
Worcester Polytechnic Institute
Digital WPI

Doctoral Dissertations (All Dissertations, All Years) Electronic Theses and Dissertations

2005-08-18

Congestion Control for Streaming Media
Jae Won Chung
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-dissertations

This dissertation is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Doctoral Dissertations (All
Dissertations, All Years) by an authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Chung, J. (2005). Congestion Control for Streaming Media. Retrieved from https://digitalcommons.wpi.edu/etd-dissertations/350

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-dissertations/350?utm_source=digitalcommons.wpi.edu%2Fetd-dissertations%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu

Congestion Control for Streaming Media

by

Jae Won Chung

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Computer Science

by

October 2005

APPROVED:

Professor Mark Claypool
Advisor

Professor Robert Kinicki
Committee Member

Professor Craig Wills
Committee Member

Professor Kevin Jeffay
External Committee Member
Computer Science, UNC-Chapel Hill

Professor Michael Gennert
Head of Department

Abstract

The Internet has assumed the role of the underlying communication network for

applications such as file transfer, electronic mail, Web browsing and multimedia

streaming. Multimedia streaming, in particular, is growing with the growth in power

and connectivity of today’s computers. These Internet applications have a variety

of network service requirements and traffic characteristics, which presents new chal-

lenges to the single best-effort service of today’s Internet. TCP, the de facto Internet

transport protocol, has been successful in satisfying the needs of traditional Internet

applications, but fails to satisfy the increasingly popular delay sensitive multimedia

applications. Streaming applications often use UDP without a proper congestion

avoidance mechanisms, threatening the well-being of the Internet.

This dissertation presents an IP router traffic management mechanism, referred

to as Crimson, that can be seamlessly deployed in the current Internet to protect

well-behaving traffic from misbehaving traffic and support Quality of Service (QoS)

requirements of delay sensitive multimedia applications as well as traditional Inter-

net applications. In addition, as a means to enhance Internet support for multimedia

streaming, this dissertation report presents design and evaluation of a TCP-Friendly

and streaming-friendly transport protocol called the Multimedia Transport Proto-

col (MTP). Through a simulation study this report shows the Crimson network

efficiently handles network congestion and minimizes queuing delay while providing

affordable fairness protection from misbehaving flows over a wide range of traffic

conditions. In addition, our results show that MTP offers streaming performance

comparable to that provided by UDP, while doing so under a TCP-Friendly rate.

Acknowledgments

First of all, thank God for guarding and guiding me all the times, and giving me

power, strength and patience to finish this dissertation.

I would like to express my deepest gratitude to Professor Claypool for sharing

his passion for research with me and being such a great advisor for both academic

and personal matters. I would also like to express the same deepest gratitude to

Professor Kinicki for guiding me throughout my undergraduate and graduate studies

at WPI. Professor Claypool is like a big brother to me, and Professor Kinicki is like

father to me. I would like to thank Professor Wills for leading me to the world of

computer science. His CS2005 class in my early undergraduate years stimulated me

to change my major from civil engineering to computer science. I still remember

how fun was the CS2005 group project: airline reservation system. Many thanks

to Professor Jeffay at UNC-Chapel Hill for giving a ready consent to join my Ph.D.

committee and attending my dissertation defense in his own expense. In addition, I

would like to thank him for his great research papers that inspired me with Master

thesis and my other researches.

I would like to thank my parents for giving birth to, raising and educating me,

and of course for everything. Also, I would like to express my gratitude to my parents

in law for giving birth to, raising and educating my lovely wife Bo. Lastly, but not

least, I would like to thank Bo for sharing all the joys and pains with me during all

these years, and my son Donghyun for teaching me a new joy of life.

i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Approach . 7

1.3 Contributions . 12

1.4 Roadmap . 14

2 Related Research 16

2.1 Active Queue Management . 16

2.1.1 AQM Taxonomy . 17

2.1.2 AQM Mechanisms . 25

2.2 Differentiated Services Architecture 39

2.3 Measurement Studies Characterizing Streaming Traffic 42

2.4 Transport Protocols for non-TCP Applications 45

3 Background: Internet Congestion Control 49

3.1 TCP/IP Networking . 49

3.2 Congestion Control Issues . 59

3.3 Support for Diverse QoS . 64

4 Crimson: AQM Support for Streaming Media 70

ii

4.1 Aggregate Rate Controller for Low Delay Packet Switching Network . 71

4.1.1 Design . 73

4.1.2 Configuration . 85

4.1.3 Evaluation . 91

4.1.4 Extention to Support FAST 104

4.1.5 Summary . 107

4.2 Stochastic Fairness Guardian for Bandwidth Fairness Protection . . . 109

4.2.1 Design . 110

4.2.2 Configuration . 114

4.2.3 Evaluation . 119

4.2.4 Summary . 135

4.3 Crimson Conclusions . 136

5 End-System Support for Streaming Media 138

5.1 Understanding Streaming Requirements 139

5.1.1 RealVideo Background . 142

5.1.2 Measurement Approach . 144

5.1.3 Result . 149

5.1.4 Analysis . 150

5.1.5 Discussion of Results . 167

5.1.6 Summary . 169

5.2 Multimedia Transport Protocol . 172

5.2.1 Design of MTP . 176

5.2.2 Goddard Streaming Client and Server 190

5.2.3 Evaluation under Drop-Tail Network 193

5.2.4 Summary . 209

iii

6 Streaming MTP over Crimson 211

6.1 Simulation Setup . 211

6.2 Analysis . 213

6.3 Summary . 226

7 Conclusions and Future Work 228

7.1 Summary . 228

7.2 Future Work . 232

7.2.1 Extension to Aggregate Rate Controller 233

7.2.2 Extension to Stochastic Fairness Guardian 233

7.2.3 Streaming Characterization 234

7.2.4 Extension to MTP . 234

7.2.5 Evaluation of Goddard . 235

iv

List of Figures

1.1 Proposed Mechanisms: Crimson Architecture 8

2.1 AQM Taxonomy . 17

2.2 Per-Flow Fairness Protection Mechanisms 33

2.3 DiffServ Architecture (from [121]) . 40

3.1 Layered View of IP Components . 50

3.2 Simplified Model of An IP Router . 51

3.3 BSD 4.2 TCP vs. BSD 4.3 Tahoe (Slow-Start) 53

3.4 An Example of Slow-Start and Congestion Avoidance 54

3.5 Comparison of Tahoe, Reno and NewReno TCP Behaviors 57

4.1 TCP-ARC Feedback Control System with Transmission Delay 76

4.2 TCP-ARC System with the Queue Model Removed from the ARC

Transfer Function . 78

4.3 Bode Plot of TCP-ARC System . 80

4.4 TCP-ARC Model Validation: estimation error vs. throughput 84

4.5 Throughput and Queue Dynamics . 90

4.6 Network Statistics: Increasing the number of FTP flows 94

4.7 Network Statistics: Increasing the average round-trip time 96

4.8 Network Statistics: Increasing the bottleneck link capacity 98

v

4.9 Network Statistics: Web flash crowd 100

4.10 Average Service Time: Objects less than 12 Kbytes 101

4.11 Multiple Bottleneck Simulation Setup 102

4.12 Queue Dynamics: Multiple Bottleneck Simulation (y-axes: queue size

in KBytes) . 103

4.13 Network Statistics: Multiple bottleneck simulation 104

4.14 An Example SFG showing three flows. The size of the shaded blocks

indicate the flow bitrates. The drop probability applied to each flow

is indicated on the right. 113

4.15 False Positive Probability (N = 20) 119

4.16 Offered Load by Web Traffic versus Packet Drop Rate (drop-tail queue:

qlim = 500 Kbytes) . 122

4.17 TCP Traffic Mix - Queue Dynamics (top) and Throughput (bottom) 124

4.18 TCP Traffic Mix - Packet Drop Rate (top) and Byte Loss Rate (bottom)125

4.19 TCP Traffic Mix - Average Web Object Service Time 126

4.20 An Unresponsive High-Bitrate CBR Flow - Queue Dynamics 128

4.21 An Unresponsive High-Bitrate CBR Flow - System Throughput (top)

and CBR Throughput (bottom) . 129

4.22 An Unresponsive High-Bitrate CBR Flow - Average Web Object Ser-

vice Time . 130

4.23 Multiple Unresponsive Medium-Bitrate CBR Flows - System Through-

put (top) and CBR Throughput (bottom) 131

4.24 Multiple Unresponsive Medium-Bitrate CBR Flows - Average Web

Object Service Time . 132

4.25 Multiple Unresponsive MPEG Video Streams - Queue Dynamics . . . 133

vi

4.26 Multiple Unresponsive MPEG Video Streams - System Throughput

and MPEG Throughput . 134

4.27 Multiple Unresponsive MPEG Video Streams - Average Web Object

Service Time . 135

5.1 Testbed Network Setup: Environment to Measure the Responsiveness

of RealVideo . 146

5.2 CDFs of Average Bitrates for Bottleneck Capacities of 600, 300, 150,

and 75 Kbps . 151

5.3 Head-to-Head Average Bitrate (all runs) 152

5.4 CDF of the Difference (TCP - UDP) in the Average Bitrate, Normal-

ized by the Bottleneck Capacity (all runs) 153

5.5 Loss Rate, Round-Trip Time and Fairness (Normalized TCP-UDP

Average Bitrate Difference) . 155

5.6 Ratio of Average Buffering Rate to Average Steady Playout Rate ver-

sus Average Steady Playout Rate (all runs) 158

5.7 CDF of Ratio of Average Buffering Rate to Average Steady Playout

Rate (LAN) . 159

5.8 CDF of Media Scales (all runs) . 160

5.9 Media Scales and Encoded-Bandwidth (all clips). The horizontal-axis

represents the number of different media scaling levels the clip can

provide while the vertical axis represents the encoded bitrate for each

scale level. The clips are sorted from the fewest scales on the left to the

most scales on the right. For ties, the clips with the lowest encoded

bitrate appear first. 161

vii

5.10 Media Scaling Dynamics: Clip-65 (top) and Clip-78 (bottom) (DSL:

BR=35 Kbps, Q=5 Kbytes) . 162

5.11 CDF of Media Scale Changes (DSL: BR=35 Kbps, Q=5 Kbytes) . . . 164

5.12 CDF of Media Scale Adaptation Speed (DSL: BR=35 Kbps, Q=5

Kbytes) . 165

5.13 Smoothness Ratio for Bottleneck Capacities of 600, 300, 150, and 75

Kbps . 166

5.14 An Example Duplicate Acknowledgment Management of TCP (Reno)

and MTP: Wnd = congestion window + the number of duplicate ac-

knowledgments (+ the retransmission replacement inflation for MTP),

and the notation n∗ for MTP represents packet n with the retransmis-

sion replacement bit set in the TCP header. 179

5.15 TCP versus MTP Throughput: The forward network packet loss rate

pf = 0.014, the backward packet loss rate pb = 0.0, the round-trip

time RTT = 60 ms and the bottleneck capacity C = 100 Mbps. . . . 179

5.16 Example Recovery of TCP and MTP from a Timeout Due to Lack of

Duplicate Acknowledgments: Packets 11 and 14 are lost in the previ-

ous transmissions. Notions (Wnd and ∗) are the same as in Figure 5.14.182

5.17 Example Recovery of TCP and MTP from a Timeout Due to Lack of

Duplicate Acknowledgments: Packets 11 and 13 are lost in the previ-

ous transmissions. Notions (Wnd and ∗) are the same as in Figure 5.14.183

5.18 Example Recovery of TCP and MTP from a Timeout Due to Loss of

a Retransmitted Packet: This example assumes 4 outstanding packets

at the time of the retransmission timeout. Notions (Wnd and ∗) are

the same as in Figure 5.14. 185

viii

5.19 Aggregate Throughput of 25 TCP and 25 MTP Flows: Drop (Top)

and ECN (Bottom) . 187

5.20 Network Topology . 194

5.21 Example Media Scale Dynamics (Run 0) 196

5.22 Example Media Frame Reception Jitter (Run 0) 196

5.23 CDF of Streamed Media Scale Levels 199

5.24 CDF of Media Frame Reception Jitter 199

5.25 Initial Buffering Time, Video Play Duration (including intermediate

buffering times) . 200

5.26 Re-buffering Event Counts and Average Frame Playout Rate 201

5.27 Example Media Scale Dynamics (Run 0) 203

5.28 Example Media Frame Reception Jitter (Run 0) 203

5.29 CDF of Streamed Media Scale Levels 205

5.30 CDF of Media Frame Reception Jitter 205

5.31 Initial Buffering Time and Video Play Duration (including intermedi-

ate buffering times) . 207

5.32 Re-buffering Event Counts and Average Frame Playout Rate 207

5.33 TCP-Friendliness of Media Streams and TCP-Friendly Rate Adapta-

tion Time . 208

6.1 Network Topology . 212

6.2 ARC: Example Media Scale Dynamics (Run 0) 215

6.3 SFA: Example Media Scale Dynamics (Run 0) 215

6.4 Average Media Scale Level . 217

6.5 Average Streaming Bitrate . 217

6.6 Average Played Frame Rate (Frames per Seconds) 217

ix

6.7 Initial Buffering Time . 218

6.8 Media Playout Duration . 218

6.9 Re-Buffering Event Count . 218

6.10 Streaming Bitrate / Competing Bulk FTP Throughput 219

6.11 TCP-Friendly Rate Adaptation Time 219

6.12 Inter-Frame Arrival Times of TCP Streams 221

6.13 Inter-Frame Arrival Times of MTP Streams 221

6.14 Absolute Difference between Inter-Frame Arrival Time and Playout

Interval of TCP and MTP Streams 224

6.15 Backbone Queue Length (CDF) . 225

6.16 Backbone Link Utilization . 225

x

List of Tables

3.1 Internet Applications: QoS Requirements and Characteristics (CNR

= Congestion Notification Rate, BW = Bandwidth changes). ∗Traffic

Ratio (Bytes) is based on February 2000 AIX backbone trace data in

[88] . 68

5.1 Number (and percent) of Non-TCP-Friendly Flows 156

5.2 A Sample Media Scale Levels . 191

5.3 Goddard Client (Gplayer) Parameters and The Default Values 191

6.1 SFG and ARC Parameters . 213

6.2 Average Transmission Delays (link delay of the path = 70 ms) 226

xi

List of Algorithms

1 Rate-Based PI Controller for AQM 75

2 Aggregate Rate Controller . 83

3 FAST-Extended ARC . 106

4 Stochastic Fairness Guardian (SFG) 111

xii

Chapter 1

Introduction

The Internet has become an essential part of public life while assuming the role of

the underlying communication network for diverse applications such as file transfer,

electronic mail, Web browsing, media streaming and interactive video games. These

various Internet applications have a variety of network service requirements and

traffic characteristics, which provides new challenges to Internet congestion control.

This chapter motivates and introduces the research in this dissertation.

1.1 Motivation

The Internet is a collection of interconnected networks that offer a best-effort data

transmission service to users using the Internet Protocol (IP). The current Internet

relies on the end-host congestion avoidance mechanisms of modern TCP to resolve

traffic congestion and prevent congestion collapse. Modern TCP traffic sources mon-

itor their own transmission to detect network packet losses,1 take them as implicit

congestion signals from routers and reduce their transmission rate to avoid conges-

1Although not used in practice on the Internet today, TCP has an option to use the Explicit
Congestion Notification (ECN) bit [109] set by ECN enabled routers to detect network congestion.

1

tion using bandwidth adaptation mechanisms. The congestion avoidance bandwidth

adaptation behavior of TCP is mainly characterized by the Additive Increase Mul-

tiplicative Decrease (AIMD) algorithm [65].

In the network, IP routers use outbound queues to accommodate traffic bursts and

achieve high link utilization. Most current routers use FIFO queues that passively

drop incoming packets when queues are full. Unfortunately, when faced with persis-

tent congestion, FIFO drop-tail queues, often over-provisioned with large buffers to

yield maximum throughput, oscillate and fill up resulting in high transmission delays.

Also, the simple drop-tail queue mechanism is open to the threat of congestion col-

lapse due to a malicious or even unintentional misuse of the network [43]. Moreover,

FIFO queues have difficulty in satisfying the diverse network service requirements of

today’s applications, especially the ever more popular delay sensitive applications.

The congestion control challenges the current Internet faces can be categorized

into three sub-problems: first is to improve network support for an efficient con-

gestion control feedback system; second is to protect the network from potentially

misbehaving or unresponsive traffic; third is to concurrently support various Internet

application domains with diverse Quality of Service (QoS) requirements.

The efforts to improve the congestion control feedback system can be divided into

two approaches. The first approach is to completely redesign a congestion control

feedback system by replacing both the TCP congestion avoidance mechanism and

the router traffic management mechanisms [5, 69, 99]. This type of approach has

the potential to achieve a highly efficient congestion control structure, but faces the

possibly insurmountable problems of gradual deployment.

The second approach is to replace drop-tail queue management with Active Queue

Management (AQM) [14] in order to enhance network support for end-to-end con-

gestion control. AQM enabled routers include a congestion controller unit [35, 45,

2

47, 56, 58, 75] that detects and notifies end-systems of impending congestion, al-

lowing responsive traffic sources to reduce transmission rates before the congested

router queue overflows. When properly designed and configured, AQM can offer

a low queuing delay while achieving high link utilization. Moreover, since AQM

routers are able to predict impending congestion before buffer overflows they may

explicitly signal end-systems of network congestion by marking the Explicit Conges-

tion Notification (ECN) [41, 109] bit in the IP headers. ECN improves congestion

notification efficiency and system goodput over implicit packet-drop congestion no-

tification by avoiding network packet losses [25]. Yet another gain from the early

congestion prediction is that routers have a choice in selecting to which end-hosts

to signal congestion. By fairly notifying end-hosts of congestion proportion to their

usage, an AQM router may improve bandwidth distribution fairness over drop-tail

queue management [36, 45].

The efforts to protect the network from potentially misbehaving or unresponsive

traffic can be made both at end-systems and routers. The Internet research commu-

nity is trying to build TCP-Friendly2 [43] transport protocols [44, 114, 113, 131] for

applications that cannot benefit from using TCP but would rather use UDP. At the

same time, drastic approaches to protect the network or to enforce bandwidth distri-

bution fairness at routers have been proposed [17, 23, 33, 36, 46, 85, 81, 91, 103, 119].

The bandwidth controller units are often designed as a part of the AQM mechanisms.

The efforts to concurrently support various Internet application domains with

diverse QoS requirements are made mainly at the network service architecture level.

The Internet research community is considering restructuring the service architec-

ture to support differentiated classes of service, known as the Differentiated Services

2TCP-Friendly refers to the congestion responsiveness of traffic sources that do not receive more
throughput than conforming TCP flows would under the same network conditions.

3

(DiffServ) architecture [8]. The DiffServ architecture can offer a variety of network

services that may be sufficient to support the diverse QoS requirements of different

Internet applications. However, what services should be offered, how to configure

network components to support specific services or how to price services are very

complex challenges not yet resolved. Furthermore, gradual deployment of DiffServ

is non-trivial since it requires a different network service interface from that of the

current Internet.

Alternatively, a few approaches have been made to offer a limited support for

QoS such as controlling delays and packet loss rates using a QoS packet scheduling

instead of FIFO scheduling discipline [60, 106]. These mechanisms consider delay

requirement hints in each IP header and tradeoffs the delay gain with the throughput

loss and vice versa using a QoS scheduling queue control unit. The merit of the

delay-throughput exchange approaches is that they require a minor modification to

the Internet service interface and IP header, and provide a “better-than-best-effort”

service. However, a concern is that the delay-throughput exchange mechanisms may

not preserve fairness among flows, since routers may not be able to collect and

use all the information required to ensure fairness due to the information acquiring

complexity and overhead. Moreover, few were able to provide a suitable support for

the diverse delay requirements.

The delay sensitivity of the QoS requirements makes the Internet support for QoS

more difficult rather than the variety of the QoS requirements. For example, con-

currently satisfying throughput sensitive FTP and Email applications is relatively

easy compared to concurrently satisfying Web browsing and Internet videophone

applications because of the stricter delay constraints imposed by the latter applica-

tions. From this simple observation, we can deduce that if the queuing delays at

the congested routers can be minimized even at the cost of a small decrease in link

4

utilization, a significant number of QoS issues will be reduced. In other words, if the

current Internet cannot handle diverse delay QoS requirement, a possible solution

other than a network service structure change, which requires time, vast investment

and risk, is to significantly reduce network delays.

The Internet can offer “best-delay-effort” service without any change in the ser-

vice architecture or interface using a delay optimized AQM at routers improving

both the congestion control efficiency and the support for diverse QoS requirements.

A delay optimized AQM minimizes queuing delay by making early and efficient im-

minent congestion prediction based on the incoming traffic rate rather than on the

queue length. An analogy is a preemptive time-sharing machine that configures its

time-slice length for the QoS needs of interactive applications can support both the

interactive and computation-rich applications concurrently up to a certain workload.

Likewise, a best-delay-effort Internet could concurrently serve various applications

with different delay constraints.

In addition to improving efficiency and QoS, it is inevitable that the next gener-

ation Internet should offer the public network affordable protection from threats of

potentially misbehaving or unresponsive traffic. The current Internet allows appli-

cations to use the network with arbitrary data rates and congestion response, poten-

tially in a harmful way. Protection of the public network may not be a practically

important problem when the majority of Internet applications uses TCP. However,

it becomes serious with the growth of delay sensitive applications such as streaming

media, which often prefer UDP over TCP as their transport protocol choice. More-

over, the growth of the end-user Internet connection capacity further increases the

level of threats from misbehaving or unresponsive flows due to the increased traffic

volume limits of each flow.

Streaming media is sensitive to delay and jitter, but can tolerate some data loss.

5

Thus, TCP with reliable transmission service at the cost of potentially large delay

at congestion may not be an optimal choice for streaming applications. As discussed

earlier, recent research has proposed rate-based TCP-Friendly protocols [44, 114,

113, 131] in the hope that streaming media applications will use them, but such

protocols are not yet widely part of most operating system distributions. For these

reasons, streaming media applications often use UDP as a transport protocol rather

than TCP. Moreover, with the use of repair techniques [11, 82, 95, 102], UDP packet

losses can be partially or fully concealed, reducing the impact of loss on the quality of

the media by the user, and thus reducing the incentive for multimedia applications

to lower their bitrate in the presence of packet loss during congestion. Moreover,

as the end-user Internet connection capacity offered by Internet Service Providers

(ISP) has significantly increased (up to 3 Mbps for typical cable modem services),

even the highest quality media, about 2-4 Mbps for broadcast quality video, can be

streamed without imposing congestion at the local Internet connection links. Thus,

high-bandwidth Internet connections are pushing the streaming media performance

bottleneck closer to the servers threatening the well-being of the public Internet [130].

In addition to the design and evaluation of a delay optimized AQM practical for

best-delay-effort Internet service implementation, this dissertation research seeks to

find a proper protection of the Internet from misbehaving traffic in two different

angles: 1) As a pessimistic approach we develop a light-weight bandwidth control

mechanism at routers that works both with AQM or drop-tail queue management.

2) As an optimistic approach we modify TCP and provide end-systems Multimedia

Transport Protocol (MTP), an alternate to UDP for streaming and other delay sen-

sitive Internet applications that favor prompt and timely datagram delivery service

over the reliable transmission service of TCP. The new unreliable transport protocol

has the exact congestion avoidance mechanism and hence proven stability of TCP.

6

Also, MTP can be easily made available for all operating system distributions, since

an MTP implementation can reuse most of a TCP implementation.

Thus, this dissertation presents the design and evaluation of two IP router traffic

management mechanisms and an end-system transport protocol that can be deployed

individually or together to improve streaming media performance on the Internet: 1)

MTP provides TCP-Friendly and streaming-friendly transport service to streaming

media applications. 2) The bandwidth controller at IP routers punishes misbehaving

high-bandwidth UDP media streams encouraging them to use MTP. 3) The delay

optimized AQM congestion controller reduces IP router queuing delays to meet the

delay requirements of interactive streaming applications.

1.2 Approach

We build and evaluate a fairness protection and delay optimized AQM mechanism

as a part of the Crimson3 architecture as shown in Figure 1.1. Without a modifi-

cation to the service architecture or interface of the current Internet, the Crimson

network protects well-behaving congestion responsive flows from misbehaving traffic

and efficiently minimizes network queuing delays to help delay sensitive applications

without compromising performance of throughput sensitive applications.

The Crimson router AQM mechanism is composes of two parts. First is a Band-

width Controller, referred to as the Stochastic Fairness Guardian (SFG), that pro-

tects bandwidth utilization fairness. The objective of SFG is not to achieve per-flow

fairness but to protect the network from potentially harmful misbehaving flows. To

make the Crimson router as lightweight and independent of other routers as possible,

we develop a lightweight pseudo per-flow protection mechanism that uses a statisti-

3The name Crimson comes from a word play on the acronym RED for Random Early Detec-
tion [45]. Considering RED as a color, then crimson is one of the school colors of WPI.

7

Bandwidth
Controller

Bandwidth
Controller

InIn FilteredFiltered

Best-Delay-EffortProtection

Active Queue Management (IP Router)

Congestion
Controller

Congestion
Controller

OutOut
Multimedia
Transport
Protocol

Multimedia
Transport
Protocol

TCPTCP

UDPUDP

TCP Traffic

TCP Traffic

MTP TrafficMTP Traffic

UDP Traffic

UDP Traffic

Multimedia
Transport
Protocol

Multimedia
Transport
Protocol

TCPTCP

UDPUDP

UDP Traffic

UDP Traffic

MTP TrafficMTP Traffic

TCP Traffic

TCP Traffic

dropdrop dropdrop
SFG ARC

Figure 1.1: Proposed Mechanisms: Crimson Architecture

cal traffic filtering technique to effectively regulate misbehaving flows with minimal

traffic state information. SFG uses a multi-level hash scheme that places incoming

flows into different flow groups at each level and approximates a proper packet drop

rate for each flow by monitoring the incoming traffic rates for the groups to which

the flow belongs. SFG can be used in conjunction with an AQM or with drop-tail

queue management.

The incoming traffic that passes the SFG meets Crimson’s rate-based Conges-

tion Controller targeted to minimize the queuing delay and support a wide range of

traffic load and conditions. Recently, the most promising approaches model AQM

as a feedback controller on a time-delayed response system, and develop an effi-

cient proportional integral (PI) controller, a dominating feedback controller design

in modern control systems due to their simplicity and effectiveness, for TCP traf-

fic [47, 58, 75]. These approaches demonstrate that a PI controller can be an effective

AQM mechanism for a range of traffic conditions. Yet, the PI control approaches

omit to provide complete parameter configuration guidelines to support a practi-

cal range of traffic conditions, since the configuration of PI control parameters in

a time-delayed feedback system (i.e., the Internet) is challenging [118]. We address

8

the practical configuration issue by carefully reducing the PI parameters and find

a complete configuration guideline for the parameter-reduced PI controller, called

the Aggregate Rate Controller (ARC). For early and accurate congestion estimation,

which is essential for a delay optimized AQM to achieve a high link utilization, ARC

takes a rate-based control information acquisition approach. For a small amount

of data collection overhead, the direct incoming traffic rate measurement approach

can significantly reduce control noise from the estimate of incoming rate based on

queue samples. Lastly, ARC concurrently supports ECN as well as implicit packet

dropping congestion notification.

At the end-systems, Crimson supports an additional unreliable transport protocol

beside TCP and UDP to improve Internet support for media streaming and other de-

lay sensitive applications. There has been several TCP-Friendly transport protocols

proposed for non-TCP applications, or more specifically for streaming media applica-

tions. These protocols are mostly rate-based congestion adaptation approaches that

may contribute to the instability for systems with large end-to-end delays, where

network system instability is characterized by large queue and throughput oscilla-

tions and bursty packet drops at network routers. Furthermore, it is not clear the

proposed protocols are indeed practical for streaming applications. Few studies have

been made to understand the streaming end-system protocol requirements and verify

the suitability of the TCP-Friendly protocols.

As a part of this dissertation, we conducted a video streaming Internet mea-

surement study using Real Networks4 video streams to understand the requirements

and characteristics of streaming Internet applications. Throughout the study, we

were able to identify issues that TCP-friendly transport protocols should address to

support streaming applications, and found several key incentives for video streams

4http://www.real.com

9

to use UDP rather than TCP. It is difficult for streaming applications to efficiently

estimate available bandwidth upon TCP, since the TCP API hides network informa-

tion such as packet loss rate and RTT. Moreover, the huge penalty of overestimating

available bandwidth upon TCP discourages streaming applications from using TCP.

However, with the window-based mechanism of TCP, we did not find transmission

timing issues that may discourage streaming applications from using TCP.

Thus, we modify TCP by removing the retransmission feature that is unneces-

sary or even harmful for streaming purposes, and evaluate the modified TCP as a

streaming transport protocol. We call the modified TCP for streaming the Multime-

dia Transport Protocol (MTP) that forms another part of the Crimson architecture

as shown in Figure 1.1. By removing retransmission from TCP, MTP becomes an

unreliable transport protocol like UDP, but has the exact TCP congestion avoidance

mechanism that has proven to be effective in practice.

With the unreliable datagram delivery semantics, the MTP senders have the free-

dom at the application side input queue to trade the queuing delay that contributes

to the huge transmission delay upon capacity overestimation by the streaming appli-

cation to packet losses. In addition, MTP receivers deliver packets to the application

above as soon as they are received avoiding extra transmission delay and jitter that

can be caused by TCP receivers in order to guarantee the in-order lossless data stream

service. These extra delays discourage delay sensitive applications from using TCP.

Moreover, MTP resolves most of the streaming unfriendly TCP API issues by re-

vealing the network layer packet loss information to the application layer receivers.

Existing UDP-based streaming applications that make media scaling decisions based

on network packet loss or frame loss information can also use MTP with a little mod-

ification on the streaming channel setup modules. We also propose to add a method

to the MTP API to reveal network path round-trip time information measured at the

10

transport layer, since this information may help new streaming applications make

prompt and informed streaming decisions.

MTP and the Crimson AQM mechanisms are evaluated via simulations using

the NS [127] network simulator. The evaluation of MTP for streaming use requires

a proper streaming application that is not provided by NS. Therefore, we build

a video streaming application, called Goddard,5 in NS based on the findings in

our video streaming Internet measurement study and other streaming measurement

studies [80, 93, 130]. Our simulation results show that the Crimson AQM mechanisms

(ARC and SFG) can effectively support best-delay-effort service with protection from

misbehaving flows. Also, it is shown in the evaluation that MTP can well support

streaming applications offering an efficient low-delay streaming channel such that the

offered capacity is TCP-Friendly at all times.

The Crimson architecture may not offer the same level of QoS support as the

DiffServ architecture. However, the Crimson architecture resolves a very signifi-

cant portion of the issues related to supporting diverse QoS requirements, offering

improved service quality for interactive applications. The biggest advantage of Crim-

son over DiffServ is that Crimson can be gradually deployed in the current Internet.

Additionally, Crimson attempts to improve support for streaming and other delay

sensitive applications by offering a TCP-Friendly and application-friendly multime-

dia transport protocol.

5We named the streaming application after Robert Goddard, the “Father of Modern Rocketry”
who attended WPI. Legend has it that while using a lab in WPI campus, his explosions caused some
damage and he was then moved to the Magnetic Lab (now Skull Tomb). Even there, neighbors
complained of hearing loud noises.

11

1.3 Contributions

The main contribution of this dissertation is the design and evaluation of the Crimson

architecture to improve support for today’s diverse Internet applications. The specific

contributions include:

• The design and configuration of the rate-based Crimson Congestion Controller,

called Aggregated Rate Controller (ARC), targeted to minimize queuing delay

over a wide range of traffic conditions. Through a simulation study, ARC is

evaluated and compared against similar Congestion Controllers including the

PI controller [58], AVQ [75] and SFC [47], and drop-tail queue management

over a wide range of network and traffic conditions. The results show that

ARC efficiently handles network congestion in all the tested traffic conditions,

and when considering all traffic scenarios, outperforms the other mechanisms

in terms of queuing delay and link utilization.

• The design of the Crimson Bandwidth Controller, called Stochastic Fairness

Guardian (SFG), which provides fair bandwidth protection without requiring

structure changes to the current Internet. We provide an evaluation of the

SFG (with drop-tail queue management) and the combination of SFG and

ARC, referred to as Stochastic Fair ARC (SFA), in comparison with other

preferential-based dropping techniques that do not require an edge-core ar-

chitecture for scalability, including Random Early Detection with Preferential

Dropping (RED-PD) [85], Stochastic Fair Blue (SFB) [36] and CHOKe [91],

and drop-tail queue management. Through a simulation study, we demonstrate

that SFG provides simple and effective fairness protection that complements

the weakness of drop-tail alone. The results also show that SFA outperforms

other statistical flow management mechanisms considering complexity of the

12

mechanisms, protection, stability, queuing delay and overall TCP performance

over a wide range of realistic traffic mixes and loads.

• Characterization of the Internet streaming requirements and identification of

the features of TCP that are inappropriate for streaming. In addition, we

provide the TCP-friendliness evaluation for RealVideo UDP streams chosen

in head-to-head competition with a TCP stream for limited local bandwidth.

The measurement study shows that overall, most streaming RealVideo clips

are not capacity-constrained for a typical broadband connection. In cases with

reduced connection capacity, video streams over TCP take more time to adapt

to the capacity than streams over UDP due to the streaming unfriendly TCP

API that hides network information. This gives a incentive for video streams to

use UDP rather than TCP, suggesting that potentially unresponsive streaming

media over UDP will likely persist for some time.

• The design and evaluation of Multimedia Transport Protocol (MTP), a TCP-

friendly and user-friendly streaming transport protocol that offers the appli-

cations choice to use the available TCP-Friendly bandwidth as they like. Our

simulations show that MTP video streams adapt as quickly to the available

bandwidth as do UDP streams, and significantly reduce re-buffering events

compared to TCP streams while maintaining other media qualities such as

frame rate or picture resolution at the level of the TCP streams. The re-

sults also show that existing UDP streaming application can use MTP with

little modification to their media scaling mechanisms, achieving better quality

streams than streams over TCP.

• The design and evaluation of MTP is yet another contribution. The Internet

community proposes to build an unreliable transport protocol incorporating

13

end-to-end congestion control, called Datagram Congestion Control Protocol

(DCCP).6 DCCP proposes to support a TCP-like window-based congestion

control mechanism (Congestion Control ID 2) similar to MTP and to support

TFRC [44] (Congestion Control ID 3), a rate-based end-to-end mechanism.

The design and evaluation of MTP for streaming media is a valuable contri-

bution toward the design and evaluation of the DCCP ID 2 congestion control

mechanism.

• Design and implementation of the Goddard streaming application in NS. The

Goddard streaming client and server use packet-pairs [10, 65, 70] to estimate the

bottleneck capacity and select an appropriate media before streaming. Dur-

ing streaming, the Goddard client and server re-select media to stream (i.e.

performs media scaling) in response to network packet losses or playout buffer

re-buffering events at the client. Goddard, which also simulates play of the re-

ceived media at the client, is the first and only realistic streaming application

in NS.

• Evaluation of the Crimson system. We evaluate the performance gains that

the Crimson architecture can offer to streaming applications. Our simulations

show that Crimson AQM mechanisms improve congestion control efficiency for

TCP and MTP flows using ECN, and protect the network from potentially

misbehaving UDP media streams during congestion.

1.4 Roadmap

The rest of the dissertation report is organized as follow: Chapter 2 presents related

research in the area of AQM, the Differential service architecture, streaming traffic

6http://www.icir.org/kohler/dccp/

14

characterization, and TCP-friendly transport protocol design. Chapter 3 presents

additional in depth background materials that help in understanding this disserta-

tion research. The background discussions include the TCP/IP networking structure,

Internet congestion control issues, and QoS requirements and trends in current In-

ternet applications. Chapter 4 presents the design, configuration and evaluation of

the Crimson AQM mechanisms, ARC and SFG. Chapter 5 presents the results and

findings from our Internet streaming measurement study followed by the design and

evaluation of MTP for streaming media, including the design of Goddard. Chapter 6

presents evaluation of streaming media under the Crimson architecture. Chapter 7

concludes this dissertation research and lists possible future work.

15

Chapter 2

Related Research

This chapter introduces research work related to the three sub-areas of this disser-

tation: Active Queue Management, streaming characterization, and TCP-friendly

transport protocols.

2.1 Active Queue Management

Active Queue Management (AQM) refers to traffic management techniques at a

router that detect and notify traffic sources of imminent network congestion to pre-

vent outbound buffer overflow and control queuing delay [14]. When notified of

network congestion, cooperative traffic sources like TCP reduce their transmission

rates to participate in the congestion control. In the case network congestion cannot

be managed voluntarily by the traffic sources, AQMs may use buffer management

techniques to suppress traffic to the targeted traffic level and achieve the QoS goal.

In this section, we first propose an AQM taxonomy that provides a systematic way

to classify and analyze AQM mechanisms. We examine various AQM mechanisms

using the taxonomy.

16

Figure 2.1: AQM Taxonomy

2.1.1 AQM Taxonomy

In general, the tasks of AQM can be divided into that of a Congestion Monitor

which detects and estimates congestion, a Bandwidth Controller that manages use

of the output bandwidth, a Congestion Controller which computes and applies the

congestion notification probability (CNP) to incoming traffic and a Queue Controller

which manages buffer usage and packet scheduling. We have developed an AQM

taxonomy based on the four AQM tasks, as shown in Figure 2.1.

2.1.1.1 Congestion Monitor

The first task of an AQM is to monitor, detect and estimate congestion. This esti-

mation is used for bandwidth management decisions by the Bandwidth Controller,

or for congestion notification probability (CNP) computations in the Congestion

17

Controller.

In general, AQM congestion detection and estimation mechanisms can be clas-

sified by the monitoring policy that uses either queue length as a measure of con-

gestion or the incoming traffic load as a measure of congestion. In each case, either

the instant or average measure of the quantity can be used. Traditionally, AQM

mechanisms used queue statistics such as instant or average queue length against

queue thresholds as a measure of impending congestion. Yet, AQMs may measure

incoming traffic load and declare congestion when the measured load is greater than

the target load. The target traffic load is typically set to near 1, which defines con-

gestion as a state that the estimated incoming traffic rate (the offered load) is greater

than the service rate or link capacity. As in the case of the queue-based congestion

estimation policies, either an instant or an average measure of the traffic load can be

used in the load-based policies. An instant load refers to the load measured in the

last measurement interval, whereas an average load can be defined as the average of

instant loads over a specified period.

The traffic load based congestion estimation policies can be further classified by

the monitoring method (traffic rate or queue length) to estimate the traffic load. It

is more intuitive to measure the traffic load in terms of incoming traffic rate over

service rate. Yet, the traffic load can also be estimated in terms of queue length

differences over a measurement interval. Both rate-based and queue-based load es-

timation methods have advantages and disadvantages. Rate-based methods usually

have a little more overhead than queue-based methods since rate-based methods

need to collect every incoming packet size while queue-based methods can sample

the queue size every measurement interval. However, an important advantage is that

the rate-based congestion estimation methods can reduce the estimation noise and

detect impending congestion before the queue starts to grow, allowing the Band-

18

width Controller or Congestion Controller to more accurately and promptly respond

to the imminent congestion.

Of importance in load estimation is determining an effective measurement in-

terval, which may affect the stability of the feedback control system, link utilization

and queuing delay and buffer overflows. For example, choosing an insufficiently small

interval can lead to the Congestion Controller making an over reactive decision on

network congestion while choosing an exceedingly large interval can make the Con-

gestion Controller less responsive. Similarly, when an averaging technique is used

for congestion estimation, the averaging factor will affect the responsiveness and

performance of the controller.

2.1.1.2 Bandwidth Controller

Following the Congestion Monitor, an AQM may have a Bandwidth Controller that

manages the use of the outbound bandwidth. Bandwidth controllers can be catego-

rized based on the nature of services they provide and the QoS goals. A bandwidth

controller may provide priority forwarding or loss differentiation service. Priority for-

warding is a priority class-based protection mechanism in which, upon congestion,

packets from a lower priority class are dropped before dropping packets belonging to

higher priority classes. A loss differentiation service is also a class-based protection

mechanism in which, upon congestion, a predefined proportion of traffic is dropped

from each class.

The most common type of bandwidth controller is one that provides fairness

protection in which individual flows or groups of flows are protected from one an-

other. We refer to such a Bandwidth Controller as a Bandwidth Guardian. Band-

width Guardians can be sub-categorized into using class-based, per-flow or pseudo

per-flow bandwidth management. Class-based bandwidth fairness protection mech-

19

anisms usually have the least overhead among the three, whereas per-flow fairness

protection mechanisms that maintain per-flow state have the most overhead. Pseudo

per-flow bandwidth management mechanisms detect outstanding high-bandwidth

flows without keeping per-flow information or by using a minimum per-flow infor-

mation and rate limit the flows. Pseudo per-flow management protects flows from

misbehaving high-bandwidth flows rather than enforcing per-flow fairness, but at a

lower cost than per-flow management.

Even within the same subcategory of the Bandwidth Guardians, the accuracy

and performance of the mechanisms can significantly differ in the complexity and

traffic information used for bandwidth management. For example, a simple class-

based Bandwidth Guardian can pre-assign a fixed congestion bandwidth to each

class, while a more advanced class-based mechanism can dynamically assign a fair

bandwidth to each class for the price of estimating the number of active flows in each

class.

2.1.1.3 Congestion Controller

Incoming traffic that passes the Bandwidth Controller is forwarded to a Conges-

tion Controller. The job of the Congestion Controller is to prevent or control net-

work congestion by notifying traffic sources of the impending congestion earlier so

that congestion responsive traffic sources such as TCP can reduce their transmis-

sion rate. Although an explicit binary congestion notification method called Explicit

Congestion Notification (ECN) was proposed about a decade ago [41], the implicit

mechanism of dropping incoming packets has been historically used. For this rea-

son, it is sometimes hard to distinguish Congestion Controllers from Bandwidth

Controllers as packet drops resulting from the bandwidth management also act as

implicit congestion notification. Yet Bandwidth Controllers attempt to repressively

20

manage outbound bandwidth usage at congestion, while Congestion Controllers at-

tempt to prevent congestion with the help of responsive traffic sources. An easy way

to distinguish between a Bandwidth Controller and a Congestion Controller is, if it

does not make sense for a mechanism to use ECN instead of packet drop, then it

is a Bandwidth Controller, otherwise, it is a Congestion Controller. Note that an

AQM may have either a Bandwidth Controller or a Congestion Controller, or both

controllers.

More precisely, a Congestion Controller determines a congestion notification prob-

ability (CNP) based on the estimated congestion level, its control history and possibly

other traffic information, and notifies traffic sources by randomly marking (or drop-

ping) the incoming packets with the estimated CNP. Every Congestion Controller

has its own QoS goal and thus has a specific CNP computation policy of which flows

should reduce or increase their transmission rate and by what amount. The QoS

goals can be simply to prevent congestion with minimized queuing delay, to yield

fair bandwidth allocation among responsive sources while preventing congestion, or

to provide a diverse QoS while preventing congestion. To achieve these QoS and

performance goals, the AQM may perform a uniform, class-based, per-flow or per-

packet CNP computation. For example, to achieve only the basic goal of preventing

congestion, a Congestion Controller may compute and apply a uniform CNP to all

incoming traffic. In order to additionally yield fair bandwidth allocations among

different classes of responsive traffic, a Congestion Controller may compute and ap-

ply per-class CNPs. Furthermore, a congestion controller may choose to perform

per-flow CNP computation to yield per-flow fairness among responsive flows, or to

provide a customized QoS to each flow.

The CNP computation methods can be further classified into two categories based

on how the CNP is computed. The first category is a Proportional (memory less)

21

controller [100] that does not consult the recent control history but computes the

CNP based only on the current estimated congestion level and traffic information.

Proportional congestion controllers typically require knowledge on the traffic sources

to successfully control congestion. The fact that the stable state average transmission

rate of window-based traffic sources (like TCP) given a CNP can differ based on the

average RTTs they experience implies that a router should have some knowledge of

the average RTT and the number of flows (N) to control aggregated average incoming

traffic rate and to control per-flow average throughput. For example, an AQM that

has knowledge of the average RTT of the incoming flow aggregate and N can compute

a proper CNP for the flow aggregate using the queue law [38] assuming ideal TCP

traffic sources. Or, knowing the fair bandwidth share (link capacity divided by N)

and RTTs of individual flows, a router can compute a proper CNP for each flow

that will bring each average flow rate to the fair share. To be practical, since not all

TCP traffic is greedy and long-lived, a proportional congestion controller is required

to know per-flow transmission rates (cwnd/RTT) and congestion estimation. That

is, the router should know exactly how much bandwidth to take away from each

flow to compensate for the overloaded amount of the service bandwidth to increase

congestion control precision. Without knowing the transmission rate of each flow in

the first place, it is not possible to determine how much bandwidth will be reduced

per notification. However, knowing the per-flow transmission rate (or just cwnd

since RTT is already known) helps little under the current congestion notification

structure of the Internet due to the inefficient and inaccurate router-to-host binary

congestion control communication method of marking with the CNP. In addition, it

is not possible for a router to instantly make coarsely-responding TCP to transmit

at a specific rate. Thus, precision congestion control using CNP alone cannot readily

be done. This is the basic argument behind the design of XCP [69], one of the most

22

recent mechanisms, that proposes to use a window based traffic source that inform

routers of RTT and cwnd and transmit at the rate that the most congested router

explicitly specifies in terms of allowable cwnd.

One critical problem facing AQMs in this category is that per-flow traffic infor-

mation such as RTT and cwnd may not be practically and securely obtainable under

the current Internet structure. On the other hand, AQMs that compute CNP based

only on the congestion estimate or use incomplete traffic information may not be

able to support a wide range of traffic without confronting configuration problems

or failure to meet QoS and/or performance goals for some traffic mixes.

The second class of CNP computation methods is Integral control1 that heuris-

tically searches for a stable state CNP that will bring the aggregated traffic to a

desired level based on the recent control history and congestion estimates measured

by the Congestion Monitor. More precisely, integral congestion controllers contin-

uously update the CNP of the previous interval based on an estimated congestion

control error. A significant advantage of integral CNP computation methods over

proportional methods is that integral methods require no additional traffic infor-

mation to converge to a CNP that accomplishes the aggregate QoS goals such as

bounded queuing delay. While the integral CNP computation techniques are usually

used for incoming traffic aggregates, they can be applied for groups of flows or even

possibly for individual flows assuming per-flow throughput and fair bandwidth share

(or N) can be measured. An important integral congestion controller issue is to

find an appropriate CNP update interval and increment/decrement steps in order

to ensure the congestion control stability and responsiveness under both steady and

1In fact, an Integral controller [100] is a specific type of feedback controller. However, our AQM
taxonomy uses “integral controller” to represent congestion controllers that use an integral feed-
back control mechanism, and encompasses Proportional-Integral (PI) controllers and Proportional-
Integral-Derivative (PID) controllers.

23

changing network traffic conditions.

So far, two types of CNP determination methods have been discussed and illus-

trated. The integral method is usually used to implement uniform or per-class based

congestion notification services. On the other hand, the proportional CNP compu-

tation method utilizing the complete traffic information is a typical per-flow CNP

computation method that can be used to implement per-flow fair congestion notifi-

cation services or customized QoS congestion notification services. Alternatively, a

per-flow QoS service may be implemented using the integral method with per-flow

QoS requirement information from traffic sources. That is, a router may heuristically

adjust the updated CNP of the traffic aggregate for each flow considering the QoS

requirement of the flow.

As briefly mentioned in a previous paragraph, Congestion Controllers can use

either the implicit congestion notification method of packet dropping or the explicit

congestion notification method of marking. Currently, the Internet Protocol only

supports binary ECN bit marking. ECN marking can offer significant performance

gain in terms of packet loss rate compared to the implicit packet drop congestion

notification, as discussed in Section 3.2 in detail. However, it is possible that multiple

bits can be used to enhance congestion control precision in the future.

2.1.1.4 Queue Controller

The last component of an AQM is a Queue Controller. A Queue Controller manages

the transmission of packets forwarded by the Congestion Controller or Bandwidth

Controller. Typically, AQM mechanisms keep only a single packet queue. However,

a mechanism may assign a packet queue for each incoming flow and perform link

scheduling (although it is arguable that this mechanism is not an AQM). Alterna-

tively, an AQM may assign a packet queue for each class of traffic. To encompass

24

these possibilities, the AQM taxonomy includes the number of packet queues for the

Queue Controller categorization.

Every packet queue has a management discipline, the simplest being FIFO queue

management. Other management disciplines include support for a uniform QoS

such as bounded average queuing delay or per-flow or per-class delay. The Queue

Controller can support diverse per-flow QoS requirements using a packet scheduling

rather than FIFO in cooperation with the Congestion Controller, although little

work has been done in this direction. The per-flow QoS parameters that an Internet

router can support are CNP and queuing delay. As mentioned earlier, a Congestion

Controller may consider the QoS requirements in determining the CNP for a flow

given QoS information from traffic sources. Similarly, the Queue Controller can

consider the delay requirement of each flow using QoS packet scheduling. As long as

the flow uses bandwidth less than or equal to the fair share, trying to meet the QoS

requirements of individual flows may be desirable. However, QoS packet scheduling

may need to address issues such as starvation that can affect the throughput of

window based traffic sources like TCP.

2.1.2 AQM Mechanisms

The previous section introduced our AQM taxonomy. In this section, popular AQM

mechanisms are examined using the taxonomy. First, we introduce AQM mech-

anisms that mainly offer Congestion Controller functionalities, followed by AQM

mechanisms that emphasize the functionality of a Bandwidth Controller. Then, we

introduce AQM mechanisms that support diverse QoS using Queue Controllers.

25

2.1.2.1 Congestion Controllers

Random Early Detection (RED) [45] is one of the first AQM mechanisms to offer

the functionalities of a Congestion Controller. The Congestion Monitor of RED uses

a weighted average queue length (qavg) and a threshold (thmin) to detect congestion,

and estimates the congestion amount in terms of qavg − thmin. The RED Congestion

Controller is a proportional controller that computes the uniform CNP based only on

the estimated degree of congestion while qavg is less than the upper operating bound

of the Congestion Controller (thmax). The Congestion Controller linearly maps qavg

ranging from thmin to thmax onto the CNP from 0 to pmax, and supports both drop

and ECN mark congestion notification. RED does not have a Bandwidth Controller

but it does have a special Queue Controller. The Queue Controller of RED uses a

single queue and operates in two modes. When qavg is less than thmax, the Delay

Controller operates with FIFO packet scheduling. Otherwise, it operates in the QoS

mode dropping all incoming packets until qavg drops under the thmax to bound the

average queuing delay. Later versions of RED support the “gentle” setting for the

QoS Queue Controller that replaces the strict uniform delay control of RED by

allowing qavg to go above thmax, in order to reduce bursty packet drop rates. RED

is known to be difficult to configure for a wide range of traffic [12, 21, 34].

State Feedback Controller (SFC) [47] is a Congestion Controller that provides a

proportional feedback control as in RED. However, instead of using average queue

length, the Congestion Monitor of SFC estimates congestion by monitoring both the

instant queue length and the instant traffic load. The Congestion Controller, then,

computes the uniform CNP proportional to the instant queue length and also to the

estimated incoming traffic load. SFC is based on a classical control theory and has a

wider stability margin and a faster congestion response time than RED. However, as

in other proportional controllers, SFC has difficulty in controlling the queue length to

26

a target as traffic load varies, which is shown in Chapter 4.1.3. SFC does not have a

Bandwidth Controller. The Queue Controller of SFC uses FIFO queue management

on a single queue.

BLUE [35] controls congestion using an integral Congestion Controller to find a

stable state CNP that may bring the aggregated traffic to a desired level. The BLUE

Congestion Monitor takes a buffer overflow event in the last measurement interval

as an indication of congestion and a link idle event as a reduction of congestion.

However, the Congestion Monitor does not estimate the congestion level, since this

information is not used in the CNP computation process. The BLUE Congestion

Controller periodically updates the CNP of the previous measurement interval using

fixed sized steps upon congestion or congestion reduction event detection. The use of

fixed CNP potentially has CNP convergence and stability problems for fast changing

traffic conditions. The updated CNP is uniformly applied to the incoming traffic

until the next measurement interval with the preferred notification method being

ECN marking. The BLUE Queue Controller uses a single queue with simple FIFO

packet scheduling.

Proportional-Integral (PI) controller [58] and Random Early Marking (REM) [5]

are typical integral congestion control mechanisms that use traffic load-based conges-

tion monitoring techniques on the incoming traffic aggregate. In PI, the Congestion

Monitor detects and estimates congestion, or lack of it, based on the instant queue

length and instant traffic load measured by the difference in the queue length over

the measurement interval. Then, the Congestion Controller updates the CNP of

the previous measurement interval based on the current congestion estimates (queue

length and load), and drops or marks the incoming packets with the updated CNP.

PI supports both mark front and mark back options. PI does not have a Bandwidth

Controller. The Queue Controller of PI uses FIFO queue management on a single

27

queue.

The Congestion Monitor of REM detects and estimates congestion, or lack of it,

based on the instant queue length and average traffic load as measured in terms of

average incoming traffic rate over the link capacity. Yet, in its implementation REM

recommends estimating the traffic load using the queue length differences to reduce

the measurement overhead. The REM Congestion Controller updates the CNP of

the previous measurement interval based on the current congestion estimates. Yet,

the CNP application is different from ordinary ECN marking. A REM router marks

the unmarked incoming packets with a transformed probability of 1−φCNP , where φ

is a constant shared by REM traffic sources and routers. REM capable traffic sources

monitor their own transmissions to detect the marking probability, convert back to

the CNP and adjust the transmission rates to TCP-friendly rates. Thus, REM is

also a congestion control protocol beyond simply an AQM. REM does not have a

Bandwidth Controller. The Queue Controller of REM uses FIFO queue management

on a single packet queue.

Adaptive Virtual Queue (AVQ) [75] has a special integral Congestion Controller

that does not directly calculate or update the CNP, but the CNP is indirectly de-

termined by a virtual queue overflow assuming that incoming traffic is serviced at

a virtual service rate. Periodically, the Congestion Monitor of AVQ uses the in-

coming traffic rate and target traffic rate to determine congestion. The Congestion

Controller updates the virtual service rate of the previous period according to the

determined congestion level. Then, the Congestion Controller marks the incoming

packets for congestion notification when the virtual queue overflows. The virtual ser-

vice rate adjustment causes a change in the virtual queue overflow rate that in turn

determines the CNP. The Congestion Controller of AVQ may not efficiently control

queuing delay, as it does not use any queue statistics in determining the level of

28

congestion. Furthermore, AVQ has potential for bursts of congestion marking when

there are a few flows. AVQ does not have a Bandwidth Controller, and the Queue

Controller uses a normal FIFO queue management on a single packet queue.

eXplicit Congestion Protocol (XCP) [69] and FAST [99] are congestion con-

trol protocols that include new end-to-end congestion control mechanisms as well

as AQMs. XCP assumes window based traffic sources that inform the network of

their RTT and cwnd, and adjusts cwnd as explicitly specified in the returning ACK

packets. Thus, XCP requires significant changes in the Internet structure and IP

header. XCP routers have a Congestion Monitor that computes the overloaded or

underutilized traffic amount of the previous measurement interval, set to the aver-

age RTT of the incoming flows. The proportional Congestion Controller of an XCP

router equally distributes the underutilized traffic amount to each flow, or takes

the overloaded traffic amount from the flows proportional to their bandwidth us-

age. The fair underutilized traffic share to give and the proportional overloaded

share to take away from each flow is computed and converted to per-packet cwnd

increment or decrement amounts using a technique that utilizes the ACK paced con-

gestion window adjustment characteristics of a reliable window based transmission

protocol considering the RTT and cwnd. XCP also shuffles and reallocates a small

fraction (γ = 0.1) of pre-distributed bandwidth through this feedback computation

to increase bandwidth distribution fairness, possibly compromising efficiency. XCP

routers may update the cwnd originally given by the traffic source in the IP header

according to their computation, which will be returned to the source via ACK pack-

ets by the receiver end-system. Thus, the XCP Congestion Controller offers per-flow

fair congestion notification service. XCP does not have a Bandwidth Controller, and

has a normal Queue Controller offering FIFO packet scheduling.

The FAST proposed for high bandwidth-delay product networks to overcome the

29

inefficiency of using TCP, on the other hand, does not require modification to IP

specifications, since the FAST sources and routers use the REM [5] marking method

described above for congestion communication. The design of the FAST protocol is

based on two theories, a market theory of utility price appropriation for a fair utility

resource allocation (i.e. a fair allocation of outbound link bandwidth at congested

router), and a control engineering discipline for a stable implementation of the utility

price appropriation mechanism (i.e. realization of a stable feedback control system).

In short, FAST routers use AQM that implements an integral Congestion Controller

to notify the CNP (or the link price in their term) to FAST traffic sources via REM

marking method. FAST traffic sources use a utility function that uses only the CNP

to compute the fair transmission rate (or demand) for the notified CNP (or the link

price). Thus, FAST traffic sources, in theory, can fairly use the network resources

regardless of their end-to-end RTTs. However, the REM communication efficiency

is important for the performance of FAST in a practical networking environment.

Due to the REM communication (encoding/decoding) delay that is a function of the

transmission rate of the traffic source, FAST may not perform well for low bitrate

flows or when backward path congestion causes a significant amount of ACK com-

pressions. In addition, the complexity of the FAST configuration is yet another issue

that has not yet been addressed. FAST does not have a Bandwidth Controller, and

has a normal Queue Controller offering FIFO packet scheduling.

2.1.2.2 Bandwidth Controllers

Bandwidth controllers can be categorized into ones providing bandwidth fairness

protection (Bandwidth Guardian), priority forwarding or loss differentiation services,

among which bandwidth fairness protection mechanisms are the most common. It

is believed that the network should provide a certain level of bandwidth protection

30

although it is arguable how and to what extent the protection should be enforced

due to the price-performance tradeoff.

Differential Congestion Notification (DCN) [78] offers a loss differentiation service

to two classes of flows, “small” and “large” high-bandwidth flow classes. In addition,

DCN provides a per-flow bandwidth fairness protection service within the large flow

class. DCN heuristically classifies large flows from small flows using a threshold on

the hashed flow’s packet count. DCN does not regulate the bandwidth usage of

small flows. For “large” flows, DCN applies differentiated preferential packet drop

rates to regulate their bitrates such that the outbound queue length stay at the pre-

configured target. DCN is motivated by the fact that short connections dominate

many Internet links (more than 84% of all flows in some cases [132]), yet they use only

a small fraction of the capacity on most links (less than 20% of all bytes [132]). In

order to compute differentiated per-flow packet drop probability for large flows, DCN

takes a two-step approach. DCN uses a PI controller [58] as a Bandwidth Controller

to compute a uniform drop probability (“fair share”) that makes the outbound queue

stays at the target length, where the traffic from small flows acts as a noise to the

feedback control system. Then, DCN computes and applies per-flow drop probability

to an incoming large flow considering its bandwidth usage in packet count. Le et. al.

in [78] show that DCN improves response times of HTTP request/response exchanges

without using explicit congestion notification (ECN).

Class-Based Queuing (CBQ) [46] and Class-Based Threshold (CBT) [103] are

lightweight router queue mechanisms that offer traffic class-based protection by as-

signing a fixed amount of bandwidth to each traffic class upon congestion. While

CBQ is not an AQM, if one should apply the AQM taxonomy to CBQ, it can be seen

as an AQM with only a Queue Controller that has multiple packet queues, where

each queue is managed with FIFO packet scheduling discipline.

31

CBT extends RED to support class-based traffic protection by inserting a Band-

width Controller that performs a “threshold test”. The Bandwidth Controller has

a pre-determined average buffer share of each supported traffic class. The Band-

width Controller monitors the average buffer usage of each traffic class, and drops

incoming packets for classes that use the outbound buffer more than their fair share.

Thus, CBT ensures a pre-determined bandwidth share for each traffic class during

congestion.

More heavyweight class-based approaches not only offer protection but also ensure

fair bandwidth distribution among traffic classes. For example, Dynamic Class-Based

Threshold (D-CBT) [23] extends the Bandwidth Controller of CBT to count the

number of active flows for each class in order to determine fair average buffer shares

for each supported traffic class instead of using pre-determined class thresholds. The

Bandwidth Controller monitors the average buffer usage of each traffic class, and

drops incoming packets from the classes that use the outbound buffer more than

their fair share. Thus, D-CBT ensures a fair class bandwidth for each traffic class

during congestion.

Approaches to provide per-flow or pseudo per-flow bandwidth fairness can be

divided into scheduling-based and preferential-based packet dropping mechanisms as

shown in Figure 2.2. Scheduling-based techniques, such as Weighted Fair Queuing

(WFQ) [33] and Stochastic Fair Queuing (SFQ) [89], allocate a separate queue to

each flow or group of flows passing through a router’s outgoing link and transmit

packets from the queues in round-robin fashion. Scheduling-based mechanisms are

generally expensive to implement due to the complexity of the link/packet scheduling.

Moreover, it may be undesirable to combine a scheduling-based mechanism with a

Congestion Controller due to the redundancy inherent in providing queue buffers

needed to support both mechanisms. As in the case of CBQ, it is hard to classify

32

Figure 2.2: Per-Flow Fairness Protection Mechanisms

WFQ and SFQ as an AQM. However, should it be classified, it can be seen as an

AQM with only a Queue Controller that assigns a FIFO managed packet queue for

each incoming flow.

Preferential-based packet dropping techniques, also referred to as per-flow Band-

width Guardians,2 monitor, detect and regulate misbehaving flows before forwarding

packets to an outbound link queue that may or may not be managed by a Congestion

Controller. Preferential-based dropping mechanisms can be further categorized by

their complexity and the amount of state information maintained. The most com-

plex mechanisms, including Fair Random Early Drop (FRED) [81], Core Stateless

Fair Queuing (CSFQ) [119] and Rainbow Fair Queuing(RFQ) [17], require per-flow

state information. The fact that per flow state information does not scale for high

capacity networks with many flows is a significant weakness for FRED. However,

2Although scheduling-based fairness protection approaches share the same goal with Band-
width Guardians, the non-AQM scheduling-based approaches may not be classified as a Bandwidth
Guardian. The dotted line in Figure 2.2 implies this relationship.

33

CSFQ and RFQ reduce this problem by requiring per-flow state information only at

DiffServ [8]-like edge routers and forwarding the information to core routers in each

IP header.

FRED, providing a per-flow bandwidth fairness protection upon RED, uses the

same Congestion Monitor, Congestion Controller and Queue Controller as RED.

Additionally, FRED has a Bandwidth Controller that offers a per-flow bandwidth

protection service. That is, the FRED Bandwidth Controller monitors per-flow buffer

usage and punishes flows that use more buffers than heuristically determined lim-

its before performing RED congestion control functions. In addition, the FRED

Bandwidth Controller heuristically identifies fragile flows and bypasses the Conges-

tion Controller, directly forwarding the packets to the Queue Controller. FRED has

similar configuration problems to RED.

CSFQ does not have a Congestion Controller, but relies on the Congestion Moni-

tor and the Bandwidth Controller to handle congestion. CSFQ assumes an edge-core

network architecture, where edge routers estimate per-flow transmission rates (ri)

and forward the information to the core routers. The Bandwidth Controller of CSFQ

uses the per-flow transmission rates along with the aggregated traffic rate measured

by the Congestion Monitor to estimate the fair bandwidth share (α). Then, the con-

troller probabilistically drops the exceeded amount of traffic of each flow from their

fair share by applying a per-flow drop probability (1− α
ri

) to the incoming packets.

CSFQ does not support ECN marking as it does not have Congestion Controller.

RFQ also has edge and core router behavior. The RFQ edge router monitors per-

flow transmission rates and incoming packets are assigned and marked with priority

levels (or colors) such that packets of a flow are assigned to a lower class up to an

allowed per-flow rate of the class before being assigned to the next priority class.

The allowed per-flow rate for each priority class is predetermined using a non-linear

34

encoding scheme. The RFQ core routers have a Congestion Monitor and a Bandwidth

Controller that provide a priority forwarding service. However, RFQ does not have

a Congestion Controller. The Congestion Monitor uses the instant queue length

and traffic load in combination to detect congestion, or lack of it, and estimates the

degree of congestion. The Bandwidth Controller adjusts the priority level threshold

according to the estimated amount of congestion. The threshold can roughly be

decreased up to a quarter of the current priority level and can be increased one

priority level in a measurement interval. Then, the Bandwidth Controller simply

admits packets marked lower than or equal to the priority level threshold given

as long as there is a space in the outbound buffer. The bandwidth management

performance of RFQ can be sensitive to the measurement interval and the allowed

per-flow rate assignment of the priority classes.

Other preferential-based dropping techniques uses approximation approaches that

can protect fairness among individual flows without requiring per-flow state infor-

mation or the edge-core DiffServ network architecture. Techniques such as Random

Early Detection with Preferential Dropping (RED-PD) [85], Stochastic Fair Blue

(SFB) [36] and CHOKe [91], use statistical flow management to address scalability.

RED-PD and SFB employ statistical flow monitoring to identify and then regulate

misbehaving flows. Although statistical flow monitoring mechanisms can signifi-

cantly reduce the flow state information needed to be maintained when a small

number of flows account for the majority of the Internet traffic [101], the mecha-

nisms used to identify misbehaving flows are complex and may induce significant

processing overhead. To avoid the complexity of flow identification, CHOKe uses

a stateless statistical traffic filtering technique that does not require any flow state

information trading for some performance loss. Although these mechanisms cannot

guarantee total per-flow fairness, the fact that they can be deployed independently

35

at any router with a moderate and scalable overhead is an attractive property of this

approximation technique. Moreover, whether total per-flow fairness is necessary or

even beneficial is arguable.

RED-PD extends RED to support pseudo per-flow bandwidth fairness protection

by inserting a Bandwidth Controller that monitors the per-flow packet drop history

to statistically detect high-bandwidth flows in times of congestion. Although RED-

PD’s drop history-based method for selecting flows to monitor reduces the amount

of state information required, the flow selection algorithm is complex and requires a

significant overhead due to dynamic the history list lookup and maintenence. More-

over, the flow selection performance is sensitive to the history collection epoch length,

computed based on a TCP-friendly rate formula [43]. Once a flow is identified as

an outstanding high-bandwidth flow, the RED-PD Bandwidth Controller monitors

its traffic rate and regulates it under the estimated TCP-friendly rate given by the

TCP-friendly formula using the CNP computed at the Congestion Controller and a

hard-coded round-trip time as parameters.

SFB is a fairness and protection enhanced version of BLUE. SFB adds a Band-

width Controller to BLUE, and uses a Bloom filter in the Congestion Controller to

offer a fair congestion notification service. The Congestion Controller assigns incom-

ing flows into different groups multiple times and maintains the CNP for each flow

group using the BLUE AQM [35]. The Congestion Controller determines the pseudo

per-flow CNP for an individual flow by taking the minimum CNP of the groups to

which the flow belongs, and marks the packets of the flow with this minimum. To

determine if a specific flow is consuming more bandwidth than other flows, the Band-

width Controller monitors the maximum CNP of the bins to which a flow belongs.

When the maximum CNP of the flow is greater than or equal to a given threshold

(0.98 is the recommended value), the flow is put in to a penalty box and gets rate

36

limited to a pre-set data rate for a fixed amount of time.

CHOKe is a Bandwidth Controller that implements a lightweight statistical packet

filtering mechanism. For each incoming packet, CHOKe randomly chooses a packet

from the outbound queue and drops both packets if they are from the same flow. This

algorithm is derived from the observation that the higher a flow’s bitrate, the more

the chance for a packet from the flow to be found in the outbound queue. However,

the basic CHOKe algorithm cannot effectively control the target flow rate for unre-

sponsive flows as the offered traffic load changes. Thus, CHOKe extends the number

of the random packet matches per incoming packet as offered load increases. To esti-

mate offered load, CHOKe proposes to use RED’s average queue length maintained

by the RED Congestion Monitor. The extended CHOKe algorithm divides RED’s

minimum and maximum queue thresholds range into m even subregions and applies

2i + 1 drop comparisons for an incoming packet, where i = {0, 1, 2, 3, ..., m− 1} is

the subregion ID. Although simple in practice, CHOKe can have significant overhead

that increases with the offered load. Moreover, CHOKe’s stateless design makes it

difficult to configure the target per-flow bitrate under changing traffic loads. Fur-

thermore, CHOKe may punish well-behaved flows that are unluckily selected and

noticeably degrade TCP performance under light traffic loads. Lastly, CHOKe may

not work well with delay optimized AQMs, such as the one proposed in this disserta-

tion, since there are not as many packets to randomly compare against as in a RED

queue.

Lastly, Stochastic Fairness Guardian (SFG) in Figure 2.2 that uses a multi-level

hash filter requiring minimal state information is described in detail in Section 4.2.

SFG offers filtering performance comparable to that provided by more complicated

statistical flow monitoring mechanisms such as RED-PD [85] while avoiding the

complexity of flow identification.

37

2.1.2.3 Queue Controllers

We introduce two Queue Controller mechanisms that control class-based or per-flow

delay, trading a delay gain for a packet loss rate or CNP loss. These mechanisms

assume that traffic sources give their QoS requirement hints in the IP packet headers.

Alternative Best Effort (ABE) [60] is a Queue Controller that offers a strictly

bounded queuing delay service to a delay sensitive traffic class. ABE may not be

seen as an AQM as it does not have a Congestion Monitor, Bandwidth Controller, or

Congestion Controller. ABE supports two classes of traffic, delay sensitive (“green”)

and throughput sensitive (“blue”) classes in the following way: The blue packets are

serviced with queuing delays no more than they would experience when serviced with

a single FIFO packet queue for the outbound link. Within this blue packet forward-

ing service constraint, incoming green packets that cannot make the queuing delay

deadline (pre-set by the router) are dropped, and ones that can make the deadline

are scheduled such that they may precede the blue packets as much as possible. This

packet scheduling policy is referred to as duplicate scheduling with deadlines (DSD),

and is implemented using a virtual queue and two specially scheduled FIFO packet

queues. DSD trades off the packet loss rate for a delay gain for delay sensitive traffic,

and does not harm the throughput sensitive traffic. DSD (or ABE) can in theory

replace the FIFO single queued Queue Controllers of other AQM mechanisms.

RED-Boston [106] extends RED to adjust the target average queue length based

on the traffic mixes in order to better support the average delay requirements. RED-

Boston modifies the Congestion Controller of RED to keep track of the average

delay hints and adjust the target queue length accordingly. Thus, the Congestion

Controller decreases the target average queue length when delay sensitive traffic

dominates, and increases the target when throughput sensitive traffic dominates.

In addition, RED-Boston supports per-flow QoS, offering freedom to choose the

38

delay sensitivity treatment level at the cost of a CNP loss. A CNP loss, which means

an increased packet loss rate for implicit congestion notification or an increased

marking rate for ECN, results in a throughput loss for TCP and TCP-Friendly traffic

sources. For each incoming packet, the Congestion Controller heuristically calibrates

the uniform RED CNP to compute the per-flow (or per-packet) CNP considering the

delay hints. Thus, a flow that requests more delay sensitive queuing delay treatment

may experience a higher CNP. The Queue Controller of RED-Boston uses QoS packet

scheduling referred to as weighted insert. Using the arrival time and the delay hint

in each packet, the Queue Controller weighs each admitted packet and inserts it

in sorted packet queue that is serviced in the reverse weight order. Thus, packets

requesting lower delays are preferred in the scheduling, while the automatically aging

weights prevent starvation for packets requesting higher delays for a lower CNP. By

heuristically calibrating the per-flow CNP inversely proportionally to the delay hints,

RED-Boston tries to even out the throughput gains due to the queuing delay gains by

the delay sensitive TCP-Friendly traffic sources. How effectively this mechanism can

preserve fair bandwidth allocation among TCP and TCP-Friendly sources is ongoing

work.

2.2 Differentiated Services Architecture

Although AQMs may resolve QoS issues to some extent, it is hard to meet the diverse

QoS requirements of all applications using a single best-effort service architecture.

Understanding this fundamental limitation of the current Internet, the Internet re-

search community is considering restructuring the service architecture to support

multiple differentiated classes of services, known as the Differentiated Services (Diff-

Serv) architecture [8], shown in Figure 2.3.

39

DiffServ is intended to offer an end-to-end differentiated service by concatena-

tion of per-domain services and Service Level Agreements (SLAs) between adjoin-

ing domains along the travel path, which specifies the handling of the customer’s

traffic. Within a network domain (i.e., an ISP), services specified in SLAs are real-

ized by traffic conditioning at the edge and simple differentiated forwarding at the

core routers, where traffic conditioning includes classification, metering, policing and

shaping. This edge-core architecture is targeted to achieve scalability by pushing

“intelligence” toward the edge and making core routers as simple and therefore as

fast as possible. DiffServ uses Per Hop Behaviors (PHBs) at the core routers, spec-

ifying Assured Forwarding (AF) PHB and optionally Expedited Forwarding (EF)

PHB [7, 52, 64].

Figure 2.3: DiffServ Architecture (from [121])

The EF PHB refers to router support for a traffic class for which a configurable

minimum bandwidth is guaranteed at any time. In cooperation with traffic condi-

tioning at the edge routers, the EF PHB can be used to implement a premium service

such as Virtual Leased Line (VLL) ensuring no data loss and very little queuing delay

for an incoming traffic aggregate rate that is under a minimum threshold. Yet, the

40

reservation-based premium service will not likely be implemented in the near future

due to deployment issues [63]. The EF PHB is not a mandatory part of the DiffServ

architecture, and is not a necessary feature of a DiffServ-compliant router.

The AF PHB supports four distinct traffic classes (e.g., similar to CBQ [46] with

four queues) and each traffic class supports three priority classes (e.g., similar to an

extended RIO [28]), where AFij denotes the ith AF class with priority j. The AF

PHB, which requires an AQM for the priority queuing in each class, can be used to

implement “better than best effort” services in cooperation with the edge routers

by distributing the incoming traffic to the AFij class according to the policies in

each SLA. For example, an ISP may implement a video streaming AF class and

distribute packets into 3 priority classes as shown in [24] to improve the quality of

video streams during network congestion. As a second example, the edge routers of

an ISP can distribute the incoming traffic such that class AFi+1 gets more traffic

than AFi possibly having a higher congestion notification rate or queuing delay at

the higher AF class. Also, AF classes can be configured to offer different average

queuing delays upon congestion.

Thus, the DiffServ architecture can offer differentiated network services that may

be sufficient to support the diverse QoS requirements of different Internet applica-

tions. However, what services should be offered or how to configure PHBs as well

as traffic policers to support specific services are not yet well-defined. Furthermore,

gradual deployment of DiffServ is a non-trivial issue since it requires a network ser-

vice interface that is different than that of the current Internet. DiffServ is being

considered as the service architecture of Internet2 [62].

41

2.3 Measurement Studies Characterizing Stream-

ing Traffic

This section, introduces recent research work that measures and characterizes In-

ternet streaming traffic and applications. Understanding streaming characteristics

and requirements is important for both AQM and TCP-friendly transport protocol

designs that better accommodate streaming traffic.

McCreary and Claffy [88] present trends in application usage seen at the NASA

Ames Internet Exchange (AIX) over 10 months, from May 1999 through March 2000,

and include analysis of streaming data. Despite the increase in the number of UDP

applications in recent years, growth in the total amount of UDP traffic is offset

by growth in TCP traffic as well, according to the fraction of packets due to TCP

and UDP seen at AIX. RealAudio traffic seen at AIX decreased in packet volume

compared to non-RealAudio traffic, although this trend seems to have flattened out

in the last few months of their study. This represents either a slowing in the growth

of RealAudio traffic or a decline in the growth relative to non-RealAudio traffic.

Lastly, the overall fraction of online game traffic seems to be on the rise. However,

it is a moving target since the increase is primarily generated by new games as they

gain popularity, while older games decrease in popularity over time.

Loguinov and Radha [83] characterize end-to-end network dynamics experienced

by streaming low-bitrate CBR MPEG-4 UDP video streams using dial-up PPP con-

nections. The dial-up PPP connections were made from more than 600 major U.S.

cities to a dedicated video server connected to the Internet via a T1 line. The 7-

month measurement study establishes the feasibility of video streaming in the current

best-effort Internet and provides an insight into the dynamics of real-time streaming

from the perspective of an average Internet user. They find that Internet packet loss

42

is bursty, and the distribution of loss burst lengths and the RTT appear to be heavy-

tailed. RTTs on the order of several seconds are possible along paths in the current

Internet with a dial-up modem link. The average RTT appears to be positively cor-

related with the number of end-to-end hops, whereas packet loss does not seem to

depend on the number of hops or the average RTT along the same path. Delay jitter

appears to be much more harmful to low-bitrate real-time applications than either

packet loss or large RTTs. Packet reordering can be experienced in the current In-

ternet even by paths with very slow bottleneck links, although the reordering delay

and reordering distance are relatively small. Lastly, the majority of Internet paths

sampled by their experiment were asymmetric.

Merwe, Sen and Kalmanek [125] characterize requests for streaming content

(VOD and live broadcasting) and the associated server and network workload distri-

butions by analyzing 4.5 million session-level log entries for two commercial streaming

services over a 4-month of period, and also by integrating information from the logs

with BGP routing information gleaned from multiple border routers on a tier-1 ISP.

They find requests for content encoded at a higher bitrate dominate where high and

low encoding rates are available, making up about 94% of the traffic. Windows Me-

dia streams account for more than 75% of all requests when the content is available

in both Windows and Real formats. TCP based transport protocols dominate over

UDP, with TCP being used in about 70% of all bytes transferred. Object popularly

exhibits substantial skew with a few objects accounting for most of the load. A

small percentage of IP addresses (or routing prefixes or origin autonomous systems

(ASes)) account for most of the traffic demand across a range of performance metrics.

Lastly, it is reported that streaming traffic exhibits regular daily patterns with high

variability in terms of request, traffic volume and concurrent number of connections.

Mena and Heidemann [90] capture and analyze Real Audio traffic from five dif-

43

ferent audio traces at a commercial media site in March and Jun 1999. They find

that 60-70% of audio flows use UDP for data while using TCP for control. Real

Audio flow durations (mean duration of 78 minutes) are significantly longer than

typical Internet Web flow durations. Lastly, Real Audio flows exhibit a significant

amount of regularity in packet lengths, bit rates and inter-packet departures. It is

reported that Real Audio data is sent at consistent bit rates at medium time-scales

(tens of seconds), but at small time-scales (single seconds) it is best modeled as a

bursty on/off source with off periods in multiples of 1.8 seconds.

Wang, Claypool and Zuo [130] collect and analyze the traces of RealVideo clips

streamed to 60 clients, playing about 2800 video clips from 11 servers worldwide in

June 2001. They find the average RealVideo clip streamed over the Internet has

good quality, playing out at 10 frames per second and, aided by a large, initial de-

lay buffer, with nearly imperceptible amounts of inter frame jitter. Second, while

users connecting to the Internet with modems and/or slow computers still have their

PC network connection as the video performance bottleneck, typical new comput-

ers connecting the Internet via DSL or Cable modems achieve even slightly better

performance than corporate network connections to the Internet. This suggests that

broadband connections from home users are pushing the bottlenecks for video per-

formance closer to the servers. Lastly, nearly half of RealVideo flows use TCP to

stream video data.

Li, Claypool and Kinicki [80] collect traces of video streams from RealNetworks

RealServers and Microsoft MediaServers during March and April of 2002, and com-

pare the two different video streams in terms of bandwidth, packet size, packet

inter-arrival times, start-up buffering and frame rate. They find distinctly different

behavior characteristics of RealVideo and MediaVideo streams and provide data for

building more realistic streaming media simulations. They also find that the packet

44

sizes and inter-packet arrival times of MediaVideo streams are typical of CBR flows,

while those of RealVideo streams vary considerably more. High bandwidth Medi-

aVideo traffic can have up to 80% IP fragmentation rates, while RealVideo traffic

has none. Lastly, RealVideo streams are more elaborate during the initial buffering

phase.

2.4 Transport Protocols for non-TCP Applications

This section introduces four types of TCP-friendly congestion avoidance mechanisms:

General AIMD (window-based), rate-based AIMD, TCP model-based flow control

and TCP emulation, which limits the rate at which TCP would transmit on av-

erage under the same network condition. These techniques can be used to build

TCP-friendly transport protocols for non-TCP applications, such as delay sensitive

media streaming applications, that otherwise may choose UDP instead of TCP for

performance reasons. Also, this section introduces two approaches to modify TCP

to enhance support for delay sensitive applications.

TCP uses a (1, 0.5) Additive Increase Multiplicative Decrease (AIMD) congestion

avoidance mechanism that, during congestion avoidance, increases cwnd by 1 packet

per window of packets acknowledged and decreases cwnd to 1/2 of the previous

cwnd upon congestion. General AIMD (GAIMD) [131] denotes a general case (α, β)

AIMD, where α is the additive increment step and β is the multiplicative decrement

factor. [131] presents the average sending rate of an AIMD traffic hosts as a function

of α, β, loss rate, mean RTT, mean RTO and the number of packets acknowledged by

each ACK, which is shown to be quite accurate for loss rates up to 20%. In addition,

[131] shows the relationship between α and β for an AIMD flow to be TCP-friendly,

and reports that AIMD flows with α = 0.31 and β = 7/8 deduces rate fluctuations

45

compared to TCP flows.

The Rate Adaptation Protocol (RAP) [113] adapts AIMD to a rate-based con-

gestion control mechanism. The RAP receiver acknowledges every packet received

to allow the sender to measure RTT and lost packets. The RAP sender additively

increases the transmission rate periodically (once in a RTT) until congestion is de-

tected, in which case the sender decreases the transmission rate multiplicatively. To

adapt the window-based flow control mechanism to rate-based, RAP also uses a

mechanism for the sender to stop transmitting in the absence of feedback from the

receiver. RAP does not support reliable transmission at its core and does not have

retransmission timeouts (RTO) nor account for the impact of RTOs. Thus, RAP is

TCP-friendly as long as the TCP’s congestion control is dominated by the AIMD

algorithm, but may be greedier than TCP during severe congestion.

TCP-Friendly Rate Control (TFRC) [44] is an equation-based congestion con-

trol mechanism for best-effort streaming multimedia build upon a stochastic TCP

throughput model [96]. The TCP throughput model takes average RTT, steady-state

loss event rate, RTO value and average packet size as input and approximates the

upper bound of TCP’s transmission rate. The TFRC sender maintains RTT and

RTO values and obtains the loss event rate in feedback messages from the receiver at

least once per RTT. Every time a feedback message is received, the sender calculates

the new allowed sending rate using the TCP throughput model, and limits the actual

sending rate to at or below the allowed rate. The TFRC receiver acknowledges pack-

ets received to allow the sender to measure the RTT. The receiver also measures the

loss event rate and periodically notifies the sender of this rate. Possible limitations

of model-based congestion control mechanisms like TFRC stem from limitations of

the underlying TCP throughput models, which may not hold for some networking

environments.

46

TCP Emulation At Receiver (TEAR) [114] emulates a TCP sender’s flow control

functions at each receiver to estimate a TCP-friendly rate for the congestion condi-

tions observed in their forward paths, and notifies the estimated rate to the sender

which limits the transmission rate to the reported rate. For the emulation, the

TEAR receiver keeps track of cwnd at the receiver, and updates cwnd based on the

arrival of packets (instead of ACKs) using a TCP window adjustment algorithm. A

transmission session is partitioned into non-overlapping time periods, rounds, which

contain roughly an arrival of the cwnd number of packets. At the end of each round,

the emulated TCP rate is computed using the current cwnd and a current estimate

of the RTT instead of the real-time duration of the round, and a weighted average

TCP-friendly rate is updated. This average rate is reported at the end of a feedback

round which is a parameter to the system (1 feedback round = n rounds), or the

updated average TCP-friendly rate is less than the previously reported rate. Thus,

the perceived rate fluctuations at the application are smoother than in TCP. Since

TEAR shifts most of flow control mechanisms to the receiver, it can be extended to

a multicast transport protocol. As a possible side benefit, the receiver-based mecha-

nism may avoid problems associated with congestion in the reverse path and reduce

the feedback frequency, although it is unclear how accurately TEAR receivers can

estimate the RTT.

The next two approaches propose to make minor modifications to TCP to enhance

the support for delay sensitive applications:

Goel et. al. in [48] identify that a significant portion of the TCP protocol

latency occurs due to TCP’s send buffer, and show that a simple send-buffer size

adaptation mechanism can eliminate this latency without requiring changes to the

TCP protocol. Their experiments show that the send-buffer size adaptation can

reduce the average protocol latency to well within the interactive latency limits of

47

approximately 200 ms [61] when the underlying network RTT is less than 100 ms (a

typical coast-to-coast RTT in the US [59]) at a small expense in throughput. Yet,

the send-buffer adaptation mechanism alone is not sufficient for interactive streaming

applications, since instant TCP protocol latencies often spike well beyond 200ms due

to packet drops and retransmissions. The authors support use of ECN as a means

to significantly reduce packet drops and thus reduce the protocol latency spikes. In

order to benefit from the TCP send-buffer adaptation approach, applications should

use poll and non-blocking write calls on the sending side to avoid re-introducing the

reduced latency at the application layer.

McCreary et. al. propose a receiver-centered TCP modification, called TCP-

RC [87], to sacrifice the full reliability of TCP protocol for low protocol latency.

TCP-RC modifies the TCP receiver to forge lost packets and pass them on to a

TCP-RC enabled application to avoid significant delay in the stream due to TCP

retransmissions. A TCP-RC receiver, on detecting a out-of-order packet sequence,

sets a timer to expire three times the average packet inter-arrival time assuming

that the missing packet, if not lost, will arrive within 3 additional packets. When

the timer expires, the TCP-RC receiver generates three duplicate ACKs to notify

the TCP sender of the packet loss event, and forges the lost packet. On receiving

three duplicate ACKs, the TCP sender performs fast retransmission cutting the

congestion window to half. Although TCP-RC tries to mimic TCP congestion control

behavior as such, TCP-RC becomes TCP-unfriendly as network packet loss rate or

RTT increases, mainly since TCP-RC avoids retransmission timeouts even when the

TCP sender window is small.

48

Chapter 3

Background: Internet Congestion

Control

This chapter first reviews the congestion control structure of the current Internet net-

working. Then, it discusses open issues in the areas of bandwidth control, congestion

control and QoS control.

3.1 TCP/IP Networking

The Internet is a collection of interconnected networks that offers a data transmission

service to users. Figure 3.1 shows a view of the protocol stack. Internet Protocol (IP)

is a network layer (corresponding to layer 3 of OSI reference model) protocol [120]

which provides the means to connect different OSI layer 2 networks such as Ethernet,

TokenRing, FDDI, SONET, HDLC and ATM. Thus, the primary concern of the IP

layer is to deliver packets from traffic sources to destinations across networks. IP

is composed of senders, receivers and routers, each of which is associated with an

unique IP address for each OSI layer 2 network it communicates on. An IP sender is

49

OSI Layer 2 Network 1

IP

OSI Layer 2 Network 2

IP IP

TCP / UDP TCP / UDP

Application Application

Host 1 Host 2

Router

Figure 3.1: Layered View of IP Components

a lightweight protocol that packetizes the data segments from the layer above (OSI

layer 4) and sends them to the layer below, and an IP receiver is the reverse of an

IP sender. An IP router connects two or more OSI layer 2 networks and finds the

proper outbound link to forward an inbound packet so that it might be delivered

correctly to its destination.

Another important role of an IP router is to control network congestion, although

very few routers in practice specifically address this issue. The network service

provided by an IP network is often referred to as best effort since packets may or

may not be delivered to the destinations. IP packets can be lost during their travel

through the network due to transmission medium signaling errors, or more likely

due to network congestion at IP routers. Figure 3.2 shows a simple model of an IP

router. Typical IP routers today use a simple First-In-First-Out (FIFO) drop-tail

outbound queue for each outbound link to absorb bursts of packets. However, when

a router’s outbound link gets a burst of packets that is beyond the limit of the queue

capacity or consistently gets more packets than the outbound link can handle, the

queue overflows and packets are dropped and lost.

Routers with FIFO drop-tail queues designed to handle traffic in bursts can only

passively manage congestion by dropping incoming packets when the queue is full.

Also, IP senders and receivers have no mechanism to detect network congestion or

50

Figure 3.2: Simplified Model of An IP Router

control their packet transmission rates. Thus, IP networks have few mechanisms to

control or prevent network congestion, and the well being of the Internet depends

upon the behavior of upper layer traffic sources. The Internet collapse first ob-

served in 1986 [65] illustrates the fragility of IP networks and the need for a proper

congestion control mechanism. Shortly after the observation, the Internet research

community devised a sender side (or source based) solution to monitor congestion

and control transmission rates appropriately. However, this solution was invented

not for the IP sender (OSI layer 3) but for a transport protocol TCP (OSI layer 4)

that was and still is dominantly used among Internet applications.

There are two de facto transport protocols above the IP layer, the User Datagram

Protocol (UDP) and the Transmission Control Protocol (TCP) [120]. UDP is a con-

nectionless, unreliable transport protocol in which data is exchanged in discrete units

called datagrams, which are similar to IP packets. In fact, the only features that

UDP offers over raw IP packets are port numbers and an optional checksum. TCP

offers a connection-oriented, reliable end-to-end data transportation service. TCP

uses a sliding-window [107] mechanism to achieve reliable data segment delivery us-

ing acknowledgment (ACK), retransmission timeout (RTO) and retransmission, and

to achieve flow control by negotiating the sliding-window size upon connection estab-

51

lishment. Although UDP was originally deployed by a few system level applications

such as domain name service (DNS) for performance reasons, TCP dominated and

still dominates the Internet.

When TCP was first widely available (BSD 4.2 TCP) in 1983, it did not have

a proper congestion control mechanism. It merely had the sliding-window protocol

and transmitted segments at the rate that the receiver window could handle in a

very bursty manner as shown in Figure 3.3. Thus, the first generation of TCP was

basically unresponsive to network congestion. Although BSD 4.3 TCP improved

upon 4.2 with a RTO interval calculation method to behave better for longer delay

networks, BSD 4.3 TCP was also unresponsive to network congestion and caused the

Internet congestion collapse in 1986 [65]. The reaction from the research community

was to add a congestion control mechanism to TCP leaving the IP layer untouched.

This required a minimal change, such as applying a kernel patch, and allowed for

gradual deployment. However, this did introduce the potential layer violation of

2 different layers (TCP traffic source and IP router) collaborating for congestion

control.

The first TCP with a proper congestion control mechanism was introduced in

1988 and implemented in the BSD 4.3: TCP Tahoe version [65]. The basic objec-

tives behind the Tahoe modification were twofold. One was to make TCP senders

start transmission in a conservative but a fairly efficient manner. The other was

to give TCP senders the capability to monitor network congestion and control the

transmission rate accordingly by adjusting the sliding-window size. The Tahoe TCP

congestion control mechanisms that realized these goals were slow-start, congestion

avoidance and fast retransmit, which are the foundation of modern TCP/IP conges-

tion control.

52

BSD 4.2

Time

BSD 4.3 Tahoe
(slow-start)

T
ra

n
sm

is
si

o
n

 R
at

e

Time

T
ra

n
sm

is
si

o
n

 R
at

e

Figure 3.3: BSD 4.2 TCP vs. BSD 4.3 Tahoe (Slow-Start)

Starting from the initial window size of 2 segments,1 slow-start increases the

sender’s sliding window by 1 segment for each acknowledgment (ACK) of new data

received, which has the same effect of doubling cwnd2 every round-trip time (RTT).

Figure 3.3 shows congestion window growth from slow-start in an unconstrained

bandwidth condition. This transmission startup behavior is specifically targeted to

properly start TCP’s “self clocking” mechanism [65]. Slow-start reduces the risk of

queue overflow at IP routers in the path compared to the sudden traffic burst startup

behavior of BSD 4.2 and early release of BSD 4.3. However, with the exponentially

growing window, slow-start is also capable of increasing the transmission rate quickly

to a target. Slow-start is used whenever a TCP source starts or restarts transmission

in BSD 4.3 Tahoe TCP, although it is triggered only by RTOs in later versions.

As the aggregated TCP transmission rates grow beyond its service rate (or out-

bound link bandwidth), a congested router drops IP packets causing TCP segment

losses. TCP senders detect the segment losses by monitoring ACK packets sent

back by the receiver to signal successful or unsuccessful reception of segments trans-

mitted. Modern TCP senders assume segment losses as an indication of network

congestion and try to adapt to the available bandwidth using a congestion avoidance

mechanism. TCP uses two segment loss detection methods, retransmission timeout

1The initial congestion window size was set to 1 segment in the old specification.
2The TCP sender’s sliding-window is typically referred to as congestion window and its size will

be denoted as cwnd hereafter.

53

0

4

8

12

16

20

24

28

32

36

40

44

0 4 8 12 16 20 24

C
on

ge
st

io
n

w
in

do
w

Round-trip times

Segment loss event

Slow-start threshold

Slow-start threshold

Figure 3.4: An Example of Slow-Start and Congestion Avoidance

(RTO) and triple duplicate ACKs, which will be discussed further shortly. The TCP

sender in congestion avoidance mode increases the congestion window size (cwnd)

by 1/cwnd for each ACK for new data, which has the same effect of increasing cwnd

by 1 segment for each RTT when there is no congestion, and decreases cwnd by

half on detection of a segment loss. This is the TCP implementation of the Additive

Increase Multiplicative Decrease (AIMD) policy suggested in [66] targeted to achieve

network stability. The TCP AIMD mechanism is often noted as (1, 1/2) AIMD,

where 1 is the additive increase factor in terms of segments per RTT and 1/2 is the

multiplicative decrease factor, and is the core mechanism that has been serving as

the congestion safeguard of the Internet.

While the slow-start and congestion avoidance mechanisms are independent of

each other and have completely different objectives, they are used in combination

in all modern TCP implementations. However, since they both are triggered by a

segment loss event and both manipulate cwnd, it is not trivial to how see how the two

algorithms are combined. The following example illustrates the combination deployed

by all modern TCP implementations. Note that the TCP sender, at any instance,

54

transmits segments up to the minimum of cwnd and advertised window size of the

receiver (often noted as awnd). The TCP sender maintains a new state variable called

slow-start threshold (ssthresh) as well as cwnd to switch between slow-start and

congestion avoidance algorithms. When a segment loss is detected, ssthresh is set

to cwnd and TCP goes back to slow-start, setting cwnd to 1 segment. When new data

is ACKed, the sender checks if cwnd is less than ssthresh. If so, cwnd is increased

in slow-start (cwnd += 1 segment), or in congestion avoidance (cwnd += 1/cwnd).

Figure 3.4 shows an example behavior of the combined algorithm assuming ssthresh

is initialized to 32 segments and receiver’s window is larger than 40 segments.

As briefly mentioned above, TCP has two ways of detecting segment loss at the

sender. Retransmission time out (RTO) is the most basic but inefficient method

of detecting the loss because of the difficulty in finding an optimal RTO interval.

The RTO method is especially expensive on the transmission startup phase as the

initial RTO interval is set to a large value, typically 3 seconds [15]. As a means

of overcoming the inefficiency of the RTO method, fast retransmit [2] was invented

to use the arrival of 3 duplicate ACKs (4 identical ACKs without the arrival of any

other intervening packets) as an indication of a segment loss due to congestion. Upon

receiving 3 duplicated ACKs, the sender retransmits what appears to be the missing

segment without waiting for a RTO. After the fast retransmission, BSD 4.3 Tahoe

TCP reduces cwnd by half (during congestion avoidance) and restarts transmission

using slow-start. The loss detection mechanism of fast retransmit can significantly

improve TCP throughput by avoiding RTOs when the congestion window is large

enough to generate 3 duplicate ACKs for a lost segment. Otherwise, RTO dictates

the performance of the TCP transmission in the presence of loss.

So far, we looked into the 3 main mechanisms that characterized the conges-

tion control behavior of modern TCP, which were available through BSD 4.3 Tahoe

55

TCP. In 1990, an additional algorithm referred to as fast recovery was proposed

to improve the post fast retransmit behavior of Tahoe TCP that restarts trans-

mission using slow-start. Slow-start is designed to start TCP’s ACK paced ‘self

clocking’ transmission without knowing network bandwidth or delay, and can be

over-conservative for restarting transmissions after fast retransmit. Fast recovery

was implemented with the other 3 congestion control mechanisms in BSD 4.3 Reno

TCP [2, 42]. After a missing segment is re-sent by the fast retransmit algorithm and

cwnd is reduced by half by the congestion avoidance algorithm, the fast recovery

algorithm governs the transmission of new data until the arrival of a non-duplicate

ACK. During fast recovery, the sender inflates its congestion window (cwnd) by 1

segment for each duplicated ACK received, and transmit new segments when cwnd

allows. In other words, the sender, after retransmitting and reducing cwnd to half,

waits until cwnd duplicate ACKs are received, and then sends a new segment for

each additional duplicated ACK received. This sender congestion window inflation

mechanism is targeted to preserve ACK “clocking” [65] during the recovery stage, so

that the sender can continue to transmit new segments eliminating the need to use

slow-start when the recovery process is over. Upon receipt of a non-duplicate ACK

(a “recovery ACK”) informing that the lost segment is recovered, the sender deflates

the congestion window and exits fast recovery.

TCP Reno’s fast recovery mechanism significantly improves the performance over

Tahoe TCP for a single segment loss from a window of data (or a single loss in a

RTT). However, Reno performs poorly for multiple segment losses in a window of

data due to lack of outstanding segments that can generate 3 duplicate ACKs (for

example, for the second lost segment after the recovery of the first lost segment)

causing a RTO. In 1996, modification to TCP Reno’s fast recovery mechanism was

proposed to address the RTO problem, and implemented in a new TCP version

56

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8

C
on

ge
st

io
n

w
in

do
w

 (
K

by
te

s)

Time at the TCP sender (Seconds)

4 segments drop (24,26,28,30)

a single segment drop

RTO

Fast
Recovery

Tahoe TCP
Reno TCP

NewReno TCP

Figure 3.5: Comparison of Tahoe, Reno and NewReno TCP Behaviors

referred to as NewReno [39, 42].3 The extended fast recovery algorithm of NewReno

assumes a partial ACK received during the recovery phase as an indicator that the

segment immediately following the acknowledged segment in the sequence space has

been lost and needs to be retransmitted. Thus, a NewReno TCP sender tries to

recover all the lost segments outstanding when fast recovery was initiated before

returning back to congestion avoidance by retransmitting one lost segment per RTT

until all of the lost segments from the window have been retransmitted.

Figure 3.5, obtained via a simple simulation using NS [127], illustrates the cwnd

behavior of Tahoe, Reno and NewReno TCP on a single loss and multiple losses

(4 in a window), where the initial ssthresh is 16 segments (1 segment = 1 Kbyte).

Figure 3.5 shows that fast recovery can improve transmission restarting behavior

(over Tahoe) for single segment loss per RTT as targeted. Yet, Figure 3.5 also shows

the negative impact caused by the fast recovery of Reno TCP for multiple losses in

3Discussion on the Selective ACK (SACK) approach [86] that also proposes to address the
problem Reno faces is omitted, since SACK is not used in practice because it requires both end-
hosts to be SACK-enabled. According to [97], a large percentage of hosts (more than half) advertise
SACK, but only 6% of hosts use SACK correctly. Other SACK deployment statistics can be found
at http://www.icir.org/floyd/sack-questions.html.

57

a window of data. NewReno significantly improves the fast recovery of Reno (see 1

to 3 seconds in Figure 3.5). However, the benefit from the fast recovery of NewReno

over Tahoe is not trivial for multiple losses in a window of data as the recovery time

increases by an RTT for each loss.

More importantly from the congestion control standpoint, Figure 3.5 exhibits two

congestion responsiveness characteristics of modern TCP implementations. First,

regardless of the version, TCP’s congestion window growth is bounded by the (1,1/2)

AIMD bandwidth adaptation algorithm. Second, except for the TCP Reno senders,

TCP’s multiplicative decrease is triggered by a loss event rather than individual

segment losses, where a loss event can be defined as one or more segment losses in a

window of data (or a RTT). These characteristics are typically used along with the

RTT to model TCP throughput as a function of network packet loss rate (p) and

average RTT [96]. A TCP throughput model can be used to determine the TCP

friendliness of non-TCP flows [43], design a rate-based TCP-friendly traffic source

[44] or help in designing an efficient router queue management mechanism [38, 58, 69].

[98] reports the distribution of TCP versions used by 4550 Web servers as of May

2001. Among the tested servers, about 41% were using NewReno TCP (35%) or an

equivalent version called RenoPlus (6%). About 15% were using Reno, 4% were using

Tahoe and 22% were still using TCP without fast retransmit. This gives a statistic

that about 82% of the Web servers are using a TCP version with a congestion

responsiveness behavior dominated by (1,1/2) AIMD leaving 18% using unknown

versions of TCP. Since the majority of TCP connections are HTTP connections to

Web servers [122], the TCP version distribution report verifies that the congestion

control mechanism of current TCP/IP networking is the source-based (1,1/2) AIMD

bandwidth adaptation algorithm.

This section explained the congestion control structure of the current Internet,

58

where the IP layer addresses congestion control passively by dropping incoming pack-

ets when the router queue is full. The vast majority of congestion control mechanisms

in the Internet is the (1,1/2) AIMD congestion avoidance mechanism used by mod-

ern TCP. The Internet research community is currently enhancing IP router queue

management mechanisms to better handle network congestion in cooperation with

responsive traffic sources. Before introducing specific router side approaches and

mechanisms, the next section discusses issues in TCP/IP networking and relevant

congestion control problems.

3.2 Congestion Control Issues

Congestion at an IP router is controlled by multiple distributed TCP traffic sources

independently. TCP uses a window-based transmission mechanism in which the

transmission rate depends upon the RTT and cwnd. The cwnd is affected only

by the network packet drop rate (p) [96]. Congestion control issues describe the

potential performance drawbacks of current TCP/IP congestion mechanisms, and

suggest ways to improve the congestion feedback control mechanism at the end-hosts

and routers. Typically, many studies in this area involve Active Queue Management

(AQM), especially the Congestion Controller, discussed in Chapter 2.1. Congestion

Controllers offer advanced congestion detection and signaling methods at IP routers

to better handle network congestion with the help of TCP-like cooperative traffic

sources.

Global synchronization of TCP connections decreasing their window at the same

time is one of the traditional TCP/IP congestion control issues brought up in [51]

and first attempted to be addressed in [45]. Global synchronization typically af-

fects the utilization of a router’s outbound link when a relatively small number of

59

TCP connections are sharing it, and is often seen at routers with a FIFO drop-tail

queue mechanism. [45] tried to avoid global synchronization by introducing a new

router queue management mechanism called Random Early Detection (RED) which

actively monitors incoming congestion and drops incoming packets randomly with

a probability (p) proportional to the estimated congestion level, as determined by

a weighted average queue length. Insisting on a low random drop rate, RED could

manage the global synchronization problem. However, RED, at saturation, revealed

other performance drawbacks such as more bursty packet drops than in a typical

FIFO drop-tail queue [12] for a wide range of traffic loads. Although not practi-

cal for deployment, RED is important since it was among the first and well-known

IP router traffic (or queue) management techniques (or AQM) designed to actively

control congestion, which directly and indirectly brought up important TCP/IP con-

gestion control issues.

Recently, [69, 84] showed that even applying random drops with low probability

will not completely solve the link utilization problem related to flow synchronization,

especially for links with a very large capacity (a couple hundred Mbps to Gbps) and

a relatively small outbound queue. When a small number of TCP connections are

sharing the bandwidth of a high capacity link with a relatively small outbound queue,

they cannot fully utilize the link capacity due to too large a packet drop rate bounded

by the queue limit and the inefficient bandwidth probing/adaptation of TCP. That

is, when a packet drop forces a TCP sender to reduce its transmission rate by half,

the slow bandwidth probing during TCP congestion avoidance cannot consume the

released bandwidth before the queue drains, which results in a lower link utilization.

Although it is possible to fully utilize the high capacity link using an extremely large

buffer and by lowering the drop probability, [69, 84] illustrates the inherent limit

of aggregate (1,1/2) AIMD bandwidth adaptation. The inability of TCP to fully

60

utilize the available bandwidth needs to be addressed for high bandwidth business-

to-business communications such as Web proxy server updates. However, it is out

of scope of typical consumer side congestion control solutions, where issues are the

efficient control and fair allocation of insufficient network resources.

Another inherent congestion control issue of the current Internet is the tradeoff

between queuing delay and data (packet) loss rate at a congested router. This

delay-loss tradeoff was implicitly suggested in [21] and theoretically verified in [38]

using a notion of a “queue law”. The queue law, which can be derived from a TCP

throughput model, defines the relationship between random packet-drop congestion

notification probability and the stable state average queue length of a congested

router. Given an offered TCP traffic load and a drop notification rate of the congested

router, the queue law gives a stable state queuing delay that makes the aggregated

TCP throughput equal to the service rate (or link bandwidth). The queue law,

in which queuing delay is roughly inversely proportional to the square root of the

drop notification probability, suggests that there is a higher packet drop rate for a

lower queuing delay to achieve the same throughput. This subtle delay-loss tradeoff

implies that an AQM will incur a higher packet loss rate than FIFO drop-tail queue

management for a lower queuing delay. Thus, the benefit of AQM over the drop-tail

management may not worthwhile given the complexity of typical mechanisms.

The loss rate and queuing delay tradeoff resulting from the implicit drop conges-

tion signaling of the current TCP/IP network disappears when Internet routers use

explicit congestion notification (ECN) [25, 58]. ECN [109] uses binary congestion

signaling, where a congested router can set a bit in an IP packet header to signal

an ECN compliant TCP receiver of the network congestion. The notified receiver,

in turn, signals the TCP sender by setting the ECN-Echo flag in the ACK segment.

On receiving an ECN-Echo ACK segment, the TCP sender reacts as if it detected a

61

segment loss. That is, the sender in congestion avoidance mode halves the congestion

window (cwnd) and reduces the slow start threshold (ssthresh), but does not react

to congestion indications (multiple ECN-Echo ACKs) more than once every win-

dow of data (or RTT). By randomly marking packets instead of randomly dropping

packets to notify TCP sources of congestion, packet loss due to congestion signaling

is avoided. In other words, the new queue law for ECN enabled TCP/IP networks

[25] defines the relationship between random marking probability and stable state

queuing delay that is independent of packet loss rate, implying that a well-designed

ECN-enabled AQM can achieve high utilization with both a low queuing delay and

a low loss rate at the same time. There is growing interest in the ECN deployment

within the Internet community [109] since ECN can be relatively easily and gradually

deployed while offering great potential benefits when used with AQM.

The last congestion control issue of TCP/IP networking discussed in this section

is the fairness in distributing congested link bandwidth to TCP flows with different

round trip times (RTT). Assuming a single congested router with a certain packet

loss rate, TCP connections with longer RTTs (fragile flows) will have lower through-

put than TCP connections with lower RTTs (robust flows). This fundamental fair

bandwidth distribution problem can be addressed either at the TCP traffic sources

or at the IP routers.

TCP congestion avoidance mechanism can be modified to allow connections with

longer RTTs to more aggressively probe for bandwidth by adjusting the additive

increase steps [54]. TCP Westwood [18] is another sender side approach that mod-

ifies TCP congestion avoidance mechanism to utilize RTT information in order to

improve system fairness. A closely related end-system congestion control topic gain-

ing attention recently is modification to the TCP congestion avoidance mechanisms

to better adapt to high speed networks thus increasing TCP throughput on a high

62

capacity link [40, 84, 99].

In parallel with approaches to enhance TCP fairness, end-host approaches are

made to develop TCP-friendly transport protocols for non-TCP applications such

as interactive and continuous media applications. General AIMD (GAIMD) [131],

TCP-Friendly Rate Control (TFRC) [44], TCP emulation at receivers (TEAR) [114]

are TCP-friendly transport mechanisms targeted to achieve smoother transmission

rate fluctuations than TCP. Yet, it is not clear that these mechanisms are practical

for the use by media streaming applications.

Router side approaches to improve fairness among TCP and/or TCP-Friendly

flows estimate and apply an appropriate congestion notification probability for each

flow such that the system fairness can be achieved by the cooperative traffic sources.

For example, an AQM may use per-flow traffic information such as RTT to determine

the fair per-flow congestion notification probability [79]. One drawback of this ap-

proach is that it requires network architectural support for routers to securely obtain

per-flow traffic information. An alternative approach to approximate fair per-flow

congestion notification probability without demanding per-flow traffic information is

introduced in Stochastic Fair Blue (SFB) [36]. SFB uses Bloom filters to estimate a

proper congestion notification probability for each flow.

Approaches to achieve system fairness via per-flow congestion signaling at routers

have no ability to protect system fairness from non-TCP flows. The use of UDP has

been increased with the use of continuous media and/or delay sensitive Internet ap-

plications such as interactive streaming and online games, because these relatively

new applications often are not able to achieve their targeted performance using TCP

due to its transmission characteristics. As UDP traffic is expected to significantly

grow in the near future, protection of the Internet and TCP flows from misbehaving

or unresponsive non-TCP flows becomes an important issue. A closely related issue

63

is the protection of the network from Denial of Service (DoS) attacks such as UDP

flooding. Although support for lightweight UDP is essential for efficient network

management and gives applications freedom in utilizing the network, it can be a

security hole for Internet congestion control. Thus, it is believed that the network

should provide protection although it is arguable how and to what extent the pro-

tection should be enforced due to the price-performance tradeoff. The bandwidth

fairness protection issues are addressed in AQM approaches within the context of

the Bandwidth Controller discussed in Chapter 2.1.

3.3 Support for Diverse QoS

One of the major challenges that the Internet faces today is to concurrently sup-

port diverse Quality of Service (QoS) requirements of various applications. This

section first examines the QoS requirements and characteristics of various Internet

application domains, focusing on World Wide Web (WWW) browsing, streaming

media applications, and network games. Then, trends are identified in the various

QoS requirements and traffic characteristics, and discuss the possibility of support-

ing the diverse QoS requirements using AQM and without deploying a Differentiated

Services (DiffServ) [8] architecture.

One of the most dramatic events in Internet history was the advent of World

Wide Web (WWW). The Hypertext Transfer Protocol (HTTP) [6, 37] that uses

TCP as the underlying transport carrier, is an application layer protocol used by the

WWW to manage the globally distributed information system communication and

Web object transmission.

One of the major impacts of the Web on the Internet traffic is the creation of

“flash crowds”, a phenomenon that a large volume of traffic that comes and goes in a

64

burst manner. For example, the France 98’ World Cup Web site4 was popular during

the 1998 FIFA (Federation Internationale de Football Association) World Cup game

getting 1.35 billion requests during the tournament, reaching up to approximately

ten million request per hour during the matches [4]. The resulting traffic heavily

burdened nearby routers and gateways. The performance of the Internet today

depends on the ability of IP routers to efficiently handle sudden such increases in the

volume of Web traffic while meeting the QoS needs.

Web browsing is moderately interactive with more strict QoS requirements com-

pared to FTP or Email. The performance of Web browsing is sensitive to HTTP

response time, which is affected by both the end-to-end delay and packet loss rate of

the network, primarily by the latter for short-lived HTTP/TCP transmissions that

take a significant portion of Web transmissions [49]. Traditional Internet applications

such as FTP and Email are not as sensitive to the end-to-end delay or the network

packet loss rate. For example, the response time requirement for a FTP transfer is

on the order of minutes and that of an Email transmission is on the order of tens of

minutes. Thus, the Internet had no strict QoS requirements to meet when FTP and

Email applications were dominant, but now must meet the stricter response time

requirements of Web browsing.

Another relatively new but fast growing Internet application domain which has

unique QoS requirements is media streaming applications that transmit audio and

video that is played out at a specific rate. Media streaming applications can be

categorized into interactive streaming such as Internet phone and video conferencing

and non-interactive streaming such as audio jukebox and video on demand (VOD).

Both interactive and non-interactive streaming applications share many characteris-

tics and QoS requirements except that interactive streaming applications have more

4http://www.france98.com

65

strict delay and transmission timing requirements than do non-interactive ones. Non-

interactive streaming applications are not very sensitive to delay introduced by the

network, since a fairly large initial playout delay is acceptable in most cases and the

relatively large delay buffer can smooth out most of the timing related issues.

In general, streaming media applications are less sensitive to data loss than

are other Internet applications, since a little data loss in the streamed media can

be repaired without noticeably degrading the user perceived quality of the stream

[11, 50, 82, 95, 102, 104]. Rather, streaming applications are sensitive to the available

network bandwidth as streaming media over a network with less available bandwidth

than is required will incur either a periodic transmission delay resulting in a non-

continuous media playout or an unreasonable data loss rate significantly degrading

the user perceived quality of the stream. Therefore, most of the streaming applica-

tions today use media scaling to adapt to changing network conditions by estimating

the available network bandwidth and selecting a version of the encoded media from

different quality versions to best fit the estimated bandwidth [9, 32, 53, 74]. This

improves the overall quality of the stream on a condition that the application sender

(or receiver) is able to efficiently estimate or at least not overestimate the available

bandwidth.

Streaming applications prefer to use UDP because it is harder to efficiently esti-

mate the available bandwidth over TCP since it hides detailed network information

such as network packet loss rate. Also, the fact that TCP offers only fully reliable

data transmissions discourages streaming applications from using TCP. For example,

a streaming sender cannot force TCP to drop frames in the transmission buffer even

if they become useless due to a transmission delay during network congestion and get

in the way of subsequent frame transmissions. TCP is especially not a suitable trans-

port protocol for delay sensitive interactive streaming applications, since unwanted

66

TCP retransmissions can add a significant amount of end-to-end transmission delay

and jitter.

Another fast growing Internet application domain that often uses UDP is net-

work games, where the most popular genres of games are First Person Shooter (FPS)

and Massively Multiplayer Online Role Playing games (MMORP), followed closely

by Real Time Strategy (RTS) games [29]. Having slightly different QoS require-

ments, networked games in general have strict delay requirements especially for the

highly interactive FPS. Also, the games are typically targeted to work on a low band-

width (< 56Kbps) modem connection. Thus, the extra transmission delay and the

packet acknowledgment overhead introduced by TCP can cause slowdown in a game,

and the lightweight, unreliable and congestion-unresponsive UDP is often preferred.

UDP gaming traffic is not likely to respond to network congestion and behavior is

significantly different from game to game [29].

Although the bandwidth consumed by individual connections may be small, the

volume of online game traffic has increased over the years [88], and is expected to

grow further as the latest generation of consoles systems from Sony and Microsoft

all include network support for multiplayer game play on the Internet. An evidence

that gaming traffic indeed occupies a significant portion of UDP traffic is shown in

[88] which reports about 20% of UDP traffic (in terms of bytes) of the AIX backbone

in February 2000 was gaming traffic while 24% was streaming traffic, 23% was DNS

traffic and 33% of the UDP traffic was not identified.

Table 3.1 summarizes the QoS requirements, characteristics and proportional

network (AIX backbone) usage of the Internet applications discussed in this section,

which reveals a couple of interesting trends. First, the delay QoS requirements are

tightened as more interactive Internet applications are used. Second, various Internet

application domains impose the diverse QoS requirements. Third, HTTP traffic is

67

Internet Sensitivity to Characteristics Traffic Ratio
Applications Delay CNR BW BW Usage Duration (Bytes)∗

FTP (TCP) low low low high mid 7%

Email (TCP) low low low low short 16%

Telnet (TCP) high high low very low long 0%

HTTP (TCP) low high mid low/mid short/mid 61%

Jukebox/VOD (UDP) low mid high low/mid long
A/V Phone (UDP) high mid high low/mid long <15%
Video Game (UDP) high mid high low < 56k long

DNS (UDP) high high low very low very short 1%

Table 3.1: Internet Applications: QoS Requirements and Characteristics (CNR =
Congestion Notification Rate, BW = Bandwidth changes). ∗Traffic Ratio (Bytes) is
based on February 2000 AIX backbone trace data in [88]

consuming more than half of the all bytes transferred.

When applications that are not very sensitive to delay or congestion notification

probability (CNP) were dominant, meeting the required QoS was relatively easy. As

more Internet applications with strict QoS requirements became popular, Internet

congestion control became harder due to the strict QoS requirements and the di-

versity of QoS requirements for various application domains to meet concurrently.

The current Internet offers a single-class, best-effort packet delivery service, where

IP routers are typically configured to maximize throughput over delay, and can fail

to meet the QoS requirements of delay sensitive applications.

Our observation on the delay QoS requirements indicates that the Internet sup-

port for diverse QoS requirements of different application domains can be signifi-

cantly improved by deploying Active Queue Management (AQM) at routers to min-

imize queuing delays. In other words, a router in congestion can almost eliminate

delay QoS issues by minimizing queuing delay at the price of a small link utiliza-

tion loss. Furthermore, by using ECN, IP routers can significantly reduce packet

drops, which improve TCP throughput and system goodput avoiding unnecessary

retransmissions and retransmission timeouts that degrade HTTP response time for

68

short-lived HTTP/TCP transmissions. Thus, there is a potential to support the

diverse QoS requirements by gradually deploying delay optimized AQM with ECN

instead of restructuring the Internet service architecture to support multiple differ-

entiated classes of services [8].

69

Chapter 4

Crimson: AQM Support for

Streaming Media

This chapter presents design, configuration and evaluation of two IP router traffic

management mechanisms that are the building blocks of Crimson. Crimson’s goal

is to offer best-delay-effort Internet service with affordable fairness protection from

misbehaving traffic. Section 4.1 presents the Crimson Congestion Controller, called

Aggregate Rate Controller (ARC). ARC minimizes outbound queuing delay while

achieving a high link utilization by efficiently estimating and signaling impending

congestion to congestion responsive traffic sources like TCP. Section 4.2 presents the

Crimson Bandwidth Controller, called Stochastic Fairness Guardian (SFG). SFG

uses a statistical traffic filter to limit the network usage of misbehaving flows.

70

4.1 Aggregate Rate Controller for Low Delay Packet

Switching Network

TCP, the de-facto Internet transport protocol, has an end-host congestion control

mechanism that has largely been effective in managing Internet congestion. Yet, TCP

alone can be inefficient in controlling congestion, mainly since end-hosts typically

must wait until router buffers overflow before detecting congestion. Active queue

management (AQM) with explicit congestion notification (ECN) [109] promises to

overcome the limitations of end-host only congestion control by providing congestion

feedback information to the end-hosts before router buffers overflow.

The most promising approaches model AQM as a feedback controller on a time-

delayed response system and apply control-engineering principles to design an effi-

cient controller for TCP traffic [47, 58, 75]. In modern control systems, proportional

integral derivative (PID) designs dominate due to their simplicity and effectiveness.

Without exception, this applies to recent active queue management developments

and has altered AQM research from basic framework design into detailed controller

design and practical implementation issues.

Among PID principles, only the proportional integral (PI) feedback control ap-

proach is primarily considered for AQM since the effect of the derivative control

is often insignificant under practical Internet environments. While the PI control

approach seems promising, a critical deployment challenge is the configuration of

PI control parameters in a time-delayed feedback system, (i.e., the Internet); there

are no simple and effective PI control parameter configuration available for time-

delayed system [118]. The existing PI control-based AQM mechanisms such as the

PI controller [58] or Adaptive Virtual Queue (AVQ) [75] lack complete configuration

guidelines, making their practical deployment difficult.

71

We address the practical configuration issue by carefully reducing the PI pa-

rameters and find a complete configuration guideline for the parameter reduced PI

controller, called Aggregate Rate Controller (ARC). We model a TCP-ARC feed-

back control system using a linear TCP model [58] and develop practical yet effective

ARC configuration guidelines. The guidelines cover issues in choosing a target stable

boundary system for ARC configuration and provide a method for selecting control

parameters that help avoid system instability even when the system is out of the

stability boundary. The guidelines also address the effects of the control information

sampling interval on system stability, a consideration often neglected in other AQM

studies.

Controllers with the same underlying principle design can result in noticeably

different implementations, both in terms of complexity and performance depending

on the way in which control information is obtained and feedback is processed. AQM

requires information on the incoming traffic load to make accurate congestion control

decisions, which can be obtained in two different ways: derivation of queue samples

or incoming traffic rate over the service rate. ARC takes a rate-based control in-

formation acquisition approach. For a small amount of data collection overhead,

rate-based data acquisition reduces sampling noise that can significantly degrade the

accuracy of congestion measurement. In addition, rate-based mechanisms can more

effectively react to impending congestion making control decisions before outbound

queue buildup, and thus can minimize queuing delay while achieving a high link uti-

lization enhancing support for the quality of service (QoS) needs of various Internet

applications.

Through an extensive simulation study, we evaluate ARC and compare it with

similar AQM mechanisms including the PI controller [58], AVQ [75] and SFC [47],

and drop-tail queue management over a wide range of network and traffic conditions

72

including Web flash crowd and multiple bottleneck cases. Our simulations validate

the stability and practicality of ARC, showing that ARC efficiently handles network

congestion in all the tested traffic conditions, and when considering all traffic scenar-

ios, outperforms the other mechanisms considering queuing delay, link utilization,

data loss rate, and object response time for Web traffic.

In addition to TCP support, ARC can be extended to concurrently support

FAST [99] traffic. FAST is a recent non-TCP congestion control mechanism pro-

posed for high bandwidth-delay product networks to overcome the inefficiency of us-

ing TCP. The most significant advantage of FAST over other non-TCP mechanisms

such as eXplicit Congestion Protocol (XCP) [69] is that FAST can be deployed in the

current Internet without modification to IP specifications. Noting that the router

traffic management behavior required for FAST is fundamentally the same as that of

active queue management, we make a simple modification to ARC to concurrently

support FAST traffic as well as TCP traffic.

The rest of section is organized as follows: Section 4.1.1 describes the design

of ARC; Section 4.1.2 discusses issues with configuring ARC and provides prac-

tical guidelines for ARC configuration; Section 4.1.3 evaluates ARC performance

through simulation and compares ARC to several popular Congestion Controllers;

Section 4.1.4 shows how ARC can be extended to seamlessly support FAST as well

as TCP; and Section 4.1.5 presents summary and possible future work.

4.1.1 Design

In modern control systems, proportional integral derivative (PID) designs are the

most widely used for feedback controllers because of their simplicity and effectiveness,

and have recently been applied to active queue management. The PI controller [58]

adapts a proportional-integral (PI) controller into a TCP congestion control system

73

using a linear TCP behavioral model, and converts the continuous time-domain PI

control function into an algorithmic implementation through discretization. The PI

controller can be configured to support a wide range of traffic conditions. However,

it is still not mature enough for practical deployment due to some configuration and

stability concerns. The first concern is the configuration complexity. Configuration

of PI involves determining at least two parameters, a proportional parameter (KP)

and an integral parameter (KI), in order to work effectively over a wide range of

traffic conditions. There is a guided, but still complicated, process to configure a

PI controller [118] but lack of expert knowledge may leave the controller ineffective.

Second, the discretization of the continuous time-domain control function introduces

a state measurement interval such as the queue-sampling epoch in the PI controller

that also affects the stability of the system. However, this measurement interval

is neglected in the stability analysis adding uncertainty to the already complicated

controller configuration issues. Lastly, a small but fundamental stability concern for

recent TCP model-based AQM Congestion Controller designs [47, 58, 75] is that a

linear TCP model is used for the stable control parameter range analysis without

validating the linearity of the TCP system. That is, the linear models obtained from

the non-linear stochastic TCP behavioral model may not accurately represent the

behavior of the actual TCP congestion control system.

Based on sound understanding of PI control for Internet traffic and stability

analysis using a linear TCP model, this section explores the possibilities of reducing

the PI configuration parameters for active queue management, and presents the ARC

logic for a configuration-optimized PI control algorithm for TCP congestion control

systems. First, we design a rate-based algorithm that implements the general PI

traffic controller algorithm in [58], enhancing the traffic rate estimation mechanism

to provide an efficient and flexible controller configuration. Then, we carefully reduce

74

Algorithm 1 Rate-Based PI Controller for AQM
Every d seconds (epoch):

1: p← p + α(b− dγC) + β(q − q0);
2: b← 0;

Every packet arrival:

3: b← b + sizeof(packet);
4: notify(packet, p);

Variables:

p: congestion notification probability
q: queue length in bytes
b: total bytes received this epoch

Parameters:

C: link capacity (bytes per second)
γ: target link utilization (0 < γ ≤ 1)
q0: target queue length in bytes
d: measurement interval
α: virtual queue control constant
β: queue control constant

the control parameters to obtain the ARC logic. Next, we model the ARC dynamics

into a differential equation and use it along with the linear TCP behavior model

from [57] to perform TCP-ARC system stability analysis that also shows the effect

of the state measurement interval on the system stability. Lastly, we validate the

linearity of the TCP system as well as correctness and usefulness of the ARC-TCP

system model through simulation.

Algorithm 1 shows our initial rate-based enhancement of the queue-based PI

controller algorithm from [58], which adds support for QoS configuration by intro-

ducing an additional target link utilization parameter (γ) in the PI control logic at

line 1. When γ = 1, the rate-based PI control logic is identical to the queue-based

control logic except for the incoming traffic amount measurement. However, when

0 < γ < 1, the PI control logic can be regarded as maintaining a virtual link as

in AVQ [75] and making control decisions proportional to the virtual queue length,

where the virtual link capacity is dynamically adjusted to handle the traffic still

present in the physical queue due to control error from the previous measurement

75

–
i

ARC

C(s)

TCP + Delay

P (s) =
τ(γC)2

2N

s+ 2N

τ2γC

e−sτ- δp- Nδw-

6

Figure 4.1: TCP-ARC Feedback Control System with Transmission Delay

interval (epoch). Thus, this PI first reserves a portion of the physical link capacity

proportional to the queue displacement from the targeted length (q − q0), and then

determines the virtual capacity used to control aggregated traffic for the next epoch

based on γ and the remaining physical capacity. This view of the PI control behavior

is clearly shown when rewriting the logic in the following form:

p← p + α(b− γ(dC − β

γα
(q − q0)))

When the overfilled queue draining capacity reserved is proportional to the queue

displacement, we immediately see that the necessary range condition for the propor-

tional queue control parameter is:

0 < β

γα
≤ 1

since the controller must reserve no more capacity than needs to be served for the

upcoming epoch. We now consider the most conservative case of setting the propor-

tional queue control parameter to one (i.e. β = γα). Then, the PI control logic is

reduced to the following ARC logic:

p← p + α(b− γ(dC − (q − q0))) (4.1)

Next, we model the dynamics of the ARC logic for stability analysis. Figure 4.1

shows the block diagram of TCP-ARC feedback control system modeling N TCP

sources and a single congested ARC router using the linear TCP model from [57],

76

where τ is round trip time the system, C is the capacity of the congested link,

and w is the expected TCP window size in packets given a congestion notification

probability of p from the system. The system model also uses delta (δ) notation for

each system variable to express the displacement from the equilibrium state. Thus:

δp = p− p0

δw = w − w0

δq = q − q0

where, p0, w0 and q0 are the values of corresponding system variables at system

equilibrium (assuming equilibrium exists). Using the number of packets received

(Nw(t)) instead of the number of bytes received (b) to be compatible with the TCP

model we use, and the unit of link capacity (C in packets per second), the difference

equation that models the dynamics of the ARC logic is:

4p = α(Nw(t) + γ(q(t)− q0)− dγC) (4.2)

The ARC difference equation is transformed to use delta notation in order to

adapt to the input and output of the TCP model given in delta format, and then

converted into a differential equation:

4δp = δp− δpprev = (p− p0)− (pprev − p0) = 4p

= α(Nw −Nw0 + γ(q − q0) + Nw0 − dγC)

= α(Nδw + γδq + Nw0 − dγC)

δṗ = lim
4t→0

4δp

4t

= lim
4t→0

α(Nδw + γδq + Nw0 − dγC)

4t

77

–
i

ARC/Queue

Cq(s)

TCP + Delay

P (s)

Queue

Q(s)- δp- Nδw- δq-

6

Figure 4.2: TCP-ARC System with the Queue Model Removed from the ARC Trans-
fer Function

≈ α

d
(Nδw + γδq + Nw0 − dγC) (4.3)

Note in the last step of the above discrete to continuous time domain conversion

the traffic state measurement interval (d) uses an approximation for lim4t→04t. This

approximation, also used in the discretization processes, is valid for sufficiently small

d. Note also that the ARC differential equation has a control parameter represented

by α
d

that needs to be configured for system stability and responsiveness. Once the

stable range of α
d

is found, α can be determined by choosing a sufficiently small

d value. By applying a Laplas transformation to the ARC differential equation

(Equation 4.3), the transfer function of ARC (C(s)) is:

C(s) =

α
d

(

s + 1+γ

τ

)

s
(

s + 1
τ

) (4.4)

Before continuing our stability analysis, in order to identify the controller type,

we take the queue behavior model embedded in the ARC model out from the ARC

transfer function such that C(s) = Q(s)Cq(s). Figure 4.2 represents this view of the

system. Now:

Q(s) =
1
τ

s + 1
τ

(4.5)

Cq(s) =
α(1 + γ)

d

τs
1+γ

+ 1

s
= KI

s
Tp

+ 1

s
(4.6)

78

Equation 4.6 indicates that the queue-based implementation of ARC is a special

PI controller that fixes the constant Tp = 1+γ

τ
such that the proportional constant

(KP = KI

Tp
) and the integral constant (KI) of the compensator has the following

relationship:

KP = KI

τ

1 + γ
and KI =

α(1 + γ)

d

We next perform frequency response analysis on the TCP-ARC system model,

applying Bode stability criteria [94] to find the stable operating range of the α
d

parameter for a chosen range of traffic conditions. The Bode method evaluates the

stability of a closed-loop system by examining the open-loop system response to

sinusoidal inputs with various frequencies. The open-loop transfer function of TCP-

ARC system is:

G(s) = C(s)P (s) =

ατ3γ3C3(1+γ)
4dN2

(

τ
1+γ

s + 1
)

eτs

s
(

τ2γC

2N
s + 1

)

(τs + 1)
(4.7)

The two open-loop system responses the Bode method uses are the magnitude gain

in decibels (20 log10 |G(jω)|) and the phase shift (6 G(jω)) of the output sinusoid

given as functions of input sinusoid frequency, which for the TCP-ARC system are

computed as follows:

µ(ω, α
d
) = 20 log10 |G(jω)|

= 20 log10

ατ3γ3C3(1+γ)

4dN2

√

(τω
1+γ)

2
+1

ω

√

(

τ2γCω

2N

)2

+1
√

(τω)2+1

φ(ω) = 6 G(jω)

= tan−1

(

τω

1 + γ

)

− tan−1

(

τ 2γCω

2N

)

− tan−1(τω)− 180◦

π
τω − 90◦

79

Slope = − 20 dB/decade

− 40 dB/decade

− 60 dB/decade

− 40 dB/decade

−90

−180

0

φp−180

ωgωp

rad/sec

rad/sec

Magnitude (dB)

Phase (deg)

µg

0

ατ 3γ 3C 3(1+γ)
4dN 2

τ
1

τ2γC
2N

τ
1+γ

Tp=

Figure 4.3: Bode Plot of TCP-ARC System

Figure 4.3 shows Bode plot for an example TCP-ARC system. Before discussing

the characteristics of the TCP-ARC system described by the Bode plots, we briefly

introduce the Bode stability criterion that states the following: A closed-loop system

is stable when the magnitude gain of the open-loop system is less than 0dB at

the input frequency (ωg) that causes a 180◦ phase lag to the output signal. The

Bode stability criterion provides a necessary and sufficient condition for a closed-

loop stability, yet it does not guarantee that a system exhibits desirable transient

response characteristics. Therefore, the following rule of thumb is often used as an

extention to the Bode criterion: a well-designed feedback control system has the

magnitude gain less than −6dB at ωg, and the phase lag in between 30◦ and 60◦ at

the input frequency (ωp) that results in zero magnitude gain. That is, µg < −6 and

30◦ < φp < 60◦ in Figure 4.3 where:

µg = µ(ωg,
α
d
)

φp = φ(ωp) + 180◦

ωg = φ−1(−180◦)

ωp = µ−1(0, α
d
)

80

Using Bode stability criteria to configure a general PI controller, such as in [58],

with two control parameter involves deformation of both the magnitude and phase

curves as the parameter values change, adding complications. And unfortunately,

most other available PI tuning methods are not valid for systems with time delay.

Moreover, the few available PI tuning methods for time-delayed systems may require

expert decisions and only work for first-order systems [118]. ARC eases the config-

uration problems for TCP systems by fixing the controller constant Tp = 1+γ

τ̂
> 1

τ̂
.

This results in the phase shift response curve of the TCP-ARC system that is not

a function of the α
d

parameter, and thus fixes the phase shift curve during the tun-

ing process. In addition, the magnitude gain curve only moves vertically without

deformation as a function of α
d
, easing the tuning process.

Given the link capacity (C) and the target utilization (γ), the stability boundary

condition of the TCP-ARC system is characterized by the minimum expected number

of TCP flows (Ň) and the maximum expected round-trip time of the system (τ̂).

These parameters determine the location of the zero and poles of G(s) characterizing

the system into one of the following three cases:

Case 1 :
2Ň

τ̂ 2γC
<

1

τ̂
<

1 + γ

τ̂

Case 2 :
1

τ̂
≤ 2Ň

τ̂ 2γC
<

1 + γ

τ̂

Case 3 :
1

τ̂
<

1 + γ

τ̂
≤ 2Ň

τ̂ 2γC

Case 1: This system depicted by Figure 4.3 has phase lags of φ(0+) = −90◦ and

φ(1
τ̂
) < −180◦ indicating that at least one ωg < 1

τ̂
exists.

φ
(

1
τ̂

)

= tan−1

(

τ̂

1 + γ

1

τ̂

)

− tan−1

(

τ̂ 2γC

2Ň

1

τ̂

)

− tan−1(1)− 180◦

π
− 90◦

81

= (45◦ − ε1)− (45◦ + ε2)− 45◦ − 180◦

π
− 90◦

< −180◦

Further examining the shape of φ(ω) using the derivative dφ(ω)
dω

reveals that φ(ω)

is a decreasing function of ω except for a possible small mound in the neighbor-

hood of 1+γ

τ̂
. However, since 1

τ̂
< 1+γ

τ̂
, the smallest (and usually the only) ωg < 1

τ̂

with dφ(ω)
dω
|ω<ωg

< 0 can always be found. This, plus the fact that the magnitude

gain curve µ(ω, α
d
) is a strictly decreasing function of ω starting from a positive

value at ω = 0+, guarantees that it is always possible to find a range of α
d

that makes

ωp(
α
d
) < ωg and thus have a positive φp. If a TCP-ARC system can ever be stabilized

for a given Ň and τ̂ boundary, one should be able to refine the range of α
d

such that

30◦ < φp < 60◦. A useful necessary condition for the system stability is µ(1
τ̂
, 0) < −6.

Case 2 and Case 3: The same analysis used for a Case 1 system can be applied

to Case 2 and Case 3 systems with two differences. The first difference for both

systems is that φ(2N
τ̂2γC

) < −180◦. The second difference for Case 3 systems is that

φ(ω, α
d
) is a strictly decreasing function of ω. It is always possible to find a range

α
d

that makes ωp(
α
d
) < ωg and have a positive φp, where a necessary condition for

system stability is µ(2N
τ̂2γC

, 0) < −6.

For all cases, we can determine if a TCP-ARC system can be stabilized for the

chosen Ň and τ̂ boundary, and find the stable operating range of α
d

in two steps:

{

α
d
| µ(ωg,

α
d
) < −6

}

and

{

α
d
| − 150◦ < φ(ωp(

α
d
)) < −120◦

}

(4.8)

82

Algorithm 2 Aggregate Rate Controller
Every d seconds:

1: p← p + α(b− γ(dC − (q − q0)));
2: b← 0;

Every packet arrival:

3: if (uniform(0, 1) ≤ p) then

4: if (mark(packet) == false) then

5: drop(packet);
6: return;
7: end if

8: end if

9: b← b + sizeof(packet);
10: if (enqueue(packet) == false) then

11: drop(packet);
12: end if

Functions:

mark(packet): ECN mark the packet. Return false on error.
enqueue(packet): Enqueue the packet. Return false if queue is full.
drop(packet): Drop the packet.

Variables:

p, q, b

Parameters:

C: link capacity (bytes per second)
γ: target link utilization (γ = C0/C)
q0: target queue length in bytes
d: measurement interval
α: TCP congestion feedback constant

Thus, ARC configuration involves choosing a reasonable minimum number of flows

(Ň) and maximum expected round-trip time (τ̂) for the system we wish to support,

finding the α
d

range that satisfies the first condition of Equation 4.8, and refining the

range to satisfy the second condition of Equation 4.8. Once the stable range is found,

choosing a sufficiently small d gives the range of α. The ARC configuration issues

of choosing reasonable Ň and τ̂ stability boundary conditions and the measurement

interval d is discussed in Section 4.1.2.

We implemented the ARC algorithm shown in Algorithm 2 into NS [127] and

designed experiments to validate the linearity of the TCP system and correctness of

our model. Linearity of a system can be validated via simple frequency analysis by

83

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400 450 500

M
bp

s

Seconds

0.5 sin(0.1(t-50))

RTT = 0.1 sec
N = 35
C = 8 Mbps
alpha = 0.014
d = 0.2 sec

Input Noise (Traffic Rate Estimation Error)
Modeled Throughput (Target Load = 0.95)

Simulated Throughput (Target Load = 0.95)
Modeled Throughput (Target Load = 0.50)

Simulated Throughput (Target Load = 0.50)

Figure 4.4: TCP-ARC Model Validation: estimation error vs. throughput

introducing a sinusoid into the system. If a system has linearity, the output of the

system should also be a sinusoid with a possibly altered magnitude and frequency.

We artificially injected a sinusoid into a simulated TCP-ARC system representing the

incoming traffic rate estimation error at the congested ARC router and measured the

system throughput. Then, we compared the simulated throughput with the output

of the analytic TCP-ARC system model.

We used a dumbbell topology for the simulations, uniformly varying the round-

trip times of 35 FTP-TCP connections from 90ms to 110ms. We set the physi-

cal queue length to 500 packets, where the system used 1 Kbyte packets. For the

congested-link, we used C = 8 Mbps once with the target utilization γ = 0.95, and

once with γ = 0.50. The ARC control parameters were set to d = 200 ms and

α = 0.112 for the simulations. For the ARC rate estimation error, we used a low

frequency sinusoid of 0.5 sin(0.1(t− 50)) Mbps.

Figure 4.4 compares the throughput of the simulated systems with that of our

analytic model for the sinusoidal input under the two different target loads (γ). The

simulated results closely match the output of the TCP-ARC analytical model, show-

ing the linearity of the TCP congestion control system and also the correctness of our

84

TCP-ARC model. In addition, the ability to meet custom target traffic loads illus-

trates the configuration flexibility of ARC. More importantly, the resilient TCP-ARC

congestion control system performance for the sinusoidal traffic rate estimation errors

indicates potentially resilient ARC performance in the presence of TCP-unfriendly,

unresponsive and/or short-lived Web traffic.

4.1.2 Configuration

In the previous section, we have shown that the ARC control parameter α
d

can be

found to stabilize a TCP system characterized by Ň and τ̂ boundary conditions.

This section addresses the configuration issue of selecting the boundary conditions

epoch length (d) to enable ARC to be resilient over a wide range of traffic conditions.

Although a PI controller considerably broadens the range over which a controller

with a given configuration can be stable [58], fundamental configuration issues still

remain. Consider the case where ARC is configured for an average-case traffic sce-

nario with a relatively large number of flows (Ň) and a typical round-trip time τ̂ .

The resulting TCP-ARC system may encounter instability in cases with fewer TCP

flows than average and/or cases where the average round-trip time is unusually large.

We will refer to this configuration issue as the “overshoot problem”. On the other

hand, if ARC is configured to support a worst-case scenario with a small number of

flows (Ň) and a large round-trip time (τ̂), the resulting system will have a signifi-

cantly larger response time when there is the average-case traffic. Thus, the system

will suffer from significant queuing delays and queue overflows before adapting to

any changing traffic conditions. We will refer to this configuration issue as the “un-

dershoot problem”.

Most TCP flows are limited by one or more of: the capacity of the ISP access

points or local networks; the maximum TCP window sizes; and the sizes of the objects

85

being downloaded [67]. Therefore, the overshoot problem is not a significant concern

for core routers since backbones are not likely to be congested by a small number of

TCP flows. Also backbone link flows typically have a relatively low average round-

trip time [67, 20], making them unable to create an overshoot problem. However, the

overshoot problem may occur in enterprise or access network routers as the traffic

load and round-trip time may vary significantly during a single day. In fact, the

overshoot problem is more critical than the undershoot problem since it can severely

degrade network stability even under light traffic loads. At the same time, we do

not want to create undershoot problems since that deteriorates the long sought after

benefits of AQM.

We address the overshoot and undershoot configuration problems for ARC by

carefully interpreting the meaning of the analytically determined system stability

analysis for practical network operations. Finding a reasonable Ň and τ̂ for the α
d

configuration starts from the fact that it is inadequate to apply stability determined

through our stochastic system model to fragile systems with a small number of TCP

flows and a large average round-trip time. That is, no matter how well we tune ARC

using the model, it is impossible for an AQM to achieve a high link utilization and low

queuing delay for a fragile system since the aggregate traffic rate fluctuates reflecting

the bursty characteristics of TCP. Therefore, tuning ARC for a fragile system is

an ineffective use of the controller capability and it may cause unnecessary queuing

delays and overflows for normal traffic loads. Thus, the ARC configuration objective

is to effectively manage average traffic conditions while avoiding large overshoot

problems that can significantly degrade network stability.

In order to determine when an overshoot threatens stability for the fragile lower

bound of a system we wish to support, denoted by Ňmin and τ̂max, we need to

determine the sustainable congestion notification probability estimation error (δps <

86

1) in order for the lower bound system to be least operational. We develop a simple

frequency analysis on a TCP plant (P (s)) to quantify δps. We define the least

operational state of a TCP system as the following: a TCP system is least operational

if for congestion notification errors in the range [−δps, δps] introduced to the TCP

plant, the output range of the system is [−γC, γC]. The equivalent mathematical

representation is:

|P (jω)| =

(τ̂max)3γ3C3

4(Ňmin)2
√

ω2
(

(τ̂max)2γC

2Ňmin

)2
+ 1

≤ γC

δps

This inequality always holds for high frequency inputs. For low frequency con-

gestion notification probability estimation errors
(

ω � 2Ňmin

(τ̂max)2γC

)

, we have:

δps ≤
4(Ňmin)2

(τ̂max)3γ2C2

Applying this statement to the TCP-ARC system, if ARC makes congestion

estimation errors within [−δps, δps] for the fragile lower bound of the system we

wish to support, the system will be least operational. In order to accomplish this, it

is necessary to set the α
d

parameter such that ARC increases p sufficiently less than

δps during one τ̂max interval:

α

d
≤ αmax

τ̂max

� δps

This minimum stability condition can be used for ARC configuration to avoid

stability threatening, large overshoot problems for the fragile boundary system we

choose to support. We first choose an average TCP-ARC system to stably support,

described by Ň and τ̂ , and use the ARC configuration guidelines introduced in

87

Section 4.1.1 to find the stable α
d

range. Then, we choose the fragile boundary

system described by Ňmin and τ̂max, and use the minimum stability condition to see

if the parameter range is safe for the fragile boundary system.

Next, we need to determine the measurement epoch d to complete the configu-

ration. The stability of backbone routers may not be sensitive to the choice of d,

but proper selection of d is critical for enterprise or access network router configura-

tions. The stochastic TCP system model may not accurately depict the stability of

the system with a large average round-trip time and a small number of TCP flows

as packets would tend to arrive at the router in bursts, breaking the assumption of

stochastic packet arrivals. However, we can relax the stochastic assumption for the

TCP-ARC system by choosing a sufficiently large d, larger or at least equal to the

maximum average round-trip time we wish to support (τ̂max). In this way, the effect

of the traffic bursts on the ARC control decision can be minimized, reducing the

noise in the incoming traffic rate estimation caused by the traffic bursts. However,

choosing too large a d will affect the system responsiveness, weakening the small

interval assumption made for the algorithmic discretization. As a compromise, we

recommend setting the measurement epoch to the maximum expected round-trip

time, or d = τ̂max. According to a recent Internet measurement study [67], the me-

dian of the median round-trip times is less than 1 second, and 90% of the median

round-trip times are under 2 seconds. Therefore, depending on the targeted level

of network resilience and the specific traffic characteristics of the network, setting

τ̂max in between 1 and 2 seconds is appropriate for most enterprise or access net-

work routers. For backbone routers, selecting an even smaller τ̂max to enhance the

granularity of congestion control may also be effective.

Summarizing our analysis for configuring ARC over a wide range of traffic loads,

88

we present the final guidelines that are recommended along with Equation 4.8:

d = τ̂max and α� 4(Ňmin)2

(τ̂max)3γ2C2
(4.9)

We validate the minimum stability condition for fragile boundary systems and

show that ARC can be resilient over a wide range of traffic loads through simulation.

We use a dumbbell topology with C = 8Mbps, γ = 0.95 and the queue limit set to

500Kbytes (1packet = 1Kbyte). We vary the round-trip time (τ) uniformly across the

range [0.150,0.250] seconds, [0.9,1.1] seconds and [1.9,2.1] seconds for each simulation.

We also vary the number of ECN enabled long-lived TCP flows from 10 to 50 to 100,

where each flow starts randomly distributed from 0 to 100 seconds. The ARC control

parameters are set to α = 1.11 × 10−5 and d = 2sec in order to effectively support

the system with τ̂ = 500ms and Ň = 50, giving a fair per-flow bitrate of 160Kbps.

We further assume that the fragile boundary system has Ňmin = 10 and τ̂max = 2sec,

satisfying the minimum stability condition:

α � 4(Ňmin)2

(τ̂max)3γ2C2
= 5.54× 10−5

Figure 4.5 shows three ARC simulations: (A) N=100 and τ=200ms, (B) N=50

and τ=1.0sec, and (C) N=10 and τ=2.0sec. We include one fragile boundary sys-

tem simulation using drop-tail, (D), as a yardstick to assess the performance of ARC

for the fragile boundary system. Simulation (A) shows that ARC handles the un-

dershoot situation, achieving average throughput close to the target capacity with

a consistently low queuing delay and a nearly zero packet loss rate. Simulation (B)

shows that ARC can also handle the medium overshoot situation, utilizing 93% of

the target capacity (.95) with a low queuing delay and no packet loss.

Simulations (C) and (D) verify the inefficiency of TCP when there is a large

89

(A)

(B)

(C)

(D)

(A) ARC N=100 R=200ms
(B) ARC N=50 R=1000ms
(C) ARC N=10 R=2000ms

(D) DT N=10 R=2000ms

 0
 200

 400
 600

 800
 1000

 1200

Seconds

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Mbps

(0-1200 Seconds) Throughput Loss

(A) ARC N=100, τ=200ms 7589 Kbps 0.001%
(B) ARC N=50, τ=1.0sec 7053 Kbps 0.000%
(C) ARC N=10, τ=2.0sec 1707 Kbps 0.515%
(D) DT N=10, τ=2.0sec 1709 Kbps 0.519%

Figure 4.5: Throughput and Queue Dynamics

capacity compared to the number of flows (C/N). More importantly, the simulation

results show that ARC, even when not optimized for the fragile boundary system and

only satisfying the minimum stability condition, can still perform better than drop-

tail queue management under the same conditions. ARC is able to keep a consistently

low queuing delay while having a throughput and packet loss rate compatible with

that of drop-tail queue management.

90

In practice, router access speed is an order of magnitude slower than the link

speed, and the bottleneck may often be at the network processor rather at the link.

Therefore, the access speed (or effective service rate) of the router should be used

instead of the link capacity (C) to configure ARC. A related issue is that network

processor output is bounded by the number of packets, independently of the packet

size. Therefore, when small packets dominate the incoming traffic, the effective

service rate of the router can be noticeably decreased. This effective service rate

variation serves as another source of control noise for AQM congestion controllers.

Yet, an ARC router configured to be robust over wide range traffic load will still be

stable in this situation and perform well. We show the performance of ARC as C

changes in Section 4.1.3.3.

A more advanced approach to ARC configuration may consider a dynamic control

parameter adaptation mechanism. One possible design may slowly change the value

of α (assuming a fixed d) based on the displacement of the average traffic rate from the

target capacity (γC) within the initially configured α range. While this approach may

sound promising, it introduces another controller (a low pass filter) into the system.

Therefore, any dynamic control parameter adaptation would demand another major

study of implementation and stability analysis. We leave this as future work.

4.1.3 Evaluation

This section compares the performance of ARC with PI [58], AVQ [75], SFC [47] and

drop-tail through detailed simulations varying long-lived FTP traffic load, round-

trip times (RTT) and bottleneck link capacity, with 2-way traffic (which can result

in ack compression) and background Web traffic. We also simulate Web flash crowds

and multiple congestion bottlenecks to test the AQM controllers under more realistic

Internet traffic environments. For all evaluations, we use the IP packet simulator NS

91

which includes source code for PI and AVQ. We extend NS to support ARC and

implement SFC based on [47].

Unless otherwise noted, we use a dumbell network topology with a bottleneck

link capacity of 10 Mbps and a maximum packet size of 1000 bytes. Round-trip

link delays are randomly uniformly distributed over the range [60:1000], based on

measurements in [67]. The physical queue limit for each AQM and the drop-tail

queue is set to 500 Kbytes, which is approximately equal to the bandwidth-delay

product for the mean round-trip time.

The settings for the parameters of the various AQMs are based on the recom-

mendations by their authors. The target utilization, γ, of AVQ is set to 0.98 and the

damping factor, α, is set to 0.15 according to Theorem 1 in [75]. The parameters

for SFC are k1 = 0.0005 and k2 = 0.2, as used in [47]. The parameters for PI are

α = 1.822× 10−5, β = 1.816× 10−5 and sampling frequency w = 170, as in [58]. The

settings for ARC have the measurement epoch d = 1 seconds, α = 1.42× 10−5, the

target utilization γ = 0.98 and the target queue q0 = 0. The ARC control parameters

are chosen in order to effectively support the system with τ̂ = 500ms and Ň = 50,

and to satisfy the minimum stability condition assuming the fragile boundary system

has τ̂max = 2sec and Ňmin = 10.

In all simulations, we use ECN enabled NewReno TCP for both long-live FTP

flows and Web-like sessions. Each simulation has a number of forward and back-

ward direction bulk transfer FTP flows of which the numbers are specified in each

experiment subsection. Also, each simulation has 300 background Web-like sessions

(using the Webtraf code built into NS) that start evenly distributed during the first

30 seconds. Each Web session requests pages with 2 objects drawn from a Pareto

distribution with a shape parameter of 1.2 and an average size 5 Kbytes, where each

of these settings is based on values from [4, 55]. The Web sessions have an exponen-

92

tially distributed think time with a mean of 7 seconds, which results in an average

utilization of about 0.25 of the 10 Mbps capacity, a typical fraction of Internet traffic

such as reported by [115].

4.1.3.1 Long-Lived TCP Flows

This experiment compares the performance of ARC, PI, AVQ, SFC and drop-tail over

a range of traffic loads with long-lived bulk transfer TCP flows. Each simulation

begins with 10 forward direction FTP flows with start times uniformly randomly

distributed over [0:50] seconds, and is accompanied by 300 background Web sessions

of which the parameters given in the previous paragraph and 50 backward direction

FTP flows. After 200 seconds, an additional 40 FTP flows are added with start times

uniformly randomly distributed over the subsequent 50 seconds. The total number

of FTP flows doubles every 200 seconds thereafter, resulting in 100 flows at time

400, 200 flows at time 600, 400 flows at time 800 and 800 flows at time 1000. In each

interval new FTP flows arrive, their start times are uniformly randomly distributed

over a 50 second range. We ran ARC twice, once with the settings specified earlier

(d = 1 and α = 1.42× 10−5) and then with d = 2 (and α = 2.84× 10−5 to preserve

the α/d ratio), in order to test the sensitivity of the rate measurement interval.

Figure 4.6 (top) depicts the queue dynamics for the four AQMs with drop-tail

(DT) shown as a reference. Drop-tail exhibits the expected queue dynamics with

large queue oscillations when there are few flows and stable, but large, queue sizes

when there are many flows. SFC has stable queue dynamics for all numbers of flows.

However, without an integral control component, SFC exhibits a steady increase in

the average queue size as the number of flows increases, approaching the physical

queue limit when there are 800 FTP flows. AVQ exhibits unstable queue dynamics

when there are few flows but stabilizes with relatively low queues once there are 200

93

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

DT
SFC
AVQ

PI
ARC(d=2)
ARC(d=1)

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200

B
yt

e
Lo

ss
 (

%
)

Seconds

DT
SFC
AVQ

PI
ARC(d=2)
ARC(d=1)

Figure 4.6: Network Statistics: Increasing the number of FTP flows

or more FTP flows. PI and ARC (d = 1 and d = 2) are similar, with stable queue

dynamics for all numbers of flows, and with short-term queue size increases each

time a large group of flows arrives. Comparing ARC with d = 1 and d = 2 shows

94

that ARC is not very sensitive to the selection of the measurement interval.

Figure 4.6 (middle) depicts the throughput for the AQMs and drop-tail. Once

the number of FTP flows is 50 or more, each queue management scheme is able

to obtain a throughput over 9.5 Mbps. For more than 200 FTP flows, drop-tail

has the highest throughput, with SFC having a throughput nearly equal to that of

drop-tail. However, drop-tail has the lowest utilization when there are only 10 FTP

flows. For 50+ FTP flows, AVQ and ARC keep their throughput close to their target

utilization, and PI and AVQ achieve nearly the same throughput for all numbers of

flows. Overall, PI and AVQ have less control over the queue length than ARC with

a correspondingly slightly higher throughput than ARC.

Figure 4.6 (bottom) depicts the loss rates, where most of losses seen for AQMs at

the lower range of traffic loads are due to ECN incapable packets such as the reverse

traffic acknowledgments. The figure verifies that AQM can significantly reduce data

losses for ECN traffic over drop-tail queue management as long as AQM can avoid

or minimize buffer overflows. However, when there are consistent buffer overflows

as in SFC for high traffic loads, the benefits of AQM quickly diminishes. A case

where an AQM (AVQ, in this case) can incur even greater data losses than drop-tail

is illustrated in Section 4.1.3.3.

4.1.3.2 Round-Trip Time

The next experiment illustrates behavior of the different queue mechanisms over a

range of round-trip times, from about 0.3 to 2.4 seconds. We gradually increase the

round-trip link delay (RTLD) of the congested link by 300 ms every 200 simulation

seconds with 300 background Web sessions. We have run multiple sets of simulations

with different numbers of forward and backward FTP flows to see the effect of the

RTT spectrum on different levels of load. For brevity, we show the results for 5

95

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

DT
SFC
AVQ

PI
ARC

Figure 4.7: Network Statistics: Increasing the average round-trip time

forward FTP flows and 10 backward FTP flows, but the overall performance trends

are similar for other numbers of flows.

The queue dynamics in Figure 4.7 (top) show that ARC, PI and SFC keep the

queue size low and dampening the queue oscillations, while AVQ and drop-tail queue

have poor control over the queue. Furthermore, the throughput comparisons in Fig-

ure 4.7 (middle) show that PI under-utilizes the link capacity far more then the other

queue management schemes. This inefficiency is due to PI’s method of traffic rate in-

formation acquisition that uses a high frequency of queue sampling. When a system

becomes fragile, traffic arrives in bursts. In this case, incoming traffic rate estimation

via derivation of frequent queue samples introduces a large estimation noise. ARC

96

and SFC1 avoid this noise by using a direct traffic rate measurement method over an

interval of 1 second and so can more accurately estimate incoming traffic rate than

PI. AVQ’s packet-paced rate measurement mechanism is also compatibly accurate.

4.1.3.3 Congested Link Capacity

For the next set of simulations, we increase the bottleneck link capacity initially

set to 10 Mbps by 10 Mbps every 200 simulation seconds up to 50 Mbps, with 200

forward and 50 backward direction FTP flows and 300 background Web sessions.

During these increases, we do not change the AQM parameter settings. This creates

two effects: the increasing the capacity makes the system more fragile and it also

brings forth the undershoot configuration problem (described in Section 4.1.2) of an

AQM slowly responding to network congestion. Thus, this experiment illustrates the

control parameter sensitivity of ARC, PI, AVQ and SFC.

Figure 4.8 illustrates the queue dynamics, throughput and data loss rates. AVQ

is very sensitive to the initial control parameters. While AVQ is able to maintain the

throughput close to its target utilization, it does not effectively control the queue os-

cillations and incurs even greater data losses than does drop-tail queue management.

PI produces under-utilization and a sluggish response as the capacity increases,

another drawback of a queue based rate estimation. As the traffic load decreases

due to the capacity increase, PI cannot efficiently estimate the traffic rate, since the

queue oscillations tell little about the underlying traffic rate.

Both ARC and SFC effectively control both queue oscillation and achieve high

throughput over the range of traffic loads. Yet, when the link capacity increases to

40 Mbps and over, SFC is not able to achieve as high a throughput as ARC due

1SFC [47] does not specify how the rate estimation mechanism should be implemented nor
recommend a range of values for the measurement epoch. We used the rate estimation mechanism
of ARC to implement SFC in NS, and set the measurement epoch to 1 second as in ARC.

97

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

DT
SFC
AVQ

PI
ARC

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600 700 800 900 1000

B
yt

e
Lo

ss
 (

%
)

Seconds

DT
SFC
AVQ

PI
ARC

Figure 4.8: Network Statistics: Increasing the bottleneck link capacity

to its traffic load dependent control behavior. However, SFC is still able to achieve

throughput at about the level of drop-tail.

98

4.1.3.4 Web Flash Crowd

In this section, we simulate a Web flash crowd. For this simulation, we have 25

forward direction and 50 backward direction FTP flows as background traffic, and

an initial 300 Web sessions. After a warm up period of 100 seconds, 1000 more

Web sessions are uniformly injected during the first 6000 simulation seconds and

then detached during the next 6000 simulation seconds, giving a Web flash rate of

10 sessions per minute. Thus, we have a peak of 1300 Web sessions, providing an

offered load of about 1.35.

We use a Web flash rate of 10 sessions per minute chosen based on the peak Web

flash rate seen at the FIFA World Cup 98 Web server analysis [4]. The peak flash

rate (both increase and decrease) was from 2 to 10 million requests per hour in 2

hours during the France-Croatia game. This means an acceleration of about 1,110

requests/min2 from the minimum object request rate of 33,333 requests/min (= 2

million requests/hour).

The starting 300 Web sessions in our simulation offer an average utilization of

about 0.25, a typical fraction of Internet traffic reported in [115], with the minimum

object request rate of 5,143 requests/min (300 × 2 objs/click × 60/7 clicks/min).

This is about 15% of the FIFA 98 base request rate. In order to get the proportional

acceleration rate for our simulated minimum request rate, we take 15% of the FIFA

98 acceleration rate, that is about 170 requests/min2 or 10 sessions per minute, and

used it as our flash rate.2

Figure 4.9 depicts the network statistics including queue dynamics, throughput

and data loss rate. In order to better understand the performance of the AQMs for

Web traffic, we also analyzed the average object service time. To compare perfor-

2We also tried the absolute flash rate of the FIFA 98 trace (1,110 requests/min2 = 60 sessions
per minute) and received simular overall results.

99

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 0 2000 4000 6000 8000 10000 12000

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

DT
SFC
AVQ

PI
ARC

 0

 1

 2

 3

 4

 5

 6

 2000 4000 6000 8000 10000 12000

B
yt

e
Lo

ss
 (

%
)

Seconds

DT
SFC
AVQ

PI
ARC

Figure 4.9: Network Statistics: Web flash crowd

mances of the AQMs on short-lived flows, Figure 4.10 plots average service time for

objects less than 12 Kbytes which can be transmitted in about 4 round-trip times in

the best case including TCP connection setup and represents about 95% of the all

objects generated in a simulation.

100

 0

 0.5

 1

 1.5

 2

 2.5

 2000 4000 6000 8000 10000 12000

O
bj

ec
t S

er
iv

ce
 T

im
e

(S
ec

on
ds

)

Seconds

DT
SFC
AVQ

PI
ARC

Figure 4.10: Average Service Time: Objects less than 12 Kbytes

In general, the queue dynamics shown in Figure 4.9 (top) are very similar to those

of Figure 4.6 (top). Likewise, Figure 4.9 (middle) shows that all AQMs achieve a

throughput around 9.4 Mbps or higher throughout the simulation. However, in Fig-

ure 4.9 (bottom), the data loss rates for AQMs are significantly increased (compared

with Figure 4.6 (bottom)) for the traffic dominated by Web due to the considerably

increased number of TCP-SYN packets that can not support ECN. This illustrates

that gains for AQM with ECN traffic is reduced for short Web traffic.

Drop-tail management performs the worst overall having the highest data losses,

queuing delay and object service times. All AQMs performed well under the offered

Web traffic load of 0.9 (before 4,000 seconds or after 10,000 seconds), except AVQ

which has average service times consistently higher than those of other AQMs due

to its queue oscillations.

As the Web traffic load further increases over 0.9, SFC performs slightly bet-

ter than other AQMs by stabilizing the queue higher than the other AQMs, thus

achieving the overall highest throughput and the lowest data loss rate at the expense

in queuing delay. ARC and PI perform very similarly in all performance aspects.

Beyond the offered load of 0.9, AVQ starts to gain control over queue oscillations

101

Figure 4.11: Multiple Bottleneck Simulation Setup

and perform comparable to ARC and PI.

4.1.3.5 Multiple Bottleneck Congestion

Figure 4.11 shows the network topology and scenario used for the multiple bottleneck

simulations. The simulated network has 5 bottleneck links (numbered 0 to 4) with

capacities of 10 Mbps and the transmission delay of 20 ms. The edge links are 100

Mbps with 20 ms of transmission delay. Each striped arrow in Figure 4.11 represents

25 FTP flows plus 150 Web sessions, and each solid arrow represents 25 backward

FTP flows.

Figure 4.12 depicts the queue dynamics of the each network link for ARC, PI,

AVQ, SFC and drop-tail queue management for the first 300 seconds (each simulation

runs for 600 seconds). The queue dynamics show that ARC and other AQM systems

are globally stable, and that ARC has the best control over queue oscillations followed

by PI, SFC then AVQ. Figure 4.13 (top and bottom) show the average throughputs

and the average data loss rates of the bottleneck links, where all the AQM routers

achieve a high throughput and a low data loss rate, consistent with previous single

bottleneck analysis.

102

Figure 4.12: Queue Dynamics: Multiple Bottleneck Simulation (y-axes: queue size
in KBytes)

103

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0 1 2 3 4

T
hr

ou
gp

ut
 (

M
bp

s)

Link ID

100 to 600 Seconds Average DT
SFC
AVQ

PI
ARC

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4

B
yt

e
Lo

ss
 (

%
)

Link ID

100 to 600 Seconds Average

DT
SFC
AVQ

PI
ARC

Figure 4.13: Network Statistics: Multiple bottleneck simulation

4.1.4 Extention to Support FAST

The ARC we have presented expects TCP with an additive increase multiplicative

decrease (AIMD) source/network utility/congestion control protocol. This section

discusses extending ARC to seamlessly support other similar utility control protocols,

in particular, FAST [99] proposed to overcome the inefficiency of AIMD for high

bandwidth-delay product networks.

Utility/congestion control protocols can either have a network centric control

design, where network nodes explicitly determine utility (i.e., transmission rate) of

individual traffic sources as in the eXplicit Congestion Protocol (XCP) [69], or have

a distributed control design, where each individual traffic source determines its own

utility using a demand function implicitly or explicitly chosen by the protocol and

utility price of its network path implicitly or explicitly notified by the network. Most

104

congestion control protocols proposed for the Internet, including various versions of

TCP, TFRC [44], TCP Vegas [16] and FAST [99] are in the latter category.

Utility prices are determined based on a type of queuing delay along the network

path: physical queuing delay for protocols with no explicit utility control support,

and virtual queuing delay for protocols that assume the network provides the utility

price. For example, in TCP or TFRC systems, utility price of a congested drop-tail

link given in form of packet drop rate is determined implicitly by average queuing de-

lay [25]. TCP Vegas, on the other hand, explicitly measures estimated queuing delay

of congested drop-tail links in a network path for its utility price of the path. The

utility price of a congested ARC or other PI-based AQM link, given in ECN mark-

ing probability, is computed based on the virtual queuing delay. Similarly, FAST,

which has a demand control mechanism for traffic sources and a utility/congestion

controller at network routers, uses virtual queuing delay over the virtual capacity at

each link as the estimated price of the congested link.

The network utility price computation requirements being fundamentally the

same for most distributed utility control protocols – a function of the network queu-

ing delay – provides an opportunity for a single network to concurrently support

similar distributed utility/congestion control protocols with little overhead. To il-

lustrate this, we make a simple modification to the original ARC in Algorithm 2 to

concurrently support FAST, which can be deployed in the current Internet without

modification to IP specifications, as well as TCP.

Algorithm 3 shows the FAST-extended ARC, where qv is an implementation of a

virtual queue after physical queue error correction. The extended ARC uses α × qv

as the link utility price for TCP traffic, which is basically the same implementation

with the original ARC logic, and qv/(γC) for FAST traffic. The only minor difference

between this FAST utility price computation from [99] is that while the original FAST

105

Algorithm 3 FAST-Extended ARC
Every d seconds:

1: qv ← qv + (b− γ(dC − (q − q0)));
2: ptcp = α× qv;
3: pfast = φ−qv/(γC);
4: b← 0;

Every packet arrival:

5: if (typeof(packet) == fast) then

6: p = pfast;
7: else

8: p = ptcp;
9: end if

10: if (uniform(0, 1) ≤ p) then

11: if (mark(packet) == false) then

12: drop(packet);
13: return;
14: end if

15: end if

16: if (enqueue(packet) == false) then

17: drop(packet);
18: return;
19: end if

20: b← b + sizeof(packet);

Functions:

mark(packet): ECN mark the packet. Return false on error.
enqueue(packet): Enqueue the packet. Return false if queue is full.
drop(packet): Drop the packet.

Variables:

p, ptcp, pfast, qv , q, b

Parameters:

C: link capacity (bytes per second)
γ: target link utilization (γ = C0/C)
q0: target queue length in bytes
d: measurement interval
α: TCP congestion feedback constant
φ: REM [5] communication constant shared by all FAST sources

algorithm uses pure virtual queuing delay with no physical queue error control (i.e.

uses an integral controller) this new version considers physical queue error control

as well and uses a PI utility/congestion controller. Replacing the integral utility

controller with the PI controller should have little effect on stability of the FAST

system, since adding a proportional control, in general, does not significantly affect

stability of a system.

106

For congestion notification, TCP uses a plain ECN marking or packet dropping

communication scheme. In contrast, FAST uses REM [5] encoding/decoding, an

alternative way to use the single ECN bit in the IP header for congestion communi-

cation. In Algorithm 3, φ is the REM communication constant shared by all FAST

sources and FAST-enabled routers in the system.

Thus, by keeping track of the fundamentally compatible link utility prices with

the support for the two different congestion communication methods, this extended

ARC can simultaneously support both TCP and FAST with little overhead. In

order to make ARC support a distributed utility control without an explicit utility

control at network routers, an extra step is required to modify the protocol to adapt

a compatible network-evaluated link price instead of the source-estimated link price.

The conversion issues are not discussed further, since it is out of scope of this research.

Also, we leave stability analysis and evaluation of the modified FAST system as future

work.

4.1.5 Summary

In this section, we present Aggregate Rate Controller (ARC), a reduced parameter

proportional integral controller for Internet traffic. ARC resolves configuration dif-

ficulties that have crippled past AQM approaches by taking a well-understood and

efficient proportional-integral controller design for AQM, carefully reducing the con-

trol parameters based on a sound understanding of Internet congestion control, and

providing practical configuration guidelines though control engineering for a resilient

performance under a wide range of traffic conditions. Also, by taking a low frequency,

direct rate-based control information acquisition design rather than queue-based traf-

fic rate estimation approach, ARC significantly reduces control noise with little extra

overhead, and provides flexible QoS tunability.

107

ARC configured to minimize queuing delay makes a good candidate for the Crim-

son Congestion Controller offering best-delay-effort service to fulfill needs of various

Internet applications. Our simulations demonstrate that by complying with the con-

figuration guidelines, ARC can efficiently support a wide-range of traffic conditions,

dampening queue oscillations, keeping queue low and throughput high, even when

the configuration is not optimized for the current traffic. Overall, ARC out-performs

PI, SFC and AVQ under all tested conditions in terms of queue dynamics, through-

put, data loss rate and Web service time. Especially, ARC can provide significantly

improved performance over PI for lightly loaded conditions, the norm for many In-

ternet routers, as well as for sudden traffic load changes, owing to the low frequency

rate-based control data acquisition design.

In addition to TCP support, ARC can be easily extended to support other similar

distributed utility/congestion control protocols with little overhead, since most of

the protocols use queuing delay-based link utility price estimation methods that

are fundamentally compatible with one another. As an example, we extend ARC

to concurrently support TCP and FAST [99], an IP compatible distributed utility

control protocol proposed to overcome the inefficiency of AIMD for high capacity

networks.

108

4.2 Stochastic Fairness Guardian for Bandwidth

Fairness Protection

Emerging delay sensitive Internet applications such as streaming media and network

games often prefer to use UDP over TCP as their transport protocol. As the use

of non-TCP applications increases, the Internet must deal with more flows with

improper or no end-to-end congestion control. Moreover, as Internet connection

capacity provided by ISPs is significantly increased (up to 3 Mbps for typical cable

modem services), use of high bandwidth demanding non-TCP applications such as

broadcast quality streaming video become possible. This trend carries the potential

for a significant imbalance in the public link capacities used by TCP and UDP flows.

This imbalance threatens Internet stability and, in the worst case, an extrapolation

of this trend could lead to Internet congestion collapse [14].

In this section, we introduce a novel statistical traffic filtering technique, called

the Stochastic Fairness Guardian (SFG), that can effectively regulate misbehaving

flows with minimal traffic state information. SFG offers misbehaving traffic manage-

ment performance comparable to that provided by more complicated statistical flow

monitoring mechanisms such as RED-PD [85] without requiring misbehaving flow

identification. Such identification is computationally intensive and error prone, and

thus may not be affordable for broadband network routers.

SFG uses a multi-level hash scheme that places incoming flows into different

flow groups at each level and approximates a proper packet drop rate for each flow

by monitoring the incoming traffic rates for the groups to which the flow belongs.

SFG can be used in conjunction with a drop-tail queue as an effective network pro-

tection mechanism. When SFG is used in combination with an AQM congestion

feedback controller, the combination can improve both network protection and ef-

109

ficiency. When TCP traffic is effectively controlled by the AQM, the interference

between SFG and the AQM for TCP traffic can be minimized such that SFG serves

only as a traffic filter for misbehaving, unresponsive flows.

SFG is evaluated in conjunction with Aggregate Rate Controller (ARC) presented

in Section 4.1, and compared with RED-PD, SFB and CHOKe, and drop-tail queue

management through simulations. The results show that SFG with drop-tail queue

management provides simple and effective fairness protection that complements the

weakness of drop-tail alone. Also, the combination of SFG and ARC, referred to as

Stochastic Fair ARC (SFA), outperforms other mechanisms in terms of protection,

stability, queuing delay and overall TCP performance over a wide range of realistic

traffic mixes and loads that includes a few high bitrate CBR flows and many MPEG

video-like VBR streams.

The remainder of this section is organized as follows: Section 4.2.1 describes the

design of SFG and SFA; Section 4.2.2 develops an error model to predict the number

of false positives for SFG and provides SFG configuration guidelines; Section 4.2.3

uses simulations to evaluate the performance of SFG and SFA along with other

statistical flow management approaches; and Section 4.2.4 presents a summary and

future work.

4.2.1 Design

Stochastic Fairness Guardian (SFG) is a highly scalable statistical traffic filter that

uses a small amount of state information to provide stochastically fair network re-

source allocation and network protection. Using a pre-queue management mecha-

nism, SFG preferentially drops incoming packets in proportion to a flow’s approxi-

mated unfair resource usage. SFG can be deployed either with a drop-tail queue or

with an AQM mechanism.

110

Algorithm 4 Stochastic Fairness Guardian (SFG)
Every ds seconds:

1: for i = 0 to L− 1 do

2: for j = 0 to N − 1 do

3: prob[i][j]← (bytes[i][j]− dsC/N)/bytes[i][j];
4: bytes[i][j]← 0; /* update drop p for all bins */
5: end for

6: end for

Every packet arrival:

7: p = 1;
8: for i = 0 to L− 1 do

9: j = hash(i, packet);
10: p = min(p, prob[i][j]); /* take min drop p seen so far */
11: bytes[i][j]← bytes[i][j] + sizeof(packet);
12: end for

13: if (uniform(0, 1) ≤ p) then

14: drop(packet);
15: return;
16: end if

17: queue(packet);

Functions:

hash(key, packet) Returns hash (<N) for given key and packet.
drop(packet): Drops the packet.
queue(packet): Passes the packet to the queue manager.

Variables:

prob[L][N], bytes[L][N], i, j, p

Parameters:

C: link capacity (bytes per second)
L: number of levels
N : number of bins in a level
ds: measurement interval

SFG defines a flow as an abstract entity that can be identified by a combina-

tion of source/destination address, protocol and port numbers. A closely related

issue that makes flow monitoring and accounting challenging for approaches such

as RED-PD [85] and SFB [36] is determining the lifetime of a flow. However, SFG

does not need to monitor nor account for individual flows to filter traffic. Thus, in

the rest of Section 4.2 the terms “incoming packet” and “incoming flow” are used

interchangeably.

To approximate and regulate unfair network usage, SFG uses a multi-level traffic

111

group management technique. SFG, shown in Algorithm 4, clusters incoming flows

into N different traffic groups in each of L levels using an independent hash function

for each level. Thus, SFG maintains N x L bins, where each bin in a level is assigned

an equal share (1/N) of the outbound link capacity (C). Every ds second epoch,

SFG computes and updates the packet drop probability for each bin (prob[i][j]) by

taking the incoming traffic rate of the last measurment epoch (bytes[i][j]/ds) as an

estimate of this epoch’s packet arrival rate for the flows in the bin, and setting the

drop probability such that no more than C/N capacity is used by a bin.

When a packet arrives, SFG looks up the packet drop probabilities for the L

bins to which the packet belongs and applies the minimum drop probability to the

packet. The motivation behind choosing the minimum drop probability is to protect

TCP flows that share one or more accounting bins with other high bitrate flows.

Figure 4.14 shows an example of SFG selecting drop probabilities for three different

flows, where rounded-corner boxes represent the accounting bins and shaded boxes

represent the bitrate of each flow. In this example, packets of flow1 are dropped

with a probability p = 0.03 since it is the minimum drop probability of all the bins

to which the flow belongs. Similarly, flow2 gets p = 0.02 and flow3 gets p = 0.00.

A potential drawback of using static hash filters for flow group assignments is that

a well-behaving flow that has the misfortune of sharing all its bins with misbehaving

flows can be unfairly treated for the lifetime of the flow. SFG eases this concern by a

simple modification to Algorithm 4 such that two hashes in each level are used, one

for the drop probability access for the current epoch and the other for the control

data collection for the next epoch. In this way, a flow assigned to poluted bins in

all levels in the current epoch can be re-hashed into different bins in the next epoch.

This additional fairness enhancement is easily added to SFG, since SFG flow group

managment for the current epoch is independent of previous epochs.

112

Figure 4.14: An Example SFG showing three flows. The size of the shaded blocks
indicate the flow bitrates. The drop probability applied to each flow is indicated on
the right.

SFG can be used both with a drop-trail queue or with an AQM. The combina-

ton of SFG with an AQM can enhance TCP performance by avoiding packet drops

through the AQM while still providing network protection through SFG. To maxi-

mize the benefit of an SFG and AQM combintaion, a careful configuration of SFG

and the AQM is required. Note that although SFG is not designed to be a congestion

feedback controller for TCP traffic, it may perform the roll of an implicit (packet

dropping) congestion feedback controller when faced with fewer than N bandwidth-

hungry TCP flows, or when SFG is configured to offer lower link utilization than the

following queue manager can offer. Under such circumstances, SFG may degrade

TCP performance by interfering with the AQM congestion feedback control. The

next section provides SFG configuration guidlines for setting L, N and ds, and ad-

dresses issues associated with combining SFG with a queue manager to maximize

preformance benefits.

SFG shares structural similarities with the Bloom filter technique used in SFB [36]

113

in that both mechanisms use multi-level hashing to group flows. However, the major

difference is that the Bloom filter in SFB is used as an unresponisve flow identification

tool, while SFG uses the multi-level hash packet filter to prevent a few misbehav-

ing flows from dominating the outbound link utilization. By periodically updating

packet drop probabilities for accounting bins, SFG inherently has less overhead than

does SFB with the Blue AQM [35] inside each accounting bin where the congestion

notification probabilities of the relevent Blue bins are updated for every arriving

packet.

4.2.2 Configuration

We develop a false positive model to estimate the probability of well-behaving flows

being incorrectly identified by SFG as one of the misbehaving flows. Based on the

model and performance considerations, we provide SFG configuration guidelines with

a practical SFG integration mechanism that can be applied to both a drop-tail queue

and an AQM to maximize the potential benefit of SFG.

An analytic model is developed to determine the false positive flow punishment

ratio for SFG, i.e. how often a well-behaving flow is unfairly penalized because it

shares all of its bins with misbehaving flows. Parameters in the model include: L -

the number of levels supported by SFG , N - the number of bins in each level, and

B - the number of misbehaving flows in the system. The first step is to determine

the expected number of bins occupied by one or more misbehaving flows (referred to

as polluted bins) in a level.

Let T (B, i) be the number of ways to distribute B flows into i bins such that no

bin is empty, where B > i. This is a well-understood probability problem that can

114

be computed as follows:

T (B, i) =
i
∑

k=0

(−1)k

(

i

k

)

(i− k)B (4.10)

Let Pw(N, B, i) be the probability that exactly i bins from the N total bins are

polluted with B misbehaving flows. Computing Pw requires determining the total

number of possible instances of the event. Let W (N, B, i) be the number of ways

to pollute exactly i bins from N total bins with B misbehaving flows. This is equal

to the number of ways to choose i bins from N total bins and distribute B flows

into the chosen i bins such that no bin is empty. Thus, Pw(N, B, i) is determined by

dividing W (N, B, i) by the number of ways to put B flows into N bins. Thus, we

have:

Pw(N, B, i) =
W (N, B, i)

NB
=

(

N

i

)

T (B, i)

NB

Let Ew(N, B) be the expected number of polluted bins in a level, given N total bins

and B misbehaving flows. Ew can be computed as the sum of each possible outcome

number of polluted bins times its occurrence probability Pw(N, B, i):

Ew(N, B) =
B
∑

i=0

(i Pw(N, B, i))

Knowing Ew(N, B), the false positive probability, Pfp(L, N, B), that a well-

behaving flow shares its bins in all levels with misbehaving flows and thus can be

unfairly treated can be computed as:

Pfp(L, N, B) =

(

Ew(N, B)

N

)L

=

(

1

NB+1

B
∑

i=0

i

(

N

i

)

T (B, i)

)L

(4.11)

Equation 4.11 can be used as a secondary SFG configuration tool to find an

115

appropriate number of levels (L) that lowers the false positive error rate after con-

figuring the number of bins per level (N), based on an expected maximum number

of misbehaving flows (B̂). A misbehaving flow, defined in this context, is flow that

is not a TCP-friendly [43] flow, where a TCP-friendly flow is a flow with a data rate

that does not exceed the maximum rate of a conformant TCP connection under the

same network conditions. In practice it is difficult to determine if a flow is TCP-

friendly. For example, a relatively low bitrate unresponsive flow that is classified as

a TCP-friendly flow under light traffic loads can turn into a TCP-unfriendly flow at

a higher load. Yet, the above definition is sufficient for the purposes of SFG. Once N

is determined, the rate limit for misbehaving flow classification becomes apparent,

i.e. C/N and B̂ can be estimated.

A primary performance factor to consider in choosing N , the number of bins in

a level, is the maximum per-flow bitrate that SFG will permit during congestion.

Choosing N directly determines the maximum allowed per-flow bitrate (C/N) for a

fixed capacity C. If N is too small, SFG will not effectively filter misbehaving flows

that have a low data rate and will also have a high false positive flow punishment

ratio. On the other hand, if N is too large, the small maximum allowed per-flow

data rate can affect link utilization at low traffic loads dominated by a few greedy

flows and prevent applications with bandwidth requirements larger than C/N from

utilizing unused capacity.

One way to address this SFG configuration issue is to enable SFG only when the

outbound link is congested, while carefully setting N such that the maximum allowed

per-flow rate is small enough to effectively filter misbehaving flows and greater than

or equal to a TCP-friendly rate [43] at the SFG enabling/disabling thresholds. This

simple approach offers a static, maximum allowed per-flow rate during congestion

regardless of the actual load level. A more sophisticated approach is to dynamically

116

adjust N every control/measurement epoch using a TCP-friendly rate estimator.

The TCP-friendly rate can be estimated using a TCP-friendly rate formula where

the congestion notification rate (CNR) is measured at the router and the average

system round-trip time is included as an extra SFG configuration parameter. This

dynamic configuration approach is elegant but has increased complexity because

the SFG hash functions will have to be adjusted frequently as N changes. This

dissertation research explores the feasibility of the simple static on/off approach and

leaves dynamic bin adjustment as future work.

To provide an on/off mechanism for SFG, a high/low watermark mechanism

(mh, ml) for the average CNR estimate is used. The CNR estimate at the router is

considered as a measure of the congestion level. To estimate the average CNR, SFG

takes a weighted average on CNR every epoch, where CNR (pn) is computed as the

relational sum of the packet drop rate of SFG (pd) and the congestion notification

probability of the queue manager (pe):

pn = pd + (1− pd) pe (4.12)

where, pe can be measured in terms of the packet loss rate from queue overflow for

a drop-tail queue, or explicitly reported by the AQM queue manager.

The SFG configuration process is illustrated by example. Setting mh = 0.02

and ml = 0.01, SFG assumes congestion when the CNR is over 2% and under 1%,

respectively. The maximum allowed per-flow rate enforced by SFG at congestion

can be determined by computing the low boundary TCP-friendly rate at the low

watermark using a rate formula from [43]:

Ttcp ≤
1.5
√

2/3 S

τ
√

pn

(4.13)

117

where, Ttcp is the upperbound TCP-friendly rate, S is average packet size and τ is

estimated system round-trip time. By setting S = 1500 bytes, a typical MTU, and

τ = 300 ms, a value chosen from a valid range of average round-trip times [20, 67],

Ttcp is 0.5 Mbps. To achieve this maximum allowed per-flow rate, SFG should set

N = 20 (C/Ttcp) for a 10 Mbps output link.

After configuring N , the minimum number of levels (L) that can provide an

optimal false positive error rate can be determined using Equation 4.11 given a range

of the expected number of misbehaving flows (B̂). A reasonable B̂ can be estimated

based on an Internet measurement study [88] that reports about 10% of the traffic is

UDP traffic. Based on this statistic, an average of 1 Mbps UDP traffic is expected for

a 10 Mbps link. Assuming all UDP bandwidth is potentially misbehaving, medium

quality video, the typical bitrate will be about 300 Kbps. Thus, B̂ is about 3 to 4

misbehaving flows for a 10 Mbps link. Assuming the UDP flows are low quality 56

Kbps video streams, a 10 Mbps link may carry as many as 17 misbehaving flows.

Figure 4.2.2 plots the false positive error rates of an N = 20 system, varying

L for B̂ = 1, 5, 10, 15, to find the number of levels that reduces the per-packet

processing overhead from hashing as well as the false positive error rates. Figure 4.2.2

shows that L = 3 provides both a low packet processing overhead and a low false

positive error rate for the selected range of B̂. For example, Pfp(3, 20, 5) ≈ 0.01 and

Pfp(3, 20, 10) ≈ 0.06 indicates that the chances that a well-behaving flow is unfairly

treated in an epoch by SFG with L = 3 and N = 20 is about 1% when B̂ = 5 and

about 6% when B̂ = 10. Similarly, Pfp(3, 20, 15) ≈ 0.15 shows that the chosen SFG

setting can also offer relatively low false positive error rates for the higher range of

B̂.

Consider now the router memory requirement for SFG. Assuming each bin re-

quires a 4-byte integer for counting bytes received and a 8-byte double-precision

118

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 2 3 4 5 6 7

F
al

se
 P

os
iti

ve
 P

ro
ba

bi
lit

y

Number of Levels (L)

N = 20, B = 01
N = 20, B = 05
N = 20, B = 10
N = 20, B = 15

Figure 4.15: False Positive Probability (N = 20)

floating number for storing the drop probability, the memory requirement for a 10

Mbps SFG link with L = 3 and N = 20 is 720 bytes per output port (3 levels × 20

bins × 12 bytes/bin). Similarly, a 10 Gbps link with an equivalent SFG setting of

L = 3 and N = 20, 000 requires only 720 Kbytes of memory per output port.

The last SFG parameter to discuss is the control/measurement epoch length

(ds). We recommend setting ds to a couple of seconds (ds is set to 2 seconds in this

investigation), such that it is approximately twice the upperbound average round-

trip time seen on the Internet [20, 67]. This avoids control error due to insufficient

control data acquisition and minimizes congestion control interference with the AQM

controller. Since potentially misbehaving flows such as streaming media and network

games often have long lifetimes, the large epoch length, and hence slow response time,

is acceptable. A more responsive system would pay a high price in terms of fairness

and efficiency for packet drops caused by inaccurate SFG control.

4.2.3 Evaluation

We compare the performance of SFG (with drop-tail queue management) and the

combination of SFG and ARC, referred to as Stochastic Fair ARC (SFA), with RED-

PD [85], SFB [36], CHOKe [91] and drop-tail through detailed simulations. The

119

simulations attempt to incorporate realistic traffic conditions by including long-lived

FTP flows (that vary in number over time to induce a range of offered loads), back-

ground Web traffic, and 2-way traffic (which can result in ack compression). The

IP packet simulator NS is used for all simulations. The NS distribution comes with

source code for RED-PD and makes available the source code for SFB as contributed

code. We extended NS to support CHOKe, ARC, SFG and SFA.

The simulations model a dumbell network topology with a bottleneck link capac-

ity of 10 Mbps and a maximum packet size of 1000 bytes. Round-trip link delays

are randomly uniformly distributed over the range [60:1000], based on measurements

in [67]. The physical queue limit for each AQM and the drop-tail queue is set to 500

Kbytes, approximately equal to the bandwidth-delay product for the mean round-

trip time.

The settings for the parameters of the various statistical preferential drop and

AQM mechanisms are based on the recommendations of their authors (see Related

Work in Section 2.1.2.2 for details on other preferential-based dropping mechanisms).

The settings for RED have minimum and maximum thresholds of 50 and 300 respec-

tively, maximum drop probability of 0.15, weighted average factor Wq = 0.002, and

the gentle option enabled. The additional RED-PD settings include: a target system

round-trip time of 100 ms that is used to determine the epoch length for monitoring

and for the TCP-friendly rate, flow monitor history window of 5, minimum time to

un-monitor a monitored flow and its drop rate threshold of 15 seconds and 0.005,

respectively, and maximum drop probability increment step of 0.05.

CHOKe, which works in conjunction with RED, is set to divide RED’s minimum

and maximum queue threshold range into 5 even subregions and apply 2i + 1 drop

comparisons for an incoming packet, where i = {0, 1, 2, 3, 4} is the subregion ID.

For SFB, the number of levels and bins are set to L = 3 and N = 20, the

120

unresponsive detection CNP threshold is set to 0.98, and the penalty box time is

set to 15 ms. SFB is set to switch hash functions every 20 seconds. For the Blue

AQM inside each SFB bin, the CNP increment step is 0.005 and the decrement step

is 0.001 with a freeze time of 100 ms.

The settings for ARC include the measurement epoch da = 1 second, α = 1.42×

10−5, the target utilization γ = 0.98 and the target queue q0 = 0. For SFG, based on

the analysis made in the previous section, the on/off thresholds are mh = 0.02 and

ml = 0.01, the control/measurement interval ds = 2 seconds, the number of levels

L = 3 and the number of bins N = 20.

All simulations use ECN enabled NewReno TCP for both the long-live FTP flows

and the Web sessions. Each simulation has 50 backward direction bulk transfer FTP

flows and 300 forward direction background Web sessions (using the Webtraf code

built into NS) that start evenly distributed during the first 30 seconds. Based on

settings from [4, 55], each Web session requests pages with 2 objects drawn from a

Pareto distribution with a shape parameter of 1.2 and an average size of 5 Kbytes.

The Web sessions have an exponentially distributed think time with a mean of 7

seconds, which results in an average utilization of about 2.5 Mbps of the 10 Mbps

capacity, a fraction typical of some Internet links, such as in [115]. Each simulation

has forward direction bulk transfer FTP flows. To test the various mechanisms under

different traffic loads, the number of forward direction FTP flows varies every 200

simulation seconds from 10-50-100-200-400 flows and then back down from 400-200-

100-50-10 flows.

To more intuitively characterize the degree of congestion experienced by the link

beyond simply the number of flows, the drop-tail queue simulation with the above

network settings was run with only the Web traffic, varying the number of Web

session from 1200 to 1800, and recording the packet drop rate for each load. Sub-

121

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 1 2 3 4 5 6 7 8 9

O
ffe

re
d

Lo
ad

 b
y

W
eb

 T
ra

ffi
c

Packet Drop % (DropTail Queue)

(1200 Sessions)

(1500 Sessions)

(1800 Sessions)

Session:

objects/click = 2 (object: mean = 5 Kbytes, Pareto = 1.2)

inter-click time = Exp. distibution w/ mean 7 seconds

Figure 4.16: Offered Load by Web Traffic versus Packet Drop Rate (drop-tail queue:
qlim = 500 Kbytes)

sequently, the congested link bandwidth was changed from 10 to 100 Mbps and the

simulation re-run to measure the offered traffic rate for each number of Web ses-

sions under a capacity unconstrained condition. The offered traffic rates were then

converted to offered loads in relation to the 10 Mbps link capacity, and plotted in re-

lation to the packet drop rates measured for the same number of Web sessions under

the 10 Mbps link. Figure 4.2.3 shows the linear relationship between the drop-tail

packet drop rate and offered load.

The offered loads given as a function of the drop-tail packet drop rates are useful

for characterizing the load created by the TCP traffic mix (i.e., forward direction

FTP, backward direction FTP, and background Web traffic), by converting the load

of the mixed TCP traffic expressed in terms of the number of FTP flows into the

equivalent Web offered traffic load expressed in terms of the packet drop rates of a

drop-tail queue. Thus, the equivalent offered loads for the TCP traffic mix when the

number of forward direction FTP flows is 10, 50, 100, 200 and 400 are about 1.0,

1.1, 1.2, 1.4 and 1.7 respectively. This means, for example, that when the number of

FTP flows is 400, the congested link is experiencing about 1.7 times the offered load

it can handle without having to drop any packets.

122

While an offered load of 1.7 is probably beyond any realistic load for most routers

on today’s Internet, this high load serves as a stress test of the various preferential

dropping and AQM mechanisms, showing insight into how they handle the traffic

in terms of fairness, throughput, stability, queuing delay, packet and byte loss rate,

and Web performance. RED-PD, CHOKe, SFB, SFG and SFA are evaluated using

the TCP traffic mix, in comparison with drop-tail and ARC, queue management

mechanisms without a preferential dropping mechanism. The next set of simulations

includes one unresponsive 10 Mbps CBR flow added to the TCP traffic mix, replacing

the one unresponsive flow with five unresponsive 2 Mbps CBR flows. The last set of

simulations replaces the five unresponsive flows with five unresponsive MPEG video

VBR flows.

4.2.3.1 TCP Traffic Mix

As a baseline, this experiment compares the performance of the various statistical

preferential drop mechanisms with that of a drop-tail (DT) and ARC over the range

of loads with the TCP traffic mix (ie - no unresponsive flows). Figure 4.17 shows the

queue dynamics (top) and system throughput (bottom) of DT, ARC, SFB, CHOKe,

RED-PD, SFG and SFA. The byte loss rate and packet drop rate are shown in

Figure 4.18, and the average Web object service time for each system is shown in

Figure 4.19.

First, comparing the queue dynamics, throughput and byte loss rate of drop-

tail with ARC verifies the benefits of ARC. ARC is able to stably control traffic

over the entire load range, keeping the queue length low at around 100 Kbytes, and

maintaining a high link utilization. ARC loss rates are low (less than 2%), even

at the offered load of 1.7, resulting in a higher goodput than the drop-tail system.

The low and stable queue length is desirable to concurrently support QoS needs of

123

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 4.17: TCP Traffic Mix - Queue Dynamics (top) and Throughput (bottom)

various applications, and can also greatly reduce the buffer size required to achieve

a high link utilization [3].

The packet loss rate and the average Web object service time of drop-tail and

ARC show some of the less well-known performance aspects of ECN when viewed

over the range of traffic loads. Although the network efficiency measured in byte

loss rate is consistently better for ARC, the packet losses for ARC, a combination

124

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

B
yt

e
Lo

ss
 %

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
ac

ke
t D

ro
p

%

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 4.18: TCP Traffic Mix - Packet Drop Rate (top) and Byte Loss Rate (bottom)

of ECN-incapable SYN packets for the Web traffic and the backward direction TCP

ACK packets, are about twice as high as that of drop-tail as the traffic load increases

beyond an offered load of 1.2. To control traffic at congestion, ARC, and more gener-

ally any AQM, using ECN must maintain a higher congestion notification probability

(CNP) than the packet-drop congestion notification rate of a drop-tail queue. As a

result, ARC, by dropping non-ECN packets with the CNP, favors ECN-capable pack-

ets over non-ECN packets especially at high traffic loads, yielding a higher packet

drop rate than drop-tail for conditions in which small, non-ECN enabled packets

dominate.

This phenomenon creates the Web object delivery performance crossover for the

drop-tail and ARC systems as the offered load changes from 1.2 to 1.4, at which

125

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

O
bj

ec
t S

er
iv

ce
 T

im
e

(S
ec

on
ds

)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 4.19: TCP Traffic Mix - Average Web Object Service Time

point the initial TCP timeout for SYN packet drops becomes the dominating factor

for Web object service times. At the peak load of 1.7, the average Web object service

time for ARC is about 5 seconds, while the Web object service time for drop-tail is

about 2 seconds. For the traffic load ranges below 1.2, the Web performance results

are consistent with the experimental measurement results from [77], showing AQM

with ECN can significantly benefit Web traffic at offered loads from 0.9 to 1.0. In

contrast, for traffic load ranges above 1.2 or 1.3, Web performance can be significantly

degraded by AQM with ECN, although such high loads are uncommon in practice.

The various performance measures of SFG (with drop-tail queue management)

shown in Figure 4.17, Figure 4.18 and Figure 4.19 closely match those of drop-tail,

indicating that SFG, activated from 300 to 1900 seconds, works well with drop-tail

queue management for the TCP traffic mix. Similarly, the performance of SFA

closely matches that of ARC except for the slightly higher byte loss rates, indicating

SFG interfered little with the ability of ARC to control TCP traffic. The sharp link

utilization drops for SFG and SFA between 1800 and 1900 seconds are due to the

maximum allowed per-flow rate of SFG being less than the TCP-Friendly rate as the

system load goes down. However, both SFG and SFA detect the decrease in load

126

within a minute and then turn off the fairness enforcement mechanism.

Comparing the performance of SFB, CHOKe and RED-PD with that of SFA in

Figure 4.17 and Figure 4.18, SFB, CHOKe and RED-PD have consistently higher

packet drop rates and byte loss rates than SFA, except for RED-PD’s slightly lower

byte loss rate caused by RED-PD’s higher operating queue length. Yet CHOKe,

which works in conjunction with a RED controller, was not able to benefit from this

higher RED queue length due to its rather inefficient statistical preferential dropping

mechanism, and had a low average throughput of 8.5 Mbps with the low offered loads

during the first and last 200 seconds. Throughout the simulation, SFB suffers from

low link utilization caused by the inefficient rate control afforded by Blue for the

traffic mix.

4.2.3.2 An Unresponsive, High-Bitrate Flow

In this set of simulations, one unresponsive 10 Mbps CBR UDP flow is added to the

TCP traffic mix used in Section 4.2.3.1, starting at time 100 seconds and stopping

at time 1700 seconds in order to test the performance of the different preferential

dropping mechanisms. For comparison, the performance of drop-tail and ARC are

examined to determine the impact of the unimpeded CBR flow. Figure 4.20 shows the

queue dynamics, Figure 4.21 shows the system throughput (top) and the throughput

of the single CBR stream (bottom), and Figure 4.22 shows the average Web object

service time of the systems.

Figure 4.20 shows that the drop-tail queue remains full from the time the high-

bitrate CBR flow starts until it stops and Figure 4.21 (bottom) shows that drop-tail

is very unfair as about 95% of the link capacity is used by the CBR flow. The average

Web service time for drop-tail ranges from about 50 to 300 seconds, too high to be

seen in Figure 4.22.

127

Figure 4.20: An Unresponsive High-Bitrate CBR Flow - Queue Dynamics

ARC controls the aggregated traffic and the unresponsive flow better than drop-

tail, applying a high congestion notification probability (CNP) to drop the UDP

packets while marking the ECN-enabled packets. Furthermore, as shown in Fig-

ure 4.20, ARC is still able to keep the queue length consistently low while main-

taining a high link utilization even in the supersaturated conditions. However, like

drop-tail, ARC is unfair, and the Web traffic experiences high service times, ranging

from about 2 to 13 seconds throughout the simulation.

Figure 4.21 (bottom) shows that SFB is able to effectively handle the high-bitrate

CBR flow, reducing its achieved bandwidth to the target rate. Yet, as in the case

of the TCP-only traffic mix, SFB experiences severe link underutilization. CHOKe,

using its statistical filtering mechanism, is able to regulate the unresponsive, high-

bitrate flow. However, CHOKe’s fairness is coarse as CHOKe heuristically increases

128

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
B

R
 T

hr
ou

gh
pu

t (
M

bp
s)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 4.21: An Unresponsive High-Bitrate CBR Flow - System Throughput (top)
and CBR Throughput (bottom)

the number of random match drops for each incoming packet as the load increases.

RED-PD is able to effectively regulate the high-bitrate CBR flow by monitoring and

then restricting the flow to no more than the periodically adjusted TCP-friendly

rate. As observed from the queue dynamics of both the RED AQM based CHOKe

and RED-PD, by frequently adjusting the maximum allowed flow rate for the CBR

flow, RED-PD affects the stability of the RED congestion control, causing the queue

in RED-PD to oscillate more than the queue in CHOKe.

Similarly to SFB and RED-PD, both SFG (with drop-tail) and SFA (SFG +

ARC) are able to effectively restrict the rate of the unresponsive high-bitrate CBR

flow to the target maximum. Yet, Figure 4.21 (top) shows that a high-bitrate,

unresponsive flow in lightly loaded traffic conditions can degrade link utilization

129

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

O
bj

ec
t S

er
iv

ce
 T

im
e

(S
ec

on
ds

)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 4.22: An Unresponsive High-Bitrate CBR Flow - Average Web Object Service
Time

by forcing a pre-configured target rate to be imposed on all incoming flows. This

potential shortcoming can be relaxed by dynamically adjusting the configuration of

N , as briefly discussed in Section 4.2.2. Finally, the consistently stable and low

queue dynamics in Figure 4.17 (top) of Section 4.2.3.1 and Figure 4.20 show that

the statistical filtering mechanism of SFG does not noticeably affect the congestion

control of ARC.

4.2.3.3 Multiple Unresponsive, Medium-Bitrate Flows

For the simulation in this section, the one 10 Mbps unresponsive CBR flows used

in Section 4.2.3.2 is replaced with five unresponsive 2 Mbps CBR flows. As in the

previous simulation, the unresponsive CBR flows are started at 100 seconds and

stopped at 1700 seconds. Figure 4.23 shows the system throughput (top) and the

average throughput of the five unresponsive CBR streams (bottom), and Figure 4.24

shows the average Web object service times. The queue dynamics are not shown,

since they are very similar to the queue dynamics in Figure 4.20 in Section 4.2.3.2

and Figure 4.25 in the next section.

130

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 C
B

R
 T

hr
ou

gh
pu

t (
M

bp
s)

Seconds

Confidence Level = 0.90

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 4.23: Multiple Unresponsive Medium-Bitrate CBR Flows - System Through-
put (top) and CBR Throughput (bottom)

The effect of five unresponsive 2 Mbps CBR flows on the performance of drop-tail

and ARC is similar to that of a single unresponsive 10 Mbps CBR flows. However, the

five smaller capacity flows cause a remarkable degradation in performance for SFB.

Figure 4.23 (bottom) shows SFB fails to detect the unresponsive medium bitrate

flows until the offered load reaches 1.7, and performs even more unfairly than ARC,

despite ARC not having any fairness protection mechanisms. Moreover, when SFB

finally detects the five unresponsive streams and restricts their rate by putting them

into a penalty box, there is significant link underutilization, since SFB fails to lower

the congestion notification probability (CNP) accordingly. SFB’s failure to properly

adjust the CNP when there is an increase in the available capacity is also apparent

in the Web object service time, shown in Figure 4.24, that is similar to or larger than

131

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

O
bj

ec
t S

er
iv

ce
 T

im
e

(S
ec

on
ds

)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 4.24: Multiple Unresponsive Medium-Bitrate CBR Flows - Average Web
Object Service Time

that of ARC for the second half of the simulation.

Other preferential dropping mechanisms perform as designed. RED-PD effec-

tively regulates each unresponsive flow to the estimated TCP-friendly rate at each

control epoch, and SFG and SFA prevent each flow from using more bandwidth than

the pre-assigned target rate of 0.5 Mbps.

4.2.3.4 Multiple Unresponsive, MPEG Video Streams

In order to test SFB, CHOKe, RED-PD, SFG and SFA with more realistic unre-

sponsive flows, the five unresponsive 2 Mbps CBR flows used in Section 4.2.3.3 are

replaced with five unresponsive MPEG-like video streams, implemented using tools

from [22]. The MPEG streams have average I-, P- and B-frame sizes of 11, 8, and

2 Kbytes, respectively based on a trace of typical MPEG-1 video, sent at 30 frames

per second for an average bitrate of slightly over 1 Mbps.

As in the previous experiments, the five MPEG streams are started at 100 seconds

to stopped at 1700 seconds. For completeness, this section includes the same set of

performance results as Section 4.2.3.2. Figure 4.25 shows the queue dynamics of the

132

Figure 4.25: Multiple Unresponsive MPEG Video Streams - Queue Dynamics

different systems, Figure 4.26 shows the system throughput (top) and the average

throughput of the five MPEG streams (bottom), and Figure 4.27 shows the average

Web object service times.

As in the case with five unresponsive 2 Mbps CBR flows, for the MPEG streams,

all preferential dropping mechanisms perform well, except SFB which again fails to

detect the unresponsive flows. Figure 4.25 and Figure 4.26 (top) show SFA performs

best in terms of queue length, stability and control of link utilization. Considering

the Web performance in Figure 4.27, at an offered load of 1.2 or less, all preferential

drop AQM mechanisms outperform drop-tail and ARC. When the offered load goes

beyond 1.2, drop-tail performs better than all ECN-based mechanisms, and SFG

with drop-tail queue performs best.

From Figure 4.26 (top), after 1700 seconds, the SFG and SFA’s turning on/off

133

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 M
P

E
G

 T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

Confidence Level = 0.90

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 4.26: Multiple Unresponsive MPEG Video Streams - System Throughput and
MPEG Throughput

mechanism in response to load is more accurate when used with ARC than with drop-

tail. The turn on/off decisions are based on the estimated congestion notification

rate (CNR) of the system which can be explicitly informed by ARC, whereas for the

drop-tail queue, SFG has to measure the packet overflow rate to estimate the CNR.

In terms of fairness enforcement in Figure 4.26 (bottom), RED-PD, with its

heavy-weight TCP-friendly target flow rate computation, performs best followed by

SFG and SFA. For some additional complexity, the fairness control performance gap

between RED-PD and SFG and SFA could be reduced by dynamically adjusting

the target flow rate, as briefly discussed in Section 4.2.2 (and left as future work).

However, even without this adjustment, the main goal of SFG and SFA has been

met, and that is not to strictly enforce TCP-Friendly fairness but rather provide

134

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

O
bj

ec
t S

er
iv

ce
 T

im
e

(S
ec

on
ds

)

Seconds

DT
ARC
SFB

CHOKe
RED-PD

SFG
SFA

Figure 4.27: Multiple Unresponsive MPEG Video Streams - Average Web Object
Service Time

reasonable protection from egregiously unresponsive flows.

4.2.4 Summary

In this section, we present a novel statistical packet filtering mechanism, Stochastic

Fairness Guardian (SFG), which protects flows that respond to congestion from un-

responsive flows through preferential packet drops. SFG, the Crimson Bandwidth

Controller, is a lightweight and general packet filter that can be used in conjuction

with a drop-tail queue or with an AQM to improve efficiency as well as provide pro-

tection. We also provide practical SFG configuration guidelines through performance

bottleneck analysis and the false positive rate analysis.

In evaluation, SFG is integrated with a drop-tail queue and with ARC forming

Stochastic Fair ARC (SFA) that is the building block the Crimson Internet. SFG

and SFA are evaluated through simulations and compared with other preferential

drop mechanisms including SFB [36], CHOKe [91] and RED-PD [85], and also com-

pared with approaches with no filtering mechanisms including ARC and drop-tail.

Performance metrics include queue dynamics, throughput, fairness, byte loss rate,

135

packet drop rate and Web object service time.

Considering overall performance and design complexity, SFA outperforms other

preferential dropping mechanisms as well as drop-tail and ARC over a wide, prac-

tical range of traffic loads. We also show that Congestion Controllers using ECN,

while improving Web performance under light or moderate congestion, can degrade

small Web object service times versus drop-tail for offered loads of 1.4 or higher. In

such a high traffic load, SFG with drop-tail queue management shows the best Web

performance.

4.3 Crimson Conclusions

In this chapter, we presented the design, configuration and evaluation of the two

practical Crimson AQM mechanisms, ARC and SFG, and the integration referred

to as SFA. Through simulations, we showed that SFA efficiently handles congestion,

minimizes queuing delay, and provides affordable fairness protection from misbehav-

ing flows over a wide range of realistic traffic conditions.

There is a concern that loading an IP router with more functionality like AQM

may further slow down the packet processing speed of the router. This statement

is true in general, since router access speed is an order of magnitude slower than

the link speed, and the bottleneck may often be at the network processor rather at

the link. The packet processing speed issue can be addressed using parallelism and

pipelining in the process architecture, which is an approach already taken in some

network processor designs today.

For Crimson AQM, computing the congestion notification probability (p) is the

most computationally intensive function in the ARC design. However, since ARC

computes p every 1 or 2 seconds (the recommended measurement epoch length),

136

there will be little slow down in the packet processing speed. In case of SFG, the

multi-hashing is the most computation intensive function. With integer hashing,

SFG can perform hash through pipelined and parallel processing units each of which

performs a number of simple bitwise operations. This will speed up the hashing

process to the speed of performing a set of bitwise operations.

An related argument is that bandwidth over-provisioning without AQM would

be enough to make a low delay network and be free from the threats of misbehaving

traffic. This argument may be generally true for core network routers, yet may not

hold for edge routers of 2nd or 3rd tier Internet service providers (ISP) and end-

user Internet connections. Customers’ demand for bandwidth grows as the provided

Internet connection speed increases, which may quickly saturate the routers of lower

tier ISPs. If not the lower tier ISPs, the end-user Internet connection links shall often

face congestion. In addition, with the popular use of streaming media and peer-to-

peer (P2P) file sharing applications, lower tier ISPs or end-users may want to control

the network usage of specific traffic to achieve a certain performance goal. Even

homes and small companies share an Internet connection link with multiple users and

applications. End-users may often want to use P2P file transfers as they speak on the

Internet phone, in which case the users may experience increased delays and degrade

quality in the voice conversation. The Crimson AQM at the edge routers will help

meeting quality of service (QoS) requirements of the delay sensitive applications.

137

Chapter 5

End-System Support for

Streaming Media

This chapter first presents an Internet video streaming measurement study in Sec-

tion 5.1. The study measures network layer and application layer performance of

a commercial Internet video stream over TCP and UDP, and characterizes media

streaming requirements. During the measurement study, we identify shortcomings

of TCP as a streaming transport protocol: 1) TCP hides network information, such

as packet loss rate and round-trip delay, needed for efficient available bandwidth

estimation for media scaling. 2) The penalty of overestimating available bandwidth

using TCP is severe due to the large TCP sender buffer, put in place to maximize

throughput. As an effort to enhance transport protocol support for media streaming

based on the findings, we modify TCP to provide Multimedia Transport Protocol

(MTP) for multimedia streaming. Section 5.2 present the design and evaluation of

MTP.

138

5.1 Understanding Streaming Requirements

The growth in power and connectivity of today’s computers has enabled streaming

video across the Internet to the desktop. For example, in 2001 an estimated of 350,000

hours of online entertainment was broadcast each week over the Internet [110], with

countless more hours downloaded on-demand. Web sites today offer streaming videos

of news broadcasts, music television, live sporting events and more.

While voice quality audio typically operates over a low and narrow range of

bitrates (32-64 Kbps), video operates over a much higher and wider range of bitrates.

Video conferences and Internet videos stream at about 0.1 Mbps1, VCR quality

videos at about 1.2 Mbps2, broadcast quality videos at about 2-4 Mbps3, studio

quality videos at about 3-6 Mbps3, and HDTV quality videos at about 25-34 Mbps3.

Thus, video applications have the potential to demand enormous bitrates, often

greater than the available network capacity, but also have the potential to reduce

their data rates when available capacity is constrained.

Unlike typical Internet traffic, streaming video (or streaming media in general)

is sensitive to delay and jitter, but can tolerate some data loss. Thus, streaming

applications often prefer UDP over TCP as their transport protocol, since TCP’s

reliable transmission service can cause potentially large delay during congestion.

Streaming over UDP may achieve better stream quality than streaming over TCP.

However, UDP streams can be a threat for the well-being of the public network since

streaming applications may not implement a proper congestion control mechanism.

Streaming applications perform media scaling to achieve a best stream quality for

the available network capacity, and thus can reduce UDP stream bitrates in response

1H.261 and MPEG-4
2MPEG-1
3MPEG-2

139

to congestion. Yet, with the use of repair techniques [11, 82, 95, 102], UDP packet

losses can be partially or fully concealed, reducing the impact of loss on the quality

of the video by the user, and thus reducing the incentive for multimedia applications

to lower their bitrate in the presence of packet loss during congestion.

Potentially high-bitrate video over UDP using repair techniques suggest that

video flows may not be TCP-friendly or, even worse, that video flows may be un-

responsive to network congestion. In the absence of end-to-end congestion control,

TCP flows competing with video flows using UDP reduce their sending rates in

response to congestion, leaving the unresponsive UDP flows to expand to use the

vacant capacity, or, worse, contribute to congestion collapse of the Internet [43]. The

threat of UDP streams becomes even more prominent with the growth in broadband

Internet connection capacity offered by Internet Service Providers (up to 3 Mbps for

typical cable modem services), since high-bitrate video streaming becomes available

for more end-users.

Recent research has proposed TCP-Friendly streaming transport protocols in the

hope that streaming media applications will use them [44, 114, 113, 131]. However,

such protocols are not yet widely part of most operating system distributions. More-

over, it is not clear whether the proposed protocols are indeed practical for streaming

applications, and whether the protocols give enough incentives for streaming applica-

tions to use the new protocols in place of TCP or UDP. While there have been some

studies characterizing streaming traffic [19, 73, 80, 90, 124, 130], few studies have

been made to characterize the media scaling performance of Internet video streams

and to understand the streaming end-system protocol requirements.

This study characterizes video streams on the current Internet by measuring and

analyzing the application and network layer statistics of Internet video streams from

Real Networks, one of the most widely used commercial streaming media product.

140

In particular, this study, also published in [26], characterizes the degree of media

scaling supported by RealVideo streams on the Internet, measures media scaling

performances of the TCP and UDP video streams, such as congestion responsiveness

of UDP streams and media scaling effectiveness of TCP streams. By comparing the

application and network layer performance of video streams over TCP and UDP, two

drastically different transport protocols, this study characterizes streaming protocol

requirements.

We set up a network testbed where two clients, one using UDP and the other

using TCP, streamed video through a network router we control and connected to

the Internet via a broadband connection. We varied the bottleneck bitrate to the

clients by limiting the capacity of the router’s outgoing connection, allowing us to

explore a range of congestion situations. Over the course of 2 months from February

2002, the two clients streamed hundreds of videos selected with a variety of content

and encoding formats from a diverse set of Web servers, while measuring packet

loss rates and round-trip times as well as application level statistics such as encoded

bitrates and frame rates.

Following is the summary of our key findings: 1) Most streaming RealVideo clips

on the Internet are not capacity-constrained for a typical broadband connection. 2)

In cases of congestion at the local Internet connection link, streaming RealVideo

over UDP often gets a larger share of the bandwidth than the competing streaming

RealVideo over TCP. However, UDP streams that respond to congestion by reducing

the application layer encoding rate often meet TCP-Friendly criteria. 3) The bitrates

of UDP RealVideo streams during buffering are up to 5 times the steady state playout

rate, making the UDP streams bandwidth greedy during the periods. 4) About

35% of Internet RealVideo clip samples were single-bitrate congestion unresponsive

clips that are unresponsive to congestion by changing levels. Moreover, about 40%

141

of the unresponsive clips were high-quality videos. 5) Media scaling over TCP is

difficult since TCP hides network information such as packet loss rate and round-

trip time needed for efficient media scaling decisions. Moreover, the huge penalty of

overestimating available TCP bandwidth, i.e. the large queuing delay at the TCP

sender caused by transmission of previous high quality video frames, contributes to

the inefficient media adaption and causes frequent media re-buffering events at the

receiver.

The rest of this paper is organized as follows: Section 5.1.1 presents background

on RealPlayer to help understand our results; Section 5.1.2 describes our approach

to obtain a wide-range of Internet measurements; Sections 5.1.3 and 5.1.4 present

and analyze, respectively, the measurement data obtained; Section 5.1.5 discusses

our findings; Section 5.1.6 summarizes our conclusions and presents possible future

work.

5.1.1 RealVideo Background

RealPlayer provided by RealNetworks,4 is one of the most popular streaming media

players on the US Internet, with over 47% of the commercial market share in April

2001 [68]. RealVideo content providers create streaming videos using a variety of

possible video codecs, convert it to RealNetworks’ proprietary format and place it

on an Internet host running RealServer. During creation, content providers select

encoding bitrates appropriate for their target audience and specify other encoding

parameters, such as frame size and frame rate, appropriate for their content. The

RealServer then streams the video to a user’s RealPlayer client upon request.

RealServer and players primarily use the Real Time Streaming Protocol5 (RTSP)

4http://www.real.com/
5http://www.rtsp.org/

142

for the session layer protocol. Occasionally, RealServer will use HTTP for metafiles

or HTML pages, and HTTP may also be used to deliver clips to RealPlayers that

are located behind firewalls. Older versions of RealServer used the Progressive Net-

works Audio (PNA) protocol and, for backward compatibility, newer RealServers

and players still support this protocol. For this measurement study, all the video

clips selected used RTSP, as described in Section 5.1.2.1.

At the transport layer, RealServer uses both TCP and UDP for sending data.

The initial connection is often in TCP, with control information then being sent along

a two-way TCP connection. The video data itself is sent using either TCP or UDP.

By default, the actual choice of transport protocol used is determined automatically

by the RealPlayer and RealServer, resulting in UDP about 1/2 the time and TCP

the other 1/2 [130]. The decision making process RealPlayer uses to choose either

UDP or TCP is not publicly documented, and may be interesting future work. The

choice of UDP or TCP can also be manually specified by the user [111]. For our

study, we specifically set RealPlayer to use UDP in some cases and TCP in others,

as described in Section 5.1.2.2.

RealSystem supports an application level media scaling technology called Sure-

Stream in which a RealVideo clip is encoded for multiple target bitrates [30, 112].

When streaming a SureStream RealVideo clip, RealServer determines which encoded

stream to use based on feedback from the RealPlayer regarding the client end-host

network conditions. With SureStream, the actual video stream served can be varied

in mid-playout, with the server switching to a lower bitrate stream during network

congestion and then back to a higher bitrate stream when congestion clears. We

study the flexibility of SureStream scaling in Section 5.1.4.4.

For each video clip, RealPlayer keeps a buffer to smooth out the video stream be-

cause of changes in capacity, lost packets or jitter. Data enters the buffer as it streams

143

to RealPlayer, and leaves the buffer as RealPlayer plays the video clip. If network

congestion reduces available capacities for a few seconds, for example, RealPlayer

can keep the clip playing with the buffered data. If the buffer empties completely,

RealPlayer halts the clip playback for up to 20 seconds while the buffer is filled again.

We measure the rate at which RealPlayer fills the buffer in Section 5.1.4.3.

5.1.2 Measurement Approach

Media scaling technologies adapt media encoding to the available bitrate in an effort

to provide acceptable media quality over a range of available bitrates [9, 128]. In

times of congestion, media scaling benefits both the network, by reducing offered

load, and also the user, by providing graceful degradation in perceived quality [123].

As mentioned in Section 5.1.1, RealSystems provide SureStream media scaling at the

application level that can select an adequate quality version of a video to fit into the

current conditions of available network bitrate.

In order to empirically measure the media scaling performances of RealVideo over

UDP and TCP, we employed the following methodology:

• Select RealVideo URLs that use the Real Time Streaming Protocol (RTSP)

using well-known Web search engines (see Section 5.1.2.1).

• Construct an environment for measuring the responsiveness of RealVideo over

UDP by comparing it to TCP under the same network conditions (see Sec-

tion 5.1.2.2).

• Construct an environment for measuring the effectiveness of media scaling over

TCP by comparing the application layer behavior of non-competing RealVideo

over UDP or TCP (see Section 5.1.2.3).

144

• Iteratively play the selected RealVideo clips in both environments with differ-

ent bottleneck capacities and analyze the results (see Section 5.1.3 and Sec-

tion 5.1.4).

5.1.2.1 RealVideo Clip Playlist

We desired a relatively realistic environment in which we could measure and compare

the media scaling performances of RealVideo over UDP and TCP. If we had chosen

a stand-alone environment where we could precisely control the network conditions

from the server to the client, the encoded content and server platform chosen might

impact performance more than the network, resulting in inaccurate conclusions about

the Internet at large. Thus, we decided to use publicly available Internet RealVideo

servers and clips as the traffic sources.

To form a clip playlist, we searched for RealVideo clips (URLs) accessible through

Web pages using well-known search engines, such as Yahoo and Google, and selected

100 valid RTSP RealVideo URLs from the first 100 search results returned. Of the

selected URLs, 76 were from the United States, 9 from Canada, 8 from the United

Kingdom, 6 from Italy, and 1 from Germany. While our selection method of using

US/English based commercial search engines likely influenced the predominance of

North American URLs, our RealPlayer clients also ran from North America, and it

is likely that there is typically a similarly strong locality of access for most streaming

players. Of the original set of 100 video clips, 21 clips became unavailable sometime

after the initial selection and before the experiments were completed. Thus streaming

results of the remaining 79 clips were used for analysis.

For the clips selected, the median clip length was about 3 minutes, while the

shortest and longest clips played out in 20 seconds and 30 minutes, respectively.

Other statistics on the selected RealVideo clips are available in Section 5.1.3, Sec-

145

Figure 5.1: Testbed Network Setup: Environment to Measure the Responsiveness of
RealVideo

tion 5.1.4.4 and [27].

5.1.2.2 Responsiveness of RealVideo over UDP Measurement Environ-

ment

Ideally, we sought an environment in which to measure the network layer respon-

siveness of RealVideo over UDP by comparing it to that of long-lived TCP flows

under the same network conditions. We had two RealPlayers, one using UDP and

the other using TCP, simultaneously stream a video clip from the same RealServer

along the same network path, while we captured network and application statistics.

As depicted in Figure 5.1, the two RealPlayers ran on separate PCs attached to the

same 10 Mbps hub. Both PCs were equipped with a Pentium III 700 MHz processor,

128 MB RAM and a UDMA-66 15 GB hard disk, and were running Linux kernel

version 2.4. Both PCs ran RealPlayer version 8.0.3, with one RealPlayer configured

to use UDP and the other RealPlayer configured to use TCP.

The hub facilitated capturing network layer performance data since packets des-

tined to either PC were broadcasted to both PCs. We ran tcpdump6, a well-known

network packet sniffer, on one PC to filter and log the video stream packets. As

6http://www.tcpdump.org/

146

the RealVideo packet format is proprietary, we were unable to obtain sequence num-

bers and, hence, loss information, from the packet traces themselves. We did run

tcptrace7 on the tcpdump data, but it only provides statistics on the very sparse

amount of RTSP control traffic from the client to the server and not statistics on the

data stream itself. Instead, during the playout of each clip, we ran a ping at 1 second

intervals to the server to obtain samples of the round-trip time (RTT) and packet

loss rate. During pilot studies, we confirmed that the RTTs and loss rates obtained

via the ping samples were comparable to those obtained via tcptrace. Also, we

verified that the packet filtering and logging did not induce significant CPU or disk

load and did not interfere with the video playout. At the end of each RealVideo

stream, information such as the IP packet size and arrival time were extracted from

the tcpdump log using ethereal8 and processed to obtain network layer statistics,

such as throughput.

In order to control network congestion, we considered adding background traffic

along the path from the client to the servers. However, as discussed, most Re-

alServers do not simultaneously provide other file services making it difficult to add

congestion-causing traffic to servers in a controlled manner. Instead, to consistently

control the incoming available bitrate, we set up a private Linux router connected

to a commercial 700 Kbps DSL network to enable us to create constrained bitrate

situations. The router was configured to use network address translation (NAT) to

eliminate the possibility that packets from the competing TCP and UDP streams

would be routed differently. We attached a Linux token bucket filter (TBF)9 module

to the Ethernet card at the internal network of the router. The TBF queue size was

7http://irg.cs.ohiou.edu/tcptrace/tcptrace new/
8http://www.ethereal.com/
9Recent work measuring broadband access links suggest some ISP providers similarly use TBFs

to limit capacities [76].

147

set to 10 Kbytes and the burst allowed (the maximum number of tokens available

during idle times) was set to 1600 bytes, slightly larger than a typical 1500 byte MTU.

The token rate (available bitrate) was set to 600 Kbps, 300 Kbps, 150 Kbps and 75

Kbps. Note, since we have two streaming flows, one TCP and one UDP, competing,

their fair capacity share is approximately half of each bottleneck capacity.

Although it is conventional wisdom that over-provisioning in core network routers

has moved Internet performance bottlenecks to network access points [1], it is still

possible that network bottlenecks may occur elsewhere. However, for our study, the

location of the bottleneck, whether at the access link or further upstream, does not

impact the competition between the TCP and UDP streams since the streams have

the same NAT-translated IP address and thus share the same network path. Even

if the network path is altered mid-stream due to a routing change, the change will

be applied to both streams.

For each DSL-TBF configuration, we carried out two sets of measurements, where

each set consecutively played all video clips in the playlist.

5.1.2.3 Media Scaling Measurement Environment

To study media scaling in RealPlayer and its effectivenss on TCP streaming we used

RealTracer,10 developed for a previous study [130], which plays RealVideo streams

and records application level statistics, including encoding rate. One of the client

machines was booted to run Microsoft Windows ME and equipped with RealPlayer 8

Basic version 6.0.9 and RealTracer version 1.0. We then ran a non-competing, single

UDP or TCP stream for each URL in the playlist, while limiting the TBF incoming

bitrate to 35 Kbps,11 since the highest encoded bitrate for all clips that did media

10http://perform.wpi.edu/real-tracer/
11The queue was set to 5 Kbytes for the 35 Kbps DSL-TBF configuration.

148

scaling was above 35 Kbps. We tried other TBF rates such as 25 Kbps, 150 Kbps and

300 Kbps to verify we measured all possible scale levels (or encoded bitrates) used

for clip playouts. However, only 2 sets of measurements, TCP for the entire playlist

and UDP for the entire playlist, on the 35 Kbps DSL-TBF configuration was used

to characterize the responsiveness of RealVideo media scaling (see Section 5.1.4.4).

5.1.3 Result

Over the course of 2 months from February 2002, we streamed a total of over 200

hours of video from a cumulative total of over 2000 video clips. Of the total 79 clips

in the playlist, 24 (about 30%) of their servers did not respond to ping packets,

making them unavailable for loss and round-trip time (RTT) analysis. For all RTT,

loss and TCP-Friendly analysis in this report, we removed the data from these clips,

leaving a total of 110 clips for each protocol type at each bottleneck capacity (55 clips

× 8 × 2 sets of experiments = 880 total clips). However, we did use the other data

recorded on the set of 148 clips for each protocol type at each bottleneck capacity

(1184 clips total) for analysis that did not require use of the ping data.

Comparing the average RTTs obtained via ping probes for each bottleneck ca-

pacity, the 75 Kbps connection had the highest round-trip times. The median RTTs

for the 75, 150, 300 and 600 Kbps configurations were 450, 340, 130 and 100 ms

respectively. For the 150-600 Kbps configurations, about 33% of the clips had about

the same RTT regardless of the bottleneck capacity since these clips streamed at less

than 150 Kbps, and therefore do not suffer additional queuing delays at the router.

For the remaining 67% of the clips, the lower the bottleneck capacity the higher the

queuing delays, caused primarily by the 10 Kbyte buffer at the bottleneck router.

Summarizing the loss rates obtained via ping probes for each bottleneck capacity,

the median loss rate for any configuration was less than 2%. About 37% of the clips

149

played with low bottleneck capacities had no loss, while about 50% of the clips

played at higher bottleneck capacities had no loss. Overall loss rates increased about

1% for each decrease in bottleneck capacity from 600 Kbps to 300 Kbps to 150

Kbps to 75 Kbps. The low loss rates, even at low capacities, implies that most of

the RealVideo UDP streams adapted to the available bitrate, and is investigated in

depth in Section 5.1.4.

Summarizing statistics on packet sizes, the TCP streams used larger packets than

the UDP streams with a median UDP packet size of about 640 Kbytes, and a median

TCP packet size of about 1100 Kbytes. Moreover, more than 30% of the TCP packets

were equal to the typical network MTU, 1500 Bytes. A possible reason for the larger

packet sizes over TCP is that while RealServers can control the application frame

sizes to send, with TCP, those frames are often grouped and sent based on the current

TCP window sizes.

We do not present further details on the results here, but refer the interested

reader to [27].

5.1.4 Analysis

In analyzing the media scaling performance of RealVideo over UDP and TCP, we

first analyze bitrates aggregated over all clips and then analyze bitrates for individual

clip pairs (Section 5.1.4.1). We next analyze the TCP-Friendliness of RealVideo over

UDP (Section 5.1.4.2). Then, we characterize the initial buffering rate compared

with the steady playout rate (Section 5.1.4.3). Moving to the application layer, we

analyze the application scaling behavior and the effectiveness of media scaling over

TCP (Section 5.1.4.4). Lastly, we examine the smoothness of the network data rate

of TCP and UDP streams (Section 5.1.4.5).

150

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

C
um

ul
at

iv
e

D
en

si
ty

Average Bitrate for 600 Kbps (Kbps)

Average Bitrate for TCP
Average Bitrate for UDP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

C
um

ul
at

iv
e

D
en

si
ty

Average Bitrate for 300 Kbps (Kbps)

Average Bitrate for TCP
Average Bitrate for UDP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

C
um

ul
at

iv
e

D
en

si
ty

Average Bitrate for 150 Kbps (Kbps)

Average Bitrate for TCP
Average Bitrate for UDP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

C
um

ul
at

iv
e

D
en

si
ty

Average Bitrate for 75 Kbps (Kbps)

Average Bitrate for TCP
Average Bitrate for UDP

Figure 5.2: CDFs of Average Bitrates for Bottleneck Capacities of 600, 300, 150, and
75 Kbps

5.1.4.1 Bitrates

Figure 5.2 depicts Cumulative Density Functions (CDFs) of the per-clip average bi-

trate used by TCP and UDP for bottleneck capacities of 600, 300, 150 and 75 Kbps.

The TCP and UDP distributions are nearly the same for the 600 Kbps bottleneck

capacity. However, as capacity becomes more constrained, the distributions sepa-

rate, with UDP having a consistently higher distribution of bitrates than TCP, as

evidenced by UDP distributions being lower and to the right of the corresponding

TCP distributions.

We next analyze the head-to-head bitrate for each pair of (TCP, UDP) clips. For

each clip pair, in Figure 5.3 we plot an (x,y) point where x is the average bitrate used

151

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 B
itr

at
e

fo
r

U
D

P
 (

K
bp

s)

Average Bitrate for TCP (Kbps)

75 Kbps
150 Kbps
300 Kbps
600 Kbps

Figure 5.3: Head-to-Head Average Bitrate (all runs)

by the TCP stream and y is the average bitrate used by the UDP stream. The points

for each bottleneck capacity are depicted by a different point style. The dashed 45

degree line provides a reference for equal bitrates for both TCP and UDP. Points

above the line (top left of the graph) indicate UDP had a higher average bitrate

while points below the line (bottom right of the graph) indicate TCP had a higher

average bitrate. The distance from the line indicates the magnitude of the average

bitrate difference.

From Figure 5.3, while there are some points that lie along the equal bitrate

line, there are many cases of bitrate disparity. The highest bitrate playouts for the

600 Kbps bottleneck capacity had the greatest bitrate disparities. For the 600 Kbps

bottleneck capacities, there are visually as many points below the equal bitrate line

where TCP had a higher average bitrate as there are above the equal bitrate line

152

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

C
um

ul
at

iv
e

D
en

si
ty

Normalized Average Bitrate Difference (TCP-UDP)

75 Kbps
150 Kbps
300 Kbps
600 Kbps

Figure 5.4: CDF of the Difference (TCP - UDP) in the Average Bitrate, Normalized
by the Bottleneck Capacity (all runs)

where UDP had a higher average bitrate. For the lower bottleneck capacities, there

are visually considerably more points above the equal bitrate line, indicating UDP

had a higher average bitrate than did TCP.

We next analyze the bitrate disparity relative to the bottleneck capacity. For

each clip pair, we subtract the UDP average bitrate from the TCP average bitrate

and divide the difference by the bottleneck capacity. Thus, equal sharing of capacity

has a value of 0, a value of -1 indicates UDP got the entire bottleneck capacity, and

a value of +1 indicates TCP got the entire bottleneck capacity. Figure 5.4 depicts

CDFs of the normalized bitrate differences for each bottleneck capacity.

For the 600 Kbps bottleneck capacity, about 40% of the clips shared the capacity

equally. As indicated by the region in the top right, about 30% of TCP clips had a

higher bitrate than their counterpart UDP clips while about 20% of the UDP flows

had a higher bitrate than their counterpart TCP clips, as indicated by the region in

the bottom left. For the 600 Kbps bottleneck capacity, the greatest bitrate disparity

was approximately half the bottleneck capacity.

153

For the lower bottleneck capacities, there were increasingly fewer clips with equal

bitrates. Many UDP clips had substantially higher bitrates than did their TCP

counterparts, as indicated by the large areas under the distributions on the bottom

left. For the 300 Kbps bottleneck capacity, about 60% of the UDP clips had higher

bitrates than their TCP counterparts, and for the 150 Kbps and 75 Kbps bottleneck

capacities, about 70% of the UDP clips had higher bitrates than their TCP counter-

parts. For the 300, 150 and 75 Kbps bottleneck capacities, about 20% of the UDP

clips got twice the normalized bitrate of their TCP counterparts. For the 150 and 75

Kbps bottleneck capacities, about 20% of the UDP clips had more than 80% more

of the normalized bitrate than their TCP counterparts. However, even for the lowest

bottleneck capacities, there were still cases where the TCP clips had a higher bitrate

than their UDP counterparts, as depicted by the areas above the distributions in the

upper right.

In general, as bitrates become constrained, streaming RealVideo clips over UDP

receive relatively more capacity than do streaming RealVideo clips over TCP. How-

ever, further limiting capacity does not significantly change the UDP vs. TCP bitrate

allocation ratio. A significantly large number of the UDP video streams are able to

adapt to reduced capacities without causing increased congestion. Moreover, in all

cases, streaming RealVideo clips over UDP sometimes have lower bitrates than do

competing TCP flows, especially for higher bottleneck capacities.

We next analyze the impact of round-trip time and loss rate on the normalized

bitrate disparity. The data rate of TCP is paced by acknowledgments and is limited

by packet loss rate, so a higher round-trip time or loss rate directly results in a lower

maximum throughput. However, the data rate of UDP is not similarly constrained.

Our analysis of round-trip times and loss rates obtained by the ping samples show

modest correlations for both round-trip times and normalized bitrate disparity and

154

Coefficient of Determination (R2) = 0.339

(0,.2,-.7)

(1,0,-.5)

Best Fit f(R,p) = 0.015 - 0.507R - 3.735p
600 Kbps Samples
300 Kbps Samples
150 Kbps Samples
75 Kbps Samples

0
0.05

0.1
0.15

0.2
Loss Rate (p)

0 0.2 0.4 0.6 0.8 1

RTT in Seconds (R)

-1

-0.5

0

0.5

1

Fairness (Norm TCP-UDP Bitrate Diff)

Figure 5.5: Loss Rate, Round-Trip Time and Fairness (Normalized TCP-UDP Av-
erage Bitrate Difference)

loss rates and normalized bitrate disparity. Figure 5.5 plots the normalized bitrate

differences as a function of round-trip time and loss rate, and draws the best-fit

(least square) plane for the samples. The coefficient of determination (R2) of 0.339

indicates that the regression plane explains about one-third of the variation in the

normalized bitrate disparity. The correlation of -0.51 for the round-trip time in

seconds and -3.7 for the loss rate indicates that as round-trip times and loss rates

increase, streaming RealVideo clips over UDP receive relatively more of the available

bitrate than do streaming RealVideo clips over TCP.

5.1.4.2 Discussion of TCP-(Un)Friendliness

Although RealVideo over UDP may receive a disproportionate share of available bi-

trate than do their TCP counterparts, this may be because RealVideo TCP clips

transmit at less than their maximum rate. A more serious test of unfairness is

155

whether RealVideo over UDP is TCP-Friendly in that its data rate does not ex-

ceed the maximum rate of a conformant TCP connection under the same network

conditions. The TCP-Friendly rate, T Bps, for a connection is given by [43]:

T ≤
1.5×

√

2/3× s

R ×√p
(5.1)

with packet size s, round-trip time R and packet drop rate p. For each clip for

each run, we use Equation (5.1) to compute the TCP-Friendly rate (T), using a

packet size (s) of 1500 bytes12 and the loss rate (p) and RTT (R) obtained from the

corresponding ping samples. We then compare T to the average bitrate used by the

UDP clip. For each bottleneck capacity, we record the count of the number of times

the UDP clip was not TCP-Friendly.

Bottleneck Total min > max < Effective
Capacity Unfriendly fair fair Unfriendly

75 Kbps 8/110 (7%) 22 30 8/58 (14%)

150 Kbps 7/110 (6%) 12 42 5/56 (9%)

300 Kbps 9/110 (8%) 12 48 7/50 (14%)

Total 24/330 (7%) 46 120 20/164 (14%)

Table 5.1: Number (and percent) of Non-TCP-Friendly Flows

The TCP-Friendly results are shown in Table 5.113. The “Unfriendly” columns

indicate a count of the UDP clips that were not TCP-Friendly. The “min > fair”

column indicates the count of clips that had a minimum encoded bitrate greater

than the fair share of network capacity; these clips were not encoded to be able to

properly respond to congestion. The “max < fair” column indicates the count of

clips that had a maximum encoded capacity less than the fair share of the available

bitrate; these clips, in general, had no need to respond to congestion. Removing

12The maximum packet size recorded. See [27] for more details on packet sizes.
13Since the 600 Kbps bottleneck capacity clips had very low loss rates, we do not include the 600

Kbps data in our analysis to avoid data skew from “unlucky” sampling.

156

the clips counted in these last two columns provides a base count for the non-TCP-

Friendly clips, presented in the column “Effective Unfriendly”. This last analysis is

useful as it exactly represents the percentage of RealVideo clips that must respond

to congestion because of available bitrate constraints and have been encoded to allow

the RealServer server to do so.

Overall, 36% (120/330) of the UDP streams had a maximum bitrate less than

their fair share and thus were unconstrained by the network conditions. On the

other hand, 14% (46/330) of the UDP streams were constrained by the network

conditions but had not been encoded so as to allow them to respond to congestion.

This latter set, while problematic from the congestion control point of view, can

be readily addressed by content providers selecting multiple encoded bitrates when

creating streaming video content for their Web sites. Of the remaining UDP streams

that were constrained by the network and had been encoded to allow a congestion

response, 14% were not TCP-Friendly.

The TCP-Friendly formula in Equation (5.1) is conservative in that it computes

the maximum bitrate an aggressive TCP connection would receive. Thus, connec-

tions that achieve a higher bitrate than computed in Equation (5.1) are clearly not

TCP-Friendly. In general, there is evidence to suggest many cases where streaming

RealVideo over UDP is, in principle, TCP-Friendly, and there is also evidence to sug-

gest that streaming RealVideo clips over UDP can sometimes be non-TCP-Friendly,

particularly for capacity-constrained conditions.

5.1.4.3 Buffering Data Rate

As suggested in [80], RealPlayer buffers data at an accelerated rate for the first part

of a clip. Confirming and analyzing the rate of this buffering rate versus steady

playout rate may help to characterize the bursty nature of RealVideo streams.

157

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 B
uf

fe
rin

g
R

at
e

/ A
ve

ra
ge

 S
te

ad
y

P
la

yo
ut

 R
at

e

Average Steady Playout Rate (Kbps)

TCP (All DSL-TBF Runs)
UDP (All DSL-TBF Runs)

Figure 5.6: Ratio of Average Buffering Rate to Average Steady Playout Rate versus
Average Steady Playout Rate (all runs)

For each clip, we compute the maximum bitrate averaged over 10 second intervals

taken over the first 80 seconds (calling this the buffering data rate) and compare this

to the average bitrate over the time from 100 seconds until the clip ends (calling this

the steady playout rate).

Figure 5.6 depicts the ratio of (average buffering data rate / average steady

playout rate) for different steady playout rates. For reference, a ratio of 1 indicates

that the buffering data rate was equivalent to the steady playout rate. Low bitrate

clips buffered at up to 6 times their average playout rates. Higher bitrate clips

buffered at relatively lower rates, possibly because capacity restrictions limited them

from buffering at a higher rate. Although not shown in this section, under capacity

constrained conditions, UDP streams in buffering phase were often greedy limiting

bitrates of the competing TCP streams also in buffering phase. The buffering /

steady playout ratios less than 1 in the 0-150 Kbps range for some TCP streams are

caused by TCP retransmission timeouts during buffering.

In order to determine if capacity restrictions limit buffering rates, we ran a set

158

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

C
um

ul
at

iv
e

D
en

si
ty

Average Buffering Rate / Average Steady Playout Rate

TCP (All LAN Runs)
UDP (All LAN Runs)

Figure 5.7: CDF of Ratio of Average Buffering Rate to Average Steady Playout Rate
(LAN)

of experiments with the bottleneck capacity being the campus LAN attached to the

Internet via a 15 Mbps link.14 In this setup, the LAN environment was relatively

unconstrained, having a bottleneck capacity which was typically at least three times

that of our 600 Kbps bottleneck capacity.

Figure 5.7 depicts a CDF of the ratio of the average buffering data rate to the

average steady playout rate. The buffering rate to steady rate ratio for UDP was

nearly the same as that of TCP for 40% of the clips. For 60% of the clips, however,

the ratio of buffering rate to steady rate for UDP was significantly higher than that

of TCP. For UDP, the vertical “steps” in the CDF are at typical RealVideo encoding

rates, where the buffering rate was a fixed multiple of these rates. For TCP, the

steep slope in the CDF at around 2 suggests TCP streams typically buffered at a

rate twice that of the steady playout rate.

In general, both RealVideo clips over UDP and RealVideo clips over TCP buffer

data at a significantly higher rate than the steady playout rate. Due to this prominent

buffering period, RealVideo cannot be modeled as a simple CBR flow, as is common

14http://www.wpi.edu/Admin/Netops/MRTG/

159

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

C
um

ul
at

iv
e

D
en

si
ty

Number of Scales (Coded-Bitrate)

Figure 5.8: CDF of Media Scales (all runs)

in many network simulations that include streaming media. In fact, looking at a

simple average bitrate over the length of the entire clip will also not reveal the true

nature of RealVideo since it will miss the buffering period. An accurate bitrate

distribution for RealVideo must include a buffering stage, whereby the sending data

rate is typically from 2-5 times the steady-state playout rate and a post-buffering

stage whereby the actual bitrate is dependent on the encoding bitrate of the content

and the network conditions.

5.1.4.4 Media Scaling

In Section 5.1.4.2, we showed that even if using media scaling, RealVideo streaming

over UDP can still be TCP-unfriendly. This section analyzes data from the media

scaling measurement experiments, as described in Section 5.1.2.3, to characterize the

degree of media scaling supported in Internet RealVideo streams and measure the

effectiveness of media scaling over TCP. The application layer media scaling statistics

also helps explaining factors that caused the TCP-unfriendly bitrates for some of the

UDP RealVideo streams.

160

�

�����

������

������

������

������

������

������

������

� 	 	

�������������������������������� ���!��"#

�
�
�
�
�
�
�
��
	

��
��

�
�
�

������ ������ ������

�����	 �����
 ������

������ ����� ������

Figure 5.9: Media Scales and Encoded-Bandwidth (all clips). The horizontal-axis
represents the number of different media scaling levels the clip can provide while the
vertical axis represents the encoded bitrate for each scale level. The clips are sorted
from the fewest scales on the left to the most scales on the right. For ties, the clips
with the lowest encoded bitrate appear first.

Figure 5.8 shows a CDF of the number of distinct encoded bitrate levels seen in

each clip for all runs. About 35% of the clips were not using media scaling at all,

and therefore over UDP, these clips have difficulty responding to network congestion.

Less than 50% of the clips were using more than 4 levels of scaling and so could only

adjust to the available bitrate coarsely.

Figure 5.9 shows the scale levels and corresponding bitrates for each clip, sorted

first by number of levels, and second by the lowest encoded bitrate. For the un-

responsive clips (those with only 1 scale level), 40% were high-quality video clips

that had a bitrate higher than 150 Kbps. Also, over 50% of the clips with 3 to 5

scale levels were targeted primarily for broadband connections and could not adapt

to capacities below 50 Kbps. Streaming these clips on capacity-constrained links

using UDP would cause unfairness to any competing TCP flows. RealVideo clips

with more than 5 scale levels were designed to adapt more readily to low capacity

161

0

50000

100000

150000

200000

250000

0 50 100 150 200 250 300 350

C
od

ed
-B

itr
at

e
(b

ps
)

Playout + Buffereing Time (sec)

local bw limit (35 kbps)
Scale (Coded-Bitrate) Movement for Clip-65 TCP
Scale (Coded-Bitrate) Movement for Clip-65 UDP

0

50000

100000

150000

200000

250000

300000

0 20 40 60 80 100 120 140

C
od

ed
-B

itr
at

e
(b

ps
)

Playout + Buffereing Time (sec)

local bw limit (35 kbps)
Scale (Coded-Bitrate) Movement for Clip-78 TCP
Scale (Coded-Bitrate) Movement for Clip-78 UDP

Figure 5.10: Media Scaling Dynamics: Clip-65 (top) and Clip-78 (bottom) (DSL:
BR=35 Kbps, Q=5 Kbytes)

conditions, evidenced by the number of scale levels with low bitrates, but may still

be unfair at higher capacities.

When available capacity is reduced during congestion, real-time streaming servers

must employ media scaling in order to preserve timing, whether streaming over UDP

or TCP. Figure 5.10 shows the media scaling behavior of two sample RealVideo clips

streaming over UDP and TCP, where the available inbound bitrate was 35 Kbps. For

both clips and both streams, the initial encoded bitrate was significantly higher than

the available capacity, depicted by the horizontal line at 35 Kbps. Each horizontal

“step” represents an application layer scaling of bitrate. The final playout bitrates

162

achieved show the conservative adaptation of the RealServers since they stabilize at

a bitrate less than what is available. This conservative media scaling behavior may

result in less than optimal video quality but often helps the UDP RealVideo streams

to achieve TCP-Friendly rates as supported by our TCP-Friendliness analysis. In

the top graph of Figure 5.10, both TCP and UDP scaled their application data rate

6 times before the encoded rate settled below the available bitrate. However, UDP

was able to obtain this application data rate much more quickly than did TCP.

In the bottom graph of Figure 5.10, UDP quickly used 7 scale levels to adjust the

application’s data rate to the available bitrate, while TCP, on the other hand, took

more than 20 seconds to adjust the rate, and then it did so in one, large encoding

rate change.

We believe the difficulty RealPlayer over TCP has in adjusting the application

data rate to the available network bitrate is because TCP does not expose network

information to the application layer. Streaming applications over TCP can only

measure application level goodput and not information on packet drop rates or round-

trip times. Streaming applications over UDP, on the other hand, can more easily

detect packet losses and measure round-trip times, allowing them to more quickly

adjust the application data rate to the available network bitrate.

Moreover, for high-quality, high-bitrate videos, the inability to detect network

congestion when using TCP is critical. As evidenced by the TCP stream in the

bottom graph of Figure 5.10, the server fills the available TCP buffers with high

quality video frames that must be delivered by the transport layer before it is able to

scale down. For the user, this results in a large delay before frame playout begins as

the high-quality frames are buffered over a low-capacity connection. Quantitatively,

by looking at the end-time of transmission, the top graph of Figure 5.10 shows that

to play 3 minutes (i.e., 180 seconds) of video, streaming over UDP took about 200

163

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

C
um

ul
at

iv
e

D
en

si
ty

Number of Scale (Coded-Bitrate) Changes

Number of Scale Changes Seen for TCP
Number of Scale Changes Seen for UDP

Figure 5.11: CDF of Media Scale Changes (DSL: BR=35 Kbps, Q=5 Kbytes)

seconds while streaming over TCP made frequent media re-buffering events and took

more than 300 seconds. In other words, streaming over UDP required 20 seconds

of buffering to play a 3 minute video clip, while streaming over TCP required more

than 2 minutes of buffering to play the same 3 minute clip. This illustrates the effect

of TCP send buffer queuing latency on streaming in [48].

In Figure 5.11, the CDFs depict the number of media scale changes seen for each

video clip, and summarize the relative responsiveness of RealVideos in scaling the

application data rate to below the available network bitrate. Overall, UDP streams

had more scale changes than did TCP streams. Also, Figure 5.11 shows that about

20% (55% - 35%) of the streams that scaled when streamed over UDP did not scale

at all when streamed over TCP.

Figure 5.12 summarizes the responsiveness of RealVideo media scaling based on

how quickly the video stream adapted to the available bitrate after streaming started.

Specifically, for the successfully adapted streams, we measure the time taken for the

encoded bitrate to drop under the inbound capacity limit, depicted as the first point

under the 35 Kbps limit for each stream in Figure 5.10. Figure 5.12 shows that about

164

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

C
um

ul
at

iv
e

D
en

si
ty

Elaps Time in Seconds: 0 to time(Coded-Bitrate < 35kbps)

Scale Adaptation Speed for TCP
Scale Adaptation Speed for UDP

Figure 5.12: CDF of Media Scale Adaptation Speed (DSL: BR=35 Kbps, Q=5
Kbytes)

15% of the video clips were low-quality and always required less than 35 Kbps. Also,

25% (40% - 15%) of the video clips were able to adapt to the available bitrate within

a couple of seconds, independently of the transport protocol used. However, for the

remaining 60% of the clips, the TCP video streams took significantly more time

to adapt their scales to the available bitrate. For example, 80% of the UDP video

streams adapted to the available bitrate within 10 seconds, while it took more than

25 seconds for the same percentage of the TCP video streams to adapt.

In general, majority of RealVideo clips have ability to, and do, scale their appli-

cation data rates to the available network capacity. However, a significant fraction

of RealVideo clips are unable to adapt their application data rates to the available

network capacity, causing UDP streaming to be unfair under capacity-constrained

conditions. Also, the comparison of the media scaling performances of UDP and

TCP streams reveals that media scaling over TCP is difficult due mainly to the

streaming-unfriendly TCP API. RealVideo streams over UDP can adjust their ap-

plication data rates to the available bitrate more efficiently than can RealVideo over

165

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/2 1 2

C
um

ul
at

iv
e

D
en

si
ty

Throughput Ratio for 600 Kbps

TCP
UDP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/2 1 2

C
um

ul
at

iv
e

D
en

si
ty

Throughput Ratio for 300 Kbps

TCP
UDP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/2 1 2

C
um

ul
at

iv
e

D
en

si
ty

Throughput Ratio for 150 Kbps

TCP
UDP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/2 1 2

C
um

ul
at

iv
e

D
en

si
ty

Throughput Ratio for 75 Kbps

TCP
UDP

Figure 5.13: Smoothness Ratio for Bottleneck Capacities of 600, 300, 150, and 75
Kbps

TCP.

5.1.4.5 Smoothness

Streaming video requires not only a moderate to high bitrate but also a smooth data

rate. TCP’s acknowledgment-based window advancement can result in a bursty data

rate, thus requiring a significantly larger receiver buffer at the application level for

a smooth media playout than is required for UDP streams. Streaming media appli-

cations, especially real-time applications, sometimes cite these reasons for choosing

166

UDP as their primary transport protocol [48].

For each clip, we calculate the “smoothness” of the network data rate every

500 ms by taking the ratio of consecutive bitrates measured over each interval. For

example, if the data rate is 200 Kbps for one time interval and 400 Kbps the next time

interval, the smoothness of the interval would be 2. If the data rate then dropped

by half back to 200 Kbps, it would be 0.5 for the next interval. Figure 5.13 depicts

CDFs of smoothness for each network bottleneck bandwidth, with the x-axis drawn

in log-scale so as to make a smoothness of 0.5 and 2 visually equal. Both TCP and

UDP were smooth for a bottleneck capacity of 600 Kbps. With bottleneck capacities

of 300, 150 and 75 Kbps, both TCP and UDP became noticeably less smooth, with

TCP often far less smooth than UDP.

In general, as for other streaming applications, streaming RealVideo clips over

UDP receive a smoother playout rate than do streaming RealVideo clips over TCP

for capacity-constrained conditions.

5.1.5 Discussion of Results

In the current Internet, there are no concrete incentives for applications that use UDP

to initiate end-to-end congestion control. In fact, at the network level, unresponsive

applications may be “rewarded” by receiving more than their fair share of available

bitrate. As seen in Section 5.1.4, streaming media over UDP can sometimes result in a

higher average bitrate than streaming media over TCP, primarily because competing

TCP sources are forced to transmit at a reduced rate. Plus, as seen in Section 5.1.4.4,

it is more difficult for the application layer to adjust the encoding rate to the available

bitrate when using TCP, because the streaming-unfriendly TCP API hides network

information required for efficient media scaling and does not provide methods to

control the TCP sender buffer. Thus, there are strong application-oriented reasons

167

for streaming media to use UDP rather than TCP, suggesting potentially high-bitrate

video over UDP may contribute to congestion collapse.

However, an unresponsive “fire-hose” application, such as high-quality video using

UDP over a congested link, is ineffective from the application standpoint primarily

because having a congested router randomly drop packets can cause the more impor-

tant data packets to be dropped [13]. Instead, applications can significantly benefit

by using media scaling, as illustrated by RealPlayer in Section 5.1.4.4, to make in-

telligent decisions about which packets not to send beforehand, making low quality

video over the same congested link quite effective.

As shown in Section 5.1.4.2, media scaling, a streaming QoS control mechanism,

can also be an effective means of responding to network congestion. While scaling

the application data rate to meet the available bitrate, RealVideo over UDP often

achieves a TCP-Friendly transmission rate. However, these results, obtained in an

experimental environment that induces contention at the low-capacity last-mile link,

may or may not hold for contention on high-capacity backbone links. Typically, the

packet drop rate of a high-capacity link may be affected little by the data rate of

a single video stream, causing a weaker control relation between media scaling and

network contention (packet loss rate). Under such a condition, the sensitivity of the

media scaling will dominate the congestion responsiveness of the UDP video stream.

While we were unable to measure the scaling sensitivity of RealVideo streams in

this study, in the worst case, a RealVideo may very coarsely react to the network

regardless of the scale levels supported by the clip, streaming either at the highest

or at the lowest quality level.

In addition, although media scaling, when coupled with properly scale-encoded

RealVideo clips, may be effective it is not always guaranteed as media scaling is

an optional encoding feature provided to content providers as a means to enhance

168

streaming media quality rather than as a proper congestion control mechanism. Sec-

tion 5.1.4.4 shows that about 30% of RealVideo streams could not do application

media scaling at all, being unresponsive to network congestion when streaming over

UDP.

Moreover, the higher buffering rate seen in Section 5.1.4.3, being beneficial for

users, can possibly be harmful to the network. A higher buffering rate either allows

the player to build up a larger buffer before beginning frame playback and thus better

avoids any un-smoothness caused by network jitter or transient congestion, or allows

the frame playback to begin earlier. However, the increased buffering rate makes

the streaming traffic more bursty and, with UDP, it can cause even more unfairness

versus any competing TCP flows.

Thus, despite some positive congestion responsiveness results of RealVideo UDP

streams, end-to-end congestion control that relies solely on media scaling may not be

a suitable solution for the well-being of the Internet. Instead, a streaming-friendly

transport protocol with a proper congestion control mechanism should be provided.

Such a protocol would ideally provide a streaming-friendly API that gives applica-

tions transmission state information as well as control over the transmission buffer

management for efficient media scaling. In addition, the protocol should give stream-

ing applications incentives to use the new protocol instead of UDP, such as support

for ECN and/or TCP compatible firewall friendliness (i.e. can go through existing

firewalls as does TCP).

5.1.6 Summary

In this work, we evaluated the network-level and application-level media scaling per-

formance of UDP and TCP RealVideo streams under the same network conditions.

We set up a testbed that allowed us to stream two RealVideo clips, one over TCP

169

and one over UDP, along the same network path. Our testbed also let us control

the network bottleneck capacity, thus allowing us to evaluate the responsiveness to

congestion of the UDP streams. Using our testbed, we streamed over 600 hours of

videos from over 2000 video clips with a variety of content and encoding bandwidths

selected from across the Internet.

Media scaling directly determines the congestion responsiveness of UDP streams

and can be an effective means of responding to congestion when paired with video

clips encoded with multiple scale levels. Overall, we find RealVideo over UDP typi-

cally receives TCP-Friendly bitrates under normal network conditions and even dur-

ing periods of packet loss. However, under capacity-constrained conditions, Re-

alVideo over UDP can have a higher bitrate than TCP and the bitrate gets increas-

ingly unfair with an increase in packet loss rate and round-trip time. Moreover,

properly scale-encoded video clips are not guaranteed as they are an optional encod-

ing feature provided as a means to enhance streaming media quality rather than as

a proper congestion control mechanism. In addition, the user-beneficial rapid buffer-

ing of traffic over UDP can cause considerable congestion and can make RealVideo

network traffic more difficult to manage.

This study concludes that while not threatening the well-being of the Internet as

is commonly feared under normal network conditions, RealVideo UDP streams may

also not necessarily be good Internet citizens. Furthermore, since our observations

apply only to RealVideo streams with the congestion responsiveness of other pop-

ular streaming applications still unknown, we see the need for a streaming friendly

network protocol that supports end-to-end congestion control.

This study also analyzed the suitability and/or shortcomings of using TCP as a

streaming transport protocol. Adjusting the application data rate to the available

network bitrate is more difficult when streaming over TCP versus UDP, because

170

application streams over TCP do not have as much information about the current

network state as do the applications when streaming over UDP, and the penalty of

overestimating the available capacity is severe for TCP. This suggests that streaming

friendly application programming interface (API) design is one of the most important

factors for successful deployment of a future streaming transport protocol.

171

5.2 Multimedia Transport Protocol

The two characteristics of continuous media that distinguish streaming media ap-

plications from other traditional Internet applications are the continuity and the

repairability of the media. As an effort to improve stream quality and avoid media

play at interruption, streaming applications use media scaling to select or re-select

an encoded medium appropriate for the available bandwidth of the network. In

addition, streaming applications use a media buffer at the receiver to prevent me-

dia playout jitter due to network transmission delays. Media buffer contents are

measured in seconds of media play time, not bytes or packets.

Streaming applications today choose either TCP or UDP as their transport pro-

tocol, depending on individual needs. It has been a myth that UDP is the dominant

choice for streaming media on the Internet, believing that it is difficult to achieve ac-

ceptable streaming performance over TCP. However, Merwe, Sen and Kalmanek [125]

report that video on demand (VoD) and live broadcasting applications predominantly

use TCP over UDP, with TCP used for about 72% to 75% of all bytes transferred.

Streaming over UDP is undesirable when firewalls block UDP to limit the pen-

etration of streaming traffic. This restriction for UDP also occurs when network

address translation (NAT) is employed at end-user routers in home and small cor-

poration networks. Furthermore, the unresponsiveness of UDP streams can lead to

excessive congestion at the bottlenecked router. While media scaling can be effec-

tively employed by streaming applications to respond to network congestion, it is

often not deployed in an appropriate congestion avoidance fashion as shown in Sec-

tion 5.1 and [93]. Using streaming repair techniques [11, 82, 95, 102], can partially

or fully conceal UDP packet losses thus reducing the incentive for UDP flows to be

responsive to congestion.

172

Recent research has proposed TCP-Friendly streaming transport protocols [44,

114, 113, 131] in the hope they will be used by streaming media applications. How-

ever, most TCP-Friendly protocols focus on achieving smooth and TCP-Friendly

transmission rates, but with little concern for an application programming inter-

face (API) to meet media scaling performance requirements. Thus, most proposed

TCP-Friendly protocols are not streaming-friendly in that they make it difficult to

acquire network information and effectively perform media scaling over the proto-

cols. Additionally, very little progress has been made on deployment of TCP-Friendly

protocols because they do not have stability equivalent to that of TCP and cannot

obtain support from current firewalls. Obviously, TCP-Friendly protocols without

support from current firewalls do not appeal to streaming media that choose TCP

for its availability in the presence of firewalls. Such protocols do not appeal to UDP-

based streaming media as well, since they provide little benefit to the streaming

applications in return for restricting their network usage.

Taking into account the problems with both UDP and TCP-Friendly protocols for

streaming applications, recent research analyzes cases where TCP streaming provides

satisfactory performance [129], and suggests ways to improve streaming performance

over TCP [117, 72, 31]. Nevertheless, TCP streaming remains problematic due to

following reasons: 1) Performing media scaling over TCP is difficult, since TCP’s

API hides network information such as packet loss rate and round-trip times that are

essential for making efficient media scaling decisions; 2) Overestimating the available

TCP data rate leads to stream quality degradation due to large queuing delays at the

TCP sender as shown in Section 5.1; 3) TCP’s reliable in-order packet delivery often

induces large frame reception jitter that can interrupt streaming media playout.

When a TCP sender’s transmission rate is less than the streaming bitrate, media

frames are queued and delayed at the sender’s protocol buffer. Since high-quality

173

media frames can block transmission of lower-quality media frames in the sender

buffer, the delay added by the protocols sender buffer can significantly degrade stream

quality when the streaming system is downscaling the media quality. While delay-

aware TCP input queue adaptation, such as in [48], can reduce media frame reception

jitter, the queue length adaptation alone does not resolve the difficulties in obtaining

network state information over TCP nor reduce retransmission-induced jitter.

This section presents Multimedia Transport Protocol (MTP), a modified form of

TCP for streaming that favors prompt and timely datagram delivery service over

reliable in-order transmission service. By removing retransmissions from the TCP

protocol, MTP instead sends the packet with the highest sequence number in place

of a retransmission. By removing both retransmissions and ordered packet delivery

from TCP, MTP reduces the high delay and jitter characteristics that make TCP im-

practical for interactive applications, and makes network information such as packet

loss and round-trip time transparent for making media scaling decisions.

MTP offers two modes of transmission at the API: 1) non-blocking transmission

mode offering UDP API semantics, and 2) the block-on-full-queue mode of default

TCP. It is a common practice that streaming media servers, particularly ones over

UDP, operate in a rate-based frame transmission mode, a so called “fire-and-forget”

mode, receiving no indications of packet delivery [105]. This often is true even

if RTCP [116] is used to get receiver information. The non-blocking transmission

mode of MTP supports the contemporary rate-based streaming applications by re-

quiring little modification to switch to MTP. Offering UDP transmission semantics

requires MTP senders to use a best-effort queue management mechanism to drop

packets from applications when the sender buffer is full. For implementation of the

non-blocking transmission API, MTP uses a simple drop-front queue management

that works well with streaming media. On the other hand, the block-on-full-queue

174

mode of MTP offers prospective streaming applications an advanced control over

frame transmissions. For both transmission modes, MTP may additionally use a dy-

namic queue length adaptation mechanism introduced in [48] to support interactive

streaming applications.

MTP has advantages over other TCP-Friendly transport protocols: 1) MTP has

the proven stability of TCP since it has the exact congestion avoidance mechanism

of TCP; 2) MTP can be implemented as a mode for TCP in the deployment phase

as well as a separate protocol to get full support from the existing firewalls; 3) MTP

can be easily made available for all operating system distributions, since an MTP

implementation can reuse most of an existing TCP implementation; 4) Existing UDP

streaming applications can easily switch to MTP with a minimum change using the

non-blocking transfer mode, while new streaming applications may use the block-

on-full-queue option as well. In addition, the Internet community proposes to build

an unreliable transport protocol incorporating end-to-end congestion control, called

Datagram Congestion Control Protocol (DCCP) [71]. DCCP proposes to support

a TCP-like window-based congestion control mechanism (Congestion Control ID 2)

similar to MTP and to support TFRC [44] (Congestion Control ID 3), a rate-based

end-to-end mechanism. The design and evaluation of MTP for streaming media is a

valuable contribution toward the design and evaluation of the DCCP ID 2 congestion

control mechanism.

MTP evaluation requires a realistic streaming application that performs media

scaling and simulates media buffering and playout. While implementing and evaluat-

ing MTP on Linux was considered, this approach was dropped when we were unable

to find a reasonable open-source streaming application that could be modified to

use MTP. Thus the alternative path of evaluating MTP using NS [127] simulations

was selected. This required building MTP into NS based on the existing TCP Reno

175

implementation and designing and implementing a video streaming system, called

Goddard, into NS based on streaming application behavior observed in Section 5.1

and [93].

The simulations show that MTP video streams adapt as quickly as UDP streams

to available bandwidth and significantly reduce rebuffering events that are common

in TCP streams while maintaining other media qualities such as frame rate and

picture resolution at TCP stream levels. The results also show that existing UDP

streaming application can use MTP with little modification to their media scaling

mechanisms to achieve better quality than TCP streams.

The following sections are organized as follow: Section 5.2.1 presents the design of

MTP; Section 5.2.2 presents the design of the Goddard streaming server and client;

Section 5.2.3 evaluates MTP in comparison with TCP and UDP using Goddard; and

Section 5.2.4 summarizes our conclusions and lists possible future work.

5.2.1 Design of MTP

Multimedia Transport Protocol (MTP) is a TCP modification that disables retrans-

missions, while preserving the transmission timings and congestion responsiveness

characteristics of TCP. MTP performs slow start, congestion avoidance, fast retrans-

mission and fast recovery as does TCP, yet offers a UDP-like transparent API and

provides UDP packet delivery semantics. Namely, MTP does not offer guaranteed

or in-order packet delivery.

MTP retains the same loss detection and recovery mechanisms of TCP. Instead

of a retransmission, the MTP sender temporally inflates its transmission window and

sends a new packet.15 The inflated transmission window is deflated back when an

acknowledgment for the retransmission-replacement packet is received. This tempo-

15Note, for this discussion the terms segment and packet are used interchangeably.

176

rary transmission window inflation has the effect of not counting the retransmission-

replacement packet sent as a new transmission when making the next new packet

transmission decision and is required for MTP to have the same transmission behav-

ior at the network layer as that of TCP.

In MTP, a retransmission replacement packet is marked in the TCP header by

the MTP sender to distinguish it from a normal packet at the MTP receiver. On

reception of a retransmission-replacement packet, the MTP receiver marks as re-

ceived the oldest outstanding packet in its packet reception window and advances

the receiver window in the same manner as a TCP receiver would upon reception of a

retransmitted packet. Additionally, the MTP receiver records the sequence number

of the replaced new packet, updates the receiver window again and sends an acknowl-

edgment for the highest consecutively received packet sequence number. An MTP

receiver does not hold any received packets in the receiver window for in-order deliv-

ery, but provides packets to the application as soon as they are received. Thus, the

receiver window contains only sequence numbers of received packets for management

of acknowledgment packets.

In summary, an MTP implementation requires a mechanism to keep track of

replacement packets in the transmission window at the MTP sender and a bit in

the TCP header, referred to as the replacement bit, to distinguish retransmission

replacement packets from new packets. We implemented MTP in NS by extending

the built-in TCP Reno code. Thus, the subsequent discussion describes the behavior

of MTP built upon TCP Reno.

5.2.1.1 Duplicate Acknowledgment Management

The general description of MTP behavior given in the previous section is a brief sum-

mary of MTP’s behavior upon receiving three duplicate acknowledgments. When en-

177

countering duplicate acknowledgments, the MTP source performs congestion avoid-

ance, fast retransmission and fast recovery as does TCP, and yields identical conges-

tion window movement and packet transmission timings. However, unlike TCP, on

reception of a triple duplicate acknowledgment, MTP inflates the transmission win-

dow size by the number of not-yet-acknowledged retransmission-replacement packets

including the current one, advances the highest sequence number sent thus far, and

transmits a new data packet in the place of the retransmission with the highest se-

quence number and the replacement bit set in the TCP header. In the case there is

no new data available in the input buffer on receiving a triple duplicate acknowledg-

ment, the MTP sender transmits the acknowledged lost packet in the transmission

window. Retransmission-replacement packets received by a MTP receiver are han-

dled as described in the previous section.

Figure 5.14 provides an example of MTP duplicate acknowledgment manage-

ment behavior as compared to TCP Reno. In this example, both the TCP and MTP

senders detect a single packet loss while they have the congestion window size (cwnd)

of 6 and are in congestion avoidance mode indicated by cwnd equal to the slow start

threshold (ssthresh). TCP retransmits the lost packet 11 when getting triple dupli-

cate acknowledgment for packet 10 and halves cwnd to 3. On the other hand, MTP

transmits the retransmission replacement packet 19 when detecting loss of packet 11

and halves cwnd to 3. Thus, although the packet sequence number advancements

are different, the congestion window movement and packet transmission timings at

the network packet level of TCP and MTP are identical for a single packet loss in a

window. This is also true for multiple packet losses in a window and for acknowledg-

ment packet losses as long as the sender does not timeout due to lack of duplicate

acknowledgments or loss of a retransmitted (or retransmission-replacement) packet

during fast recovery.

178

Sender State Receiver State
starting ssthresh=6 Ack Seq Wnd Note Recv Window

10 16 6 10
10 17 6+1 dup1 12
10 18 6+2 dup2 12 13

fast-retransmit 10 11 3+3 dup3 12 13 14
TCP 10 3+4 dup4 12 ... 15

fast-recovery 10 3+5 dup5 12 ... 16
10 19 3+6 dup6 12 ... 17
10 20 3+7 dup7 12 ... 18
18 21 3 18

10 16 6 10
10 17 6+1 dup1 12
10 18 6+2 dup2 12 13

fast-retransmit 10 19∗ 3+3+1 dup3 12 13 14
MTP 10 3+4+1 dup4 12 ... 15

fast-recovery 10 3+5+1 dup5 12 ... 16
10 20 3+6+1 dup6 12 ... 17
10 21 3+7+1 dup7 12 ... 18
19 22 3 19

Figure 5.14: An Example Duplicate Acknowledgment Management of TCP (Reno)
and MTP: Wnd = congestion window + the number of duplicate acknowledgments
(+ the retransmission replacement inflation for MTP), and the notation n∗ for MTP
represents packet n with the retransmission replacement bit set in the TCP header.

0

1

2

3

4

0 10 20 30 40 50

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

TCP (N=1 fp=0.014 bp=0.0)

0

1

2

3

4

0 10 20 30 40 50

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

MTP (N=1 fp=0.014 bp=0.0)

Figure 5.15: TCP versus MTP Throughput: The forward network packet loss rate
pf = 0.014, the backward packet loss rate pb = 0.0, the round-trip time RTT = 60
ms and the bottleneck capacity C = 100 Mbps.

179

Figure 5.15 compares the throughput (measured in 100 ms intervals) of a single

TCP and a single MTP flow on a simulated network with capacity of 100 Mbps,

round-trip link delay of 60 ms and forward direction packet loss rate pf = 0.014,

where the same simulation was run once with a TCP flow and then again with an

MTP flow with packet drops generated by the same random seed. The two lines

on top of each other before the timeout around 37 seconds show that MTP packet

transmission characteristics are identical to that of TCP as long as the senders can

effectively detect lost packets via the triple duplicate acknowledgment mechanism.

In addition, the TCP and MTP throughputs are identical even for the five timeouts

before 37 seconds indicating that TCP and MTP transmission characteristics are

equivalent even for some timeout recovery situations. However, the timeout recovery

behavior of MTP can be slightly different from that of TCP under some conditions,

as discussed in detail in the next section.

5.2.1.2 Retransmission Timeout Recovery

Retransmission timeout in TCP and MTP occurs in two cases: 1) When there are

not enough outstanding packets to generates three duplicate acknowledgments for

all the lost packets in a window, or there is a failure to deliver the acknowledg-

ments to the sender due to lost acknowledgment packets; 2) When a retransmitted

or retransmission-replacement packet generated during fast retransmit is also lost,

making the sender unable to return to the congestion avoidance mode after fast

recovery.

On a retransmission timeout, the MTP sender tries to recover from the timeout in

a manner similar to that of a TCP sender. That is, MTP performs slow start until the

congestion window (cwnd) reaches the slow start threshold (ssthresh), and returns

to congestion avoidance mode. Yet, unlike TCP which restarts the transmission

180

from one below the highest consecutively acknowledged packet sequence number

(hi ack), MTP restarts by transmitting a new packet16 with the replacement bit set

and advances the highest sequence number sent so far (max seq) by one.17.

At the beginning of timeout recovery, cwnd is set to one. Thus, if the size of the

sender’s transmission window is computed as max seq minus hi ack as in TCP, MTP

cannot transmit a new packet. To resolve this situation, MTP uses a new sender

state variable called transmission window base (wnd base) as the lower bound of the

the transmission window for computing the transmission window size. When MTP

is not in a timeout recovery, wnd base is set to hi ack whenever hi ack is updated

upon the arrival of a new acknowledgment packet. This yields the same transmission

window size as in TCP. However, at the start of a timeout recovery, the MTP sender

sets wnd base to max seq before sending out a new packet and declares timeout

recovery until hi ack is less than or equal to wnd base.

During a timeout recovery, all packets are marked as retransmission-replacement

packets by the MTP sender before transmission. However, since the sender does not

know the state of the receiver’s window upon restart, the sender cannot determine

whether a new packet sent is indeed used as a retransmission replacement packet

or not. Thus, the MTP sender does not inflate the transmission window on the

transmission of an intended retransmission-replacement packet. Instead, the sender

monitors acknowledgment packets during timeout recovery and inflates the transmis-

sion window when a new acknowledgment packet with the acknowledgment number

less than or equal to wnd base is received. Otherwise, since the updated hi ack (with

the new acknowledgment number) is greater than the value of wnd base, MTP comes

16In case there is no new application data to send, the MTP sender waits until new data is
available.

17In an OS implementation stack, the packet sequence number and window advancement should
use bytes instead of packets.

181

starting Sender State Receiver State
ssthresh=2 Ack Seq Wnd Note Recv Window

11 1 12 13
TCP 13 14,15 2 13

14 16 2 14
15 17,18 3 15

15∗ 1 wnd base 12 13
MTP 13 16∗17∗ 2+0+1 = 14 15

16 18 2 wnd base 16
17 19,20 3 = hi ack 17

Figure 5.16: Example Recovery of TCP and MTP from a Timeout Due to Lack of
Duplicate Acknowledgments: Packets 11 and 14 are lost in the previous transmis-
sions. Notions (Wnd and ∗) are the same as in Figure 5.14.

out of the timeout recovery, sets the wnd base to the updated hi ack and continues

transmission in the normal transmission mode.

Figure 5.16 provides an examples that illustrates the timeout recovery transmis-

sion behavior of MTP in comparison with TCP. In the example, the loss of packets

11 and 14 in the previous transmission window when cwnd = 4 cause the retrans-

mission timeout and ssthresh before the timeout is 4. When the retransmission

timer expires, TCP reduces cwnd = 1 and ssthresh = 2 and retransmits the packet

hi ack+1 (packet 11). When the acknowledgment comes back for packet 13, TCP in-

creases cwnd = 2 and retransmits packet 14 and transmits a new packet 15. Since in

this example, packet 14 was also lost in the previous transmission, the retransmitted

packet 14 was useful.

When the timeout occurs, MTP sets wnd base to max seq, which is 14 in the

example, and transmits packet 15 setting the replacement bit in the TCP header.

The receiver, upon reception of the retransmission-replacement packet 15, sends

acknowledgment for packet 13. On receiving the acknowledgment, the sender updates

hi ack = 15 and cwnd = 2. Then, the MTP sender compares hi ack with wnd base,

and inflates the transmission window by one as hi ack ≤ wnd base. The sender

182

starting Sender State Receiver State
ssthresh=2 Ack Seq Wnd Note Recv Window

11 1 12 14
12 13,141 2 14

TCP 14 15,16 2 14
141 17 2+1 dup1 14
15 18 3 15

15∗ 1 wnd base 12 14
12 16∗17∗ 2+0+1 = 14 14 15

MTP 16 18 2 wnd base 16
17 19,20 3 = hi ack 17
18 21 3 18

Figure 5.17: Example Recovery of TCP and MTP from a Timeout Due to Lack of
Duplicate Acknowledgments: Packets 11 and 13 are lost in the previous transmis-
sions. Notions (Wnd and ∗) are the same as in Figure 5.14.

transmits packet 16 and 17 as it can transmit up to max seq − wnd base + the

retransmission replacement inflation (rrp inf). Additionally, packets 16 and 17 are

marked as able to replace retransmissions as the MTP sender is still in timeout

recovery mode. Upon receiving the acknowledgment for packet 16 (> wnd base),

the sender comes out of the timeout recovery by setting wnd base = hi ack = 16

and returns to congestion avoidance mode.

The traffic scenario in Figure 5.16 is a special case of dual packet loss that yields

the identical packet transmission timings for TCP and MTP. In general, TCP and

MTP transmission timings are identical for timeouts due to a single packet loss for

a small cwnd or due to two packet losses in a window where the most recently sent

packet is lost as in Figure 5.16. In other cases, MTP behaves slightly more efficiently

than TCP.

Figure 5.17 illustrates the behavior of TCP and MTP under the transmission

scenario that is identical to the scenario of Figure 5.16 except that packet 13 is

lost instead of packet 14. In TCP, the retransmitted packet 14 is wasted, since the

receiver already has packet 14 in the receiver buffer. This also generates a duplicate

183

acknowledgment that delays advancement of cwnd at the sender. On the other hand,

by transmitting new packets each time, MTP avoids duplicate acknowledgments

during timeout recovery and may achieve a higher goodput than TCP. Although TCP

and MTP transmission timings may be slightly different after a timeout in general,

this makes little difference on their throughput as long as the TCP sender does not

face three duplicate acknowledgments by unwisely retransmitting packets that the

TCP receiver already has in the buffer. In such a case, the TCP sender unnecessarily

reduces its congestion window. The next example in Figure 5.18 illustrates this point.

Figure 5.18 shows TCP and MTP transmissions on a timeout due to loss of

retransmitted (or retransmission replacement) packet. The example assumes that

both the original packet 12 and its retransmission (or the replacement) during fast

recovery are lost, and the retransmission timer expires when there are 4 outstanding

packets. In addition, it is also assumed that both cwnd and ssthresh are reduced

from 8 to 4 due to a triple duplicate acknowledgment event prior to the timeout.

As the timeout occurs, both the TCP and MTP senders reduce cwnd = 1 and

ssthresh = 2, and transmit their first recovery packet, packet 12 for TCP and

packet 32 for MTP. After the first timeout recovery transmission, each sender gets

four duplicate acknowledgments generated by the outstanding packets before the

timeout. As a result, the TCP sender retransmits packets 13, 14, 12, 15 and 16

before it receives the acknowledgment generated by the first packet 12 retransmitted

at the timeout, and falsely reduces its cwnd. These packets again cause 5 duplicated

acknowledgments after the TCP sender receives acknowledgment for packet 30, and

force the second unnecessary cwnd reduction.

The MTP sender also receives the four duplicate acknowledgments generated by

the outstanding packets before the timeout, and falsely reduces its cwnd for the first

time. However, the MTP sender does not cause further duplicate acknowledgments,

184

Sender State Receiver State
starting ssthresh=2 Ack Seq Wnd Note Recv Window

12 1 13 ... 26
11 131 1+1 dup1 13 ... 26 27
11 142 1+2 dup2 13 ... 26 27 28
11 123 1+3 dup3 13 ... 26 27 28 29
11 154165 1+4 dup4 13 ... 26 27 28 29 30
30 31,32 2 30
301 33 2+1 dup1 30
302 34 2+2 dup2 30

TCP 303 316 1+3 dup3 30
304 35 1+4 dup4 30
305 36 1+5 dup5 30
31 2 31
32 2 32
33 3 33
34 37 3 34
346 38 3+1 dup1 34
35 3 35

32∗ 1 13 ... 23 25 26 27
11 33∗34∗ 1+1+1 dup1 13 ... 23 25 ... 28

wnd base 11 35∗36∗ 1+2+2 dup2 13 ... 23 25 ... 29
= 31 11 37∗ 1+3+3 dup3 13 ... 23 25 ... 30

11 38∗39∗40∗ 1+4+4 dup4 13 ... 23 25 ... 31
MTP 23 2+0+5 25 ... 32

33 2 33
34 2 34

wnd base 35 3 35
= hi ack 36 3 36

37 3 37
38 41,42 4 38

Figure 5.18: Example Recovery of TCP and MTP from a Timeout Due to Loss of a
Retransmitted Packet: This example assumes 4 outstanding packets at the time of
the retransmission timeout. Notions (Wnd and ∗) are the same as in Figure 5.14.

since it transmits new packets with the advanced sequence number, and quickly

returns from the timeout recovery. In the beginning of the timeout recovery, MTP

is confused by the four duplicate acknowledgments and overestimates the number of

replacement packets, inflating the transmission window to the replacement packets

plus the number of duplicated acknowledgments. However, the overestimation has

185

little affect on the overall throughput of MTP, since the inflated amounts of the

window are deflated as soon as the sender receives a new acknowledgment and returns

from the timeout recovery. The sender has to defer the next new packet transmission

until the transmission window is reduced below cwnd.

5.2.1.3 TCP-Friendliness

MTP may improve goodput over TCP by avoiding retransmission during a timeout

recovery. However, the fact that TCP may falsely back off due to unnecessary retrans-

missions while MTP does not may bring up a concern about the TCP-Friendliness

of MTP. In practice, TCP may rarely get triple duplicate acknowledgments during a

timeout recovery, and even so, it does not significantly reduces the TCP throughput.

Moreover, newer versions of TCP have an option to use selective acknowledgment

(SACK) [86], which remedies this drawback of Reno TCP.

Figure 5.19 compares the aggregate throughput of 25 MTP flows with that of 25

TCP flows for simulated networks with different packet loss rates. This simulation

uses a dumbbell topology with a 100 Mbps links, where the round-trip delay of

25 source-edge node pairs are randomly distributed over the range [140,480] ms.

Random packet drop modules are installed at the forward and backward backbone

links and the backward packet drop rate is set to pb = 0.10 in order to create a

fair amount of acknowledgment compression. Then, the forward packet loss rate (or

ECN marking rate for ECN traffic) pf is varied over 0.01, 0.05 and 0.10. The same

simulation is run with same random seed twice for each pf , once with 25 TCP flows

and once with 25 MTP flows.

Figure 5.19 (top) shows that the aggregate throughput of 25 TCP flows and 25

MTP flows are nearly identical to each other for all forward packet drop rates veri-

fying the TCP-Friendliness of MTP flows. Figure 5.19 (bottom) demonstrates that

186

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

TCP (N=25 pf=0.01 pb=0.10)
MTP (N=25 pf=0.01 pb=0.10)
TCP (N=25 pf=0.05 pb=0.10)
MTP (N=25 pf=0.05 pb=0.10)
TCP (N=25 pf=0.10 pb=0.10)
MTP (N=25 pf=0.10 pb=0.10)

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
bp

s)

Seconds

TCP (N=25 pf=0.01 pb=0.10)
MTP (N=25 pf=0.01 pb=0.10)
TCP (N=25 pf=0.05 pb=0.10)
MTP (N=25 pf=0.05 pb=0.10)
TCP (N=25 pf=0.10 pb=0.10)
MTP (N=25 pf=0.10 pb=0.10)

Figure 5.19: Aggregate Throughput of 25 TCP and 25 MTP Flows: Drop (Top) and
ECN (Bottom)

ECN enabled MTP flows are also TCP-Friendly, achieving competitive throughput

to that of ECN enabled TCP flows. In addition, by avoiding packet losses, the ECN

flows achieve a little higher throughput than the non-ECN counterparts under the

same pf . MTP with ECN should further improve streaming media quality since

media frame losses due to network congestion can be minimized.

5.2.1.4 Application Programming Interface

MTP offers two modes of transmission at the application programming interface

(API): block-on-full-queue mode offering TCP transmission API semantics, and non-

blocking transmission mode offering UDP transmission API semantics.

When the block-on-full-queue transmission mode is used, a user process sending a

187

packet is blocked while the MTP sender buffer is full. The block-on-full-queue mode

is for prospective streaming applications or existing TCP streaming applications that

use non-blocking socket write system calls in a polling manner to detect whether the

transport sender queue is full and use the information to make media scaling deci-

sions. For the block-on-full-queue transmission mode, an MTP sender may also use

the dynamic queue length adaptation scheme introduced in [48] to reduce MTP queu-

ing delays. The block-on-full-queue transmission mode is not discussed or evaluated

further in this dissertation report.

The non-blocking transmission mode, which can also be used with dynamic queue

length adaptation for delay critical interactive streaming, is designed for existing

UDP streaming applications, so that they can easily adapt to MTP with little

modification. In order to implement the non-blocking transmission API, MTP uses

drop-front queue management on the MTP sender input queue. Drop-front queue

management works better with delay sensitive streaming media transmissions than

does drop-tail queue management, because a prompt notification of packet loss helps

streaming applications to timely perform media scaling or selective retransmission.

Especially when scaling down, dropping packets from high quality media frames in

the queue helps timely transmission of the lower quality media frames. Thus, drop-

front queue management helps prevent the media buffer at the application receiver

from running out of frames avoiding an interrupt in the media playout due to re-

buffering. As in the block-on-full-queue mode, the non-blocking transmission mode

can also be used with a dynamic queue length adaptation mechanism to enhance the

support for delay-critical interactive streaming. Evaluation of such a combination is

left as future work.

Currently, the MTP implementation in NS does not provide packet loss rate or

round-trip time (RTT) information at the API. However, applications can measure

188

packet (or frame) loss rate or RTT themselves over MTP. Thus, MTP without any

specific API changes from TCP still provides a transparent API that allows ap-

plications to estimate network information of their interest. Future work include

modifying MTP API to provide network information such as packet loss rate and

RTT. Packet loss rate and RTT together can be used by the application to estimate

the available MTP bitrate that is necessary to make informed media scaling deci-

sion. In addition, packet loss rate information is required by streaming servers to

determine the amount of forward error correction (FEC) needed to maximize the

stream quality. Also, the RTT of the path should be measured to make efficient

selective retransmission decisions by streaming applications. Yet, the exact network

information, computation and format that should be provided to be useful for media

scaling and FEC requires further study.

5.2.1.5 Discussion on TCP Options

TCP has an option to use selective acknowledgment (SACK) [86]. While the TCP

SACK option is beneficial when retransmitting packets, it is not particularly useful

for MTP. Since MTP transmits a new segment in place of a retransmission, it does

not need to know exactly which packet is lost in the network. When MTP API

is extended to provide applications of network packet loss rate, the SACK option

could help more accurately compute network packet loss rate at the MTP sender.

However, it is usually sufficient for MTP senders to measure packet loss event rates

without SACK as an estimate of the packet loss rate.

TCP’s delayed Acknowledgment (ACK) serves to give the application an oppor-

tunity to send an immediate response, in which case the ACK can be piggybacked

with the packet carrying the response. This saves the network bandwidth and re-

duces the protocol processing overhead. However, delayed ACK option does not

189

improve MTP performance in most cases since most MTP application communica-

tions are one-way streaming. Even for two-way interactive streaming, delayed ACKs

do little to improve MTP performance, since conversation streams in each direction

take place in turn. Delayed ACKs may even have a negative impact on low bitrate

interactive streaming such as voice over IP (VoIP), since the transmission of voice

samples, each of which fits into single MTP packet, can be further delayed in slow

start.

5.2.2 Goddard Streaming Client and Server

We design and implement in NS a streaming system (client and server) called God-

dard.18 Goddard is designed based on the behaviors observed in the RealVideo

streaming measurement study in Chapter 5.1 and Windows Media Player streaming

measurement study in [93]. The Goddard streaming client and server use packet-

pairs [10, 65, 70] to estimate the bottleneck capacity and select an appropriate media

encoding level before streaming. During streaming, the Goddard client and server

re-select the media to stream (i.e., perform media scaling) in response to network

packet losses or re-buffering events that occur when the client playout buffer empties.

Goddard also simulates frame playout of the received media at the client, allowing

frame rate and jitter to be measured for performance evaluation. To the best of

our knowledge, Goddard is the first and only realistic streaming system available in

NS.19

As in commercial systems, the Goddard server supports multiple levels of encoded

media that are configured by giving the frame size and the frame rate for each scale

level. A sample media scale configuration that simulates multiple level encoding of

18Our streaming system is named after Robert Goddard, the “Father of Modern Rocketry” and
a WPI alumnus.

19The Goddard code is available at http://perform.wpi.edu/downloads#goddard.

190

Level Frame Size Frame Rate Bitrate

0 1 KB 10 FPS 80 Kbps

1 1 KB 15 FPS 120 Kbps

2 2 KB 15 FPS 240 Kbps

3 2 KB 20 FPS 320 Kbps

4 4 KB 20 FPS 640 Kbps

5 4 KB 30 FPS 960 Kbps

6 8 KB 30 FPS 1.92 Mbps

Table 5.2: A Sample Media Scale Levels

Parameter Default Value Description

pkp timeout interval 2 seconds Packet-pair timeout interval

buf factor 1.5 Buffering rate factor

play buf thresh 5 Seconds Media buffer threshold to start playout

loss monitor interval 5 seconds Loss monitoring interval

downscale frame loss rate 0.05 Down-scale frame loss rate

upscale interval 60 seconds Up-scale decision interval

upscale frame loss rate 0.01 Up-scale frame loss rate

upscale limit time factor 3 Up-scale limit time factor

Table 5.3: Goddard Client (Gplayer) Parameters and The Default Values

a high quality Internet video is shown in Table 5.2. In addition, the Goddard server

has an option for setting the maximum fragment size for fragmenting large media

frames before transmission. Typically, the maximum fragment size would be set to

the maximum transmission unit (MTU) of the underlying network. The Goddard

client, also called Gplayer for Goddard Player, has the configuration parameters

shown in Table 5.3. The default parameter values are set based on the observations

in Chapter 5.1 and [93].

Similar to commercial streaming systems, the Goddard client and server use three

communication channels for a streaming session: a control channel using a TCP

connection, a UDP packet-pair channel, and a media streaming channel that can be

TCP, UDP or MTP. When setting up a streaming session, the Goddard server sends

the list of supported media scale levels to the Gplayer using the control channel.

Then, Gplayer sets a timer with pkp timeout interval and requests the server to

191

send a pair of UDP packets to estimate the capacity of the network path. If any

one of the packet-pairs is lost, the packet-pair timer expires and Gplayer will send

a request for another packet-pair to the Goddard server. On successful reception of

a packet-pair, the capacity of the network path is computed by dividing the packet

size by the dispersion [108]. Then, Gplayer selects the largest media scale level with

a bitrate less than the computed capacity and notifies the server.

Gplayer also notifies the server of the buf factor before starting streaming to

determine how much the server should increase the transmission rate during media

buffering periods. The Goddard client and server operate in two modes: buffering or

streaming. During buffering, the Goddard server transmits the chosen media frames

at the rate of buf factor times the streaming bitrate, where buf factor used for

commercial streams typically ranges from 1.5 to 4 as shown in Chapter 5.1. Gplayer

maintains a media playout buffer and a playout threshold (play buf thresh). When

the Goddard server starts media transmission in buffering mode, the Gplayer buffers

the frames received in the media buffer. When the media buffer size (given in playout

time) reaches the play buf thresh, Gplayer tells the server to switch to streaming

mode and starts playing the media according to the timing described for the current

media scale level. If the media buffer runs out of frames, Gplayer stops media

playout and switches back to buffering mode. At this time, Gplayer re-selects the

largest media scale level with a bitrate less than the average received throughput for

the previous control interval. Then, Gplayer tells the server to transmit frames of the

new scale level at the buffering rate, that is the streaming bitrate times buf factor.

When a Goddard streaming session uses UDP or MTP for the media channel,

Gplayer can also use frame loss information to make media scaling decisions. In this

case, Gplayer monitors the frame loss rate each time it receives a media frame. When

it is at least loss monitor interval since the last scale adjustment decision was made

192

and the frame loss rate is greater than downscale frame loss rate, Gplayer scales

the media down one level if the current scale level is not already at the minimum. If

the current scale is at the minimum, Gplayer maintains the current scale level. The

default value for downscale frame loss rate is set to 0.05 according to [93].

Gplayer also makes decisions to scale the media up to a higher level, but does

so slowly and gently. Gplayer increases the scale level by one if the frame loss rate

of the stream is less than upscale frame loss rate for upscale interval since the

last time scaling decision was made and the bitrate of the stream after the increase

is less than or equal to the estimated network capacity. Also, in order to reduce

the chance of playout interruption, Gplayer limits scaling up to one below the last

scale level that caused media re-buffering. This limit on scaling up is heuristically

relaxed by one scale level if the stream maintains good quality (i.e., no scale down

events) for upscale limit time factor times the upscale interval. The default for

upscale interval is set to 60 seconds, a value from the observed range (30 to 90

seconds) during the streaming measurement studies in Chapter 5.1 and [93].

Thus, Goddard simulates a realistic streaming video application that performs

media scaling, buffering and playout. Implementation of support for video frame

dependencies, selective retransmission or other media repair mechanisms are left as

future work.

5.2.3 Evaluation under Drop-Tail Network

This section evaluates MTP by comparing the performance of Goddard streaming

video over TCP, UDP and MTP through detailed simulations. The simulations use

an extended dumbbell network topology that adds an intermediate node (i1 to ik)

for each of the end-user node (e1 to ek) as shown in Figure 5.20. The intermediate

nodes simulate a 750 Kbps DSL modem (symmetric up- and down-link capacity) for

193

Figure 5.20: Network Topology

the limited local bandwidth study in Section 5.2.3.1, and a 10 Mbps router for the

rest of the simulations. The backbone link (n1 ↔ n2) capacity is set to 10 Mbps

and all the other network link capacities are set to 100 Mbps. The network uses a

maximum packet size of 1000 bytes. Round-trip link delays (RTLD) are randomly

uniformly distributed over the range [60:1000] ms based on measurements in [67],

except for the streaming and the competing FTP paths (tk ↔ ek). The RTLD of

these paths are set to 140 ms.

All the routers in the simulations use drop-tail queues. The physical queue limit

for the drop-tail queues is set to 500 Kbytes for the 10 Mbps links20 and 20 Kbytes

for the 0.75 Mbps DSL simulation link, approximately equal to the bandwidth-delay

product for the mean round-trip time.

On the normal dumbbell paths (sk ↔ dk), each simulation has 25 backward

direction bulk transfer FTP flows and 300 forward direction background Web sessions

(using the Webtraf code built into NS) that start evenly distributed during the first

30 seconds. Based on settings from [4, 55], each Web session requests pages with

2 objects drawn from a Pareto distribution with a shape parameter of 1.2 and an

20We also set the queue limit for 100 Mbps links to 500 Kbytes. This queue limit has little effects
on the traffic, since 100 Mbps links are not saturated.

194

average size of 5 Kbytes. The Web sessions have an exponentially distributed think

time with a mean of 7 seconds, which results in an average utilization of about 2.5

to 3 Mbps of the 10 Mbps capacity, a fraction typical of some Internet links, such as

in [115]. Except for the simulations in Section 5.2.3.1 that test the media adaptation

behavior of different Goddard streams on the limited local connection link capacity

(0.75 Mbps), 24 forward direction bulk transfer FTP flows on the normal dumbbell

path are used to congest the backbone link.

The Goddard server uses configuration with the seven media scale levels shown

in Figure 5.2 and the fragment threshold of 1 Kbyte. The Goddard client uses the

default configuration parameters shown in Figure 5.3.

We evaluate MTP by analyzing the network layer and application layer perfor-

mances of Goddard video streams over TCP, UDP and MTP. The streaming perfor-

mance is measured in terms of average sustained scale level, frame rate, durations

of both initial buffering and media play, re-buffering event count, TCP-Friendliness,

TCP-Friendly rate adaptation time, and frame reception jitter. For lost frames, the

frame reception jitter is computed by taking the inter-frame arrival time of two con-

secutively received frames divided by the number of lost frames between the two

received frames plus one. For example, if frame 6 is lost, the inter-frame arrival time

between frame 5 and 7 is computed as the reception time difference between frame 5

and frame 7 divided by 2.

5.2.3.1 Limited Local Bandwidth

This experiment shows the media scale adaptation of the Goddard streams over

TCP, UDP and MTP on the network where the end-host connection link capacity

is less than the maximum stream capability. For this study, the intermediate link

capacity (Ci) is set to 0.75 Mbps, a typical capacity of a DSL modem. This creates

195

 0
 1
 2
 3
 4
 5
 6

 100 150 200 250 300 350 400 450 500
S

ca
le

Seconds

TCP Stream

 0
 1
 2
 3
 4
 5
 6

 100 150 200 250 300 350 400 450 500

S
ca

le

Seconds

UDP Stream

 0
 1
 2
 3
 4
 5
 6

 100 150 200 250 300 350 400 450 500

S
ca

le

Seconds

MTP Stream

Figure 5.21: Example Media Scale Dynamics (Run 0)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100 150 200 250 300 350 400 450 500

In
te

r-
F

ra
m

e
A

rr
iv

al
 T

im
e

(S
ec

on
ds

)

Frame Reception Time (Seconds)

TCP Stream

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 100 150 200 250 300 350 400 450 500

In
te

r-
F

ra
m

e
A

rr
iv

al
 T

im
e

(S
ec

on
ds

)

Frame Reception Time (Seconds)

UDP Stream

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 100 150 200 250 300 350 400 450 500

In
te

r-
F

ra
m

e
A

rr
iv

al
 T

im
e

(S
ec

on
ds

)

Frame Reception Time (Seconds)

MTP Stream

Figure 5.22: Example Media Frame Reception Jitter (Run 0)

196

a capacity limited streaming condition since the Goddard streams are configured

to support the maximum streaming bitrate of 1.92 Mbps. On the capacity limited

paths (tk → ek), 3 Goddard streams (TCP, UDP and MTP) and 4 bulk FTP flows

are simultaneously started at 100 seconds and stopped at 400 seconds, where the

background Web traffic and reverse FTP traffic are running from the beginning of

the simulation. This traffic aggregate does not cause congestion at the backbone

link, since the total maximum expected traffic rate is well under the backbone link

capacity (10 Mbps). The maximum expected traffic rate is 8.75 Mbps (7×0.75 Mbps

+ 3 Mbps of Web and acknowledgments traffic). However, the traffic is to simulate

a utilized backbone link for realistic transmission timing variations to the Goddard

streams. We run the simulation 7 times with different random seeds to avoid biases

in any one measurement.

Figure 5.21 shows the media scaling dynamics of the TCP, UDP and MTP streams

from one of the simulations, and Figure 5.22 shows frame reception jitter for the

corresponding streams. Figure 5.21 show that for all three streams the packet-pairs

estimation of capacity choose the initial scale level of 4 providing streaming bitrate

of 640 Kbps. The streams start transmission in the buffering mode at the rate of 960

Kbps, 1.5 times faster than the streaming bitrate and larger than the local connection

capacity of 750 Kbps.

The high buffering bitrate causes TCP to probe for available bandwidth, incurring

packet losses at the local link. The TCP stream experiences an unfortunate sequence

of packet drops at about 140 seconds, which causes the large frame jitter and results

in a media re-buffering event. TCP scales down a media level and stays at that

level for the life of the stream. The smooth TCP stream jitter after 240 seconds

in Figure 5.22 indicates that the TCP sender does not have enough packets for

bandwidth probing as the stream scales down and switches to the streaming mode.

197

The high buffering bitrate also causes frame losses for the UDP stream in the

buffering period. However, the UDP stream tolerates the initial frame losses and

maintains its initial scale level, since it can tolerate the packet loss rate for the initial

measurement interval which is less than 5%. In addition, the UDP stream maintains

low frame reception jitter at the mean (µ) of 50 ms that is the playout interval of

the 20 frames-per-second (FPS) video, and a standard deviation (θ) of 6 ms.

The MTP stream scales down the media bitrate like the TCP stream but for a

different reason. The small number of packet losses (or frame losses) during MTP

bandwidth probing scarcely affect the performance of the stream, since MTP imme-

diately delivers received packets to the application and does not increase the frame

reception jitter at the client. However, scale-down decisions are made due to the

frame losses that occur during the initial buffering period at the input buffer of the

slow-starting MTP sender. Figure 5.21 shows that large frame loss bursts at the start

of the MTP stream cause it to scale down two levels consecutively in 10 seconds. The

MTP stream does scale back up to the initially selected scale level, but slowly and

conservatively due the large up-scale decision interval (60 seconds). These inefficient

scaling decisions made by the MTP stream at the initial buffering period can be

avoided by using selective retransmission, which is supported by most commercial

streaming products [92]. In addition, Figure 5.22 shows that the MTP frame jitter

(µ = 52 ms, θ = 11 ms) is as comparably low as the UDP jitter throughout the

stream lifetime for the local connection bandwidth constrained condition.

Figure 5.23 and Figure 5.24 provide cumulative distribution function of the

streamed media scale level dynamics and the inter-frame reception time (jitter) of

all seven simulations. Figure 5.23 shows that the UDP streams stay at level 4, the

highest level allowed by the local link, all the time, and the TCP streams stay at

level 3 about 85% of the times. The MTP streams achieve the scale level of the UDP

198

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4

C
D

F

Scale Levels

TCP Stream
UDP Stream
MTP Stream

Figure 5.23: CDF of Streamed Media Scale Levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

C
D

F

Inter-Frame Arrival Time (Seconds)

TCP Stream
UDP Stream
MTP Stream

Figure 5.24: CDF of Media Frame Reception Jitter

streams (level 4) about 60% of times, although about 12% of the times they stay at

the level 2 due to the inefficient scaling decisions made during the initial buffering

periods.

Figure 5.24 confirms that that the frame reception jitter of the MTP streams is

as smooth as that of the UDP streams under a normal condition where the local

connection link is the only bottleneck of the network path. In addition, Figure 5.24

reveals the ineffectiveness of media scaling over TCP as well as the effect of TCP’s

reliable in-order packet delivery on frame reception jitter. The TCP streams’ inter-

199

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1 2 3 4 5 6

In
iti

al
 B

uf
fe

rin
g

T
im

e
(S

ec
on

ds
)

Trial Number

Buffer Size = 5 Seconds

Buffer/Stream Ratio = 1.5

TCP Stream
UDP Stream
MTP Stream

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6

M
ed

ia
 P

la
y

D
ur

at
io

n
(S

ec
on

ds
)

Trial Number

TCP Stream
UDP Stream
MTP Stream

Figure 5.25: Initial Buffering Time, Video Play Duration (including intermediate
buffering times)

frame arrival times less than 50 ms, the playout interval of the 20 FPS video (level

3 and 4), indicate that about 40% the frames are sent in the buffering mode and/or

delayed in the TCP receiver buffer due to packet losses. Especially, the inter-frame

arrival time of zero in Figure 5.24 indicate that two or more consecutive frames are

delayed in the TCP receiver buffer and delivered to the Gplayer at once.

Figure 5.25 shows the initial buffering time (top), the streamed video play du-

ration including re-buffering time (bottom) for the TCP, UDP and MTP streams.

Figure 5.25 (top) shows that the TCP streams need significantly more initial buffer-

ing time than the UDP streams. The MTP streams also require more time for initial

buffering than the UDP streams, however MTP streams require only a half as much

as the time taken by the TCP streams in average. Figure 5.25 (bottom) shows that

the media play durations of the UDP and MTP streams are bounded almost exactly

by the playout length of the video. TCP streams do take a little more time to finish

200

 0

 1

 2

 3

 0 1 2 3 4 5 6

R
e-

B
uf

fe
rin

g
E

ve
nt

 C
ou

nt

Trial Number

TCP Stream
UDP Stream
MTP Stream

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6

F
ra

m
es

/S
ec

on
d

(F
P

S
)

Trial Number

TCP Stream
UDP Stream
MTP Stream

Figure 5.26: Re-buffering Event Counts and Average Frame Playout Rate

playing the video due to re-buffering events.

Lastly, Figure 5.26 shows the re-buffering event count (top) and the average

frame playout rate (bottom) computed as the number of played frames divided by

the play durations including the play-halted re-buffering periods. Figure 5.26 (top)

shows that all the TCP streams incur one or two re-buffering events, while the UDP

and MTP streams have none. Figure 5.26 (bottom) shows that the UDP streams

achieved frame rate close to the maximum, 20 FPS. The TCP streams achieve about

19 FPS on average although they experience couple of long pauses in media playout

due to media re-buffering. The MTP streams achieved between about 18 to 19 FPS,

since the MTP streams often scale down to the 15 FPS level-2 encoded media in the

beginning. Thus, all three types of stream perform similarly to one another in terms

of frame playout rate, although the TCP streams have a couple of pauses during the

playout.

This section showed that streaming over TCP, UDP and MTP can achieve com-

201

parable performances under a lightly-loaded network condition where the network

usage is mostly limited by the local connection capacity. In addition, it is shown

that MTP eliminates media play interruptions caused by TCP, and works well with

a streaming application designed for UDP with little modification.

5.2.3.2 Backbone Link Congestion

This experiment shows the performance of the Goddard streams over TCP, UDP and

MTP on a network path congested with many flows. For this study, the intermediate

link capacity (Ci) is set to 10 Mbps, not to be a bottleneck in the network path.

In order to congest the backbone link, each simulation uses 24 forward direction

bulk FTP flows on the normal dumbbell path (sj ← dj) in addition to the forward

direction Web traffic and the backward direction FTP traffic. On the other paths

(tk → ek), each simulation runs a Goddard stream and a competing bulk FTP flow

from 100 seconds to 400 seconds. A simulation set is composed of three simulations

with the same random seed but different streaming transport protocols, TCP, UDP

and MTP. The set of simulations is repeated 7 times with different random seeds to

eliminate skews in the measurement.

Figure 5.27 shows the media scaling dynamics of the TCP, UDP and MTP streams

from one of the simulation sets, and Figure 5.28 shows the frame reception jitter of the

corresponding streams. During streaming (100 to 400+ seconds), a fair bandwidth

share with this traffic load is about 270 Kbps ((10 Mbps − background traffic) /

26 flows), where the background traffic takes about 2.5 to 3 Mbps. Thus, a TCP-

Friendly stream will chose a media scale level of 2 (a 240 Kbps stream) given the

traffic conditions.

Figure 5.27 shows that the TCP stream suffers from overestimating the available

network bitrate in the beginning. The TCP stream makes a scale-down decision

202

 0
 1
 2
 3
 4
 5
 6

 100 200 300 400 500 600 700 800 900 1000
S

ca
le

Seconds

TCP Stream

 0
 1
 2
 3
 4
 5
 6

 100 200 300 400 500 600 700 800 900 1000

S
ca

le

Seconds

UDP Stream

 0
 1
 2
 3
 4
 5
 6

 100 200 300 400 500 600 700 800 900 1000

S
ca

le

Seconds

MTP Stream

Figure 5.27: Example Media Scale Dynamics (Run 0)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 200 300 400 500 600 700 800 900 1000

In
te

r-
F

ra
m

e
A

rr
iv

al
 T

im
e

(S
ec

on
ds

)

Frame Reception Time (Seconds)

TCP Stream

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 100 200 300 400 500 600 700 800 900 1000

In
te

r-
F

ra
m

e
A

rr
iv

al
 T

im
e

(S
ec

on
ds

)

Frame Reception Time (Seconds)

UDP Stream

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 100 200 300 400 500 600 700 800 900 1000

In
te

r-
F

ra
m

e
A

rr
iv

al
 T

im
e

(S
ec

on
ds

)

Frame Reception Time (Seconds)

MTP Stream

Figure 5.28: Example Media Frame Reception Jitter (Run 0)

203

about 42 seconds after it starts streaming. During this period, the Goddard server

is in buffering mode and pushes about 15 Mbytes of frames into the underlying TCP

buffer, taking about 450 seconds to transmit all the high quality frames based on the

270 Kbps fair share assumption. In fact, the TCP stream takes about 500 seconds

to drain the frames from the TCP sender queue. This huge TCP sender queue size

is due to the unrealistic NS TCP implementation that does not simulate a limited

input buffer size. For most current Unix kernels, TCP uses a send buffer of at least

64 Kbytes [48]. Although exaggerated, the TCP streaming simulation results show

the difficulty in media scaling over TCP.

Unlike the TCP stream, the Goddard server and client over UDP finishes stream-

ing and playout of the media with no delay. However, it streams the highest qual-

ity media that has a streaming bitrate much higher than the fair share, since the

streamed media quality is not significantly degraded by small network packet losses.

The measured packet loss rate at the backbone link during streaming is about 0.005.

This illustrates how a UDP stream can be TCP-unfriendly during congestion, al-

though the stream can adapt to the limited local connection capacity as shown in

Section 5.2.3.1.

The MTP stream shown in Figure 5.27 inherits the good characteristics of both

the TCP and UDP streams. That is, the MTP stream quickly finds an appropriate

scale level in response to network congestion and achieves both uninterrupted stream

playout and a TCP-Friendly streaming bitrate. In the beginning, the MTP stream

quickly scales down to the level-1 media, and then at 200 seconds, scales up to level-2

media. When the MTP stream tries level-3 media at around 260 seconds, the buffer

in the MTP sender overflows and the Goddard client and server scale back.

Figure 5.28 shows that the TCP stream has the highest frame reception jitter (µ

= 82 ms, θ = 213 ms), followed by the MTP stream (µ = 64 ms, θ = 60 ms) and the

204

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

C
D

F

Scale Levels

TCP Stream
UDP Stream
MTP Stream

Figure 5.29: CDF of Streamed Media Scale Levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

C
D

F

Inter-Frame Arrival Time (Seconds)

TCP Stream
UDP Stream
MTP Stream

Figure 5.30: CDF of Media Frame Reception Jitter

UDP stream (µ = 33 ms, θ = 16 ms). Comparing the MTP and UDP streams, the

UDP jitter is lower than that of MTP. The mean UDP inter-frame arrival time of

about a half that of the MTP stream is due to the differences in the scale level. The

UDP stream uses the highest quality media with playout interval of 33 ms, while

the MTP stream’s media playout interval is about 67 ms. Comparing the θ/µ ratio

shows UDP is a little smoother than, but comparable to MTP. However, the jitter of

the TCP stream is an order of magnitude higher than UDP or MTP, even after the

TCP sender clears the highest quality frames from its buffer at 600 seconds. This

205

confirms that the main source of the TCP’s streaming unfriendly delay and jitter is

the retransmission mechanism that provides reliable in-order packet delivery.

Figure 5.29 and Figure 5.30 summarize the streamed media scale level dynamics

and the inter-frame reception time (jitter) of all seven sets of simulations in cumu-

lative distribution functions. Figure 5.29 confirms that Goddard over MTP streams

chooses the correct media scale level (it has a media TCP-Friendly bitrate so it must

choose a scale level 2 or lower) most of the time. In addition, Figure 5.30 shows that

the MTP frame reception jitter is consistently low. About 95% of MTP’s inter-frame

arrival times are under 134 ms, two times the playout interval (67 ms) of the streamed

media. This means that Gplayer can play 95% of the received video frames after a

buffering delay of only 67 ms when the one-way delay of the stream path is about

100 ms and the average packet loss rate is 0.44%. Given that streamed video bitrate

is about 120 to 240 Kbps, typical of Internet videoconferencing, these results suggest

the potential for MTP to be used as a streaming transport protocol for interactive

applications as well as non-interactive applications.

Figure 5.31 shows the initial buffering time of the streamed video (top) and the

playout duration including re-buffering time (bottom), and Figure 5.32 shows the

re-buffering event count (top) and the average frame playout rate (bottom) for the

TCP, UDP and MTP streams. Figure 5.31 (top) shows that the TCP streams need

significantly more initial buffering time than the UDP and MTP streams. Figure 5.31

(bottom) shows that the media play durations of the UDP and MTP streams are

bounded almost exactly by the playout length of the video, while the TCP streams

take two to three times longer to playout. Figure 5.32 (top) shows that the TCP

streams incur frequent re-buffering events, while the UDP and MTP streams have

none or at most one. Figure 5.32 (bottom) shows that the TCP streams achieve a

low average frame playout rate due to frequent re-buffering pauses, while the UDP

206

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6

In
iti

al
 B

uf
fe

rin
g

T
im

e
(S

ec
on

ds
)

Trial Number

Buffer Size = 5 Seconds
Buffer/Stream Ratio = 1.5

TCP Stream
UDP Stream
MTP Stream

 0

 150

 300

 450

 600

 750

 900

 0 1 2 3 4 5 6

M
ed

ia
 P

la
y

D
ur

at
io

n
(S

ec
on

ds
)

Trial Number

TCP Stream
UDP Stream
MTP Stream

Figure 5.31: Initial Buffering Time and Video Play Duration (including intermediate
buffering times)

 0

 3

 6

 9

 12

 15

 0 1 2 3 4 5 6

R
e-

B
uf

fe
rin

g
E

ve
nt

 C
ou

nt

Trial Number

TCP Stream
UDP Stream
MTP Stream

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6

F
ra

m
es

/S
ec

on
d

(F
P

S
)

Trial Number

TCP Stream
UDP Stream
MTP Stream

Figure 5.32: Re-buffering Event Counts and Average Frame Playout Rate

207

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6

S
tr

ea
m

 B
itr

at
e

/ F
T

P
 T

hr
ou

gh
pu

t

Trial Number

TCP Stream
UDP Stream
MTP Stream

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 1 2 3 4 5 6T
C

P
-F

rie
nd

ly
 S

ca
le

 A
da

pt
at

io
n

T
im

e
(S

ec
on

ds
)

Trial Number

UDP stream did not adapt

TCP Stream
MTP Stream

Figure 5.33: TCP-Friendliness of Media Streams and TCP-Friendly Rate Adaptation
Time

and MTP streams achieve frame playout rates close to the encoded frame rates.

Lastly, Figure 5.33 (top) shows the average throughput ratio of the media streams

in comparison to the competing bulk FTP flow, and Figure 5.33 (bottom) shows

the time each stream takes to adapt to the TCP-Friendly rate. The UDP streams

are extremely TCP-unfriendly, taking about 6 to 9 times the throughput of the

competing bulk FTP, and never adapt to a TCP-Friendly rate. Both the TCP

and MTP streams have throughput less than that of the bulk FTP flow, since the

Goddard servers do not always have frames available when MTP or TCP can send.

The MTP streams quickly adapt their media scale bitrate to the TCP-Friendly rate,

while the TCP streams take two to three minutes to adapt their media scale bitrate

to the TCP-Friendly rate.

208

5.2.4 Summary

This section presents the design and evaluation of Multimedia Transport Protocol

(MTP). MTP is an alternate to UDP for streaming and other delay sensitive Internet

applications that favor prompt and timely datagram delivery service over the reliable

transmission service of TCP. Removing retransmissions from TCP removes delays

due to retransmission at the TCP sender and packet ordered preservation at the TCP

receiver, and allows MTP to reveal network information essential for media scaling.

MTP supports non-blocking transmission using input queue management as well as

block-on-full-queue transmission to help existing UDP-based streaming applications

to switch to MTP with little modification. MTP has the exact congestion avoidance

mechanism and proven stability of TCP, and can be implemented as a mode of TCP

during incremental deployment to take advantage of firewall support for TCP traffic.

MTP is implemented in NS by modifying the built-in Reno TCP implementation.

In order to evaluate MTP, the Goddard streaming client and server are designed and

implemented. Goddard estimates the bottleneck capacity, selects the media level

to stream, performs media scaling during streaming, and simulates playout of the

received media at the client. To the best of our knowledge, Goddard, which also

simulates playout of the received media at the client, is the only realistic streaming

application in NS.

Our simulation results show that MTP video streams inherit the good charac-

teristics of both TCP and UDP streams. MTP streams are TCP-Friendly, but can

still quickly and effectively perform media scaling and adapt to the available TCP-

Friendly bitrate. Thus, most of the time, MTP streams avoid interruptions to the

streamed media playout. Existing UDP streaming applications can use MTP with lit-

tle modification to their media scaling mechanisms, achieving better quality streams

than TCP streaming applications. Additionally, our simulation results show that

209

MTP dramatically reduces media frame reception jitter from TCP’s reliable in-order

packet delivery mechanism, and illustrates the potential of MTP as a streaming

transport protocol for interactive as well as non-interactive applications.

When MTP is used with explicit congestion notification (ECN), MTP timeouts

can be reduced since network packet losses are reduced and the MTP sender does not

need to wait for duplicate acknowledgments to detect network congestion. There-

fore, MTP with ECN will further enhance the support for interactive applications.

Chapter 6 evaluates ECN-enabled MTP streams under Aggregate Rate Controller

(ARC) and Stochastic Fairness Guardian with ARC (SFA).

210

Chapter 6

Streaming MTP over Crimson

In Chapter 4 and Chapter 5, we presented the design and evaluation of each of the

building blocks of the Crimson network that reduces congestion and improves sup-

port for delay sensitive multimedia traffic on the Internet: Aggregate Rate Controller

(ARC) to manage congestion and minimize network queuing delay, Stochastic Fair-

ness Guardian (SFG) to punish congestion unresponsive and misbehaving traffic, and

Multimedia Transport Protocol (MTP) to provide a practical, congestion responsive

transport protocol for multimedia streaming. This chapter presents evaluation of me-

dia streaming under Crimson. This chapter compares streaming performance over

TCP, UDP and MTP under drop-tail queue management, ARC, and the combination

of SFG and ARC (SFA).

6.1 Simulation Setup

For the evaluation of streaming over MTP on Crimson, we use the same network

topology shown in Figure 5.20, and the same parameter and traffic settings used

to evaluate MTP streaming for the backbone link congestion with drop-tail queue

211

Figure 6.1: Network Topology

management as in Section 5.2.3.2. This time, we replace the drop-tail queue once

first with ARC and then with SFA (the combination of SFG and ARC), run the same

sets of simulations, and compare the results with those of drop-tail simulations.

The capacity of the backbone link (n1 ↔ n2) and the intermediate links (n2 ↔ i1

and n2 ↔ i2) are set to 10 Mbps while other link capacities are set to 100 Mbps. The

physical queue limit is set to 500 Kbytes for all the routers. The link delays of the

streaming path (n2 → i1) and the competing FTP path (n2 → i2) are both set to 70

ms giving a 140 ms of round-trip link delay. The round-trip link delays of the other

normal dumbbell paths are randomly uniformly selected over the range [60:1000] ms,

based on measurements in [67].

For ARC and SFG, the configuration parameter settings described in Section 4.1.3

and Section 4.2.3 are used. Table 6.1 summarizes the parameters and their values.

As each simulation run starts, the backbone link is loaded with 300 Web sessions

and 24 FTP flows in the forward direction dumbbell path (sj → dj), and acknowl-

edgments of 25 backward FTP flows (sj ← dj). As before, each Web session requests

pages with 2 objects drawn from a Pareto distribution with a shape parameter of 1.2

and an average size 5 Kbytes. The Web sessions have an exponentially distributed

think time with a mean of 7 seconds, which results in an average utilization of about

212

Parameter Value Description

L 3 Number of hash filter levels
N 20 Number of bins in a level

SFG ds 2 seconds SFG control interval
mh 0.02 SFG turn-on CNP threshold
ml 0.01 SFG turn-off CNP threshold

α 1.42 × 10−5 ARC control parameter
γ 0.98 Target link utilization

ARC q0 0 Target queue length
da 1 second ARC control interval
ecn true Enable ECN marking

Table 6.1: SFG and ARC Parameters

2.5 to 3 Mbps on the 10 Mbps backbone link. Then, a Goddard stream and a bulk

FTP flow are started at 100 seconds on the competition path (t1 → e1 and t2 → e2)

and stopped at 400 seconds. The Goddard server uses the configuration with seven

media scales shown in Table 5.2 and the fragment threshold of 1 Kbyte. The Goddard

client (Gplayer) uses the default configuration parameters shown in Table 5.3.

Goddard streams over TCP, UDP or MTP, where TCP and MTP support ECN.

For each of the transport protocols, the same simulations are conducted 7 times

with different random seeds to eliminate skews in the measurement. We run this set

of 21 simulations for ARC and then for SFA (the combination of SFG and ARC),

and compare the results with that of drop-tail queue management presented in Sec-

tion 5.2.3.2.

6.2 Analysis

Figure 6.2 and Figure 6.3 present the play time and scale levels of media frames for a

set of TCP, UDP and MTP streaming simulations under ARC and SFA. Comparing

Figure 6.2 and Figure 5.27 in Section 5.2.3.2, it is shown that the TCP, UDP and

MTP streams behaves similarly in general with drop-tail queue management and

213

ARC. That is, Goddard streams experience difficulty in media scaling over TCP and

do not scale down to be TCP-Friendly media over UDP, while the MTP streams

achieve both uninterrupted media play and TCP-Friendliness. However, a closer

comparison shows the effect of the ECN marking of ARC on the TCP and MTP

streams, and the effect of uniform random packet-dropping congestion notification

of ARC on the UDP stream. The TCP and MTP streams operate at slightly higher

media scale levels under ARC than under the drop-tail queue management due to

the effectiveness of ECN. Yet, Goddard over UDP with ARC scales down a level and

streams the level-5 media (frame size = 4 KB, frame rate = 30 FPS) while the UDP

stream with drop-tail stays at the level-6 media (frame size = 8 KB, frame rate =

30 FPS).

For the UDP streams without selective-retransmission and/or media repair, a

frame is considered lost even if a single packet of the frame gets lost. With drop-tail

queue management, it is likely that consecutively transmitted packets are dropped

in a burst when the network queue is full. Thus, the 8 KB media frames fragmented

into 1 KB network packets have a high chance of not being dropped when the network

queue has room for 8 packets. However, the 8 KB media frames have less chance to

survive under ARC, since ARC uniform randomly drops packets of the media frames

for congestion notification regardless of room in the queue. The UDP stream with

ARC experiences a higher frame drop rate than the sustainable rate for the level-6

media, and picks the level-5 media that reduces the size of media frames in half. Yet,

the level-5 media with a streaming bitrate of 960 Kbps is still well over the fair share.

Figure 6.3 shows that SFA (SFG in combination with ARC) can effectively force

the UDP stream to scale down, with little affect on MTP streaming performance.

Goddard over UDP under SFA streams the level-6 media and gets punished severely

by SFG in the beginning. Then, it scales down to and stays at the level-2 and

214

 0
 1
 2
 3
 4
 5
 6

 100 200 300 400 500 600 700 800 900
S

ca
le

Seconds

TCP Stream

 0
 1
 2
 3
 4
 5
 6

 100 200 300 400 500 600 700 800 900

S
ca

le

Seconds

UDP Stream

 0
 1
 2
 3
 4
 5
 6

 100 200 300 400 500 600 700 800 900

S
ca

le

Seconds

MTP Stream

Figure 6.2: ARC: Example Media Scale Dynamics (Run 0)

 0
 1
 2
 3
 4
 5
 6

 100 200 300 400 500 600 700 800 900

S
ca

le

Seconds

TCP Stream

 0
 1
 2
 3
 4
 5
 6

 100 200 300 400 500 600 700 800 900

S
ca

le

Seconds

UDP Stream

 0
 1
 2
 3
 4
 5
 6

 100 200 300 400 500 600 700 800 900

S
ca

le

Seconds

MTP Stream

Figure 6.3: SFA: Example Media Scale Dynamics (Run 0)

level-1 media thereafter. The TCP and MTP streams occasionally experience packet

drops imposed by the SFG. For the TCP stream, the packet drops cause TCP to

retransmit the lost packets, which delays the frame deliveries, and cause the frequent

re-buffering events similar to the TCP stream under the drop-tail queue management

in Figure 5.27. In contrast, the MTP stream does not experience a re-buffering event,

since MTP does not retransmit or delay the media frame deliveries.

Figure 6.4 through Figure 6.9 compares the average streaming performance for

215

the seven runs of TCP, UDP and MTP streams under drop-tail queue management

(labeled as DT in the figures), ARC and SFA. Figure 6.4 shows the average media

scaling levels of frames played, Figure 6.5 presents the average streaming bitrates and

Figure 6.6 graphs the average frame playout rate. Figure 6.7 and Figure 6.8 provide

the average length of the initial buffering periods and the media play duration of the

streams respectively, and Figure 6.9 depicts the average re-buffering event count for

each type of streams.

Figure 6.4 and Figure 6.5 present that Goddard over UDP, on average, streams

the highest quality media and consumes 1.87 Mbps of the 10 Mbps backbone link

capacity under drop-tail, and streams the level-5 media and consumes about 0.94

Mbps under ARC. Under the supervision of SFA, the UDP streams achieve average

scaling level of about 1.4 and consume 140 Kbps that is even below the bitrate

of average TCP streams. However, the UDP streams under SFA still achieve an

average frame playout rate close to the frame encoding rate of the level-1 and level-

2 media (15 FPS), as shown in Figure 6.6, while the average TCP streams achieve

only 10 FPS. This is because the UDP streams finish the video playout with very few

interruptions as shown in Figure 6.8 and Figure 6.9. The UDP streams experience

a significantly longer time to buffer the initial 5 seconds of media frames, as shown

in Figure 6.7, since they scarcely stream the highest quality media frames under the

punishment of SFG.

Figure 6.4 and Figure 6.5 show the Goddard over TCP achieves a slightly higher

average scale level and streamed more bits under ARC and SFA than under the

drop-tail queue management, due to ECN, which also improves goodput. However,

Figure 6.6 presents that the TCP streams under SFA achieve a low average frame

playout rate of about 10 FPS, since they experience a higher number of re-buffering

events for the increased streamed media quality than under drop-tail or ARC as

216

 0

 1

 2

 3

 4

 5

 6

DT ARC SFA

A
ve

ra
ge

 S
ca

le
 L

ev
el

TCP Streams
MTP Streams
UDP Streams

Figure 6.4: Average Media Scale Level

 0

 200

 400

 600

 800

 1000

SFAARCDT

S
tr

ea
m

 B
itr

at
e

(K
bp

s)

(1872 Kbps) TCP Streams
MTP Streams
UDP Streams

Figure 6.5: Average Streaming Bitrate

 0

 5

 10

 15

 20

 25

 30

SFAARCDT

P
la

ye
d

F
ra

m
e

R
at

e
(F

P
S

)

(1872 Kbps)

TCP Streams
MTP Streams
UDP Streams

Figure 6.6: Average Played Frame Rate (Frames per Seconds)

217

 0

 5

 10

 15

 20

 25

 30

 35

SFAARCDT

In
iti

al
 B

uf
fe

rin
g

T
im

e
(S

ec
on

ds
)

TCP Streams
MTP Streams
UDP Streams

Figure 6.7: Initial Buffering Time

 0

 100

 200

 300

 400

 500

 600

 700

 800

SFAARCDT

M
ed

ia
 P

la
y

D
ur

at
io

n
(S

ec
on

ds
)

TCP Streams
MTP Streams
UDP Streams

Figure 6.8: Media Playout Duration

 0

 2

 4

 6

 8

 10

 12

SFAARCDT

R
e-

B
uf

fe
rin

g
E

ve
nt

 C
ou

nt

TCP Streams
MTP Streams
UDP Streams

Figure 6.9: Re-Buffering Event Count

218

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

SFAARCDT

S
tr

ea
m

 B
itr

at
e

/ F
T

P
 T

hr
ou

gh
pu

t

(7.4) TCP Streams
MTP Streams
UDP Streams

Figure 6.10: Streaming Bitrate / Competing Bulk FTP Throughput

 0

 50

 100

 150

 200

 250

 300

 350

 400

SFAARCDT

T
C

P
-F

rie
nd

ly
 S

ca
le

 A
da

pt
at

io
n

T
im

e
(S

ec
on

ds
) TCP Streams

MTP Streams
UDP Streams

Figure 6.11: TCP-Friendly Rate Adaptation Time

shown in Figure 6.9. More importantly, Figure 6.8 shows that TCP streams in all

cases take much longer to finish streaming than the duration of the video, since they

stop playing and re-buffer frequently due to the frequently delayed frame deliveries

by TCP.

The Goddard clients and servers over MTP are TCP-Friendly in contrast to

the UDP streams, and achieve much better media scaling performance and higher

frame playout rate than the TCP streams with all three queue management schemes.

Figure 6.4 and Figure 6.5 show that Goddard over MTP streams a lower quality

219

media on average and consumes less average bandwidth than the TCP streams,

while the UDP streams consume much higher average bandwidth than the TCP

streams. Nevertheless, Figure 6.6 through Figure 6.9 show that the MTP streams

achieve much better media scaling performance and higher frame playout rate than

the TCP streams. The MTP streams have the media frame playout rate close to the

encoded frame rate, a short average initial buffering periods close to that of the UDP

streams, and very few re-buffering events and little delay in the media playout.

In addition, it is shown in Figure 6.4 and Figure 6.6 that ARC and SFA with

ECN improve the quality of MTP streams. Goddard over MTP with ARC and

SFA streams a higher average quality media than with drop-tail while maintaining

the average frame playout rate close to the encoded frame rate of the level-1 and

level-2 media. The streaming performance gain obtained through ECN is slightly

decreased with SFA, as SFG incurs some packet drops for the ECN enabled flows

while performing traffic policing. However, the negative effect of SFG on MTP

streaming performance is negligible considering the protection SFG offers from the

misbehaving UDP streams.

Figure 6.10 quantifies the TCP-Friendliness of the TCP, UDP and MTP streams

by comparing the average bitrate of the media streams to the throughput of the

competing bulk FTP flow, and Figure 6.11 visualizes how quickly the streams adapt

to a media scale level that has a TCP-Friendly streaming bitrate. Figure 6.10 shows

that the average UDP stream consumes 740% and 350% of the competing bulk

FTP throughput under drop-tail and ARC respectively. Yet, under SFA, the UDP

streams are forced to consume only 60% of the competing bulk FTP throughput.

The average TCP stream bitrate is less than, but close to, the throughput of the

bulk FTP flow, since the TCP sender buffer is filled with media frames most of the

time as Goddard overestimates the available TCP bandwidth. The average MTP

220

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
D

F

Inter-Frame Arrival Time (Seconds)

UDP Stream (SFA)
TCP Stream (DT)

TCP Stream (ARC)
TCP Stream (SFA)

Figure 6.12: Inter-Frame Arrival Times of TCP Streams

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
D

F

Inter-Frame Arrival Time (Seconds)

UDP Stream (SFA)
MTP Stream (DT)

MTP Stream (ARC)
MTP Stream (SFA)

Figure 6.13: Inter-Frame Arrival Times of MTP Streams

stream consumes about 60% to 70% of the bulk FTP throughput in all cases. In

addition, Figure 6.11 shows that the MTP streams quickly adapt to a TCP-Friendly

media scale level all the time, while TCP stream adaptation is much delayed at the

TCP sender queues. Lastly, Figure 6.11 illustrates that SFG can quickly regulate

the bitrate of misbehaving UDP streams under the target bitrate.

221

Next, we analyze the effect of uniform random ECN marking on media frame

reception jitter for the TCP and MTP streams. Figure 6.12 and Figure 6.13 show

the cumulative distribution function (CDF) of TCP and MTP inter-frame arrive

times under drop-tail, ARC and SFA, while showing the inter-arrival times of UDP

streams under SFA as a desirable target.

Figure 6.12 shows that ECN improves the tail of the TCP frame jitter distribution,

since ECN marking significantly reduces transmission delays for the media frames

that are retransmitted under drop-tail queue management. However, Figure 6.12 also

shows that the midrange frame reception jitter over TCP increases with ARC and

SFA compared to drop-tail. This is due to the artificial side effect of measuring jitter

in terms of inter-frame arrival time. Under drop-tail queue management, packets

that are transmitted after a lost packet are delayed in the TCP receiver buffer for an

in-order delivery. When the lost packet is successfully retransmitted, all the packets

in the TCP receiver buffer are delivered to the application at once. This gives

artificial inter-frame arrival time of zero, in case the delivered packets constitute

multiple media frames. Use of ECN avoids both the retransmission delays at the

TCP sender and the in-order data delivery delays at the TCP receiver, and makes

the high inter-frame arrival times and the low inter-frame arrival times merge into

middle values.

The TCP streams have 90% of their inter-frame arrival times less than 230 ms

under ARC and SFA, whereas 90% of the inter-frame arrival times under drop-tail are

less than 400 ms. Thus, ECN dramatically improves jitter for the TCP streams by

reducing TCP retransmissions. Yet, compared to the UDP frame jitter under SFA,

the TCP streams’ inter-frame arrival times under ARC and SFA are not smooth

enough to support interactive streaming applications. However, considering that

Goddard does not efficiently perform media scaling over TCP and often saturates

222

the TCP input buffer with high quality media frames, the TCP frame jitter shown

in Figure 6.12 does not accurately represent the frame reception jitter of a well

adapted TCP media stream. Assuming ECN effectively avoids all packet drops,

TCP transmissions are identical to those of MTP under ECN. Therefore, jitter of

a well-adapted TCP media stream should be identical to that of an equally well-

adapted MTP media stream. Indeed, we observed that the frame reception jitter of

TCP streams that are forced to stream level-2 media are very similar to the MTP

jitter under ARC and SFA.

Figure 6.13 shows that the MTP streams under drop-tail, ARC and SFA have

smooth inter-frame arrival times close to those of the UDP streams. The small extra

MTP frame jitter at the high- and low-end of the CDF illustrates the window-based

transmission timings of MTP have an insignificant effect on frame jitter compared

to TCP retransmissions. In addition, Figure 6.13 shows that ECN shortens the tail

of the frame jitter by reducing the MTP transmission timeouts. However, ECN does

little to improve the overall MTP frame reception jitter over drop-tail, since MTP

does not retransmit lost packets. It is shown in Figure 6.13 that the MTP frame

jitter under ARC and SFA are even slightly increased compared to that under drop-

tail. Yet, this is not because ECN has a negative effect on MTP frame jitter, but

Goddard under ARC and SFA streamed higher quality media than under drop-tail

on average, as shown in Figure 6.4.

The MTP streams have 90% of their inter-frame arrival times less than 140 ms

under all queue management, where about 50 ms to 67 ms is due to the encoded frame

interval of the level-1 and level-2 Goddard streams. This means the Goddard clients

having 80 ms (140 - 60 ms) of a playout buffer at the client can render about 90% of

the frames received, even under fairly congested network conditions. Knowing that

the level-1 and level-2 Goddard streams simulate Internet videoconference quality

223

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
D

F

| (Inter-Frame Arrival Time) - (Playout Interval) | (Seconds)

UDP Stream (SFA)
MTP Stream (DT)
MTP Stream (ARC)
MTP Stream (SFA)
TCP Stream (DT)
TCP Stream (ARC)
TCP Stream (SFA)

Figure 6.14: Absolute Difference between Inter-Frame Arrival Time and Playout
Interval of TCP and MTP Streams

streams, our results demonstrate the potential of MTP as an effective interactive

video streaming transport protocol as well as a non-interactive streaming protocol.

Summarizing the media frame reception jitter analysis, Figure 6.14 compares

TCP and MTP stream jitter in terms of absolute difference between inter-frame

arrival time and the corresponding playout interval of the streams to eliminate the

artificial inter-frame arrival time of zero for TCP streams. Figure 6.14 confirms

that that MTP streams have a low jitter close to those of the UDP streams, while

TCP streams experience significantly degraded jitter for all three queue management

schemes.

Figure 6.15 and Figure 6.16 summarize queue length seen by each packet arrival

and utilization of the 10 Mbps backbone link respectively for all simulations. Fig-

ure 6.15 shows that ARC and SFA dramatically reduce the queuing delay. Under

ARC and SFC, 50% of the incoming packets wait less than 36 ms (45.32 Kbps /

10 Mbps) and 90% of the incoming packets wait less than 100 ms (123 Kbytes / 10

Mbps) in the queue, whereas 50% of incoming packets entering the drop-tail queue

224

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400 450 500

C
D

F

Queue Length (Kbytes)

DT: Backbone (All Simulations)
ARC: Backbone (All Simulations)
SFA: Backbone (All Simulations)

Figure 6.15: Backbone Queue Length (CDF)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

SFAARCDT

B
ac

kb
on

e
Li

nk
 T

hr
ou

gh
pu

t (
M

bp
s)

Figure 6.16: Backbone Link Utilization

wait more than 182 ms (228 Kbytes / 10 Mbps). Figure 6.16 shows that 9.4 Mbps

and 9.3 Mbps of the 10 Mbps backbone links are utilized under ARC and SFC re-

spectively, while the drop-tail queue utilizes 9.7 Mbps. Thus, our results confirm that

ARC guarantees a low queuing delay under persistent congestion while maintaining

high link utilization. In addition, SFA that uses SFG in combination with ARC can

prevent misbehaving traffic from dominating the congested link while little affecting

the queue dynamics or the link utilization.

225

Network Packet Transmission Delay App Frame (UDP) Transmission Delay

DT 275 ms 329 ms

ARC 107 ms 111 ms

SFA 101 ms 101 ms

Table 6.2: Average Transmission Delays (link delay of the path = 70 ms)

Lastly, Table 6.2 depicts the impact of ARC and SFA on end-to-end transmis-

sion delays measured at the network and application layers for the streaming traffic

(path: t1 → e1 in Figure 6.1). For the application layer statistics, we only show

the average UDP frame transmission delays, since queuing delays at an IP router

little affect the end-to-end transmission delays of our MTP streams that simulate

non-interactive Internet video streams with a relatively large MTP input buffer (64

KBytes). Table 6.2 confirms that ARC and SFA enhance the support for interac-

tive streaming by significantly reducing the end-to-end transmission delays. When

the link delay of the path is 70 ms, ARC and SFA achieve both the network and

application layer end-to-end delays close to 100 ms, that is about 1/3 of the average

transmission delays provided by the drop-tail system.

6.3 Summary

This chapter evaluated streaming media over Multimedia Transport Protocol (MTP)

with the Crimson network by comparing performance of TCP, UDP and MTP God-

dard streams with drop-tail queue management, ARC, and the combination of SFG

and ARC (SFA).

Our results show that MTP is TCP-Friendly and provides most of the streaming

performances that UDP can offer to a well-behaving streaming application regardless

of the queue managements used in the network. MTP provides an application pro-

gramming interface (API) that allows streaming applications to efficiently perform

226

media scaling. In addition, MTP offers smooth frame playout jitter comparable to

that of UDP streams by removing extra delays caused by TCP retransmissions under

drop-tail queue management. The results demonstrate that MTP with smooth frame

jitter can even be considered as transport protocol for interactive streaming appli-

cations such as videoconferencing under the current Internet or under the Crimson

network.

Performing media scaling over TCP is difficult. Nevertheless, under a network

that uses ARC, streaming media that adapts to network conditions over ECN-enabled

TCP can have as low a frame playout jitter as over MTP, since ECN avoids retrans-

missions. In addition, ARC guarantees a low queuing delay and high link utilization,

thus benefitting delay sensitive applications over drop-tail queue with little degrada-

tion of the performance of throughput sensitive applications.

Lastly, our simulation results show that a complete Crimson network that uses

SFG along with ARC protects public networks from the threat of unresponsive or

misbehaving UDP traffic with little affect on the performance of traffic that responds

to congestion or on overall system performance.

227

Chapter 7

Conclusions and Future Work

The dissertation provides an IP network solution, called Crimson, that can be seam-

lessly deployed in the current Internet to: 1) protect well-behaving traffic from mis-

behaving high-bandwidth flows; and 2) minimize network delays to support quality of

service (QoS) requirements of delay sensitive multimedia applications such as stream-

ing media and network games. Furthermore, to enhance Internet support for media

streaming, this dissertation proposes and evaluates a TCP-Friendly and streaming-

friendly transport protocol called the Multimedia Transport Protocol (MTP). Sec-

tion 7.1 summarizes this dissertation research and Section 7.2 lists possible future

work.

7.1 Summary

At the core of the Crimson network are Aggregate Rate Controller (ARC) and

Stochastic Fairness Guardian (SFG). These are independent IP router traffic/queue

management mechanisms that can be deployed in the current Internet to minimize

network delays and protect well-behaved traffic from misbehaved traffic.

228

ARC is a Congestion Controller designed to minimize queuing delay through ef-

ficient congestion management. ARC detects network congestion and computes the

congestion notification probability (CNP) before the queue grows and overflows by

monitoring the CNP and link utilization. ARC takes a rate-based congestion moni-

toring approach that significantly reduces congestion estimation noise over the typical

queue sampling based approach. ARC notifies congestion responsive traffic sources

of the CNP using either explicit congestion notification (ECN) to improve conges-

tion signaling efficiency for ECN-enabled traffic sources or implicit packet-dropping

congestion notification for traffic sources that do not support ECN. ARC is a Propor-

tional Integral (PI) controller with reduced parameters to provide easy configuration

in a time-delayed system (i.e., the Internet). Unlike other PI-based Congestion Con-

trollers such as the PI controller [58], AVQ [75] and REM [5], ARC provides complete

configuration guidelines that are essential for practical deployment.

SFG is a Bandwidth Guardian that uses a simple traffic filter to statistically

regulate the bitrates of misbehaving high-bandwidth flows without requiring per-

flow information. When the outbound link is congested, SFG enables a multi-level

hash filter to regulate the bitrate of high-bandwidth flows until congestion abates.

Unlike other statistical flow management mechanisms such as SFB [36] and RED-

PD [85], SFG does not require identifying misbehaving flows, since such identification

is computationally intensive and error prone, and thus may not be affordable for

broadband network routers. Yet, SFG offers filtering performance comparable to

that provided by more complicated, per-flow mechanisms such as RED-PD [85]. In

addition, as in ARC, SFG provides practical configuration guidelines.

Through a simulation study using NS [127], this dissertation demonstrates that

by complying with the configuration guidelines, ARC can efficiently support a wide-

range of traffic conditions, dampening queue oscillations, keeping queue sizes low and

229

throughput high, even when the configuration is not optimized for the current traffic.

ARC can provide significantly improved performance over the PI controller for lightly

loaded conditions, the norm for many Internet routers, as well as for sudden traffic

load changes, owing to ARC’s low frequency rate-based control data acquisition.

In addition, this dissertation shows that considering overall performance and design

complexity, SFG integrated with ARC (SFA) outperforms other preferential dropping

mechanisms, such as SFB [36], RED-PD [85] and CHOKe [91], as well as drop-tail

and ARC over a practical range of traffic loads. Thus, by providing a best-delay effort

service with misbehaving flow management Crimson can be gradually deployed in

the Internet to effectively support various Internet application domains with diverse

QoS requirements.

In addition to Crimson, this dissertation provides the design and evaluation of the

Multimedia Transport Protocol (MTP) to enhance end-host support for multimedia

streaming. In order to identify properties of a streaming-friendly transport protocol,

a measurement study was conducted to evaluate the network-level and application-

level performance of UDP and TCP RealVideo streams. Based on the study, the

shortcomings of using TCP as a streaming transport protocol were: 1) TCP’s ap-

plication programming interface (API) hides network information, such as packet

loss rate and round-trip delay, needed for efficient available bandwidth estimation

for media scaling; 2) The penalty for overestimating available bandwidth using TCP

is severe due to the large TCP sender buffer, put in place to maximize through-

put; 3) TCP’s reliable in-order packet delivery is harmful for streaming media under

congestion, since retransmission not only delays delivery of a lost packet but delays

transmission of all the following packets.

Based on the findings, this dissertation proposes MTP, an alternate to UDP (and

TCP) for streaming and other delay sensitive Internet applications that favor prompt

230

and timely datagram delivery service over the reliable transmission service of TCP.

By removing retransmissions from TCP, MTP reveals network information essential

for media scaling and removes delays due to retransmission at the TCP sender and

packet ordered preservation at the TCP receiver. MTP has the exact congestion

avoidance mechanism and proven stability of TCP, and can be implemented as a

mode for TCP in the deployment phase to take advantage of firewall support for

TCP traffic.

MTP supports non-blocking transmission mode at the API using drop-front input

queue management as well as block-on-full-queue transmission mode to help existing

UDP-based streaming applications to switch to MTP with little modification. This

dissertation evaluates the non-blocking transmission mode of MTP. Evaluation of

MTP requires a realistic streaming application that performs media scaling and sim-

ulates media buffering and playout. We designed and implemented a video streaming

system, called Goddard, in NS based on streaming application behavior observed in

our streaming measurement study and [93], and evaluated MTP built based on the

TCP Reno implementation in NS.

Our simulations show that MTP is a TCP-Friendly and streaming-friendly trans-

port protocol. Video streams using MTP can quickly and effectively perform media

scaling and adapt to the available TCP-Friendly bitrate offered by MTP, avoid-

ing media re-buffering events that are common with video over TCP. Additionally,

our simulation results show that MTP dramatically reduces the media frame recep-

tion/playout jitter that appear with TCP’s reliable in-order packet delivery mech-

anism, and illustrates the potential of MTP as a streaming transport protocol for

interactive applications as well as non-interactive applications.

Finally, this dissertation evaluates streaming media over MTP with the Crimson

network by comparing performance of TCP, UDP and MTP Goddard streams with

231

drop-tail queue management, ARC, and the combination of SFG and ARC. Our

results confirm that MTP helps protecting the public network from potentially mis-

behaving UDP streams by offering them an alternative TCP-Friendly and streaming-

friendly transport service. It is also shown that a complete Crimson network with

SFG secures the network from the threat of high-bandwidth misbehaving UDP traffic

with little affect on the performance of traffic that responds to congestion or on over-

all system performance. In addition, Crimson’s best-delay-effort service guarantees

a low queuing delay and high link utilization, benefitting delay sensitive applications

over drop-tail queue with little degradation of the performance of throughput sen-

sitive applications. Our simulations demonstrate that that MTP with Crimson can

be used as transport protocol for interactive streaming applications such as video-

conferencing.

7.2 Future Work

This section lists future work that can be extended from this dissertation research.

Future work that applies both to the Crimson and MTP researches is to imple-

ment the Crimson active queue management mechanism and MTP under Linux, and

evaluate them using a realistic network traffic. In particular, an overhead analysis

including processing time and memory use is required for both SFG and ARC. Addi-

tionally, it is desirable to evaluate performance of commercial streaming applications

over MTP. Sections 7.2.1 to 7.2.4 list additional future work for each of the four

sub-researches that constitute this dissertation.

232

7.2.1 Extension to Aggregate Rate Controller

Future work includes extending ARC to dynamically adapt the controller parameters

to the current traffic conditions. Although ARC provides a robust congestion control

over a wide-range of network conditions, it would be desirable to fine-tune the param-

eters to best serve the evolving traffic load and mix. One possible design may be to

slowly change the value of the control parameter α based on the displacement of the

average traffic rate from the target capacity within the initially configured α range.

While this approach may sound promising, it introduces another controller (a low

pass filter) into the system. Therefore, any dynamic control parameter adaptation

would require additional stability and implementation analysis.

Another area of future work includes extensive investigation of incremental de-

ployment issues. In particular, analysis of a congested ARC router in conjunction

with other congested drop-tail routers and vice versa for multiple heterogeneous

bottleneck network is required before adopting ARC into the current Internet archi-

tecture.

In addition to TCP support, ARC can be easily extended to concurrently support

FAST [99] traffic as shown in Section 4.1.4. Stability analysis and evaluation of the

FAST-extended ARC system is left as future work.

7.2.2 Extension to Stochastic Fairness Guardian

Currently, SFG uses a simple on/off traffic filtering approach that enables the multi-

level hash filter that has the static number of levels (L) and bins per level (N)

only when the outbound link is congested. A more sophisticated approach is to

dynamically adjust N every control/measurement epoch using a TCP-friendly rate

estimator similar to that used in RED-PD [85]. This dynamic configuration approach

233

is elegant but has increased complexity because the SFG hash functions will have to

be adjusted frequently as N changes. Evaluation of such a dynamic bin adjustment

is left as future work.

7.2.3 Streaming Characterization

The streaming characterization work in Section 5.1 is only another step in the anal-

ysis of streaming multimedia traffic on the Internet, leaving many areas for future

work. In our study, pre-recorded video clips are intentionally selected to help ensure

consistency in the videos played out during each set of experiments. Live content,

captured and served directly from a video camera or television, typically has differ-

ent characteristics than does pre-recorded content [126]. Future work could be to

measure the performance of live RealVideo content on the Internet and compare it

to that of the pre-recorded RealVideo content in our study.

In addition, this work did not explore the relationship between perceptual quality

of the video, influenced by application level performance such as frame rate and jitter,

and network metrics. A better understanding of the impact on perceptual quality

on video streaming over UDP versus TCP might further aid development of more

effective ways to use a TCP-Friendly share of the available bitrate. In particular,

future work includes investigating how to use the available TCP-Friendly bandwidth

for media scaling and forward error correction (FEC) to maximize perceptual quality

of the streamed media.

7.2.4 Extension to MTP

Currently, MTP offers an API that transparently provides underlying network in-

formation such as packet losses or round-trip time to applications above. Future

234

work includes enhancing the MTP API to explicitly provide useful network informa-

tion, such as effective MTP transmission rate, that can be utilized to improve media

scaling and repair performance. The exact network information, computation and

format that should be provided to be useful for media scaling requires further study.

Another area of future work includes evaluating live and interactive streaming

over MTP, since live and interactive streams may have different media scaling char-

acteristics than archived streams due to limited computing resources and delay con-

straints. Related future work includes evaluating MTP with dynamic queue length

adaptation in [48] for delay critical interactive streaming.

Another future work is to implement and evaluate MTP under Linux to validate

the performance of MTP as a streaming transport protocol. In particular, evaluating

MTP under Linux shall reveal some of the MTP API issues that are hard to iden-

tify and evaluate using NS. Additionally, the publicly available MTP in Linux will

help the network community to further extend streaming transport protocol studies

and/or to conduct other streaming related researches.

7.2.5 Evaluation of Goddard

Although Goddard streaming application built into NS models most of the essential

streaming features of commercial streaming applications, Goddard requires further

evaluation before it can be widely used by the NS research community. Such an

evaluation should compare behaviors of Goddard streams with those of commercial

streams under a controlled environment to see how realistically Goddard stream react

to network conditions.

235

Bibliography

[1] Akella, A., Seshan, S., and Shaikh, A., “An Empirical Evaluation of
Wide-Area Internet Bottlenecks,” in Proceedings of the ACM Internet Mea-
surement Conference (IMC), (Miami, FL, USA), October 2003. 148

[2] Allman, M., Paxson, V., and Stevens, W., “Congestion Control.” RFC-
2581, April 1999. 55, 56

[3] Appenzeller, G., Keslassy, I., and McKeown, N., “Sizing Router
Buffers,” in Proceedings of ACM SIGCOMM, (Portland, OR, USA), September
2004. 124

[4] Arlitt, M. and Jin, T., “Workload Characterization of the 1998 World
Cup Web Site,” Tech. Rep. HPL-1999-35R1, Hewlett-Packard Laboratories,
October 1999. 65, 92, 99, 121, 194

[5] Athuraliya, S., Li, V. H., Low, S. H., and Yin, Q., “REM: Active Queue
Management,” IEEE Network, vol. 15, pp. 48–53, May/June 2001. 2, 27, 30,
106, 107, 229

[6] Berners-Lee, T., Fielding, R., and Frystyk, H., “Hypertext Transfer
Protocol – HTTP/1.0.” RFC-1945, May 1996. 64

[7] Bernet, Y., Grossman, S. B. D., and Smith, A., “An Informal Manage-
ment Model for Diffserv Routers.” RFC-3290, May 2002. 40

[8] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and Weiss,
W., “An Architecture for Differentiated Services.” RFC-2475, December 1998.
4, 34, 39, 64, 69

[9] Bocheck, P., Campbell, A. T., Chang, S.-F., and Liao, R. R.-F.,
“Utility-based Network Adaptation for MPEG4 Systems,” in Proceedings of
International Workshop on Network and Operating System Support for Digital
Audio and Video (NOSSDAV), (Basking Ridge, NJ, USA), June 1993. 66, 144

[10] Bolot, J. C., “Characterizing End-to-End Packet Delay and Loss in the
Internet,” Journal of High Speed Networks, vol. 2, pp. 289–298, September
1993. 14, 190

236

[11] Bolot, J.-C., Fosse-Parisis, S., and Towsley, D., “Adaptive FEC-Based
Error Control for Internet Telephony,” in Proceedings of IEEE INFOCOM,
March 1999. 6, 66, 140, 172

[12] Bonald, T., May, M., and Bolot, J.-C., “Analytic Evaluation of RED
Performance,” in Proceedings of IEEE INFOCOM, pp. 1415–1424, 2000. 26,
60

[13] Boyce, J. and Gaglianello, R., “Packet Loss Effects on MPEG Video sent
over the Public Internet,” in Proceedings of ACM Multimedia, (Bristol, U.K.),
pp. 181–190, September 1998. 168

[14] Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Es-
trin, D., Floyd, S., Jacobson, V., Minshall, G., Partridge, C., Pe-
terson, L., Ramakrishnan, K., Shenker, S., Wroclawski, J., and
Zhang, L., “Recommendations on Queue Management and Congestion Avoid-
ance in the Internet.” RFC-2309, April 1998. 2, 16, 109

[15] Braden, R., “Requirements for Internet Hosts – Communication Layers.”
RFC-1122, October 1989. 55

[16] Brakmo, L. and Peterson, L., “TCP Vegas: End to End Congestion Avoid-
ance on a Global Internet,” IEEE Journal on Selected Areas in Communication,
vol. 13, pp. 1465–1480, October 1995. 105

[17] Cao, Z., Wang, Z., and Zegura, E. W., “Rainbow Fair Queueing: Fair
Bandwidth Sharing Without Per-Flow State,” in Proceedings of IEEE INFO-
COM, pp. 922–931, 2000. 3, 33

[18] Casetti, C., Gerla, M., Lee, S., Mascolo, S., and Sanadidi, M., “TCP
with Faster Recovery,” in Proceedings of MILCOM, (Los Angeles, CA, USA),
October 2000. 62

[19] Chesire, M., Wolman, A., Voelker, G., and Levy, H., “Measurement
and Analysis of a Streaming Media Workload,” in Proceedings of the USENIX
Symposium on Internet Technologies and Systems (USITS), (San Francisco,
CA, USA), pp. 1–12, March 2001. 140

[20] Choi, B.-Y., Moon, S., Zhang, Z.-L., Papagiannaki, K., and Diot,
C., “Analysis of Point-To-Point Packet Delay in an Operational Network,” in
Proceedings of IEEE INFOCOM, (Hong Kong, China), March 2004. 86, 118,
119

[21] Christiansen, M., Jeffay, K., Ott, D., and Smith, F. D., “Tuning RED
for Web Traffic,” in Proceedings of ACM SIGCOMM, (Stockholm, Sweden),
pp. 139–150, August-September 2000. 26, 61

237

[22] Chung, J. and Claypool, M., “Better-Behaved, Better-Performing Multi-
media Networking,” in Proceedings of SCS Euromedia, (Antwerp, Belgium),
May 2000. 132

[23] Chung, J. and Claypool, M., “Dynamic-CBT and ChIPS - Router Support
for Improved Multimedia Performance on the Internet,” in Proceedings of the
ACM Multimedia Conference, (Los Angeles, CA, USA), November 2000. 3,
32

[24] Chung, J. and Claypool, M., “Rate-Based Active Queue Management
with Priority Classes for Better Video Transmission,” in Proceedings of
the Seventh IEEE Symposium on Computers and Communications (ISCC),
(Taormina/Giardini Naxos, Italy), July 2002. 41

[25] Chung, J. and Claypool, M., “Analysis of Active Queue Management,” in
Proceedings of The 2nd IEEE International Symposium on Network Computing
and Applications (NCA), (Cambridge, MA, USA), April 2003. 3, 61, 62, 105

[26] Chung, J., Claypool, M., and Zhu, Y., “Measurement of the Congestion
Responsiveness of RealPlayer Streaming Video Over UDP,” in Proceedings of
the Packet Video Workshop (PV), (Nantes, France), April 2003. 141

[27] Chung, J., Zhu, Y., and Claypool, M., “FairPlayer or FoulPlayer? -
Head to Head Performance of RealPlayer Streaming Video Over UDP versus
TCP,” Tech. Rep. WPI-CS-TR-02-17, CS Department, Worcester Polytechnic
Institute, May 2002. 146, 150, 156

[28] Clark, D. and Fang, W., “Explicit Allocation of Best-Effort Service,”
IEEE/ACM Transactions on Networking, vol. 6, August 1998. 41

[29] Claypool, M., LaPoint, D., and Winslow, J., “Network Analysis of
Counter-strike and Starcraft,” in Proceedings of the 22nd IEEE Interna-
tional Performance, Computing, and Communications Conference (IPCCC),
(Phoenix, AZ, USA), April 2003. 67

[30] Conklin, G. J., Greenbaum, G. S., Lillevold, K. O., Lippman, A. F.,
and Reznik, Y. A., “Video Coding for Streaming Media Delivery on the
Internet,” IEEE Transactions on Circuits and Systems, pp. 269 – 281, March
2001. 143

[31] de Cuetos, P. and Ross, K. W., “Adaptive Rate Control for Streaming
Stored Fine-Grained Scalable Video,” in Proceedings of the 12th International
Workshop on Network and Operating System Support for Digital Audio and
Video (NOSSDAV), (Miami, Florida, USA), May 2002. 173

238

[32] Delgrossi, L., Halstrick, C., Hehmann, D., Herrtwich, R. G.,
Krone, O., Sandvoss, J., and Vogt, C., “Media Scaling for Audiovisual
Communication with the Heidelberg Transport System,” in Proceedings of the
First ACM International Conference on Multimedia, (Anaheim, CA, USA),
pp. 99–104, 1993. 66

[33] Demers, A., Keshav, S., and Shenker, S., “Analysis and Simulation of a
Fair Queuing Algorithm,” in Proceedings of ACM SIGCOMM, (Austin, TX,
USA), pp. 1–12, September 1989. 3, 32

[34] Diot, C., Iannaccone, G., and May, M., “Aggregate Traffic Performance
with Active Queue Management and Drop from Tail,” Tech. Rep. TR01-ATL-
012501, Sprint Advanced Technology Laboratories, July 2001. 26

[35] Feng, W., Kandlur, D., Saha, D., and Shin, K. G., “Blue: An Alterna-
tive Approach to Active Queue Management,” in Proceedings of International
Workshop on Network and Operating System Support for Digital Audio and
Video (NOSSDAV), June 2001. 3, 27, 36, 114

[36] Feng, W., Kandlur, D. D., Saha, D., and Shin, K. G., “Stochastic Fair
Blue: A Queue Management Algorithm for Enforcing Fairness,” in Proceedings
of IEEE INFOCOM, pp. 1520–1529, 2001. 3, 12, 35, 63, 111, 113, 119, 135,
229, 230

[37] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., and Berners-Lee,
T., “Hypertext Transfer Protocol – HTTP/1.1.” RFC-2068, January 1997. 64

[38] Firoiu, V. and Borden, M., “A Study of Active Queue Management for
Congestion Control,” in Proceedings of IEEE INFOCOM, pp. 1435–1444, 2000.
22, 58, 61

[39] Floyd, S. and Henderson, T., “The NewReno Modification to TCP’s Fast
Recovery Algorithm.” RFC-2582, April 1999. 57

[40] Floyd, S., “HighSpeed TCP (Web page).”
http://www.icir.org/floyd/hstcp.html. 63

[41] Floyd, S., “TCP and Explicit Congestion Notification,” ACM Computer
Communication Review, vol. 24, October 1994. 3, 20

[42] Floyd, S. and Fall, K., “Simulation-based Comparisons of Tahoe, Reno,
and SACK TCP,” Computer Communication Review, vol. 26, July 1996. 56,
57

[43] Floyd, S. and Fall, K., “Promoting the Use of End-to-End Congestion
Control in the Internet,” IEEE/ACM Transactions on Networking, vol. 7, no. 4,
pp. 458–472, 1999. 2, 3, 36, 58, 116, 117, 140, 156

239

[44] Floyd, S., Handley, M., Padhye, J., and Widmer, J., “Equation-Based
Congestion Control for Unicast Applications,” in Proceedings of ACM SIG-
COMM, (Stockholm, Sweden), pp. 43–56, August-September 2000. 3, 6, 14,
46, 58, 63, 105, 140, 173, 175

[45] Floyd, S. and Jacobson, V., “Random Early Detection Gateways for Con-
gestion Avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4,
pp. 397–413, 1993. 3, 7, 26, 59, 60

[46] Floyd, S. and Jacobson, V., “Link-sharing and Resource Management
Models for Packet Networks,” IEEE/ACM Transactions on Networking, vol. 3,
no. 4, pp. 365–386, 1995. 3, 31, 41

[47] Gao, Y. and Hou, J., “A State Feedback Control Approach to Stabilizing
Queues for ECN-Enabled TCP Connections,” in Proceedings of IEEE INFO-
COM, (San Francisco, CA, USA), April 2003. 3, 8, 12, 26, 71, 72, 74, 91, 92,
97

[48] Goel, A., Krasic, C., Li, K., and Walpole, J., “Supporting Low La-
tency TCP-Based Media Streams,” in Proceedings of International Workshop
on Quality of Service (IWQoS), (Miami Beach, FL, USA), May 2002. 47, 164,
167, 174, 175, 188, 204, 235

[49] Guo, L. and Matta, I., “The War Between Mice and Elephants,” in Pro-
ceedings of the 9th International Conference on Network Protocols (ICNP),
(Riverside, CA, USA), November 2001. 65

[50] Hardman, V., Sasse, M. A., Handley, M., and Watson, A., “Reliable
Audio for Use over the Internet,” in Proceedings of Internet Society’s Interna-
tional Networking Conference (INET), (Ohahu, Hawaii, USA), 1995. 66

[51] Hashem, E., “Analysis of Random Drop for Gateway Congestion Control,”
Tech. Rep. LCS TR-465, Laboratory for Computer Science, MIT, Cambridge,
MA, 1989. 59

[52] Heinanen, J., Baker, F., Weiss, W., and Wroclawski, J., “Assured
Forwarding PHB Group.” RFC-2597, June 1999. 40

[53] Hemy, M., Hengartner, U., Steenkiste, P., and Gross, T., “MPEG
System Streams in Best-Effort Networks,” in Proceedings of the Packet Video
Workshop (PV), (New York, NY, USA), April 1999. 66

[54] Henderson, T., Sahouria, E., McCanne, S., and Katz, R., “On Im-
proving the Fairness of TCP Congestion Avoidance,” in Proceedings of IEEE
Globecom, (Sydney, Australia), pp. 539–544, 1998. 62

240

[55] Hernandez-Campos, F., Jeffay, K., and Smith, F., “Tracing the Evo-
lution of the Web Traffic: 1995-2003,” in Proceedings of the 11th IEEE/ACM
International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), (Orlando, FL, USA), October
2003. 92, 121, 194

[56] Heying, Z., Baohong, L., and Wenhua, D., “Design of a Robust Active
Queue Management Algorithm Based on Feedback Compensation,” in Proceed-
ings of ACM SIGCOMM, (Karlsruhe, Germany), August 2003. 3

[57] Hollot, C. V., Misra, V., Towsley, D., and Gong, W.-B., “A Control
Theoretic Analysis of RED,” in Proceedings of IEEE INFOCOM, pp. 1510–
1519, 2001. 75, 76

[58] Hollot, C. V., Misra, V., Towsley, D. F., and Gong, W., “On De-
signing Improved Controllers for AQM Routers Supporting TCP Flows,” in
Proceedings of IEEE INFOCOM, pp. 1726–1734, 2001. 3, 8, 12, 27, 31, 58,
61, 71, 72, 73, 74, 75, 81, 85, 91, 92, 229

[59] Huffaker, B., Fomenkov, M., Moore, D., and kc claffy, “Macroscopic
Analyses of the Infrastructure: Measurement and Visualization of Internet
Connectivity and Performance,” in Proceedings of the 2nd Passive and Active
Measurement Workshop (PAM), (Amsterdam), April 2001. 48

[60] Hurley, P., Boudec, J., Thiran, P., and Kara, M., “ABE: Providing a
Low-Delay Service within Best-Effort,” IEEE Network, vol. 15, no. 3, pp. 60–
69, 2001. 4, 38

[61] International Telecommunication Union (ITU), “Transmission Sys-
tems and Media, General Recommendation on the Transmission Quality for
an Entire International Telephone Connection; One-Way Transmission Time.”
Recommendation G.114, Telecommunication Standardization Sector of ITU,
Geneva, Switzerland, March 1993. 48

[62] Internet2 QoS working group, “Internet2 QoS Working Group.”
http://www.internet2.edu/qos/wg/. 41

[63] Internet2 QoS working group, “QBone.” http://qbone.internet2.edu/.
41

[64] Jacobson, V., Nichols, K., and Poduri, K., “An Expedited Forwarding
PHB.” RFC-2598, June 1999. 40

[65] Jacobson, V., “Congestion Avoidance and Control,” in Proceedings of ACM
SIGCOMM, (Stanford, CA, USA), August 1988. 2, 14, 51, 52, 53, 56, 190

241

[66] Jain, R., Ramakrishnan, K., and Chiu, D. M., “Congestion Avoidance in
Computer Networks with a Connectionless Network Layer,” Tech. Rep. DEC-
TR-506, Digital Equipment Corporation, August 1987. 54

[67] Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., and Towsley, D.,
“Inferring TCP Connection Characteristics Through Passive Measurements,”
in Proceedings of IEEE INFOCOM, (Hong Kong, China), March 2004. 86, 88,
92, 118, 119, 120, 194, 212

[68] Jupiter Media Metrix, “Users of Media Player Applications In-
creased 33 Percent Since Last Year,” April 2001. Press Release.
http://www.jup.com/company/pressrelease-.jsp?doc=pr01040. 142

[69] Katabi, D., Handley, M., and Rohrs, C., “Congestion Control for High
Bandwidth-Delay Product Networks,” in Proceedings of ACM SIGCOMM,
(Pittsburgh, PA, USA), August 2002. 2, 22, 29, 58, 60, 73, 104

[70] Keshav, S., “A Control-Theoretic Approach to Flow Control,” in Proceedings
of the conference on Communications Architecture & Protocols, pp. 3–15, 1991.
14, 190

[71] Kohler, E., Handley, M., and Floyd, S., “Datagram Congestion Control
Protocol (DCCP).” IETF Internet-Draft: draft-ietf-dccp-spec-11, March 2005.
175

[72] Krasic, C. and Walpole, J., “Priority-Progress Streaming for Quality-
Adaptive Multimedia,” in Proceedings of the Ninth ACM International Con-
ference on Multimedia, (Ottawa, Canada), October 2001. 173

[73] Kuang, T. and Williamson, C., “A Measurement Study of RealMedia Au-
dio/Video Streaming Traffic,” in Proceedings of ITCOM, (Boston, MA, USA),
pp. 68–79, July 2002. 140

[74] Kuhmiinch, C., Kiihne, G., Schremmer, C., and Haenselmann, T.,
“A Video-Scaling Algorithm Based on Human Perception for Spario-Temporal
Stimuli,” in Proceedings of IS&T/SPIE/ACM Multimedia Computing and Net-
working (MMCN), (San Jose, California, USA), January 2001. 66

[75] Kunniyur, S. and Srikant, R., “Analysis and Design of an Adaptive Virtual
Queue (AVQ) Algorithm for Active Queue Management,” in Proceedings of
ACM SIGCOMM, (San Diego, CA, USA), August 2001. 3, 8, 12, 28, 71, 72,
74, 75, 91, 92, 229

[76] Lakshminarayanan, K. and Padmanabhan, V., “Some Findings on the
Network Performance of Broadband Hosts,” in Proceedings of the Internet Mea-
surement Conference (IMC), (Miami, FL, USA), October 2003. 147

242

[77] Le, L., Aikat, J., Jeffay, K., and Smith, F. D., “The Effects of Active
Queue Management on Web Performance,” in Proceedings of ACM SIGCOMM,
(Karlsruhe, Germany), August 2003. 126

[78] Le, L., Aikat, J., Jeffay, K., and Smith, F. D., “Differential Congestion
Notification: Taming the Elephants,” in Proceedings of the 12th International
Conference on Network Protocols (ICNP), (Berlin, Germany), October 2004.
31

[79] Lee, C.-S., Claypool, M., and Kinicki, R., “Chablis - Achieving Fair
Bandwidth Allocation with Priority Dropping Based on Round Trip Time,”
Tech. Rep. WPI-CS-TR-02-19, Computer Science Department, WPI, Worces-
ter, MA, May 2002. 63

[80] Li, M., Claypool, M., and Kinicki, R., “MediaPlayer versus RealPlayer
– A Comparison of Network Turbulence,” in Proceedings of ACM SIGCOMM
Internet Measurement Workshop (IMW), (Marseille, France), November 2002.
11, 44, 140, 157

[81] Lin, D. and Morris, R., “Dynamics of Random Early Detection,” in Pro-
ceedings of ACM SIGCOMM, (Cannes, France), pp. 127–137, September 1997.
3, 33

[82] Liu, Y. and Claypool, M., “Using Redundancy to Repair Video Damaged
by Network Data Loss,” in Proceedings of IS&T/SPIE/ACM Multimedia Com-
puting and Networking (MMCN), (San Jose, California, USA), January 2000.
6, 66, 140, 172

[83] Loguinov, D. and Radha, H., “Measurement Study of Low-bitrate Internet
Video Streaming,” in Proceedings of ACM SIGCOMM Internet Measurement
Workshop (IMW), (San Francisco CA, USA), November 2001. 42

[84] Low, S. H., Paganini, F., Wang, J., Adlakha, S., and Doyle, J. C.,
“Dynamics of TCP/AQM and a Scalable Control,” in Proceedings of IEEE
INFOCOM, 2002. 60, 63

[85] Mahajan, R., Floyd, S., and Wetherall, D., “Controlling High-
Bandwidth Flows at the Congested Router,” in Proceedings of the 9th In-
ternational Conference on Network Protocols (ICNP), (Riverside, CA, USA),
November 2001. 3, 12, 35, 37, 109, 111, 119, 135, 229, 230, 233

[86] Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A., “TCP Selective
Acknowledgment Options.” RFC-2018, October 1996. 57, 186, 189

243

[87] McCreary, D., Li, K., Watterson, S. A., and Lowenthal, D. K.,
“TCP-RC: A Receiver-Centered TCP Protocol for Delay-Sensitive Applica-
tions,” in Proceedings of the 12th SPIE Multimedia Computing and Networking
Conference (MMCN), (San Jose, CA, USA), January 2005. 48

[88] McCreary, S. and Claffy, K., “Trends in Wide Area IP Traffic Patterns:
A View from Ames Internet Exchange,” in 13th ITC Specialist Seminar, pp. 1–
11, September 2000. xi, 42, 67, 68, 118

[89] McKenny, P., “Stochastic Fairness Queueing,” in Proceedings of IEEE IN-
FOCOM, (San Francisco, CA, USA), June 1990. 32

[90] Mena, A. and Heidemann, J., “An Emprical Study of Real Audio Traffic,”
in Proceedings of IEEE INFOCOM, (Tel-Aviv, Israel), pp. 101–110, March
2000. 43, 140

[91] Mitra, D., Stanley, K., Pan, R., Prabhakar, B., and Psounis, K.,
“CHOKE, A Stateless Active Queue Management Scheme for Approximating
Fair Bandwidth Allocation,” in Proceedings of IEEE INFOCOM, (Tel-Aviv,
Israel), March 2000. 3, 12, 35, 119, 135, 230

[92] Nichols, J., “Measurement of Windows Streaming Media,” Master’s thesis,
Worcester Polytechnic Institute, February 2004. Advisor: Mark Claypool and
Robert Kinicki. 198

[93] Nichols, J., Claypool, M., Kinicki, R., and Li, M., “Measurements of
the Congestion Responsiveness of Windows Streaming Media,” in Proceedings
of the 14th ACM International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV), June 2004. 11, 172, 176,
190, 191, 193, 231

[94] Ogata, K., Modern Control Engineering, Fourth Edition. Upper Saddle River,
New Jersey, USA: Prentice Hall, 2002. 79

[95] Padhye, C., Christensen, K., and Moreno, W., “A New Adaptive FEC
Loss Control Algorithm for Voice Over IP Applications,” in Proceedings of
IEEE International Performance, Computing and Communication Conference,
Feburary 2000. 6, 66, 140, 172

[96] Padhye, J., Firoiu, V., Towsley, D., and Krusoe, J., “Modeling TCP
Throughput: A Simple Model and its Empirical Validation,” in Proceedings of
ACM SIGCOMM, (Vancouver, Canada), pp. 303–314, September 1998. 46,
58, 59

[97] Padhye, J. and Floyd, S., “Identifying the TCP Behavior of Web Servers,”
Tech. Rep. 01-002, ICSI, 2001. 57

244

[98] Padhye, J. and Floyd, S., “On Inferring TCP Behavior,” in Proceedings of
ACM SIGCOMM, (San Diego, CA, USA), August 2001. 58

[99] Paganini, F., Wang, Z., Low, S. H., and Doyle, J. C., “A New
TCP/AQM for Stable Operation in Fast Networks,” in Proceedings of IEEE
INFOCOM, (San Francisco, CA, USA), April 2003. 2, 29, 63, 73, 104, 105,
108, 233

[100] Palm, W. J., Modeling, Analysis, and Control of Dynamic Systems, Second
Edition. New York, New York, USA: John Wiley and Sons, Inc., July 1999.
22, 23

[101] Papagiannaki, K., Taft, N., and Diot, C., “Impact of Flow Dynamics
on Traffic Engineering Design Principles,” in Proceedings of IEEE INFOCOM,
(Hong Kong, China), March 2004. 35

[102] Park, K. and Wang, W., “QoS-Sensitive Transport of Real-Time MPEG
Video Using Adaptive Forward Error Correction,” in Proceedings of IEEE Mul-
timedia Systems, pp. 426–432, June 1999. 6, 66, 140, 172

[103] Parris, M., Jeffay, K., and Smith, F., “Lightweight Active Router-Queue
Management for Multimedia Networking,” in Proceedings of SPIE conference
on Multimedia Computing and Networking, January 1999. 3, 31

[104] Perkins, C., Hodson, O., and Hardman, V., “A Survey of Packet-Loss
Recovery Techniques for Streaming Audio,” IEEE Network Magazine, Septem-
ber/October 1998. 66

[105] Phelan, T., “Datagram Congestion Control Protocol (DCCP) User Guide.”
IETF Internet-Draft: draft-ietf-dccp-user-guide-02, July 2004. 174

[106] Phirke, V., Claypool, M., and Kinicki, R., “Traffic Sensitive Active
Queue Management for Improved Multimedia Streaming,” in Proceedings of
the International Workshop on QoS in Multiservice IP Networks (QoS-IP),
(Milano, Italy), February 2003. 4, 38

[107] Postel, J. (ed.), “Transmission Control Protocol – DARPA Internet Pro-
gram Protocol Specification.” RFC-793, September 1981. 51

[108] Prasad, R., Dovrolis, C., Murray, M., and Claffy, K., “Bandwidth
Estimation: Metrics, Measurement Techniques, and Tools,” IEEE Network,
vol. 17, November/December 2003. 192

[109] Ramakrishnan, K., Floyd, S., and Black, D., “The Addition of Explicit
Congestion Notification (ECN) to IP.” RFC-3168, September 2001. 1, 3, 61,
62, 71

245

[110] Real Networks Incorporated, “RealNetworks Facts,” 2001. URL:
http://www.reanetworks.com/gcompany/index.html. 139

[111] Real Networks Incorporated, “RealPlayer 8 User Manual,” copy-
right 2000. URL: http://service.real.com/help/player/plus manual.8-
/rppmanual.htm. 143

[112] Real Networks Incorporated, “RealProducer User’s Guide,”
copyright 2000. URL: http://www.service.real.com/help/library/guides-
/producerplus85/producer.htm. 143

[113] Rejaie, R., Handley, M., and Estrin, D., “RAP: An End-to-End Rate-
Based Congestion Control Mechanism for Realtime Streams in the Internet,”
in Proceedings of IEEE INFOCOM, pp. 1337–1345, March 1999. 3, 6, 46, 140,
173

[114] Rhee, I., Ozdemir, V., and Yi, Y., “TEAR: TCP Emulation at Receivers -
Flow Control for Multimedia Streaming,” tech. rep., Department of Computer
Science, NCSU, Raleigh, NC, April 2000. 3, 6, 47, 63, 140, 173

[115] Saroiu, S., Gummadi, K. P., Dunn, R. J., Gribble, S. D., and Levy,
H. M., “An Analysis of Internet Content Delivery Systems,” in Usenix Operat-
ing Systems Design and Implementation (OSDI), (Boston, MA, USA), pp. 315
– 327, October 2002. 93, 99, 121, 195

[116] Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V., “RTP:
A Transport Protocol for Real-Time Applications.” RFC-3550, July 2003. 174

[117] Seelam, N., Sethi, P., and chi Feng, W., “A Hysteresis Based Approach
for Quality, Frame Rate, and Buffer Management for Video Streaming Using
TCP,” in Proceedings of 4th IFIP/IEEE International Conference on Manage-
ment of Multimedia Networks and Services, (Chicago, IL, USA), October 2001.
173

[118] Silva, G., Datta, A., and Bhattacharyya, S. P., “PI Stabilization of
First-Order Systems with Time Delay,” Automatica, December 2001. 8, 71,
74, 81

[119] Stoica, I., Shenker, S., and Zhang, H., “Core-Stateless Fair Queue-
ing: Achieving Approximately Fair Bandwidth Allocations in High Speed Net-
works,” in Proceedings of ACM SIGCOMM, (Stanford, CA, USA), pp. 118–130,
August 1998. 3, 33

[120] Tanenbaum, A. S., Computer Networks, Third Edition. Upper Saddle River,
New Jersey, USA: Prentice Hall PTR, 1996. 49, 51

246

[121] Teitelbaum, B., “Internet2 QoS Testbed: the QBone.”
Quality of Service Breakout Sessions, Monday Septem-
ber 28 Internet2 Project Meeting 1998 San Francisco, CA,
http://www.internet2.edu/qos/wg/calendar/Sep98GeneralMtg/breakouts.html.
v, 40

[122] Thompson, K., Miller, G., and Wilder, R., “Wide-Area Internet Traf-
fic Patterns and Characteristics,” IEEE Network, vol. 11, pp. 10–23, Novem-
ber/December 2000. 58

[123] Tripathi, A. and Claypool, M., “Improving Multimedia Streaming with
Content-Aware Video Scaling,” in Workshop on Intelligent Multimedia Com-
puting and Networking (IMMCN), March 2002. 144

[124] van der Merwe, J., Caceres, R., hua Chu, Y., and Sreenan, C., “mm-
dump - A Tool for Monitoring Internet Multimedia Traffic,” ACM Computer
Communication Review, vol. 30, pp. 48–59, October 2000. 140

[125] van der Merwe, J., Sen, S., and Kalmanek, C., “Streaming Video Traffic:
Characterization and Network Impact,” in Proceedings of the 7th International
Workshop on Web Content Caching and Distribution, (Boulder CO, USA),
August 2002. 43, 172

[126] Veloso, E., Almeida, V., Meira, W., Bestavros, A., and Jin, S., “A
Hierarchical Characterization of a Live Streaming Media Workload,” in Pro-
ceedings of the ACM SIGCOMM Internet Measurement Workshop, (Marseille,
France), pp. 117 – 130, November 2002. 234

[127] VINT, “Virtual InterNetwork Testbed, A Collaboration among USC/ISI, Xe-
rox PARC, LBNL, and UCB.” http://www.isi.edu/nsnam/vint/. 11, 57, 83,
175, 229

[128] Walpole, J., Koster, R., Cen, S., Cowan, C., Maier, D., McNamee,
D., Pu, C., Steere, D., and Yu, L., “A Player for Adaptive MPEG Video
Streaming Over The Internet,” in Proceedings of the SPIE Applied Imagery
Pattern Recognition Workshop, October 1997. 144

[129] Wang, B., Kurose, J., Shenoy, P., and Towsley, D., “Streaming via
TCP: An Analytic Performance Study,” in Proceedings of ACM Multimedia,
(New York, NY, USA), October 2004. 173

[130] Wang, Y., Claypool, M., and Zuo, Z., “An Empirical Study of RealVideo
Performance Across the Internet,” in Proceedings of the ACM SIGCOMM
Internet Measurement Workshop (IMW), (San Francisco, California, USA),
pp. 295 – 309, November 2001. 6, 11, 44, 140, 143, 148

247

[131] Yang, Y. R. and Lam, S. S., “General AIMD Congestion Control,” in Pro-
ceedings of the 8th International Conference on Network Protocols (ICNP),
(Osaka, Japan), November 2000. 3, 6, 45, 63, 140, 173

[132] Zhang, Y., Breslau, L., Paxon, V., and Shenker, S., “On the Character-
istics and Origins of Internet Flow Rates,” in Proceedings of ACM SIGCOMM,
(Pittsburgh, PA, USA), August 2002. 31

248

	Worcester Polytechnic Institute
	Digital WPI
	2005-08-18

	Congestion Control for Streaming Media
	Jae Won Chung
	Repository Citation

	Introduction
	Motivation
	Approach
	Contributions
	Roadmap

	Related Research
	Active Queue Management
	AQM Taxonomy
	AQM Mechanisms

	Differentiated Services Architecture
	Measurement Studies Characterizing Streaming Traffic
	Transport Protocols for non-TCP Applications

	Background: Internet Congestion Control
	TCP/IP Networking
	Congestion Control Issues
	Support for Diverse QoS

	Crimson: AQM Support for Streaming Media
	Aggregate Rate Controller for Low Delay Packet Switching Network
	Design
	Configuration
	Evaluation
	Extention to Support FAST
	Summary

	Stochastic Fairness Guardian for Bandwidth Fairness Protection
	Design
	Configuration
	Evaluation
	Summary

	Crimson Conclusions

	End-System Support for Streaming Media
	Understanding Streaming Requirements
	RealVideo Background
	Measurement Approach
	Result
	Analysis
	Discussion of Results
	Summary

	Multimedia Transport Protocol
	Design of MTP
	Goddard Streaming Client and Server
	Evaluation under Drop-Tail Network
	Summary

	Streaming MTP over Crimson
	Simulation Setup
	Analysis
	Summary

	Conclusions and Future Work
	Summary
	Future Work
	Extension to Aggregate Rate Controller
	Extension to Stochastic Fairness Guardian
	Streaming Characterization
	Extension to MTP
	Evaluation of Goddard

