786 research outputs found

    A computer-aided design for digital filter implementation

    Get PDF
    Imperial Users onl

    Residual-excited linear predictive (RELP) vocoder system with TMS320C6711 DSK and vowel characterization

    Get PDF
    The area of speech recognition by machine is one of the most popular and complicated subjects in the current multimedia field. Linear predictive coding (LPC) is a useful technique for voice coding in speech analysis and synthesis. The first objective of this research was to establish a prototype of the residual-excited linear predictive (RELP) vocoder system in a real-time environment. Although its transmission rate is higher, the quality of synthesized speech of the RELP vocoder is superior to that of other vocoders. As well, it is rather simple and robust to implement. The RELP vocoder uses residual signals as excitation rather than periodic pulse or white noise. The RELP vocoder was implemented with Texas Instruments TMS320C6711 DSP starter kit (DSK) using C. Identifying vowel sounds is an important element in recognizing speech contents. The second objective of research was to explore a method of characterizing vowels by means of parameters extracted by the RELP vocoder, which was not known to have been used in speech recognition, previously. Five English vowels were chosen for the experimental sample. Utterances of individual vowel sounds and of the vowel sounds in one-syllable-words were recorded and saved as WAVE files. A large sample of 20-ms vowel segments was obtained from these utterances. The presented method utilized 20 samples of a segment's frequency response, taken equally in logarithmic scale, as a LPC frequency response vector. The average of each vowel's vectors was calculated. The Euclidian distances between the average vectors of the five vowels and an unknown vector were compared to classify the unknown vector into a certain vowel group. The results indicate that, when a vowel is uttered alone, the distance to its average vector is smaller than to the other vowels' average vectors. By examining a given vowel frequency response against all known vowels' average vectors, individually, one can determine to which vowel group the given vowel belongs. When a vowel is uttered with consonants, however, variances and covariances increase. In some cases, distinct differences may not be recognized among the distances to a vowel's own average vector and the distances to the other vowels' average vectors. Overall, the results of vowel characterization did indicate an ability of the RELP vocoder to identify and classify single vowel sounds

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Image processing using a two-dimensional digital convolution filter.

    Get PDF

    Digital Signal Processing (Second Edition)

    Get PDF
    This book provides an account of the mathematical background, computational methods and software engineering associated with digital signal processing. The aim has been to provide the reader with the mathematical methods required for signal analysis which are then used to develop models and algorithms for processing digital signals and finally to encourage the reader to design software solutions for Digital Signal Processing (DSP). In this way, the reader is invited to develop a small DSP library that can then be expanded further with a focus on his/her research interests and applications. There are of course many excellent books and software systems available on this subject area. However, in many of these publications, the relationship between the mathematical methods associated with signal analysis and the software available for processing data is not always clear. Either the publications concentrate on mathematical aspects that are not focused on practical programming solutions or elaborate on the software development of solutions in terms of working ‘black-boxes’ without covering the mathematical background and analysis associated with the design of these software solutions. Thus, this book has been written with the aim of giving the reader a technical overview of the mathematics and software associated with the ‘art’ of developing numerical algorithms and designing software solutions for DSP, all of which is built on firm mathematical foundations. For this reason, the work is, by necessity, rather lengthy and covers a wide range of subjects compounded in four principal parts. Part I provides the mathematical background for the analysis of signals, Part II considers the computational techniques (principally those associated with linear algebra and the linear eigenvalue problem) required for array processing and associated analysis (error analysis for example). Part III introduces the reader to the essential elements of software engineering using the C programming language, tailored to those features that are used for developing C functions or modules for building a DSP library. The material associated with parts I, II and III is then used to build up a DSP system by defining a number of ‘problems’ and then addressing the solutions in terms of presenting an appropriate mathematical model, undertaking the necessary analysis, developing an appropriate algorithm and then coding the solution in C. This material forms the basis for part IV of this work. In most chapters, a series of tutorial problems is given for the reader to attempt with answers provided in Appendix A. These problems include theoretical, computational and programming exercises. Part II of this work is relatively long and arguably contains too much material on the computational methods for linear algebra. However, this material and the complementary material on vector and matrix norms forms the computational basis for many methods of digital signal processing. Moreover, this important and widely researched subject area forms the foundations, not only of digital signal processing and control engineering for example, but also of numerical analysis in general. The material presented in this book is based on the lecture notes and supplementary material developed by the author for an advanced Masters course ‘Digital Signal Processing’ which was first established at Cranfield University, Bedford in 1990 and modified when the author moved to De Montfort University, Leicester in 1994. The programmes are still operating at these universities and the material has been used by some 700++ graduates since its establishment and development in the early 1990s. The material was enhanced and developed further when the author moved to the Department of Electronic and Electrical Engineering at Loughborough University in 2003 and now forms part of the Department’s post-graduate programmes in Communication Systems Engineering. The original Masters programme included a taught component covering a period of six months based on two semesters, each Semester being composed of four modules. The material in this work covers the first Semester and its four parts reflect the four modules delivered. The material delivered in the second Semester is published as a companion volume to this work entitled Digital Image Processing, Horwood Publishing, 2005 which covers the mathematical modelling of imaging systems and the techniques that have been developed to process and analyse the data such systems provide. Since the publication of the first edition of this work in 2003, a number of minor changes and some additions have been made. The material on programming and software engineering in Chapters 11 and 12 has been extended. This includes some additions and further solved and supplementary questions which are included throughout the text. Nevertheless, it is worth pointing out, that while every effort has been made by the author and publisher to provide a work that is error free, it is inevitable that typing errors and various ‘bugs’ will occur. If so, and in particular, if the reader starts to suffer from a lack of comprehension over certain aspects of the material (due to errors or otherwise) then he/she should not assume that there is something wrong with themselves, but with the author

    Spatial Distribution and Quantification of Forest Treatment Residues for Bioenergy Production

    Get PDF
    The availability and spatial distribution of forest treatment residues are prerequisites to supply chain development for bioenergy production. To accurately estimate potential residue quantities, data must be provided to simulate stand-level silviculture across the landscape of interest. However, biomass utilization assessments often consider broad regions where adequate data are not supplied. At present, these measures are addressed using strategic level assessments and broad-based management that may not be applicable to all areas of the landscape. This thesis introduces a new methodology for spatially describing stand-level treatment residue quantities based on detailed silvicultural prescriptions and site specific management. Using National Agricultural Imagery Program (NAIP) imagery, the forest is segmented into treatment units based on user defined size constraints. Using a remote sensing model based on NAIP imagery and Forest Inventory and Analysis plot data, these units are attributed with stand-level descriptions of basal area, tree density, above ground biomass, and quadratic mean diameter . The outputs are used to develop silvicultural prescriptions and estimate available treatment residues under three alternative management scenarios at a range of delivered prices per bone dried ton (bdt) to a nearby bioenergy facility in southwestern Colorado. Using a marginal cost approach where treatment costs were covered by merchantable yields, the breakeven delivered price of treatment residues in this study is $48.94 per bdt yielding 167,685 bdt following a 10 year management simulation at a 5,000 acre per year annual allowable treatment level

    Virtual Runtime Application Partitions for Resource Management in Massively Parallel Architectures

    Get PDF
    This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.Siirretty Doriast

    Performance Analysis of Modern Communication System in Realistic Environment

    Get PDF
    Multiple Input Multiple Output (MIMO) technique is one of the effective techniques to combat against fading in wireless communication system. In this thesis, based upon that, performance is evaluated for MIMO system while considering some prac­ tical scenario which was ignored for simplicity in previous works. Apart from that it is well known now a days that co-operative communication has created a new class of communication technique in wireless communication arena. It is also investigated in this thesis work how the system performs while implementing co-operative commu­nication system in an industrial application where the environment is much different from the traditional environment due to the presence of Impulse Noise. Later co­ operative communication system and the diversity technique are blended together and the performance of such system is analyzed theoretically as well as in simulation. Results acquired in this thesis will be used to bring forth publication

    Application of LANDSAT to the surveillance of lake eutrophication in the Great Lakes basin

    Get PDF
    The author has identified the following significant results. A step-by-step procedure for establishing and monitoring the trophic status of inland lakes with the use of LANDSAT data, surface sampling, laboratory analysis, and aerial observations were demonstrated. The biomass was related to chlorophyll-a concentrations, water clarity, and trophic state. A procedure was developed for using surface sampling, LANDSAT data, and linear regression equations to produce a color-coded image of large lakes showing the distribution and concentrations of water quality parameters, causing eutrophication as well as parameters which indicate its effects. Cover categories readily derived from LANDSAT were those for which loading rates were available and were known to have major effects on the quality and quantity of runoff and lake eutrophication. Urban, barren land, cropland, grassland, forest, wetlands, and water were included

    Domain-specific and reconfigurable instruction cells based architectures for low-power SoC

    Get PDF
    • …
    corecore