57,387 research outputs found

    Evolutionary Algorithms for Community Detection in Continental-Scale High-Voltage Transmission Grids

    Get PDF
    Symmetry is a key concept in the study of power systems, not only because the admittance and Jacobian matrices used in power flow analysis are symmetrical, but because some previous studies have shown that in some real-world power grids there are complex symmetries. In order to investigate the topological characteristics of power grids, this paper proposes the use of evolutionary algorithms for community detection using modularity density measures on networks representing supergrids in order to discover densely connected structures. Two evolutionary approaches (generational genetic algorithm, GGA+, and modularity and improved genetic algorithm, MIGA) were applied. The results obtained in two large networks representing supergrids (European grid and North American grid) provide insights on both the structure of the supergrid and the topological differences between different regions. Numerical and graphical results show how these evolutionary approaches clearly outperform to the well-known Louvain modularity method. In particular, the average value of modularity obtained by GGA+ in the European grid was 0.815, while an average of 0.827 was reached in the North American grid. These results outperform those obtained by MIGA and Louvain methods (0.801 and 0.766 in the European grid and 0.813 and 0.798 in the North American grid, respectively)

    An Optimal State of Charge Feedback Control Strategy for Battery Energy Storage in Hourly Dispatch of PV Sources

    Get PDF
    AbstractThe effects of intermittent cloud and changes in temperature cause a randomly fluctuated output of a photovoltaic (PV) system. To mitigate the PV impacts particularly on a weak electricity network, battery energy storage (BES) system is an effective means to smooth out the power fluctuations. Consequently, the net power injected to the electricity grid by PV/BES systems can be dispatched smoothly such as on an hourly basis. This paper presents an improved control strategy for a grid-connected BES for mitigating PV farm output power fluctuations. A feedback controller for state of charge is proposed where the control parameters are optimized using genetic algorithm. In this way, the optimal size for the BES is also determined to hourly dispatch a 1.2 MW PV farm. The effectiveness of the proposed control scheme is evaluated using PSCAD/EMTDC-based simulation

    An Evolutionary Computational Approach for the Problem of Unit Commitment and Economic Dispatch in Microgrids under Several Operation Modes

    Get PDF
    In the last decades, new types of generation technologies have emerged and have been gradually integrated into the existing power systems, moving their classical architectures to distributed systems. Despite the positive features associated to this paradigm, new problems arise such as coordination and uncertainty. In this framework, microgrids constitute an effective solution to deal with the coordination and operation of these distributed energy resources. This paper proposes a Genetic Algorithm (GA) to address the combined problem of Unit Commitment (UC) and Economic Dispatch (ED). With this end, a model of a microgrid is introduced together with all the control variables and physical constraints. To optimally operate the microgrid, three operation modes are introduced. The first two attend to optimize economical and environmental factors, while the last operation mode considers the errors induced by the uncertainties in the demand forecasting. Therefore, it achieves a robust design that guarantees the power supply for different confidence levels. Finally, the algorithm was applied to an example scenario to illustrate its performance. The achieved simulation results demonstrate the validity of the proposed approach.Ministerio de Ciencia, Innovación y Universidades TEC2016-80242-PMinisterio de Economía y Competitividad PCIN-2015-043Universidad de Sevilla Programa propio de I+D+

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Adjustment of model parameters to estimate distribution transformers remaining lifespan

    Get PDF
    Currently, the electrical system in Argentina is working at its maximum capacity, decreasing the margin between the installed power and demanded consumption, and drastically reducing the service life of transformer substations due to overload (since the margin for summer peaks is small). The advent of the Smart Grids allows electricity distribution companies to apply data analysis techniques to manage resources more efficiently at different levels (avoiding damages, better contingency management, maintenance planning, etc.). The Smart Grids in Argentina progresses slowly due to the high costs involved. In this context, the estimation of the lifespan reduction of distribution transformers is a key tool to efficiently manage human and material resources, maximizing the lifetime of this equipment. Despite the current state of the smart grids, the electricity distribution companies can implement it using the available data. Thermal models provide guidelines for lifespan estimation, but the adjustment to particular conditions, brands, or material quality is done by adjusting parameters. In this work we propose a method to adjust the parameters of a thermal model using Genetic Algorithms, comparing the estimation values of top-oil temperature with measurements from 315 kVA distribution transformers, located in the province of Tucumán, Argentina. The results show that, despite limited data availability, the adjusted model is suitable to implement a transformer monitoring system.Fil: Jimenez, Victor Adrian. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; ArgentinaFil: Will, Adrian L. E.. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; ArgentinaFil: Gotay Sardiñas, Jorge. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; ArgentinaFil: Rodriguez, Sebastian Alberto. Universidad Tecnológica Nacional. Facultad Regional Tucumán. Centro de Investigación en Tecnologías Avanzadas de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentin
    corecore