
University of Windsor
Scholarship at UWindsor

Electronic Theses and Dissertations

2009

PathAB: A New Method to Estimate End-to-End
Available Bandwidth of Network Path
Debashis Roy
University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These
documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative
Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the
copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of
the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please
contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

Recommended Citation
Roy, Debashis, "PathAB: A New Method to Estimate End-to-End Available Bandwidth of Network Path" (2009). Electronic Theses and
Dissertations. Paper 335.

http://scholar.uwindsor.ca?utm_source=scholar.uwindsor.ca%2Fetd%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholar.uwindsor.ca/etd/335?utm_source=scholar.uwindsor.ca%2Fetd%2F335&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

PATHAB: A NEW METHOD TO ESTIMATE END-TO-END AVAILABLE

BANDWIDTH OF NETWORK PATH

by

Debashis Roy

A Thesis

Submitted to the Faculty of Graduate Studies

through the School of Computer Science

in Partial Fulfillment of the Requirements for

the Degree of Master of Science at the

University of Windsor

Windsor, Ontario, Canada

2009

© 2009 Debashis Roy

PATHAB: A NEW METHOD TO ESTIMATE END-TO-END AVAILABLE

BANDWIDTH OF NETWORK PATH

By

Debashis Roy

APPROVED BY:

__

Dr. K. Tepe

Department of Electrical Engineering

__

Dr. R. Kent

School of Computer Science

__

Dr. A. K. Aggarwal, Advisor

School of Computer Science

__

Dr. S. Bandyopadhyay, Chair of Defense

School of Computer Science

May 22, 2009

 iii

AUTHOR’S DECLARATION OF ORIGINALITY

I hereby certify that I am the sole author of this thesis and that no part of this

thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owner(s) to include such material(s) in my thesis and have included copies of such

copyright clearances to my appendix.

 I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

 iv

ABSTRACT

Estimating available bandwidth accurately is extremely important for many network

related applications, especially the ones which need real-time traffic information. With

the ever increasing use of Internet, several available bandwidth measurement techniques

have been proposed. But most of them assume fluid traffic model, whereas studies show

that current Internet traffic follows Poisson distribution. Moreover, very few can operate

in stand-alone mode and have relatively high estimation errors. We propose a new

method, PathAB, which combines the concepts of three existing algorithms, MoSeab,

PoissonProb and PathChirp. It first obtains a rough estimation of available bandwidth

using an exponential probing train, and later obtains the final estimate using several

Poisson distributed probing trains. It can operate both in client-server and stand-alone

modes. Unlike other stand-alone methods, PathAB sends very small echo packets back-

to-back after the large probe packets to reduce the cross-traffic effect in returning path as

well as the estimation error.

 v

DEDICATION

I would like to dedicate this thesis to my parents and sisters.

 vi

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my supervisor, Dr.

Akshai Aggarwal, for always being a source of motivation and for giving me a definite

direction to my research.

I would like to thank my committee members, Dr. Robert Kent and Dr. Kemal Tepe, for

their valuable comments and suggestions towards my thesis. I would also like to thank

Dr. S. Bandyopadhyay for being the chair in the examination committee.

Last but not the least; I would like to express my gratefulness to my sisters, Deepa and

Beeta, for being an unending source of encouragement and confidence during the period

of my graduate studies.

 vii

TABLE OF CONTENTS

AUTHOR’S DECLARATION OF ORIGINALITY ... iii

ABSTRACT ... iv

DEDICATION ...v

ACKNOWLEDGEMENTS ... vi

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

1. INTRODUCTION ...1

1.1. Related Concepts ..2

1.1.1. Capacity ..2

1.1.2. Bottleneck Link & Bottleneck Bandwidth ...2

1.1.3. Utilization ...3

1.1.4. Available Bandwidth ..3

1.1.5. Tight Link ...4

1.1.6. Achievable Bandwidth ...4

1.1.7. Active and Passive Measurement ...4

1.1.8. Receiver-based vs. Sender-based Measurement5

1.2. Thesis Contribution ..7

2. SURVEY OF AVAILABLE BANDWIDTH ESTIMATE ALGORITHMS8

2.1. Gap-based Approach ..10

2.1.1. Cprobe ..11

2.1.2. Pipechar ..12

2.1.3. Spruce ..12

2.1.4. ab-probe ..13

2.1.5. PoTRI ..13

2.1.6. Summary ..14

2.2. Rate-based Approach ...15

2.2.1. TOPP ..16

 viii

2.2.2. AB Estimate using Curve Matching ...17

2.2.3. Pathload ..18

2.2.4. PathChirp ..19

2.2.5. PathMon ...21

2.2.6. Pathtrait ..22

2.2.7. PoissonProb ..23

2.2.8. QuickProbe ...24

2.2.9. Algorithm proposed by Xiao et al. ...25

2.2.10. eChirp ..26

2.2.11. Summary ..27

2.3. Model-based approach ...29

2.3.1. Delphi ..29

2.3.2. IGI and PTR ...31

2.3.3. Stochastic queuing model ...33

2.3.4. Envelope ...34

2.3.5. Summary ..35

2.4. Probabilistic Approach ...36

2.4.1. SMART ..36

2.4.1.1. Probabilistic definition of Available Bandwidth36

2.4.1.2. The SMART algorithm ...37

2.4.2. A_ABE ...38

2.4.3. Summary ..40

2.5. Hybrid Approach ..40

2.5.1. BET ..41

2.5.2. MoSeab ...42

2.5.3. Summary ..43

2.6. Kalman Filtering based Algorithm ...44

2.6.1. BART ..45

2.6.2. Abest ..47

2.6.3. Summary ..49

 ix

3. THE PROPOSED ALGORITHM: PATHAB ...50

3.1. Client-Server Mode ..50

3.1.1. Initial Probing Phase ..51

3.1.2. Direct Probing Phase ..54

3.1.3. Complete client-server algorithm ...56

3.2. Stand-alone Mode ..57

3.2.1. Initial Probing Phase ..58

3.2.2. Direct Probing Phase ..59

3.2.3. Complete stand-alone mode algorithm ..59

3.2.4. Position of the Echo Packet ..60

4. EXPERIMENT AND ANALYSIS ..62

4.1. Experiments using NS-2 simulator ..62

4.1.1. Single Tight-Link Scenario ..62

4.1.2. Multiple Tight Link: Pre and Post Bottleneck Cross-Traffic Effect69

4.1.2.1. Pre-bottleneck experiment ..70

4.1.2.2. Post-bottleneck experiment ..72

4.2. Experiments on Network TestBed ...74

4.2.1. Single-hop Experiments ...75

4.2.1.1. Description of Network TestBed ..75

4.2.1.2. Results of Single-hop Experiments ..76

4.2.2. Multi-hop Experiment: 10 Mbps range ..78

4.2.2.1. Description of Network TestBed ..78

4.2.2.2. Experimental Results ..79

4.2.3. Multi-hop Experiment: 100 Mbps range ..82

4.2.3.1. Description of Network TestBed ..82

4.2.3.2. Experimental Results ..83

4.3. Effect of Probe-Packet Size on Estimation Accuracy ..87

5. CONCLUSION AND RECOMMENDED FUTURE WORK89

REFERENCES ..91

APPENDIX A ..96

A.1. Poisson Process and Poisson Traffic ..96

 x

APPENDIX B ..99

B.1. Internet Control Message Protocol (ICMP) ...99

B.2. Use of ICMP packet in PathAB ...101

APPENDIX C ..103

C.1. E-mail communication with the authors of MoSeab ..103

VITA AUCTORIS ...104

 xi

LIST OF TABLES

Table 2-1. Summary of Gap-based Algorithms .. 15

Table 2-2. Summary of Rate-based Algorithms ... 28

Table 2-3. Summary of Model-based Algorithms .. 36

Table 2-4. Summary of probabilistic algorithms .. 40

Table 2-5. Summary of hybrid algorithms .. 43

Table 2-6. Summary of Kalman filtering based algorithms ... 49

Table 4-1. RMS error % for 1.5 Mbps bottleneck Capacity under different utilization . 64

Table 4-2. RMS error % for 5 Mbps bottleneck Capacity under different utilization 65

Table 4-3. RMS error % for 10 Mbps bottleneck Capacity under different utilization .. 66

Table 4-4. RMS error % for 15 Mbps bottleneck Capacity under different utilization .. 67

Table 4-5. Average estimate of Available Bandwidth with Pre-Bottleneck Cross-

traffic ... 71

Table 4-6. Average estimate of Available Bandwidth with Post-Bottleneck Cross-

traffic ... 73

Table 4-7. Comparison of AB estimate algorithms for single-hop path with 10Mbps

capacity .. 76

Table 4-8. RMS error % of pre-bottleneck experiments .. 79

Table 4-9. RMS error % of post-bottleneck experiments ... 81

Table 4-10. Average estimated AB by different algorithms in 100Mbps multi-hop

path under pre-bottleneck traffic ... 83

Table 4-11. Average estimated AB by different algorithms in 100Mbps multi-hop

path under post-bottleneck traffic .. 85

Table A-1. Some types and codes used in ICMP header .. 101

 xii

LIST OF FIGURES

Figure 1-1. A pipe model with fluid traffic for four-hop network path 4

Figure 2-1. Gap-based Measurement .. 11

Figure 2-2. Offered bandwidth over measured bandwidth in TOPP for single-hop

path ... 17

Figure 2-3. Sending curve Vs. Receiving curve ... 18

Figure 2-4. Exponentially distributed packets in PathChirp probe train 20

Figure 2-5. PathChirp queuing delay signature .. 20

Figure 2-6. Pathtrait train structure ... 22

Figure 2-7. eChirp train structure ... 26

Figure 2-8. Exponential flight pattern and its relationship with the MWM tree 30

Figure 2-9. Multifractal wavelet model (MWM) ... 30

Figure 2-10. Single-hop Gap Model ... 31

Figure 2-11. A probe-train [P1, …, Pn] of n packets enveloped by two packets E1
k
 and

E2
k
 at router Rk ... 35

Figure 2-12. Modules of BET ... 41

Figure 2-13. Asymptotic relation between available bandwidth, probe traffic rate and

expected inter-packet strain ... 46

Figure 2-14. Convergence of the BART method .. 47

Figure 2-15. Linear model of Abest ... 48

Figure 3-1. Exponentially spaced probing train ... 51

Figure 3-2. OWD Increase Ratio vs. Packet numner .. 52

Figure 3-3. Pseudo code to smoothen OWD increase ratio curve 53

Figure 3-4. OWD Increase Ratio vs. Packet numner (after removing spikes and

fitting exponential curve) ... 54

Figure 3-5. Packet distribution within a train. Inter-packet gaps t1, t2 ,…, tN-1 are in

Poisson distribution .. 55

 xiii

Figure 3-6. Exponentially spaced probing packets with back-to-back echo packets 58

Figure 3-7. Packet distribution within a train in Stand-alone mode. Inter-packet gaps

t1, t2, … , tN-1 are in Poisson distribution .. 59

Figure 3-8. Gap builds up between two packets if the echo packet is followed by

probe packet ... 61

Figure 3-9. No gap builds up between two packets if the probe packet is followed by

echo packet ... 61

Figure 4-1. Network model for single bottleneck experiments 63

Figure 4-2. RMS error % for 1.5 Mbps bottleneck Capacity under different

utilization ... 65

Figure 4-3. RMS error % for 5 Mbps bottleneck Capacity under different utilization .. 66

Figure 4-4. RMS error % for 10 Mbps bottleneck Capacity under different

utilization ... 67

Figure 4-5. RMS error % for 15 Mbps bottleneck Capacity under different

utilization ... 68

Figure 4-6. Simulation topology for Pre-bottleneck and Post-bottleneck experiments .. 70

Figure 4-7. Average estimate of Available Bandwidth with Pre-Bottleneck Cross-

traffic .. 72

Figure 4-8. Average estimate of Available Bandwidth with Post-Bottleneck Cross-

traffic .. 74

Figure 4-9. Network topology for single-hop experiments .. 76

Figure 4-10. Comparison of AB estimate algorithms for single-hop path with 10Mbps

capacity .. 77

Figure 4-11. Network topology for multi-hop experiments ... 78

Figure 4-12. Comparison of RMS error % for pre-bottleneck experiments 80

Figure 4-13. Comparison of RMS error % for post-bottleneck experiments 81

Figure 4-14. Comparison of average estimated AB by different algorithms in

100Mbps multi-hop path under pre-bottleneck traffic 84

Figure 4-15. Comparison of RMS Error % of estimated AB by different algorithms in

100Mbps multi-hop path under pre-bottleneck traffic 84

 xiv

Figure 4-16. Comparison of average estimated AB by different algorithms in

100Mbps multi-hop path under post-bottleneck traffic 86

Figure 4-17. Comparison of RMS Error % of estimated AB by different algorithms in

100Mbps multi-hop path under post-bottleneck traffic 86

Figure 4-18. Probe-packet size vs. Accuracy of estimation ... 88

Figure A-1. Non-homogeneous Poisson Process .. 96

Figure B-1. ICMP header with IP header .. 100

 1

CHAPTER I

1. INTRODUCTION

Network measurement techniques continue to receive a great deal of attention since

networks are becoming an increasingly important part of today’s life. Numerous

measurement tools and techniques have been developed to observe or monitor various

network characteristics such as link capacity, available bandwidth, transmission delay,

transmission loss and network topology etc. The results obtained from these tools have a

number of applications in network management such as network troubleshooting,

locating fault locations, network provisioning etc. Moreover with the ever increasing use

of Internet in various applications, such as audio-video streaming, web applications,

distributed database applications, mobile computing etc., estimating the available

bandwidth of a network path has become more important. Knowledge of the available

bandwidth of an end-to-end path can be used to enhance the performance and QoS of

many network related applications, which require real-time traffic information to choose

the best route for message transmission.

One important physical characteristic of a large network is the available

bandwidth of a network path, which is defined as the maximum rate that the path can

provide to a flow without affecting the rate of cross-traffic in the path. Knowledge of real

time end-to-end available bandwidth has a variety of applications, such as, end-to-end

flow control, in which hosts use end-to-end available bandwidth estimation to determine

the rate at which they should transmit the data to avoid congestion in the network. Hosts

can dynamically select the server with the highest potential available bandwidth for

downloads and streaming media and determine whether the network has enough available

bandwidth to meet the desired rate. In peer-to-peer networks, hosts use the available

bandwidth information to select peers that can offer the best timely and efficient transfer

of content. Network engineers and administrator use bandwidth estimations to

troubleshoot networks, reroute network traffic and plan for future network expansions.

In recent years there has been a considerable interest in the research on available

bandwidth measurement methods. But measuring the available bandwidth accurately and

 2

efficiently is a challenging task as the value of available bandwidth is highly dynamic in

nature. The accuracy of measurement depends on the location of the bottleneck-link and

the tight-link in the path, the cross-traffic rate of the path and several other factors.

Moreover measurement methods have to take into account the complexity of network

topologies, the diversity of traffic models and the probability of dropping measurement

packets by the Intrusion Detection Systems (IDS).

1.1. Related Concepts

Before discussing the available bandwidth estimate techniques, it is necessary to clarify

some terms and concepts that are very frequently used in network bandwidth related

research. The most commonly used terms are explained in this section.

1.1.1. Capacity

Capacity is the maximum transmission rate at which a link can transmit data. It is a

physical property of a link and thus does not change with time. A Link’s capacity or the

maximum transmission rate of data through the link is mainly limited by two factors: the

underlying physical transmission medium and the transmitter/receiver hardware. For a

multi-hop network path, the link with minimum capacity determines the path capacity C.

1,2,...,

min
i

i H

C C

 (1.1)

where, Ci is the capacity of the i-th hop and H is the number of hops in the path.

1.1.2. Bottleneck Link & Bottleneck Bandwidth

In an end-to-end network path, the link with minimum capacity is called the bottleneck

link and the capacity of the bottleneck link is called the bottleneck capacity or bottleneck

bandwidth or generally the capacity of the path. The bottleneck bandwidth of a path

represents the maximum bandwidth that can be available between a sender and receiver

through the path, in the absence of competing traffic.

 3

1.1.3. Utilization

Utilization is the portion of capacity that is currently being used by cross-traffic on a hop

or a path.

1.1.4. Available Bandwidth

Available bandwidth describes the portion of link capacity that is not being used by the

network traffic. It can be obtained by subtracting utilization from capacity. It is the

maximum rate at which data can be injected without affecting the cross-traffic. In a

multi-hop path the link with minimum available bandwidth determines the available

bandwidth of the path.

Let Ci be the link capacity of link i of an end-to-end path having H number of

hops. If λi(t) is the cross-traffic of link i at time t, then the available bandwidth Ai(t,T) of

link i is the average of unused bandwidth over some time interval T is given by:

1

(,) (())
T t

i i it
A t T C t dt

T

 (1.2)

Hence, the average available bandwidth of the path over the time interval T will

be A(t,T), which is determined by the link with minimum available bandwidth, is:

1,2,...,

(,) min (,)i
i H

A t T A t T

 (1.3)

Figure 1-1 shows a pipe model with fluid traffic representation of a four-hop

network path, where each link is represented by a rectangle. The height of each rectangle

represents the capacity of the link and the height of shaded portion represents the amount

of capacity used by the cross-traffic or the utilization. The height of un-shaded portion

represents the available bandwidth of the link. In this example the minimum capacity C3

determines the end-to-end capacity and the minimum available bandwidth A4 determines

the end-to-end available bandwidth.

 4

Figure 1-1. A pipe model with fluid traffic for four-hop network path

1.1.5. Tight Link

For a network path, the link with the least amount of available bandwidth is called the

tight link. The available bandwidth of the tight link determines the path’s available

bandwidth. The tight link of a network path may be different from the bottleneck link. In

Figure 1-1 link L3 is the bottleneck link whereas link L4 is the tight link of the path.

1.1.6. Achievable Bandwidth

Achievable bandwidth is the maximum data transmission rate that an application can

actually obtain over a network path. Achievable bandwidth depends on several factors

such as, the available bandwidth of the path, the protocol and its implementation, the

operating system(s) used, performance capability and the load of end hosts etc.

The difference between achievable bandwidth and available bandwidth is that,

achievable bandwidth is an application metric that measures how much throughput an

application can achieve, whereas available bandwidth is a physical layer metric that

measures how much additional traffic can be injected into the path without interrupting

the other network traffic.

1.1.7. Active and Passive Measurement

Available bandwidth measurement techniques can be categorized primarily into active

and passive approaches. Active measurement approaches [3−30] inject a series of test

packets into the network, and use the feedback information to derive measurement

results. Passive approaches [59−61] do not use test packets but rather monitor the packets

passing through the routers without interfering with the cross-traffic packets. Active

measurement techniques are usually intrusive in nature as some of them send large

 5

number of packets into the network to collect as many samples as possible to filter out the

random behaviour of the network. Although passive measurements do not affect the

network traffic, they are often less reliable than the active ones. Claffy and McCreary [1]

showed that from passive measurements, it might not be possible to extract any useful

data at all in some cases. Due to real time and accuracy requirements by most of the

applications, available bandwidth estimation methods usually operate in the active mode.

1.1.8. Receiver-based vs. Sender-based Measurement

The active available bandwidth measurement tools can be divided into two categories:

client-server based tools (also referred to as receiver based or double end-host tools) and

stand-alone tools (also referred to as sender-based or single end-host tools). Typically

client-server based tools must be installed in both source host and destination host of the

network path; on the other hand stand-alone tools need to be installed only in the source

host.

Generally the client-server based tool consists of two programs, the sender

program which is installed in the source host and the receiver program or the server

program which is installed on the destination host. During estimation process the sender

transmits a series of packet-pairs or packet trains at different rates, while the receiver

receives the probe packets and uses the timestamp information of all the packets to

calculate the AB. It is impossible to deploy the receiver-based algorithm without the

destination’s cooperation as it requires a server version of the estimation tool to be

deployed at the destination. Users normally can install software in their own hosts, but

they may not have administrative access to the destination host at the other end of the

path. This may prevent the users from installing the receiver program on the destination

host and hence may make available bandwidth estimation impossible.

On the other hand, for standalone algorithms, the measurement tool’s program is

required to be loaded on only the sender host. In this type of algorithm, the sender

generally sends a series of ICMP echo-request packets and uses the timestamp

information of the received echo-response packets to estimate the available bandwidth.

 6

The standalone available bandwidth estimation algorithms can have several

network applications where the sender has limited access or no access to the receiver

host. For example, currently several streaming media websites host video or audio in

different qualities or bit-rates. The web-sites can decide about the quality and the

associated bit-rate to be sent to a user, after determining the available bandwidth from the

streaming media host to the user’s computer. As the web server may not have any access

rights on a user’s computer, it may use standalone available bandwidth estimation

algorithm to first estimate the AB of the path from web server to the user’s computer and

then transmit the media of appropriate bit-rate so that the user can enjoy uninterrupted

streaming media, without knowing any information about the network.

Almost all client-server based available bandwidth measurement algorithms are

based on the following four basic assumptions:

 All routers along the path follow first-in-first-out (FIFO) queuing

 The cross traffic follows the fluid model.

 The cross traffic rate varies slowly and remains constant for the duration of

available bandwidth estimation.

 The sender host is able to inject probe packets at a rate higher than the

available bandwidth.

In addition to the four, mentioned above, the standalone algorithms are based on

three more assumptions:

 The forward path from a sender to a receiver host and the returning path from

the receiver to the sender host contain the same set of intermediate routers.

 The cross-traffic along the forward path determines the estimation result; the

cross-traffic along the reverse path has a negligible effect on the returning

probe packets.

 The receiver host can generate ICMP response packets.

Client-server based algorithms have less estimation error compared to the

standalone algorithms as they use the cooperation of the hosts at both ends of the path,

but they are less scalable because they need a server version of the measurement software

 7

to be installed at the receiving host. On the other hand standalone algorithms are easy to

deploy as they do not require any tool to be deployed at the destination hosts. However

most of the stand-alone methods are less accurate than the receiver-based methods.

1.2. Thesis Contribution

In the last two decades a great deal of research has been done on available bandwidth

estimation of a network path and a considerable number of algorithms have been

proposed. Most of these algorithms use active probing approach and operate only in the

client-server mode. The algorithms have been developed based on different theoretical

and mathematical foundations and assumptions. All the algorithms pose some advantages

but with some drawbacks. For example, some algorithm may perform better on high link

utilization but it may fail under low traffic scenario. This thesis first presents a

comprehensive survey of existing available bandwidth measurement algorithms and then

proposes a new available bandwidth estimation algorithm PathAB which has been

developed combining the concepts used in three different methods and can operate both

in client-server mode and in standalone mode.

The rest of this thesis is organized as follows: Chapter II presents a

comprehensive survey of existing available bandwidth measurement techniques. Chapter

III gives a detailed description of the proposed algorithm PathAB, and its operation in

client-server mode as well as in standalone mode. In Chapter IV we present the

experimental results and analysis to verify the performance of PathAB and compare it

with some existing methods such as IGI, Pathload, PathChirp, PoissonProb and Spruce.

We have performed the comparison using extensive simulations in NS2 as well as on

network test-bed under different traffic loads for both single-hop and multi-hop paths.

Finally the future work and conclusion are presented in Chapter V.

 8

CHAPTER II

2. SURVEY OF AVAILABLE BANDWIDTH ESTIMATE ALGORITHMS

All the existing available bandwidth measurement algorithms can be classified mainly in

two categories: gap-based and rate-based algorithms. But because of different

measurement approaches and network models used by different researchers in this survey

the available bandwidth measurement algorithms have been divided into six categories.

The six categories are: gap-based, rate-based, model-based, probabilistic, hybrid and

Kalman filtering based approach.

Carter and Crovella [2] were the pioneer of available bandwidth measurement

techniques. They introduced the first algorithm cprobe, a gap-based method, which

estimates the available bandwidth based on the dispersion of long packet trains at the

receiver. A similar approach is taken in pipechar [3]. Strauss et al. [4] introduce spruce

which focuses on measurement accuracy, failure patterns, probe overhead and

implementation issues of bandwidth measurement techniques. Kazantzidis et al. [5] use a

new sampling formula to sample the probing packets in algorithm ab-probe introduced

by them. Xuan and Zheng [6] introduce a new available bandwidth measurement

algorithm PoTRI, that uses tri-packet-probe instead of packet-pair used in all other gap-

based technique.

Most of the researchers have preferred rate-based approach to estimate available

bandwidth and proposed various rate-based available bandwidth measurement

algorithms. Melander et al. [7] [8] propose the technique TOPP which addresses the

hidden bottleneck problem in the network path. NEPRI [9] focuses on the macroscopic

behaviour of the probing packet queued at the bottleneck link. He et al. [10] introduce a

measurement method which uses a curve matching technique to estimate the available

bandwidth. Jain and Drovolis [11] [12] propose a new rate-based measurement method

“Self Loading of Periodic Streams” and implements this method in a tool called

Pathload. PathChirp [13] is based on the concept of “self-induced congestion” and uses

exponentially spaced chirp probing train. The PathMon algorithm introduced by Kiwior

et al. [14] calculates mean and standard deviation of inter-arrival jitter prior to bandwidth

 9

measurement to improve accuracy of estimate of the curve matching technique. Pathtrait

proposed in [15] uses three types of probing packets in the probing train and uses linear

regression for bandwidth calculation. Xin [16] suggests a technique, PoissonProb, where

the intervals between the probing packets are in Poisson distribution format. Kola and

Vernon [17] propose a fast estimate method, QuickProbe, which calculates the available

bandwidth in only two roundtrips with moderate accuracy. Xiao et al. [18] proposed a

new algorithm which is based on Pathload’s concept but uses exponential search instead

of binary search for fast estimate and compares the average interval difference of source

and received trains, rather than comparing the rates. The eChirp algorithm introduced by

Suthaharan and Kumar [19] uses the concept of exponential packet trains used in

PathChirp but increases the inter-packet intervals by even powers. The algorithm

combines three different sub-trains within a packet train to obtain more information about

the network path.

Some researchers have used model-based approaches to measure available

bandwidth. The Delphi algorithm [13] uses the multifractal wavelet model introduced by

the same authors in an earlier paper [20]. Hu and Steenkiste [21] develop a single-hop

gap model for the competing cross-traffic and based on this model they introduce two

available bandwidth measurement algorithms, IGI and PTR. Kang et al. [22] introduced

an algorithm based on a stochastic queuing model for single congested path. Bhati [23]

extends the previous idea to design a recursive queuing model for multiple congested

links and presents the algorithm envelope.

Almost all the algorithms fail to correctly estimate the available bandwidth when

the network utilization is very low. To overcome this problem two groups of researchers

proposed algorithms based on probability and statistics. Min et al. [24] proposed a new

probabilistic definition of available bandwidth and based on this, they introduced the

SMART algorithm which, unlike all other methods, uses randomly distributed probing

packets. Zhou et al. [25] proposed another probabilistic approach NBE to estimate the

available bandwidth of a low utilization path. They have also established a new metric to

calculate the busyness of the path and based on this metric, the authors have proposed a

 10

new method A_ABE which dynamically uses NBE or IGI algorithm to estimate the

available bandwidth.

Both gap-based and rate-based algorithms have some advantages as well as

drawbacks which are described in section 2.5. To utilize the benefits of both of these

approaches some researchers have proposed hybrid algorithms. Botta et al. [26] proposed

a hybrid available bandwidth estimate tool called BET which integrates the three different

concepts, the Packet Train Dispersion (PTD) technique of path capacity estimate

methods, SLoEC (Self Loading Exponential Chirp) used by the PathChirp algorithm and

the SLoPS (Self Loading of Periodic Streams) used by the Pathload algorithm. MoSeab

[27] on the other hand uses several probing train with increasing rate in the first phase

(rate-based) to get a rough estimate of available bandwidth and in the next phase it uses a

gap-based approach for final estimate.

BART [28] and Abest [29] are the only two algorithms which use Kalman

filtering method to estimate the available bandwidth. The only difference between them

is that BART algorithm transmits probe packets at a rate higher than the available

bandwidth and hence overloads the path. Abest on the other hand sends probe packets at

a lower rate than AB without congesting the network path.

The following section briefly describes the concepts and measurement approaches

of each of these available bandwidth estimation algorithms.

2.1. Gap-based Approach

Gap-based algorithms are usually facilitated by packet pair/train properties. They use the

information about the time gap between the arrivals of two successive probes at the

receiver. “The advantage of this kind of algorithms is that they are very sensitive to the

burstiness of cross-traffic because of fine-grained interaction between the probing

packets and cross-traffic packets” [16]. The main idea of gap-based approaches is that, if

a pair of probe packet of size q is sent across a path of tight link capacity C with time gap

Δin, such that Δin is not greater than q/C, then the cross-traffic packets will be queued up

behind the first packet of the pair while it is being processed by the tight link. As a result

 11

when the packet pair reaches the receiver, the output time gap Δout will be greater than the

input time gap. Therefore, Δout is the time taken by the tight link to transmit the second

probe packet in the pair and the cross traffic that arrived during Δin as shown in Figure

2-1.

Tight Link

∆in ∆out

Probe Packet

Cross-traffic Packet

Figure 2-1. Gap-based Measurement

Thus the time to transmit traffic is Δout −Δin, and the rate of cross traffic is, (Δout

−Δin)/Δin ×C, where C is the capacity of the bottleneck. The available bandwidth is:

 1 out in

in

A C

 (2.1)

Most of the gap-based methods make the following assumptions: (i) a single

bottleneck link, (ii) the bottleneck link to be the tight link of the path and (iii) the router

queue does not become empty between the departure of the first probe in the pair and the

arrival of the second probe.

2.1.1. Cprobe

Carter and Crovella [2] introduced the first algorithm cprobe to measure end-to-end

available bandwidth. The measurement technique of cprobe is straightforward, it sends a

short stream of echo packets, records the time between the receipt of the first packet and

the receipt of the last packet, and then divides the number of bytes sent by this time to

measure the available bandwidth. The underlying assumption is that the dispersion of

long packet train is inversely proportional to the available bandwidth. The authors state

that this method is applicable when the packets are sent at a higher rate than the

bottleneck link speed, which can be measured using a separate method bprobe introduced

by the authors in the same paper. Cprobe uses the results of four separate 10-packet

 12

streams in order to tolerate packet drops and the possibility of re-ordering of packets. To

eliminate some irregularities in the readings, cprobe discards the highest and the lowest

inter-arrival measurements while calculating available bandwidth.

2.1.2. Pipechar

The algorithm Pipechar is proposed by Jin et al. [3] and it is implemented in the tool

Network Characterization Services (NCS). It uses the same basic assumption about

dispersion of long packet train like cprobe. The only difference is that pipechar can also

operate in the passive mode through the deployment of NCS daemons on each subnet of

the network infrastructure.

Though the algorithms cprobe and pipechar are straightforward, researchers are

doubtful about some assumptions of these approaches. According to Dovrolis et al. [30]

“the dispersion of long packet train does not measure the available bandwidth in a path;

instead, it measures a different throughput metric which is referred to as the asymptotic

dispersion rate (ADR)”.

2.1.3. Spruce

Spruce [4] algorithm uses a series of packet-pairs to estimate available bandwidth. It

assumes single bottleneck link and bottleneck capacity C to be known. Spruce uses 1500

byte probe packets and sets the intra-pair time gap Δin to the transmission time of a probe

packet on the bottleneck link. The main characteristic of spruce is that it sets the inter

packet-pair gaps as Poisson distribution with an average which is much larger than Δin,

so that it becomes less intrusive. For each packet-pair spruce calculates the available

bandwidth using (2.1). By default it takes an average of 100 such samples to report the

final estimate of available bandwidth. Authors claim that the value of is chosen in a

way such that the average probe rate is within 5% of bottleneck capacity and the estimate

error is less than 30% in almost all cases.

 13

2.1.4. ab-probe

The ab-probe method was proposed by Kazantzidis et al. in [5]. Unlike existing gap-

based methods, instead of calculating available bandwidth as the ratio of packet size and

the inter-arrival time of two successive packets (referred to as “bytes over time”, BoT),

the authors suggested a new sampling formula for the probe packets in ab-probe.

Ab-probe sends multiple streams of N packets each of size S at equal time

intervals assuming that the packets reach the bottleneck link with input rate Pb. The

available bandwidth for each stream is calculated using the following equation:

(1)

(1)
b

S
P

C T N S
A C

N

 (2.2)

Where, C is the bottleneck capacity and T is the observed time separation between

the first packet and the N-th packet at the receiver. Ab-probe takes the average of the

available bandwidths calculated for all the streams to estimate the available bandwidth of

the path. The nettimer tool is used to measure the bottleneck bandwidth prior to ab-probe.

The authors state that they have tested their algorithm on both long range and

short range internet connections using both packet-pairs and packet-trains method. They

claim that ab-probe can successfully measure the available bandwidth in all cases, even

for long distance network with more than 20 hops, whereas the existing BoT techniques

may sometimes fail.

2.1.5. PoTRI

Xuan and Zheng [6] introduced a new gap-based technique, PoTRI (PriOritized TRI-

packets), to measure available bandwidth. Unlike all other gap-based methods, it sends

tri-packets probes to measure the utilization of the link and the middle one packet of the

tri-packets-probe is prioritized so that it can measure both the output time gap and the

waiting time of the probe. According to the authors existing probe-gap-model only

captures the competing cross traffic packets that are inserted between a probe packet pair,

but cannot measure the packets that are already in the queue before the packet-pair

 14

arrives which is a usual scenario for heavy cross traffic condition. The authors state that if

a probe packet pair, with the second packet highly prioritized is transmitted-back to-back,

when they arrive at the router, the second one will immediately go to the head of the

service queue due to its high priority while the other one will wait at the end. Therefore

the output gap of the two probe packets denote the waiting time in the queue. Based on

this principle PoTRI sends three packets P1, P2 and P3 in each probe and the prioritized

packet P2 is sent closely behind P1. The first two packets P1, P2 are used to measure the

mean waiting time in the queue and the other two packets P1 and P3 are used to measure

the mean transmission time from the difference of their output and input gaps. This

information is then used to accurately calculate the overall utilization as well as the

available bandwidth of the link.

According to the authors, PoTRI’s estimate for available bandwidth is quiet

accurate for heavy cross traffic, but is unstable for low network utilization. Moreover,

PoTRI needs the network facilities to support priority settings. If all routers in the

network path do not support priority settings, the PoTRI becomes a usual probe gap

method.

2.1.6. Summary

The advantage of the gap based algorithms is that they are less intrusive. Most of the gap-

based methods, except ab-probe, use series of packet-pairs. As a result the overall

probing rate can be kept very low by increasing inter packet-pair time gaps. But the main

problem with these methods is that these methods assume that the bottleneck capacity of

the path is known and that the bottleneck and the tight link are the same. This assumption

makes these methods unusable to measure the available bandwidth of a completely

unknown path. Also Xuan and Zheng [6] pointed out that existing gap-based approaches

cannot capture the effect of cross-traffic packet that are already present at the router’s

queue. As a result, under high traffic utilization, they under-estimate the amount of cross-

traffic and over estimate the available bandwidth; though they have satisfactory

performance under low utilization. PoTRI is the first gap-based approach which tries to

capture the effect of queued traffic packets along with the competing traffic, but it has a

 15

special requirement that all the routers of the path have to support priorities. Table 2-1

presents a summary of gap-based methods discussed in this section.

Table 2-1. Summary of Gap-based Algorithms

Algorithm Year Main Contribution/Feature Sender

Based

Cprobe [2] 1996 First algorithm to measure available

bandwidth

Yes

Pipechar [3] 2001 Similar to cprobe but can operate both in

active and passive mode

No

Spruce [4] 2003 Interval between the packet-pairs are set

in Poisson distribution format

No

ab-probe [5] 2003 Use of packet trains instead of packet-

pairs. Introduces a new available

bandwidth sampling formula

No

PoTRI [6] 2006 Use of tri-packet-probe with a prioritized

central packet to capture the effect of

traffic packets queued at the router

No

2.2. Rate-based Approach

Most of the researchers have preferred rate-based approach to measure the available

bandwidth of a network path. This type of algorithms are based on the concept of self-

induced congestion: “If one sends probe traffic at a rate lower than the available

bandwidth along the path, then the arrival rate of probe traffic at the receiver will match

their rate at the sender. In contrast, if the probe traffic is sent at a rate higher than the

available bandwidth, then queues will build up inside the network and the probe traffic

will be delayed. As a result, the probes‟ rate at the receiver will be less than their sending

rate” [4]. Thus, the available bandwidth can be measured by searching for the turning

point at which the probe sending and receiving rates start matching.

The advantage of rate-based algorithms is that they adapt widely to most of the

network scenarios. They have better resistance to the cross-traffic effect and they can

always report reasonable results. “In comparison to the rate-based algorithms, the gap-

based algorithms may deviate largely from the correct value because of the errors in

estimating either the bottleneck capacity or the cross-traffic rate. The shortcoming of the

 16

rate-based algorithm is that the network overhead to converge to the turning point is too

high” [16].

2.2.1. TOPP

Melander et al. proposed the measurement methodology TOPP to estimate the available

bandwidth of a network path [7, 8]. TOPP sends many packet pairs at gradually

increasing probing rates from sender to the target host. Suppose that a packet pair, each

packet having a size of L bytes, is transmitted through a link of capacity C with inter

packet interval ; thus, the offered rate of the probing packet-pair will be RO=L/. If RO

is more than the end-to-end available bandwidth A, the link will become overloaded.

Under this situation, if FCFS scheduling and random dropping of packets at buffer

overflow is assumed, then the probe traffic will get a share of the link bandwidth

proportional to the offered rate RO and this is measured by the receiver as Rm < RO. On

the other hand if RO < A, TOPP assumes that the packet pair will arrive at the receiver at

the same rate as it had at the sender (i.e., Rm = RO).

 if

 if

O O

m O
O

O C

R R A

R R
C R A

R R

 (2.3)

where, RC = C – A is the average cross-traffic rate of the link. Equation (2.3) can be re-

written as:

1 if

1
1 if

O

O

O Om

R A
R

A
R R AR

C C

 (2.4)

 TOPP sends several trains of packet-pairs consisting of n pairs in each train with

linearly increasing input rates for the trains. TOPP estimates the available bandwidth A to

be the maximum possible input rate such that RO ≈ Rm. Equation (2.4) is used to estimate

the capacity C from slope of RO/Rm vs. RO plot.

 17

A

1

O
ff
e

re
d

/M
e

a
s
u

re
d

 b
a

n
d

w
id

th
 R

O
/R

m

Offered bandwidth RO

Figure 2-2. Offered bandwidth over measured bandwidth in TOPP for single-hop path

For a path consisting of multiple links, the RO/Rm curve may show multiple slope

changes due to queuing of probing packets at links having higher available bandwidth

than A. To avoid this situation TOPP assumes that congested links are in Smallest

Surplus First (SSF) order.

2.2.2. AB Estimate using Curve Matching

He et al. [10] proposed a new available bandwidth estimate method which uses curve

matching technique. The proposed method sends trains of ICMP echo packets with

decreasing time delays between two consecutive packets so that each packet requires

higher bandwidth than the previous one. For each packet the transmission time and the

reception time is noted. It then compares the curve for sending probe packets (sending

curve) with the one for receiving acknowledgement packets (receiving curve). The

sending curve is plotted using the transmission time against the packet number and the

time of the first packet is set to 0. Similarly the receiving curve is plotted using the

reception time against packet number with the time of first packet aligned to 0. To

compensate the fluctuations in the receiving curve caused by burstiness of traffic, the

method uses trend lines of receiving curve. The point where the trend line of receiving

curve starts diverging from the sending curve is reported as the congestion point and the

bandwidth requirement at that point is used to calculate the available bandwidth. To

improve the correctness of result the method uses several packet trains. Once it finds the

 18

congestion point, it automatically shrinks the bandwidth range around the estimated

congestion point and probes the network again.

0

5

10

15

20

25

30

1 2 3 4 5 6 7

Sending curve Receiving curve

Packet number

T
im

e

Figure 2-3. Sending curve Vs. Receiving curve

According to the authors this algorithm can calculate available bandwidth below

10Mbps with any desired accuracy. But for higher accuracy it requires more number of

probing trains which increase the network overhead.

2.2.3. Pathload

Jain and Drovolis introduced the Pathload tool in [11] & [12]. Pathload uses Self-Loading

Periodic Streams (SLoPS) to measure the available bandwidth. The basic idea of

Pathload is that, if the stream rate R is greater than the available bandwidth A of the

network path, the stream will cause a short term overload in the queue of the tight link.

As a result the probe packets of the stream will queue up at the tight link and the One-

way Delays of the probing packets will keep on increasing. On the other hand, if the

stream rate is less than or equal to the path’s available bandwidth, the one-way delays of

the packets do not change.

In this method the source periodically sends streams of K ≈ 100 equal-sized

packets to the receiver at a certain rate R. Each packet of the stream is time-stamped and

at the receiver One-Way Delay (OWD) for each packet is calculated. Pathload uses an

iterative algorithm, similar to binary search mechanism, to bring the stream rate R closer

to the available bandwidth of the path. Instead of reporting a single value for path’s

 19

available bandwidth, Pathload gives a range (ABmin−ABmax) in which the Available

Bandwidth belongs. It uses several probe streams to narrow down the range. Assume that

the sender sends the n th probe stream with rate R(n). From the delay behavior of the

received packets the receiver decides whether R(n)>A or not and informs the sender. The

sender then estimates the rate of the next probing stream R(n+1) using the following

method:

If, R(n) > A , R
max

 = R(n)

If, R(n) ≤ A , R
min

 = R(n)

R(n+1) = (R
max

+ R
min

)/2

Initially R
min

 is set to zero and R(n) & R
max

 both are kept same and sufficiently

large so that R(n) = R
max

 > A. The algorithm terminates when (R
max

−R
min

)<ω, where ω is

user defined estimate resolution. The algorithm needs log2 (R(0)) probing streams to

converge.

The Pathload method assumes that there is zero packet loss at the bottleneck

router, which means the router queue is large enough so that no cross-traffic packet is

dropped during the probing. If this assumption is not satisfied, Pathload may

underestimate the cross-traffic rate and over estimate the Available Bandwidth.

2.2.4. PathChirp

PathChirp is a novel available bandwidth estimate method introduced by Riberio et al. in

[13]. Unlike all earlier measurement techniques it uses exponentially spaced probing

packets in train to estimate path’s available bandwidth. The inter-packet gaps within a

chirp decreases exponentially by a factor γ resulting in a rapid increase of probing rate

within each train.

At the receiver, PathChirp observes the queuing delay signature of the received

packets for each train. Because of the burstyness of cross-traffic the delay signature

consists of some excursions from the zero axis instead of monotonous increase in

queuing delay.

 20

TgN2 Tg3 Tg2 Tg T

1 2 N-4 N-3 N-2 N-1 N

time

Probe packets

Figure 2-4. Exponentially distributed packets in PathChirp probe train

Queuing delay

Packet

sending

time
excursions

Figure 2-5. PathChirp queuing delay signature

The sender transmits M chirps each containing N exponentially separated packets.

It first estimates per packet available bandwidth (Ek) for each packet k as follows:

i) Ek = Rk if k belongs to an excursion that terminates and qk ≤ qk+1

ii) Ek = Rl if k belongs to an excursion that does not terminate, where l is the

start of the excursion

iii) Ek = Rl for all other cases

where, qk is the queuing delay and Rk is the instanteneous rate of k th packet in the

train. It then takes a weighted average of all the Ek
(m)

’s to estimate per-chirp available

bandwidth D
(m)

using equation:

1 ()

() 1
1

1

N m
k km k

N

kk

E
D

 (2.5)

where, ∆k is the inter-spacing time between packets k and k+1. Finally, by averaging all

the estimates of D
(m)

, it calculates the available bandwidth of the path.

 21

The main advantage of PathChirp is that to probe a network over the range of

rates [G1, G2]Mbps it requires only log(G2) – log(G1) packets.

2.2.5. PathMon

PathMon is another algorithm, introduced by Kiwior et al. [14] to estimate available

bandwidth, which follows almost similar curve matching technique inspired by the AB

Estimation using Curve Matching method proposed by He in [10]. But to eliminate

insignificant data and fluctuations of measurement, the algorithm first uses a single

packet-train with a simple statistical evaluation.

The algorithm has two steps. In the first step, which is the jitter measurement step,

PathMon sends one packet-train containing a series of Nj equally-spaced packets of the

same size. The receiver collects the inter-arrival time gaps and uses statistical analysis to

calculate the mean interval jitter, the standard deviation. It sends a large enough number

of packets to obtain a good statistical sample of jitter.

In the second step, the algorithm sends a series of equal-sized packets, but with

decreasing time interval, so that the instantaneous bandwidths of the packets are in

increasing order and equally spaced between the lower and upper bounds of available

bandwidth. The receiver records the receiving times of the packets in terms of cumulative

time. PathMon calculates the available bandwidth by identifying the congestion point,

i.e., the point of divergence between the inter-packet delays measured at the sender and

the receiver.

PathMon takes a different approach from the method proposed in [10] to

recognize the congestion point. It identifies the congestion point by starting at the upper

bound endpoint and traversing backwards over the timestamp information for each packet

in the train comparing the measured delay to the measured jitter statistics. The congestion

point corresponds to the packet that has a time difference greater than the average jitter

but is preceded by a packet with a time difference less than the average jitter.

 22

2.2.6. Pathtrait

The Pathtrait method introduced in [15] can accurately locate the tight link and estimate

the end-to-end available bandwidth of a network path. The method is based on a novel

probing technique that uses three different types of probing packets in the probing train.

According to the authors, pathtrait technique is based on the assumptions that all

the routers along the path follow FIFO queuing and generate ICMP packets and the cross

traffic along the path follows a fluid model. Pathtrait uses three different types of packets,

the Type-I packet can successfully reach the destination from the origin, Type-II packets

are hop limited by setting a lower value for the TTL so that it is dropped at an

intermediate router and Type-III packet which is hop limited ICMP packet that can

generate ICMP response from an intermediate router. Pathtrait train consists of large load

packets (Type-II) of size 1000 bytes, each of which is followed back to back by one

backward packet (Type-III) or one forward packet (Type-I) of size 40 bytes alternatively.

The Type-I packets are used to estimate the forward rate or output rate of a hop and

Types-III packets are used to estimate the input rate or backward rate for the hop.

Load Packet (Type-II)

Forward Packet (Type-I)

Backward Packet (Type-III)

time

Figure 2-6. Pathtrait train structure

 The method operates in three steps. In the first step Pathtrait sends a train with

TTL 128 and finds the hop count of the path from the received TTL value and determines

the maximum probing rate. The second phase is for locating the tight link. For each hop

of the path it sends a pathtrait train with adjusted TTL value, and reports a link as tight

link if the difference between the forward rate and backward rate is less than 5% of

backward rate. After discovering the tight link the method proceeds to step three to

 23

estimate the available bandwidth. In this step it probes the network path with 15 trains

with different rates calculated as:

 (1 (8))iR i R (2.6)

where, R is probing rate used in locating the tight link, Ri is the rate of i-th probing train

and the value of ε is set to 2%. After obtaining the receiving rates of all the trains, it uses

linear regression to solve (2.7) in order to obtain tight link bandwidth Ct and cross traffic

rate .

1
 if

1

1 1
 if

I

I

O
I

t t I

R A
R

R
R A

C C R

 (2.7)

where, RI are RO are the input and output rate respectively. Finally pathtrait calculates the

available bandwidth A of the path as Ct−.

The authors state that they have verified Pathtrait estimate using NS2 simulation

environments and found that this method accurately identifies the tight link location in

both constant cross traffic environment and in bursty environment. However the available

bandwidth estimate is less accurate in bursty traffic condition.

2.2.7. PoissonProb

The PoissonProb algorithm was introduced by Xin in [16]. The algorithm was designed

based on the study in [31] that, current network traffic on the internet follows Poisson

distribution. The key concept of this method is that in a probe stream, the intervals

between probe packets are in Poisson distribution format.

PoissonProb can operate both in client-server mode (receiver-based) and in stand-

alone mode (sender-based). In client-server mode, PoissonProb opens two connections

between the server and the client, one TCP session, which is used for transferring control

information, and a UDP session, which is used for probe packet transmission. In the first

phase of measurement PoissonProb client sends probe packets back-to-back to the server

 24

to estimate the bottleneck capacity of the path using histogram analysis of the timestamp

information of the packets. In the next phase the client sends a train of Poisson distributed

packets with mean inter-packet interval λ, set to 1/3 of the bottleneck separation gap. At

the receiver, the average destination gap of the packets within a probing train is compared

with the average source gap. If both gaps are the same ((source gap-destination

gap)/destination gap ≤ 0.15), PoissonProb stops measurement and reports available

bandwidth based on the probing rate of that train. Otherwise, it increases or decreases the

value of λ by a factor of 1/5 and proceeds with the next round of measurement.

In the stand-alone or sender-based mode, PoissonProb requires only a UDP

session between the sender and the receiver and sends UDP echo packets in Poisson

distribution. The algorithm assumes that the packets are echoed back through the same

route without being affected by the cross-traffic. The measurement strategy is similar to

the client-server mode. The sending host observes the total initial gaps and the total gaps

of the echo packets and stops measurement on reaching the turning point.

The main assumption of PoissonProb algorithm is that the network traffic pattern

follows Poisson process. If the traffic pattern changes, this method fails to estimate the

available bandwidth correctly.

2.2.8. QuickProbe

Kola and Vernon [17] introduced a rapid available bandwidth measurement technique,

QuickProbe, which can estimate the available bandwidth in only two roundtrips.

QuickProbe uses 19 probe packets on the first roundtrip to get a conservative estimate of

the available bandwidth and then another 9-17 packets on the second roundtrip to refine

the estimate.

According to the authors QuickProbe method sends a fixed-length train of

maximum-size packets with fixed spacing. The sending rate is considered to be feasible if

receiving rate of the probe packets is within 10% of the sending rate. QuickProbe uses

two initial packet-pairs with two probe rates (6 Mbps and 80 Mbps) to measure

bottleneck capacity of the path. It then uses this capacity information and initial probe

 25

rate feasibility results to determine the next probe rate in order to perform a binary search

for the maximum feasible transmission rate, which is reported as the available bandwidth,

similar to the Pathload approach. The key difference is that QuickProbe uses trains of 9

packets (or 17 packets if the probe rate is more than 100 Mbps) unlike 100 packets per

train in Pathload. This significantly reduces the traffic overload and estimation time.

According to the authors, QuickProbe may underestimate the available bandwidth in

some cases due to the granularity of binary search.

2.2.9. Algorithm proposed by Xiao et al.

Xiao et al. [18] proposed a new available bandwidth measurement method which is based

on the Self-Loading of Periodic Stream (SLoPS) concept introduced in Pathload [11].

Instead of comparing the received probe rate with the sending rate the proposed method

uses a new technique, called interval difference, to infer the congestion. Also unlike

Pathload instead of only using binary search method, it first performs an exponential

search to quickly find the rough range and then performs binary search to search for the

actual range of available bandwidth.

In each probing train the method transmits m
2
+1 probe packets of size L=100

bytes, where m is any integer. At the receiver the m
2
 received intervals are separated into

m groups. For example, the i-th group is {Om×i, Om×i+1, … , Om×i+m−1} whose average is

Oi
a
, where 0 ≤ i < m and Ok is the received gap between k-th and (k+1)th packet. For each

train, the value of a parameter δ is calculated using the following formula:

1

0
() 1 ,

 , ()
0 ,

m a

i si

a

i s

F X O
F X

m O

 (2.8)

where, s=L/R, R is the sending rate, s is the sending interval and r is the estimated

receiving interval of the probing train. If δ≤0.2 the algorithm reports s=r otherwise

s<r.

To obtain the rough range of available bandwidth the algorithm sends several

probing trains with exponentially increasing probing rate. For each train first the interval

 26

difference between s and r is estimated. The rate of (n+1)-th probing train R(n+1) is

calculated as:

If, s<r , Rmax = R(n)

If, s=r , Rmin = R(n)

R(n+1) = R(n) ×2
n

Once Rmax−Rmin reaches a threshold value the algorithms enters into the second

phase and obtains a finer range of available bandwidth using binary search method

similar to Pathload’s approach. Once the difference between Rmax and Rmin reaches the

desired accuracy the algorithm reports the available bandwidth as A=(Rmax+Rmin)/2.

The authors state that the proposed algorithm requires smaller number of probing

packets, it has less estimation time compared to Pathload and the estimate is more

accurate.

2.2.10. eChirp

Suthaharan and Kumar [19] introduced a new available bandwidth estimation algorithm

eChirp which has the same basic concept as the exponential packet train used in

PathChirp, but uses a modified train structure. In the modified train structure (Figure 2-7)

every odd packet repeats the probing structure and inter-packet gap as the previous

packet. Moreover the probing rate is increased exponentially with only even power. The

advantage of this type of train structure is that it requires half the number of probe

packets within a chirp train as compared to PathChirp.

TTTa
2

Ta
2

Ta
4

Ta
4

Ta
2N-4

Ta
2N-2

2T2Ta
2

2Ta
4

T(a
2
+1)Ta

2
(a

2
+1)Ta

2N-4
(a

2
+1)

2Ta
2N-4

Ta
2N-4

Figure 2-7. eChirp train structure

Each eChirp train can be seen as a combination of three different sub-trains with

different probing structures. The first train is spaced by the probing rate increase of:

 27

2 2 2 4 2 4 2 2, , , , , , ,N N NTa Ta Ta Ta Ta T T

The second train is spaced by the probing rate increase of:

2 4 2 2 6 2 2 2 2(1), (1), , (1), (1)N NTa a Ta a Ta a T a

The third train is spaced by the probing rate increase of:

2 4 2 6 22 ,2 , ,2 ,2N NTa Ta Ta T

Hence the eChirp method can obtain more data than PathChirp to characterize the

delay and excursion segmentation.

As each packet of the train belongs to three different sub-trains, each packet has three

different instantaneous probing rate as well as per packet available bandwidth (,

m

k jE)

associated with it. The overall per packet available bandwidth for the train is calculated

as a linear combination of per-packet available bandwidths of three sub-trains as:

 ,1 ,2 ,33 / 5m m m m

k k k kE E E E (2.9)

where, m is the train number, k is the packet number j is the sub-train number which can

have a value of either 1, 2 or 3 indicating whether the packet belongs to first, second or

third sub-train. Because of the equal spacing between two consecutive packets, the per-

chirp available bandwidth for a chirp train is calculated as:

 1

2

m m

k k km

k

E E
D

 (2.10)

Finally the available bandwidth of the path is estimated as the average of all per-

chirp available bandwidths.

2.2.11. Summary

Rate based algorithms can be used to estimate the available bandwidth of any completely

unknown network. Unlike the gap-based methods, these methods do not require any prior

information about the network path. As a result most of the researchers have followed

this approach to estimate the AB. The major disadvantage of rate-based algorithms is that

they inject a large number of probe packet trains at a higher rate than the AB and

 28

overload the network path. This makes these methods much more intrusive compared to

the gap-based algorithms. To overcome this problem, many researchers have focused on

restructuring the packet trains to keep the probing rate and number of probe-packets as

low as possible and gather more information about the network. Table 2-2 presents a

summary of rate-based algorithms discussed in this section.

Table 2-2. Summary of Rate-based Algorithms

Algorithm Year Main Contribution/Feature Sender

Based

TOPP [7, 8] 2000 Assumes proportional share of probe-traffic and cross-

traffic at the tight link. Uses trains of packet-pairs with

linearly increasing input rate for the trains.

No

Curve Matching

Algorithm [10]

2001 Uses curve matching technique to analyze the sending

and receiving time curves of the probing packets.

Yes

Pathload [11, 12] 2002 Self-adaptive method that estimates the range of

available bandwidth. Uses binary-search-like method

to find out a range within which the actual AB may

fall.

No

PathChirp [13] 2003 Usees exponentially spaced probing packets within a

train. Requires only log(G2) – log(G1) packets to probe

a network over the range of rates [G1, G2]Mbps.

No

PathMon [14] 2004 Similar to the Curve Matching Algorithm [10] but,

calculates the mean inter-arrival jitter and standard

deviation prior to bandwidth estimate to improve

accuracy

No

Pathtrait [15] 2005 Uses three different types of probing packets (load

packet, forward packet & backward echo packet).

No

PoissonProb [16] 2005 Intervals between the probe packets are in Poisson

distribution format

Yes

QuickProbe [17] 2006 Estimates available bandwidth with only two

roundtrips.

No

Algorithm

proposed by Xiao

et al. [18]

2007 It is based on the SLoPS concept used in Pathload, but

instead of only using binary search method, it first

performs an exponential search to quickly find the

rough range and then performs binary search to search

for the actual range of available bandwidth.

No

eChirp [20] 2008 Instantaneous rates of even packets are increased

exponentially with only even power and every odd

packet repeats previous inter-packet gap. Each train

consists of three sub-trains, which leads to more

samples than PathChirp using less number of packets.

No

 29

2.3. Model-based approach

This class of the available bandwidth measurement algorithms has been developed on the

basis of the network traffic modeling research.

2.3.1. Delphi

The foundation of the Delphi algorithm [20] is based on the multifractal wavelet model

(MWM). The core idea of the MWM is that the cross-traffic stream is a superposition of

many data flows that share common link resources with the probe connections. The

statistical analysis showed that such superposition has the characteristics of self-

similarity, burstiness, long-range dependence (LRD) and even multifractal behavior (non-

Gaussianity) [32]. This multifractal behavior makes it possible to present aggregated

cross-traffic as a binary tree structure. In this structure, the β multiplier splits parent

aggregate into two child aggregates at the next scale which increases or decreases β flow

of traffic. The MWM also provides means to estimate the queuing behavior of a synthetic

trace through the Multiscale Queuing Formula (MSQ) [32].

Following this model, the Delphi algorithm sends out chirps of n+2 probe packets

within the time interval T0, where Ti denotes the interval between the 1st and the

(n+2−i)th probe packet. The initial interval between the packets is partitioned according

to the exponential spacing and the interval is adjusted with the estimate of the previous

result. Figure 2-8 depicts the exponential flight pattern used in Delphi and its relationship

with the MWM tree. The tree coefficients Uj,k, j ≥ 0, k = 0,1,…,2
j
−1, correspond to the

total sum of cross-traffic bytes arriving at the model queue in the interval [2
−j

kT0,

2
−j

(k+1)T0], where j denotes the scale of interest. Each parent coefficient Uj,k is the sum

of its two children Uj+1,2k and Uj+1,2k+1 and Uj,k is splits between its children by a random

factor Bj,k (0 < Bj,k < 1) such that Uj+1,2k = Bj,k×Uj,k and Uj+1,2k+1=(1−Bj,k)×Uj,k. Therefore,

MWM is essentially a parametric model for bursty non-Gaussian traffic with two

parameters, a global mean-rate parameter or the scale of interest and the beta multiplier

parameters. The initial estimate of beta multipliers is either based on previous

measurements or is completely arbitrary. The gap change of two consecutive probing

packets at the receiver is used to estimate the amount of traffic during that interval.

 30

Delphi estimates the total cross-traffic arriving in the interval T0 by recursive estimates of

cross-traffics in the intervals T1, T2 and so on.

Figure 2-8. Exponential flight pattern and its relationship with the MWM tree

Figure 2-9. Multifractal wavelet model (MWM)

(a) Binary tree structure of aggregated traffic. (b) Beta multipliers split parent

aggregate into two child aggregates at the next finer scale

Delphi assumes that the path can be well modeled by a single queue (single-hop

model), However, this assumption is not applicable when the tight and bottleneck links

are different. It also looks upon all the queuing delays in the path as delay at the tight

link. This assumption, in some situations, leads to wrong estimate of the cross-traffic.

Actually, the implementation of Delphi is similar to that of gap-based algorithms. But the

two have different theoretical foundations [16].

 31

2.3.2. IGI and PTR

Hu and Steenkiste [21] presented a single-hop gap model to establish the relationship

between the competing traffic throughput and the change of packet pair gap for a single-

hop network. The model can be represented as a 3-D graph as shown in Figure 2-10. It

shows the output gap gO as a function of the queue size Q and the competing traffic

throughput BC.

BO*gI(1-r)

BC

JQR

Q0

gB

gI DQR

gO

Figure 2-10. Single-hop Gap Model

Here, gB is bottleneck separation gap, gI is input gap between two packets P1 &

P2 of a pair, gO is output gap at the receiver, BO is bottleneck capacity, BC is cross-traffic

rate, Q is queue size when the first packet P1 of the pair arrives at the router and r=gB/gI

The model assumes that the routers use FIFO queuing and all the probing packets

have the same size. There are two regions in the model, the joint queuing region (JQR)

where the router queue does not becomes empty during the period when both packets of

the pair arrives at the router; and the disjoint queuing region (DQR) where the router

queue becomes empty before arrival of the second packet. If the packet-pair operate in

the DQR, the output gap will have no relationship with competing cross-traffic and can

be represented as:

 32

O I

O

Q
g g

B
 (2.11)

On the other hand in JQR the output gap will have a linear relationship with

competing traffic and can be represented by the following equation:

 C I

O B

O

B g
g g

B

 (2.12)

Based on this model the authors proposed two available bandwidth estimation

techniques, the gap-based method Initial Gap Increasing (IGI) and the rate-based method

Packet Transmission Rate (PTR). Both IGI and PTR algorithms send a sequence of

packet trains with increasing input gap. The measurement process terminates when

average output gap is the same as the average input gap. The input gap is kept sufficiently

small to ensure that all the probe packets within a train fall in the joint queuing region.

Now in the probing train, consider that M probing gaps are increased, K are unchanged

and N are decreased. The IGI algorithm then calculates the available bandwidth as,

1

1 1 1

1

M

i Bi

M K N

i i ii i i

O

g g

g g g
A B

 (2.13)

Here, the gap values G
+

= {gi
+
 | i = 1, …, M}, G

=
 = { gi

=
 | i = 1, …, K }, and G

−
=

{gi
+
 | i = 1, …, N}.

1

M

O i Bi
B g g

 is the amount of competing traffic that arrives at the

bottleneck router during the probing period.
1 1 1

M K N

i i ii i i
g g g

 is the total

probing time.

The PTR algorithm on the other hand calculates available bandwidth using the

equation,

1 1 1

M K N

i i ii i i
g g g

M K N L

 (2.14)

Here, L is the size of probe packet.

 33

2.3.3. Stochastic queuing model

Kang et al. [22] presented a generic stochastic queuing model of an internet router. The

model assumes that the router introduces random delay noise ω to each arriving probe

packet because of the cross-traffic. If the probing train consists of n equal sized packets

of size q then the departure times dn of the packets can be expressed as,

1 1

1

 1

max() 2,
n

n n n

a n
d

a d n

 (2.15)

Here, an is the arrival time of n-th packet and = q/C is the process time of a

packet by the router of capacity C.

The main idea of the model is to transmit the packets with inter-packet interval x

in a way so that packet i arrives at the router before the departure time of packet i−1. This

condition leads to an ≤ dn−1 and hence the inter-departure times yn of the packets after the

bottleneck router are given by:

1

, 2
n n n n

y d d n

 (2.16)

In real networks such as the Internet, cross-traffic is bursty with a time-varying

arrival rate. Considering the time varying nature of cross-traffic, the authors derive the

mean output dispersion under arbitrary cross-traffic when the input spacing x ≤ q/C as:

 []
xr

E y
C

 (2.17)

where, r is the time-average of a cross-traffic arrival rate process r(t) at the tight link:

0

1
lim ()

t

t

r r u du
t

 (2.18)

Another important result in [22] shows that the variance of y decays to 0 as the

packet-train length n (i.e., the number of packets in each train) increases. To estimate

both capacity C and available bandwidth A from E[y], the paper [22] defines
a

nW and

b

nW to be the average dispersion of two sets of measurements {yi
a
} and {yi

b
} (where the

 34

index i represents the packet-train sequence number) with different initial spacings xa and

xb:

1 1

1 1
,

n na a b b

n i n ii i
W y W y

n n
 (2.19)

and calculates asymptotically accurate tight link capacity C and available bandwidth A of

a single hop path as:

()

lim a b

b an
a n b n

q x x
C

x W x W

 (2.20)

 lim
a b

a b n n

b an
a n b n

x x W W
q C r A

x W x W

 (2.21)

The authors state that although their model is very accurate for single bottleneck

link, but for a path with multiple congested links the estimation error increases

significantly.

2.3.4. Envelope

Bhati [23] proposed a new algorithm Envelope, which is a recursive extension of the

Kang’s stochastic model introduced in [22], to estimate end-to-end available bandwidth

of a multi-hop path.

Recursive extension is performed by treating inter-packet spacing xk of probe

traffic arriving at router Rk as the inter-departure delays yk-1 of the previous router Rk-1

and the recursive relationship between the average output dispersions E[yk] and E[yk-1]

can be expressed as:

1 1

1
1

[] []

[]
[]

 []

k k

k

k

k k
k

k k k

q
E y E y

A
E y

r E yq q
E y

C C A

 (2.22)

where, q is the packet size and Ck, Ak and rk respectively are the capacity,

available bandwidth and average cross-traffic rate of k-th hop.

 35

To obtain the inter-packet spacing from router Rk, Envelope sends trains of n large

probe-packets [P1,P2, …, Pn] surrounded by two small envelope packets E1
k
 and E2

k
 as

show in Figure 2-11. The TTL value of the probe packets are adjusted in a way such that

the probe traffic [P1,P2, … , Pn] is dropped at router Rk+1 and the surviving envelope

packets have a time spacing zk that is (n + 1) times larger than yk.

Rk Rk+1 Rk+2

[P1, P2, …, Pn]

E1
kE2

k E1
kE2

k

zk
yk

Figure 2-11. A probe-train [P1, …, Pn] of n packets enveloped by two packets E1
k
 and E2

k
 at

router Rk

At the receiver, the envelope-packets are sampled and then applied to the

recursive queuing model to estimate the capacity as well as the available bandwidth for

each link of the path using two sets of measurements with two different inter-packet

spacings similar to the method used in the single-hop case in [22].

According to the author, the relative estimation error of Envelope is always less

than 10%. But the error is high and it underestimates the available bandwidth when the

bottleneck link precedes the tight link.

2.3.5. Summary

The model-based algorithms perform well when the network structure and cross-traffic

follow exactly the same assumptions used to develop the algorithm. They have poor

performance if the network or traffic pattern slightly deviates from the network model.

Table 2-3 presents a summary of the model based algorithms discussed in this section.

 36

Table 2-3. Summary of Model-based Algorithms

Algorithm Year Main Contribution/Feature Sender

Based

Delphi [20] 2000 Use of multifractal parametric model for cross-

traffic estimate

No

IGI/PTR [21] 2003 Develop a “single-hop gap model” to relate

between the competing traffic throughput and the

change of the packet pair gap

No

Algorithm

proposed by

Kang et al. [22]

2004 Propose a stochastic queuing model for a single

congested path

No

Envelope [23] 2004 Proposes a recursive extension of the stochastic

queuing model for multiple congested links with

arbitrary cross-traffic

No

2.4. Probabilistic Approach

Two groups of researchers have proposed probabilistic approaches SMART and A_ABE

to estimate the available bandwidth of network. Both of these methods present a

probabilistic definition of AB. Based on this definition; the two methods develop two

new algorithms. This section presents a brief description of the two algorithms.

2.4.1. SMART

Min et al. [24] used a probabilistic approach to estimate the available bandwidth of an

end-to-end network path. The authors defined available bandwidth in terms of probability

and statistics and based on this definition they developed the new algorithm SMART

(Statistics Measurement for Available-bandwidth by Random Train).

2.4.1.1. Probabilistic definition of Available Bandwidth

According to Min et al. [24], at any time instance, a network node can have only two

states, it can either be idle or busy processing existing traffic. Therefore, the node can

either process a new packet with its full capacity C when the node is free, or the packet

can be queued up while the node is busy processing cross-traffic packets. Hence the

available bandwidth of a link at any moment t can be defined as:

 37

 when node is free

_ ()
0 when node is busy

C
avail bw t

 (2.23)

The available bandwidth of a link over the time period [t1, t2] can be estimated as

the average of all the momentary available bandwidths during the interval. Hence,

2

1
1 2

2 1

1
_ (,) _ ()

t

t
avail bw t t avail bw t dt

t t

 (2.24)

The authors refer this as the non-intrusive available bandwidth of the link. For a

multi-hop path, consisting of n links, the authors define the non-intrusive available

bandwidth of the path at any moment t as:

1

min

0

() if _ () , 1
()

0 otherwise

k

k m k

mn

C n avail bw t d C k n
na t

 (2.25)

where, Ck is the capacity of k-th link, dm is the transmission delay of a packet by

m-th link and d0 = 0. Finally the non-intrusive available bandwidth of a n-hop path for the

period [t1, t2] is defined as:

2

1
1 2

2 1

1
(,) ()

t

n n
t

NA t t na t dt
t t

 (2.26)

2.4.1.2. The SMART algorithm

Unlike all existing available bandwidth estimation algorithms, instead of using large

probe packets, the SMART algorithm uses very small sized packets to probe the network.

The packet size used by this method is only 40 bytes. Also it does not follow any specific

pattern to transmit the packets. The algorithm sends a large number of small time-

stamped packets at random intervals. The interval between two packets is kept large

enough so that the front packet does not have any effect on the later packet. At the

receiver the transmission delay of all the packets are recorded and the queuing delay for

each packet is calculated by subtracting the minimum transmission delay (Mini-

Transmission Delay) of all the packets from the transmission delay of the corresponding

packet. If the queuing delay is zero, the algorithm assumes the path to be in available

 38

state at that moment. Finally it estimates the available bandwidth of the path for the entire

probing period as the average of all momentary available bandwidths.

One important assumption of this algorithm is that the packets with the Mini-

Transmission Delay will not observe any queuing delay along the path. But in a heavily

congested path, none of the probing packets may be transmitted without any queuing

delay and the previous assumption may lead to error in estimation.

2.4.2. A_ABE

Zhou et al. [25] proposed a new probabilistic methodology to estimate the available

bandwidth under “non busy assumption” which performs very accurately on a low

utilization network path. The authors have also proposed a metric to weigh the busyness

of a path based on the distribution of the output probe gaps. Finally using this metric,

they introduced a new available bandwidth estimate method called Adaptive Available

Bandwidth Estimate (A_ABE) which is suitable for both low utilization and high

utilization path.

Under non busy scenario it is assumed that the inter-packet interval of the probe

packets are set in a way that no more than one cross traffic packet arrive between two

consecutive probe packets and the arrival time of a cross-traffic packet during a probe

gap follows the Uniform distribution in the gap. Now the probability of probe gap

increase because of a cross traffic (CT) packet is defined as:

|pgi pgi ctpa ctpaP P P (2.27)

where,

Ppgi = P{a probe gap increases}

Pctpa = P{a cross traffic packet arrives during a probe gap}

Ppgi|ctpa = P{probe gap increases | a CT packet arrives during the gap}

If the probe traffic consists of k kinds of packets each of size Lk and each type of

packet arrives with probability Pk, then the probability that a probe gap increases because

of CT packet of kind k is:

 39

k

k

in

L
CP

g

where, C is the bottleneck link capacity and gin is the input gap and Lk/C.gin is the

probability that a packet of type k causes an increase in output probe gap (gout). For all

kinds of cross-traffic packets, (2.27) can be written as,

 k
pgi ctpa k

in

L
P P P

C g

 (2.28)

If for a probing train consisting of n gaps, m probe gaps increase, then according

to the authors, the probe gap increase frequency is equal to the probability Ppgi. Hence,

 k
ctpa k

in

L m
P P

C g n

 (2.29)

Now, the mean of total cross-traffic that arrives during the probe gap gin is

Pcpta×ΣPk×Lk . Hence the left side of (2.29) is the average cross-traffic rate during the

interval gin. Therefore the available bandwidth is calculated as:

 1
m

A C
n

 (2.30)

The authors refer to this deduction process as NBE (non-busy estimate). To fulfill

the non-busy assumption the size of inter-packet gap gin for the probe packets is set as,

1500probe

in

L Byte
g

C C
 (2.31)

where, Lprobe is the size of probe packet. According to the authors, the NBE process is

accurate in low utilization but it cannot estimate the available bandwidth when network

utilization is high, whereas the IGI algorithm [21] gives a fairly good estimate for busy

traffic.

 40

To measure the busyness of the network path the authors have defined the metric

Gap Symmetry (GS) as,

1

1; ; 2

2

1

2i i

out out in

i i n i i

n

in

i

g g g

GS

g

 (2.32)

According to the authors, they have found from experiments that if GS>0.02, then

the network path can be considered to be busy. Using this metric the authors introduced

the A_ABE technique to estimate the available bandwidth both in non-busy and busy

traffic conditions. The A_ABE tool first estimates the value of GS. If it is less than 0.02,

it uses the NBE as estimate method. Otherwise it uses the IGI method, described in

section 2.3.2, to estimate the available bandwidth of the network path.

2.4.3. Summary

The main objective of the probabilistic algorithms was to efficiently estimate the

available bandwidth under low network utilization, where most gap-based algorithm fails.

Table 2-4 presents the summary of probabilistic algorithms discussed in this section.

Table 2-4. Summary of probabilistic algorithms

Algorithm Year Main Contribution/Feature Sender

Based

SMART [24] 2003 Defines available bandwidth using probability

and statistics. Transmits probe packets at random

interval.

No

A_ABE [25] 2008 Presents a probabilistic definition of available

bandwidth under low traffic condition and

introduces a new metric to measure the business

on network.

No

2.5. Hybrid Approach

Both the gap-based and rate-based available bandwidth measurement algorithms have

some benefits and pitfalls. For example, gap-based algorithms need to know the

bottleneck capacity of the path but they are less intrusive in nature than the rate-based

 41

algorithms. On the other hand rate-based algorithms do not need any prior information

about the path but send a large number of probe packets at a very high rate, which make

them highly intrusive. To take advantages of both gap-based and rate-based algorithms

some researchers have proposed hybrid methods which use a combination of ideas from

both gap-based and rate-based algorithms. This section presents a brief description of the

hybrid algorithms BET and MoSeab.

2.5.1. BET

Botta et al. [26] proposed a hybrid available bandwidth estimation tool called BET. The

tool integrates the three different concepts, the Packet Train Dispersion (PTD) technique

of path capacity estimate methods, SLoEC (Self Loading Exponential Chirp) used by the

PathChirp [13] algorithm and the SLoPS (Self Loading of Periodic Streams) used by the

Pathload [11] algorithm.

Capacity

Estimation

(PTD)
SLoPC SLoPS

Control

Figure 2-12. Modules of BET

In the first phase BET uses packet train dispersion technique to obtain the

asymptotic dispersion rate (ADR) as well as an estimate of the capacity of the path. The

ADR value found in this phase is passed as an input to the SLoPC module and used as the

upper bound of the algorithm to make a fast estimate of available bandwidth. According

to the authors this phase can estimate the available bandwidth up to 15% accuracy. The

value obtained in the second phase is used as the initial value for the next phase, which is

the SLoPS phase. In this phase the sender transmits several trains (fleet) consisting of 12

flows of packets with dynamically adjusted probing rate. For each train BET tool uses the

Pairwise Comparison Test (PCT) and Pairwise Difference Test (PDT) to calculate the

traffic trend. Based on the arrival rate of each fleet, a new probing rate is dynamically

 42

calculated for the next fleet. The main advantage of this dynamic probing approach is that

the probing traffic injected into the network is lower than the static choice and the

estimation time is less.

2.5.2. MoSeab

The algorithm MoSeab [27], introduced by Zgang et al., consists of two phases. The first

phase is an iterative probing phase, where MoSeab obtains a rough estimate of available

bandwidth. It starts to probe the network from an initial rate Rmin = 200Kbps & train

length 200, and doubles the probing rate at each subsequent run. At the receiver end the

One Way Delay (OWD) trend is observed. If the OWD increases that means the probing

rate R is higher than the available bandwidth A and at this point it stops probing and

reports Ã = R/√2 as the rough estimate of AB.

In the second phase it sends four probing trains with rates 114%Ã, 133%Ã,

160%Ã and 200%Ã respectively and calculates the available bandwidth from the input

probing rate and the OWD information of the received packets. If the probing rate is

higher than the available bandwidth, then cross-traffic packets get queued up behind the

probing packets and this causes the increase in the inter-packet intervals at the receiver

side.

If C is the tight-link capacity, RC is the cross-traffic rate, b is the size of probe

packet, ∆in is the inter-packet interval, RP = b/∆in is the probing rate and A is the available

bandwidth of the path, then the total amount of traffic arriving at the router during the

period ∆in is,

 ()C in P C in inb R R R C (2.33)

The amount of extra traffic, queued at the router is given by:

()

() P
P C in in

P

R A b
Q R R C

R

 (2.34)

Therefore, the increase in OWD between two successive packets is given by

 43

1 1

P P

Q b bA
D

C C C R R

 (2.35)

Now with four different measurements, first α and β are estimated using linear

regression, and then the available bandwidth and the capacity of the tight link is

calculated as:

 ,
b

A C

 (2.36)

The authors have proved that the mathematical model of MoSeab is also valid for

multiple tight link scenarios. The problem with MoSeab is that, it requires a considerable

amount of time for probing trains in the first phase to iteratively estimate the rough

available bandwidth.

2.5.3. Summary

The hybrid algorithms combine the concept and train structures of different existing

algorithms and try to put together their advantages to improve the estimation process.

Table 2-5 presents the summary of hybrid algorithms discussed in this section.

Table 2-5. Summary of hybrid algorithms

Algorithm Year Main Contribution/Feature Sender

Based

BET [26] 2005 Combines the concepts of Packet Train Dispersion

technique of path capacity estimation methods,

exponential chirp train used in PathChirp and the

SLoPS technique used in Pathload algorithm.

No

MoSeab [27] 2006 Consists of two phases. First it uses a rate based

approach and iteratively probes the network to obtain

rough AB. In the second phase it uses a gap-based

approach based on a new mathematical model to

obtain actual available bandwidth.

No

 44

2.6. Kalman Filtering based Algorithm

Two groups of researchers have proposed Kalman filtering (KF) based approach to

address the problem of available bandwidth estimate. This section first briefly describes

the Kalman filter and then discusses the two algorithms BART and Abest which use KF to

estimate the available bandwidth of network path.

The Kalman filter is a set of sequential mathematical operations to iteratively

estimate or predict the state of a system and then improve the estimate using a set of

measurements. The detailed description of Kalman filter can be found in [33] and the

references therein.

In general Kalman filter describes the system state
nx by the linear stochastic

difference equation:

 1 1 1k k k kx Ax Bu w (2.37)

with a measurement
m

z that is

 k k kz Hx v (2.38)

Here u is the control input, w is the process noise with Gaussian probability

distribution N(0,Q) and v is the process measurement noise with Gaussian probability

distribution M(0,R) where Q and R are process and measurement noise covariance

matrices respectively. The subscript k refers to discrete time and A and B relate the state

and control input of previous step (k−1) with that at the new step k, while H relates the

state with measurement.

Each of the iterations of the Kalman filter works in two steps. In the first step

(“time update”) or the prediction step it obtains a priori estimate of the state (ˆ
kx

) and

estimation error covariance (Pk
¯
) matrices. The predictor equations can be summarized

as:

 45

 1 1
ˆ ˆ

k k kx Ax Bu

 (2.39)

 1

T

k kP AP A Q

 (2.40)

The second step of Kalman filter is the “measurement update” or correction step.

In this step it first computes the Kalman gain, Kk and then uses the current measurements

along with Kk to correct the a priori estimates and obtains improved estimates which are

used in the next iteration. The correction equations of Kalman filter can be summarized

as:

1()T T

k k kK P H HP H R (2.41)

 ˆ ˆ ˆ()k k k k kx x K z Hx (2.42)

 ()k k kP I K H P (2.43)

The key parameters of Kalman filter are Q and R. The measurement noise

covariance R can be determined by taking some off-line sample measurements. Choosing

the process noise covariance Q is more difficult as the system may be completely

unknown. Higher value of Q means low stability but fast convergence of the filter, since

the predictions will be considered less accurate while the measurements will be

considered very accurate giving relatively greater weight to current measurement. Low

values of Q, on the other hand, result in higher stability in presence of high measurement

errors but slower step response.

2.6.1. BART

The BART (Bandwidth Available in Real-Time) method was proposed in [28] by Ekelin

et al. The method uses the same network model used in TOPP [7] method, but uses a

variation of Kalman filter, which the authors refer to as the BART filter, to estimate the

value of available bandwidth instead of using linear regression.

The Kalman filter is an efficient recursive filter that estimates the state of a linear

dynamic system from a series of noisy measurements. Similar to TOPP, the BART

method uses trains of packet-pairs to probe the network. For each packet pair the inter-

packet strain ε (instantaneous output rate decrease ratio of a packet-pair) is calculated as:

 46

 1
u

r
 (2.44)

where, u and r respectively are the input and received rates of probe packets. The BART

filter assumes the network as a system having state vector x with input u and measured

output ε which is affected by some measurement noise v. The state vector x is represented

as:

 x

 (2.45)

where, α and β are the parameters of the sloping straight line u in the

measurement model (Figure 2-13) and the measured output ε can is described by:

0 ()

, ,
 ()

u A
f x u v

u u A

 (2.46)

where, A is the available bandwidth of the path.

ε Inter-packet strain

0

Available bandwidth
u

Probe traffic intensity

Figure 2-13. Asymptotic relation between available bandwidth, probe traffic rate and

expected inter-packet strain

During the estimation process, the receiver first initializes the state vector

estimate x̂ , available bandwidth estimate Â and the error covariance matrix for x̂ . The

sender sends a sequence of probe packet-pairs with input rate u. If u > Â the receiver

 47

computes average strain ε and its variance. It then passes these values to the Kalman filter

which then updates the estimates of state vector x̂ and error covariance matrix. The

receiver then uses the updated x̂ to compute the input rate u for the next sequence of

probe packets.

According to the authors, given the points corresponding to current input rate u,

Kalman filter attempts to find an approximate straight line L1 (Figure 2-14) for the curve

ε(u) and estimates available bandwidth Âk as the intersection point of this curve with u-

axis. Now assuming that the current estimate is an underestimate of A, in the next rounds

Kalman filter is applied only with the values of u such that u > Âk and the filter attempts

to find a new line L2. This line will intersect the u-axis at a point Âk+1, where Âk < Âk+1 <

A, indicating a better approximation of available bandwidth.

ε Inter-packet strain

0

u

L1

L2

AÂk+1Âk

Figure 2-14. Convergence of the BART method

2.6.2. Abest

Cabellos-Aparicio et al. [29] propose another method Abest which also uses Kalman

filtering method to estimate the available bandwidth of the network. The estimate

methods of BART [28] and Abest are very similar. But the key difference is that BART

is based on the fact that the inter-packet strain has a linear relation with probe traffic rate

when the probing rate is higher than the path’s available bandwidth; on the other hand

Abest is based on the mathematical model proposed by Harfoush et al. in [34] which

shows that there is a linear relation between the link utilization and probe traffic rate

when the probing rate is less than the available bandwidth. Harfoush et al. showed that

 48

for a multi-hop path the utilization ui(r) of link i under probe traffic rate r can be

represented as:

 () min(1,)iu r ar b (2.47)

where, a and b are constants of the straight line (Figure 2-15). The probing rate rab for

which the utilization becomes 1 is reported as the available bandwidth of the path.

The Abest algorithm sends 200 packets of size 1500 bytes with exponentially

distributed inter-packet intervals. It obtains the values of a and b using Kalman filtering

method similar to BART approach. Finally it estimates the available bandwidth as:

1 b

AB
a

 (2.48)

0.2

0.4

0.6

0.8

1

0

Vertical intercept = b

slope = a

U
ti
liz

a
ti
o

n

r1

r2

Probing rate (Mbps)
AB

Figure 2-15. Linear model of Abest

The main advantage of Abest algorithm is that, unlike most of the available

bandwidth estimation methods, it sends probe packets at a lower rate than AB and does

not create congestion in the network. According to the authors the algorithm is very

accurate when the network utilization is low, but it is less accurate for heavily utilized

path.

 49

2.6.3. Summary

Table 2-6 summarizes the Kalman filtering based available bandwidth estimation

algorithms discussed in this section.

Table 2-6. Summary of Kalman filtering based algorithms

Algorithm Year Main Contribution/Feature Sender

Based

BART [28] 2006 Based on the fact that inter-packet strain has a linear

relation with probe traffic rate when the probing rate is

higher than path’s available bandwidth. Calculates AB by

finding the intersection point of this relationship curve

with the traffic-rate axis.

No

Abest [29] 2008 Based on the fact that there is a linear relation between

the link utilization and probe traffic rate when the

probing rate is less than the available bandwidth. Probe

packets are injected at a rate lower than the available

bandwidth.

No

 50

CHAPTER III

3. THE PROPOSED ALGORITHM: PATHAB

PathAB is a hybrid algorithm to measure the available bandwidth of a network path. It

uses both rate-based and gap-based approaches in the estimation process. The rate-based

approach allows it to operate without any information about the bottleneck capacity,

whereas the gap-based approach enables PathAB to probe the network with probing

trains of lower input rates. The algorithm has been developed using the concepts of three

existing algorithms PathChirp, PoissonProb and MoSeab. Like MoSeab and PoissonProb,

PathAB also consists of two phases. In the first phase, or initial probing phase it obtains a

rough estimate of the available bandwidth of the path and in the second phase or direct

probing phase it refines the estimate received from the previous phase. PathAB can be

seen as an improvement as well as an extension of MoSeab. It uses the same

mathematical model as MoSeab to calculate the final available bandwidth. However

while MoSeab probes the network iteratively with several long probing trains, PathAB

uses only one exponential packet train, as in PathChirp, to probe networks with a wide

range of bandwidth. This reduces the duration and number of packets, sent in the initial

phase. Since recent studies [31] [35] [36] have shown that the current Internet traffic

follows Poisson pattern, PathAB uses Poisson distributed probing trains in its second

phase. Finally, where MoSeab operates only in client-server mode, the proposed

algorithm PathAB has the capability to operate both in client-server mode as well as in

stand-alone mode without any help from the server. This chapter presents a detailed

description of PathAB and its operating principles both in client-server mode and in

stand-alone mode.

3.1. Client-Server Mode

In the client-server mode the bandwidth measurement tool has to be deployed both on the

sender and the receiver side. The receiver side acts as the server. The client or the sending

hosts transmits a sequence of probe packet-packet trains. Each packet of the train is time-

stamped before transmission. The receiving host receives the probe packets and obtains

 51

reception time of each packet. The receiver uses the transmission time and reception time

of all the packets to calculate the available bandwidth of the path. In the client-server

mode no calculation is done at the sending host.

3.1.1. Initial Probing Phase

Although PathAB uses the mathematical model of MoSeab to calculate the final available

bandwidth, but unlike MoSeab, in the initial probing phase it does not use iterative

probing trains with increasing probing rate. On the contrary, to reduce the number of

probing trains, as well as the probing time, it uses exponentially spaced probe packets

within a packet train. The concept of an exponential flight pattern of probe packets was

first introduced by Ribeiro et al. [13]. The advantage of this approach is that, by

exponentially increasing the packet spacing, the network over the range of rates [G1,

G2]Mbps can be probed using just log(G2) – log(G1) packets.

The exponential probing train consists of N probe packets of size Q
E
 resulting in a

total of N−1 inter-packet intervals. The inter-packet intervals of two consecutive packets

are decreased by a factor g, which is referred to as the spread factor of the algorithm. The

probe packets of the exponential probing train are spaced by:

2 3 3 2, ,..., , , ,N NT T T T T Tg g g g g

where, TgN−2
 is the 1st and T is the (N-1)-th or the last input gap. This leads to probe

packets’ instantaneous rate increase from min_rate = 2E NQ Tg to max_rate = EQ T .

PathAB uses probe packets of 1200 bytes for the exponential probing train. The

instantaneous probing rate is increased from 100 Kbps to 100 Mbps by default.

TgN2 Tg3 Tg2 Tg T

1 2 N-4 N-3 N-2 N-1 N

time

Probe packets

Figure 3-1. Exponentially spaced probing train

 52

The receiver receives all the packets, calculates the output gaps of consecutive

received packets and then determines the One-Way-Delay (OWD) increase ratio (R
OWD

)

as:

 100OWD OutputGap InputGap
R

InputGap

 (3.1)

If δi is the i-th input gap, then the i-th instantaneous probe rate is ri=Q
E
/ δi. Now,

if ri greater than the available bandwidth A, then the extra traffic (ri−A) will cause an

increase in the OWD and the i-th OWD increase ratio can be expressed as:

2

1 1 1OWD Ei
i i

i i

r A
R Q A

C C

 (3.2)

This leads to the conclusion that the OWD increase ratio is inversely proportional

to the input gap. As the instantaneous input rates are increased exponentially by

decreasing the input gaps, from equation (3.2), it is obvious that the OWD increase ratio

will increase exponentially within a train in an ideal scenario. But in reality because of

the traffic fluctuation and packet drops by the intermediate routers, some spikes are

observed when R
OWD

 is plotted against the packet number.

0

200

400

600

800

1000

0 10 20 30 40 50O
W

D
 I

n
cr

e
as

e
 R

at
io

 (
R

O
W

D
)

Packet Number

Figure 3-2. OWD Increase Ratio vs. Packet numner

 53

To remove these spikes first the curve is smoothened so that for each packet pi,

1

OWD OWD

i iR R . The pseudo code for smoothing the curve and removing the spikes is

given below:

 Algorithm RemoveSpikes:

for i = 2 to number of packets

 if(ROWDi < R
OWD

i-1)

/* decrease all ROWD prior to i'th packet by certain

percentage (decreaseRatio) and make ROWDi = R
OWD

i-1,

such that the sum of ROWD remains the same */
 sum = 0;

 for j=1 to i-1

 sum = sum + ROWDj;

 decreaseRatio = (ROWDi-1 - R
OWD

i)/(sum + R
OWD

i-1);

 for j=1 to i-1

 ROWDj = (1 - decreaseRatio) * R
OWD

j;

 ROWDi = R
OWD

i-1;

Figure 3-3. Pseudo code to smoothen OWD increase ratio curve

After the spikes are removed, an exponential trend line of the form y = Ae
Bx

 is

constructed for the curve. Here, x is the packet number and y is the OWD increase ratio

for that packet. The values of A and B are obtained using the following exponential best

curve fitting equation:

2

1 1 1 1

2
2

1 1

1 1 1

2
2

1 1

ln ln ln

ln

ln ln

ln

where, and exp()

n n n n

i i i i ii i i i

n n

i ii i

n n n

i i i ii i i

n n

i ii i

y x x x y
a

n x x

n x y x y
b

n x x

B b A a

 (3.3)

After smoothening and then fitting the curve exponentially we obtain a curve

similar to the one shown in Figure 3-4:

 54

y = 0.0107e0.2398x

0

200

400

600

800

1000

0 10 20 30 40 50O
W

D
 I

n
cr

e
as

e
 R

at
io

 (
R

O
W

D
)

Packet Number

Figure 3-4. OWD Increase Ratio vs. Packet numner (after removing spikes and fitting

exponential curve)

Once the values of A and B of the equation y = Ae
Bx

 are calculated, the rough

available bandwidth (Ã) of the path is estimated using the following equation:

 10 – /

_ _
ln ln A B

Ã min rate spread factor (3.4)

The point where the OWD increase ratio is just greater than 10% is used to

estimate the rough available bandwidth Ã so that the available bandwidth in the initial

probing phase is never underestimated.

3.1.2. Direct Probing Phase

The second step of PathAB is to find out the actual available bandwidth of the path. In

this phase the sender transmits several probe packet-trains with different input rates in

each train. PathAB uses the value of rough available bandwidth Ã, obtained from

previous initial probing phase to determine the input rates of the probing trains in the

second phase. The direct probing phase is similar to the second phase of MoSeab. It uses

the same assumptions and mathematical model as MoSeab. The only difference is that,

instead of equally spacing the probe packets within each train, the inter-packet gaps are

set in such a way that they are in Poisson distribution format (as shown in Figure 3-5)

with mean probing rate RP. To reduce the overall rate of the entire probing phase, the

 55

inter-train intervals, 𝜏i, are adjusted in such a way that the average probing rate during the

entire direct probing phase remains within 10% of the rough available bandwidth Ã. If RPi

is the mean rate of i-th probing train, then the inter-train interval 𝜏i between i-th and

(i+1)-th train is calculated as:

1

10.1

 (1)
0.1

P N

i i

i

P P

Pi

N Q
t

A

N Q Q
N

RA

 (3.5)

where, Q
P
 is the size of probe packet, N is the number of packets within a train, ti is the

inter-packet interval between i-th and (i+1)-th packet. The inter-packet interval ti’s are

distributed in Poisson distribution format with mean Q
P
/RPi resulting in mean probing

rate RPi.

t1

1 2 3 N-1 NN-2

t2 tN-2 tN-1

Probe packets

time

Figure 3-5. Packet distribution within a train. Inter-packet gaps t1, t2 ,…, tN-1 are in Poisson

distribution

The sender sends 15 Poisson distributed probing trains of length N=30 with the

probing rate increasing uniformly from 85%Ã to 200%Ã. All the probe packets are of size

Q
P
=1200 bytes and are time-stamped by the sender.

At the receiver for each train the average input gap, output gap and input rate are

collected. These ten sets of values are used to solve Eq. (2.35) with the help of linear

regression and finally the available bandwidth is calculated using Eq. (2.36), as described

in section 2.5.2 for the MoSeab algorithm.

 56

3.1.3. Complete client-server algorithm

The PathAB algorithm has been implemented using C++ on Linux environment. In

client-server mode it opens two connections to measure the available bandwidth between

the client and server. It opens one TCP socket to transfer control information and

available bandwidth information between the sender and receiver. Another connection is

the UDP socket to transmit the probe packets from client to server. To achieve nano-

second level time resolution for times-stamping the packets we have used the

clock_gettime(clockid_t clk_id, struct timespec *tp) function of Unix “time.h” library.

Also to set the inter-packet intervals at nano-second resolution we have used the

nanosleep(const struct timespec *req, struct timespec *rem) function. To perform any

measurement the PathAB server has to be started first. The server opens a TCP port and

waits for measurement request from the client. When the measurement starts, the PathAB

client first establishes a TCP connection with the server and sends a measurement

request. Upon receiving measurement request the server opens a UDP port and informs

the client though the TCP connection to begin measurement process. After receiving

response from the server the client creates a UDP connection with the server. In the first

phase PathAB client sends exponential probing train. By default the size of the probe

packet is kept 1200 bytes, the instantaneous probe rate is increased from min_rate = 100

Kbps to max_rate = 100 Mbps with a spread_factor g=1.2. Each packet is time-stamped

by the client before transmission. The server also time-stamps each arrived packet. After

receiving all the packets of the exponential train it calculates the rough available

bandwidth Ã of the path and informs the client through the TCP connection. The next

step of the algorithm is to transmit the probing trains for measurement of the available

bandwidth. When the client receives Ã from the server, it calculates the rates of 10

probing trains to be transmitted and also the inter-train intervals. The client transmits 15

probing trains of length L = 30 with Poisson distributed probe packets, with mean

probing rate of the trains increasing uniformly from 85%Ã to 200%Ã. For each received

train the server calculates and stores the average input gap, average input rate and the

average output gap. Finally it uses all this information to estimate the available

bandwidth A of the path and informs the client through the TCP connection.

 57

We have performed extensive experiments on the network test-bed as well as NS2

simulations to observe the performance of PathAB. It has been found that on network

test-bed, when the available bandwidth of the path is less than 2 Mbps the first phase of

the algorithm cannot report any value for rough estimate. The reason is that in the first

phase, PathAB transmits packets in exponentially increasing rate. So a considerable

number of packets get dropped by the router at tight link. This leads to failure of PathAB

to estimate the available bandwidth of the path. We have found that the first phase fails if

more than 20% packets are lost in the exponential train. To prevent this situation if the

first phase of PathAB fails, it assumes that the available bandwidth is less than 2 Mbps

and reports a random value around 2 Mbps as the rough available bandwidth. The second

phase then can proceed with the estimation process, using the value obtained from the

previous phase. In simulation experiments, we have used infinite queue length for the

routers to ensure zero packet loss, hence the packet loss scenario was not considered in

NS2 implementation of PathAB.

3.2. Stand-alone Mode

The stand-alone mode of PathAB is developed using the help of ICMP echo protocol.

The primary requirement of this mode is that the UDP echo port (port 7) should be

opened at the destination host. The sender maintains all the timestamp information of

transmitted probe packets and performs calculations after receiving back the echo

packets, keeping the load on the target host to a minimum. The stand-alone mode of

PathAB may be used in situations when the target host is out of sender’s administrative

domain and it is not possible to install the server software on the target host. Unlike the

stand-alone mode of PoissonProb algorithm, described in section 2.2.7, instead of

echoing all the large probe packets, PathAB sends very small UDP echo packets back-to-

back behind the large probe packets. Because of the small size, the echo packets will

have negligible effect on the cross-traffic in the returning path. PathAB transmits ICMP

echo request packets with the minimum size of 28 bytes, which is the total size of IP

header and ICMP header without any message body. A brief description of ICMP echo

protocol is given in Appendix-B. During the measurement process PathAB algorithm

bounces the echo packets at the UDP port 7 of the target host. The large probe packets are

 58

dropped at target host. The returning path of the echo response packets may be different

from the forward path, but we assume that all the echo packets follow the same returning

path without being affected by cross-traffic on the returning path. That means the time

required to travel the path from target host back to the sending host is the same for all the

echo response packets and the inter-arrival time between two consecutive packets are

independent of the transmission time from target host back to the sending host. The

stand-alone mode of PathAB also consists of two phases, the initial probing phase and the

direct probing phase. The following part of this section describes the probing train

structure used for the stand-alone mode of PathAB.

3.2.1. Initial Probing Phase

In the initial probing phase, PathAB sends large probe packets in exponentially

increasing probing rate. So if the probing packets are echoed back as it is, there is a high

probability that at least some of the packets will be affected by the cross-traffic or the

bottleneck link of the returning path. To alleviate this problem the proposed method does

not echo back the large probe packets. Instead during this phase, each probe packet is

followed back-to-back by a very small echo packet. The size of the probe packets is 1200

bytes, whereas the size of echo packets is only 28 bytes. The probe packets are dropped

or ignored at the destination host. The structure of the exponential probing used in the

initial probing phase of PathAB is shown in Figure 3-6.

TgN2 Tg3 Tg2 Tg T

1 2 N-4 N-3 N-2 N-1 N

time

Probe packetsEcho packets

Figure 3-6. Exponentially spaced probing packets with back-to-back echo packets

Before transmitting the echo packets the sender timestamps the packets and keeps

track of all the transmission times. After receiving the echo response packets back, the

 59

sender calculates the rough available bandwidth Ã of the path, in the same way as in the

client-server mode as described in section 3.1.1.

3.2.2. Direct Probing Phase

In the direct probing phase all the probe packets are not followed by echo packets;

instead the first and last packet of the Poisson distributed probing trains are followed

back-to-back by 28-byte echo packets. The packets distribution for the direct probing

phase of stand-alone mode is shown in Figure 3-7

t1

1 2 3 N-1 NN-2

t2 tN-2 tN-1

Probe packets

Echo packet Echo

packet

time

Figure 3-7. Packet distribution within a train in Stand-alone mode. Inter-packet gaps t1, t2,

… , tN-1 are in Poisson distribution

The sender, after receiving the echo packets, calculates the average output gap for

the train. If the gap between two echo packets is g, then the average output gap for the

train will be g/(N−1), where N is the number of packets in the train. The sender also

keeps track of the input rates and average input gaps of the probing trains.

After receiving all the echo packets, the sender calculates the available bandwidth

by solving Eq. (2.35) and (2.36), as in the client-server mode.

3.2.3. Complete stand-alone mode algorithm

In the stand-alone mode PathAB does not require any help from the target host and

completely relies on ICMP echo packets. The requirement for this mode is that the UDP

echo port 7 should be open at the target host. In stand-alone mode the sender program

creates two threads. The first is the sender thread. It is used to transmit the probe and

echo packets. The second is the receiver thread. It is used to receive the echo response

 60

packets. We have used POSIX thread library to create the threads. The sender thread first

sends one ICMP echo packet to the target host to check whether the echo port is open at

the destination. If it receives the echo response back, then it proceeds with the

measurement phase. First the sender thread transmits exponential probe train. Each

packet of the train is followed back-to-back with small 28 byte ICMP echo packet. The

large probe packets are dropped at the destination host. The receiver thread, after

receiving the echo response packets, calculates the rough available bandwidth Ã of the

path. The sender thread then uses the value of rough available bandwidth to calculate the

rates of Poisson distributed probing trains in the next phase and transmits 10 Poisson

distributed probe trains. The first and the last probe packets of each train is followed

back-to-back by 28 byte ICMP echo packets. The receiver thread receives the echo

response packets and calculates the available bandwidth using the transmission time and

reception time of all the ICMP packets. The sequence number field of UDP echo packet

header is used to send the train number and packet sequence number with each echo

packet.

3.2.4. Position of the Echo Packet

A packet of size q takes a time of q/C to arrive at the router after traversing a link of

capacity C. Therefore a probe packet of size 1200 bytes takes t1 = (1200*8/C) seconds to

arrive at the router after traversing a link of capacity C. The echo packet of size 28 bytes

takes t2 = (28*8/C) second, which is negligible compared to t1. We assume that the router

takes negligible time to inject any packet to the next link regardless of the size of the

packet.

If the echo packet is placed before the large probe packet, the echo packet will

first arrive at the router immediately and leave the router, whereas the probe packet will

take t1 second to arrive at the router through the bottleneck link before it can leave the

router. So after both the packets leave the router, a gap of t1 second will build up between

the packets. This gap might keep on increasing at the next router because of the cross-

traffic packets that arrive during the interval t1 in the next link.

 61

probe packet

echo packet

probe packet

echo packet

t1

router

before entering router after leaving router

Figure 3-8. Gap builds up between two packets if the echo packet is followed by probe

packet

On the other hand, if the echo packet is placed behind the probe packet, the probe

packet will first arrive at the router and as soon as the probe packet arrives, the echo

packet will also arrive at the router immediately. Therefore when the two packets leave

the router, there will be no gap between the packets.

probe packet

echo packet

before entering router

probe packet

echo packet

router

after leaving router

Figure 3-9. No gap builds up between two packets if the probe packet is followed by echo

packet

In our proposed method PathAB we have placed the echo packet behind the probe

packet in the stand-alone mode so that no gap can build up between the probe packet and

the echo packet.

 62

CHAPTER IV

4. EXPERIMENT AND ANALYSIS

To study the performance of PathAB we have performed extensive experiments using the

network simulator NS-2 and as well as the network testbed in our laboratory and

compared the performance of PathAB with some existing available bandwidth estimation

methods. This chapter describes the experimental setup used for the simulations and the

experimental results.

4.1. Experiments using NS-2 simulator

In simulation experiments we have observed the performance of PathAB both for single

tight-link and multiple tight-link scenarios and compared with some existing available

bandwidth estimation algorithms namely Pathload [11], PoissonProb [16], IGI [21],

spruce [4], PathChirp [13], and the stochastic model [22]. As Pathload reports the range

of available bandwidth instead of a single value, we have averaged the high and low

values of the two estimates.

Our proposed algorithm PathAB is a combination of ideas from PathChirp,

PoissonProb and MoSeab. So we have compared its performance with PathChirp and

PoissonProb. We could not compare it with MoSeab because MoSeab was developed at

Microsoft Asia research lab and the authors could not provide us with its implementation

due to their corporate regulations (The e-mail communication with the authors has been

given in Appendix C). Both PathChirp and PoissonProb are rate-based algorithms.

PathAB is a hybrid algorithm. Therefore it has been also compared with the well-known

rate-based algorithm Pathload as well as the well-established gap-based algorithms IGI,

spruce and the stochastic model [22].

4.1.1. Single Tight-Link Scenario

The network model used for single bottleneck experiments is shown in Figure 4-1.

Available bandwidth is measured along the path Snd to Rcv. The link R2-R3 is the

bottleneck link. We have tested the available bandwidth measurement algorithms with

 63

bottleneck capacity C = 1.5, 5, 10 & 15 Mbps. The bottleneck link has 20ms delay. All

the other links have 100 Mbps capacity with 5ms delay. Cross-traffic packets flow from

Cs2 to Cd2. To generate cross traffic we have attached 50 Poisson traffic sources with

Cs2. If the total cross-traffic rate across the bottleneck link is r, then each Poisson traffic

source generates traffic with mean rate r/50. The packet size of each traffic source is

randomly generated between 64 and 1500 bytes (as the minimum size of a UDP packet is

64 bytes and the maximum size is 1500 bytes). Cross-traffic on the returning path is

generated from Cs1 to Cd1. To ensure zero packet loss we have used a very high value

for the queue length of all routers.

s50s1

R4R3R2R1

CT2

Cd1

Cs2

Cs1

Cd2

Snd Rcv
100 mb/s

5ms

100 mb/s
5ms

100 mb/s
5ms

100 mb/s
5ms

s2 d50d1 d2

C mb/s
20ms

CT1
(75% of C)

Figure 4-1. Network model for single bottleneck experiments

For each value of the bottleneck capacity, experiments were run for 20, 50, 75 &

90 percent utilization of the bottleneck link.

To avoid synchronization among the cross-traffic packets generated by the 50

Poisson traffic sources, each traffic source started traffic generation at a random instance

between 0 and 10 second of the simulation. In each case the available bandwidth

estimation process was started at the 10th second of simulation.

We ran all the experiments with the default values of the parameters of the

available bandwidth measurement algorithms. For the stochastic model, the algorithm

 64

generally converges after 200 samples in case of CBR traffic, but in Poisson traffic

scenario it takes more time to converge. We have observed that in Poisson traffic

scenario the available bandwidth estimate by stochastic model becomes stable generally

after around 300 samples. So in our experiments for the stochastic model we have taken

the available bandwidth estimate value after 300 samples.

We have repeated each experiment 15 to 20 times and have taken the Root Mean

Square (RMS) value of the estimated error percentage. The percentage of the estimated

error for each experiment has been calculated as:

 100
A A

E
A

 (4.1)

where, A is the actual available bandwidth and Ã is the estimated value of available

bandwidth.

 Estimated error for 1.5 Mbps bottleneck link:

The comparison of RMS estimated error of PathAB with existing methods on a path with

1.5 Mbps bottleneck capacity has been presented in Table 4-1 and Figure 4-2.

Table 4-1. RMS error % for 1.5 Mbps bottleneck Capacity under different utilization

AB estimation algorithm

% of RMS Error for 1.5 Mbps bottleneck

Capacity under different utilization

20% 50% 75% 90%

PathAB (CS) 6.60 8.66 13.11 18.75

PathAB (SA): CT=0 6.73 8.99 14.14 22.31

PathAB (SA): CT= 75%C 7.12 10.15 16.15 33.62

PathChirp 13.22 12.94 15.66 30.63

Spruce 10.33 19.40 22.71 39.47

PoissonProb 22.54 11.78 34.03 52.95

Stochastic model 11.47 11.98 36.12 31.60

IGI 13.14 34.91 64.38 219.06

Pathload 10.05 50.51 149.43 443.75

 65

Figure 4-2. RMS error % for 1.5 Mbps bottleneck Capacity under different utilization

 Estimated error for 5 Mbps bottleneck link:

The comparison of RMS estimated error of PathAB with existing methods on a path with

5 Mbps bottleneck capacity has been presented in Table 4-2 and Figure 4-3.

Table 4-2. RMS error % for 5 Mbps bottleneck Capacity under different utilization

AB estimate algorithm

% of RMS Error for 5 Mbps bottleneck

Capacity under different utilization

20% 50% 75% 90%

PathAB (CS) 6.38 7.03 9.22 13.68

PathAB (SA): CT=0 6.64 9.96 13.35 14.38

PathAB (SA): CT= 75%C 8.77 10.89 11.52 25.17

PathChirp 25.01 10.06 13.01 17.39

Spruce 9.66 23.81 15.55 33.47

PoissonProb 7.45 22.01 22.52 62.47

Stochastic model 10.57 15.44 24.34 25.27

IGI 10.16 40.39 65.06 204.78

Pathload 9.67 22.21 71.29 263.50

0

20

40

60

80

100

20% 50% 75% 90%

R
M

S
Er

ro
r

%

Utilization

PathAB (CS)

PathAB (SA): CT=0

PathAB (SA): CT= 75%C

PathChirp

Spruce

PoissonProb

Stochastic model

IGI

Pathload

 66

Figure 4-3. RMS error % for 5 Mbps bottleneck Capacity under different utilization

 Estimated error for 10 Mbps bottleneck link:

The comparison of RMS estimated error of PathAB with existing methods on a path with

10 Mbps bottleneck capacity has been presented in Table 4-3 and Figure 4-4.

Table 4-3. RMS error % for 10 Mbps bottleneck Capacity under different utilization

AB estimate algorithm

% of RMS Error for 10 Mbps bottleneck

Capacity under different utilization

20% 50% 75% 90%

PathAB (CS) 7.61 6.63 8.41 10.55

PathAB (SA): CT=0 8.57 6.89 7.17 13.09

PathAB (SA): CT= 75%C 9.16 8.88 9.47 15.33

PathChirp 10.31 10.54 18.80 23.86

Spruce 13.58 11.18 29.32 33.77

PoissonProb 7.22 26.56 14.04 57.77

Stochastic model 7.95 8.91 30.00 36.36

IGI 11.88 43.76 53.58 135.11

Pathload 8.44 31.80 63.37 192.03

0

20

40

60

80

100

20% 50% 75% 90%

R
M

S
Er

ro
r

%

Utilizatoin

PathAB (CS)

PathAB (SA): CT=0

PathAB (SA): CT= 75%C

PathChirp

Spruce

PoissonProb

Stochastic model

IGI

Pathload

 67

Figure 4-4. RMS error % for 10 Mbps bottleneck Capacity under different utilization

 Estimated error for 15 Mbps bottleneck link:

The comparison of RMS estimated error of PathAB with existing methods on a path with

15 Mbps bottleneck capacity has been presented in Table 4-4 and Figure 4-5.

Table 4-4. RMS error % for 15 Mbps bottleneck Capacity under different utilization

AB estimate algorithm

% of RMS Error for 15 Mbps bottleneck

Capacity under different utilization

20% 50% 75% 90%

PathAB (CS) 7.44 7.75 10.22 8.65

PathAB (SA): CT=0 8.32 9.74 10.05 10.15

PathAB (SA): CT= 75%C 9.61 9.75 10.50 15.19

PathChirp 11.08 14.82 24.33 17.90

Spruce 11.24 18.71 25.40 29.10

PoissonProb 9.61 12.64 17.61 35.63

Stochastic model 6.50 8.33 30.71 25.46

IGI 14.32 31.91 49.82 93.92

Pathload 7.46 18.20 57.28 176.74

0

20

40

60

80

100

20% 50% 75% 90%

R
M

S
Er

ro
r

%

Utilization

PathAB (CS)

PathAB (SA): CT=0

PathAB (SA): CT= 75%C

PathChirp

Spruce

PoissonProb

Stochastic model

IGI

Pathload

 68

Figure 4-5. RMS error % for 15 Mbps bottleneck Capacity under different utilization

From the simulation results for single bottleneck link scenarios presented in Table

4-1 - Table 4-4, we observe that PathAB exhibits less error compared to all other methods

almost in all the cases in both client-server mode and in stand-alone mode. The RMS

value of error of PathAB is within 10% in most of the cases except the case when the link

utilization is more than 75%. Only in the path with 1.5 Mbps bottleneck capacity, its error

is more than 10% in case of 50% link utilization. Only in some cases when link

utilization is 50% or less, the estimates obtained using PathChirp, PoissonProb, Spruce

and the stochastic model are comparable to those obtained with PathAB. IGI and

Pathload can report reasonably good estimates only if the link utilization is less than

50%. These algorithms fail to converge if the path is heavily loaded. As expected,

PathAB performs better in the client-server mode than in the stand-alone mode. Also in

the stand-alone mode it produces relatively better estimates when there is no cross-traffic

in the returning path. Although the estimate of PathAB is slightly worse than that of

PoissonProb, PathChirp and the stochastic model under 20% link utilization condition on

network path with 10 and 15 Mbps bottleneck capacity, it outperforms all the algorithms

we have tested in all other conditions and produces reliable estimates.

0

20

40

60

80

100

20% 50% 75% 90%

R
M

S
Er

ro
r

%

Utilization

PathAB (CS)

PathAB (SA): CT=0

PathAB (SA): CT= 75%C

PathChirp

Spruce

PoissonProb

Stochastic model

IGI

Pathload

 69

4.1.2. Multiple Tight Link: Pre and Post Bottleneck Cross-Traffic Effect

We have performed extensive simulation experiments on NS-2 simulator to observe the

effect of pre-bottleneck and post-bottleneck cross-traffic on the available bandwidth

measurement algorithms. The objective of these experiments can be summarized as

follows:

 Multiple tight links – The second tight link is located before the bottleneck link

and has the same available bandwidth as the bottleneck link.

 Multiple tight links – The second tight link is located after the bottleneck link and

has the same available bandwidth as the bottleneck link.

 The tight link is different than the bottleneck link and is located before the

bottleneck link.

 The tight link is different than the bottleneck link and is located after the

bottleneck link.

For the pre and post bottleneck simulation experiments we have used the four-hop

network topology shown in Figure 4-6. The link R2-R3 is the bottleneck link of the path

with bottleneck capacity C = 10 Mbps and 20ms delay. Both the pre-bottleneck link R1-

R2 and the post-bottleneck link R3-R4 have 20 Mbps link capacity and 5ms delay. All

other links of the topology have 100 Mbps capacity and 5ms delay. The traffic along the

bottleneck link is generated from Cs2 to Cd2. Pre-bottleneck traffic is generated from

Cs1 to Cd1 and post-bottleneck traffic is generated from Cs3 to Cd3. The available

bandwidth is measured across the path Snd to Rcv. To generate cross traffic we have

attached 50 Poisson traffic sources with each of the nodes Cs1, Cs2 and Cs3. If the total

cross-traffic rate across any link is r, then each Poisson traffic source attached to that link

generates Poisson traffic with mean rate r/50.

 70

s50s1

R4R3R2R1

CT2

CT1 CT3

Cs1 Cd1 Cs3

Cs2

Cd3

Cd2

Snd Rcv
20 Mb
5ms

20 Mb
5ms

100 Mb
5ms

100 Mb
5ms

C

10 Mb
20 ms

s2 d50d1 d2

s1 s2 . . . s50 d1 d2 d50. . . s1 s2 . . . s50 d1 d2 d50. . .

Figure 4-6. Simulation topology for Pre-bottleneck and Post-bottleneck experiments

4.1.2.1. Pre-bottleneck experiment

To observe the pre-bottleneck effect on the available bandwidth estimation algorithms we

have kept the cross-traffic rate across the bottleneck link R2-R3 constant at 3Mbps (i.e.

CT2 = 3Mbps) throughout all the experiments. This makes the AB at the bottleneck fixed

at 7 Mbps (as the capacity of the link is 10 Mbps). Post-bottleneck cross-traffic rate

across the link R3-R4 was set to CT3=0, that means there was no cross-traffic after the

bottleneck link. The cross-traffic rate across the pre-bottleneck link R1-R2 was increased

from 0 Mbps to 19 Mbps. When the pre-bottleneck cross-traffic is less than 13 Mbps, the

path has only one tight link which is the bottleneck link R2-R3. When pre-bottleneck

traffic rate is 13 Mbps both the links R1-R2 and R2-R3 have 7 Mbps available bandwidth,

resulting in presence of multiple tight links in the path. If pre-bottleneck traffic exceeds

beyond 13 Mbps, the links R1-R2 turns into the tight link as its available bandwidth

becomes less than that along the bottleneck link.

 71

We have compared the stand-alone algorithm of PathAB with Pathload,

PathChirp, PoissonProb, IGI, Spruce and the stochastic model [22] to observe the pre-

bottleneck cross-traffic effect. We have repeated each experiment 10 times and taken the

average value of estimated available bandwidths. The experimental results with pre-

bottleneck cross-traffic are shown in Table 4-5 and Figure 4-7

Table 4-5. Average estimate of Available Bandwidth with Pre-Bottleneck Cross-traffic

Cross-

Traffic

Actual

AB

Pathload

(Avg.)
IGI

Stochastic

Model
PoissonProb Spruce PathChirp

PathAB

(Stand-

alone)

0 7 8.01 6.87 8.00 6.25 7.18 7.45 6.73

1 7 7.96 7.08 6.99 5.86 5.84 7.30 6.60

2 7 7.80 7.34 6.93 6.48 7.22 7.21 6.57

3 7 7.60 8.50 7.45 6.97 7.28 7.76 6.55

4 7 8.00 8.50 7.63 7.20 6.81 6.50 6.65

5 7 7.99 7.72 7.71 6.34 6.70 7.52 7.33

6 7 8.05 7.37 6.66 7.35 6.77 8.40 6.99

7 7 8.00 7.67 7.78 8.01 5.44 7.87 6.58

8 7 8.06 7.79 7.28 5.59 5.57 7.11 6.69

9 7 7.83 7.25 6.57 6.08 5.65 5.74 6.46

10 7 7.64 7.35 7.12 6.39 6.39 6.09 6.54

11 7 7.62 7.78 6.46 6.91 5.35 6.45 6.34

12 7 7.75 7.22 6.68 7.26 5.55 5.13 6.43

13 7 7.48 7.45 6.74 6.53 5.53 6.26 6.45

14 6 6.96 6.87 6.70 6.77 4.71 5.35 5.50

15 5 6.79 6.68 4.70 4.63 5.93 4.65 4.84

16 4 4.97 6.26 5.15 3.80 4.55 3.17 3.58

17 3 5.09 6.00 4.65 2.18 4.55 3.33 2.56

18 2 5.03 6.01 5.07 3.80 4.76 2.62 2.33

19 1 4.50 4.83 4.61 3.70 3.67 2.11 1.43

 72

Figure 4-7. Average estimate of Available Bandwidth with Pre-Bottleneck Cross-traffic

From the graph presented in Figure 4-7 we can see that the average estimate of

PathAB is much closer to the actual available bandwidth line than other algorithms and it

provides a conservative estimate in all cases except when the available bandwidth is

2Mbps or less. Both Pathload and IGI constantly over-estimate the available bandwidth

and deviate significantly from the actual AB line in pre-bottleneck tight link scenario.

Only the estimate by PoissonProb and PathChirp are comparable to PathAB in pre-

bottleneck tight link scenario.

4.1.2.2. Post-bottleneck experiment

To observe the post-bottleneck effect on the available bandwidth estimation algorithms

we have kept the cross-traffic rate across the bottleneck link R2-R3 constant at 3Mbps

(i.e. CT2 = 3Mbps) throughout all the experiments. This makes the AB at the bottleneck

fixed at 7 Mbps (as the capacity of the link is 10 Mbps). Pre-bottleneck cross-traffic rate

across the link R1-R2 was set to CT1=0. That means that there was no cross-traffic prior

to the bottleneck link. The cross-traffic rate across the post-bottleneck link R3-R4 was

increased from 0 Mbps to 19 Mbps. When the post-bottleneck cross-traffic is less than 13

Mbps, the path has only one tight link which is the bottleneck link R2-R3. When post-

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ve

ra
ge

 A
va

ia
b

le
 B

an
d

w
id

th
 (

M
b

p
s)

 -
--

->

Pre-bottleneck cross-traffic (Mbps) ---->

Actual AB

Pathload (Avg.)

IGI

Stochastic Model

PoissonProb

Spruce

Pathchirp

PathAB (SA)

 73

bottleneck traffic rate is 13 Mbps both the links R2-R3 and R3-R4 become tight links as

both have 7 Mbps available bandwidth, resulting in the presence of multiple tight links in

the path. If post-bottleneck traffic exceeds beyond 13 Mbps, the link R3-R4 turns into the

tight link as its available bandwidth becomes less than that along the bottleneck link.

We have compared the stand-alone algorithm of PathAB with Pathload,

PathChirp, PoissonProb, IGI, Spruce and the stochastic model to observe the pre-

bottleneck cross-traffic effect. Each experiment has been repeated 10 times and the

average values of estimated available bandwidths have been taken. The experimental

results with pre-bottleneck cross-traffic are shown in Table 4-6 and Figure 4-8.

Table 4-6. Average estimate of Available Bandwidth with Post-Bottleneck Cross-traffic

Cross-

Traffic

Actual

AB

Pathload

(Avg.)
IGI

Stochastic

Model
PoissonProb Spruce PathChirp

PathAB

(Stand-

alone)

0 7 8.01 6.87 8.00 6.57 7.18 7.45 6.73

1 7 7.48 7.95 6.68 7.04 8.22 8.36 6.44

2 7 8.02 7.10 7.32 6.23 7.37 7.91 6.37

3 7 8.06 7.40 7.12 6.82 6.02 7.22 6.48

4 7 8.10 7.10 7.73 5.56 7.78 6.25 6.59

5 7 8.02 6.90 5.82 7.36 7.90 8.18 6.98

6 7 7.54 7.66 7.41 6.45 7.35 7.47 6.23

7 7 8.41 7.08 6.86 5.79 6.55 7.82 6.58

8 7 8.15 7.28 6.84 7.63 7.48 5.95 6.33

9 7 7.92 6.76 6.64 6.25 8.02 6.18 6.87

10 7 8.18 7.05 6.07 6.17 5.65 6.59 6.50

11 7 8.08 6.72 6.25 7.23 5.22 7.54 6.13

12 7 7.87 6.88 6.63 5.19 6.22 6.43 6.55

13 7 7.55 7.70 4.80 5.45 5.45 6.40 6.12

14 6 6.79 5.32 6.97 5.60 4.93 5.16 5.46

15 5 6.69 5.04 6.21 4.34 4.91 5.47 4.49

16 4 6.27 6.12 5.28 3.12 5.49 2.99 4.23

17 3 5.64 4.52 5.90 3.76 4.19 2.50 2.52

18 2 5.52 4.21 4.70 3.01 3.55 2.99 2.41

19 1 4.66 5.05 5.14 3.82 3.99 2.18 1.74

 74

Figure 4-8. Average estimate of Available Bandwidth with Post-Bottleneck Cross-traffic

All the algorithms perform better in the post-bottleneck tight link scenario and the

estimates are much closer to the actual available bandwidth line. The reason for this is

that cross-traffic of the link closest to target host significantly affects the probe traffic. If

there is significant amount of cross-traffic after the tight link, then the inter-packet

intervals created within the probing train might be altered by the traffic after and the

probe traffic may not be able to preserve the tight link’s traffic information. Similar to the

pre-bottleneck experiments, we have found that estimates by PathAB are more accurate

than those obtained by other algorithms. Also in this scenario the estimates by PathChirp

and PoissonProb are comparable to those by PathAB.

4.2. Experiments on Network TestBed

Beside the NS-2 simulation experiments, we have also tested the performance of PathAB

on a network test-bed in our Lab and compared its performance with PathChirp,

PoissonProb, IGI, spruce and Pathload. The implementations of these algorithms were

obtained from the authors’ website. We have observed the performance of the above

algorithms for both single-hop and multi-hop path with multiple congested links. For the

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ve

ra
ge

 A
va

ila
b

le
 B

an
d

w
id

th
 (

M
b

p
s)

 --
--

>

Post-bottleneck cross-traffic (Mbps) ---->

Actual AB

Pathload (Avg.)

IGI

Stochastic Model

PoissonProb

Spruce

Pathchirp

PathAB

 75

single-hop path, the experiments were performed with 10 Mbps link. For multi-hop paths,

we have performed experiments with two different network setups, one with 10 Mbps

bandwidth range and another with only 100 Mbps links. Due to the limitation of the

routers available in our lab, we could not perform experiments on networks with higher

link capacity. In the simulation experiments, we used infinite length router queue to

ensure zero packet loss. But in reality zero packet loss is almost impossible to achieve.

Length of packet queue is limited by the amount of memory available in the routers.

Therefore if the traffic rate across a link is higher than its capacity, there is a high

probability that some of the probe packets might be dropped by the router. This in turn

affects the performance of bandwidth measurement algorithms. In all our experiments we

have used Cisco 2651xm routers with 256MB DRAM to setup the network test-beds. In

the following part of this section we describe the network topology and the experimental

results obtained in the above three scenarios.

4.2.1. Single-hop Experiments

4.2.1.1. Description of Network TestBed

The topology of network test-bed used for the single-hop experiments is shown in Figure

4-9. The link between routers R1 and R2 has 10 Mbps link capacity. All the links

connecting a router with a host have 100 Mbps capacity. The cross traffic packets are

generated from host H3 to host H4. Available bandwidth is measured along the path from

H1 to H2. The server programs of AB estimate tools are installed on host H2 and the

client programs is installed on host H1.

 76

10 Mbps

R1 R2

Cross-traffic

Probe traffic

H3 H4

H1 H2

Figure 4-9. Network topology for single-hop experiments

4.2.1.2. Results of Single-hop Experiments

For single-hop experiments we have compared both stand-alone and client-server

algorithms of PathAB with PathChirp, PoissonProb, IGI, spruce and Pathload. The

experiments were run with cross-traffic rates of 0, 2, 4, 6, 8 and 9 Mbps resulting in 10, 8,

6, 4, 2 and 1 Mbps of available bandwidth respectively along the path. Each experiment

was repeated 20 times and the RMS value of the estimated error percentage has been

considered for comparison. The estimated errors for single-hop experiments are presented

in Table 4-7 and Figure 4-10.

Table 4-7. Comparison of AB estimate algorithms for single-hop path with

10Mbps capacity

AB Estimate

Algorithm
RMS Error % for different values Available Bandwidth

10 8 6 4 2 1

PathAB (SA) 5.72 7.26 9.62 8.87 16.59 24.39

PathAB (CS) 5.59 6.76 7.87 7.98 14.58 23.99

PoissonProb 9.73 12.10 10.36 15.93 24.99 -

PathChirp 4.37 7.91 16.36 34.17 25.44 -

IGI 18.79 15.55 10.38 17.01 71.32 -

Spruce 5.24 6.22 24.53 60.45 240.53 -

Pathload 14.00 4.55 14.20 49.16 209.77 -

 77

Figure 4-10. Comparison of AB estimate algorithms for single-hop path with 10Mbps

capacity

From the experimental results we observe that the estimated error of PathaAB is

always less than 10%, if the available bandwidth is greater than 2 Mbps. In some cases,

for example when AB is 10Mbps PathChirp and spruce perform slightly better than

PathAB. Although spruce and Pathload have relatively less estimated error than PathAB

when available bandwidth is 8Mbps, their estimated error increases rapidly with the

increase of cross-traffic rate and is more than 50% when the available bandwidth

becomes less than 6Mbps. Other than PathAB, only the PoissonProb’s estimate error is

almost steady in all cases. Also we have observed that all the algorithms except PathAB

fail to report any value of bandwidth when the available bandwidth becomes less than 2

Mbps. The reason of their failure is that all these algorithms transmit probe packet trains

at a very high rate which is much higher than the available bandwidth of the path in this

case. Due to the high value of cross-traffic, the arrival rate of packets, combining cross-

traffic and probe packets, exceeds the capacity of router queue resulting in too much loss

of probe packets. PathAB on the other hand transmits only one train with exponentially

increasing probe rate and sets the input rates of subsequent trains according to the rough

estimate obtained in the first phase. We have found that like all other algorithms, PathAB

also fails to report any value for the rough AB in the first phase because of packet loss in

0

20

40

60

80

100

10 8 6 4 2 1

R
M

S
Er

ro
r

%

Available Bandwidth (Mbps)

PathAB (SA)

PathAB (CS)

PoissonProb

PathChirp

IGI

Spruce

Pathload

 78

the exponential train. If the first phase fails to report any value, PathAB assumes that the

available bandwidth is less than 2 Mbps and randomly chooses a value around 2 Mbps as

the rough AB. Once it obtains some value from the first phase, the second phase can

continue and estimate the available bandwidth of the path.

4.2.2. Multi-hop Experiment: 10 Mbps range

4.2.2.1. Description of Network TestBed

The network test-bed used for multi-hop experiments is shown in Figure 4-11. The link

between routers R2 and R3 is the bottleneck link with capacity of 8 Mbps. Both pre-

bottleneck link R1−R2 and post-bottleneck link R3−R4 have 10 Mbps capacity. All the

links connecting any router with a host have 100 Mbps link capacity. Cross-traffic along

the bottleneck link (CT2) is generated from host H2 to H3. Pre-bottleneck cross-traffic

CT1 is generated from host H1 to H2 and post-bottleneck traffic is generated from host

H3 to H4. The available bandwidth is measured along the path from HS to HD where HS is

the sending host and HD is the destination host.

10 Mbps 10 MbpsR3 R4R1 R2 8 Mbps

H1 H2 H3 H4

HDHS

Probe traffic

CT1 CT2 CT3

Figure 4-11. Network topology for multi-hop experiments

 79

4.2.2.2. Experimental Results

The objective of multi-hop experiments on the network test-bed are the same as in the

NS-2 simulation experiments, to observe the performance of PathAB under pre-

bottleneck and post-bottleneck cross traffic conditions and in multiple tight link condition

and compare it with PathChirp , PoissonProb, IGI, spruce and Pathload. Cross-traffic

CT2 along the bottleneck link R2−R3 is generated from host H2 to H3 and the rate is

kept constant at 3 Mbps. This makes the available bandwidth of the bottleneck link as 5

Mbps.

 Pre-bottleneck traffic:

To observe pre-bottleneck cross-traffic effect, the cross-traffic CT3 along the

post-bottleneck link R3−R4 is kept 0. Pre-bottleneck traffic CT1 across the link R1−R2 is

generated from host H1 to H2. We have run experiments with pre-bottleneck traffic

CT1= 0, 2, 4, 5, 6, 8 Mbps resulting in 10, 8, 6, 5, 4, 2 Mbps available bandwidth in the

pre-bottleneck link. When the cross-traffic is less than 5 Mbps, the bottleneck link is the

tight link. At 5 Mbps traffic at the pre-bottleneck link, both the R1−R2 and R2−R3

become tight links resulting in multiple tight links. When traffic increases beyond 5 Mbps

the pre-bottleneck link becomes the tight link. Each experiment was repeated 20 times

and the RMS values of all the estimated errors were considered for comparison. Table

4-8 and Figure 4-12 presents the estimated errors obtained from pre-bottleneck

experiments.

Table 4-8. RMS error % of pre-bottleneck experiments

Algorithm
Pre-bottleneck cross-traffic (Mbps)

0 2 4 5 6 8

PathAB (SA) 6.86 7.96 9.35 10.91 13.96 25.15

PathAB (CS) 6.75 6.96 8.10 9.49 13.37 24.78

PoissonProb 9.24 9.09 11.87 13.63 8.33 38.87

PathChirp 12.32 14.21 14.87 20.12 42.25 123.94

IGI 5.92 7.83 9.64 12.69 18.04 60.04

Spruce 10.20 20.19 19.68 17.61 20.58 100.36

Pathload 22.46 25.46 28.32 25.07 49.26 158.82

 80

Figure 4-12. Comparison of RMS error % for pre-bottleneck experiments

From the above figure, we can observe that PathAB performs better than all the

other algorithms in almost all cases. As expected the client-server algorithm of PathAB

has slightly better performance than the stand-alone mode. Only in zero pre-bottleneck

condition IGI and at 6 Mbps pre-bottleneck traffic, PoissonProb give better estimates

than PathAB. In all the cases only PoissonProb’s estimate is closer to that of PathAB.

The estimated error of Pathload is very high than other algorithms in all the cases.

Surprisingly the PathChirp algorithm performs poorly and the estimated error increases

rapidly as the available bandwidth decreases below 5 Mbps. The explanation is that

PathChirp injects packet trains with exponentially increasing probing rate and as the links

have low capacity, higher number of probe packets gets dropped by the routers.

 Post-bottleneck traffic:

For post-bottleneck experiments the pre-bottleneck traffic CT1 across link R1−R2

is kept zero throughout all the experiments. The post-bottleneck traffic CT3 is increased

gradually. Post-bottleneck experiments were run with the values of CT3 as 0, 2, 4, 5, 6

and 8 Mbps. The RMS estimate errors of post-bottleneck experiments are shown in Table

4-9 and Figure 4-13.

0

20

40

60

80

100

0 2 4 5 6 8

R
M

S
Er

ro
r

%

Pre-bottleneck cross-traffic (Mbps)

PathAB (SA)

PathAB (CS)

PoissonProb

PathChirp

IGI

Spruce

Pathload

 81

Table 4-9. RMS error % of post-bottleneck experiments

 Algorithm
Post-bottleneck cross-traffic (Mbps)

0 2 4 5 6 8

PathAB (SA) 6.89 8.41 11.32 11.55 12.93 22.69

PathAB (CS) 6.75 7.85 11.13 10.61 10.23 18.03

PoissonProb 9.24 13.79 12.33 14.03 15.38 -

PathChirp 12.32 11.50 12.35 12.94 21.94 120.91

IGI 5.92 8.04 8.50 12.62 13.37 46.78

Spruce 10.20 16.66 13.08 21.54 22.49 32.36

Pathload 22.46 21.45 19.50 16.75 35.50 124.92

Figure 4-13. Comparison of RMS error % for post-bottleneck experiments

From figures Figure 4-13 and Figure 4-12 we can observe that all the available

bandwidth measurements perform better in post-bottleneck conditions than in pre-

bottleneck cross-traffic conditions, which is an expected scenario. The reason behind this

is the same as explained in section 4.1.2.2. We can see that in post-bottleneck scenario as

well, PathAB performs better than all other algorithms in almost all cases. Only IGI has

similar or better performance than PathAB when post-bottleneck traffic is equal or less

than 5 Mbps, i.e., when the bottleneck link is the tight link. The estimated errors of all

0

20

40

60

80

100

0 2 4 5 6 8

R
M

S
Er

ro
r

%

Post-bottleneck traffic (Mbps)

PathAB (SA)

PathAB (CS)

PoissonProb

PathChirp

IGI

Spruce

Pathload

 82

other algorithms except Pathload are also close to PathAB in these cases. But their

performance drops when post-bottleneck traffic increases and the bottleneck link no

longer remains the tight link. Similar to pre-bottleneck condition, PathChirp shows very

high estimated error when cross-traffic is 8 Mbps. We have noticed that the PoissonProb

algorithm cannot at all estimate the available bandwidth and stops execution, reporting

“too much link congestion” when post-bottleneck traffic is 8 Mbps.

Both pre and post bottleneck experiments show that PathAB outperforms most of

the available bandwidth estimate algorithms in almost all cases. The RMS estimated error

is within 10%, when available bandwidth is more than 4 Mbps and always within 25%.

4.2.3. Multi-hop Experiment: 100 Mbps range

4.2.3.1. Description of Network TestBed

The network topology used for these experiments is the same as the one used for

experiments in section 4.2.2 which is shown in Figure 4-11. The only difference is all the

links, connecting any two routers or a host with a router, have 100 Mbps link capacity.

As all the links are of the same capacity, there is actually no bottleneck link. But to

perform the multi-hop experiments we have assumed the middle link R2−R3 to be the

bottleneck link and performed pre-bottleneck and post-bottleneck experiments. For both

types of experiments the cross-traffic rate CT2 across the link R2−R3 was kept constant

at 30 Mbps, leading to 70 Mbps available bandwidth at the bottleneck link. To observe

the pre-bottleneck effect the cross-traffic rate CT1 across the link R1−R2, generated from

host H1 to H2, has been increased from 0 to 90 Mbps, while keeping no cross-traffic

across link R3−R4. Obviously when CT1 becomes higher than 30 Mbps, the link R1−R2

becomes the tight link of the path. For post-bottleneck scenario the cross-traffic CT1

across link R1−R2 was kept zero and the cross-traffic CT3 from host H3 to H4 across the

link R3−R4 was increased from 0 to 90 Mbps. Again, when the cross-traffic increases

above 30 Mbps, the link R3−R4 becomes the tight link. To simulate the Internet traffic

we have used Poisson traffic and for generating Poisson traffic we have used the

Distributed Internet Traffic Generator (D-ITG version 2.6.1d) [37] obtained from the

website http://www.grid.unina.it/software/ITG/.

http://www.grid.unina.it/software/ITG/

 83

4.2.3.2. Experimental Results

We have performed extensive experiments to observe the performance of PathAB on 100

Mbps multi-hop path for pre and post bottleneck scenarios and compared with

PoissonProb, PathChirp and IGI. Each experiment was repeated 20 times and the average

of all estimated available bandwidth along with the Root-Mean-Square (RMS) error

percentage of the estimates were considered to compare the performances of these

algorithms. We have observed that PathAB performs better in 100Mbps path when the

size of probe packet is 1500 bytes. Therefore for these experiments we have run the

PathAB algorithm with 1500 byte probe packets. Also for the initial probing phase the

instantaneous probing rate of exponential train was increased from 1Mbps to 200Mbps

with spread factor 1.2. The necessity for using larger probe packets has been discussed in

section 4.3.

 Pre-bottleneck effect

The average estimated available bandwidths by PathAB in stand-alone (SA) mode and

client-server (CS) mode, PoissonProb, PathChirp and IGI algorithms for pre-bottleneck

experiments for different cross-traffic rates (CT) are presented in Table 4-10 and Figure

4-14. The comparison of RMS error % of these algorithms is shown in Figure 4-15.

Table 4-10. Average estimated AB by different algorithms in 100Mbps multi-hop path

under pre-bottleneck traffic

CT Actual AB PathAB (SA) PathAB (CS) PoissonProb PathChirp IGI

0 70 67.76 69.58 73.25 67.38 60.88

10 70 68.23 68.32 72.22 66.51 64.91

20 70 69.52 68.99 70.97 72.12 62.37

30 70 68.95 70.11 71.87 68.87 61.05

40 60 57.05 58.13 56.97 64.33 53.11

50 50 47.31 47.32 48.37 54.85 55.77

60 40 39.60 38.97 37.73 45.94 50.19

70 30 30.17 29.37 27.53 33.21 48.37

80 20 19.16 19.27 22.28 23.67 37.19

90 10 14.56 13.67 13.76 17.13 28.47

 84

Figure 4-14. Comparison of average estimated AB by different algorithms in 100Mbps

multi-hop path under pre-bottleneck traffic

Figure 4-15. Comparison of RMS Error % of estimated AB by different algorithms in

100Mbps multi-hop path under pre-bottleneck traffic

From Figure 4-14 we can observe that the average estimate of PathAB both in the

stand-alone mode and in the client-server mode and PoissonProb algorithms are very

close to the actual available bandwidth line. PathChirp performs better when pre-

bottleneck traffic is less than bottleneck traffic but when the traffic rate increases, it

continuously over estimates the available bandwidth. The IGI algorithm under-estimates

0

20

40

60

80

0 10 20 30 40 50 60 70 80 90

A
b

va
ila

b
le

 B
an

d
w

id
th

 (
M

b
p

s)

Pre-bottleneck Traffic (Mbps)

PathAB (SA)

PathAB (CS)

PoissonProb

PathChirp

IGI

Actual AB

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

R
M

S
Er

ro
r

%

Pre-bottleneck traffic (Mbps)

PathAB (SA)

PathAB (CS)

PoissonProb

PathChirp

IGI

 85

the available bandwidth of bottleneck link in the presence of pre-bottleneck traffic but

highly over-estimates path’s AB when the pre-bottleneck link becomes the tight link.

These results match the results presented in [16]. Figure 4-15 shows that the RMS error

for PathAB (both in stand-alone and client-server modes) and PoissonProb have similar

error rates in all cases and are much less than the other algorithms. In almost all cases

PathAB’s estimated error is less than PoissonProb, except the cases when pre-bottleneck

traffics are 70 and 90 Mbps where PoissonProb performs slightly better than PathAB. As

expected, the client-server version of PathAB has a little better performance over the

stand-alone version.

 Post-bottleneck effect

Table 4-11 and Figure 4-16 presents the average estimates by different algorithms with

increasing post-bottleneck traffic rates (CT). The comparison of RMS error percentages

of these estimates is shown in Figure 4-17.

Table 4-11. Average estimated AB by different algorithms in 100Mbps multi-hop path

under post-bottleneck traffic

CT Actual AB PathAB (SA) PathAB (CS) PoissonProb PathChirp IGI

10 70 68.95 68.32 72.43 76.75 50.44

20 70 72.15 71.55 72.85 76.99 49.12

30 70 70.71 69.07 73.21 75.12 55.78

40 60 57.55 61.13 56.14 65.67 56.89

50 50 46.88 48.01 47.97 53.09 55.30

60 40 37.67 37.92 33.58 46.11 37.09

70 30 27.07 28.25 23.14 37.87 36.59

80 20 18.19 21.22 22.21 17.15 28.70

90 10 8.92 12.34 12.76 15.55 21.77

 86

Figure 4-16. Comparison of average estimated AB by different algorithms in 100Mbps

multi-hop path under post-bottleneck traffic

Figure 4-17. Comparison of RMS Error % of estimated AB by different algorithms in

100Mbps multi-hop path under post-bottleneck traffic

From Figure 4-16 we can see that similar to pre-bottleneck experiments, in this

case also the average estimate of PathAB (both in stand-alone and in client-server modes)

and PoissonProb are very close to the actual available bandwidth line. The PathChirp

algorithm constantly over-estimates the available bandwidth. Similar to the previous case,

0

20

40

60

80

10 20 30 40 50 60 70 80 90

A
va

ila
b

le
 B

an
d

w
id

th
 (

M
b

p
s)

Post-bottleneck Traffin (Mbps)

PathAB (SA)

PathAB (CS)

PoissonProb

PathChirp

IGI

Actual AB

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90

R
M

S
Er

ro
r

%

Post-bottleneck traffic (Mbps)

PathAB (SA)

PathAB (CS)

PoissonProb

PathChirp

IGI

 87

IGI again under-estimates the AB when post-traffic is less and over-estimates for higher

post-bottleneck traffic rates, but the estimated errors for the later cases are a little less

than those for the pre-bottleneck scenario. Figure 4-17 shows that the RMS error % of

PathAB is always within than 10-12% except when the cross-traffic rate is 90 Mbps.

Although the average estimates of PathAB and PoissonProb are almost similar,

PoissonProb has slightly more RMS error in all cases except in 50Mbps cross-traffic

condition. It can, therefore, be inferred that PathAB performs better than other algorithms

and has less RMS estimated error in almost all cases. Also as in all other previous

experiments, in this case of 100 Mbps path also, we have found that PathAB presents a

conservative estimate of the available bandwidth for both pre and post bottleneck

scenarios.

4.3. Effect of Probe-Packet Size on Estimation Accuracy

Size of the probe packet is an important parameter for almost all available bandwidth

measurement algorithms, especially for those which are based on inter-packet gaps for

the estimation process. The main idea of this kind of algorithm is that, if the probing rate

is higher than the available bandwidth, then some cross-traffic packets will be queued up

behind the first packet, while it is being processed by the link with capacity C, before the

next probing packet arrives. This in turn will cause an increase in the gap between those

packets at the receiver. The probing rate r is calculated as,

q

r

 (4.2)

where, q is the size of probe packet and is the inter-packet gap and the processing time

of the packet by link’s router is q/C. Generally for this type of algorithms should be

less than q/C.

q

C
 (4.3)

It is obvious that to increase the probing rate we have two choices; decreasing the

inter-packet gap or increasing the packet size q. Now if we assume fluid model for the

cross-traffic, i.e., the cross-traffic packets are of infinitely small size and the inter-packet

intervals are almost zero; then it will not affect the available bandwidth measurement

 88

process whether we increase the probe rate by increasing probe packet size or by

decreasing the inter-packet gaps, because no matter how small the gap is, at least some

cross-traffic packets will arrive within that interval. But in reality the Internet traffic does

not follow the fluid model and the arrival process of traffic packets is discrete in nature

[36]. So, if the inter-packet gap is too small then no cross-traffic packet may arrive at all

during that interval which may lead to wrong estimation. Again, from (4.3) we can see

that for same probe-packet size, if the link capacity increases, the inter-packet gap will

decrease. Therefore choosing appropriate probe packet size is very important for

available bandwidth estimation algorithms. Pasztor and Veitch [37] showed that the

correctness of bandwidth estimation algorithms has a linear relationship with the size of

probe packet and the accuracy of estimation improves with the increase in packet size

upto a certain size and the accuracy saturates after that (as shown in Figure 4-18).

Probe packet size

A
c
c
u

ra
c
y
 o

f
e

s
ti
m

a
ti
o

n

Saturation point

Figure 4-18. Probe-packet size vs. Accuracy of estimation

They found that for link with capacity less than 2 Mbps the saturation point is

around 500 bytes and for 10 Mbps links it is around 1100 bytes. We have also observed

the same kind of nature of probe size dependence in our experiments. All the available

bandwidth estimation algorithms generally use 1200 or 1300 byte probe packets by

default. For PathAB we have used 1200 byte probe packets for network path with 10

Mbps rage links. But we found that it provides better estimation for 100 Mbps links when

the probe packet size is 1500 bytes.

 89

CHAPTER V

5. CONCLUSION AND RECOMMENDED FUTURE WORK

In this thesis we have presented a new algorithm, called PathAB, to estimate the available

bandwidth of an end-to-end network path. PathAB is a hybrid algorithm which is mainly

based on the strong mathematical foundation of MoSeab, but also borrows ideas from

two other methods, PathChirp and PoissonProb to improve its performance and reduce

traffic overload. It is a hybrid algorithm in the sense that it uses both rate-based and gap-

based approaches for the measurement process. The algorithm operates in two phases; the

first phase is a rate-based approach where it transmits a single exponential packet train to

rapidly obtain a rough estimate and in the next phase, which is a gap-based approach, it

transmits several Poisson distributed probing trains with different mean inter-packet

intervals to obtain the final estimate. Another attractive feature of PathAB is that, it can

also operate in stand-alone mode without any assistance from the target host. Unlike all

other existing stand-alone algorithms, instead of echoing the large probe packets, PathAB

uses very small 28 byte ICMP echo packets which are transmitted right behind the large

probe packets. The probe packets are dropped at the target host and the sender estimates

available bandwidth after receiving back the echo packets.

The client-server and stand-alone algorithms of PathAB have been compared with

some existing algorithms, such as PoissonProb, PathChirp, IGI, Pathload and spruce

using NS-2 simulations and on the network test-bed under different topology and cross-

traffic scenarios. We have observed that PathAB performs better and poses relatively less

RSM error both in the client-server and stand-alone modes than the other algorithms in

almost all the test cases. For both 10Mbps and 100Mbps paths the RMS error of PathAB

is within 10% in most of the cases and within 15% in a few cases. But the error is more

than 20% when utilization of the path is 90% or more.

We have found that PathAB requires different values for its parameters, the probe

packet size for both phases and the min_rate & max_rate of exponential train in the first

phase, to produce better estimates in 10Mbps and 100Mbps paths. For 10Mbps path 1200

byte probe packets were used and the rate of exponential train was increased from 10kbps

 90

to 100Mbps, whereas for 100Mbps path the size of probe packets was 1500 bytes and the

rate of exponential train was increased from 1Mbps to 200Mbps. In the current

implementation of PathAB we have to change these parameters manually to fit the

algorithm appropriately for 10Mbps and 100Mbps path. One possible improvement of

PathAB can be to run some prediction algorithms to first predict bandwidth range of the

path and adjust the parameters automatically.

PathAB calculates the path’s available bandwidth based on all the 15 samples

received in the second phase. As the utilization of the path increases, there is a high

possibility that some of these samples may become affected due to packet drops or

sudden unexpected traffic burst and this in turn may affect the final estimate. PathAB’s

estimate in such scenario can be further improved by applying some filtering mechanism

to ignore the noisy samples.

Also we have assumed Poisson traffic pattern across the path. We have not

observed the performance of PathAB when the traffic pattern changes to self-similar,

pareto, exponential or something else. Although the performance of PathAB should be

similar to that with Poisson traffic condition, if the traffic is CBR or uniform, but it may

fail in other situations. The open area of further research is to observe the performance of

PathAB under different traffic patterns and adjust the structure of probing train to adapt

to different scenarios.

 91

REFERENCES

[1] K. C. Claffy and S. McCreary, "Trends in Wide Area IP Traffic Patterns," CAIDA,

Technical Report, 2000.

[2] R. L. Carter and M. E. Crovella, "Dynamic server selection using bandwidth probing in

wide-area networks," Boston University, Computer Science Department, Technical Report

TR-96-007, 1996.

[3] G. Jin, G. Yang, B. R. Crowley, and D. A. Agarwal, "Network Characterization Service

(NCS)," in Proceedings of 10th IEEE International Symposium on High Performance

Distributed Computing, 2001, pp. 289-299.

[4] J. Strauss, D. Katabi, and F. Kaashoek, "A Measurement Study of Available Bandwidth

Estimation Tools," in Proceedings of the 3rd ACM SIGCOMM conference on Internet

measurement, 2003, pp. 39-44.

[5] M. Kazantzidis, D. Maggiorini, and M. Gerla, "Network Independent Available Bandwidth

Sampling and Measurement," in Proceedings of Second International Workshop on Quality

of Service in Multiservice IP Networks, 2003, pp. 117-130.

[6] G. W. Xuan and Y. S. Zheng, "Prioritized Tri-Packets Probes for Available Bandwidth

Measurement," in Proceedings of International Conference on Communications, Circuits

and Systems, vol. 3, 2006, pp. 1777-1781.

[7] B. Melander, M. Bjorkman, and P. Gunningberg, "A New End-to-End Probing and Analysis

Method for Estimating Bandwidth Bottlenecks," in IEEE Global Telecommunications

Conference, GLOBECOM '00, 2000, pp. 415-420.

[8] B. Melander, M. Bjorkman, and P. Gunningberg, "Regression-Based Available Bandwidth

Measurements," in Proceedings of the 2002 International Symposium on Performance

Evaluation of Computer and Telecommunications, 2002.

[9] M. Adachi, S. Kikuchi, and T. Katsuyama, "NEPRI: Available Bandwidth Measurement in

IP Networks," in IEEE International Conference on Communications, vol. 1, 2000, pp. 511-

515.

[10] J. He, C. E. Chow, J. Yang, and T. Chujo, "An Algorithm for Available Bandwidth

Measurement," in In Proceedings of the First International Conference on Networking-Part

1, 2001, pp. 753-761.

[11] M. Jain and C. Dovrolis, "Pathload: A measurement tool for end-to-end available

bandwidth," in Proceedings of Passive and Active Measurements (PAM) Workshop, 2002.

[12] M. Jain and C. Dovrolis, "End-to-end available bandwidth: measurement methodology,

dynamics, and relation with TCP throughput," IEEE/ACM Transactions on Networking

(TON), vol. 11, no. 4, pp. 537-549, 2003.

 92

[13] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrel, "pathChirp: Efficient

Available Bandwidth Estimation for Network Paths," in Proceedings of Passive and Active

Measurement Workshop, 2003.

[14] D. Kiwior, J. Kingston, and S. A., "PATHMON, A Methodology for Determining Available

Bandwidth over an Unknown Network," in IEEE/Sarnoff Symposium on Advances in Wired

and Wireless Communication, 2004, pp. 27-30.

[15] D. Zhang, Y. Wu, and J. Xu, "Pathtrait: A Tool for Tight Link Location and End-to-End

Available Bandwidth Measurement," in Proceedings of International Symposium on Parallel

and Distributed Processing and Applications, 2005, pp. 78-89.

[16] L. Xin, "PoissonProb: A new rate-based available bandwidth measurement algorithm,"

M.Sc. Thesis, University of Windsor, 2005.

[17] G. Kola and M. K. Vernon, "QuickProbe: available bandwidth estimation in two roundtrips,"

in ACM SIGMETRICS Performance Evaluation Review, 2006, pp. 359-360.

[18] Y. Xiao, S. Chen, X. Li, and Y. Li, "A New Available Bandwidth Measurement Method

Based on Self-Loading Periodic Streams," in International Conference on Wireless

Communications, Networking and Mobile Computing (WiCom 2007), Shanghai, 2007, pp.

1904-1907.

[19] S. Suthaharan and S. Kumar, "Measuring Available Bandwidth: pathChirp's Chirp Train

Structure Remodeled," in Australasian Telecommunication Networks and Applications

Conference, 2008. ATNAC 2008., Adelaide, SA, 2008, pp. 379-384.

[20] V. Ribeiro, et al., "Multifractal Cross-Traffic Estimation," in Proceedings of the ITC

Specialist Seminar on IP Traffic Measurement, Modeling and Management., 2000.

[21] N. Hu and P. Steenkiste, "Evaluation and Characterization of Available Bandwidth Probing

Techniques," IEEE Journal on Selected Areas in Communications, vol. 21, no. 6, pp. 879-

894, 2003.

[22] S. R. Kang, X. Liu, M. Dai, and D. Loguinov, "Packet-Pair Bandwidth Estimation:

Stochastic Analysis of a Single Congested Node," in Proceedings of the 12th IEEE

International Conference on Network Protocols, ICNP, 2004, pp. 316-325.

[23] A. Bhati, "Envelope: Estimation of Bottleneck and Available Bandwidth over Multiple

Congested Links," MSc Thesis, Texas A&M University, 2004.

[24] L. Min, S. Jinglin, L. Zhongcheng, K. Zhigang, and M. Jian, "A new end-to-end

measurement method for estimating available bandwidth," in Proceedings of the Eighth

IEEE International Symposium on Computers and Communication (ISCC‟03), vol. 2, 2003,

pp. 1393-1400.

[25] A. Zhou, et al., "A New Method for End-to-End Available Bandwidth Estimation," in IEEE

Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008, 2008, pp. 1-5.

[26] A. Botta, Dapos, S. Antonio, A. Pescape, and G. Ventret, "BET: A Hybrid Bandwidth

Estimation Tool," in Porceedings of the 11th International Conference on Parallel and

Distributed Systems (ICPADS'05), vol. 2, 2005, pp. 520-524.

 93

[27] M. Zhang, C. Luo, and J. Li, "Estimating Available Bandwidth Using Multiple Overloading

Streams," in IEEE International Conference on Communications, 2006. ICC '06., vol. 2,

Istanbul, 2006, pp. 495-502.

[28] S. Ekelin, et al., "Real-Time Measurement of End-to-End Available Bandwidth using

Kalman Filtering," in Proc. 10th IEEE/IFIP Network Operations and Management

Symposium, 2006.

[29] A. Cabellos-Aparicio, F. J. Garcia, and J. Domingo-Pascual, "A Novel Available Bandwidth

Estimation and Tracking Algorithm," in IEEE Network Operations and Management

Symposium Workshops, 2008. NOMS Workshops, 2008, pp. 87-94.

[30] C. Dovrolis, P. Ramanathan, and D. Moore, "What do packet dispersion techniques

measure?," in Proceedings of Twentieth Annual Joint Conference of the IEEE Computer and

Communications Societies, IEEE INFOCOM 2001, vol. 2, 2001, pp. 905-914.

[31] J. Cao, W. S. Clevel, D. Lin, and D. X. Sun, "Internet Traffic Tends Toward Poisson and

Independent as the Load Increases," in Nonlinear Estimation and Classification, New York,

2002, pp. 83-109.

[32] V. J. Ribeiro, R. H. Riedi, M. S. Crouse, and R. G. Baraniuk, "Multiscale queuing analysis

of long-range-dependent network traffic," in Proc. IEEE INFOCOM, 2000, pp. 26-30.

[33] G. Welch and G. Bishop, "An Introduction to the Kalman Filter," Department of Computer

Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, Technical

Report TR95-041, 1995.

[34] M. Neginhal, K. Harfoush, and H. Perros, "Measuring Bandwidth Signatures of Network

Paths," in Proceedings of IFIP Networking 2007, Atlanta, GA, 2007.

[35] A. Botta, A. Dainotti, and A. Pescapè, "Multi-protocol and multi-platform traffic generation

and measurement," in INFOCOM 2007 DEMO Session, Anchorage (Alaska, USA), May

2007.

[36] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, "Bandwidth Estimation: Metrics,

Measurement Techniques, and Tools," IEEE Network, vol. 17, no. 6, pp. 27-35, Nov. 2003.

[37] A. Pasztor and D. Veitch, "The packet size dependence of packet pair like methods," in

Tenth IEEE International Workshop on Quality of Service, 2002, pp. 204-213.

[38] A. Broido, Y. Hyun, R. Gao, and K. C. Claffy, "Their share: diversity and disparity in IP

traffic," in Proceedings of Passive and Active Network Measurement (PAM), 5th

International Workshop, Antibes Juan-les-Pins, France, 2004.

[39] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido, "A Nonstationary Poisson View of

Internet Traffic," in Proceedings of IEEE INFOCOM, 2004, pp. 1558-1569.

[40] H. Zhou, Y. Wang, and Q. Wang, "Measuring Internet bottlenecks: location, capacity, and

available bandwidth," in Proceedings of International Conference on Computer Network and

Mobile Computing, 2005, pp. 1052-1062.

 94

[41] H. Zhou, Y. Wang, X. Wang, and X. Huai, "Difficulties in Estimating Available

Bandwidth," in IEEE International Conference on Communications, vol. 2, 2006, pp. 704-

709.

[42] G. Urvoy-Keller, T. En-Najjary, and A. Sorniotti, "Operational Comparison of Available

Bandwidth Estimation Tools," ACM SIGCOMM Computer Communication Review, vol. 38,

no. 1, pp. 39-42, Jan. 2008.

[43] A. Shriram and J. Kaur, "Empirical Evaluation of Techniques for Measuring Available

Bandwidth," in 26th IEEE International Conference on Computer Communications. IEEE

INFOCOM '07, Anchorage, AK, 2007, pp. 2162-2170.

[44] V. J. Ribeiro, R. H. Riedi, and B. R. G., "Spatio-temporal available bandwidth estimation

with STAB," in Proceedings of the Joint International Conference on Measurement and

Modeling of Computer Systems, 2004, pp. 394-395.

[45] V. Paxson, "Measurements and Analysis of End-to-End Internet Dynamics," Ph.D. Thesis,

University of California, 1997.

[46] X. Liu, K. Ravindran, and D. Loguinov, "A Stochastic Foundation of Available Bandwidth

Estimation: Multi-Hop Analysis," IEEE/ACM Transactions on Networking, vol. 16, no. 1,

pp. 130-143, Feb. 2008.

[47] L. Lao, C. Dovrolis, and M. Y. Sanadidi, "The probe gap model can underestimate the

available bandwidth of multihop paths," ACM SIGCOMM Computer Communication

Review, vol. 36, no. 5, pp. 29-34, 2006.

[48] K. Lai, "Measuring the Bandwidth of Packet Switched Networks," Ph.D. thesis, Department

of Computer Scienc, Stanford University, 2002.

[49] K. Lai and M. Baker, "Measuring bandwidth," in In Proceedings of IEEE INFOCOM „99,

1999, pp. 21-25.

[50] S. R. Kang, X. Liu, A. Bhati, and D. Loguinov, "On Estimating Tight-Link Bandwidth

Characteristics over Multi-Hop Paths," 26th IEEE International Conference on Distributed

Computing Systems, ICDCS 2006, pp. 55-59, 2006.

[51] M. Jain and C. Dovrolis, "Ten fallacies and pitfalls on end-to-end available bandwidth

estimation," in Proceedings of the 4th ACM SIGCOMM Conference on internet

Measurement IMC '04, 2004, pp. 272-277.

[52] M. Jain and C. Dovrolis, "End-to-end estimation of the available bandwidth variation range,"

Proceedings of the 2005 ACM SIGMETRICS international conference on Measurement and

modeling of computer systems SIGMETRICS '05, vol. 33, no. 1, pp. 265-276, 2005.

[53] X. Hei, D. H. K. Tsang, and B. Bensaou, "Available Bandwidth Measurement using Poisson

Probing on the Internet," in IEEE International Conference on Performance, Computing,

and Communications, 2004, pp. 207-214.

[54] J. He, "On Available Bandwidth Measurement Implementation and Experiment," in

Proceedings of the 29th Annual IEEE International Conference on Local Computer

Networks (LCN'04), 2004, p. 772–773.

 95

[55] J. He, "Available bandwidth measurement, implementation and evaluation," in Proceedings

of 12th IEEE International Conference on Networks, ICON 2004, vol. 1, 2004, pp. 226-230.

[56] A. Botta, A. Pescape, and V. G., "On the Performance of Bandwidth Estimation Tools ," in

Proceedings of the 2005 Systems Communications (ICW‟05), 2005, pp. 287-292.

[57] V. Paxson and S. Floyd, "Wide-Area Traffic: The Failure of Poisson Modeling," IEEE/ACM

Transactions on Networking, vol. 3, no. 3, pp. 226-244, Jun. 1995.

[58] W. E. Leland, M. S. Taqq, W. Willinger, and D. V. Wilson, "On the self-similar nature of

Ethernet traffic," IEEE/ACM Transactions on Networking (TON), vol. 2, no. 1, pp. 1-15,

Feb. 1994.

[59] J. C. Hoe, "Improving the start-up behavior of a congestion control scheme for TCP," in

Proceedings of ACM SIGCOMM, Stanford, CA, USA, 1996, p. 270–280.

[60] F. Qi, J. Zheng, W. Jia, and G. Wang, "Available Bandwidth Measurement Schemes over

Networks," Lecture Notes in Computer Science, vol. 3619, pp. 931-940, Aug. 2005.

[61] S. Seshan, M. Stemm, and R. H. Katz, "SPAND: Shared Passive Network Performance

discovery," in Proceedings of 1st Usenix Symposium on Internet Technologies and Systems

(USITS‟97), Monterey, CA, USA, 1997.

 96

APPENDIX A

A.1. Poisson Process and Poisson Traffic

The Poisson distribution is a discrete distribution which describes the number of times

that some known event has occurred as a function of time, where events can occur at

random times (such as, the number of telephone calls at a business or the number of

accidents at an intersection). In network research, it has been widely used to model the

packet arrivals and packets queuing time for a system. The probability mass function for

the Poisson process is:

 (,) for 0,1,2,...
!

xe
p x x

x

where, denotes the average number of packets that arrives in a given time period. Also

referred to as intensity, x is the number of packets we are currently interested in and e is

the base of natural logarithmic function ln. Under Poisson modeling, network traffic is

usually considered as a random arrival process using non-homogeneous Poisson process.

The difference is that in non-homogeneous Poisson process, instead of taking a stationary

value of intensity, it is considered as a deterministic function of time as (t). Figure A-1

shows an example of non-homogeneous Poisson Process.

()t

Figure A-1. Non-homogeneous Poisson Process

There are a number of interesting mathematical properties exhibited by Poisson

processes. Primarily, superposition of independent Poisson processes results in a new

Poisson process, whose rate is the sum of the rates of the independent Poisson processes.

Further, the independent increment property makes a Poisson process memoryless.

Poisson processes are common in traffic applications scenarios that comprise of a large

 97

number of independent traffic streams. The reason is that, under suitable conditions, a

large number of independent multiplexed streams approach a Poisson process as the

number of processes grows, but the individual rates decrease in order to keep the

aggregate rate constant. Nevertheless, it is to be noted that traffic aggregation need not

always result in a Poisson process. The Poisson model is primarily based on two

assumptions:

1. The number of sources is infinite.

2. The traffic arrival pattern is random.

The Poisson model was widely applied in network engineering in the early-90’s.

But studies [40, 41] during that period had shown that the LAN and WAN traffic diverge

considerably from the Poisson pattern as the exponential distribution underestimates the

burstiness of traffic and can better be modeled by self-similar process because of the

long-range dependence.

Within the last decade Internet has grown rapidly in diversity and disparity, and

the nature of traffic has changed significantly. The speed of links has increased several

orders of magnitude, up to Giga-byte per second order, and each link had much more

connectivity. Another important phenomenon that affects the traffic modeling is network

multiplexing. A recent study [38] has shown that the network traffic on Internet can again

be modeled by Poisson distribution. The reason is that the statistical properties of packet

traffic on the internet link dramatically change because of the presence of a large number

of simultaneous active connections. The high speed links have the capacity to drain the

packets so fast that “the increasing connection load can bring the traffic to Poisson and

independence before substantial upstream queuing occurs; the onset of queuing does not

resurrect the long-range dependence” [31]. Also the burstiness of single network traffic

cannot change the nature of traffic of highly multiplexed connections, even though they

may still be bursty as an individual connection. Researchers [39] have found that for a

heavily loaded link, the packets arrive back-to back and the distribution of arrival times

depends on the packet size from the transmitter’s point of view. Also from the analysis of

large-scale packet dataset, the packet sizes have been found to be independent. Although

 98

the edge links with limited traffic load may show burstiness, self-similarity and long-

range dependence characteristics; the very high speed internet backbone links carry a

huge amount of traffic which is made up of traffic from a large number of different

connections. This makes the traffic on the internet backbone links close to Poisson

distribution pattern.

The measurement time scale is another important factor of traffic modeling. It has

been found that Internet traffic becomes self-similar and long-range dependent at large

time scale, but at the time scale of millisecond or minute level the traffic is usually non-

stationary and show completely different properties compared to the average properties

of large time scale. Karagiannis et al. [39] have shown “packet arrivals appear Poison at

sub-second time scale; Internet traffic is nonstationary at multi-second time scales;

Internet traffic exhibits long-range dependence (LRD) at large time-scale”. These

findings have immense importance for designing network measurement algorithms to

achieve high accuracy. Usually most applications require the bandwidth information at

the time scale of millisecond to minute level, where the network traffic follows Poisson

pattern. Therefore the available bandwidth measurement algorithms which follow

Poisson traffic assumption have higher possibility to provide better estimates.

 99

APPENDIX B

B.1. Internet Control Message Protocol (ICMP)

Internet Control Message Protocol (ICMP) is part of the Internet Protocol Suite as

defined in RFC 792. ICMP protocol is used to allow network devices to report errors and

other conditions in data transmission. Some of the ICMP's functions are to:

 Announce network errors, such as a host or entire portion of the network being

unreachable, due to some type of failure. A TCP or UDP packet directed at a port

number with no receiver attached is also reported via ICMP.

 Announce network congestion. When a router begins buffering too many

packets, due to an inability to transmit them as fast as they are being received, it

will generate ICMP Source Quench messages. Directed at the sender, these

messages should cause the rate of packet transmission to be slowed. Of course,

generating too many Source Quench messages would cause even more network

congestion, so they are used sparingly.

 Assist Troubleshooting. ICMP supports an Echo function, which just sends a

packet on a round--trip between two hosts. Ping, a common network management

tool, is based on this feature. Ping will transmit a series of packets, measuring

average round--trip times and computing loss percentages.

 Announce Timeouts. If an IP packet's TTL field drops to zero, the router

discarding the packet will often generate an ICMP packet announcing this fact.

TraceRoute is a tool which maps network routes by sending packets with small

TTL values and watching the ICMP timeout announcements.

Like TCP and UDP, ICMP uses IP to communicate across network. Internet

Protocol encapsulates the appropriate ICMP message with a new IP header (to get the

ICMP message back to the original sending host) and transmits the resulting datagram in

the usual manner.

 100

Each ICMP message is encapsulated directly within a single IP datagram, and

thus, like UDP, ICMP uses connectionless approach, so packet delivery is unreliable.

The IP packets identify the next layer protocol contained in the data section using

the protocol type field. ICMP packets are identified with protocol type value of 1. The

following figure shows how ICMP packet fields are placed in an IP packet:

Figure B-1. ICMP header with IP header

 Type and Code fields

There are different types of messages that ICMP packet can carry. These different

messages are grouped into types. The 1-byte type field is used to specify the type of

message that is enclosed in the packet. Some of the types are further divided into sub-

types. The next 1-byte code field is used to specify the sub-type. Table B-1 shows some

of the types and some of the codes used in ICMP packets.

 Checksum:

The 2-byte checksum is used to ensure that the packet has arrived without corruption.

The checksum is computed based on the ICMP portion of the packet, using a specific

algorithm defined in RFC792.

 Identifier and a Sequence number

These two fields are used to uniquely identify an ICMP message.

 101

 Message:

The message part is a variable size component that represents the message being sent.

The message part contains various other fields that are unique to individual ICMP

message types.

Table A-1. Some types and codes used in ICMP header

Type Code Description

0 0 for echo reply message (also see Type 8)

3

0 net unreachable

1 host unreachable

2 protocol unreachable

3 port unreachable

4 fragmentation needed and DF set

5 source route failed

6 destination network unknown

7 destination host unknown

8 source host isolated

9 communication with destination network administratively prohibited

10 communication with destination host administratively prohibited

11 network unreachable for type of service

12 host unreachable for type of service

4 0 source quench message

5 0 Redirect datagrams for the Network

8 0 for echo request message (see Type 0)

11 0 time to live exceeded in transit

12 0
pointer indicates the error (identifies the octet where an error was

detected.)

13 0 for timestamp message

14 0 for timestamp reply message

15 0 for information request message

16 0 for information reply message

B.2. Use of ICMP packet in PathAB

The stand-alone mode of PathAB relies on the ICMP protocol for the estimation process.

In the initial probing phase each probe packet of the exponential train is followed back-

to-back by an ICMP echo request packet (type 8). The algorithm calculates the rough

available bandwidth after receiving back the echo response packets. In the direct probing

 102

phase the first and the last packet of each probing train is followed by ICMP echo request

packets and the algorithm calculates available bandwidth after receiving all the response

packets.

To separate the ICMP packets generated by PathAB from other ICMP packets the

process id of PathAB program is used as the identifier field of all echo request packets.

The sequence number field is used to send the train number and packet number of each

echo request packet. The first 8 bits of sequence number field are used to send train

number and the following 8 bits are used for sending packet number. The ICMP echo

request are sent without any message body, hence the size of each ICMP packet used in

PathAB is 28 bytes.

 103

APPENDIX C

C.1. E-mail communication with the authors of MoSeab

From: Chong Luo <Chong.Luo@microsoft.com>
To: Roy Debashis <roy17@uwindsor.ca>,
 "ben_zhang@zju.edu.cn" <ben_zhang@zju.edu.cn>,
 Jiang Li <jiangli@microsoft.com>
Date : Wed, Jun 4, 2008 at 1:45 AM
Subject: RE: Request for MoSeab program

Dear Debashis,

 Thanks for your interest in MoSeab. However, I regret to tell you that we cannot give you the
code. This work is done in Microsoft Research Asia. As a corporate research lab, we need to
follow the company regulations. Sorry for that.

 Thanks,

Chong

--

 From: Roy Debashis [mailto:roy17@uwindsor.ca]

Sent: 2008年6月4日 11:27

To: ben_zhang@zju.edu.cn; Chong Luo; Jiang Li
Subject: Request for MoSeab program

Dear Sir/Ma'm,

I am a Masters' student at University of Windsor, Canada and I am doing my research in the area of
available bandwidth estimation of network path under supervision Dr. A.K. Aggarwal. Recently I have
gone through your paper "Estimating Available Bandwidth Using Multiple Overloading Streams" in
which you have introduced a new method MoSeab to estimate the available bandwidth. I will be very
thankful if you could provide me the programs for MoSeab (if possible both NS2 simulation program
and the actual implementation). It will be very much helpful towards my research.
Looking forward for your response.

With due regards,

Debashis Roy

High Performance Grid Computing Research Group
School of Computer Science
University of Windsor, ON, Canada
Phone: (519)253-3000 ext. 4406

mailto:roy17@uwindsor.ca
mailto:ben_zhang@zju.edu.cn

 104

VITA AUCTORIS

NAME : Debashis Roy

PLACE OF BIRTH : West Bengal, India

YEAR OF BIRTH : 1983

EDUCATION : Bachelor of Engineering in Computer Science & Technology,

2005. Bengal Engineering and Science University, Shibpur,

WB, India.

Master of Science, 2009. School of Computer Science,

University of Windsor, ON, Canada

WORK EXPERIENCE : Graduate Research and Teaching Assistant, University of

Windsor, January 2007 − April 2009.

ESB Java Developer, IBM Canada Limited, September 2008

− December 2008.

Systems Engineer, Siemens Information Systems Ltd., India,

July 2005 − December 2006.

AWARDS : International Graduate Student Scholarship, 2007-2009.

University of Windsor, ON, Canada.

PUBLICATION : J.Lu, Y. Yu, D. Roy and D. Saha, "Web service composition:

a reality check", in Eighth International Conference on Web

Information Systems Engineering, Nancy, 2007, pp. 523-532.

	University of Windsor
	Scholarship at UWindsor
	2009

	PathAB: A New Method to Estimate End-to-End Available Bandwidth of Network Path
	Debashis Roy
	Recommended Citation

	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Related Concepts
	Capacity
	Bottleneck Link & Bottleneck Bandwidth
	Utilization
	Available Bandwidth
	Tight Link
	Achievable Bandwidth
	Active and Passive Measurement
	Receiver-based vs. Sender-based Measurement

	Thesis Contribution

	Survey of Available Bandwidth estimate Algorithms
	Gap-based Approach
	Cprobe
	Pipechar
	Spruce
	ab-probe
	PoTRI
	Summary

	Rate-based Approach
	TOPP
	AB Estimate using Curve Matching
	Pathload
	PathChirp
	PathMon
	Pathtrait
	PoissonProb
	QuickProbe
	Algorithm proposed by Xiao et al.
	eChirp
	Summary

	Model-based approach
	Delphi
	IGI and PTR
	Stochastic queuing model
	Envelope
	Summary

	Probabilistic Approach
	SMART
	Probabilistic definition of Available Bandwidth
	The SMART algorithm

	A_ABE
	Summary

	Hybrid Approach
	BET
	MoSeab
	Summary

	Kalman Filtering based Algorithm
	BART
	Abest
	Summary

	The Proposed Algorithm: PathAB
	Client-Server Mode
	Initial Probing Phase
	Direct Probing Phase
	Complete client-server algorithm

	Stand-alone Mode
	Initial Probing Phase
	Direct Probing Phase
	Complete stand-alone mode algorithm
	Position of the Echo Packet

	Experiment and Analysis
	Experiments using NS-2 simulator
	Single Tight-Link Scenario
	Multiple Tight Link: Pre and Post Bottleneck Cross-Traffic Effect
	Pre-bottleneck experiment
	Post-bottleneck experiment

	Experiments on Network TestBed
	Single-hop Experiments
	Description of Network TestBed
	Results of Single-hop Experiments

	Multi-hop Experiment: 10 Mbps range
	Description of Network TestBed
	Experimental Results

	Multi-hop Experiment: 100 Mbps range
	Description of Network TestBed
	Experimental Results

	Effect of Probe-Packet Size on Estimation Accuracy

	Conclusion and Recommended Future Work
	References
	Appendix A
	Appendix B
	Appendix C

