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Abstract In this paper, a distributed and scalable Grid service management architecture is

presented. The proposed architecture is capable of monitoring task submission behaviour and

deriving Grid service class characteristics, for use in performing automated computational,

storage and network resource-to-service partitioning. This partitioning of Grid resources

amongst service classes (each service class is assigned exclusive usage of a distinct subset

of the available Grid resources), along with the dynamic deployment of Grid management

components dedicated and tuned to the requirements of a particular service class introduces

the concept of Virtual Private Grids. We present two distinct algorithmic approaches for

the resource partitioning problem, the first based on Divisible Load Theory (DLT) and the

second built on Genetic Algorithms (GA). The advantages and drawbacks of each approach

are discussed and their performance is evaluated on a sample Grid topology using NSGrid, an

ns-2 based Grid simulator. Results show that the use of this Service Management Architecture

in combination with the proposed algorithms improves computational and network resource

efficiency, simplifies schedule making decisions, reduces the overall complexity of managing

the Grid system, and at the same time improves Grid QoS support (with regard to job response

times) by automatically assigning Grid resources to the different service classes prior to

scheduling.

Keywords Grid service management . Virtual private Grid . Service Grids

1 Introduction

As more and more application types are ported to Grid environments, an evolution is noticed

from purely computational and/or data Grid offerings to full-scale service Grids [1] (e.g. the

EGEE Enabling Grids for E-Science in Europe project [2]). In this paper, a ‘service Grid’

denotes a Grid infrastructure capable of supporting a multitude of application types with
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varying QoS levels (i.e. our definition of Service Grid is not limited to web-service enabled

Grids). We use the term ‘service class’ as a classifier for user-submitted Grid jobs that exhibit

similar resource requirements (processing requirements, I/O data requirements, priority, etc.).

The architectural standards for Service Grids are provided by the Global Grid Forum’s Open

Grid Service Architecture (OGSA) [3], and (to a lesser extent) the Web Service Resource

Framework [4], building on concepts of both Grid and Web Service communities.

Widespread Grid adoption also increases the need for automated distributed manage-

ment of Grids, as the number of resources offered on these Grids rises dramatically (hence

the scalability of these Grids becomes very important). Automated self-configuration and

self-optimization of Grid resource usage can greatly reduce the cost of managing a large-

scale Grid system, and at the same time achieve better resource efficiency, scalability and

QoS support [5, 6].

The distributed service management architecture proposed in this paper can be described

as a distinct implementation of the OGSA ‘Service Level Manager’ concept. Service Level

Managers are, according to the OGSA specification, responsible for setting and adjusting

policies, and changing the behavior of managed resources in response to observed conditions.

Our main goal is to automatically and intelligently assign Grid resources (both network,

computing and data/storage resources) to a particular service class for exclusive use dur-

ing a specified time frame (i.e. partitioning the pool of Grid resources into distinct service

class-assigned resource pool subsets). The decision to assign a resource to one particular

service will be based on the resources available to the Grid and monitored service class

resource usage characteristics and requirements. Once resource partitioning has been per-

formed, dedicated management components (i.e. scheduler, information service, etc.) will

be associated to a service class’s assigned resources, effectively constructing multiple self-

managing ‘Virtual Private Grids’. These Virtual Private Grids in turn improve Grid manage-

ment scalability, as their management components only need to take into account the state

of their partition-assigned resources along with the state and requirements of jobs from the

service class they are responsible for.

In order to compare the performance of a service managed Grid with a non-service man-

aged Grid we use NSGrid (for a detailed discussion see [7]), an ns-2 based Grid simulator

capable of accurately modeling different Grid resources, management components and net-

work interconnections. More specifically, we evaluated Grid performance (in terms of average

job response time and resource usage efficiency) when different partitioning strategies are

employed, and this both in case network aware as when network unaware scheduling is used.

This paper is structured as follows: Section 2 summarizes related work in this area,

while Section 3 provides details on the proposed service management architecture and its

interaction with other Grid components. The employed network and non network aware

scheduling algorithms are highlighted in Section 4. Section 5 elaborates on the different

resource partitioning strategies, while the evaluation of those partitioning strategies in a

typical Grid topology is compared to a non-resource partitioned situation for varying job

loads in Section 6. Finally, Section 7 presents some concluding remarks.

2 Related work

Considerable work has already been done in the area of distributed scheduling for

Grids [8]. Grid scheduling taking into account service specific requirements has been

dubbed application-level scheduling. Most notable application-level research projects in-

clude AppLeS [9] and GrADS [10].
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In AppLeS, service-class scheduling agents interoperable with existing resource manage-

ment systems have been implemented. Essentially, one separate scheduler needs to be con-

structed per application type. Our service management architecture differs from this approach

in that it operates completely separated from the Grid scheduling components, working in

on service-exclusivity properties located at the Information Services (responsible for storing

resource properties and answering resource queries from e.g. the different schedulers).

GrADS on the other hand is a project to provide an end-to-end Grid application preparation

and execution environment. Application run-time specific resource information comes from

the Network Weather Service [11] and MDS2 [12]. For each application; a performance (i.e.

computational, memory and communication) model needs to be provided by the user. This

differs from our Service Monitor approach, which actively monitors application behavior

and deduces service characteristics at run-time (see Section 3.3).

The General purpose Architecture for Reservation and Allocation (GARA) project [13]

provides Globus with end-to-end Quality of Service guarantees for applications. Both advance

and immediate resource reservations are supported. GARA does not offer dynamic automated

resource-to-service partitioning but can instead be seen as a technology enabling the work

proposed in this paper.

IBM’s Tivoli Intelligent Orchestrator (TIO) and Provisioning Manager (TPM) [14] can im-

prove service response times by monitoring registered resources and requirements for antici-

pated peak workloads and, if necessary, can automatically re-allocate resources in accordance

with business priorities. TIO and TPM are focused on automated data center resource-to-

service allocations, and require users to predefine ‘optimal resource utilization’ plans for

each supported service class. Our service management architecture focuses on the needs of

generic computational/data/service Grids, and tries to automatically (i.e. without user inter-

action) deduce optimal resource utilization from monitored Grid job submission behaviour.

Optimally assigning resources to services has been the subject of research in [15]. In

this study however, resource selection occurs each time a job is submitted to a Grid Portal

(i.e. service aware scheduling). This differs from the work proposed in this paper in which

resources are pre-assigned to service classes based on service class characteristics (i.e. prior

to the job scheduling process).

In contrast to the above mentioned research projects, our contribution focuses on dis-

tributed, automated and intelligent resource-to-service partitioning in a Grid environment

(based on monitored service class characteristics/requirements) along with the dynamic

deployment of service class exclusive management components (effectively constructing

multiple Virtual Private Grids).

3 Service management concept

In this section we begin by describing the NSGrid models that are employed: Grid Site

(resources, management components, etc.) and job models are discussed, along with basic

job submission/resource assignment protocols. We continue by discussing the overall concept

of resource-to-service partitioning in Section 3.2 and explain in Section 3.3 how our resource-

to-service partitioning architecture was implemented in NSGrid.

3.1 Grid/job model

We regard a Grid as a collection of Grid Sites interconnected by WAN links (see Fig. 1).

Each Grid Site has its own resources (computational, storage and data resources) and a
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Fig. 1 Grid model

set of management components, all of which are interconnected by means of LAN links.

Management components include a Connection Manager (capable of offering network QoS

by providing bandwidth reservation support, and responsible for monitoring available link

bandwidth and delay), an Information Service (storing registered resources’ properties and

monitoring their status) and a Scheduler. Every Grid resource in our model is given an asso-

ciated service class ID property (stored in the Information Service with which the resource is

registered). If no Service Management components are instantiated in the Grid, all resources’

service class ID equals ‘0’, meaning these resources can be used by any job (i.e. belonging

to any service class).

The basic unit of work in our model is a job, which can roughly be characterized by its

length (time it takes to execute on a reference processor), computational requirements (mem-

ory, operating system, installed applications, etc.), the needed input data, the output data

size, the burstiness with which these data streams are read or written, and the service class to

which it belongs. A job’s service class ID can either be assigned by the Grid application from

which this job was spawned (with a unique service class ID per Grid application), or alter-

natively jobs from different applications but with similar monitored resource requirements

can be given the same service class ID by the service monitor (the latter approach is useful if

one or more Grid applications spawn jobs with widely differing requirements/characteristics

rendering application-based service class ID assignments less interesting). Knowing the job’s

total length and the frequency at which each input (output) stream is read (written), the total

execution length of a job can be seen as a concatenation of instruction “blocks”. The block

of input data to be processed in such an instruction block is to be present before the start

of the instruction block; that data is therefore transferred from the input source at the start

of the previous instruction block. Similarly, the output data produced by each instruction

block is sent out at the beginning of the next instruction block. We assume these input and

output transfers occur in parallel with the execution of an instruction block. Only when input

data is not available at the beginning of an instruction block or previous output data has not

been completely transferred yet, a job is suspended until the blocking operation completes.

A typical job execution cycle (one input stream and one output stream) is shown in Fig. 2.

The presented model allows us to mimic both streaming data (high read or write frequency)

and data staging approaches (number of input/output blocks set to 1 as can be seen in 3).

In NSGrid [7], when a simulated client submits jobs, the exact job properties are generated

from pre-configured job distributions. Each Grid Site has one or more Grid Portals through

which clients can submit their jobs. Once submitted, a job gets queued at the local Scheduler,
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Fig. 3 Non-blocking job, pre-staged input data

which in turn queries the Information Services (IS) (located both at the local site and at

foreign sites) for resources adhering to the job’s requirements. Once the next scheduling

round starts, the Scheduler applies one of its scheduling algorithms and (if possible) selects

one or more data resources (DR) (for job input data), together with one or more storage

resources (SR) (for storing job output data) and a computational resource (CR) (providing

job processing power), all not necessarily located at one Grid Site (note that DRs and SRs

can reside on the same network node—modeling one data/storage capable resource).

If the scheduling algorithm is network aware (see Fig. 8), the Connection Manager (CM) is

queried for information about available bandwidth on (shortest route) paths between resources

and, once a scheduling decision is made (taking into account the speed at which I/O data

can be fetched/stored to/from the processing job and adjusting computational power that gets

reserved for this job to match), attempts to make connection reservations between the selected

resources; connection reservations provide a guaranteed minimum bandwidth available for

that job. Note that reservations are not physically set up by the Connection Manager: if the

bandwidth requirements of the requested connection reservation are not infringing previously

guaranteed connection reservations’ minimum bandwidth, the request is granted. If however

this is not the case (due to the use of stale resource state information when assigning resources

to jobs in the scheduling round), the connection reservation request is rejected and the job

will be put back in the scheduler queue until the next scheduling round. The Connection

Manager thus operates by bookkeeping all granted connection reservations and denying new

reservations that would infringe on those previously granted reservations. Once all resource

reservations are successful, the job is sent to the selected computational resource which takes

care of fetching the different input datasets and storing the job’s output data.
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3.2 Resource partitioning

Our goal is to intelligently and automatically assign service class IDs to each resource so they

can be used exclusively for jobs spawned from that service class. This classification of Grid

resources in a per-service resource pool with its own dedicated scheduler and information

service has multiple benefits:� resource efficiency and average job response times improve (as will be shown in Section 6)� allows for faster scheduling decisions and resource information lookups� service class priorities can be given by assigning more resources to high-priority service

classes� locally offered service classes can be prioritized over foreign Grid Site service classes,� reduced infrastructure costs: by allocating job loads to resources more efficiently, the

number of resources can be reduced,� improved scalability with dynamic deployment of dedicated VPG management compo-

nents,� service class dedicated management components can be finetuned to the needs of their

particular service.

As we will see in Section 6, resource efficiency (and average job response times) can be

improved by limiting resource availability to service classes that can make efficient use of

that particular resource (e.g. taking into account service class’ data locality). In addition, the

number of job resource query results returned by the Information Services to the scheduler

will be less than when there is one common resource pool, allowing for faster scheduling

decisions (as we are in fact utilizing the resources’ service class ID assignation as an advance

reservation mechanism).

Of course, one has to be very careful when automatically assigning resources to service

classes, as it creates the risk that certain service classes are (involuntarily) left starving for

resources on which to run, while other resources are assigned to a service class for which

there are no job submissions at that time (and are thus unnecessarily left idle). One also has

to take into account service class necessities when making resource partitioning decisions,

in order to avoid excluding a service class from access to a critical resource (e.g. prohibiting

a service class access to mandatory data resources).

The same way computational, storage and data resources can be partitioned amongst

different service class resource pools, network resources can also be split up by performing

per-service bandwidth reservations (e.g. VPN technology). This can prevent data-intensive

service classes from monopolizing network bandwidth usage and thereby hampering the

performance of jobs from other service classes (see Fig. 4). Instead, each service class

should automatically receive a certain bandwidth and be able to use this bandwidth without

having to worry about the network usage of other services’ jobs.

Fig. 4 Network resource
partitioning
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Fig. 5 Standard Grid architecture vs. Virtual private Grid partitioned Grid architecture

With combined network and resource partitioning, a Grid can be modeled as a dynamic

collection of overlay Grids or Virtual Private Grids (VPG), with one VPG for each service

class offered in the Grid. These VPGs (see Fig. 5) are not static structures in that they do

not have resources assigned to them in a permanent way, but react to monitored changes in

service characteristics (e.g. additional service offerings can lead to the construction of new

VPGs and reallocation of resources across existing VPGs). Resource reallocation can stem

from important changes in monitored service class characteristics (e.g. higher job submission
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rates for a service class), a change in service class priorities or, as already mentioned, the

addition of new service classes.

3.3 NSGrid implementation

In NSGrid, a distributed service management architecture was implemented in order to

evaluate the effectiveness of different resource-to-service partitioning strategies and Virtual

Private Grid deployments. Each Grid Site typically has a local Service Manager, which

interacts with the local Information Service (IS), Connection Manager (CM) and Service
Monitor (see Fig. 7 for a sample Service Management setup in NSGrid). All NSGrid resources

and management components are located at ns-2 nodes, which can be interconnected by

means of different types of network links with configurable bandwidth and delay. This way,

all job I/O data that is sent between the different resources is accurately simulated by ns-2,

allowing us to monitor bandwidth usage, network congestion, etc.. All control messages are

XML-encoded and sent over the underlying ns-2 network.

3.3.1 Service Monitor

The Service Monitor inspects job submission behavior at the Grid portals (recall that a

Grid portal acts as a job submission gateway for Grid users): each time a job is submitted,

job requirements (service class, priority, needed input data sets and sizes, output storage

sizes, computational requirements, etc.) are extracted and overall service class properties

(e.g. average job interarrival time, average I/O data sizes, average job computational needs,

needed input datasets) are adjusted. When the Service Monitor has gathered adequate service

class characteristics (either when service class properties remain relatively stable over a fixed

period of time, or when an information dissemination timer has run out), the Service Monitor
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Fig. 7 NSGrid service management architecture scenario

sends the collected service class’ characteristics to its known (local and foreign Grid site)

Service Managers, so as to allow them to have up-to-date service class information for

use by the resource-to-service partitioning algorithms. The Service Monitor keeps a record

of the info that was submitted to the Service Managers, and, if substantial changes (w.r.t.

a configurable threshold) in service class properties are monitored (e.g. detection of new

service classes, increased service class job interarrival times, change in priority, higher job

response times, etc.), sends up-to-date service class information to the Service Managers (see

Fig. 6).

Note that when a job from a newly monitored service class is detected and all resources

have been assigned to existing service classes (i.e. non service class 0 assignations), the job

will have to wait for a repartitioning of resources before being able to be scheduled. The

Service Monitor will wait until the newly monitored average service class characteristics

have stabilized, or until its information dissemination timer has run out, after which it will

contact the Service Manager informing it of the existence and characteristics of the newly

monitored service class.

Each Service Monitor has a moving time window (of configurable length), such that the

properties of a job that was submitted at a time before the time window’s beginning are no

longer taken into account when calculating service class’ characteristics. In doing so, service

classes that spawn no jobs during a period of time equal to the time window’s length are

discarded: the Service Monitor will inform the Service Manager of this occurrence, which in

turn will free resources allocated to that particular service class and (if necessary) repartition.

3.3.2 Service manager

The Service Manager thus periodically receives information regarding local and foreign

Grid site service class characteristics from the different Service Monitors. When the received
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information does not differ (with regard to a certain threshold) from the one used to partition

the Grid resources in a previous partitioning run, no resource-to-service repartitioning will

occur. If however the difference between the previous values and currently monitored service

characteristics (average job IAT, processing length, I/O bandwidth necessities, etc.) is too

large, or if no resource partitioning has yet been done, the Service Manager will query the

Information Services for the characteristics of the resources in their local Grid site resource

pool. Once the answer to this query has been received, one of the resource partitioning al-

gorithms (detailed in Section 5) is applied to the resource set, and the resulting resource

partitioning solution is sent back to the Information Services, who in turn change the ser-

vice class property of their registered resources. If the partitioning algorithm also works

in on network resources, the Connection Manager will be contacted to make service band-

width reservations (based on assigned computational resources, necessary input datasets and

monitored service class’ bandwidth requirements).

Once the partitioning algorithm has finished, resources will be assigned to service class

resource pools, and (if this was not already done) dedicated Virtual Private Grid management

components will be dynamically constructed and associated with the different Virtual Private

Grids (in NSGrid these VPG management components are deployed at the Grid site where

jobs from the VPG’s service class are most common). A VPG Information Service will

gather resource property and status information from all resources assigned to the VPG. This

Information Service will in turn be queried by a dedicated VPG scheduler when the latter

seeks information on resources adhering to a job’s requirements. Note that the global (central

or distributed) Grid scheduling system continues to receive all jobs submitted to the different

Grid portals, but, upon inspection of the service class of each arriving job, either tries to

schedule the job itself, or, when a VPG is constructed for the job’s service class, immediately

sends it to the dedicated VPG scheduler.

3.3.3 Information Service

Much in the same way as the Service Monitors can trigger a repartitioning of resources to

services when substantial changes in service class characteristics are monitored, the Infor-

mation Services are responsible for signaling changes in resource availability. Every time

an existing Grid resource becomes unavailable (either because of failure or by policy), or

conversely, when new resources become available to the Grid, the Information Services re-

port this change to the Service Manager. The latter then decides if a resource-to-service

repartitioning is necessary.

It is important to note that, while resources are assigned for exclusive use by a particular

service, not one job using a service class reassigned resource will be interrupted (preventing

jobs from being pre-empted when the CR it is running on is assigned to a different service

class). The service assignment will thus only be effective for new jobs or jobs currently in the

scheduler queue. At the time of scheduling, queries will be sent to the Information Services

for resources adhering to the job’s requirements, and these Information Services will return

only those resources that are assigned to that particular job’s service class.

4 Scheduling strategies

When jobs are submitted, a Scheduler needs to decide where to place the job for execution. The

scheduling algorithm used in making this selection has a big impact on Grid performance, and

influences overall Grid job throughput, Grid resource efficiency etc. All presented algorithms
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are queueing algorithms [17], that is, whenever an algorithm is invoked, it will attempt to

schedule the not-yet scheduled jobs in the order of arrival on the time-shared resources. Jobs

that cannot be scheduled will be requeued, preserving the relative order of arrival (note that

other requeueing methods are available). The time between two scheduling rounds can be

fixed, but it is also possible to set a threshold (e.g. time limit or number of unscheduled jobs

in the queue) which triggers the next scheduling round. As the goal of each algorithm is

the minimization of each job’s response time, a natural metric to benchmark the different

algorithms is the average job turnaround time. In what follows we will briefly explain the dif-

ferent scheduling strategies used in our simulations (for a more detailed discussion see [16]).

Once scheduled, our scheduler does not attempt to pre-empt jobs.

4.1 Non-network aware scheduling

Non-Network aware scheduling will compute Grid job schedules based on the status of

the computational, storage and data resources (as provided by the Information Services).

Algorithms that use this kind of approach will not take into account information concerning

the status of resource interconnections. The decision of which resources to use for a job will be

based on the information acquired from the different Information Services (i.e. job execution

speed and end time will be calculated based on the status of CR/SR/DR). It is precisely

because Non-Network aware algorithms assume that residual bandwidth on network links is

“sufficient”, that jobs can block on I/O operations: their computational progress is no longer

only determined by the computational resource’s processor fraction that has been allocated

to it (which, together with the job’s length and the computational resource’s relative speed

determines its earliest end time if all input and output transfers complete on time i.e. before
the start of the appropriate instruction block), but also by the limited bandwidth available

to its input and output streams. Note that the fact that network information is discarded

during the scheduling implies that no connection reservations (providing guaranteed available

bandwidths) are made with the connection manager—these would allow to accurately predict

the job’s running time.

4.2 Network aware scheduling

Network aware scheduling algorithms will not only contact the Information Services (for

information about resources that adhere to the job’s requirements), but will also query the

Connection Manager for information about the status of the network links interconnecting

these resources (i.e. the Connection Manager will send the Grid Scheduler information about

connections that can be set up between DR/CR couples (necessary for job input retrieval) and

CR/SR couples (needed for job output storing)). Based on the answers from the Information

Services and Connection Manager, the scheduling algorithm is able to calculate job execution

speed and end time more accurately, taking into account the speed at which input/output can

be delivered to each available computational resource. For jobs with 1 input stream and

1 output stream, the best resource (CR/SR/DR) triplet is the one that minimizes the expected

completion time of the job. This value is determined by the available processing power to

that job on the computational resource (and its relative speed), the job’s length, the job’s total

input and output data size and the residual bandwidth on the observed links from DR to CR

and from CR to SR.

As explained, for some (CR,SR,DR) triplet, due to bandwidth constraints, this duration

may be significantly higher than the value calculated from the job’s length and the CR’s

relative speed, even if job execution and data transfer occur simultaneously. The scheduler
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Fig. 8 NSGrid non-network aware versus network aware scheduling

selects the optimal CR/DR/SR triplet and contacts the central Connection Manager to perform

the necessary connection setups (the necessary bandwidth of these connections is calculated

by the scheduler). The job then gets transferred to the selected CR for processing and in-

put/output is sent from/to the DR/SR over the reserved connections. If no (local or remote)

resources satisfying the job’s requirements can be found, or if no connections with sufficient

bandwidth are available, the job will be queued and prepared for reschedulement.

The time it takes for a job to complete since it has been submitted by the client can be broken

up into:� sending the job to the scheduler� time spent in the scheduler’s queue� time needed for the co-allocation of resources (including network resources) allocated to

that job� transfer time for the first input data block(s)� time needed to process the job at its allocated execution speed� transfer time for the last output data block(s).

Each of these can be found in Fig. 8. Note that no job can become blocked because reservations

are made with network resources, excluding the network from becoming an unexpected

bottleneck (if the resource state information returned by the Information Services/Connection

Managers and employed by the scheduler was accurate and up-to-date).
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5 Partitioning strategies

The problem at hand is trying to partition resources into service class resource pools. A

solution in this case is a mapping from resource to a particular service class ID, and this for

all resources returned from the Service Manager—Information Service queries. A resource

can also be assigned service class ID ‘0’, meaning it can be used by jobs from every service

class. Exhaustively searching for an optimal partitioning (by evaluating the fitness of a

solution by means of a cost function) quickly becomes infeasible, as the amount of solutions

that needs to be evaluated is (#serviceclasses + 1)# resources. In our attempts to find a suitable

solution in reasonable time, we have used two distinct approaches: one uses Divisible Load

Theory (DLT) to obtain a tractable Integer Linear Program (ILP) modeling the service class

assignment problem, while the other uses a Genetic Algorithm to obtain a resource-to-service

mapping.

5.1 DLT-based partitioning

Whenever a Grid reaches a steady state (e.g. a Grid processing a periodic load), stochastic

parameters regarding the distributions of job interarrival time, duration and I/O-needs can be

estimated for each service class by the Service Monitoring Architecture. These parameters

can then be used to populate an Integer Linear Program designed to (by assigning appropriate

values for the program’s decision variables)

1. Assign an exclusive service class ID to each computational resource

2. Determine the optimal schedule of the periodic workload over the Grid’s resources, taking

into account the resource-to-service assignation

An approximation used to limit the number of integer variables in this approach is to treat the

aggregate workload as arbitrarily divisible (hence the name “Divisible Load Theory”) [18,

19]. In this context, values of interest are arrivalsn
s —the computational load per time unit

arriving at site s and belonging to service class n, Setsn and Sizen—the datasets available to

service class n jobs and their respective sizes. The main decision variables in the problem

are xc,n (binary, assigning service class n exclusive access to CR c) and αc
i,n (real-valued,

amount of service class n computational load per time unit processed at CR c which arrived

at site i). Auxiliary variables needed to fulfill routing constraints on the input datasets and

generated output data have been dubbed inl
n, j (bandwidth needed on link l for transport of

dataset j of service class n) and outl
s (bandwidth needed on link l for transport of output

data to storage resource s)—note that the concept of source-based routing [20] was used to

formulate the routing constraints.

Using the Divisible Load approach, the resource-to-service assignation can now be mod-

eled as a cost minimization problem with several classes of constraints.1

The capacity constraints to be observed for each computational Resource and Network

Link, respectively, are

∀c ∈ CR.
∑

i∈Sites

∑
n∈SC

αc
i,n ≤ Capc (1)

∀l ∈ L .
∑
n∈SC

∑
j∈Setsn

inl
n, j +

∑
s∈SR

outl
s ≤ Capl (2)

1Abbreviations used: GW = Gateways, L+ = outgoing links, L− = incoming links, Capc = computational
res. capacity, Capl = link capacity.
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These constraints ensure that work allocated to a Computational Resource does not exceed

that resource’s processing capacity, and that total network traffic over each link does not

exceed that link’s capacity. Network traffic is routed according to following constraints:

∀n ∈ SC, j ∈ Setsn .
∑

d∈DR: j∈Setsd

∑
l∈L+

d

inl
n, j =

∑
s∈Sites arrivalsn

s × Sizen

#Setsn
(3)

∀c ∈ C R, n ∈ SC, j ∈ Setsn .
∑
l∈L−

c

inl
n, j =

∑
i∈Sites αc

i,n × Sizen

#Setsn
(4)

∀c ∈ CR, s ∈ SR.
∑
l∈L+

c

outl
s =

∑
n∈SC

αc
Sites ,n × Sizen (5)

∀s ∈ SR.
∑
l∈L−

s

outl
s =

∑
n∈SC

arrivalsn
Sites

× Sizen (6)

∀g ∈ GW, n ∈ SC, j ∈ Setsn .
∑
l∈L−

g

inl
n, j =

∑
l∈L+

g

inl
n, j (7)

∀g ∈ GW, s ∈ SR.
∑
l∈L−

g

outl
s =

∑
l∈L+

g

outl
s (8)

The first two equations in this series describe how much traffic is carried on the network links

departing from the Data Resources, given that any job of a given service class has an equal

probability to process any of the data sets available to that service class. That same amount

of network traffic is of course to be retrieved at the Computational Resource side.

The next two equations present the analogous observation for output data generated by

the jobs.

The last two equations state that network flow (both for input and output data) is conserved

when crossing intermediate routers.

A feasible schedule is obtained by demanding that the total distributed workload equals

the size of the arriving workload per time unit:

∀i ∈ sites, n ∈ SC.
∑
c∈CR

αc
i,n = arrivalsn

i (9)

Constraints concerning the exclusive reservation of each CR:

∀c ∈ CR.
∑
n∈SC

xc,n = 1 (10)

∀c ∈ CR, n ∈ SC.
∑

i∈Sites

αc
i,n ≤ xc,n × Capc (11)

where the last equation is used to express that only those Computational Resources which

have been explicitly assigned to a service class may actually perform work in that service

class.

The “cost” to be minimized can take on several forms; for instance, the total amount of

data traveling over network links per unit of time (in the steady-state Grid) can be described

Springer



Flexible Grid service management through resource partitioning 293

in terms of problem variables as

∑
l∈L

( ∑
n∈SC, j∈Setsn

inl
n, j +

∑
s∈SR

outl
s

)
(12)

Using this cost function in the ILP results in a workload schedule and service class assignation

yielding minimal aggregate network load for a given arrival process. Alternatively, one can

choose to minimize the maximal unused computational resource fraction, which results in an

“even” workload distribution across all computational resources according to their respective

capacities. This approach can be modeled by adding the constraints

∀c ∈ CR, n ∈ SC.cost ≥
(
xc,n × Capc − ∑

i∈Sites αc
i,n

)
Capc

(13)

and minimizing the cost.

5.2 Genetic algorithm heuristic

The resource class assignment can easily be encoded into an n-tuple of service class IDs,

where n equals the number of resources. These chromosomes can then be fed to a Genetic

Algorithm (GA) which evaluates the fitness of each chromosome (i.e. possible service class

assignment) w.r.t. a cost function f (x) (see Algorithm 5.1. Unlike with an Integer Linear Pro-

gram, this cost function needs not be “linear” in the decision variables, giving this partitioning

approach more expressive power than the DLT-based partitioning.

Algorithm 5.1 starts with an initial population size of m randomly generated tuples (each

tuple b consisting of n service class ID slots). While the stopcondition is not fulfilled, the GA

applies a proportional selection, after which a two-point crossover and a mutation step occur.

The proportional selection selects tuples based on their fitness (with fitter solutions more likely

to be selected and carried over to the next generation). In the next step, a two-point crossover

operation is applied (for each two consecutive tuples the crossover probability ρC deter-

mines if all service class IDs between the randomly selected pos1 and pos2 are switched).

Finally, the mutation operation is performed for each tuple, with mutation probability ρM

determining which of the n service class ID slots needs to be mutated to a random service

class ID.

Depending on how much time is available between partitioning runs (which in turn depends

on the stability of the different service characteristics), parameters of this GA can be tuned

in such a way that feasible search times can be attained (i.e. search time << time between

partitioning runs).

In the next sections we provide details on some implemented partitioning strategies (and

accompanying cost functions): Section 5.2.1 and Section 5.2.2 describe computational re-

source partitioning based on the processing requirements of respectively local and global

service classes. Taking into account the site locality of much needed service class’ input

datasets is discussed in Section 5.2.3. Finally, partitioning of network resources based on

data requirements of the different service classes is discussed in Section 5.2.4. We assume

that the Service Manager has received both up-to-date local and foreign Grid Site service

characteristics from the Service Monitors and resource properties from the Information Ser-

vices.
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Algorithm 5.1: GENETIC ALGORITHM(resources)

5.2.1 Local service CR partitioning

The first (and simplest) partitioning strategy only takes into account the computational

processing needs and priority of the different local service classes. The Service Man-

ager queries the Information Services for all local computational resources and calcu-

lates average service class’ requested processing power as the average processing time

of that service class (as measured on a CR running at reference speed) divided by the

average interarrival time of that SC (the higher job interarrival times, the less process-

ing power will be needed) and multiplied with the number of sites that submit jobs from

this SC.2:

∀SC · ppowerreqSC = sitesSC × ptimere fSC

I ATSC

2 ptimerefSC
= average processing time of service class SC job on reference CR, sitesSC = amount of Grid

portals launching service class SC’s jobs, I ATSC = average service class SC’s job interarrival time.
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The relative processing power assigned to a service class (sum of processing power of

computational resources assigned to that SC) can be found from3:

∀SC · ppowerasgSC =
∑

∀CR∈SC

speedCR

speedCRref

× ptimere fSC

Once CR query answers have been received, the GA (as shown in Algorithm 5.1) will be

started with cost function f (x) described in Algorithm 5.2.

Algorithm 5.2: fC Rpartlocal x

In this cost function (which is to be maximized), the objective is to donate to each local
service class the same amount of processing power relative to their requested processing

power (giving a higher cost function impact factor to service classes that have a high prior-

ity). The max Allocover and max Allocunder parameters assure an even spread of processing

power to services (both in case insufficient processing power is available and when sufficient

processing power is available), as they keep track of the maximum amount of overallo-

cated/underallocated processing power and penalize the cost function result accordingly.

5.2.2 Global service CR partitioning

The second partitioning strategy adds support for services offered at foreign grid sites. The

cost function impact factor of assigning resources to foreign service classes can be adjusted

by the local Service Manager by tuning the foreign service policy ρSC f oreign . Support for

foreign service classes can range from no impact at all on the cost function (ρSC f oreign = 0)

to an impact equal to that of local service classes (ρSC f oreign = 1) or any value in between.

3 speedCR = processing speed of CR, speedCRref
= processing speed of reference CR.

Springer



296 Volckaert et al.

The resulting cost function is stated in Algorithm 5.3.

Algorithm 5.3: fC Rpartglobal x

5.2.3 Input data locality penalization

Resource partitioning based solely on the processing needs of the different services can lead

to bad performance. In case of data-intensive services in particular, one wants these services

to be processed on computational resources located near input data that is generally requested

by those service classes. In order to provide this functionality, the Service Manager queries

the Information Services for both computational and data resources and constructs a list of

which CRs have local access (i.e. accessible from the local Grid Site) to which input sets.

We adjust the cost function to include this notion and penalize assigning a computational

resource that has no local access to an input dataset much-needed by the assigned service.

The actual penalty depends on the input data intensiveness of the service class i ( InputReqi

IATi
)

when compared to the total input data requirements of all service classes (
∑

∀ j∈SC
InputReqj

IATj
):4

costCR∈SCi =
InputReqi

IATi∑
∀ j∈SC

InputReqj

I ATj

× ρcost

#CRassignedi

An additional (yet larger) penalty is given when, amongst all computational resources as-

signed to a particular service, not one of them has access to a needed dataset, as it can be

considered best practice that at least one computational resource can access a needed input

4 InputReq = avg. service class’s input size requirement, #CRassigned = amount of CRs assigned to service
class, ρcost = data non-locality penalty factor.
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set locally. This cost is only charged once for each service class.

cost =
InputReqi

IATi∑
∀ j∈SC

InputReqj

IATj

× ρcost

Both costs can be used as a penalty for the cost function in Algorithm 5.2 and 5.3.

5.2.4 Network partitioning

Since the Service Monitor keeps track of I/O data characteristics of each service, data inten-

siveness relative to the other services can be calculated. This in turn can be used to perform

per-service network bandwidth reservations. We have implemented a proof-of-concept net-

work partitioning strategy, in which the Service Manager calculates average data requirement

percentages for each service class i5

bwreqi =
bwinputi +bwoutputi

I ATi∑
∀ j∈SC

bwinput j +bwoutput j

I ATj

and passes this information to the Connection Manager, who in turn will make service class

bandwidth reservations on all network links for which it is responsible. Network partitioning

can be applied to all previously mentioned partitioning algorithms.

6 Performance evaluation

6.1 Resource setup

A fixed Grid topology (see Fig. 9) was used for all simulations (run on an LCG-2.6.0 Grid

[21] comprised of dual Opteron 242 1.6 Ghz worknodes with 2 GB RAM per cpu, and

operating under Scientific Linux 3). First, a WAN topology (containing 9 core routers with

an average out-degree of 3) was instantiated using the GridG tool [23]. Amongst the edge

LANs of this topology, we have chosen 12 of them to represent a Grid site. Each site has

its own resources, management components and Grid portal interconnected through 1 Gbps

LAN links, with Grid site interconnections consisting of dedicated 10 Mbps WAN links. A

single Service Manager was instantiated, and was given access to the different Grid Sites’

Information Services.

We have assigned 3 computational resources to each Grid Site (for a total of 36 CRs). To

reflect the use of different tiers in existing operational Grids, not all CRs are equivalent: the

least powerful CR has two processors (which operate at the reference speed). A second class

of CRs has four processors, and each processor operates at twice the reference speed. The

third—and last—CR type contains 6 processors, each of which operates at three times the

reference speed. Conversely, the least powerful type of CR is three times as common as the

most powerful CR, and twice as common as the middle one (for a total of 18 reference CRs,

5 bwinput = avg. service class’s input bandwidth need: speedCR
speedCRref

× InputReq
ptimeref

, bwoutput = avg. service class’s

output bandwidth need: speedCR
speedCRref

× OutputReq
ptimeref
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Fig. 9 Simulated multi-site Grid topology

12 four-processor CRs and 6 of the most powerful CRs deployed in our simulated topology).

It is assumed that all processors can be time-shared between different jobs.

We have assumed that storage resources offer “unlimited” disk space, but are limited in

terms of access/write speed by the bandwidth of the link connecting the resource to the Grid

Site. Each site has at its disposal exactly one such SR. Each site’s data resource contains 6

out of 12 possible data sets. These data sets are distributed in such a way that 50% of the

jobs submitted to a site can have local access to their needed data set.

6.2 Job parameters

We have used two different, equal-priority service classes (each accounting for half of the

total job load) in our simulations; one is more data-intensive (i.e. higher data sizes involved),

while the other is more cpu-intensive. At each Grid Site, two “clients” have been instantiated,

one for each job type. Each client submits mutually independent jobs to its Grid Portal. All

jobs need a single data resource and a single storage resource. The ranges between which the

relevant job parameters vary have been summarized in Table 1. In each simulation, the job

load consisted of 2784 jobs. For each scheduling algorithm, we chose to use a fixed interval

of 20s between consecutive scheduling rounds. From the arrival rates in Table 1 and the fact

that multiple sites submit job simultaneously, we are likely to find multiple jobs in the queue

at the start of each scheduling round.

6.3 Comparison of DLT- and GA-based partitioning

In general, our GA-based partitioning strategy provides more functionality, as it is able

to support different priority schemes, shared resources (service class 0 assignations) and
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Table 1 Relevant service class
properties CPU-Job Data-Job

Input(GB) 0.01–0.02 1–2

Output(GB) 0.01–0.02 1–2

IAT(s) 30–40 30–40

Ref. run time(s) 100–200 40–60
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Fig. 10 Genetic algorithm measurements

local vs. foreign service differentiation. Its main drawback is the time needed to complete

a GA run (with reasonable results); on our sample scenario, a naive stop condition of 100

generations takes on average 2632s (26.32s per generation but it should be noted that this

time is not exclusive for GA solution calculation, but is also spent on all other simulation

tasks during partitioning) as can be seen in Fig. 10(a). More reasonable GA calculation times

(with an average of 1123.4s can however be obtained when using a more intelligent stop

condition (i.e. stop when over a period of 15 generations the cost function optimum changes

by less than 0.5%). The DLT-based approach on the other hand needs on average only 10s.

For the GA approach, we used Grefenstette’s settings [24], with a population of 30 per

generation, ρC = 0.9 and ρM = 0.01. In case faster partitioning times need to be attained,

one can either tune GA parameters (smaller population sizes, faster stopping condition, etc.)

or deploy a Service Monitor/Service Manager at every Grid Site, who are then responsible

for communicating with the foreign site’s Service Monitor components and partitioning the

resources at their assigned site (as described in Section 3.3).

Figure 10(b) shows the trend of the cost function optimum for different GA generations

(partitioning occurred on the topology discussed in Section 6.1). The cost function used is

the one discussed in Section 5.2.1 (Local Service CR partitioning) with Input Data Locality

penalization. It is important to note that during the calculation of a resource-to-service par-

titioning, Grid operation does not stall but continues as normal, as the Service Management

components do not block any other management components.

6.4 Job response time

We define the response time of a job as the difference between its end time (time at which

the job’s final output block has been sent to the scheduler-assigned Storage Resource) and

the time it is submitted to the scheduler. In Fig. 11 we present this average job response

time for different scenarios, comparing both the (DLT & GA-based) Service Managed
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Fig. 11 Job response times

versus the non-Service Managed case (DLT CR attempts to minimize Eq. (13) while DLT

Network minimizes Eq. (12) as explained in Section 5.1) while at the same time evaluating

the different partitioning strategies discussed in previous sections for both network aware

(see Fig. 11(b)) and non network aware (see Fig. 11(a)) scheduling algorithms. The results

show that average job response times can be improved significantly (by 40.44% when non

network aware scheduling is used and by 22.6% when network aware scheduling is em-

ployed) by employing a resource partitioning algorithm prior to scheduling. This behavior

can be explained because resources are reserved for exclusive use by a service class. It is this

service-exclusivity that forces the scheduler to not assign jobs to less-optimal resources (e.g.

non-local access to needed input data, low processing power available,. . . ), but to keep the

job in the scheduling queue until a service-assigned resource becomes available.
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Fig. 12 Job response times for GA-based partitioning heuristics

It is noteworthy that the DLT-based partitioning works best when network unaware

scheduling algorithms are used (especially for the computationally intensive service class), as

it outperforms the slower GA-based partitioning strategies. However, when network aware

scheduling strategies are employed (leading to much lower overall job response times as

the scheduler takes into account the state of the network links interconnecting the various

resources at the moment of scheduling), the GA-based methods (particularly the GA based

computational and GA-CONN computational/network resource partitioning algorithms) pro-

vide the best results.

If we compare the performance of the different GA-based partitioning heuristics (see

Fig. 12) (note that when non network aware scheduling is employed, no connection parti-

tioning results are shown, due to the fact that the non network aware scheduling algorithm

does not take into account the connection reservation system) we notice that average job

response times always improve when resources are partitioned amongst service classes.

When scheduling non network aware, the best results are attained when using computa-

tional partitioning taking into account input data locality, as data intensive jobs can be run

on computational resources reserved physically near resources that store much needed I/O

data, leading in turn to less computational stalling, as I/O data suffers from less network

bottlenecking. When network aware scheduling is employed, one is best of using a heuristic

that partitions both computational and network resources. Network partitioning assures that

service classes with high I/O requirements do not consume all bandwidth (thereby preventing

computationally intensive service classes from retrieving their I/O), but instead force them

to only use a predefined percentage of bandwidth.

6.5 Resource efficiency

Using the same job load, the average hopcount over which data was transferred by data-

intensive jobs (with hopcount equaling the amount of hops between data resource and com-

putational resource added to the amount of hops between computational resource and storage

resource) is shown in Fig. 13. We notice that average hopcount dropped by 4.8% when network

unaware scheduling was employed (computational resource partitioning with data locality
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Fig. 13 Network resource efficiency

versus non-service partitioned resources), and by 5.5% when a network aware scheduling

heuristic was used (network partitioning with data locality compared to the non-service man-

aged case), due to the fact that input/output data was located at resources closer to the job’s

service class’ assigned CRs. Network resources are thus used most sparingly when compu-

tational and network resource partitioning with input data locality is employed together with

a scheduling algorithm that takes into account the state of the network links interconnecting

the job’s resources.

Furthermore, we calculated the average computational resource utilization:∑
j∈JobsC R

Load j

Makespan × speedCR

The improvement obtained by employing resource-to-service partitioning when using net-

work unaware scheduling equals 17%, whereas in the case where network aware scheduling

is used, it is 14.6%. Indeed, the fastest (and rarest in our topology) computational resources

were automatically reserved for processing computationally complex jobs, disallowing data

intensive jobs from cluttering these resources and using their full processing potential for

those computationally intense jobs. The slower computational resources were then assigned

to the data intensive service classes, who, because of their large I/O needs benefit more from

having fast (i.e. LAN) access to much needed data.

6.6 Scheduling

We measured the time it takes to calculate a scheduling decision and noticed a decrease in

scheduling time of 28.17% when comparing the service managed Grid to the non-service

managed Grid in case network aware scheduling is used (i.e. from an average 7.88s in the non

service managed case to 5.66s in the service managed Grid). This behaviour can be explained

by the fact that a scheduler queries the Information Services for resources adhering to a job’s

requirements and assigned to either the job’s service class or service class 0. When resources
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Fig. 14 VPG service class priority support

are partitioned amongst services, less results will be returned to the scheduler, allowing for

faster schedule making decisions.

6.7 Priority - Service class QoS support

In another experiment, we gave the cpu-intensive jobs higher priority than the data-intensive

jobs and let the Service Manager construct a Virtual Private Grid (dedicated resource pool,

scheduler and information service) for each service class. Due to the high priority of the

cpu-intensive class, its cost function impact factor becomes higher which leads to more

(and/or better) resources being assigned to the prioritized class. Also, during deployment of

the VPG schedulers, the Service Manager configures the dedicated cpu-intensive scheduler

to schedule those prioritized jobs as soon as possible, using a network aware scheduling

algorithm (the data intensive jobs were also scheduled using a network aware scheduling

algorithm, but were by default queued until the next scheduling round). The results are

shown in Fig. 14: the average job response time of the computationally intensive service

class is substantially improved (due to more/better resources assigned to this service class

and the ASAP scheduling policy enforced by the VPG scheduler), while the data intensive

service class’s average response time gets worse (prioritizing service classes over other service

classes can not lead to win-win situations: the non-prioritized service classes’ performance

will deteriorate).

7 Conclusions

We proposed the use of a distributed service management architecture, following the OGSA

‘service level manager’ concept, capable of monitoring service characteristics at run-time

and partitioning Grid resources amongst different priority service classes. This partition-

ing, together with the dynamic creation of per-service management components, lead to

the introduction of the Virtual Private Grid concept. A variety of resource-to-service par-

titioning algorithms (some based on Divisible Load Theory and others employing Genetic
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Algorithm heuristics) were discussed and we evaluated their performance on a sample topol-

ogy using NSGrid. Our results show that the proposed service management architecture

improves both network and computational resource efficiency and job turnaround times,

eases the process of making scheduling decisions, and at the same time offers service

class QoS support. Management complexity and scheduling/information service scalabil-

ity is improved due to the automated deployment of service class dedicated management

components.
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