource ReSerVation Protocol (RSVP) - Version 1 Functional Specification”, September 1997

[Bruce 2003] Bruce, A. M., pchar home page,

http://www.employees.org/~bmah/Software/pchar/

[CAIDA 2003] *, “the Cooperative Association for Internet Data Analysis”,

http://www.caida.org, 2003

[Cardwell et al 2000] Cardwell, N., Savage, S., Anderson, T., “Modelling TCP Latency”,

Proceedings of IEEE INFOCOM, Tel Aviv, Israel, March 2000

300

References

[Carson 1997] Carson, M., “Application and Protocol Testing through Network Emulation”,
Internetworking Technologies Group, NIST, September, 1997, available from

http://snad.ncsl.nist.gov/itg/NIST Net/slides/index.htm

[Carson 2003] Carson, M., “NIST Net home page”, http://snad.ncsl.nist.gov/itg/NIST Net/

[Catania et al 1996] Catania, V., Ficili, G., Pallazo, S., Panno, D., “A Comparative Analysis of
Fuzzy Versus Conventional Policing Mechanisms for ATM Networks”, [EEE/ACM

Transactions on Networking, vol. 4, no. 3, june 1996

[CERT 1999] *, ~CERT practice: Configure firewall packet filtering,

http://www cert.org/security-improvement/practices/p058.html, July 1999

[Cheng and Chang 1996] Cheng, R.G., Chang, C.J., “Design of a Fuzzy Traffic Controller for

ATM Networks”, IEEE Transactions on Networking, vol. 4, no.3, june 1996

[Chester 1990] Chester, D. L., “Why two layers are better than one”, International Joint

Conference on Neural Networks, vol. 1, pp. 265-268, Washington, DC, 1990

[Cochran and Snedecor 1980] Cochran, W. G., Snedecor, G. W., “Statistical methods”, lowa

State University Press, 1980

[Clark 1982] Clark, D., "Window and Acknowledgment Strategy in TCP", Request For

Comments 813, July 1982.

[Clevertools 2003] *, Netboys homepage, http://www.clevertools.com/products/netboys/

301

References

[CoralReef 2003] *, “CoralReef Software Suite”,

http://www caida.org/tools/measurement/coralreef
[Crovella and Bestavros 1996] Crovella, M., and Bestavros, A, “Self-Similarity in
WorldWideWeb Traffic: Evidence and Possible Causes,” Proceedings of SIGMETRICS '96,

Philadelphia, May 23-26, 1996

[Crowcroft and Wakeman, 1991] Crowcroft, J. and Wakeman, 1. “Traffic Analysis of some UK-

US Academic Network Data,” Proceedings of INET '91, Copenhagen, June 1991

[Deering and Hinden 1998] Deering, S., Hinden, R., “Intemnet Protocol Version 6 (IPvé6)

Specification”, Request for Comments 2460, December 1998

[Donnelly 2001] Donnelly S., “timestamping accuracy”, e-mail to tcptrace users mailing list

http://irg.cs.ohiou.edu/software/tcptrace/archive/0110.html, April 2001

[Doulgeris and Develekeros 1997] Doulgieris, C., Develekeros, G., “Neuro-Fuzzy Control in

ATM Networks”, IEEE Communications Magazine, may 1997

[Dovrolis 2003] Dovrolis, C, pathrate home page,

http://www cis.udel.edu/~dovrolis/bwmeter.html

[Evans 2001] Evans, M., “A Model for Managing Information Flow on the World Wide Web”,

PhD Thesis, University of Ptymouth, 2001

302

References

[Fall and Varadhan 2003] Fall, K. Varadhan, K. “The ns manual®’,

http://www.isi.edu/nsnam/ns/doc/, 2002

[Fayyad et al, 1996] Fayyad, U., Shapiro, G. P., Smyth, P., “From Data Mining to Knowledge

Discovery in Databases”, Al Magazine, Fall 1996

[Fielding et al 1997] Fielding, R., Irvine, U.C., Gettys, J., Mogul, J., Frystyk, H., Berners-Lee,

T., “Hypertext Transfer Protocol - HTTP /1.1, Request for comments 2068, January 1997

[Floyd and Fall, 1999] Floyd, S. and Fall, K., “Promoting the Use of End-to-End Congestion
Control in the Internet", IEEE/ACM Transactions on Networking, Vol. 7, No. 4, pp. 458-472,

August 1999
[Floyd and Padhye 2001] Floyd, S. and Padhye, J., “On inferring TCP behaviour”, Proceedings
of the ACM SIGCOMM 2001 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication, August 27-31, 2001, San Diego, CA, USA. ACM, 2001

[Fraleigh et al 2003] Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M., Moll, D., Rockell,

R., Seely, T., Diot, C., IEEE Network, 2003.)

[Funahashi 1989] Funahashi, K., “On the approximate realisation of continuous mappings by

neural networks, Neural Networks, vol. 2, pp. 183-192, 1989

[Garibaldi 1998] Garibaldi, J., ‘Data Mining Algorithms: Applicability to Data Set Types’,

Proceedings of International Network Conference, Plymouth, 1998

303

References

[Garibaldi er al 1998] Garibaldi, J.M., Burn-Thomton, K.E., and Mahdi, A.E., “Pro-Active
Network Management using Data Mining”, in Proceedings of IEEE GLOBECOM 98, pp. 1208-

1211, Sydney, Australia, 1998.

[Gaynor 1996] Gaynor, M., “Proactive Packet Dropping Methods for TCP Gateways, October

1996”, http://www eecs.harvard.edu/~gaynor/final.ps

[Haykin 1999] Haykin, S., “Neural networks: a comprehensive foundation” 2™ edition, Prentice

Hall, 1999

[Hammer 2003] ***, Hammer Voice Quality Test Suite technical datasheet,

http://www.empirix.com/NR/Empirix/NCResources/datasheet_ngnt_vqtestsuite_0302.pdf
[Heidemann et al 1997] Heidemann, J., Obraczka, K., Touch, J., “Modeling the Performance of
HTTP Over Several Transport Protocols”, ACM/IEEE Transactions on Networking, 5 5, 616-

630, October, 1997

[Hertz and Krogh 1991] Hertz, J., Krogh, A., Palmer, R.G., “Introduction to the Theory of

Neural Computation”, Addison Wesley, 1991

[Hiramatsu 1990] Hiramatsu, A., “ATM Communications Network Control by Neural

Networks”, IEEE Transactions on Neural Networks, vol. 1, no. |, march 1990

[Hyun er al 2003] Hyun, Y, Broido, A, Claffy, C.“On Third-party Addresses in Traceroute

Paths”, Passive and Active Measurement Workshop, April 6-8, 2003, La Jolla, California

304

References

[InterMapper 2003] *, InterMapper: Network Monitoring and Alerting Software — website,

http://www.intermapper.com

[IBM 2000] *, “HTTP Server: Persistent Connections”, IBM iSeries HTTP server

documentation, http://www-1.ibm.com/servers/eserver/iseries/software/http/services/persist.htm

[ISC 2003] * “Internet Domain Survey”, Internet Software Consortium website,

http://www.isc.org

[ITU 2002] *, “Abstract Syntax Notation One (ASN.1) - Specification of Basic Notation”, ITU-

T Rec. X.680 (2002) | ISO/IEC 8824-1:2002

[ITU 1999] *, ‘Recommendation H.323 - Packet-based multimedia communications systems’,

H.323 1ITU Recommendation’, ITU, September 1999

[Jain and Dovrolis 2003] Jain, M., Dovrolis, C., "End-to-End Available Bandwidth:
Measurement methodology, Dynamics, and Relation with TCP Throughput, IEEE/ACM

Transactions in Networking, August 2003

[Jacobson et al 1992] Jacobson, V., Braden, R., Borman, D., “TCP Extensions for High

Performance‘, Request for Comments 1323, May 1992

[Jacobson and Karels 1988] Jacobson, V., Karels, M., ‘Congestion Avoidance and Control’,

Proceedings of ACM SIGCOMM ’88, ACM, Stanford, CA, Aug 1988

[Jacobson 1990] Jacobson, V., ‘Berkeley TCP Evolution from 4.3 Tahoe to 4.3 Reno’,

305

References

Proceedings of the |8th Internet Engineering Task Force, Vancouver, September 1990

[Jacobson 2003a] Jacobson, V., pathchar source code , fip:/fip.ee.lbl.gov/pathchar

[Jacobson 2003b] Jacobson, V., tcpdump source code, ftp://fip.ee.lbl.gov/tcpdump.tar.Z

[Jacobson 2003c] Jacobson, V., fraceroute source code, fip:/fip.ee.Ibl.gov/traceroute.tar.gz

[Karn and Partridge 1991] Kam, P., Partridge, C., “Improving Round-Trip-Time Estimates in

Reliable Transport Protocols”, ACM Transactions on Computer Systems, Vol. 9, No. 4,

November 1991, pp 364-373

[Kennington 2003] Kennington A, “Simulation software links™,

http://www.topology.org/soft/sim.html

[Keshav 1991] Keshav, S., “A Control-Theoretic Approach to Flow Control”, Proceedings of

ACM SIGCOMM, September 1991.

[Kleinrock 1976] L. Kleinrock, “Queueing Systems, Volume Il: Computer Applications,” John

Wiley & Sons, 1976.

[Kumar and Spafford 1994] S. Kumar and E. Spafford, “An Application of Pattern Matching in
Intrusion Detection,” Technical Report 94-013, Department of Computer Sciences, Purdue

University, March 1994,

[Lai and Baker 2000] Lai, K., Baker, M., “Measuring Link Bandwidths Using a Deterministic

306

References

Model of Packet Delay”, Proceedings of ACM SIGCOMM ’00, Stockholm, Sweden, August

2000

[Leland ef al 1994] Leland, W., Taqqu, M., Willinger, W., and Wilson, D., “On the Self-Similar
Nature of Ethernet Traffic (Extended Version),” /[EEE/ACM Transactions on Networking, 2(1),

pp. 1-15, February 1994.

[LBNL 2003] ***, ‘libpcap 0.7.1°, Lawrence Berkeley National Laboratory - Network Research

Group, fip://ftp.ee.Ibl.gov/libpcap.tar.Z

[McCreary and Claffy 2000] McCreary, S, Claffy, K., “"Trends in wide area IP traffic patterns -
A view from Ames Internet Exchange,”, in ITC Specialist Seminar, Monterey, CA, 18-20 Sep

2000

[McDaniel 2001] McDaniel, B., ‘TCP Timestamping - Obtaining System Uptime Remotely’, e-

mail message, http://securityfocus.com/archive/1/168637, March 11, 2001

[Morgan and Bourlard 1990] Morgan, N., Bourlard, H., “Continuous speech recognition using
multilayer perceptrons with hidden Markov models”, IEEE International Conference on

Acoustics, Speech, and Signal Processing, vol. 1, pp. 413-416, Albuquerque, 1990

[MCI 2003] *, MCI (Microwave Communications, Inc.), “About MCI: Our Network: IP Latency

Statistics*, http://global.mci.com/about/network/latency/

[Mills 1992] Mills, D., “Network Time Protocol (Version 3): Specification,Implementation and

Analysis,” RFC 1305,Network Information Center, SRI International, Menlo Park, CA, Mar.

307

References

1992.

[MFN 2003]) * “MFN backbone architecture”,

http://www.mfn.com/network/ip_networkmaps.shtm, May 2003

[Microsoft 2000] *, “Microsoft Windows 2000 TCP/IP Implementation Details”, white paper,

http://www.microsoft.com/windows2000/techinfo/howitworks/communications/networkbasics/tc

pip_implement.asp

[Minshal 1997) Minshal, G., tcpdpriv, fip:/fita.ee.lbl.gov/software/tcpdpriv-1.1.10.tar.Z

[Mogul 1992] Mogul, J., “Observing TCP Dynamics in Real Networks,” Proceedings of

SIGCOMM '92, pp. 305-317, August 1992

[Muuss 2003] Muuss, M., ping source cade, fip:/fip.arl.army.mil/pub/ping.shar

[Mukherjee 1994] Mukherjee, A., On the Dynamics and Significance of Low Frequency

Components of Internet Load, Internetworking: Research and Experience, Vol. 5, pp. 163-205,

December 1994

[Nagendra 1998] Nagendra, S., “Practical Aspects of Using Neural Networks: Necessary

Preliminary Specifications”, GE internal report 97CRD173, January 1998

[NIMI 2003] *, National Intemet Measurement Infrastructure homepage,

http://www.ncne.nlanr.net/nimi/

308

References

[NIST Net 2003] *, NIST Net mailing list archive, http://snad.ncsl.nist.gov/itg/NIST Net/NIST

Net.archive.gz

[NNRI 2003] *, The National Regulatory Research Institute (NNRI), “Residential Perceptions of

Internet Service Quality: Results of a Survey”, January 2003.

[NS 2003] *, “The Network Simulator — ns2 homepage”, http://www.isi.edu/nsnam/ns/

[NYI2003] *, The New York Internet company (NYI), "Super ping — NYI network status page”,

http://whatsdown.net/superping.shtml

[Osterman 2003] Ostermann, S., tcptrace homepage, http://www.tcptrace.org

[Ott et al 1996] Ott, T., Kemperman, J. H. B., Mathis, M., “The Stationary Behavior of Ideal

TCP Congestion Avoidance”. fip://fip.bellcore.com/pub/tjo/TCPwindow.ps , August 1996.

[Padhye et al 1998) Padhye, J., Firoiu, V., Towsley, D., Kurose, J. — “Modelling TCP
Throughput: A Simple Model and its Empirical Validation”, Proceedings of SIGCOMM ’98,

Vancouver, CA, 1998

[Pappalardo 2002] Pappalardo, D, “Cable & Wireless ups latency SLAs in North America,
Europe”, Network World, June 2002, hup://www.nwfusion.com/news/2002/132261_05-06-

2002.html

[Paxson 1997a] Paxson, V., “Measurements and Analysis of End-to-End Intemet Dynamics”,

PhD thesis, Computer Science Division, University of California, Berkeley, April 1997

309

References

[Paxson 1997b] V. Paxson, “Automated Packet Trace Analysis of TCP Implementations”,

Proceedings of ACM SIGCOMM '97, September 1997, Cannes, France

[Paxson 1997c] Paxson, V., “End-to-End Routing Behavior in the Intemet”, [EEE/ACM

Transactions on Networking, 5(5), pp- 601--615, Oct. 1997.

[Paxson 1997d] Paxson, V., “Why We Don't Know How to Simulate the Internet”, Proceedings

of the 1997 Winter Simulation Conference, Atlanta GA, U.S.A., Dec. 1997

[Paxson 1998] Paxson, V., “On calibrating measurements of packet transit times”, Proceedings

of ACM SIGMETRICS '98, pp. 11-21, Madison, W1, June 1998

[Paxson et al 1998] Paxson, V., Mahdavi, J., Adams, A., Mathis, M. “An Architecture for Large-

Scale Internet Measurement”, IEEE Communications, v.36, no.8, pp 48-54, August 1998,

[Paxson 1999] Paxson, V., “End-to-end internet packet dynamics”, IEEE/ACM Transactions on

Networking, Volume 7, Issue 3, June 1999, pp 277-292

[Paxson ef al 1999] Paxson, V., Allman, M., Dawson, S., Fenner, W., Griner, J., Heavens, 1,

Lahey, K., Semke, J., Volz, B., Request for Comments 2525, "Known TCP Implementation

Problems”, March 1999,

[Paxson er al 2000] Paxson, V., Adams, A., Mathis, M., “Experiences with NIMI”, Proceedings

of Passive and Active Measurement, 2000

310

References

[PIPEX 2003] ., PIPEX, “PIPEX - Latency Statistics”,

http://www .connection.pipex.net/support/network/latency.shtml

[Popescu and Shankar, 1999] Popescu, C. T., Shankar, A. U., “Empirical TCP Profiles and

Application”, 7th Intl. Conf. on Network Protocols (ICNP'99), Toronto, 1999

[Postel 1980] Postel, J., “User Datagram Protocol”, Request For Comments 768, August 1980

[PMA 2003] *, Passive Measurement and Analysis homepage, http://pma.nlanr.net/PMA/

[Prechelt 1998] Prechelt, L., “Automatic early stopping using cross validation: quantifying the

criteria”, Neural Networks, i1, 1998, pp. 761-767

[Quallaby 2003] *, Quallaby corporation website, http://www.quallaby.com

[Ramaswamy and Gburzynski 1999] Ramaswamy, S., Gburzynski, P., "A Neural Network
Approach to Effective Bandwidth Characterization in {ATM} Networks", in Performance
Analysis of ATM Networks, IFIP vol. 4, Demetres Kouvatsos, editor, Kluwer Academic

Publishers, 1999.

[Savage 1999] Savage, S., “Sting: a TCP-based Network Measurement Tool”, Proceedings of the
1999 USENIX Symposium on Intemet Technologies and Systems, pp. 71-79, Boulder, CO,

October 1999

[Schemers 2003] Schemers, R. J, fping home page,

http://www stanford.edu/~schemers/docs/fping/

311

References

[Securiteam 2001] *, “TCP Timestamping - Obtaining System Uptime Remotely”,

http://www.securiteam.com/securitynews/SNPOC1 53P1.html, March 2001

[Shenker er al 1990] Shenker, S., Zhang, S., Clark, D., “Some Observations on the Dynamics of
a Congestion Control Algorithm” ACM Computer Communication Review, 20(4):30-39,

October, 1990

[Shunra 2003] *, Shunra’s Network Simulation and Emulation Solutions, http://www.shunra.com

[Silberschatz and Tuzhilin 1995] Silberschatz, A., and Tuzhilin, A. 1995. “On Subjective
Measures of Interestingness in Knowledge Discovery”, Proceedings of KDD-95: First
International Conference on Knowledge Discovery and Data Mining, 275-281. Menlo Park,

Calif.: American Association for Artificial Intelligence.

[Schulzrinne et al 1996] Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V., “RTP: A

Transport Protocol for Real-Time Applications”, Request For Comments 1889, January 1996

[SNNS 2003), *, “Stuttgart Neural Network Simulator”, http://www-ra.informatik.uni-

tuebingen.de/SNNS/, 2003

[Stevens 1995] Stevens, R., Wright, G., “TCP/IP Iliustrated, Volume 2: The Implementation™.

Addison Wesley Professional. 1995

[Stevens 1997] Stevens, R., Request For Comments 2001 “TCP Siow Start, Congestion

Avoidance, Fast Retransmit, and Fast Recovery Algorithms”, January 1997

312

References

[Sun and Ifeachor 2000] Sun, L., Ifeachor, E., “Perceived Speech Quality Prediction for Voice
over 1P-based Networks”, Proceedings of IEEE International Conference on Communications

(IEEE I1CC'02), New York, April 2002, pp.2573-2577.

[Swan and Bacher 1997] Swan, A., and Bacher, D., rtpmon 1.0a7,

fip://mmftp.cs.berkeley.eduw/pub/rtpmon/, University of California at Berkeley, January 1997

[Swingler 1996] Swingler, K., “Applying Neural Networks — A Practical Guide”, Academic

Press, 1996

[UUNET 2003b] * “UUNET Latency statistics”,

http://www | .worldcom.com/uk/about/network/latency

[UKERNA 2003] *, UKERNA (United Kingdom Education & Research Networking

Association) and JANET (Joint Academic Network) Home page, hitp://www.ja.net

[TDSLink 2003] *, TDSLink website, http://www.tdslink.com

[Thompson and Miller 1997] Thompson, K., Miller, G.J. ‘Wide-Area Internet Traffic Patterns

and Characteristics’, IEEE network, November 1997

[TIRC 2003] *, The Insight Research Corporation, “IP Telephony: Service Revenue and OSS

Expenditures for Voice over Packet Networks 2002-2007 - a market research report”, October

2002

313

References

[Wakeman e. al 1992] Wakeman, 1., Lewis, D., and Crowcroft, J., “Traffic Analysis of Trans-

Atlantic Traffic,” Proceedings of INET '92, Kyoto, Japan, 1992

[Wassenaar 2003] Wassenaar, E., Nikhef ping source code,

ftp://ftp.nikhef.nl/pub/network/ping.tar.Z

[Weigend er al 1990] Weigend, A.S., Huberman, B., Rumelhart, D., “Predicting the future: A

connectionist approach”, International Journal of Neural Systems, vol. 3, pp. 367-375, 1990

[Wendland 2000] Wendland, R., “Re: a question about the deployment of SACK and NewReno

TCP”, e-mail message to end2end-interest mailing list, March 2000

[Wendland 2003] Wendland, R., “How prevalent is Timestamp option and PAWS?”, e-mail

message to end2end-interest mailing list, May 2003

[Willinger et al 1995] Willinger, W., Tagqu, M., Sherman, R., and Wilson, D., “Self-Similarity
Through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level,”

Proceedings of SIGCOMM '95, pp. 100-113, Cambridge, MA, September 1995.

[Woods 2000] Woods, D., “Fishy Business”, Network Computing,

http://www.networkcomputing.com/1114/1 1 14f1.htmi?Is=NCJS_1114bt , July 2000

[wget 2003] “GNU wget homepage”, http://wget.sunsite.dk

[Yaijnik et al 1999] Yajnik, M., Moon, S., Kurose, J., Towsley, D., “Measurement and Modeling

of the Temporal Dependence in Packet Loss,” Proceedings of IEEE INFOCOM 99, March 1999

314

References

[Yahoo 2003] *, “Random Yahoo Link page”, http://random.yahoo.com/bin/ryl

[Zell et al 1994] Zell, A., Mamier, G., Vogt, M., Mach, N., Huebner, R., Herrmann, K.U., Soyez,
T., Schmalzl, M., Sommer, T., Hatzigeogiou, A., Doering, S., Posselt, D.: SNNS Stuttgart Neural

Network Simulator, User Manual. University of Stuttgart (1994)

[Zhang et al 1991] Zhang, L., Shenker, S., Clark, D., “Observations on the Dynamics of a
Congestion Control Algorithm: The Effects of Two-Way Traffic”, Proceedings of ACM

SIGCOMM ‘91, Zurich, Switzerland, September 1991

[Zhang et al 2000] Zhang, Y., Paxson, V., Shenker, S, “The Stationarity of Internet Path

Properties: Routing, Loss, and Throughput”, ACIRI Technical Report, May 2000

[Zhang et al 2001] Zhang, Y., Duffield, N., Paxson, V., Shenker, S, “On the Constancy of

Internet Path Properties”, Proceedings of ACM SIGCOMM Internet Measurement Workshop,

November 2001.

315

Appendix A - Real-time traffic monitor

Appendices

316

Appendix A — Real-time traffic monitor

Appendix A — Real-time traffic monitor

The aim of this project with regards to real-time traffic was to gather the parameters that would
provide a measurement architecture with the necessary network image in order to asses the
performance of various real-time applications. Constructing such an image would require
information about the following parameters:

- Delay - the time elapsed between the sending of a packet and its arrival at the destination;

- Jitter - the variance of the delay value;

- Packet loss - the number of lost packets, reported in the time elapsed, and the burstiness
of the loss events.

Transport QoS has two main areas: end-to-end measurements and, in case there are changes in
the level of parameters, fault localisation. Based on the diagram from Figure 3.1, a traditional
approach of fault localisation for UDP traffic would require a 3-device configuration: two placed
right at the endpoints and one along the path of the flows. This is due to the fact that UDP does
not provide any reception feedback from the receiving (remote) endpoint. As a result, the
endpoint devices would inform about end-to-end parameters and fault location would result from
comparative measurements made by the third device. In the simplest case, the third device (the
one placed along the path of the flows) would serve also as data gathering point, collecting the
information provided by the endpoint-placed devices. This 3-device measurement configuration
has two clear disadvantages: it would be intrusive (in the best case scenario, the endpoint clients
need to send the data to the server even if they are doing non-intrusive monitoring) and it would
require privileged positioning, i.e. at the endpoints, for some of the monitoring devices.

The QoS for transport can be determined from the audio flows within a call (which run on RTP).
Current tools, such as Hammer VTQS (Voice Quality Test Suite) [Hammer 2003], Agilent (IP
Telephony) Analyser [Agilent 2003], and ripmon [Swan and Bacher 1997], base their
calculations upon parsing both the RTP and/or RTCP and displaying the available data. Because
they do not combine the two types of analysis, none of them can establish fault location without
using the traditional approach mentioned above.

Each of the two flows, i.e. RTCP and RTP, has its own advantages and disadvantages when
analysing the transport. RTCP does provide enough information to determine the end-to-end
performance, but it has two drawbacks: it informs only about end-to-end parameters, therefore it
cannot be used for localising faults and it has a poor granularity, because of its scalability
requirements, for conferences with multiple participants. RTP has a very good granularity, but it
is limited to the network sub-path sender-monitor (i.e. Endpoint A — Monitoring point and
Endpoint B — Monitoring point in Figure 3.1), without being able to infer anything for the rest
of the path (i.e. Monitoring point — Endpoint A and Monitoring point — Endpoint B in the same
figure).

This section proposes a method to obtain a better view of the network performance, without
using several devices and without injecting additional traffic into the network. To achieve its
aim, the method monitors the RTP and RTCP flows and correlates the information they provide
to reveal both the end-to-end performance and the fault localisation (when the monitored
parameters change their value along the route

317

Appendix A — Real-time traffic monitor

A.1 Monitoring procedure

The monitoring procedure comprises three steps: capture (and parsing), parameter inference /
extraction, and correlation. First, the real-time flows (RTP) are identified and captured. The
capturing module was described in section 3.5; identification of the RTP flows will be described
in the next sub-section, In the inference phase, the parsed information from the RTP header
fields and the RTCP reports is analysed / interpreted to obtain the performance parameters. The
last phase, correlation of RTP and RTCP, is used to establish the location of the network
degradation, if any.

A.1.1 Identification of the real-time flows

The monitor must first determine the ports on which the RTP flow(s) will be running within a
VolP call. The actual procedure depends heavily on the application used. For example, in the
case of a VoIP call, the monitor must decode the call signalling, because the ports are
dynamically allocated by the two endpoints during the call initiation. Even after narrowing the
applications to VolIP, it depends on the stack used (e.g. Session Initiation Protocol (SIP,
[Handley et al 1999]), or H.323 [ITU 1999]). In the case of SIP, the addressing and syntax are
the same with HTTP; as a result, port identification can be performed by parsing the text tags
from the call initiation messages. The case of H.323 is more complex, as the entire signalling
dialogue between the corresponding endpoints is encoded using ASN. | syntax [ITU 2002]

The task of identifying the flows via any of the above techniques was considered to be outside
the scope of this project, due to the implementation time it required and the lack of novelty.
During the validation process, section 6.1, the RTP port identification was done using the
characteristics of the H.323 implementation involved. It was observed that Netmeeting, the client
used to generate the H.323 test traffic, allocated ports for RTP flows using the even numbers
starting with 48000. Also, the RTCP port for a specific real-time flow # is allocated next to the
RTP port, portrycpn = portrren + 1. Using this information, the parsing module was set to
interpret as RTP / RTCP all the UDP traffic on even / odd ports above 48000, and to pair them
according to the above rule.

A.2 Parameler inference and extraction

There are two types of analysis during this phase: one using the RTP packet headers, based on
inference of the network events that lead to this succession of packets, and one using the RTCP
reports, which involves only parsing and interpretation, as the parameters are already provided
by these packets. Aside from the RTP header / RTCP reports, the monitor also uses the arrival
timestamp of each packet to perform the timing calculations.

The monitor retrieves the associated flow object from the Connection database in order to
perform the analysis. The RTP/RTCP flow objects in the Connection database contain the
following information:

- Flow status: to indicate whether the flow is active or not. The variable was introduced in
the proof-of-concept monitor developed, but no mechanisms were developed to modify
it, due to the unavailability of an ASN.| decoding facility.

- Flow information (FlowEnds): to identify the RTP/RTCP flow. Although, as mentioned
in section 3.2, there is an unique correspondence between a flow and its corresponding

318

Appendix A — Real-time traffic monitor

object in the database, this correspondence was slightly altered in the case of RTP/RTCP
to simplify the analysis. Each RTP/RTCP pair was associated to a single object, as the
two flows work together and the information provided by them needs to be comrelated in
the last part of the analysis.
- Packet accounting variables
- Number of RTP packets reported lost by the receiving end, from the RTCP receiver
reports
- Number of lost RTP packets at the monitor, RTP sequence number of the last RTP
packet
- Timing variables
- Timestamp of the first / last captured RTP packet within the flow
- Timestamp of the last RTP packet identified as lost.
- RTP timestamp of the last captured RTP packet within the flow
- Delay variables
- RTP timestamp resolution, based on the payload type field within the RTP header,
used to convert the RTP timestamp in time units
- Inter-arrival delay / jitter at the endpoint, from pair RTCP receiver reports
- Last /average inter-arrival delay at the monitor
- Inter-arrival / one-way jitter at the monitor
- Timestamp of the last SR sent
- One-way jitter (ow_jitter), inter-arrival jitter (ia_jitter)
- Misordering information
- Skip sequences (SkipSeqno) - array used to determine if a packet is a duplicate or an out-
of-order one. With the simplifying assumptions introduced, the array was subsequently
removed from the analysis.

In addition to the flow-associated object, the following RTP fields were involved in the analysis:
- RTP sequence number (RTPyy) — to identify lost / out-of-order segments
- RTP timestamp (tspy) — to determine user timing information
- Payload type — to determine whether the sender changed the codec used since the last
captured RTP packet.

The algorithm starts from the assumption that there are only five possible alternatives for each

captured packet: in-sequence, ‘future’, out-of-order, lost, or duplicated segment. The monitor

determines to which of these four categories the current packet belongs by comparing its RTP

sequence number (RTPpy) with the expected RTP sequence (RTPepec=RTPpasit1) and with the

content of the SkipSeqno. The packet is:

- in-sequence, if RTPyy is equal with the expected sequence number

future, indicating either one / several connected losses or a miss-ordering event, if RTPpy, is

higher than RTPeype. To simplify the analysis, it is assumed that the packets carrying the

missing sequence number were lost but they are marked as skipped in SkipSegno

- out-of-order, if RTPyy is lower than RTPepe: and the sequence number is listed in
SkipSeqno.

- duplicate, if RTPgy, is lower than RTPeqeq and the sequence number is not listed in
SkipSeqno.

- lost, if RTPp is lower than RTPeypee: and the sequence number is not listed in the SkipSeqno

The proposed states are valid from a theoretical perspective, but they are difficult to implement
in practice due to the technical limitations. Unlike TCP, which retransmits all the lost segments,
UDP, which provides the transport for RTP/RTCP, does not perform any recovery if segments
are lost. As a result, SkipSeqgno, that carries all the sequence number streams which were lost or
misordered, will fill up if packet loss exists, no matter how large the array is (in fact, making it

319

Appendix A — Real-time traffic monitor

large only for this purpose would increase the monitor’s memory requirements usclessly). One of
Paxson’s Internet studies [Paxson 1999] has shown that packet duplication is a very rare network
phenomenon and indicates severe routing problems, network conditions under which the
proposed method does not function properly anyway, because it might not capture all the
packets. If it is assumed that packet duplication does not happen, there are only two types of
network events to identify: packet misordering, where two / several successive packets arrive at
the monitor in a different order than the one they were sent, and packet loss, where one / several
packets are lost between the sender and monitor and will never arrive at the monitor. As a result,
when the monitor captures a packet with a sequence number lower than expected, the packet is
automatically interpreted as misordered and the number of lost packets is decremented. With this
simplification, the SkipSegno array is not required at all; the monitor can distinguish between the
network events without historical knowledge of the transfer.

Once the associated flow object is retrieved from the database, the monitor, depending on the
packet type, runs an analysis of the RTP header in conjunction with the flow object or parses the
RTCP header using the above assumptions, then updates the flow variables. In the following, the
case of RTP analysis will be discussed, as RTCP parsing is of less interest. A schematic diagram
of the RTP algorithm is given below in Figure A.0.1.

320

Appendix A — Real-time traffic monitor

RTP packet capture

RTP =R TPpasi+

YES

OW_j inercn=(tscrt'tscn_src)‘ (tslnst'tslast_src)
ow_short_ jittercy= ow_short_jitterenHjow_jittereq|- ow_short_jittercn)/16

v

ia_de Iaycn‘:tscn'tsm

!

NO

RTP, k™ RTP,,

ia_jitteren= ia_delaycq-ia_delayis

—l ia_delays = ia_delaycy

Ooo_pkt ++
Lost_pkt --
Lost_pkt += (RTPpi-RTPjast1)
loss_bursten = (RTPpia-RTPrasi+1)
burst_count ++
Legend:

tScrien_sreflasi/lost sre — timestamp values, recorded for current packet at monitor / current packet at
sender / last packet at monitor / last packet at sender.

ow_jittercy — current measurement of one-way jitter

ow_short_jittercy — current value of short term one-way jitter [Schulzrinne et al 1996]
ow_jitter_pkts — number of one-way jitter samples

RTPyiast — RTP timestamp of current / last packet

ia_delay — inter-arrival delay, as recorded at the monitor

ia_delaycn — current inter-arrival delay, as recorded at the monitor

ia_jitter,y — current inter-arrival jitter, as recorded at the monitor

ia_delay pkts — number of samples for inter-arrival delay jitter calculation

lost_pkt — number of lost packets

toss_burstey — number of packets lost in the current loss burst

burst_count — counter of the number of loss bursts

ooo_pkt — number of misordered packets

Figure A.0.1 - Network parameter inference based on RTP analysis

There are two types of parameters can be determined using the RTP header fields and the arrival
timestamp of each packet: delay-related (inter-arrival delay, inter-arrival jitter, and one-way
jitter) and accounting-related (lost packets and out-of-order packets). The inter-arrival delay is
determined by subtracting the capture timestamps of successive in-order packets. The average
value will be equal with the inter-send delay, unless there is skew or drift, as defined in [Mills
1992], between the clocks at the sender and receiver.

The one-way delay jitter would ideally relate to the absolute position of the packet in the stream;
unfortunately, the monitor does not have any reference for establishing the absolute packet

321

Appendix A — Real-time traffic monitor

position. Using a single reference, such as the first captured packet, would slide the figure for the
entire stream with the jitter of that packet. To solve this problem, the previous packet is used as
reference; in the diagram in Figure A.0.1, (S se and tSen_src are the timestamps of the current
and last packet, calculated using the RTP sequence number, and tsug and tsq are the capturing
timestamps of the two packets. The algorithm is similar to the one used by RTCP to calculate
and report jitter and it requires knowledge of the codec used, i.. the inter-send delay between
successive RTP packets. In addition, the monitor also calculates an inter-arrival delay jitier. The
value is calculated by comparing the previous delay with the actual one; the resulting value is not
affected by clock drift, but it is subject to the time delays between successive packet arrivals; it
also cannot provide a jitter estimate in the case of packet misordering / loss. There are two one-
way jitter variables: one carrying a short term value (ow_short_jitter), indicating the short-term
jitter, and ow_jitter, which is a sum of modules of the jitter values. The ow_short_jitter is
calculated using the formula recommended in [Schulzrinne er al 1996], in order to aillow
comparison with the short-term end-to-end jitter provided by RTCP.

The lost and out of order packets are both determined using the RTP sequence number: when a
packet is captured, its sequence number is compared with the expected sequence number, falling
in one of the categories previously mentioned. In addition, the monitor calculates the burstiness
of losses, using the bursi_loss variable, which measures the size of the current burst. At the end
of the connection, the average size of a burst may be determined by dividing the number of lost
packets with the burst loss. The mechanism includes a short-term protection to account for
misordering events, where one / several RTP presumed-lost packets arrive later and must be
discarded as losses. If the current burst of presumed-loss packets arrives later, a loss_bursi.
variable, initially carrying the size of the burst, is decreased with each packet; when it reaches
zero, the burst_loss is also decremented. The mechanism works only as long as there is only one
misordered packet / train of packets at one time; for more complex misordering schemes, the
algorithm would require an array of loss_burst., values instead of a single variable.

From the obtained variables, the one_way jitter, loss, and the inter-loss delay are of interest for a
voice quality model. In addition, the average inter-arrival delay may be used to determine an
eventual clock skew between the clocks at the sender and at the monitor. Also, out-of-order
packets, depending on the policy of the receiver, would either be considered lost or, if the
receiver has a long queue and they arrive in time, delayed packets with high jitter.

The RTP specnﬁcatlon provides an option for codecs to stop sendmg RTP packets during the
silence periods in order to reduce the amount of traffic produced'. Such silence periods have to
be detected, otherwise they would be interpreted by the monitor as very high inter-arrival delays.
The detection is made using the (silence) marker field from the RTP packet which, when set in a
packet, indicates the end of a silence period.

A.2.1 Correlating RTP analysis with RTCP parsing

By correlating the two sets of parameters, obtained from RTP and RTCP, it is possible to
determine whether or not a specific problem (e.g. a high packet loss rate) is caused by a problem
which exists in the East Subnetwork or the West Subnetwork. Figure A.0.2 presents the captured
flows.

! An alterative is receiver-generated comfort noise, based on spectral information provided by the sender.

322

Appendix A — Real-time traffic monitor

«._..A—B control (end-to-end parameters) _ _ _ _. _
..... B—A control (end-to-end parameters) _._ _
A—B audioi | -
Endpoint || i Endpoint
| B—A audio
r—
! Legend:
Monitoring point —*®> RTP flows

= RTCP flows

Figure A.0.2: RTP and RTCP flows monitoring

The RTP streams, as captured on the monitoring point, are: A—B (after passing through the
West sub-network, see Figure 3.1) and B—A (after passing through the East sub-network).
Therefore, by measuring the parameters of these flows, we can determine the performance of the
West sub-network (from the A—B flow) and the East sub-network (from the B—A flow).
Meanwhile, as mentioned, RTCP provides the end-to-end parameters, i.e. the performance of the
entire A—B and B—A routes, but it has no indication about how these parameters change on the
route (i.e. cannot establish where a faulty behaviour of the network determined a change in the
values of the parameters).

Putting together the two sets, the parameters for the following segments result:

- A—B and B—A, end-to-end — from the RTCP flows

- A—monitoring point and B—monitoring point — from the RTP flows

- monitoring point—B and monitoring point—A — by subtracting the RTP obtained values
from RTCP end-to-end parameters.

Therefore, by using both RTP and RTCP, the method provides both the end-to-end and the end-
to-monitoring point parameters for a monitored real-time flow.

A.3 VolP validation

The following set of parameters (symmetric for the two directions) was set on the NIST Net
machine: 5% packet loss, 300 ms delay, 25 ms delay jitter, unlimited bandwidth, normal
distribution for loss and delay. The measurements were based on a long capture session, with
approximately 20,000 packets captured.

The software tools used in the experiment were: Netmeeting, for generating the flows, running at
the two endpoints, tcpdump, for packet capturing, running at the monitoring station. The H.323
call used the G.723.1, 6400 bits/second codec. In order to avoid repeating the test due to errors in
the monitor, the entire session was captured using tcpdump and stored for offline analysis.

The process used the packet trace and the VoIP analysis implementation, and it included two
stages. First, the RTP and RTCP flows within the trace were analysed, using the method
described in section 3.3, to estimate the inter-arrival jitter and the packet loss. For each direction
there were two different sets of results, one from the RTP analysis, indicating the properties of
the path segment between the sender and the monitor, and one resulting from the RTCP parsing,
which was showing the end-to-end properties of the path. In the second stage, the two sets of
parameters were combined to identify the sub-path where the network conditions had degraded.

323

Appendix B - Scripts

Appendix B - Scripts

Appendix B.1 — Neural network processing scripts

94.1.1. B.1.1 Main processing script (nn.sh)

4!/bin/sh

fscript to prepare, run and display the results when applying a neural net to
a data file

fwritten by Bogdan Ghita 25/07/01

#usage nn.sh data_file neural_net
cdir="/home/bogdan/nn”

echo $0 $*

fset the initial values

zero=0
batch=0
single=0
bcycles=1

logdata=0
expdata=0
softmax=0
plmin=10
p2min=0
plmax=1000
p2max=1000
#p3min=100
#p3max=1000

argl_step=50
arg2_step=10
#arg3_step=10

cycle step=1000
crtcycles=$cycle_step
tt=0

filter=0
min_out_attr=0
max_out_attr=100
min_out_var=0
max_out attr=100

randomise=0
no_scalling=0
outmax=0

test_prc=10

decimate=0
testnet=0

326

Appendix B - Scripts

self_snns=0
self err=0

self corr=0
self both=0

error_step=0.001
sqgerr_prev=0
sgerr_crt=0
corr_prev=0
corr_crt=0

echo “0” > $cdir/run/test_sgerr.tmp
echo “0” > $cdir/run/train_sqerr.tmp
echo “0” > Scdir/run/test_corr.tmp

usage () {

echo “usage:
nn.sh -f data file [-logdata | -softmax | -expdata] —n neural net
or
nn.sh -tt train_file test_file -n neural_net

Options:
[-r] - randomise dataset

[-tp test percent] - define the percentage of test subset from the

dataset

[-ca min_outlier percents max_outlier percents} - remove outliers
of attributes

[-cv min_outlier percents max_outlier_percents] - remove outliers
of variable to estimate

[-d decimate_percent] - reduce the dataset to decimate percent
percents

[-b cycles [-pl paraml minimum paraml maximum) [-step_pl
paraml_step) ([-p2 param2_minimum param?_ maximum] [-step_p2 param2_step)
(--batch_outliers max_outlier_to_remove]]
[-c_step cycle_step]

[-s paraml param2 cycles]

[-cc] - apply cross validation (split training set into 80%
estimation + 20% validation)

[-self err [-e error_step]] - apply self control using the
variation in average square error, with a margin of error_step

[-self_corr [-e error_step] | - apply self control using the
variation in correlation, with a margin of error_step

[{-self combined [-e error_step]] - apply self control using the
variation of both correlation and average square error, with a margin of
error_step

Additional options:
--no_scalling - do not perform scalling of the values to the min_value
- max_value interval, but to 0.0 - max_value interval

"

while true
do
case "“$1” in

327

Appendix B - Scripts

-h} usage
exit;;

-logdata) logdata=l
shift;;

-expdata) expdata=l
shift;;

-softmax) softmax=1
shift;;

-tt) tt=1
traindata="$2"
testdata="$3"
data="54"
shift 4;;

-f) data="s$2"
shift 2;;

-cc) cross=l
shift;:;

-ca) filter=1
min_out_attr="$2"
max_out_attr="$3"
shift 3;;

~-cv) filter=1
min_out_var="52"
max_out_var="$3"
shift 3;;

-n) net="§2"
shift 2;;

-b) batch=1
bcycles=52
shift 2;;

-c_step) cycle_step=32
crt_cycles=$2
shift 2;;

-pl)plmin="$2"
plmax="$3"
shift 3;;

-step_pl) argl_step="$2"

shift 2::

-step_p2) arg2_step="52"

shift 2;;
-p2)p2min="§2"

p2max="$3"

shift 3;;

-q) quiet="true”
devtty="/dev/null”
shift;;

-r) randomise=1
shift;;

-self err) self err-<l
shift;;

-self corr) self corr=l

shift;;

-self snns) self snns=1

shift;;

-e) error_step="$2"
shift 2;;

-tp) test_prec="$2”
shift 2;;

-s) single=1
paraml=52
param2=§3
bcycles=5§4
shift 4;;

-test) testnet=l

328

Appendix B - Scripts

shift;;
-d) decimate=1
dec_percent=$2
shift 2;;
-v) verbose="true”; shift;;
--no_scalling} no_scalling=1
shift;;
-*) echo “run.sh: '$1’ unexpected”; usage ; exit ;:
*) break;:

esac
done

if [Sttt -eq 0]
then
echo “dataset = $data.data”
else
echo “train dataset = Straindata.data / test dataset = $testdata.data”
fi
echo “net = $net.net”

rm -f Scdir/run/*

if ([-z Sdata } || [-z Snet)) && ([-z Straindata) || [-z Stestdata })
then

usage;

exit

fi

if (1 ([-e Scdir/data/S$data.data]) && ([$tt -eq 0]))
then
echo “dataset $data not found”
exit
elif ([$tt -eq 1])
then
if V([-e Scdir/data/tt/$traindata.data 1)
then
1s $cdir/data/tt/S$traindata.data
echo “train data - $cdir/data/tt/$traindata.data not found”
exit
fi

if '([-e Scdir/data/tt/$testdata.data))
then
echo “test data - Scdir/data/tt/$testdata.data not found”
exit
fi
fi

if !'{[-e Scdir/nets/$net.net])
then

echo “network $net not found”
exit

fi

rm -f * norm.pat
rm -f * clean.pat
rm -f Scdir/S$data.snns.out
touch $cdir/$data.snns.out

329

Appendix B - Scripts

fwork in the ‘run’ directory
cd $cdir/run

cp Scdir/data/$data.data $cdir/run/
cp Scdir/data/$data.data $cdir/run/$data.orig

if [$tt -eq 0]
then
g cp Scdir/data/$data.data $cdir/run/
g cp Scdir/data/$data.data $cdir/run/$data.orig
cd S$cdir/run

else
cp Scdir/data/tt/$traindata.data S$cdir/run/
cp Scdir/data/tt/Stestdata.data $cdir/run/
fi
cp Scdir/nets/$net.net $cdir/run/

§rm -£ ./*

nlines="nl -n 1ln Scdir/run/$data.data | tail -1 | tr -8 ' *| tr =-s *\t’ |
cut -f1 -d’ *°
if [Stt -eqg 0]
then
decimate the file
if [S$decimate -eq 1]
then
echo “keep only S$dec_percent® cof the file -
$((Snlines*$dec_percent/100)} out of $nlines”
: cat Scdir/shell/filter.awk | sed s/nlines/$nlines/q | sed
s/minlimit/0/g | sed s/maxlimit/$dec_percent/g > filter.awk.tmp
cat $cdir/run/Sdata.data | awk —f filter.awk.tmp > $data.tmp
cp filter.awk.tmp tmp.awk
cp S$data.tmp Scdir/run/$data.data
mv S$data.tmp $data.decimate
fi

ffilter the data first, if required
if [$filter -eq 1]
then
§switch temporary to shell directory
cd $cdir/shell
cp Scdir/run/$data.data $cdir/shell/
f#do the filtering
#./filter.sh $data.data $min_out $max_out
./filter _all.sh Sdata.data $min_out_attr $max_out_attr $min_out_var
$max_out_var
f#mv data.filt data.filtered
fimove the result files to the run directory
cp data.filt $cdir/run/$data.data
cp data.filt Scdir/run/S$data.filter
£i

cd Scdir/run

randomise the data set
if [$randomise -eq 1]
then
#count how many lines the data file has
nlines="nl -n ln $cdir/run/Sdata.data | tail -1 | tr -s ' ‘| tr -s
‘\t* | cut -f1 -d* °

fgenerate a column with random values with the size of the data file

330

Appendix B - Scripts

Scdir/c/rand $nlines > random. tmp

drearange the file in the randomised order
paste -d ' * random.tmp $data.data > tmp.data
sort —-g tmp.data | cut -f2- -d’ ' > $data.data
cp S$data.data $data.random

rm tmp.data
fi

fproduce the two neural net pattern files

gscale the data, either from [minvalue;maxvalue] to [0.0;1.0]
fuse logarithms if required
if [$logdata -eq 1]
then

Scdir/tcl/scale.tcl Scdir/run/Sdata.data logdata
elif { Sexpdata -eq 1)
then

Scdir/tcl/scale.tcl $cdir/run/$data.data expdata
elif [$softmax -eq 1]
then

Scdir/tcl/scale.tcl $cdir/run/$data.data softmax
else

Scdir/tcl/scale.tcl Scdir/run/S$data.data
fi

produce the two files

if [Stest_prc -eq 0)

then

Sedir/tel/convlsnns.tel Scdir/run/$data.scaled $test_prc
else

Scdir/tcl/conv2snns.tcl $cdir/run/$data.scaled Stest_prc
fi

fend of [Stt -eq 0)
fi

fcreate a log file and put a header
echo “#Batch started at “‘date’ #>> ./$data”_"$net.log

ibatch processing
if [$batch -eq 1]
then
echo “batch processing”

finitialise the network

cat Scdir/batch/batch_multiple_init.bat | sed s/nnet/$net.net/g >
batch multiple_init.tmp

batchman -q -f batch_multiple_init.tmp

iprepare a temporary batch script with current data
if [$tt —eq 0]

then
if { Sself_snns -eq 1)
then
if [Stest_prc -eq 0]
then

cat $cdir/batch/snns_multiple.bat | sed
s/strain/$data”_train.pat”/g | sed s/stest/$data”_train.pat”/g >
$cdir/batch/batch.tmp
else

331

Appendix B - Scripis

cat $cdir/batch/snns_multiple.bat | sed
s/strain/$data”_train.pat”/g | sed s/stest/$data”_test.pat”/g >
Scdir/batch/batch. tmp
fi
else
if [Stest_prc -eq 0]
then
cat S$cdir/batch/batch multiple notest.bat | sed
s/strain/$data”_train.pat”/g | sed s/stest/Sdata”_test.pat”/g >
Scdir/batch/batch. tmp
else
cat $cdir/batch/batch_multiple.bat | sed
s/strain/$data”_train.pat”/g | sed s/stest/$data”_test.pat”/g >
Scdir/batch/batch. tmp
fi
£i
else
cat Scdir/batch/batch_multiple.bat | sed s/strain/$traindata.data/g
| sed s/stest/Stestdata.data/qg > Scdir/batch/batch.tmp
fi
mv Scdir/batch/batch.tmp $cdir/run

frun the batch and log it
argl=$plmin

arg2=$p2min

arg3="date +%s°
outcrt=0

¢d $cdir/run

§ count the number of columns
ncols="head -1 S$data.data | wc -w~

determine the minimum and maximum for the (logarithm) values of the
variable to be determined
if [$no_scalling -eq 1]

then
echo -n *0.0” > minmax.tmp
else
echo -n “cat Scdir/run/S$data.data | sort -g -k$ncols | unig -c¢ -

f${($ncols-1)}| tr =s * ‘| tr *\t* ' ' | cut -f3- -d’ | head -1 | cut -
f$ncols -d’ ‘° > minmax.tmp

fi

echo -n ™ " >> minmax.tmp

echo ‘cat Scdir/run/$data.data | sort —-g -k$ncols | uniq -c -
£f$((Sncols-1))| tr -s * *| tr *\t* * ' | cut -£f3- -d’ ‘| tail -1 | cut -

fSnceols -d’ ‘' >> minmax.tmp

while test Sargl -le S$plmax
do

while test $arg2 -le $pZmax
do

if [$self snns -eq 1]
then
cat ./batch.tmp | sed s/argl/Sargl/g | sed s/arg2/$arg2/g |
sed s/error_step/Serror_step/g | sed s/bcycles/$cycle_step/g >
./batch.gen.tmp
batchman -s -q —-f ./batch.gen.tmp >> $cdir/$data.snns.out #>
/dev/null

crtcycles="tail -3 S$cdir/$data.snns.out | head -1 | cut -f5 -

w

echo —n “saturation $argl $arg2 Scrtcycles train

332

Appendix B - Scripts

Scdir/tcl/eval.tcl train.res “cat minmax.tmp~

cp corr.tmp corr_train.tmp

if [0 -1t Stest_prc)

then
echo -n “saturation Sargl Sarg2 Scrtcycles test ™
Scdir/tcl/eval.tcl test.res “cat minmax.tmp’
§Scdir/tcl/correlation.awk corr_test.tmp

fi
$cdir/tcl/correlation.awk corr_train.tmp
§rm Scdir/run/test_sqerr.tmp

else

§...do the while-cycles loop

while test Scrtcycles -le Sbcycles
do

cat ./batch.tmp | sed s/argl/S$argl/qg | sed s/arg2/$arg2/qg |
sed s/snumber/Sarg3/g | sed s/bcycles/Scrtcycles/g > ./batch.gen.tmp
batchman -s -q ~-f ./batch.gen.tmp >> $cdir/batchman.out §>
/dev/null

save the resulting net
§ cp tmp_net.net net_Sargl.$arg2.$cricycles.net

fi---begin analysis

update the old values before running analysis

sgerr_prev=3§sqerr_crt
corr_prev=Scorr_crt

fthe snns early stopping method does not require any
evaluation

§ print results for the train set

echo -n “$argl $arg2 $crtcycles

echo -n “train "

"

determine the average absclute and relative error

minmax="cat minmax.tmp’
if [Slogdata -eq 1]
then
Scdir/tcl/eval.tcl train.res log “cat minmax.tmp’
elif [Sexpdata -eq 1 }
then
Scdir/tcl/eval.tcl train.res exp “cat minmax.tmp’
elif [$softmax -eq 1 }
then
Scdir/tcl/eval.tel train.res softmax “cat minmax.tmp’
‘cat meandev.tmp’
else
Scdir/tcl/eval.tecl train.res ‘cat minmax.tmp’
fi

save the results
§ cp train_eval val.res train.$argl.Sarg2.Scrtcycles.res
§ determine the correlation between actual data and predicted

Scdir/tcl/correlation.awk corr.tmp
cp corr.tmp corr_train.tmp

if { 0 -1t Stest_prc]
333

Appendix B - Scripts

test set

then
§ print results for the test set
echo -n “$argl $arg2 Scrtcycles ™
echo —-n “test »

§ determine the error and correlation for the current

if [$logdata -eq 1]
then
$cdir/tcl/eval.tcl test.res log “cat minmax.tmp’
elif ([Sexpdata -eq 1]
then
Scdir/tcl/eval.tcl test.res exp “cat minmax.tmp’
elif [$softmax -eq 1)
then
Scdir/tcl/eval.tcl test.res softmax ‘cat minmax.tmp®

‘cat meandev.tmp’

else

Scdir/tcl/eval.tcl test.res “cat minmax.tmp’
fi
Cp corr.tmp corr_test.tmp

8 determine the correlation between actual data and

predicted for the test set

$cdir/tcl/correlation.awk corr.tmp
corr_crt="$cdir/tcl/correlation.awk corr.tmp’
Cp corr.tmp corr_test.tmp

sgerr_crt="cat $cdir/run/test_sgerr.tmp’

else
#run the tests using the whole (train) dataset
corr_crt="$cdir/tcl/correlation.awk corr.tmp’
cp corr.tmp corr_test.tmp
sqerr _crt="cat Scdir/run/train_sqerr.tmp’

fi

$save the results

fcp test_eval_val.res test.$argl.S$arg2.Scrtcycles.res

ficp corr_test.tmp corr_test.S$argl.$arg2.%crtcycles.tmp
ficp corr_train.tmp corr_train.$argl.$arg2.$crtcycles. tmp
gnuplot -geometry 700x700 -persist Scdir/plot/corr.plot

#check whether saturation was reached using either square

error or correlation.

by eval.tcl

two cases

Serror_step’

4 methods of early stopping

self_snns - use MSE, as reported by SNNS (above)

self err - use MSE, as calculated using eval.tcl

self corr - use correlation, as calculated using eval.tcl
self both - use both MSE and correlation, as calculated

note: error must reach 0 and correlation must reach 1;

§ this is why the comparison (compare) is opposite for the

if [$self err -eq 1]
then
err res="$cdir/c/compare $sqerr_prev $sgerr_crt

#echo “$sgerr_prev S$sqgerr_crt Serror_step => Serr_res”

if [Serr_res -eq 0]
then

334

Appendix B - Scripts

buff. tmp

buff.tmp

cat buff.tmp
cricycles=$bcycles
frm Scdir/run/test_sqerr.tmp
sgerr_prev=0
sqerr_crt=0

else

echo -n “saturation Sargl Sarg2? S$crtcycles train “ >
Scdir/tcl/eval.tcl train.res “cat minmax.tmp ™ >>
$cdir/tcl/correlation.awk corr_train.tmp >> buff.tmp
if [0 -1t Stest_prc |

then

echo -n “saturation S$argl $arg2 Scrtcycles test

* > buff.tmp

buff.tmp

buff.tmp

buff.tmp

buff.tmp

buff.tmp

$Serror_step’

Scdir/tcl/eval.tcl test.res ‘cat minmax.tmp® >>
$Scdir/tcl/correlation.awk corr_test.tmp >> buff.tmp

fi
fi

fi

if [$self corr -eg 1]
then

fi

err_res="$cdir/c/compare $corr crt $corr_prev $error_step’
#echo “$corr _prev $corr_crt $error_step => Serr_res”

if [$err_res -eq 0]
then
cat buff.tmp
crtcycles=$bhcycles
#rm Scdir/run/test_sgerr.tmp
corr_prev=0
corr_crt=0
else
echo -n “saturation $argl $arg2 S$crtcycles train ™ >

$cdir/tcl/eval.tcl train.res “cat minmax.tmp® >>

Scdir/tcl/correlation.awk corr_train.tmp >> buff.tmp
echo -n “saturation $argl $arg?2 S$crtcycles test " >

Scdir/tcl/feval.tcl test.res “cat minmax.tmp® >>
$Scdir/tcl/correlation.awk corr_test.tmp >> buff.tmp

£i

if [$self both -eq 1)

th

en
corr_res="S$cdir/c/compare Scorr_crt $corr_prev Serror_step’
err_res="$cdir/c/compare $sgerr_prev $sqerr_crt

fiecho “S$corr prev S$corr_crt S$error_step => $err_res”

if [$((Serr_res + Scorr_res)) -eq 0]
then
cat buff.tmp

335

Appendix B - Scripts

crtcycles=Sbcycles

8rm Scdir/run/test_sqerr.tmp
corr_prev=0

corr_crt=0

else

echo -n “saturation $argl $arg2 S$crtcycles train ™ >
buff.tmp

Scdir/tcl/eval.tcl train.res “cat minmax.tmp®™ >>
buff. tmp

$cdir/tcl/correlation.awk corr_train.tmp >> buff.tmp

echo -n “saturation $argl Sarg2 Scrtcycles test “ >>
buff.tmp

Scdir/tcl/eval.tcl test.res ‘cat minmax.tmp® >>
buff.tmp

$cdir/tcl/correlation.awk corr test.tmp >> buff.tmp

fi
fi

#---end analysis

crtcycles=§{(Scrtcycles+Scycle_step))
done

#...end of the while-cycles loop

fi

crtcycles=$cycle_step

arg2=${{Sarg2+$arg2_step))

#This is VERY important: don’'t forget to re-initialise the network
after each run;

#0therwise, the new round of experiments uses the old values

batchman -q -f batch multiple_init.tmp

done

crtcycles=$cycle_step
arg2=$p2min
argl=$((Sargl+$argl_step))
done

fi

fisingle processing
if [$single -eq 1]
then
echo “single processing”

{prepare a temporary batch script with current data
ficd $cdir/run
argdate="date +%s°
cat $cdir/batch/batch_single.bat | sed s/nnet/$net.net/g | sed
s/strain/$data”_train.pat”/g | sed s/stest/$data”_test.pat”/g |\
sed s/argl/$paraml/g | sed s/arg2/$param2/g | sed
s/bcycles/S$beycles/qg | sed s/snumber/$argdate/g > S$cdir/run/batch.tmp

batchman -s -q -f batch.tmp
#>>./%data”_"$net.log

#---begin analysis

336

Appendix B - Scripts

fsecond part: do the analysis of the test file

§ count the number of columns
ncols="head -1 S$data.data | wc -w~

§ determine the minimum and maximum for the (logarithm) values of the
variable to be determined
if [$no_scalling -eq 1]

then
echo -n *0.0” > minmax.tmp
else
echo -n ‘cat Scdir/run/$data.data | sort -g -k$ncols | unig -c -
f$(({Sncols-1))| tr -s * ‘| tr *\t* ' * | cut -f3- -d’ ‘| head -1 | cut -
fSncols -d’ ‘' > minmax.tmp
fi
echo -n ™ “ >> minmax.tmp
echo “cat Scdir/run/$data.data | sort -g -k$ncols | uniq -¢ -£$({$ncols-
1})| tr =s * ‘| tr *\t* * * | cut —-£f3- -d’ ‘| tail -1 | cut —f$ncols -d’ *°

>> minmax.tmp

determine the average absolute and relative error
echo -n “test: "

if [$logdata -eqg 1]
then

Scdir/tcl/eval.tcl test.res log “cat minmax.tmp’
elif [Sexpdata -eq 1]
then

Scdir/tcl/eval.tcl test.res exp ‘cat minmax.tmp’
elif [$softmax -eq 1 }

then

Scdir/tcl/eval.tcl test.res softmax “cat minmax.tmp ™ “cat meandev.tmp’
else

Scdir/tcl/eval.tcl test.res ‘cat minmax.tmp’
fi

determine the correlation between actual data and predicted
$cdir/tcl/correlation.awk corr.tmp
Cp corr.tmp corr_ test.tmp

AN

#iecho -n “$argl $arg2 Scrtcycles

if [$logdata -eq 1]
then

S$cdir/tcl/eval.tcl train.res log ‘cat minmax.tmp’
elif [$expdata -eq 1 }
then

Scdir/tcl/eval . tcl train.res exp ‘cat minmax.tmp’
elif [$softmax -eq 1]

then

Scdir/tcl/eval.tcl train.res softmax ‘cat minmax.tmp ‘cat meandev.tmp’
else

Scdir/tcl/eval.tcl train.res ‘cat minmax.tmp’
fi

$cdir/tcl/correlation.awk corr.tmp
cp corr.tmp corr_train.tmp

gnuplot -geometry 700x700 -persist $cdir/plot/corr.plot

337

Appendix B - Scripts

§---end analysis
fi

Bfooter for the log file
echo “§Batch ended at “date™” §>> ./S$data”_"$Snet.log

fclear the temporary files
rm Scdir/run/*

9.4.1.2. B.1.2 Script to convert CSV files to SNNS format (conv2snns.tcl)

#!/usr/bin/tclsh

convZ2snns.tcl

convert to format suitable for SNNS use.

split file to two files

one is for training and another is for test (*_train.pat, *_test.pat)

S R SR SR

set logdata 0
set noscale 0

if { (Sargec > 2) |} {
error “Usage: conv2snns.tk originalfile”

}

percentage of test data
set percent 10

if { ($argc == 2) } {
set percent f[lindex $argv 1)
puts “Spercent percents test data”

}
puts “$percent percents test data”

set file_in [lindex $argv 0]
set fin [open $file_in r]

set basename [string range $file in 0 [expr [string last . $file_in] -1]]
set file outl [format “%s%s” $basename “_train.pat”]
set file out2 (format “$s%s” Sbasename “_test.pat”]

set foutl [open $file outl w]}
set fout2 [open $file ocut2 w]

set count 0

set I 0

set i_test O

set i_train 0

set count_for_test 0
set count_for_train 0
set errline 0

do preliminary analysis of the data
gets $fin line
split $line
set length [llength $line}

338

Appendix B - Scripts

set count 1
while {[gets $fin line] >= 0 } |

§ count is the total number of samples
iner count

check for samples with wrong number of fields
split $line
if {Slength != [llength $line]} {
incr errline
error “Wrong number of fields at line Serrline : $length fields
expected, [llength $line} cobtained”
}
}
seek $fin O

set the sizes of the train / test sets

set count_for_test [expr $count * Spercent/100]

set count_for_ train [expr Scount - Scount_for_test]

puts stdout “patterns: all = train + test : S$count = $count_for_ train +
$count_for_test”

create the headers
set date [exec date]
puts S$foutl “SNNS pattern definition file V1.4”
puts $foutl “generated at S$date \n\n”
puts $foutl “"No. of patterns : Scount_for_train”
puts S$foutl “No. of input units : [expr $length - 1]”
puts $foutl “No. of output units : 1\n”
puts $fout2 “SNNS pattern definition file V1.4”
puts $fout? “generated at S$date \n\n”
puts $fout2 “No. of patterns : $count_for_test”
puts $fout?2 “No. of input units : [expr $length - 11”7
puts $fout2 “No. of output units : 2\n”

produce the files
while {[gets $fin line] >= 0 } {
incr I
split $line

if {[expr $i%(100/Spercent)] == 0 && Si_test < Scount_for_test]) {

§ write to test data set
incr i_test
set fout S$fout2

puts $fout “# Input pattern $i test:”

set crtarg O

while { Scrtarg < [expr $length - 1]) |
puts -nonewline S$fout “[lindex [split $line] $crtarg]
incr crtarg

“w

}

puts $fout “~

puts $fout “§ Output pattern Si_test:”

puts $fout [lindex $line [expr $length - 1]]
} else |

f write to train data set

incr i_train

set fout $foutl

puts $fout “# Input pattern $i train:”
set crtarg 0

339

Appendix B - Scripts

while { Scrtarg < [expr Slength - 1] } {
puts -nonewline $fout “(lindex [split $line] $crtarqg]
incr crtarg

w

}

puts $fout
puts $fout "“# Output pattern $i_train:”

puts S$fout [lindex Sline [expr $length - 1]]

wer

}

close $fin
close S$foutl
close $fout2

B.1.3 Script to normalise input data (scale.tcl)

§!/usr/bin/tclsh

ftcl script to normalise the input data - translate data from
[minvalue;maxvalue] to {0.0;1.0]

fwritten by Bogdan Ghita 6/08/2001

fusage scale.tcl dataset [logdata | softmax]

set shift 1.0
set logdata 0
set expdata 0
set softmax 0
set noscale 0
set lambda 1

if { (Sargc > 2) } |
error "Usage: scale.tcl originalfile \[no_scale \| logdata \|
expdata \] "
}

foreach optarg S$Sargv |
switch $optarg |{
no_scale { set noscale 1 }
logdata { set logdata 1 }
expdata { set expdata 1 }
softmax { set softmax 1 }
}
}

set file_in [lindex Sargv 0]
set fin [open $file_in r])

set basename [string range $file_in 0 [expr [string last . $file_in])
-1]])
set file norm [format "%s%s" $basename ".scaled"]
set fmean [open "meanstd.tmp” w]
set fnorm [open $file norm w]

set count 0

normalise the file; the attributes and the output have to have values
between 0 and 1

get the number of columns

340

Appendix B - Scripts

gets $fin line

split $line

set length [llength $line}
seek 5fin 0

§ set the minimum and maximum initial values for all the columns
for {set crtarg 0} { Scrtarg < $Slength } {incr crtarg} {
set minval(Scrtarg) 1000000.0
set maxval($Scrtarg) 0.000001
set sum2($crtarg) 0.0
set sum{$crtarg) 0.0
set mean{Scrtarg) 0.0
set stdev(Scrtarg) 0.0

f determine maximum and minimum values for each of the columns
while {[gets $fin line] >= 0 } |
set count [expr S$count + 1]
for {set crtarg 0} {$crtarg < $length} (incr crtarg) {
set value [expr ({1.0 * [lindex [split $line] $crtarg]) + $shift)

set sum2($crtarg) (expr ($sum2(Scrtarg}+ S$value*$value)]
set sum($crtarg) l[expr ($sum(Scrtarg)+ Svalue)]
if { $maxval (Scrtarg} < $value } {
fupdate maxval
set maxval ($crtarg) $value
}
if { Sminval($crtarg) > Svalue } {
fupdate minval
set minval ($crtarg) $value

}

}
seek Sfin 0

for (set crtarg 0} {Scrtarg < $length } (incr crtarg)} {

set mean(Scrtarg) [expr ($sum{$crtarg)/(l.0*$Scount)} |

set tl [expr Ssum2($crtarg)/(1.0*Scount) |}

set t2 [expr (2*$mean(S$crtarg)*$sum($crtarg))/(1.0*S$count)]

set t3 [expr $mean{$crtarg)*S$mean(S$crtarg)]

fset stdev(Scrtarg) [expr {(Ssum2($crtarg)/(Scount*$count)} -
{2*Smean{Scrtarg) *Ssum(Scrtarg))/ ($count*$count)) +
((Ssum(Scrtarg) *Ssum(Scrtarg))* (Ssum({$crtarg) *$sum($crtarg)))/ ($count*S$count)
]

set stdev(Scrtarg) [expr sqrt($tl - $t2 + $£3)]

puts "Scrtarg -

Sminval (Scrtarg) \t$maxval (Scrtarg)\tSmean{$crtarg)\t$stdev(Scrtarg)”

= Stl + St2 + 5t3"

#normalise to [0.0,1.0]) based on minval, maxval, mean, stdev

§linear: y = (x-minval)/{maxval-minval}
#log: y = {log(x)-log{minval))/(log(maxval)-log(minval))
fiexp: y = loglO((9* (10x-10minval)/(1lOmaxval-10minval}}+1)

10x <=> pow (10,x)
softmax: y = 1/ (l+exp(-(x~mean)/{(lambda*stdev)/6.28318)))
while {{gets $fin line] >= 0 } {
for [set crtarg 0) ($Scrtarg < {expr $length - 1] } {incr crtarg} {
set value [expr ([lindex ([split $line] Scrtargj + $shift)]

341

Appendix B - Scripts

if { Slogdata == 1 } {
flog scaling
puts -nonewline $fnorm "(expr ({loglQ{$value} -
logl0{$minval ($crtarg)}) / {loglO($maxval($crtarg)) -
logl0($minval ($crtarg))})} "
} elseif { Sexpdata == 2 } {
fexp scaling
puts $value
puts exp(S$maxval{$crtarg))
puts -nonewline $fnorm "[expr log(({1.71828* (exp(Svalue)-
exp(Sminval ($crtargq)))/ (exp($maxval ($crtarg))-exp($minval ($crtarg))}}+1.0)]
} elseif { $softmax == 1 } |
Bsoftmax scaling
ixSigma = sx2 - 2 * xmean * sxl+ N*xmean*xmean
puts -nonewline S$fnorm "[expr (1/(l+exp{-(Svalue-
Smean ($crtarg))/(($lambda*$stdev(Scrtarg))/6.28318)))) 1 "
} else {
§linear scaling
puts -nonewline Sfnorm "({expr ({$value - Sminval($crtarg)) /
{Smaxval ($crtarg) - $minval ($crtarg}))] "
}

}
set value [expr ([lindex $line (expr $length - 1]] + $shift) |}
if { $logdata == 1 } {
filog scaling
puts $fnorm "[expr ({loglO($value) - logl0($minval(Scrtarg))) /
{logl0(Smaxval($crtarg)) - loglO(S$minval ($crtarg))}}] "
} elseif { Sexpdata == 1} {
fexp scaling
puts $fnorm "[expr log({{1.71828* (exp($value)-
exp(Sminval (Scrtarg))))}/ (exp($maxval ($crtarg))-exp($minval (Scrtarg))))+1.0)}]

} elseif { Ssoftmax == 1 } {
#softmax scaling
puts $fnorm "[expr (1/(l+exp(-($value-S$mean{{expr $length -
11))/(($lambda*$stdev([expr $length - 1]))/6.28318))))] "
} else |
#linear scaling
puts Sfnorm "[expr ((Svalue - Sminval (Scrtarg)) / (Smaxval{Scrtarg)
- Sminval{$crtargl})}] "

}
}
puts $fmean "S$mean([expr $length - 1]) $stdev(({expr $length - 1]) "
seek $fin O

close $fin
close $fnorm

B.1.4 Script to evaluate the accuracy of the neural network output (eval.icl)

#!/usr/bin/tclsh
program to calculate the error produced by a neural network calculation
§ written by Bogdan Ghita 1/08/2001

342

Appendix B - Scripts

§ input has to be an SNNS-produced result file
the format of the file should be:

some header

§pattern_number

trained output

actual output

o o s

§ usage: eval.tcl resultfile \[log \| softmax\] minval maxval [mean stdev)
8 minval, maxval - the limits of the original domain (from which it was
translated to \(C.0 ; 1.0\]

set log 0

set exp 0O

set softmax O
set lambda 1
set shift 1.0

foreach optarg S$argv |
switch Soptarg {
logdata { set log 1 }
expdata { set exp 1 }
softmax { set softmax 1 }
}
}

if {Sargc == 1} |
set minval 0.0
set maxval 1.0
puts "Using default values: minval = Sminval maxval = S$maxval"”

} elseif {$argc == 3} |
set minval (expr [lindex $argv 1] + $shift)
set maxval [expr [lindex S$Sargv 2] + $shift]
puts "Using input values: minval = $minval maxval = $maxval”

} elseif (Sargc == 4} |

set minval [expr ([lindex Sargv 2] + $shift)]

set maxval [expr ([lindex Sargv 3] + $shift))

puts "Using input values (logarithmic data): minval = $minval maxval =
Smaxval"”

} elseif {$argc == 6} {
set softmax 1
set minval [lindex $Sargv 2]
set maxval [lindex Sargv 3]
set mean [lindex Sargv 4]
set stdev [lindex Sargv 5]

puts "Using input values (logarithmic data): minval = [expr
exp{$minval)] maxval = [expr exp{$maxval)]"
} else ({

error "usage: eval.tcl resultfile \[log \| softmax\] minval maxval
\ [mean stdev\} "
}

#if {Slog == 1}

puts "minval = Sminval / exp(minval) = [expr exp($minval)] maxval =
Smaxval / exp(maxval) = [expr exp($maxval)l"”

4] else |

puts "minval = $minval maxval = Smaxval"™

#}

set file in [lindex Sargv 0]
set fin [open $file_in r]

343

Appendix B - Scripts

set 1 0

set pat 0

set err 0

set errsum 0.0
set avgsum 0.0
set relerrsum 0.
set abserrsum 0.
set sqgabserrsum
set sqrelerrsum
set avgabssqgerr
set avgrelsqgerr

o000 OoOCo

[o N =R alie]

set basename [string range $file_in 0 [expr [string last . $file_in] -1]]
set fileresl [format "%s%s" Sbasename "_eval val.res"]

set fileres3a [format "%s%s" Sbasename "_eval_relerr.res”)

set fileres3b [format "$s%s" $basename "_eval_abserr.res"}

set fileres4 "corr.tmp"

set fileres5 [format "%s%s" Sbasename
set fileresé "corr_raw.tmp"

"

_sgerr.tmp"]

set foutl [open $fileresl w]
iset fout2 [open $fileres2 w]
set fout3a [open S$fileres3a w)
set fout3b [open $fileres3b w]
set fout4 (open $Sfileresd w)
set fout5 [open $fileres5 wj
set fout6é [open $fileresé w]

while {[gets $fin line] >= 0 } {
incr i

if (string match #* $line] {
incr pat

if { $log == 1} |

#scaling: y = (log(x) - log(minval}) / (log(maxval) -
log{minval))
$reverse: x = exp [log(minval) - y*log(minval} + y*log(maxval))

gets $fin line

puts -nonewline $fout6 "$line

set val [expr (pow(l0, ($line*{logl0Q($maxval)-
logl0Q({$minval))+logl0(Sminval))} - $shift))

gets $fin line

puts $fouté "Sline"”

set pred [expr (pow(l0, ($line*(logl0({Smaxval)-
logl0(Sminval))+logl0{S$minval))) - $shift)]

} elseif { Sexp == 1 } |
gets $fin line
puts -nonewline $fouté "S$line "

puts $line

tputs [expr (((exp($maxval)-exp($minval})* (exp($line)-
exp{$minval))/1.71828) + exp($minval}) - $shift]

set val [expr log(((exp($maxval)-exp(Sminval))*(exp($line)-
1.0)/1.71828) + exp(Sminval)) - $shift]

gets $fin line

puts $fout6 "S$line"

fset pred [expr log(((exp{$maxval)-exp($minval))* (exp($line)~-
1.0)/1.71828) + exp(S$minval)) - $shift]

set pred [expr log(((exp($maxval)-exp($minval))*(exp($line)-
1.0)/1.71828) + exp(Sminval)) - $shift]

} elseif { $softmax == 1 } {
fireverse: x = mean + (lambda*stdev*0.5*log{(-1+(1/(1-y)))/PI)

344

Appendix B - Scripts

$line))) }

}

} el

set
set
set
set

set
set
set
set
set

puts
puts

puts
puts
puts

§0.5/PI=0.15915

gets S$fin line

if | $line == 1.0 } |
set line 0.999%9

}
set val [expr Smean + 0.15915*Slambda*$stdev*log(-1+(1/(1-%1line)))

gets S$fin line
if { Sline == 1.0] {
set line 0.99999%

}
set pred [expr Smean + 0.15%915*$lambda*$stdev*log(-1+(1/(1-

se |

gets $fin line

set val [expr $line* ($maxval-$minval)+Sminval - $shift]
gets $fin line

set pred [expr $line* (Smaxval-$minval)+Sminval - $shift]

relerr [expr (abs(S$val-Spred))/S$val)

abserr {expr (abs($val-$pred))]

sgabserr [expr (Sval-$pred)* (S$val-Spred)]

sqrelerr [expr {$val-$pred)*($val-S$pred})/($val*Sval)]

avgsum [expr (Savgsumt$val)]

abserrsum [expr (Sabserrsum+$abserr)]
relerrsum [expr (Srelerrsum+Srelerr)])
sgabserrsum [expr ($sqabserrsumt$sgabserr)]
sqrelerrsum [expr ($sgrelerrsumt$sqgrelerr)]

Sfoutl "Sval Spred Srelerr"”
$foutl "$val Spred Serr $sgabserr”

$fout3a "Srelerr”
$fout3db "$abserr"”
$foutqd "$val Spred”

set avgrelerr [expr ($relerrsum*1l.0/5pat))
set avgabserr [expr ($abserrsum*1l.0/$pat)]
set avgabssqerr [expr ($sgabserrsum*l.0/Spat))
set avgrelsqerr [expr (S$sgrelerrsum+*l.0/$pat) 1}

puts $foutS5 "Savgabssqerr”
#puts -nonewline "[expr ($avgsum/$pat)] Savgrelerr $avgabserr

puts -nonewline "$pat $sqgabserrsum $avgrelsqerr $avgabssqgerr

close
close
close
close
close
close

Savg

Sfin
S$fou
$fou
S$fou
Sfou
S$fou

relsqgerr Savgabssqgerr "

tl
t3a
t3b
t4
t5

345

Appendix B - Scripts

Appendix B.2 — NS scripts

B.2.1 Simulation script for a three-tier topology (net.tcl)

§Create a simulator object
set ns [new Simulator]

#Define different colors for data flows (for NAM)

$ns color 1 Blue
$ns color 2 Red
$ns color 3 Green
$ns color 4 Yellow
$ns coclor 5 Orange
$ns color 6 QOrange

#Enable trace support
Trace set show_tcphdr_ 1

#Enable random seed
set ns-random-seed 0
set rng [new RNG]
$rng seed 0

§Set topclogy parameters - static
fiset LanSize 30
fset QueuvelLimit 20
#set QueueLimitBackbone 20

#set bw_core 10Mb

fset bw_core_bneck 5SMB
fset bw_access 10Mb

#set bw_access_bneck 2Mb

#iSet topology parameters - random
set LanSize [expr 2 * (10 + [Srng integer 20]) |
set Queuelimit [expr SLanSize / 2]
set QueuelimitBackbone [expr 3 * S$LanSize / 2]

set bw_core 10000000

set bw_core bneck 5000000
set bw_access 10000000

set bw_access_bneck 2000000

set delay_access 0.01
set delay gw 0.05
set delay core 0.1

#0pen the NAM trace file
set nf [open out.nam w])
5ns namtrace-all $nf

fOpen the Trace file
set tf [{open out.tr wj
$ns trace-all $tf

346

Appendix B - Scripts

fCreate nodes

puts -nonewline "creating the topology - LANs with $LanSize nodes..."

§Backbone nodes
set r0 [Sns node)
set rl [$ns node}

f#Gateways

set gw(Q [Sns
set gwl [$ns
set gw2 (Sns
set gw3 [$ns

node])
node]
node]
node]

f#Endpoints

for {set i 0 }

set a_tcp($i)
set b_tcp($i)
set c¢_tcp($i)
set d_tcp($i)

}

{ $i < $LanSize }

[$ns
[$ns
[Sns
[$ns

node}
node]
node]
node]

puts "topology created"”

§Create links

puts -nonewline "Creating the links...’

fibackbone link

$ns duplex-link $r0 $rl

{ incr i }

|

[$rng uniform $bw_core_bneck $bw_core]

uniform [expr Sdelay core / 2] Sdelay_core] DropTail

#gateway-core links

Sns duplex-link $gwl S$Sr0 [S$Srng
$delay_gw DropTail

$ns duplex-link S$gwl $rl [$rng
$delay_gw DropTail

5ns duplex-link $gw2 Srl [Srng
$delay gw DropTail

sns duplex-link $gw3 $r0 ($rng
$delay gw DropTail

flaccess links
for {set 1 0 }

DropTail
DropTail
DropTail

DropTail

$delay_access /

$delay_access /

uniform

uniform

uniform

uniform

#setup using static parameters

#Sns duplex-link $gw0
#$ns duplex-link $gwl
§Sns duplex-link $gw2
#Sns duplex-link 5$gw3

Sa_tcp($i)
Sb_tcp($i)
Sc_tcp($i)

$d_tcp($i)

fsetup using random parameters

$ns
Sns

$ns

duplex-link $gw0
2] $delay_access
duplex-link $gwl
2] S$delay access
duplex-link $gw2

347

$a_tcp($i)
1 DropTail
$b_tep(Si)
] DropTail
Sc_tcp($i)

Sbw_access
Sbw_access

$bw_access

$bw_access_bneck
$bw_access_bneck
$bw_access_bneck

$bw_access_bneck

{ $i < S$LanSize } { incr i } {

$bw_access
$bw_access
$bw_access

$bw_access

{$rng uniform {
fSrng uniform

[$rng uniform

[$rng

Sbw_access]
$bw_access]
Sbw_access]

$bw_access]

Sdelay_access
$delay_access
Sdelay_access

$delay_access

expr
[expr

[expr

Appendix B - Scripts

Sdelay access / 2] S$delay_access] DropTail
5ns duplex-link $gw3 Sd_tcp($i) $bw_access [Srng uniform [expr
$Sdelay access / 2] $delay_access] DropTail

}
puts "links created”

§Set Queue Size of access links to 10
$ns queuve-limit $gw0 $r0 $QueueLimit
$ns queuve-limit $gwl $rl1 $QueuelLimit
$ns queue-limit $gw2 Srl $Queuelimit
5ns queue-limit $gw3 $r0 $Queuvelimit
Sns queue-limit $r0 $rl $QueuelimitBackbone

EMonitor the queues (for NAM)
$ns duplex-link-op $gw0 $r0 gueuePos 0.5
$ns duplex-link-op $gwl $rl gueuePos 0.5
$ns duplex-link-op $gw2 $rl queuePos 0.5
Sns duplex-link-op $gw3 3%r0 queuePos 0.5
$ns duplex-link-op $r0 $rl queuePos 0.5

§TCP settings
Agent/TCP/FullTcp set interval_ 100ms
Agent/TCP/FullTcp set segsperack_ 2

puts -nonewline "Creating the clients..."
for {set 1 0 } { $i < SLanSize } { incr i } {

#Setup a0-b0 TCP connection
fnet a
ffla - sender

f#setting the intial window
set initwin [expr [$rng integer 3] + 1)
Agent/TCP/FullTcp set initial_window $initwin

set tcp a({$i) [new Agent/TCP/FullTcpl
Stcp_a($i) set class_ 2

S$tcp_a($i) set packetSize 1460

$ns attach-agent $a_tcp($i} Stcp_a($i)

fnet b

$b0 - sink

set sink b($i) (new Agent/TCP/FullTcp]
$sink_b($i) set segsperack_ 2

$ns attach-agent $b_tcp($i} $sink_b($i)
$sink_b($i) listen

$ns connect $tcp_a($i) $sink_b($i)
$tcp_a($i) set fid_ 1

§Setup a0-b0 FTP application
set ftp a{$i) [new Application/FTP]
S$ftp_a($i) attach-agent Stcp_a($i)
$ftp a($i) set type_ FTP

348

Appendix B - Scripts

§Setup c0-d0 TCP connection
fnet ¢
fc0 - sender

set tcp_c($i) [new Agent/TCP/FullTcp]
$tcp_c($i) set class_ 2
$ns attach-agent Sc_tcp(Si) $tcp_c($i)

génet d

§d0 - sink

set sink_d($i) ([new Agent/TCP/FullTcpl]
$sink_d($i) set segsperack_ 2

$ns attach-agent $d_tcp($i) $sink_d($i)
$sink_d($i) listen

$ns connect $tcp_c($i) $sink d($i)
$tcp_c($i) set fid_ 2

#Setup c0-d0 FTP application
set ftp c($i) [new Application/FTP]
S$ftp_c($i) attach-agent $tcp_c($i)
$ftp_c($i) set type_ FTP

incr i

#Setup al-cl TCP connection

fnet a

fa - sender
set tcp_a($i) [new Agent/TCP/FullTcpl
$tcp_a($i) set class_ 2
Sns attach-agent $a_tcp($i) $tcp_a($i)

finet ¢

kel - sink
set sink_c($i) [new Agent/TCP/FullTcp]
$sink_c($i) set segsperack_ 2
$ns attach-agent $c_tcp($i) $sink _c($i)
$sink_c($i) listen

$ns connect S$Stcp_a($i) $sink_c($i)
Stecp_a($i) set fid_ 3

fSetup al-cl FTP application
set ftp_a{$i) [new Bpplication/FTP]
$ftp_a($i) attach-agent $tcp_a($i)
$ftp_a($i) set type FTP

#Setup bl-di TCP connection
finet b
b - sender
set tcp_b{$i) [new Agent/TCP/FullTcp]
$tcp_b($i) set class_ 2
Sns attach-agent $b_tcp($i) $tcp b($i)

fnet d

#d - sink

set sink_d{($i) [new Agent/TCP/FullTcp]
$sink d($i) set segsperack_ 2

$ns attach-agent $d_tcp($i) $sink_d($i)

349

Appendix B - Scripts

$sink_d($i) listen

Sns connect $tcp_b($i) $sink_d($i)
$tcp_b($i) set fid_ 4

#Setup bl-dl FTP application
set ftp b($i) ([new Application/FTP]
$ftp b($i) attach-agent $tcp_b($i)
$ftp_b(5i) set type_ FTP

}
puts "clients created”

#Set simulation limits
set min_start_limit 0.0
set max_start_limit 1.0
set min_duration_limit 1.0
#set max_duration_limit 5.0
set max_duration_limit 10.0

for {set i 0 } { $i < $LanSize } { incr i } {
§Control a-c¢ TCP

set time [Srng uniform $min_duration_limit $max_duration_limit]
set starttime [$rng uniform $min_start_limit S$max_start_limit]

set start($ftp_a($i)) [expr $starttime]
set stop($ftp_a($i)) {expr $starttime + $time]

$ns at $start (Sftp_a($i)) "$ftp_a($i) start”
$ns at $stop(Sftp_a($i)) "S$ftp_a($i) stop”

#Control b-d TCP
set time [$rng uniform $min duration_limit S$max_duration_limit]
set starttime [Srng uniform Smin_start limit Smax_start_limit]

set start($ftp_c($i)}) [expr S$starttime]
set stop($ftp_c($i)) [expr $starttime + Stime]

Sns at Sstart($ftp_c($1i)) "$ftp_c($i) start”
$ns at S$stop(S$ftp c($i)) "S$ftp c($i) stop”

incr i

fControl a-c TCP
set time [S$rng uniform Smin_duration_limit $max_duration_limit)
set starttime [Srng uniform $min_start_limit Smax_start_limit)

set start($ftp_a($i)) [expr $starttime]
set stop($ftp_a($i)) [expr $starttime + $time]

$ns at $start($ftp_a($i)) "Sftp_a($i) start”
$ns at Sstop(S$ftp_a($i)) "sftp_a($i) stop"

#iControl b-d TCP
set time ([$rng uniform $min_duration_limit Smax_duration_limit]
set starttime [$rng uniform Smin_start_ limit $max_start_limit]

set start($ftp_b($i)) [expr $starttime]
350

Appendix B - Scripts

set stop($ftp_b($i)) [expr $starttime + S$time)

$ns at $start($ftp_b($i)) "$ftp b($i) start”
$ns at $stop(S$ftp_b($i)) "S$ftp_b(S$i) stop”

fRun the simulation
puts -nonewline "Start simulation..."
$ns run
puts "simulation finished"

B.2.2 Loop script to produce a batch of traces (loop.sh)

#!/bin/bash
fiscript to produce a batch of ns simulation rounds
#syntax: loop.sh rounds

i=0
rm *.save
while [$i -1t $1)

do
echo "i = §i"
echo "i = $i" >>crti.save
echo "“date’ - start"
../ns net.tcl
echo "‘date’ - finished"
cp out.tr out_$i.tr
tar -cvzf out_$i.tar.gz out Si.tr
rm out $i.tr
cat out.tr | grep " 01 " > res
cat out.tr | grep " 1 0 " >> res
sort -g -k2 res > trace
cp trace trace_$i
i=${($i+l}))
done

351

Appendix B - Scripts

Appendix B.3 — wget data collection script

B.3.1 Main data collection script (ryl.sh)

B! /bin/bash
fshell to retrieve random links from ryl - Random Yahoo Link

Im counter

rm exp.crt

touch output tmp.wget
count=1

echo "Scount" > exp.crt
tstamp="date +%y-%tm-3d-%H.%M"
echo "S$tstamp"” > tstamp
mkdir ./$tstamp 2> /dev/null
mkdir ./$tstamp/pages 2> /dev/null
crtdir=./$tstamp

fmkdir ~/tmp/ryl

http_client=wget

http_client_opts="--cache=off --tries=1 -A "*.html,*.htm" --directory-
prefix=./Ststamp/pages -a ./Ststamp/wget.log http://random.yahoo.coem/bin/ryl"
http_client_opts=" ./$tstamp/wget.log http://random.yahoo.com/bin/ryl --dump-
header $crtdir/headers_tmp.wget --include --max-time 120 --output
\"$crtdir/output_tmp.wget\" --show-error --httpl.0 --stderr
Scrtdir/error_tmp.wget -L"

http_client_opts=" http://random.yahoo.com/bin/ryl --dump-header
thishost="hostname -i°

killall -9 tcpdump 1>> ./tmp.log 2> ./tmp.log

tcpdump -ieth0 -w ./$tstamp/ryl.dump host $thishost and port 80 1>> ./tmp.log
2>> . /tmp.log &

tcpdump -ieth0 -w ./$tstamp/ryl_srv.dump host $thishost -s 300 and port 80
1>> ./tmp.log 2>> ./tmp.log &

tcpdump -ieth0O -w ./Ststamp/ryl bk.dump host $thishost and not port 80 1>>
/emp.log 2>> ./tmp.log &

killall -9 killer.sh 1>> ./tmp.log 2>> ./tmp.log
./killer.sh 1>> ./tmp.log 2>> ./tmp.log &

echo “date’ - Batch started >> ./$tstamp/ryl out.log

while [S$count -le "cat ./exp.max’]
do

echo "Scount"™ > exp.crt

date_start=""date +%s°"

echo -e -n "$count\t 'date +%H:8M:%S5°" >> ./Ststamp/ryl out.log
fistart_stop.log

$http_client $http client_opts 1>> $crtdir/pages/$count.wget 2>>
Scrtdir/stderr.wget

cat $Scrtdir/headers_tmp.wget >> $crtdir/headers.wget

cat S$crtdir/output tmp.wget >> Scrtdir/output.wget

cat S$crtdir/error_tmp.wget >> $crtdir/error.wget

date_end="$({ date +%s’'-$date_start))"

352

Appendix B - Scripts

echo -e "\t'date +3%H:%M:%S°\tSdate _end™ >> ./Ststamp/ryl_out.log
fstart_stop.log

sleep 5

count=$ ((Scount+l))

killall -15 killer.sh

done

B.3.2 Thread maintenance script (killer.sh)

#!/bin/sh
script to kill wget client in case it takes longer than 2 minutes to
download a file.

expno="cat exp.crt’
tstamp='cat tstamp’

echo "killer.sh started"”
counter=120

while [S$expno -1t 10000]

do
if ["cat exp.crt’ -eq Sexpno]
then
if [Scounter -1t 5]
then

killall -9 wget
echo ‘date +%H:8M:%S " exp $Sexpno - wget killed" >>
./S$tstamp/wget.log
echo “date +%H:%M:%S'" exp Sexpno - wget killed"” >>
./S$tstamp/ryl_out.log
counter=125

else
counter=$({$counter-1))
echo Scounter > counter
fi
sleep 1
else

expno="cat exp.crt’
echo “date +%H:%M:85 " exp Sexpno finished - §$((120-Scounter})" >>
./$tstamp/ryl out.log
counter=125
fi
done

353

Appendix C — Publications

Appendix C — Publications

354

Appendix C — Publications

The list below presents the papers written and published during the PhD work programme. Those

highlighted with a ‘*’ are not included in this appendix but are available from the Network

Research Group website (http://www.network-research-group.org).

*

“Endpoint study of Intemet paths and web pages transfers”, Mr Bogdan V. Ghita, Dr Steven
M. Fumell, Dr Benn Lines, Prof. Emmanuel Ifeachor Campus Wide Information Systems,

vol. 20, no. 3, pp90-97, 2003

“Endpoint study of Internet paths and web pages transfers”, Mr Bogdan V. Ghita, Dr Steven
M. Furnell, Dr Benn Lines, Prof. Emmanuel [feachor, Proceedings of the Third International

Network Conference (INC 2002), Plymouth, UK, 16-18 July 2002, pp261-270, 2002

“Non-intrusive {P Network Performance Monitoring for TCP Flows”, Mr Bogdan V. Ghita,
Dr Benn Lines, Dr Steven M. Furnell, Prof. Emmanuel Ifeachor Proceedings of IEEE

ICT2001, Bucharest, Romania, pp290-295, 4-7 June, 2001

“Network Quality of Service Monitoring for IP Telephony”, Mr Bogdan V. Ghita, Dr Steven
M. Furnell, Dr Benn Lines, Mr Dominique Le Foll, Prof. Emmanuel Ifeachor, Internet

Research, vol. 11, no. 1, pp26-34, 2001

“IP Networks Performance Monitoring of Voice Flows for IP Telephony”, Mr Bogdan V.
Ghita, Dr Steven M. Furnell, Dr Benn Lines, Mr Dominique Le Foll, Prof. Emmanuel
Ifeachor, Proceedings of the Second International Network Conference (INC 2000),

Plymouth, UK, pp145-155, 3-6 July, 2000

“Measurement of IP Transport Parameters for 1P Telephony”, Mr Bogdan V. Ghita, Dr

355

Appendix C — Publications

Steven M. Fumell, Dr Benn Lines, Prof. Emmanuel Ifeachor, Proceedings of PG Net 2000 —
Ist Annual Postgraduate Symposium on the Convergence of Telecommunications,

Networking and Broadcasting, Liverpool, UK, pp31-36, 19-20 June, 2000

“Procede D’Evaluation de la Bande Passante D’Une Liaison Numerique”, Pattent pending,

no. 03 50056, 19/03/2003, applied for by Acterna IPMS.

356

Endpoint study of Internet paths and web pages transfers

B. V. Ghita, S. M. Furnell, B. M. Lines, E. C. Ifeachor

University of Plymouth, Plymouth, United Kingdom
e-mail: bghita@jack.see.plymouth.ac.uk

Abstract

This paper presents the findings of a pilot study to provide information about the characteristics of current
networks and data transfers. The main aim of the study was 1o infer the properties of a large number of network
paths. In addition, the study produced statistics relating to the average size of a typical web page and both under
the restriction of a single-point connection. The study was performed in two steps: trace collection followed by
TCP per-flow analysis. The trace collection used the functionality of a random link generator, combined with an
automatic HTTP retrieval tool. The TCP analysis was applied to the collected traces and it involved an offline
TCP per-flow method developed in previous research.

Keywords

TCP connection analysis, Internet characteristics, web page size, web transfer features.

1 Introduction

The current status of the Internet is one of the issues being researched intensively. The first
concerted initiative to evaluate the properties of the Internet belongs to Paxson. He deployed
his Network Probe Daemon (NPD), established a measurement mesh to evaluate the
characteristics of network paths, and generated and analysed the transfers running through this
mesh (Paxson, 1999). Several bodies, such as the Active Measurement Project (AMP, 2002)
and the National Internet Measurement Infrastructure, built on the concept of NPD) (NIMI,
2002) projects aim to describe the Internet from a holistic perspective by employing complex
measurement infrastructures. A different view is embraced by passive traffic surveys, which
capture and analyse data from backbone segments / endpoint networks (Thompson and Miller,
1997). The need for such information comes from both the research and commercial domains.
The rationale is similar for the two cases: the marketing directions, as well as the
improvements of current Internet-related technologies, have to be based on actual information
rather than assumptions or previous studies.

All of the aforementioned measurement initiatives are very successful in their place, and they
aim to answer the question ‘How does the overall Internet behave?’. The study presented in
this paper seeks to discuss the Internet characteristics from a different perspective: how the
internet is seen from an endpoint network and what are the characteristics of the data that may
be retrieved from the Internet by other hosts connected to that respective endpoint network.
Concluding, the question that this study aims 1o answer is ‘How does Internet behave for my
Internet traffic?’, as would be asked by an endpoint network user / administrator.

2 Traffic collection

The study discussed by this paper presents analysis results based on two data sources: real
traffic and artificially generated traffic. In both cases HTTP was used as the focused
application for reasons of availability and convenience. It was observed before starting the
experiments that most of the network TCP traffic is web browsing, which confirms the results
of previous studies (Paxson, 1999). Also, as will be discussed later, artificial and random
HTTP traffic was convenient to produce.

For the first option, i.e. capture real traffic, the hosts (approximately 15) within the Network
Research Group (NRG) at University of Plymouth were used. The connectivity of the
machines within the NRG is convenient for traffic capture, as they are all connected to a
switch, and the capture machine was attached to the uplink of the switch through a hub. The
traffic collection was performed continuously during spring 2002 for a period of two weeks
and included only web traffic between the hosts in the NRG and hosts outside the UoP
network. The second option, i.e. generate artificial traffic, allowed a more controlled approach
to the data collection. The traffic was produced using the Random Yahoo Link page (RYL,
2002) from the Yahoo website, a CGI script that redirects a request to a random WWW page,
taken from the Yahoo search engine database. The HTTP client used to perform the requests
was wget (wget, 2002), a command-line HTTP retrieval tool, and the requests were controlled
through a Linux shell script. The experiments in this case were also performed in two stages,
but separately from the network segment traffic capture discussed above. It is known that at
least one major event, in terms of network infrastructure changes, happened between the two
experiments: an upgrade of the UoP network from a 100MB backbone / 10MB access speed
to 1000MB backbone / 100MB access speed. As will be seen in the results section, all the
network parameters (bandwidth, loss, delay) are improved for the second set of results. For
both experiments, the traffic was captured using tcpdump (tcpdump, 2002), which was set to
keep only the HTTP connections (using a tcp and port 80 filter expression). The level of the
monitored traffic was low in all cases and tcpdump did not report any dropped packets
throughout the experiments. In all experiments, the traces were filtered offline in order to
remove the unfinished or reseted connections, which could not be used for consistent analysis;
the resulting figures are presented in Table 1.

Number of connections cotlected
Traffic type 2001 2002
Raw Filtered Raw Filtered
Wget generated 15106 12469 16844 13674
Real - - 14288 11322

Table 1 — Capture statistics for the traffic collection experiments performed

3 Analysis

One of the aims of this paper is to advance the traffic analysis from an overall study, currently
preferred for convenience and simplicity, to per-flow examnation, in order te get an insight
of the network conditions that are behind the traffic. The overall analysis studies present only
the total figures of traffic {overall throughput in bytes, packets, or flows per second), the
distribution of traffic per application (based on the port numbess), or the distribution of the
packet lengths. The only concerted efforts in the area of TCP per-flow analysis were the ones

made by Paxson in (Paxson, 1997a), (Paxson, 1999), which are quoted by most articles when
discussing current characteristics of the Internet.

Two types of analysis were applied to the collected traces: network performance-related, to
reveal the end-to-end network paths characteristics, and connection-related, to classify the
web pages in terms of size and content. The network performance analysis was performed
using a previously developed tool, described in (Ghita et al, 2001); the method employed is
similar to other TCP flow analysers, like tcpanaly (Paxson, 1997b) and tcptrace (Osterman,
2002), with improvements for single point monitoring and network parameters inference. The
connection analysis investigated the size and the content (object-wise) of the web pages for
two reasons: to determine the average size of a page (together with the containing objects, e.g.
images) and to establish the efficiency in practice of the HTTP 1.1 pipelining capabilities.

4 The Random Yahoo Link experiments - Results

4.1 Network topology

The UoP network is connected to the Internet, as mentioned before, via the UK academic
network, JANET. As a result, the first 8 hops of all paths are part of the JANET infrastructure,
and, implicitly, were common for all connections but the routes diverged at the exit from
JANET, depending on the destination host. A separate experiment was carried out to estimate
the number of individual paths explored within the performed experiments. A traceroute was
run on a random subset of the sites (350 out of the 2744 unique servers which were used
during the spring 2002 round of experiments) to see the number of different individual paths.
The results are shown in Figure 1.

The number of routes differing by at least one hop was found to be as high as 180, figure that
is approximately half of the number of hosts probed (the number of unique hops decreases
towards the end of the graph due to path size, with an average hop count of 22.2 hops).
Concluding, although the study was performed from a single point, this additional
measurement indicates that the survey analysed a fairly large number of different Internet
paths.

Number of different routes
L8O v

L6Q
L40
120
100
a0
60
40
20
0

10 15 20 25 30
Hop number

Figure 1 - Routing distribution, spring 2002 experiments

4.2 Round Trip Time results

The distribution of the RTT for the two sets of experiments is presented in Figure 2 (left). As
can be observed, in both cases the average RTT values are very low for most of the
connections, with an overall average of 200.5 ms for the first round of experiments and 136.5
ms for the second round. The difference between the figures may be associated with the
network upgrade mentioned previously (unfortunately, there was no path information
collected during the autumn 2001 experiments), as the shape of the distribution remained the
same for the two sets of results.

flouws [X] flows (2]
100 Loo

/._.r7‘/ o
./ 80

a 70
60
50
40
30
20
10

300 409 500 600 700 o] 20 40 6O 8o 100 120 140 160
Averaae RTT RTT standard deviation

Figure 2 —left - RTT average [ms| cumulative distribution for: a) autumn 2001, b) spring 2002; right -
RTT standard deviation |ms] cumulative distribution for: a) autumn 2001, b) spring 2002

Aside from the actual value of the RTT, the standard deviation of the RTT throughout a
connection was calculated; the result is shown in Figure 2 (right). The average value of the
standard deviation was 22.3 ms (10.4 % of the RTT averages) for the autumn 2001 round and
7.8 ms (4.7 % of the RTT averages) for spring 2002. The data results from spring 2002
indicate that, for 87% of the flows, the RTT standard deviation was 10 ms. This value is
relevant as, at the moment, it is the default resolution for timers, at least for Linux based
systems. Future work, aims to analyse the implications of these low figures for RTT
estimation within the TCP clients, since the RTT variation plays an important role in the TCP
retransmission mechanism (Jacobson and Karels, 1988). Since successive connections were
made to different sites, conclusions could not be drawn with regard to the long / short term
autocorrelation of either RTT average or RTT standard deviation.

4.3 Loss

Due to its self-adjusting behaviour (Jacobson and Karels, 1988), TCP performance is
critically affected by loss. Nevertheless, previous studies (Paxson, 1997a) have shown that
packet loss is low, at least for the analysed mesh of Internet paths. One of the purposes of this
paper is to produce a similar study, but based only on traces collected from a single point and
with no control over the senders. It may be argued that the survey carried out as part of this
study was somehow limited, as the wget client does not support HTTP1.1. As a result, the
objects from a page are downloaded in separate connections, which leads to smaller

congestion windows. Further, the resulting figures for loss may be lower than the ones
obtained for a long-lived connection, with larger congestion windows. The losses were split
into visible retransmissions and inferred retransmissions. The first category, visible
retransmissions, is represented by losses which are indicated by anomalies in the TCP
segments sequence. The second category, inferred retransmissions, includes the losses that are
not apparent from the sequence of succesive TCP segments (more details on this subject are
given in (Ghita et al, 2001)). The second category was named inferred because the process of
identifying a loss is not based on sequencing, but only on packet spacing. The technique is
reliable for a simple HTTP 1.0 retrieval, where the reply is a single object. Additional
problems arise if HTTP 1.1 is used, due to spacing introduced between retrievals of
successive objects within the same connection. In this case, the method requires
comprehensive information from the application layer; since this is currently under analysis, it

is reserved for future work.
flows([Z]
160

g8
S8
97
95
5
94
93

92
0 0.05 0.1 0.15 0,2 0.25 0.3

loss

Fiéure 3 - Packet loss distribution for a) / b) visible retransmissions 2002 / 2001, ¢) / d) inferred
retransmissions 2002 / 2001, ¢) / f) all losses 2002 / 2001

The distributions for both types of losses, as well as their sum, are displayed in Figure 3. The
average figures for loss were: 0.18 / 0.83 / 1.1 % _ (visible / inferred / total) for the 2001
experiments and 0.16 / 0.47 / 0.63 % (visible / inferred / total) for the 2002 trace. It is
noticeable that the inferred losses accounted for the vast majority of the total loss, which may
be caused by the short-lived character of most connections. This may be due to the small
number of packets / connection which, again, leads to low values for congestion window and,
implicitly, too few acknowledgements returned for triggering a retransmission when a loss
happens.

The short-lived connections have an additional undesired effect: the accuracy of the
measurement cannot go beyond the granularity of the download duc to the low number of
packets exchanged. For example, having a transfer consisting of 10 packets, the minimum
detectable loss is 0.1, a situation also described in (Paxson, 1997a). To reduce this error
granularity, we calculated the loss based on the total number of packets. The year 2001 tests
had a total of 137297 packets, with 295 visible and 1033 inferred retransmissions, producing
the overall packet loss figures 0.21 / 0.75 / 0.96 % (visible / inferred / total). For the 2002
tests, a number of 297 packets were visible retransmissions and 604 packets were inferred
retransmissions; comparing this with the total of 129404 packets, results in an overall packet
loss of 0.22 / 0.46 / 0.68 % (visible / inferred / total).

4.4 Bandwidth

An estimate of the total bandwidth was produced for each connection. The estimate used
delay between pairs of consecutive packets inferred to be sent in a back-to-back manner, and
it was based on the method proposed by Keshav in (Keshav, 1991). The problems that may
occur due to clock granularity were avoided by using a microsecond kernel timer, the Kansas
University Real-Time Linux (KURT) (Nichaus, 2002). The obtained figure might be affected
by the problems associated with packet-pair bandwidth inference but, due to the unknown
behaviour of the senders, it was not possible to apply the Receiver Based Packet Pair as
described in (Paxson, 1997a) to avoid these problems.

flows [X]

100

S0

80 /

70 e

() b

50 . r,-/",
aol
!

30}/
r/.-
208

10

2000 4000 BO0O 8000 10000 1200
bandwidth [KB/s]}

Figure 4 - Bandwidth cumulative distribution for a) autumn 2001 and b) spring 2002

From all network characteristics, the network upgrade mentioned earlier affected bandwidth
the most. It can be noticed in the distribution from Figure 4 that bandwidth reached a
maximum of approximately 1.2MB/s for the autumn 2001 round of experiments. This
matches, in fact, the configuration of the network: at the time of the experiment, the
connectivity of the desktops was 10Mb LAN. For the spring 2002, the maximum figure is
12MB/s, which reflects the tenfold increase in desktop bandwidth.

4.5 Congestion window analysis

The congestion window inference includes a high level of assumption in terms of TCP
connection analysis. In our case, the task had an increased level of difficulty due to the
characteristics of the monitored transfers: unknown senders, receiver-based capture, and no
control over the endpoints / transfer. The fact that the senders use an unknown TCP
implementation does not allow any inference in regards to profiling of the congestion window
evolution. The intention was to produce a rough estimate of the congestion window, not to
compete with rcpanaly (Paxson, 1997b), which includes more complex analysis but also
requires traffic capture at / near the endpoints. The receiver-based capture brings with it
uncertainty in regards to if, when, and as a response to what acknowledgement, the sender
transmitted a data segment. Due to the variety of window increase policies and the uncertainty
of which acknowledgements reached the server, the congestion window inference was based
exclusively on timing between different trains of packets rather than acknowledgement
dialogue. The actual method focused on isolating groups of packets that appear to be

transmitted as part of the same round, based on the distance between successive in-sequence
packets. The third problem, no control over the endpoints, differentiates the study from
Internet measurement efforts (Paxson, 1999), (NIMI, 2002). Within measurement
infrastructures, endpoints running dedicated clients transfer large files between them at
regular intervals in order to determine the network characteristics. Within this study, all the
senders were remote sites on the Internet and the objects transferred were various web pages
residing on the servers; as a result, there was no control over the size / timing of the
connections.

0 S 10 15 20 25 30
congestion window size [packets]

Figure 5 - Cumulative distribution of the a) initial, b} average, and ¢) maximum congestion window size

The resulting distribution is displayed in Figure 5. The average figures for the three variables
(initial / average / maximum congestion window) were 1.91/3.47/ 495 for 2001
experiments and 1.77 / 3.16 / 4.52 for the 2002 experiments round. The difference between
the figures can be attributed, again, to the network upgrade that reduced the packet loss and
delay figures, as mentioned before.

5 The NRG network traces

5.6 Page content analysis

When the first round of experiments was run, the latest version at the time did not allow for a
full download of the web pages (e.g. for a page with 4 images, only the HTML file was
retrieved). At the second round of experimeats, the newer version of wget had the facility to
parse web pages and download the objects hosted on the same server with the page), which
allowed a rough estimation of the actual content of the page. In the case of a HTTP1.1 client,
these objects would be downloaded in a single connection. This gives an approximate
indication of the actual length, in terms of size, of a connection.

flous (%] flows [Z)
L6O 160

—

90 90
w o

70 / 70
60
/ 60
50
50
40
30 40
20 30
10 20
0 > - = 10 - >
0 100000 200000 300000 400000 S00000 GODOO O 5 10 15 20 25 30 5 40 45
Buytes / page Objects / page

Figure 6 - Distribution of page content in bytes / page and objects / page

Figure 6 shows that most web pages have relatively large size (for some of his experiments,
Paxson considered 100 KB files to be satisfactory for evaluating the properties of Internet).
Also, from the distribution of objects per page, it may be concluded that full usage of HTTP
1.1 request pipelining would considerably reduce the overall time to retrieve the web page.
The average figures for Figure 6 are 72607 bytes / page and 10.5 objects / page.

5.7 Connection analysis

Although a convenient and comprehensive tool, even the latest version of wget does not
include some major functionality such as supporting frames and request pipelining (according
to the author, there are no plans to expand it in the future in these areas). The set of traces
captured from the traffic produced by the NRG mcmbers was therefore used for the
connection analysis. The machines in the NRG were running either on a flavour of Linux
(RedHat or SuSE) or Windows (NT4 or 2000 Professional), with Netscape Navigator 4.76-
4.77 or Internet Explorer 5.0-5.5 as correspondent web clients. All the mentioned versions
have HTTPL.l enabled as standard, therefore they all should pipeline the requests whenever
possible. The analysis of the captured traffic focused on the connection length, in order to
determine the average length of an HTTP retrieval for the real traffic case. It may be argued
that the amount of users involved in the study was relatively small; however, for future, it is
aimed to compare these figures with results obtained from bigger, backbone collected traces.
The result of the connection size analysis is displayed in Figure 7. It was observed that
approximately three quarters of the flows had a download size of under 5KB with average
numbers of 6220 bytes / connection and 7.12 packets / connection. These are very low
figures, considering the previously estimated average of 72607 bytes / page obtained from the
Random Yahoo Link experiments, and indicate that, in spite of the rich content of the
Internet, the HTTP pipelining capabilities are not efficiently used.

Flows [2)
1

33 KRB H S8

g &8883

0 10 20 30 40 50 =] 70 80
kbytes / connection

Figure 7 - Cumulative distribution of connection size

6 Conclusions

This paper presented the findings from an endpoint-based network per-flow trace analysis. In
spite of its limited scope, the proposed analysis allowed characterisation of a fairly large
number of neitwork paths. The traffic was studied with a two-fold purpose: to evaluate the
network conditions experienced by the flows and to determine the characteristics of a web
page in terms of total content and number of elements per page. For the analysis, artificial
traffic was mainly used. The experiment was carried out in two rounds: autumn 200! and
spring 2002. It used a random page generator combined with a command line HTTP retrieval
tool, which was preferred instead of the real traffic due to the complexity in interpreting
HTTP 1.1 pipelined transfers. Nevertheless, in order to evaluate the size characteristics of real
transfers, a pilot traffic capture in a limited environment was performed.

The TCP analysts revealed a loss-free image of the Internet, with an average loss of 1.1% for
the first round of experiments and 0.63% for the second round. The overall figures indicated
even a smaller loss probability, of 0.96% and 0.96% respectively. The round trip delay values
were also fairly low, with an average 200.5 ms for autumn 2001 and 196 ms for spring 2002
experiments and a standard deviation of 22.3 ms and 7.8 ms (4.7 % of the RTT averages)
respectively. The page content analysis revealed that the average page size is approximately
70 KB, with an average of 10 objects / page that fully justify usage of HTTP 1.1 pipelining.
However, the real network traffic showed much lower figures, of only 6220 bytes /
connection and 7.12 packets / connection, which indicates that either the HTTP 1.1 pipelining
mechanisms are inefficiently used or that current web pages are not suitable for pipelined
requests.

For future work, it is primarily aimed to reduce the uncertainty of packet loss estimation and
to expand the analysis towards connecting the TCP analysis with the HTTP retrieval, in order
to be able to isolate individual retrievals of objects. Also, if possible, the per-flow analysis
will be applied to larger traces to determine whether or not these findings are scalable and
may be applied to traffic collected from core intemet links.

7 References

AMP, The Active Measurement Project (AMP) homepage, http:/moat.nlanr.net/ AMP/, 2002

Ghita, B., Lines, B, Furnell, S., lfeachor, E., “Non-intrusive IP Network Performance Monitoring for TCP
flows™, Proceedings of IEEE ICT 2001, 2001

Jacobson, V., Karels, M., ‘Congestion Avoidance and Control’, Proceedings of SIGCOMM '88, 1988

Keshav, S., “A Control-Theoretic Approach to Flow Control,” Proceedings of SIGCOMM '91, pp. 3-15, 1991.
NIMI, The National Intemet Measurement Infrastructure homepage, http:/ncne.nlanr.net/nimi/, 2002

Niehaus, D., “KURT- Linux: Kansas University Real-Time Linux”, http://www.ittc.ku edwkurt/, 2002
Osterman S., ‘tcptrace homepage”, http:/Awww.tcptrace.org, 2002

Paxson, V., “Measurements and Analysis of End-to-End Internet Dynamics™, PhD thesis, 1997

Paxson, V., “Automated Packet Trace Analysis of TCP Implementations”, Proceedings of SIGCOMM '97, 1997
Paxson V., “End-to-end internet packet dynamics”, IEEE/ACM Transactions on Networking, vol 7, no 3, 1999
Random Yahoo Link (RYL), Random Yahoo Link Page, http://random.yahoo.comv/bin/ryl, 2002

tcpdump, tcpdump public repository, http://www.tcpdump.org/, 2002

Thompson K., Miller G.). ‘Wide-Area Internet Traffic Patterns and Characteristics’, JEEE nerwork, nov 1997

Wget, GNU Wget home page, http://www.gnu.org/software/wget/, 2002

Non-intrusive IP network performance monitoring for TCP flows

B. Ghita, B.M. Lines, S.M. Fumell, E.C. Ifeachor
Department of Communications and Electronic Engineering, University of Plymouth,
Plymouth, UK
{b.ghita, sfurnell@jack.see.plym.ac.uk}, {e.ifeachor,b.lines@plymouth.ac.uk}

Abstract: The expansion of the Intemet in the past
two decades has led 1o a large amount of traffic being
carried over IP (Intemet Protoco!) networks, most of
which is due to web browsing. Unfortunately, the
Internet revolution was not accompanied by an
improvement in monitoring. Until recently, the main
problem that affects TCP (Transmission Control
Protocol) performance was considered to be the
available bandwidth and, in tumn, bandwidth was less of
an issue when compared to network availability. This
paper presents a method that allows offline, single point,
non-intrusive performance measurement for TCP
connections. The method avoids all the limilations of
present monitoring solutions, i.. intrusive and / or
complex, and offers in-depth information about the
-- performance parameters. This is a first step in defining,
evaluating and measuring network Quality of Service for
TCP transfers. Test results show that the method is
correct for measuring throughput and has an accuracy
greater than 95% when determining RTT (Round Trip
Time) values, but may have errors of up to 30% when
estimating packet loss, due to uncertainty in determining
certain events and to differences between various TCP
implementations.

1 INTRODUCTION

In the last two decades, the unprecedented
expansion of the Internet has led to a large amount of
raffic being carried over [P networks. According to
recent studies on large networks and backbone segments,
[1], [2), the majority of Internet traffic is produced by
web browsing. Additionally, the content of the web
pages has moved from text to multimedia, e.g. images,
and even pseudo-real-time traffic, leading to new loss
and delay issues. The transport performance of web
browsing depends exclusively on the perfonmance of its
underlying protocol: TCP. In order to cope with these
new requirements, the Intemnet should be, besides
ubiquitous, also fast and ideally loss-free. This is not the
case at present, mainly due to the bess effort character of
its core protocol, IP. The first step in improving the
current situation would be 1o evaluate the performance.
Unfortunately, until now, little has been done to
determine the quality of individual Internet TCP
connections, which would give the performance of web
traffic; current performance measurement methods are
either intrusive, or indicate only the overall quantity of
traffic. Intrusive measurement methods are accurate, but
they have several inconveniences: they often require an
infrastructure being deployed at the points where tesl
traffic is injected into the network, the measurement is
limited to the injected traffic and it is presumed that all

the traffic types (e.g.- TCP and ICMP, Intemet Control
Messaging Protocol) encounter the same behavior from
routers.

This paper presents 2 method that allows single
point, non-intrusive performance measurement for TCP
connections, together with an implementation which was
developed as a proof of concept for this method. The
method avoids all the inconveniences of current
monitoring solutions, i.e. intrusive and complex, and
offers in-depth information about the performance
parameters. This is a first step in defining, evaluating
and measuring network Quality of Service for TCP
transfers.

The rest of the paper is organized as follows: in
section 1I the current stale-of-the-art in performance
measurement is presented, together with the limitations
and disadvantages they include. Section Il then
describes the underlying’mechanisms of TCP. Section IV
describes the proposed measurement method, while
section V outlines an accompanying proof-of-concept
implementation of the method, section VI discusses
results of preliminary benchmarking tests and, finally,
section VII presents overall conclusions and ideas for
future work.

I1 CURRENT MONITORING EFFORTS

There are three main types of methods to determine
the performance of traffic: intrusive, pseudo-non-
intrusive, and non-inwrusive. The Cooperative
Association for Internet Data Analysis (CAIDA)
maintains evidence of the efforts related to network
monitoring [3]. At present, most of the methods that
measure the performance parameters of the network are
intrusive. The most commonly used subset of these
techniques is based on ICMP messages. They involve
two stages: first a probe packet being sent from the
monitoring station over the network to a specific target
host, then a reply being produced by the target and sent
back to the monitoring station. The monitor then
determines the parameters of the network by examining
timing information of this request / response dialogue.
Examples of monitoring toels based on this mechanism
are ping and Iraceroute, [4]. A more advanced subset of
these techniques bases its measurements on TCP
transfers, instead of ICMP exchanges, which makes the
results equivalent with the real web browsing traffic (as
will be described later, TCP behavior is not ‘bulk
transfer’, but govemed by certain rules). Examples of
network monitors that use such techniques are
pathchar{4], treno (described in [5]), and sting [6].

The second category of monitoring techniques can
be termed pseudo-non-intrusive methods. They do not

send traffic in order 0 measure it, but request
management information from other hosts to build an
image of the network performance. For example, they
can interrogate routers about the statistics of the traffic
running over the network using SNMP (Simple Network
Management Protocol). They are related more to
management issues than monitoring itself, as the data is
obtained by interrogating databases.

The main advantage of the above categories is that
they provide accurate measurement of the focused
variables other than probe effect. Unfortunately, both
approaches have several disadvantages. The main
problem resides in the fact that they inject additional
traffic in the network, either to measure it (as intrusive
methods do), or to exchange information, which
occupies network resources. The two categories also
have deployment issues: they require access, to run, to
update and to collect dats from dedicated software at the
‘other” end (i.e. measurement client). Also, in most of
the cases, the remote end is inaccessible, therefore a
measurement architecture using such methods can easily
be brought near failure [7].

Non-intrusive monitoring is the third category of
network monitoring methods. The methods included do
not send any traffic into the network, but only capture
and analyze the traffic transiting the point where the
monitoring station is connected. They could represent
the perfect solution for continuous monitoring, as they
eliminate the disadvantages of previous methods. The
main disadvantage is that these methods infer the
required parameters from the observed packet flows;
their accuracy is strongly related to how the packet
exchanges are interpreted.

Unfortunately, the Intemet revolution was not
accompanied by an improvement in monitoring. Until
recently, the main factor that affects TCP performance
was considered to be the available bandwidth, as
network parameters such as loss and delay were less of
an issue than availability and bandwidth. Therefore, the
vast majority of the existing non-intrusive monitoring
methods are geared towards measuring the overall used
bandwidth of a network; the other parameters (loss,
delay) can be determined only if the traces are analyzed
by a network specialist. The most advanced tools to
analyze and interpret TCP traces are the trace analyzers,
such as icptrace [8] and tcpanaly [9]. but they
concentrate more on the TCP behavior than on network
performance, therefore they are less suitable for
monitoring. Now the problem has changed: broadband
access is widely deployed to Intermet hosts and the
content of the Internet has become multimedia-rich. No
matter how much the locally available bandwidth
expands, the delay of the packet flows, as they transit the
intermediate networks (e.g. satellite links), and loss rate,
due to network congestion, remain problematic issues.
As a result, the quality, i.e. performance, offered to each
packet flow not quantity should be measured. This paper
proposes & technique that evaluates non-intrusively the
performance of the traffic transiting the network as
observed from a single-point.

I TCP MECHANISMS

The performance of TCP transfers is determined by
the download speed. Being a reliable protocol, TCP
provides for loss recovery and in-sequence data delivery.
In order to perform these functions, the TCP
specification [10] includes mechanisms for data
ordering, acknowledging and retransmission.

When a TCP transfer takes place, two unidirectional
packet flows are established: a download flow, from the
sender to the receiver, which carries the actual data
transferred, and an acknowledge flow, from receiver to
sender, which confirms the data segment. The
acknowledge flow allows the sender to determine when /
if a data segment arrived at the receiver, and to
retransmit it if necessary. There are two indications of
packet loss [11}:

- double acknowledges - the receiver confirms
repeatedly older data segments; newer packets arrive
at the receiver, but there is one of them missing, and
the receiver is requesting that one; if the number of
double-acknowledges for a segment is higher than a
threshold, the segment is re-sent;

- limeouts — a mechanism that estimates the average
and deviation of RTT exists within TCP clients,
based on the time when data is being sent /
acknowledged; if no acknowledge is received in a
time higher than the timeout estimate, the data
segment is re-sent.

TCP, besides being a reliable protocol, is self-
tuning: it evaluates the network status, based on the
delay and loss characteristics of the acknowledgement
packets, and adjusts its transmissien rate accordingly
[11]. The sender cannot transmit all the available data,
but only segments up to an adjustable congestion
window. Events in the network negatively affect the
dimension of the congestion window, e.g. a lost packet
halves it. Under these conditions, even if bandwidth is
sufficient, if a high delay occurs (i.c. it takes a long time
for the acknowledges to reach the sender) or a congested
network ts transited (i.e. increased packet loss), the TCP
speed will be reduced radically.

IV MEASUREMENT METHOD

The aim of the proposed method is to evaluate the
network performance parameters of the TCP
connections. The monitor is positioned somewhere along
the path which is transited by the packets. If we consider

end-to-end
<3 P>
West _, East D
P
Subnet | Subnet
'Receiver -~ 6 | Sender |
Monitor

the server/client character of the web traffic, we can
divide the end-to-end path of the flow into twe virtual
segments, called Wesr and East, as in Figure |.

Figure | - Measurement for a sender-receiver
configuration

The TCP monitoring process has three steps:

1. Capture the packets (the input).

2. Divide overall flow onto connections, using the [P
addresses and transport ports, perform per-flow
analysis;

3. Determine the performance parameters (the output).

A list of general network parameters includes: one-way

delay, one-way delay jitter, packet loss, and throughput.

Due to the characteristics of the measurement, which is

single point, there is no method to determine one-way

delay information; the delay and delay jitter have to be
reptaced by RTT and RTT jitter.

The TCP menitor is built similarly to a TCP end-
client. The theory behind the monitor was based on the
TCP standard and its enhancements, thoroughly
described in [10], as well as on the 4.x BSD (Berkeley
Software Design) TCP/IP stack implementation,
presented in [12]. It is a state machine which has as
inputs the packet arrivals and emulates the processing of
packets being ‘sent’ and ‘received’ as happens within the
sender or the receiver part of the TCP client. The only
outputs it produces are the obtained performance
parameters. The monitor is different from the TCP end-
client for several reasons, mainly the inputs of a TCP
end client, which include user calls, packet arrivals and
time-outs. Because, at the monitoring point, there is no
access to the user-TCP interaction, there is no access to
user calls and ne information about when the timers are
set/expire at the endpoint. The states from the original
TCP diagram were maintained, but the transition triggers
were modified in order to adapt to these unknowns. The
transitions in the monitor follow the transitions that
happen at the endpoints and they are due to: packet
ammival from the endpoint (most of them), specific
transition of the corresponding endpoint (for the
transitions which have no outputs, and a packet arrival or
a user call as an input), or unconditional (due to expiry
of a timer — different implementations might have
different settings for the timer). In addition to the TCP
transition diagram, there were added two additional state
machines:

- sende: NO_DATA (the sender received
acknowledgements for all the dota segments sent)
and WAIT_ACK (the sender previously sent data
which has not been acknowledged yet)

- receiver: NORMAL (the receiver is acknowledging
data), DUPLICATE_ERR (the receiver sent the
same acknowledgement twice),
DUPLICATE_ERRI (the receiver sent the same
acknowledgement three times)

The sender machine indicates whether or not the
sender is idle, while the receiver machine flags packet
losses advertised by the receiver.

The main functioning principle is that the TCP
monitor emulates the TCP client. Therefore, the monitor
maintains relevant infonmation about :
- connection variables (e.g.

sequencing information);

- current values for performance parameters of that
specific flow, which is accessed / modified each
time when a packet is received;

- information related to past behavior: a memory of
‘skipped’ segments which contains all the

connection state,

apparently skipped segments, i.e. segments older

than current sequence number which have not been

passed by the monitoring point yet,

Parameter update depends on the packet status
{whether or not it is a ‘good for update’ packet, or not).
By comparing the sequence/acknowledgement number
in the TCP header of the packet with the sequence
variables of the flow to which it belongs, determines a
variable called PackeiStarus, which defines the data
segment within the packet; in parllel, the
acknowiedgement number informs the receiver part of
the flow about the status of data sent.

Several categories are defined to describe data
segments, depending on their status:

- correct = segment of data in sequence, following
last sent segment

- furure = out-of-order data; the sequence number of
the packet is higher than the expected sequence
number

- retransmitted = old data segment which was
transmitted at some moment in the past, and now is
retransmitted, probably due to a packet being lost

- inverted = old data segment which was misordered
{followed a future data segment, but it is only out-of
order, not retransmitted),

In addition, two types of acknowledgements are
defined:

- correct ACK - there is no data to be acknowledged,
or the acknowledgement number acknowledges the
last transmitted segment),

- duplicate ACK - the sender still has
unacknowledged data and the acknowledgement
aumber does not acknowledge highest sequence
number sent.

The steps of the data analysis are as follows:

1. Determine if the ACK in the packet is correct.

2. Determine what type of data is inside the packet.

3. Update the flow vanables, depending on the data

contained by the packet (if packet is not empty).

4. Separate out-of-order packets from lost-before-

monitor packets within the inverted data category.

5. Calculate RTT; update the RTT average and jitter.
For a Sender-to-Receiver flow, as pictured in Figure

1, the output parameters of the method are:

- lost packets — two variables: packets tost before the
monitoring point and packets lost after the
monitoring point;

- out-of-order packets;

- total number of transmitted packets (including
retransmissions);

- RTT average;

- RTTjitter;

- useful data throughput - related to the amount of
valid data that was received;
total data throughput — related to the total ameunt of
data that was sent to the receiver (including
retransmissions).

The data throughput measurements have 100%
accuracy, as they are obtained by subtracting last
transmitted sequence number and initial sequence
number.

The implementation consists of a program wriiten in
C++, which captures the packeis, parses the packet

headers and identifies the fields of interest, identifies the
flow to which the packet belongs, based on the IP
addresses and ports fields within the [P and TCP
headers, performs the analysis, and displays the result in
a text form. It is not the purpose of this paper to discuss
the characteristics of the software program itself, but,
during the development phase, relevant issues were
raised related to TCP monitoring.

VY ERROR SOURCES

Two main sources of errors were observed:

- limitations due to the monitor position, which made
some of the packet loss events invisible and affected
RTT measurements;

- differences within the variety of TCP
implementation that exist, which made packet loss,
timeout and congestion window estimations
inaccurate.

The monitor is positioned, as pictured in Figure 1,
somewhere along the path transited by the packet flow.
Because of this, the packets being exchanged by the two
endpoints allow RTT measurement only for the East
network, because no (or little) data is sent from the
receiver to the sender, and TCP does not perform
acknowledgement-of-acknowledgement. This affects the
measurement dramatically if the monitor is ‘near’ the
receiver, as no significant RTT measurements are
possible in this case.

Differences between TCP implementations were
identified to create large changes in TCP behavior in
earlier studies, such as [9]). The method proposed was to
profile / identify each type of implementation. This
approach is valid at a certain time, but it has to be
renewed later, when new implementations, with different
behaviors, are released. The differences between
implementations are part of the TCP philosophy ‘be
conservative in what you do, be liberal in what you
accep! from others’ [11], and the endpoints can adapt to
it, but it removes the packet arrival patterns which exist
within observed data transfer. Therefore, this method
aims to identify as accurately as possible the events that
produce the behavior of the monitored TCP transfers,
while maintaining a generic aspect.

Initially, the method included a mechanism to
follow the congestion window evolution at the sender.
Unfortunately, the TCP client from Windows 98 had a
strange evolution, even under no-impairments
conditions: instead of being maintained high, the
congestion window was exponentially raised from 1|
segment to a maximum of 4 segments, according to the
acknowledgements, then it was resel to a single segment.
It is difficult to determine if this was a bug in that
specific implementation or a congestion window
limitation.

There were also differences between the Windows
98 and Linux TCP implementations. Linux
implementation used SACKs (selective
acknowledgements): if a single packet is lost, in the
middle of a congestion window, the Linux TCP sender
transmits the packet, adjusts the congestion window,
then continues (i.e. waits for the next acknowledgement).
In contrast, the Windows 98 TCP implementation did

not implement this feature, therefore retransmitted the
entire remaining window; this introduces an error factor
in the monitoring method, as the TCP client retransmits
packets which were not lost.

Timeout estimation is another feature that proved to
be unusable because of both of the mentioned categories.
If variance occurs and cannot be detected (such as
variance in the RTT measurement for the East segment,
as described above) the estimated timeout of the monitor
is different from the one of the sender. The timeout is a
binary decision: if an acknowledgement does not armive
in time, the packet is considered lost. This type of
decision requires a very fine granularity of the
measurement, which cannot be achieved under such
configuration. This limitation affects also the packet loss
estimation: lost packets due to a timeout events cannot
be observed, therefore the measured value is different
from the real one.

In spite of its ability to provide important data,
acknowledgement interpretation was not used. The
decision was taken due to two factors: implementations
differences (acknowledging policy, eg. delayed
acknowledging, depends on the receiver TCP
implementation) and reverse path packet loss (while lost
data packets are retransmitted, lost acknowledges are
not).

VI VALIDATION TESTS

The method was continuously benchmarked using a
Ethernet network testbed, pictured in Figure 2, which
emulates various network conditions, using the facilities
of a network emulation tool, NISTNet [13].

For transfers, the two station used, alternatively,
two types of TCP implementation: Windows 98 and
Linux OS, each of them with its own TCP
implementation. The two links from Figure 2 are, in fact,
two routers with NISTNer [13] installed on them, which
delay and / or discard packets according to the rules
specified by the user. As the monitoring station was
placed in the middle, Figure 2 can be mapped onto
Figure I: Link | is West Subnetwork, and Link 2 is East
Subnetwork.

Client Link 1 Server

Moanitor Link 2

Figure 2 Test configuration

First, preliminary tests were performed to
determine the propagation times of the testbed when no
impairments are introduced using NISTNet. Two
simplifying hypothesis were introduced:

- the data packets (from Sender to Receiver) are all
full (1518 bytes frames) and the acknowledges
(from Receiver to Sender) are all empty (64-bytes
frames); therefore the RTT can be computed as:

RIT; 8by +R 64b
RTT] end—tomend = i 2 Teres o)

- the network is symmetric (the two subnetworks,
West and East, have the same properties):

RTT|. ,.q-
Rmu’w:RTTlEau =_|"’;’£‘ﬂ o)

The tests consisted of sending batches of 100 ping
packets with frame size of 1518 bytes (full data frames)
between the two stations, with delays between packets
that correspond to a throughputs between 10 kB/s and
500 kB/s. The test was then repeated for 64-byte frames
(empty acknowledgement frames). From the preliminary
tests it was concluded that, without introducing any
degradation, the following approximate values can be
considered:

- end-to-end RTT for the network testbed is 10ms
- end-to-end RTT jitter is 0.1ms

Three tests were performed, in order to determine
the accuracy of the method. A large file (2.6 MB) was
chosen to be transmitted in order to: eliminate the
transient effects from the beginning (i.e. slow start) and
obtain more accurate average values. The transfer was
realized via FTP (the application layer does not influence
TCP behavior). The tests consisted of setting certain
values for delay or jitter, making the transfer and
monitor it using the method implementation, then read
the results.

I, Testl
Conditions of testing: no degradation
Results of measurement:
- RTT average = 7.17 ms
- RTT jitter = 6.65 ms
- RTT packets = 48
- lost packets east/ west =0/ 6]
- number of data packets = 1009
- inverted packets =0
Conclusion: the RTT and jitter measurement values
have the same order with previous findings, based on
ping measurements; the aim is aot to obtain a higher
precision for these values, because the area is near the
actual propagation and processing time required under
no network degradation.
Observations (will be detailed in next test):
- the number of reported lost packels is non-zero,
although no lost actually occurred;
- the number of RTT packets is low.

2. Test2
Conditions of testing: constant delay, variable
deviation, no packet loss; delays introduced:
- RI(B =2A) =400 ms;
- RI(A —B) =300 ms;
- R2(B —-A)=200 ms;
- R2(A —5B)=100 ms.
The measurable RTT value is:

RTT:RIB—)A+R2A—)B+R =710ms (3)

The measurement results are presented in Table 1:

Jitter introduced 0 10 50 100

Jitter measured 21.2 48.5 167.8 96.4

RTT measured 7284 | 741.2 | 765.3 | 695.0

RTT error 2.62 445 -0.6 -2.14
RTT packets 17 32 15 14
Lost pkts (East) 0 0 0 0
Lost pkts (West) | 125 230 250

Units: jitter [ms], error [%}
Table | - Delay and jitter measurement results

Conclusions:

- RTT is estimated correctly (i.e. with less than 5%
error) in most of the situations;

- RTT measured jitter varies from the introduced jitter
- this metric is differently measured from the value
produced by NISTNet, see also observations below.
Observations:

- the number of RTT measurement packets is
relatively low (the total number of data packets was
around 2000 packets). This is because RTT is
determined only for ACK arrived for the last data
packet seen, i.e. acknowledgements of entire packets
/ congestion windows. This makes the jitter value, as
measured by the method, different from the jitter
introduced by NISTNet;

- although no packets are lost, the number of packets
presumed lost in West subnetwork is non-zero, and
it is actually increasing up to 10% of the number of
transmitted data packets. As only the losses for
B—A are measured, this is actually the number of
‘lost-after’ packets. The TCP analysis method
considers ‘lost-after’ all packet retransmissions
visible to the monitor. These retransmissions are not
actually due to packet losses, but due to TCP
erroneous retransmission timeout (RTO) estimation
at sender, 1.e. sender does not receive a confirmation
for the packet in a time lower than the estimated
RTO and redundantly sends the segment again.

It must be said that, although the erroneous RTO
calculation events are not due 1o ‘lost packet’, they have
the same impact on the transfer as a lost packet:

- the sender adjusts its congestion window as if a
timeout occurred;

- the bandwidth is additionally loaded;

- the second reception of the packet is ignored at the
receiver (the segment is discarded) - the
transmission is useless.

J. Test3

Conditions of testing: no delay or jitter introduced;
variable, symmetric loss, set at 1%, 2% and 5%. The
tests for losses higher than 5% failed, because the TCP
counection timed out — the TCP sender retransmits the
same segment a number of times, if loss was due (o
timeout, then gives up and closes the connection.

NISTNer maintains the number of lost packets,
facility which was very useful in this case, as it allows
comparison between the reported number of discarded
packets (by NISTNer), and the measured (estimated)
number of lost packets, as determined by the method. In
Table 2 summarizes the conditions of the test by the

packet loss sef and reported columns, and estimation
results by the measurement column. A comparison
between the estimated and the reported values is made in
the Error column.

Packet loss
Error
Subnet set reported | measured | oz
[%] [pkts] [pkts]

East 1 24 21 12.5
West 1 23 30 304
East 2 40 36 10.0
West 2 39 43 10.2
East 5 102 90 11.7
West 5 112 116 3.57

Table 2 - Packet loss measurements

4. Conclusions:

The differences between the values introduced and
the ones measured are very high. In all the cases, the
measured toss for East Subnetwork (packets lost before
the monitor — between the Sender and the monitor) is
lower than the loss introduced, while for the West
Subnetwork, (packets lost affer the monitor — between
the monitor and the Receiver) the measured loss is
higher than the loss introduced.

The differences for the ‘lost after’ category result
from differences between TCP behavior: The monitor
cannot determine whether the packets were lost or not,
so it considers them all lost and retransmitted. This also
applies for ‘lost after’ category.

The differences for the ‘lost before’ category result
from following situations:

- if there is a multiple loss (a packet is lost repeatedly
more than once) before the monitor, the monitor can
identify only a single loss;

- if a timeout occurs due to the last packet in a
transmission window being tost before the monitor,
the sender retransmits the packet. Still, no apparent
inversion can be detected, because the sender did
not transmit any other packets between the two
transmissions of the timed-out packet.

VII CONCLUSIONS AND FUTURE
WORK

The article presented a method to determine non-
intrusively the performance parameters of individual
TCP connections. The method represents an important
contribution to the network monitoring area, as current
methods are intrusive, therefore create additional traffic,
and require difTerent degrees of cooperation from the far
end.

The validation tests evaluated the accuracy of the
method; they were performed in a controlled
environment, using two Windows 98 / Linux TCP clients
which exchanged data via a TCP connection over an
emulated network (N/STNef). They proved that the
method is exact for measuring throughput and has an
accuracy higher than 95% when determining RTT
values. Unfortunately, errors up to 30% can appear when
measuring packet loss. These errors are due to
uncertainty in determining certain events, such as

timeout, and to differences between various TCP
implementations. Several possible enhancements within
the method that would allow a better understanding of
the TCP behavior had to be suspended because of the
identified differences.

Future work will concentrate mainly on improving
the estimation of packet loss. A first step will be to
produce an estimate of the timeout, based on an
intelligent analysis method, such as fuzzy logic, of the
connection a posteriori; this approach would produce a
better estimate of packet loss. The next step will be to
determine the relationship between throughput, as an
overall measure of the performance, and packet loss and
delay, as performance parameters, adjustable from the
management point of view.

Acknowledgments: We are grateful 10 Acterna for
supporting this work.

REFERENCES

[1] Thompson K., Miller G.J., Wilder R., ‘Wide-Area
Intermet Traffic Patterns and Characteristics’, in
IEEE nerwork, nov-dec 1997

(2] Hwang A., ‘Observation of Network Traffic
Panterns at an End Network: Harvard University’,
BA Thesis, Harvard college, April 1998

[3] CAIDA, ‘The Cooperative Association for Internet
Data Analysis website’, hitp://www.caida.org

[4] Jacobson V., Paxson V., ‘LBNL's Network
Research Group homepage’, http://www-
nrg.ee.lbl.gov

[5) Mathis M., Mahdavi J, ‘Diagnosing Internet
Congestion with a Transport Layer performance
Tool’, in Proceedings of INET 96, June 1996

[6] Savage S., ‘Sting: a TCP-based Network
Measurement Tool, in Proceedings of the 1999
USENIX Symposium on Internet Technologies and
Systems, October 1999

[7] Paxson V. et al, ‘Experiences with NIMI', in
Proceedings of Pasive and Active Measurement,
April 2000

[8] Ostermann s, ‘tcptrace home
hitp:/fwww tcptrace.org

[9] Paxson V., ‘Automated Packet Trace Analysis of
TCP Implementations’, in Proceedings of
SIGCOMM '97, September 1997

[10]DARPA, ‘Transmission Contro! Protocol - RFC
793", September 1981

[11]Stevens W., Wright G., ‘TCP/IP lllustrated. Vol 1 —
The Protocols’, Adison-Wesley, 1994

[12] Stevens W., Wright G., ‘TCP/IP {llustrated. Vol 2 —
The Implementation’, Adison-Wesley, 1993

[13)Carson M., “NISTNet network emulator
homepage™, http://snad.ncsl.nist.gov/itg/nistnet/,
2001

page’,

Network Quality of Service Monitoring for IP Telephony

B.V.Ghita', S.M.Fumell', BM.Lines', D.Le-Fotl, E.C Ifeachor’

' Network Research Group, School of Electronic, Communication & Electrical Engineering,
University of Plymouth, Plymouth, United Kingdom
2 Wavetek Wandel Goltermann, Plymouth, United Kingdom
3 SMART Systerns Research Group, School of Electronic, Communication & Electrical
Engineering, University of Plymouth, Ptymouth, United Kingdom

Abstract

This paper presents a non-intrusive method of determining network performance parameters
for voice packet flows within a VoIP (Voice over [P, or Intemnet Telephony) call. An
advantage of the method is that it allows not only end-to-end performance monitoring of
flows, but also makes it possible to inspect the transport parameters a specific network or link
when delay sensitive traffic transits through it The results of a preliminary test, to check the
validity of the method, are also included.

Keywords

Voice over [P, Quality of Service parameters, non-intrusive monitoring.

Introduction

QOver the last two decades, the Internet has evolved from a few interconnected networks that
linked research laboratories, universities, or military infrastructure, to an everyday tool which
is easy to access and use by many people. The dramatic evolution can be assessed in terms of
growth in the number of hosts and Intemet applications. The initial use of the Intemet was
different to that of today. Contrasting two studies of Intemnet activity, from 1991 (Caceres ¢
al, 1991) and 1997 (Thompson et al, 1997), it can be seen that the nature of activity has
changed from applications such as telnet or file transfer to become dominated by web
browsing (75%). The increased computational power of end-user stations has allowed new
types of applicattons to be implemented. In addition, the speed and reliability of the Intemet
itself has been substantiaily enhanced due to the new technologies used. These advances have
allowed application content to move from text to multimedia and real-time.

A major challenge in Intemet development is how to support reaktime applications, typified
by Intemmet Telephony, within the existing structure. Internet Telephony aims to replace the
traditional concept In telecommunications from data over voice to voice over data. The
method for achieving this is to use the Intemet as a transport carrier for voice, instead of the
PSTN (Public Switched Telephone Network). The most obvious advantage 1s the low cost for
long-distance phone calls.

An important barrier in the development of VoIP is the Internet Protocol (IP). IP works as a
best-effort connectionless protocol. It was designed for data files that can tolerate delays,
dropped packets and retransmissions; there are no guarantees about the delivery time or the
reliability of a packet being transferred over the Intemet. The most important aspects, when
considering an audio conference are exactly those that Internet cannot guarantee: time and
bandwidth. The quality of the resulting conference depends upon the satisfaction of these
requirements. Within this context, the concept of Quality of Service (QoS) was introduced.
Although the Intemet represents an environment in which the QoS cannot be guaranteed,
there are measurable parameters for a specific service, as presented in a QoS- overview study
(Stiller, 1995).

This paper presents an offline method of determining network performance parameters for
voice packet flows within a VoIP call. An advantage of the method is that it allows not only
end-to-end performance monitoring of the flows, but also makes it possible to inspect the
behaviour of the network when faced with delay sensitive traffic.

QoS concept for VoIP and current state of monitoring

The QoS is the overall rating for a service. Measurement of QoS essentially includes
measuring_a number of application dependent parameters and then gathenng them in a
weighted sum. If we consider QoS for VoIP, the object of the analysis is the voice at the
receiving end, with its two main characteristics, sound and interactivity. There are two main
sources of impairments for the voice heard by the receiver. The first is the codec, which
compresses the speech flow in order to send it over the network at a lower bandwidth than
original. Aside from the positive result in terms of bandwidth utilisation, this process
degrades the quality of the speech. The second source of impairment is the transport. After
encoding, the audio flow is packetised and sent over the Intemet. However, because of the
Intemet’s structure, the arrival of the packets at destination cannot be guaranteed. The paper is
focused upon a consideration of this latter impairment.

Building a list of performance parameters for a service should start by identifying the
application that requires that specific service. For example, if the targeted application is a file
transfer then the delay or jitter parameters are almost irrelevant when compared to throughput
or packet loss. In a similar manner, for a reaktime application, delay is far more important
than the other parameters. The paper does not intend to prescribe a specific weighting here,
but it is good to bear in mind their priorities when assessing the overall performance.

When considering QoS for VoIP applications, a network-related view of the performance
should include the following parameters:

- delay - the time elapsed between the sending of a packet and its amival at the
destination;

- jitter - the variance of the delay value;

- packet loss - the number of lost packets, reported in the time elapsed;

- throughput - the amount of data transferred from onc place to another or processed in
a specified amount of time.

There are several suggested methods that can improve or guarantee the QoS for transport,
such as DiffServ (Differentiated Services) (Nichols et al, 1998), Tenet (Ferrari et al, 1994), or
QoS Routing combined with RSVP (Reservation Protocol) (Crawley et al, 1998).
Unfortunately, none of them are applied on global basis because of the scale and complexity
of the Intemet Therefore, it is vital to determine in such an environment whether or not a
specific connection meets the requirements of a VoIP call.

Transport QoS has two main areas: end-to-end measurements and, in case there are changes
in the level of parameters, fault localisation. An example is given in Figure 1 which shows,
for an arbitrary division of the entire route of the packets, the end-to-end parameters, and two
sets of parameters, ‘East’ and ‘West’. The latter can be used to localise a fault in either ‘East’
or “West’ sub-network, by comparison with the end-to-end parameters.

» End-to-end parameters

N

P
Internet \
_\

Endpoint

@ Sub-network East_’/ Endpoint

East paramelters West parame.iers
+— L —P

Monitoring point

Figure |: The Performance parameters for a general example of monitoring

In a traditional approach, the two aims would require a 3-too! configuration. For end-to-end
measurements, testing clients should be put at both ends and, for fault location, a testing
server should be placed at the monitoring point. After that, traffic should be collected by the
end stations, then sent to the server, in order to be analysed and compared with the data
collected by it. There are two main disadvantages with this approach:

- it is intrusive; in the best case, even if the endpoint clients are just monitoring, they
have to send the data to the server in order to be analysed,;
- it requires placement of monitoring devices at both ends.

The QoS for transport can be determined from the audio flows within a call (which run on
RTP, Real Time Protocol). Cument tools (e.g. Hammer VolP Analysis System, HP Intemet
Advisor, ripmon (Bacher and Swan, 1996)) base their calculations upon parsing both the RTP
and/or the accompanying control flows (running on RTCP, Real Time Control Protocol) and
displaying the available data. The main disadvaniage is that none of these tools can establish
fault location without using the traditional approach mentioned above. More than that, they do
not build any relation between the end-to-end parameters, oblained from the RTCP flows, and
the end-to-monitoring- point parameters, obtained from the RTP monitoring.

Considering these limitations, we aim to obtain a better view of the network performance,
without using several devices and without injecting additional traffic into the network. This
paper presents a non-intrusive method of determining the transport performance parameters
for the realtime traffic within a VoIP call, using a single point of monitoring. The proposed
method can reveal both the end-to-end performance and the fault localisation, if the monitored
parameters change their value along the route, and also avoids both of the disadvantages
identified.

Description of H.323 calls

VoIP is a relatively new concept and, therefore, most of the work performed in this area is
stilt at a developmental stage. From the large range of standards for VoIP, the H.323 protocol
stack (ITU, 1998), developed by ITU, was selected as the basis for the work presented in this

paper.

The focus of the QoS for transport is, as mentioned, on the audio flows. Because of the H.323
call structure, which will be detailed below, these flows cannot be identified unless the entire
call is monitored. The information exchanged in a H.323 conference is classified in streams,
as follows: audio (coded speech), video (coded motion video), data (computer files),
communication control (control data), and call control (signalling data).

We will consider the simplest case - a direct connection between two computer terminals,
similar to a classic phone call. The call begins with a call signalling phase — signailing
messages (Q.931 using H.225 specification) are exchanged, on specific ports. At the end of
this phase, the call is established and a call control channel is opened, on ports dynamically
allocated. The control channel then provides for various functions: capabilities exchange,
logical channel signalling, mode preferences, master — slave determination. After the
terminals decide which of them will act as a master for the call (in order to easily resolve
conflicts), they exchange their capabilities and open an audio channel, using logical channel
signalling. The logical channel is also opened on a dynamically allocated port, decided within
the control messages. The audio flows run on the opened logical channel. When one of the
users wants to terminate the call, the logical channe! is closed, using call control, then specific
call signalling messages are exchanged, and the call is closed.

The audio (as well as video) flows within an H.323 conference are transported using RTP, as
it provides end-to-end network transport functions suitable for applications transmitting real-
time data over multicast or unicast network services (Schulzrinne et al, 1996). It does not
address resource reservation and does not guarantee quality-of-service for real-time services.
In fact, the whole protocol is conceived not as a separate layer, but as a framework, to be
integrated within other applications. RTP is usually un on top of UDP (User Datagram
Protocol), an unreliable transport protocol TCP (Transport Control Protocol), although
reliable, brings additional delay problems, by delivering the packets in order and recovening
the lost packets, and, therefore, is not recommended for carrying realtime flows.

RTCP is the control protocol for RTP. One of its functions is to provide information about the
packets loss and inter-arrival jitter for the accompanying RTP flow. The information is
provided periodically by all the senders / receivers within a conference using specific packets,
and is based on the RTP flow measurements. The RTCP flow also runs on UDP.

Experimental method and implementation
Monitoring procedure

The monitoring procedure comprises three steps. First, the voice flows (RTP) are identified
and then captured using one of the apture programs. In the monitoring phase, the RTP header
fields and the RTCP packets are used to determine the performance parameters. Then
correlation of RTP and RTCP is used to establish the location of the problem area. The stages
are described in more detail in the following paragraphs.

Identification of the audio flows

The analysis 1s targeted on the audio streams. The ports on which the audio streams run can
be determined only by capturing the connectton establishment phase, then parsing the setup
and control messages, which contain the audio stream ports as parameters. The parsing
pracess is not straightforward, as the content of the setup and control messages is not header-
like (using fields), but encoded using ASN.1 syntax.

Parameter measurement using RTP monitoring and RTCP parsing

The header fields of RTP packets are used as input to the analysis, together with the
timestamp of the packet amival, given by the capture program. The structure of the RTP
header, as described in (Schulzrinne et al, 1996), is shown in figure 2.

Ofti2PBMIsS67IBEIIT et 22221212121212421(31(3
Ot 123451617819 1011 234151671819 [0]1
=2{P|X CC M PT sequence number
timestamp

synchronisation source identifier (SSRC)

contributing source identifiers (CSRC)

Figure 2 The RTP packet format

The description of the fields is as follows:

-V —version of RTP (currently used is 2)

- P — padding, for indicating the existence of padding octets (last octet of padding indicates
how many octets should be ignored)

- X —extension (there is a header extenston after the fixed header)

- CC — number of CSRC identifiers that follow

- sequence number — is incremented by one for each RTP data packet sent, and may be used
by the receiver to detect packet loss and to restore packet sequence

- timestamp — reflects the sampling instant of the first octet in the RTP data packet

- SSRC - synchronisation source; the source of a stream of RTP packets, in order to make
the sources independent upon the network address.

- CSRC - Contributing Sources; source of a stream of RTP packets that has contributed to
the combined stream produced by an RTP mixer
Note: to the existing RTP data packet header can be added a RTP header extension.

Although the RTP packet has the timestamp field, this is less used in the analysis; it is an
integer, and it is measured in sampling units (depending on the codec used). It is put by the
sender and used by the receiver as a reference for the stream playing. The time analysis
performed is based on the timestamp of the packet, put by the capturing device, at the
monitor.

The following types of parameters can be determined using the RTP header fields and the
arrival imestamp of each packet, taken from the packet capture program:

. delay-related parameters:
inter-arrival delay — by subtracting the capture timestamps of successive packets
- inter-amival jitter — by comparing the previous delay with the current one
- one-way delay jitter — by comparing the inter-arrival delay with the sender delay (the
interval between sending two sequential packets).

=

b. packet-accounting parameters

lost packets and out of order packets — by comparing the expected sequence number
with the sequence number of the incoming packet. The lost packets variable is
increased, but the presumed lost packets sequence numbers are memorised, in case the
packets were not lost, but only misordered.

1]

[¢]

. flow speed parameters
throughput — determined by dividing the actual received number of bytes by the time
of the connection

'

The RTCP packets can be used as an instrument for end-to-end measurements. Their fields
provide the values for inter-ammival jitter and lost packets; their structure is also defined in
(Schulzrinne et al, 1996), but the header is structured, and too complex to be detailed within
this article. RTCP flows perform the following functions:

- to provide feedback on the quality of the data distribution

- to help the receivers to associate and to synchronise multiple data streams from a
given participant

- to allow each participant to keep track of all the other participants in the conference

- to convey minimal session control information

The RTCP reports are a very convenient tool for monitoring and they are, as mentioned,
currently used in the available products. Nevertheless, the following observations can be
made in relation to using RTCP to analyse the flows:

- it runs on UDP and, therefore, it is possible that a number of packets will not amve, so
no data will be available for that period of time.

- it has scalability problems (Rosenberg and Schulzrinne, 1998). The RTCP messages
are limited to 5% of the whole traffic. In the case of a many-to-many conference, on

normal behaviour, there would be a low number of RTP messages per-terminal (in
order to maintain the 5% limit) (Schulzrinne et al, 1996).

- it retuns only end-to-end parameters and, therefore, cannot locate the cause of
parameter changes (this problem exists regardless of the conference characteristics)

Note: the analysis is performed on a ‘per-flow’ basis. Prior to performing the analysis, the
incoming packets (from several audio channels) are split into flows (each flow representing a
channel). When saying successive packets, we refer to packets betonging to the same flow.

Correlating RTP analysis with RTCP content

By correlating the two sets of parameters, obtained from RTP and RTCP, it is possible to
determine whether or not a specific problem (e.g. a high number of lost packets) is caused by
a problem which exists in the East sub-network or the West sub-network. Figure 3 presents
the captured flows.

A? Bcontrol (end-to-end parameters) |

B? A control {end-to-end parameters) >
|

A? Baudio |
endpoint | endpoint
| B? A audio
N
[Legend:
.. . RTP flows
Monitoring point
== —-——p RTCP flows

Figure 3: RTP and RTCP flows monitoring

The RTP streams, as captured on the monitoring point,"are: A? B (after passing through the
West sub-network) and B? A (after passing through the East sub-network). Therefore, by
measuring the parameters of these flows, we can determine the performance of the West sub-
network (from the A? B flow) and the East sub-network (from the B? A flow).

We have to bear in mind that the A? B direction does not fully charactense the behaviour of
the network, as it can be very good for one direction and bad for the other (it does not have to
be symmetrical in terms of performance). Meanwhile, as mentioned, RTCP provides the end-
to-end parameters, i.e. the performance of the entire A? B and B? A routes, but it has no
indication about how these parameters change on the route (i.e. cannot establish where a
faulty behaviour of the network determined a change in the values of the paramelers).

Putting together the two sets, we obtain parameters for the following segments:

- A? Band B? A, end-to-end — from the RTCP flows

- A? monitoring point and B? monitoring point — from the RTP flows

- monitoring point? B and monitoring point? A — by subtracting the RTP obtained
values from RTCP end-to-end parameters.

Therefore, by using both RTP and RTCP, we obtain both the end-to-end and the end-to-
monitoring point parameters for the monitored flows.

Implementation

In the first instance, the tcptrace program (Osterrnann, 2000} was used within the monitoring
module. Tcptrace is an offline analysis program, which uses tcpdump traces as input.
Although the program had limited support for UDP (it was able to separate the UDP flows),
and no support for RTP, it was considered a useful tool because of its per-flow analysis
capabilities. The module was subsequently migrated to ipgrab (Borella, 2000) to reduce the
complexity of the program (tcptrace includes a lot of functions, spread over various modules,
most of them related with TCP analysis). Most of the analysis (e.g. the distnbutions), as
described in the following section, was performed offline, under Microsoft Excel. As no
equipment to simulate several calls was available, the analysis was performed for only a
single VoIP call. The module will work for more than one call, but a proper filtration of the
output should be added. In addition, the refresh period of the analysis (i.e. each packet) could
create computational problems for a high number of flows. A proper solution would be to
display the parameters at certain intervals (e.g. every second).

Special attention is given to the marker, payload type and timestamp fields within the RTP
header. During a VoIP call, if there is no speech from the user, an endpoint does not send
RTP packets. Therefore, when calculating the flow speed and the delay parameters, the
silence periods should be ignored. The silence periods can be identified using the marker
field: an RTP packet with the marker field set signals the end of a silence period. Also, if the
payload characteristics are known (e.g. each RTP packet contains a 30ms frame), the delay
between successive packets at the sender can be determined. Thus, by subtracting this value
from the inter-arrival delay, we obtain the one-way delay jitter.

Validation

Experimental testbed configuration

A network testbed was constructed in order to validate the proposed method. Figure 4
presents the testbed configuration, which included two networks, connected through a faulty
link. The monitoring point is placed on the route, at the exil point (after the router) of one of
the networks.

141.163.49.232 141.163490 Jd HPK 141.163.50.0 14116350234 |

Monitoring

Figure 4: Network testbed configuration

The link is emulated using the NISTNet program (NISTNet, 2000). NISTNet emulates
various network problems by forwarding packets, under specific parameters like packet loss,
delay or jitter, between two network interface cards, on a Linux station. For our test, we used

the following parameters (symmetric for the two directions): 5% packet loss, 300 ms delay,
25 ms jitter, unlimited bandwidth, normal distribution. The measurements were based on a
capture session; number of packets captured: ~20000 (some of them were removed in order to
eliminate the transitional behaviour).

The software tools used for generating, capturing and monitoring the VoIP flows were:

- NetMeeting (WinNT) — to establish and run a H.323 VolIP call;

- codec: Microsoft G.723.1, 6400 bits/second, continuous speech;

- tcpdump, ipgrab (Linux) — to capture packets transmitted over the network (between
the two VoIP endpoints),

- the analysis module (Linux) — first developed within tcptrace, then transferred to
1pgrab, to allow online capturing,

The measurements aim to locate the jitter and the packet loss by dividing the route of the
packets, as presented in Figure 3 into sub-network East (network 141.163.49.0), and sub-
network West (emulated link and network 141.163.50.0). After obtaining the various
parameters, we will try to identify the fault location on the 141.163.50.0 network and link side
of the route. In the following paragraphs, we will refer at 141.163.49.232 station & A and at
141.163.50.234 as B.

Results and value comparison
Table | presents the following information:
- normal — the normal behaviour, on a network without any loss;

- RTP results — the values determined from the RTP monitoring;
- RTCP results — the values determined from the RTCP parsing.

Parameter normal RTP results RTCP results

A? B B? A A? B B? A

throughput [bytes/sec] 800 800 760 760 760
packet loss [%] 0 0 5 5 5

Table 1: Throughput and packet loss statistics

A. Throughput and packet loss

The RTCP throughput is determined from the RTCP sender reports, using the ‘sender octet
count’ which indicates how many octets were transmitted since the beginning of the call. The
RTCP reports also, include report blocks, which give the performance parameters of the
senders ‘heard’ by the emitter of the report. The RTCP packet loss is determined from these
report blocks, using the ‘cumulative number of packets lost’ field.

It can be noticed that the B? A values differs, which indicates a 5% packet loss on that
direction, located in the right side of the route. Also, the A’ B values indicate that there is no
alteration, m term of packet loss, in the left side of the route (the 141.163.49.0 network).

B. lJitter
From the RTP monitoring, the jitter was determined by subtracting the average interarrival
delay from the interarmival delay for the current packet. The results are presented in Figure 5.

packets inter-amival delay should be constant (60 ms), from time to time, the program
transmits a voice packet after 30 ms. The measurement is more accurate for packet loss han
jitter because of the emors in the measurement of jitter, as well as because the out-of-order
packets were not considered in the analysis.

If we consider the absolute values for the jitter, it results an average value of 28 ms, which, if
we extract he 3 ms caused by NetMeeting behaviour, it results the value of the emulated link:
25 ms. As a conclusion, the tool, together with the results analysis, identified the 5% loss and
25 ms jitter generated by the right side of the monitored route.

Although the monitoring tool was built, and these preliminary tests were performed, a full
assessment requires further analysis in a real or simulated VoIP environment Such an
environment would include several simultaneous conferences, running between endpoints
situated at different locations, over various routes.

Conclusions and further work

This paper has described an off-line method to measure the QoS transport parameters for a
H.323 VoIP call from a single point, by nor-intrusive monitoring, and we presented a test
performed in order to validate our method. The jitter and packet loss analysis seems
promising, but further work is required to determine, monitor and analyse the other
parameters. Also, a specific change in the performance parameters group can be related with a
specific network event (e.g. a congested router). Therefore, analysis of the dymamics of the
calculated parameters is required.

There are also other parameters still to be measured. In measurement systems for POTS
(Plain Old Telephone Systens), a useful parameter for the call performance is the round trip

_ time (RTT) delay (ic. the time needed by a signal to go from one end to the other and then

back). There is no direct possibility to determine such a parameter for H.323. calls because the
standard is built for multicast conferences (multi-to-multi conferences), and so it does not
include mechanisms for single end-to-end connection; the flows between the endpoints do not
run in pairs, there is no comelation between them (they run independently). There are several
methods to determine RTT for VoIP calls:

- Using the setup and control messages; they run on TCP, and the values obtained might
differ from the (theoretical) ones for UDP

- Using RTCPs’ ‘delay since last source report(SR)’ field.

- Correlating the RTP and RTCP flows. The RTCP packets include a ‘extended highest
sequence number received’ field. If the value of this field is correlated with the sequence
number of the sender, together with its timestamp, the RTT can be measured.

As future work, we aim to:

- refine the described method in order to cover all the possible situations; e.g.: due to
method limitation, we were not able to identify correctly jitter higher than the inter-
arrival time,

- determine a good estimate for RTT, based on the RTCP reports,

- advance the comelation of RTP and RTCP flows in order to narrow the region of fault
location from East/West network down to a link or a sub-network,

- investigate, using intelligent analysis methods, if the traffic performance parameters at
one moment can give an estimate for the future level of performance

The method presented, together with the additional objectives above, aims to achieve the
perfect monitoring approach, which has to be single point, non-intrusive, measures all the
performance parameters, fully locates the source of network degradation, and predicts the
future behaviour of the network. By doing this, we can determine if the IP network offers,
currently as well as in the future, to the IP telephony users the quality they require, and, if not,
where the problem restdes.

References
Bacher D. (1996), ‘rtpmon: A Third-Party RTCP Monitor’, ACM Multimedia "96.

Borella M. (2000), ‘ipgrab homepage’,
http://home.xnet.com/~cathmike/MSB/Software/index.html.

Caceres R., Danzig P.B., Jamin S., and Mitzel D.J. (1991), ‘Characteristics of Wide-Area
TCP/IP Conversations’, Proceedings of ACM SIGCOMM ’91.

Ferrari D., Banerjea A., and Zhang H. (1994), ‘Network Support for Multimedia - A
Discussion of the Tenet Approach’, Computer Networks and ISDN Systems, December 1994.

ITU. (1998), ‘Packet based multimedia communication systems’, H.323 ITU
Recommendation, February 1998,

" Nistnet. (2000), ‘The NIST Net home page’, http://snad.ncsl.nist gov/itg/nistnet/index.html

Ostermann S. (2000), ‘tcptrace homepage’,
http://jarok.cs.ohiou.edw/software/tcptrace/tcptrace. html.

Schulzrinne H., Casner S., Frederick R., and Jacobson V. (1996), RFC 188% - ‘RTP- A
Transport Protocol for Real-Time Applications’, RFC depository, January 1996.

Crawley E., Nair R, Rajagopalan B., and Sandick H. (1998), RFC 2386 - ‘A Framework for
QoS-based Routing’, RFC depository, August 1998.

Nichols K., Blake S., Baker F., and Black D. (1998), RFC 2474 - ‘Differentiated Services
Field’, RFC depository, December 1998.

Rosenberg J. and Schulzrinne H. (1998), ‘Timer Reconsideration for Enhanced RTP
Scalability’, Proceedings of [EEE Infocom 1998, March 29 - April 2 1998.

Stiller B. (1997), ‘Quality of Service Issues in Networking Environments’, internal report,
http://www cl.cam.ac.uk/ftp/papers/reports/TR380-bs201-qos_isues.ps.gz, September 1995.

Thompson K., Miller G.J., and Wilder R. (1997), ‘Wide-Area Intemet Traffic Patterns and
Characteristics’, IEEE network, November-December 1997,

BREV I‘\TOH [

JENDE D CRET O

n° 03 50056
du 19/03/2003

pour : PROCEDE DEVALUATION DE LA BANDE PASSANTE D'UNE
LIAISON NUMERIQUE |

au nom de : ACTERNA IPMS |
spzzsssmm ‘

33{0)1 456383 35 ™
E] v bre.a'er com
" brewets paterts@brevaler cxm
margues trademarks®orevales ¢om

A3
A;

3. Rue ou Docreu Lancemeain - 75008 Paris] 35 (0}1 53 83 94 00 5

' Soctr £ 0€ Consrils £x Pror FFETE In20STF FULE - INCLSTRIAL PROPENTY ATTONN mmu
. SARLaL Curved of 186 D00 ELeos RESP r5 105532657 - IVA W FR S22t

10

15

20

25

30

35

PROCEDE D'EVALUATION DE LA BANDE PASSANTE D’UNE LIAISON NUMERIQUE
" DESCRIPTION

Domaine technigqgue

L'invention se situe dans le domaine des
télécommunications et concerne plus -spécifiquement un procédé
d'évaluation de la bande passante entre un premier et un deuxiéme
point susceptible d'échanger des paquets de données via une
liaison numérique dans un réseau de télécommunication comportant
une pluralité de sous-réseaux.

L'invention concerne également un dispositif destineé
4 mettre en oeuvre le procédé,

L'invention trouve une application dans.les réseaux

de télécommunication tels que le réseau Internet.

ETAT DE LA TECHNIQUE ANTERIEURE

Une méthode connue pour évaluer la bande passante
dans un réseau de télécommunication consiste a transmettre d'un
premier point du réseau un fichier via le protocole FTP (pour File
Transfer Protocol) comportant un marquage temporel et 3 mesurer la
vitesse de réception de ce fichier par un Heuxiéme point dudit
régseau. L’émission d'un fichier de grande taille via le protocoie
FTP dans une lialson génére une surcharge du réseau. Par ailleurs,
la charge générée par les utilisateurs du réseau au moment de la
mesure étant inconnue, un transfert de fichier de petite taille
via le protocole FTP ne garantit pas une utilisation optimale de
la bande passante disponible. Tous ces facteurs contribuent A
rendre aléatoire la mesure de la vitesse de réception des
fichiers, et partant, la bande passante disponible au moment du
transfert via le prétocole FTP par le deuxidme point du réseau.

| Une autre méthode connue dans l'art antérieur
consiste 3 mesurer le temps absolu de transmlsSLOn d'un fichier de
données entre les deux points du réseaquont"le.temps est mesuré
en chaque point avec la plus grande précision possible. Cette

méthode est certes plus précise mais présente un codt élevé dans

SP 22335 HM

10

15

20

25

30

35

la.mesure ot elle nécessite l'utilisation d'un systémé de mesure
du temps de grande précision & chaque extrémité du réseau tel que
délivrée par exemple par un systéme de transmission du type GPS
{pour Global Positionning System).

Le but de 1'invention est de:. pallier les
inconvénients de l'art antérieur décrits ci-dessus au moyen d'une
méthode et d'un dispositif simple; peu cofiteux et susceptibles
d'étre utilisés entre n'importe quels poinfs du réseau.

' Un autre but de l'invention est d'isoler et de
localiser sans ambiguité un point de lcongestion lorsque les
données échangées entre deux points d'un réseau transitent par

plusieurs sous~réseaux.

EXPOSE DE L'INVENTION

L'invention préconise un pfocédé d'évaluation de la
bande passante entre un premier point et wun deuxiéme point
comportant des terminaux susceptibles d'échangér des paquets de
données numériques dans un réseau de télécommunication comportant
une pluralité de sous-réseaux.

Le procédé selon 1l'invention comporte les é&tapes

suivantes

pour chaque sens de transmission & travers l'un au
moins desdits sous-réseaux,

a. .associer aux paquets émis quasi-simultanément un méme
identifiant,

b. horodater et enregistrer les paquets recus,

¢. identifier et trier les paquets regus avec le méme
-identifiant, _ _

d. sélectionner le plus grand nombre entier possible m de-
groupes de paquets ayant le méme identifiant, ‘

e. mesurer les intervalles de temps séparant les instants de .
récgption par le deuxiéme point des paquets des groupes
sélectionnés,

f. célculgr la bande passante en fonction du nombre de paquets
des groupes sélectionnés et de la durée totale de

transmission de ces paquets.

SP 22335 HM

10

15

20

25

30

35

En idenfifiant des paquets émis quasi-simultanément
dans le flux transmis du Premier vers le deuxiéme point de 1la
liaison, on se place dans les conditions réelles d'utilisation des
usagers du réseau -‘dans lesquelles 1l’estimation de la bande
passante mesurée refléate l'encombrement réel de 1ia liaison au
homent de la mesure,

Dans un mode préféré de réalisation, 1la bande

passante est calculée par 1'expression suivante

1% L

B =
mﬁ|nmmtmm“ﬁﬂ

* li,m représente la longueur du paquet de rang i du m!é=e
groupe de paquets,

* ti représente le marquage temporel du paquet de rang i du
n'*™® groupe de paquets,

* ti+l représente le marquage temporel du paquet de rang i+l

du mlene

groupe de paquets,
* nm représente le ndmbre de paquets duy mitee groupe de paquets,

Pour améliorer 1la précision de 1'évaluation, le
procédé est appliqué sur un nombre de groupes de paquets supérieur
al.

Dans wune premiére variante de réalisation de
1l'invention, 1'évaluation de la bande passante est réalisée en
temps réel. '

Dans une deuxiéme variante de réalisation,
l'évaluation de 1la bande passante est réalisée en en temps
différé.

Dans une, application particuliére du procédé de
l'invention, le ré&seau de télécommunication est du type 1P,

.L'invention concerne également un dispositif
d'évaluation de la bande passante entre un premier point et un
deuxiéme point susceptible d'échanger des paquets de données
numériques dans un réseau de télécommunication comportant une
pluralité de sous-réseaux.

Ce dispositif comporte

SP 22335 HM

10

15

20

25

30

35

* des moyens de marquage des paquets émis,

* des moyens d'hoiodatage des paquets recus,

* des moyens de tri des paquets recus,

* des moyens pour mesurer les intervalles de temps séparant
les instants de réception par le deuxiéme point des paquets
émis,

. deslmoyens pour calculer la bande passante.

BREVE DESCRIPTION DES DESSINS

D'autres caractéristiques et avantages de

l'invention ressortiront de la description qui va suivre, prise a

titre d'exemple non limitatif en référence aux figures annexées

dans lesquelles

* la figure 1 illustre schématiquement une liaison numérique

dans un réseau de télécommunication dans lequel est mis en
oeuvre le procédé selon l'invention,

¢ la figure 2 est un schéma bloc d'un module d'analyse de

paquets selon l'invention.

EXPOSE DETAILLE DE MODES DE REALISATION PARTICULIERS

L'invention va maintenant &tre décrite dans une mise
en oeuvre dans le réseau Internet, -

La figure 1 illustre schématiquement une liaison
numérique bidirectionnelle 1 entre un premier terminal A et ‘un
deuxiéme terminal B connectés respectivement a un premier réseau
local 4 et & deuxiéme réseau local 6 et échangeant des données
numériques A travers un premier sous-réseau 6 et un deuxidme sbus—
réseau B selon le mode TCP (pour Transmission control Protocol) ou
selon le moqe UDP (User Datagram Protocol). A chaque extrémité de
la liaison numérique 1 entre les terminaux A et B sont agencés
respectivement un premier et un deuxiéme modules (10, 12} de
marquage des- paquets de . données émis par le terminal A
{respectivement B} et un module d'analyse (14, 16} des paquets de
données regus par le terminal A

(respectivement B).

SP 22335 HM

10

15

20

25

30

35

La figure 2 illustre un schéma bloc d'un moduile
d'analyse selon un mode préféré de réalisation comportant une
interface d'adaptation 20 reliée 3 la liaison IP 1 via un coupleur
22, un ﬁodule 24 d'ektraction de paquets de données de la liaison
1, un module 26 d'acquisition desdits paquets, un module 28
d'horodatage des paquets extraits destiné 3 associer & un groupe

de paquets émis quasi-simultanément un méme identifiant temporel,

‘une mémoire 30 destinée & stocker les paquets horodatés, un module

32 de tri des paquets ayant le méme identifiant temporel, un
module 34 de sélection destiné a isoler les groupes de paquets
ayant le méme identifiant temporel et le plus grand Inombre de
paquets regus, un module 36 de mesure du temps de transfert inter
paquet et un module 38 de calcul de la bande passante.

- En fonctionnement, chacun des terminaux A ou B peut
étre simultanément émetteur et récepteur. Les données échangées |
transitent par les réseaux 6 et B8 dont les encombrements
regpectifs A4 un instant donné dépendent du nombre d'utilisateurs
connectés. Le marquage des paquets est obtenu suite a une’ requéte
envoyée par le terminal récepteur au terminal émetteur. Il peut
@tre réalisé, par exemple, par l'activation de 1l'option
d'horodatage décrite dans la norme RFC 1323.

Pour évaluer la bande passante disponible de bout en
bout, le module 24 d'extraction isole les paquets de données
transmis pendant un laps de temps trés court du terminal émetteur
vers le terminal récepteur et transmet ces pagquets au module
d'horodatage 28 gqui associe a chaque paquet une date d'émission.
Les paquets sont ensuite stockés dans la mémoire 30. Le module 32

trie les paquets portant la méme date d'envoi et les transmet au

‘ moduie 34. Ce dernier sélectionne un nombre entier de groupes

parmi les groupes triés comportant le plus grand nombre de paquets
et transmet ces groupes au module de mesure 36 qui ‘mesure les
intervalles de temps séparant la réception des différents paquets
successifs. Les intervalles mesurés sont ensuite transmis au
module 38 de calcul de la bande passante qui calcule en temps réel
la bande passante de la liaison en fonction de la longueur totale
des paquets analysés et de la durée de transmission de- ces

paquets.

SP 22335 HM

Pour évaluer la bande passante disponible dans
chaque sous-réseau, l'analyse des paquets reqgus est effectuée par

le troisiéme module 18 agencé entre les sous-réseaux 6 et B.

eSSy gy A

SP 22335 HM

10

15

20

- 25

30

35

REVENDICATIONS

1. Procédé d'évaluation de la bande passante entre
un premier point et un deuxiéme point susceptible d'échanger des
paquéts de données numériques-dans un réseau de télécommunication
comportant une pluralité de sous-réseaux, procédé caractérisé en -
ce qu'il comporte les étapes suivantes
pour chague sens de transmission 4 travers l'un au moins desdits
sous-réseaux,

pour chaque sens de transmission 4 travers l'un au
moins desdits sous-réseaux,

a. associer aux paquets émis quasi-simultanément un méme
identifiant,

b. horodéter et enregistrer les paquets regus,

c. identifier et trier les paquets regus avec le méme
identifiant,

d. sélectionner le plus grand nombre entier possible m de
groupes de paquets ayant le méme identifiant,

e. mesurer les intervalles de temps séparant les instants de
réception par le deuxiéme point des paquets des groupes
gélectionnés, .

f. calculer la bande passante en fonction du nombre de paquets
des groupes sélectionnés et de la durée totale de

transmission de ces paquets.

2. Procédé selon la revendication 2, caractérisé
en ce que la bande passante est calculée par 1l'expression

sulvante

Myt | B = Fyi)e ™ L
. & 1li,m représente la longueur du paquef de rang i du m!é=e
groupe de paquets,
e ti représente le marquage temporel du paguet de rang i

Léne

du m groupe de

¢ paquets,

SP 22335 HM

10

15

20

25

30

35

¢ ti+l représente le marquage temporel du paquet de rang
i+l du m'**® groupe
* de paquets,
* nm représente’ le nombre de paquets éu m'*™® groupe de
paquets.
9. Procédé selon la revendication q, caractérisé
en ce que le nombre m est supérieur ou égal a 1.
5. Procédé selon 1l'une des revendications 1 a 4,

caractérisé en ce que le marquage des paquets de données est

" réalisé au point d'émission sur requéte du point de réception.

6. Procédé selon 1l'une des revendications 1 a S,
caractérisé en ce que 1l'évaluation de la bande passante est
réalisée en temps réel.

7. Procédé selon 1'une des revendications 1 a 5,
caractérisé en ce que 1l'évaluation de la bande passante est
réalisée en temps différé.

B. Procéds selon 1l'une des revendications
précédentes, caractérisé en ce que le réseau de télécommunication
est du type IP, '

9. Dispositif d'évaluation de la bande passante
entre un premier point et un deuxiime point échangeant des paquets
de données dans un réseau de télécommunication comportant un
module de marquage des paquets émis et un module d'analyse des
paquets reqgu, caractérisé en ce que le module d'analyse comporte

* des moyens d'horodatage des paquets recus,

¢ des moyens de tri des paquet$ recus,

¢ des moyens pour mesurer les intervalles de temps séparant
les instants de réception par le deuxieéme point des paquets

émis,
¢ des moyens pour calculer la bande passante.

10. Module d'analyse de paquets de données recgus
dans un réseau de télécommunication, caractérisé en ce qu'il
comporte

¢ des moyens d'horodatage des paquets regus,

* des moyens de tri des paquets recus,

SP 22335 HM

¢ des moyens pour mesurer les intervalies de temps séparant

les instants de réception par le deuxiéme point des paquets
émisg,

¢ des moyens pour calculer la bande passante.

SP 22335 HM

10

15

20

ABREGE DESCRIPTIF

L'invention concerne un procédé d'évaluation de la
bande passante entre un premier point et un deuxidme point
susceptibles d'échanger des paquets de données numériques dans un
réseau de télécommunication comportant une pluralité de sous-
réseaux.

Le procédé selon 1l'invention comporte 1les étapes

.suivantes

pour chaque sens de transmission A travers l'un au moins desdits
sous-réseaux, ’
° associer aux paquets émis quasi-simultanément un méme
identifiant,
° horodater et enregistrer les paquets recus,
o identifier et trier les paquets recus avec le méme
identifiant,
°© sélectionner un nombre entier m de groupes de paquets ayant
le méme ldentifiant,
o mesurer les intervalles de temps séparant les instants de
réception par le deuxiéme point des .paquets émis,
e calculer la bande passante en fonction du nombre de paquets
.des groupes sélectionnés et de ladite durée totale de

transmission desdits paquets.

SP 22335 HM

GEETT'dS

FIG. 1

16

¢/

2/2

32 H
\ 36
u 1, /(
34 , (
/
24 TT
i

il

asal

K

CIRCUIT IP
\ (7

FIG. 2

