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Abstract
Multiple Input Multiple Output (MIMO) technique is one of the effective techniques 
to combat against fading in wireless communication system. In this thesis, based 
upon that, performance is evaluated for MIMO system while considering some prac
tical scenario which was ignored for simplicity in previous works. Apart from that it 
is well known now a days that co-operative communication has created a new class of 
communication technique in wireless communication arena. It is also investigated in 
this thesis work how the system performs while implementing co-operative commu
nication system in an industrial application where the environment is much different 
from the traditional environment due to the presence of Impulse Noise. Later co
operative communication system and the diversity technique are blended together 
and the performance of such system is analyzed theoretically as well as in simulation. 
Results acquired in this thesis will be used to bring forth publication.

K e y  W ord s : MIMO, Alamouti Code, Angle of arrival, Doppler spread, Probabil
ity of Error, Co-operative Communication, Physical Network Coding, Impulse Noise, 
Bi-directional Relay Network, Co-operative Diversity.
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Chapter 1 
Introduction

Demands in wireless communication are increasing day by day as the technology in 

this sector is flourishing tremendously. The system has to have high voice quality, 

high data rate, good coverage area, high power and bandwidth efficiency and be cost 

effective. In order to meet those requirements different technologies are proposed in 

years and still researchers are devoted to invent new ones. While fulfilling one demand, 

in almost every case, another parameter is to be sacrificed. In some cases, reasonable 

trade off can be done to meet specific requirements. Theoretically the main objective 

of wireless communication is not to lose any benefit to achieve another. However due 

to several limitations it may not be possible to do that practically. Hence designing 

of a system must be done in such a manner that the sacrifice in other parameters is 

least.

The fundamental phenomenon which makes wireless communication difficult is 

multipath fading [1]. To combat against multipath fading, numerous techniques have 

been developed. One of the most efficient ways to mitigate multipath fading is by 

using diversity technique. The key idea of diversity technique is to create several 

replica of the transmitting signal at the reception side. Proper combination of those 

replicas can reduce the effect of multipath fading and hence improve the reliability of 

the transmission. Of different types of diversity techniques, space diversity is to be 

considered for this thesis work. Alamouti’s [2] diversity technique was a significant 

work in the arena of diversity techniques. There were some assumptions in that work
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to make the whole system simple to analyse. For example it was assumed that channel 

will not vary in two consecutive time cycle and the channel condition is perfectly 

known at the receiver. In real case those situations might not be possible. There is 

less possibility that channel will remain fixed in exactly two consecutive time sequence. 

To determine the channel condition pilot symbols are normally inserted with original 

information. Pilot symbols can not always determine the channel condition perfectly. 

It can happen in two cases. First, when the pilot symbols are not received at the 

reception side perfectly. Secondly when the channel fades too quickly with time. 

Pilot symbols are normally inserted after a fixed time period. If the channel fades 

fast, it is not possible to determine the Channel State Information (CSI) perfectly. 

In this thesis, performance is evaluated when the channel condition changes in every 

time symbol. It is also considered that the pilot symbols might be erroneous and the 

channel might change fast. Those analysis are shown in Chapter 3. Theoretical as 

well as simulated results are presented to investigate such condition.

Although diversity techniques offer various advantages, it may not always be 

possible to deploy multiple antennas due to the hardware complexity, size and power of 

the terminal. In such scenarios, alternative measures should be taken to mitigate the 

effect of noise at the reception end. Co-operative communication is then attracted by 

the researchers to combat against those shortcomings. It is indeed a promising topic in 

the most recent years due to its extended coverage area, overall capacity and enhanced 

reliability [3]. Extensive researches are going on to utilize the benefits offered by this 

technology. Apart from those points mentioned, co-operative communication can also 

be considered as an effective means of communication where it may not be possible 

to transmit signal from transmitter to receiver due to the long distance or placement 

of terrain contours like hills, tall buildings etc. between transmitter and receiver. A 

relay node is placed between transmitter and receiver which retransmits the received
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signal from transmission end. Hence it can increase the coverage area of the whole 

system. In addition noise makes wireless reception vulnerable. Since an extra node 

is used between the transmitter and the receiver, that node processes and intensifies 

the signal strength which makes the transmitted signal to be less prone to system 

noise. These things are discussed elaborately at the beginning of Chapter 4. Then 

a new factor is considered for wireless communication for an industrial environment. 

Apart from traditional communication system there is one extra factor which has 

great impact on the overall performance and that is Impulse Noise. It is not possible 

to define impulsive nature of environment with conventional Additive White Gaussian 

Noise (AWGN) model. In an industrial environment there are numerous sources of 

impulse noise like in electro-mechanical devices, automobiles, ignition system, high 

power elements etc [4]. Those sources create spikes at the reception side of the system 

which can make it difficult to detect the required signal. Performances are analysed 

while varying the frequency of occurrence of the impulse noise in Chapter 4.

Another important and promising sector of wireless communication is analysed 

in the later part of Chapter 4 and it is co-operative communication with diversity 

technique. Co-operative communication system and diversity technique have their 

own several advantages. If they can be combined with each other, it would be possi

ble to reap the advantages of both techniques. It would also be possible to enhance 

transmission quality and optimize power allocation of the whole system [5]. Theoret

ically the performance of such system is discussed in details in Chapter 4. The upper 

limit and the lower limit of the system performance will be derived. Simultaneously, 

performance will also be evaluated by simulating the system implementing both tech

niques. Apart from Chapter 3 and Chapter 4, it is tried to give a basic technical 

idea on different topics aimed for this thesis in Chapter 2 while Chapter 5 will yield 

conclusion of the thesis.
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The contribution of this thesis can be described in three steps. At first, analysis 

of Alamouti’s Scheme while considering that pilot symbols are to be erroneous and 

channel changes fast in a non-isotropic environment. Later, system performance of a 

wireless system is analysed for an industrial environment where impulse noise becomes 

a significant factor. Then last but not the least, co-operative communication has been 

merged with diversity technique with theoretical analysis as well as simulation.
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Chapter 2 

Background

The objective of this chapter is to provide technical background on selected topics on 

wireless communication relevant to this research study. At first explanation will be 

given to some basic terms which are utilized in later chapters. Basic ideas will also 

be given for MIMO communication system including Alamouti’s Space Time Coding. 

Finally there will be discussion on a new area of communication system, namely, 

co-operative communication system.

2.1 Some definition(s)

In this section, definition will be given on some topics which will then be used through

out the whole work.

2.1.1 Cumulative Distribution Function

In probability theory, Cumulative Distribution Function (CDF) describes the proba

bility of a random variable X  to be found less than or equal to a specific value x. So 

CDF of a real-valued random variable can be defined as [6]

F(x) =  P(X < x ) (2.1)
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for every x from — oo to +oo.

The Cumulative Distribution Function, F(x)  has the following properties [7]:

1. F(x)  is a non-decreasing function. It means if x\ < X2, then F(x i)  <  F(x2). 

Hence F(x ) can increase or stay at the same level. However it can never decrease.

2. 0 <  F(x) <  1

3. lim Fix) =  F(00) =  1
X —Ï O C

4. lim F(x)  =  F(—00) =  0
X —¥ — 0 0

It will be shown later that if Cumulative Distribution Function is known, Probability

Density Function can be calculated and vice-versa.

2.1.2 Probability Density Function

Discrete random numbers have a finite number of values or countably infinite number 

of values. There also exists another group of random nuihbers which have infinite 

number of values or uncountable set of values. Those are called continuous random 

numbers. Therefore a random number is said to be continuous if there exists a 

function f (x)  where —00 <  x <  00 which has the property

P(X e  A) = (2 .2 )

The function f (x)  is called Probability Density Function (PDF) and can be 

defined as [7]:

/ ( * )
dF(x) 
d(x)

(2.3)
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The Probability Density Function (PDF) has following properties [8]:

1 . f (x)  >  0
oo

2. f  f{x)dx  =  1 
—oo

b
3. P(a < X  < b) =  f  f(x)dx There is relationship between PDF and CDF.

a

Depending upon the situation problems can be solved either by calculating CDF or 

PDF [9].

2.1.3 Q-function

Q-function or Q(x) is the probability of a standard normal random variable will have 

a value larger than x. It can be expressed as

x

Q(x) function has a property of [7]

Q( -x )  =  1 -  Q(x) (2.5)

In communication system, Q(x) plays an important role. It is basically used 

frequently to derive the error probability of a system.

2.1.4 Fading

Fading is one of the biggest challenges in wireless communication system. Unlike 

the wired channel which is easy to predict and model, wireless channel is too much 

difficult to estimate for its extreme randomness [10]. When a signal is propagating
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from transmitter to receiver, objects between them might absorb, reflect, diffract or 

scatter the signal. Due to these factors, the signal is transmitted to the receiver over 

different paths. Since the travelling paths are not of equal distance, the signals arrive 

at the receiver after different time delays. When receiver adds those signals together 

to retrieve the original signal, the amplitude and phase of the received signal gets 

changed. This phenomenon is called fading [11]. Due to fading the information sent 

from the transmitter to receiver gets changed and hence makes the situation difficult 

for the reception end to retrieve the original one.

sample

Figure 2.1: Typical Fading Diagram

Figure-2.1 shows a typical diagram of a fading channel. It shows how frequently 

the magnitude of the channel condition is varying.
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2.1.5 Diversity Technique

Diversity technique has been using for years to combat against the multi-path fading 

in wireless communication system. The basic idea of diversity technique is to send 

several copies of information signal over different time, frequency or space to the 

receiver. So there will be least probability that each replica will experience deep 

fading simultaneously [12]. The objective is that at least one of the replicas will be 

received correctly and hence the system will not be in outage. Diversity can also be 

defined quantitatively. If 7  represents received signal’s SNR and Pe be the probability 

of error, then the diversity or the diversity gain can be expressed as [12]

log (Pe)
log 7

(2.6)

There are several methods to achieve diversity in a wireless communication sys

tem. Those axe

1. Temporal or Time Diversity

2. Frequency Diversity

3. Space Diversity

2.1.5.1 Temporal or Time Diversity

In time diversity, the signal is transmitted several times at different time intervals. 

Certainly the separation of the time intervals has to be sufficiently large. It should be 

more than the coherence time of the channel [13] as shown in figure-2.2. Coherence 

time is the time duration over which the impulse response of the channel does not 

change. In such case, it can be assured that the interleaved symbol is independent
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f-----------------------4--------------------i ----------►
Separation larger than the coherence time

Figure 2.2: Time Diversity Scheme

of previous symbol and hence the diversity can be attained. However for quasi

static channel, the fading is too slow that the channel encountered remains the same 

regardless of how long it is waited to transmit replicas [14]. The channel remains the 

same which consequently means that no diversity can be achieved.

2.1.5.2 Frequency Diversity

Frequency diversity can be realized by transmitting different replicas of the informa

tion signal over different carrier frequency bands. To achieve the diversity, carrier 

frequencies should be separated by more than the coherence bandwidth of the chan

nel [12] as shown in figure-2.3. It should be mentioned here that coherence bandwidth 

implies the range of frequencies over which the channel remains flat. For example, if

M  /
Ï— ——  ■—  4   — ■ —4 — »

Separation larger than the coherence bandwidth

Figure 2.3: Frequency Diversity Scheme

the multipath spread of the channel is 200/is, it implies that a minimum of 5kHz fre

quency separation is required to achieve the diversity. One drawback of this strategy 

is that it requires more bandwidth for attaining diversity.
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2.1.5.3 Space Diversity

Space diversity is also called antenna diversity. Multiple antennas are used at trans

mitter or receiver end to achieve the diversity. Different replicas of the information 

signal will then be received separately by the receiver as illustrated in figure-2.4. If

Receiver

Figure 2.4: Spatial Diversity Scheme

the antennas are separated enough from each other, more than the half of the wave

length, then the received signal will experience different fading hence providing the 

diversity.

2.1.6 Impulse Noise

Impulse Noise is normally discussed in wireline communication system. Basically it is 

generated in the switching devices used in that type of communication system. How

ever recent studies has shown that it has effect on wireless communication system 

in industrial applications. In different kind of industries high voltage devices, auto

mobiles, fluorescent tubes, ignition from mechanical equipments etc. create impulse 

noise which have effect on the wireless communication system.

Impulse Noise is such a noise which creates some unwanted spikes after some 

intervals depending upon the severity of the noise condition. The simplistic way



Chapter 2: Background 12

to represent impulse noise is by Bernoulli-Gaussian model [15]. Bernoulli-Gaussian 

process is just simple multiplication of Bernoulli process and Gaussian process as 

follows

*k =  bk9k (2-7)

Here if- is the impulse noise, is Bernoulli’s process and is Gaussian process with 

zero mean. Bernoulli’s process is a sequence of ones and zeroes with probability p 

that bfr is one.

Figure 2.5: Impulse noise with p=0.2

Figure-2.5 shows a typical diagram of impulse noise when probability of occur

rence of 1 is 0.2 and figure-2.6 shows the impulse noise with probability of occurrence 

of 1 is 0.6.



Chapter 2: Background 13

Figure 2.6: Impulse noise with p=0.6

2.2 Alamouti’s Scheme

The demand in wireless communication system is simple as to have better perfor

mance, power and bandwidth efficiency and the capability to sustain in a diverse 

environment [2]. Diversity techniques are widely been used to effectively reduce the 

effect of multipath fading and to improve the reliability of transmission without sacri

ficing the bandwidth as well as the transmission power [16] [10]. Alamouti suggested a 

low complex linear combining scheme which is able to completely remove the effect of 

interference under the assumption of perfect channel estimation as well as quasi-static 

channel [17]. The key feature of Alamouti’s scheme is that it achieves full diversity 

gain using Maximum Likelihood decoding algorithm [18].

The modulation scheme that had been considered for Alamouti’s scheme is 

BPSK. After modulation the bits are coded and then transmitted through the trans

mit antennas. The coding and the transmission is done in such format that the data 

rate does not change from the conventional system. There are two schemes proposed



Chapter 2: Background 14

by Alamouti. Those are:

1. Tx =  2, Rx =1

2. Tx =  2, Rx =2

2.2.1 Alamouti’s Scheme with Tx=2, R x = l

Two transmit antennas and one receive antenna are used here which is shown the 

figure-2.7.

Tx 0

S0*
Tx 1

Figure 2.7: Alamouti’s Diversity Scheme with Tx=2, R x= l

At a given time cycle, two signals are transmitted simultaneously from two 

transmitters. At first time cycle, antenna zero will transmit sq and antenna one will 

transmit si- During second time cycle, —s* will be transmitted from antenna zero 

and Sq will be transmitted from antenna one. The sequence is shown in table-2.1.
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Table 2.1: Transmission Sequence of Alamouti’s Scheme (Tx=2, R x= l)

Symbol Time Antenna 1 Antenna 2
1 «0 «1
2 ______h ____ _

G*so_____

The channel co-efficient from first antenna is denoted by ho(t) and from second 

antenna is h\(t). It is assumed that channel co-efficient remains constant during two 

consecutive bit transmission time. It can be expressed as follows

h0(t) =  h0{t +  T ) =  h0

hi(t) =  h1(t +  T) =  h1 (2.8)

The received signal can be expressed as,

r0 =  r(t) =  Hqsq +  hisi +  n0

rl =  T  T) =  —hos* +  Ji iSq +  n>i (2-9)

Here tq and r\ are the received signal at time t and (t +  T) respectively and uq 

and ni are the corresponding received noise and interference.

The beauty of Alamouti’s scheme is the combining scheme. The received signal 

is combined in such a manner that received signal does not have any impact from 

another signal during two time cycles. The combining scheme is described as,

«0 =  ^orO +  hi r* 

h  =  h*r0 -  h0r* (2.10)
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Putting the values of r$ and r\ in the above equation will yield

sq — S()(/iQ +  /i^) "I- h^n0 +

§1 =  si(hQ +  hi) +  h*no -  hQn* (2 .11)

The derivations are elaborated in Appendix-A.l. These combined signals are 

then sent to the Maximum Likelihood detector which eventually determines the orig

inal bits.

2.2.2 Alamouti’s Scheme with Tx=2, R x=2

Figure-2.8 shows the combinations of two transmit antennas and two receive antennas.

-s;
S,
5 ;

n
n

Figure 2.8: Alamouti’s Diversity Scheme with Tx=2, R x = l
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Transmission sequence remains the same as the previous case. However, num

ber of channel will increase since number of receive antenna is increased. Table-2.2 

describes the channels between the transmit antennas and receive antennas while 

table-2.3 defines the received signal at different receive antennas.

Table 2.2: Transmission Sequence of Alamouti’s Scheme (Tx=2, Rx=2)

Rx Antenna 0 Rx Antenna 1
Tx Antenna 0 «0 «1
Tx Antenna 1 _e*________f l______ c*________________

Table 2.3: Received Signal Notation at the receivers (Tx=2, Rx=2)

Rx Antenna 0 Rx Antenna 1
Time t ro r2

Time t +  T n r3

The received signal can be represented as,

ro =  h0so +  h\si +  n0 

t\ =  -h os*  +  hiSQ +  n\

T2 =  h2SQ +  ^3S1 +  n2

3̂ =  ~h 2S* +  ĥ SQ +  n3 (2.12)

where uq , n\, n2 and n3 are the received noises and interferences.

The Combining scheme will be,

¿0 =  ^ o r O +  h l r l +  h2r 2 +  h3r 3 

h  =h*r0 -  h0rl +  h\r2 -  h2rl (2.13)
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Putting the values in the above two equation will yield (detailed derivation is 

at Appendix-A.2)

s q  =  so(^o hq +  h ^ , +  hj) +  h g T i0 +  h i n *  +  h ^ r i 2 +  3̂77.3

si =  si(h,Q +  hj +  +  ^3) +  h*n 0 — hon* +  ¡1̂ 712 — ^2̂ 13 (2.14)

Like the previous case, from these two received signals the Maximum Likelihood 

detector retrieves the original

2.2.3 Simulation and Result

The simulation is done for the typical BPSK system under uncorrelated Rayleigh 

fading condition using the simulation software Matlab. It is assumed that the total 

transmit power remains the same for every combination. It has also been assumed 

that the receivers have the perfect knowledge of the channel condition. The BER 

performance curves for different combinations are shown in figure-2.9.

Figure 2.9: Performance comparison among different schemes using Alamouti’s
Technique
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In the figure, curve with star pointer represents the performance curve when 

no diversity technique is used which means only single transmit antenna and single 

receive antenna is used. When two transmit antenna and one receive antenna are 

used, the curve with circle pointer is attained as BER performance. It shows that at 

least 10 dB performance improvement can be gained when Bit Error Rate is 10~3. 

The last curve is the performance curve when two transmit antennas and two receive 

antennas are used. It shows that it can further improve the performance compared to 

the scheme using two transmit antennas and one receive antennas. The performance 

gain is around 7 dB at 10-3  BER.

2.3 Co-operative Communication System

Co-operative communication has recently drawn tremendous attention to the research 

community. It is a new communication paradigm which generates independent paths 

between the user and the base station by introducing a xrelay channel [3]. In this 

section, the objective is to provide a basic idea on Co-operative Communication 

System in brief.

Depending upon the situation and requirements, different protocols are used 

in co-operative communication system namely Amplify and Forward, Decode and 

Forward also known as Physical Network Coding (PNC) etc. In Amplify and Forward 

scheme, the relay simply receives the information signal from the source and amplifies 

the signal and then retransmits to the destination node while in Decode and Forward 

scheme, the relay node decodes the signal partially or fully and then retransmits it 

to the destination node.

Let us consider three node linear wireless network shown in figure-2.10. Here 

node-1 and node-3 exchange information with each other while node-2 is the relay
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node.

Figure 2.10: A three node wireless network

There are several methods for the information to be transmitted from the source 

to the destination based on the number of time slots. A traditional transmission 

schedule is given in figure-2 .1 1 .

Figure 2.11: Traditional Scheduling Scheme

Let us assume that node-1 transmits information, Si to relay node in first time 

slot. During the second time slot, the relay node (node-2) relays that signal (Si) 

to node-3. Node-3 then transmits its information, S3 in third time slot to the relay 

node. In fourth time slot, relay node retransmits the information S3 to node-1. In 

total it requires total four time slots to completely transmit information between two 

nodes.

Network Coding has then improved the scenario. Basically it was developed 

for the wireline communication system, and then it was used in wireless network to 

reduce the number of time slot for co-operative communication system. The idea is 

shown in figure-2 .12 .

At first time slot, node-1 transmits Si to relay node and then in the next time 

slot node-3 also sends S3 to relay node. Once the relay receives Si and S3, the relay
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Figure 2.12: Network Coding Scheme 

node encodes the signals as

S2 =  S1 © S3 (2.15)

where ® denotes the bitwise XOR operation. Relay node then transmits the XORed 

signal to both source direction in the third time slot. When node-1 receives S2, it 

extracts S3 from S2 using its own information S\ as follows

Si ® S2 =  Si © (Si ® S3) =  S3 (2.16)

In a similar manner node-3 will also extract the information sent from node-1. The 

only price it is required to pay is to store the information in the relay node.

Physical Network Coding can even reduce the required time slot into two. The 

scheme is represented in the figure-2.13.

Figure 2.13: Physical Network Coding Scheme

As shown in the figure, at first time slot, both sources send information to the 

relay node simultaneously. The relay node receives the signals and then does XOR
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operation. In the very next time slot, the relay node will transmit the XORed signal 

to both directions. After receiving the XORed signal, the source node retrieves the 

signal sent from the peer node by executing XOR operation with its own signal and 

the received signal from the relay node.

Our objective is now to elaborate the idea about Physical Network Coding. Let 

us assume that two sources S\ and S2 are to exchange information between them 

while R is the relay node as shown in figure-2.14. It is considered that the channel

gain does not change in two consecutive time slots. During first time slot, the received 

signal at relay node is given by

yr =  y/E\h\S\ +  y/È2Ìi2S2 +  n (2-17)

where,

E\ =  Transmission energy of node-1 

E2 =  Transmission energy of node-2 

h\ — channel gain between node-1 and relay 

h2 =  channel gain between node-2 and relay

5 1  =  bpsk 0,1 G 1 ,- 1  modulated information of node-1

52 =  bpsk 0,1 G 1 ,-1  modulated information of node-2 

n — Additive White Gaussian Noise
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For simplicity it is assumed that |/ii| >  \fi2\ [19] such that the signal constella

tion becomes similar as the figure-2.15.

-  7 y
( S , , s 2 ) (-1,-1) (-1.1) (1,-1) (1,1)

A B C D

sr (i) (-1) (-1) (i)

A = l v V ^  + \h2 \y[Ë^ C = — 1 A, IVË7+ 1 h 2 -\[Ë~2

\h2 \ J F 2 D  = -  1 h t 1 7 ^ 7 - - \ h 2 i V ^ 7
1 h, l>l h i 1

Figure 2.15: Signal Mapping at Relay Node

As shown in the figure, 7  indicates the decision boundary to map Sr which is 

the XORed version of the signals sent from the sources. When the received signal 

yr falls within the boundary [—7 , 7 ], then Sr will be —1 and when yr falls outside of 

that boundary, then Sr will be 1 . In other words, when [5i, will equal to [1 ,-1 ]
vs.

or [—1,1], Sr will be —1 and when [S'!, S'2] will equal to [1 , 1 ] or [ - 1 , - 1 ], Sr will be 

1 . Once this decision is made, Sr is sent in both directions. So received signal at the 

source nodes will be

Vii — y/Ê rhiSr + n,- (2.18)

where ¿ = 1 , 2  and Er is the relay transmission energy.

When the source node i will receive it will detect the signal sent from the 

relay node. Then it would do XOR operation with its own signal and detect the 

signal sent from the peer node.

Performance is evaluated by simulation according to the process described pre

viously. Figure-2.16 shows the performance curves for co-operative communication
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Figure 2.16: Performance of Physical Network Coding

system. Two curves are shown in the figure. One represents the end to end per

formance while the other one represents performance curve for source to relay node 

transmission performance.

2.4 Conclusion

In this chapter, basic ideas on the major topics related to the main research topic 

were discussed. Based on the topics covered in this chapter, the next chapters will 

explain more on those topics.
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Chapter 3

Performance of MIMO system with Noisy

Channel Estimation

The technology utilizing multiple antennas and space time block code has been devel

oped to improvise the spectral efficiency of the wireless communication system [20]. 

Using multiple antennas wireless communication system eventually increases the re

liability and the data rate of the system [21]. That is why it has created a lot of 

attention among the research community as well as industrial community over the 

last decade [14]. A simple diversity scheme proposed by Almaouti [2] had raised sig

nificant interest due to its simplicity and low complexity in design. In [2], the system 

is designed in such a manner that, under perfect CSI and quasi-static fading condi

tion, it can eradicate interference completely and yield same performance as more 

complex Maximum Likelihood-Space Time Decoder (ML-STD) [2,22], However this 

scenario may not always be compared with the real system. While the channel is not 

quasi-static, the interference is not totally removed by this system even the CSI is 

perfect causing degradation in performance [23].

Another important factor which can degrade the performance of this scheme is 

imperfect estimation of the channel that basically occurs due to imperfect reception 

of pilot symbols. Under such condition, ML symbol detector with an interference 

suppression scheme or ML space time decoder can be used to mitigate this effect [17]. 

The situation can be even worse once the channel changes very rapidly. When channel
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fades very rapidly at high Doppler frequency, channel estimation from the pilot symbol 

is no more reliable which degrades the system performance. It is desirable to evaluate 

the performance of Space Time Transmit Diversity (STTD) system considering the 

relationship between the Doppler frequency and channel estimation error and their 

impacts on the interference in the system.

In this chapter, a generalized model of the existing system has been shown and 

analytical performance of conventional Alamouti Space Time Code has been provided 

while considering imperfect CSI as well as time varying channels.

3.1 Some Definitions

Throughout the chapter, the following notation will be used. The upper-case bold 

letter denotes a matrix while a lower-case bold letter denotes a column vector. The 

element of mth row and nth column of a matrix X  is represented by X (m , n). The 

superscripts T,H and * imply the matrix transpose, thè matrix hermitian and the 

complex conjugate respectively. The determinant of a matrix X  is defined as |X| 

while the square zero matrix and the square identity matrix of size n is denoted by 

0n, In respectively.

3.1.1 Characteristic Function of a Gaussian Variable

Let x is a zero-mean complex Gaussian random vector of length m and Q is a square 

matrix of order m and X  be the covariance matrix of x, then the characteristic 

function of z =  xHQx can be given by [24]

* z ( s )  =  |Im -  2 s £ Q r 1 (3.1)
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3.1.2 Residue Theorem

Probability of z being less than zero can be found by Mellin’s inversion formula and 

the residue theorem

e-boo riq

P r[r<  0 ]=  [  =  - N R e s  at «J 2ns f—'  5
e—oo l ~ * ‘

(3.2)

Here nq denotes the number of negative poles of $ z(s)/s ; qi denotes ith negative 

pole of <&z(s)/s. Residue can be calculated by [25]

Res \f(s) at a] =  lim —------- -r-r-
u w  J s—ta (m -  1 ) !

where p(s) =  (s — a)mf ( s ) and pm(s) represents mth derivative of p(s).

(3-3)

3.1.3 Gauss-Chebyshev approximation

When the poles are closer or there are poles with higher order, it may not be practical 

to determine error probability by residue theorem. In such case, the probability that 

z is less than zero can be calculated from the Gauss-Cheby she v approximation [26],

- m
Pr(z < 0) »  ^ ^ ( ^ z ( e  +  j£Tk)} +  Tm$[$z(e +  jerk)]) (3.4)

m fc=i

where 5i[x] and S[x] represent the real and the imaginary parts of x respectively. 

Tf. =  tan((2k — 1)tt/4m), e lines between the left half-plane poles and the imaginary 

axis and normally the value of m between 16 and 32 is sufficient [26].
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3.2 System Model

For the analysis of our study, it has been considered that the system is BPSK DS- 

CDMA system with two antenna at the transmission end while one antenna at the 

reception side. Elaborated discussion on Transmitter, Channel, Receiver is given in 

this section.

3.2.1 Transmitter

As specified earlier there are two transmit antennas at base station and those are 

placed with sufficient space so that the information sent from the transmitters are 

uncorrelated. Information bits are encoded by the Alamouti’s Space Time Encoder [2] 

and then transmitted. Complex conjugate of the signals used in Alamouti’s STBC 

can be ignored as BPSK system is of the interest. Both transmit antennas use the 

same orthogonal code for transmitting data sequence. Unlike the data sequence, 

while transmitting pilot sequence, each transmit antenna sends distinct codes since 

each antenna has to estimate the channel condition separately. For simplicity of the

( TS~I )

Figure 3.1: System Model for MIMO system with pilot symbol during first time slot
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Figure 3.2: System Model for MIMO system with pilot symbol during second time
slot

analysis, it is assumed that both data channels and pilot channels have the same 

spreading gain which implies that both will have same time period r. The system is 

represented in figure-3.1 and 3.2.

The transmitted sequence of modified Alamouti’s .space time code [17] is given 

in Table-3.1

Table 3.1: Modified Alamouti Space Time Code

Symbol Time Antenna 1 Antenna 2
1 si ~ s2
2 S2 _____£l_____

Here Sf. denotes the data bit during the time index of A;. Es represents energy 

per transmitted data symbols. Equivalently energy per symbol for each antenna will 

be Es/2  for data symbol and 1 /2  for pilot symbol.
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3.2.2 Channel

It is assumed that the channels are time-varying Rayleigh fading channels. Fading 

coefficients are assumed to be zero-mean circularly symmetric complex Gaussian 

random variables. The fading coefficient of the channel between the first transmit 

antenna and the receiver is denoted by aj, and between the second transmit antenna 

and the receiver is represented by fa where the subscript k represents time index. It 

is assumed that and fa are uncorrelated with identical autocorrelation a^R(m) 

where R(0) is normalized to unity. Although time varying channels are assumed, in 

this study, it is considered that channel fades in such a manner that channel does not 

change during the symbol period.

3.2.3 Receiver

Received signal experiences the effect of noise at the reception side. Noise in the data 

channel and the pilot channel from transmit antenna A and transmit antenna B are 

represented by ns^, and All are complex white Gaussian variables with

variances <7 ,̂ a* and respectively. The baseband representation of the received 

signals assuming that the channels are flat-fading can be expressed as

rs,l /  Es ai - fa Sl
+

ns,l
rs = =  \ h r$

. rs>2 .
V 2 *<M 

___
1 a 2 s2 n*s,2

—= a 7* +  ni, a —> r
V 2 v, pa

,1 i l
p}i—M p,i p,i+M (3.5)

^ 2 ai +  npf r2
p,i—M ‘ ' pj * * ’ pf+M
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Here the subscript i, p and s indicate the time index, the pilot channel and the data 

channel respectively while the superscripts 1 and 2 indicate the quantity belonging 

to the first antenna and second antenna.

At the reception side, the channel can be estimated by (2 M +  l)-tap FIR filters. 

The output of the FIR filter can be expressed as

di =  h ^ r ^ ,  fy =  (3.6)

where cq and fti represents the estimated channel from first and second antenna 

respectively and h =  [hjyf ■ • • ho • • • indicates the pilot filter co-efficients.

3.3 Linear Combining Scheme

Linear Combining Space-Time Decoder (LC-STD) suggested by Alamouti [2] is the 

simplest among all due to its low complexity [13]. This section will demonstrate the 

derivation of the error probability of Alamouti’s scheme where LC-STD is considered.

The linear combining scheme which is suggested by Alamouti [2] can be ex

pressed in the vector form as

Zl Oi\ P2 /E8 ^ Sl n s,l

z2 - P I  &2
r*.i = V t g

s 2

+
n s, 2

Here z\ and ẑ  are the output of the linear combiner corresponding to the first 

and second data symbols. In addition, nS)i =  d*nSji+ P 2ns,2i ns,2 =  Pins,l+&2ns 2
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a i& ì+ f i f o  c t ì fa -P ià l  

f i à 2 - a i $ Ì  p J ì  +  a2&Ì
(3.8)

In the case of perfect CSI and quasi static channels with ot\ =  a2 and [3\ =  fl2 

, the linear combining scheme can eradicate the interference completely [17]. Hence 

G  becomes to

G p e rfe c t —
+ IAI2 o
0 |ai|2 +  |ft|2

(3.9)

Without loss of generality, it can be assumed that si =  s2 =  1- Since the 

bit error probability of the first symbol and the bit error probability of the second 

symbol are the same, only one symbol can be taken into account to derive the error 

probability. Let us assume the case for first symbol. Prom (3.7), the output of the 

linear combiner corresponding to the first symbol is

2 1 =  +  ftr* 2 (3.10)

In quadratic form, the real part of z\ can be written as Re[z{[ x ^ Q x  [17]

where

x  = s,2 «1

and

I2

02

(3.11)

(3.12)
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Using the ML symbol detector, error would occur when Re[z{\ or x ^ Q x  is less 

than zero. The bit error probability Pb can be expressed as

Pb = Pr [xf f Q x < 0] (3.13)

The characteristic function of 9?[zi] can be determined from Section-3.1.1. Here 

it is required to know the covariance matrix of x  . After some calculation, the 

covariance matrix £  was found as

£  =
A  C 

C H B

where

(3.14)

A  =  Esv l ( l  + 7 „  ^)I2

B =  hH +  7p_ 1 l2M +l) h I2 (3.15)

—w ^ h

w ? h _

Here j p =  represents the average pilot Signal to Noise Ratio (SNR) or

pilot Ep/Nq and =  Eso\l<j\ denotes the average data SNR or data E^/Nq. D e 

is a square matrix of order 2M  +  1 with D e(i, ji) =  R((e +  i — j)r )  and w e is the 

(M  +  l )^1 column of D e. After knowing £ ,  Pb can be calculated by using residue 

theorem described in Section-3.1.2 or by Gauss-Chebyshev approximation described 

in Section-3.1.3.

C \fEsi w? h
w ^ ih
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For the simplicity of the analysis for calculating bit error probability, (2M  + 1)- 

tap Wiener filter as a pilot filter is considered throughout the study. While using the 

Wiener filter, the filter co-efficient becomes

(3.16)

Putting the value of h in (3.15) and then replacing the values of A, B and C 

in( 3.14) will yield

E . a + v 1) * !

£Q £ \

-£ l  £0

£0

£\ £0

£f h

where

(3.17)

£0 = ( ^ -  +  7p % M + i)  1 w0 (3.18)

£1 =  wf  ( ^  +  7pll2M+l)“ 1 w0 (3-19)

After some calculations, the eigenvalues of 2S Q  can be found as

h  =  <7?eo(l +  T  *) (3.20)

A2 =  cr?£o(l -  T “ 1) (3.21)

both are of order two and

t _ ^ 4( i +  7 r 1) ^
£0

(3.22)



Chapter 3: Performance of M IM O  system with Noisy Channel Estimation 35

The eigen values are necessary to calculate the poles of the characteristic func

tion. From the equation (3.20), (3.21) and (3.22), it can be shown that the poles of 

the characteristic function are at 0, 1/Ai and I/A2. From the inspection it can be 

stated that I /A 2 is in LHP and 1/Aj is in RHP. Hence from the residue theorem P̂  

is equal to residue of $ ( s ) / s  with negative sign at 1 / A2-

It can be shown that the residue is invariant to the scaling of the poles (see 

the appendix for the proof). Using this the compact form of the bit error probability 

with scaling factor ct2£q can be calculated as

„  d i  ( s - 4 ? ) 2
s ( l  _  “ L ) 2 ( l  _  _“ 2 .)2

°ce0' CTc£0

(3.23)

After some calculation the expression for the bit error probability becomes

P,, =  i ( 2  +  T ) ( l - T )2 (3.24)

This result can be compared with perfect CSI result by setting —> 00. This

would result the value for cq, £\ as 2, 2R(t) respectively and

T  =  (2 +  2/% -  R2{t) ) - 1/ 2 (3.25)

Two types of channel can be considered to get the bit error probability. One 

is when R(r) =  0 which implies very fast fading or R(r) =  1 which basically means 

that static channel is under consideration with perfect knowledge of the channel in 

both cases. Therefore, from equation (3.25) and (3.24), it can be written

1
4

2 + 7s 1 7s
2

R(t) — 0 -> Pf,
27s +  2 27s +  2

(3.26)
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R(r) =  l ^ P b  =  -\ 2  + 7s
7s +  2

1 - 7s
7s +  2

(3.27)

The result obtained from equation (3.27) matches with the result derived in [22] 

and [27]

Bit error probability of sq and S'2 are equal, however, they are not independent. 

The upper bound of the block error probability of Alamouti code is

Palamouti — 2-Pfc (3.28)

It is assumed that fading correlation function is the zeroth-order Bessel function 

of the first kind Jo(27t/£ )t ) which is basically derived from Jakes’ PSD [1]. It is for 

simplistic analysis when it is considered that the wireless environment is have isotropic 

scattering which basically implies that signals are coming to the receiver from all 

direction. However in real scenario the signals may come to the receiver from a fixed 

direction which is named as directional scattering. While considering directional 

scattering some other parameters are considered for the correlation function. The 

correlation function becomes [28]

R(t) =  k  k2 ~ ^ 2fj)T2 +  jTttk cos(fi)fDT  ̂/Iq{k) (3.29)

where / ( . )  is the zeroth-order modified Bessel function, /i represents the mean 

direction of Angle of Arrival (AOA) and k >  0 controls the width of AOA [29]. When 

it is considered that isotropic scattering, the value of k is equal to 0 while for extreme 

non-isotropic scattering the value of k is oo.
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3.4 Simulation and Results

Simulations have been done according to the expression obtained from the previous 

sections to illustrate the effect of the Doppler spread and the channel estimation error 

on the performance of the Space Time Code. At first it is considered for isotropic 

scattering which is shown in figure-3.3 which represents the performance curves for 

the linear combining scheme.

Figure 3.3: Effect of Doppler Spread on Alamouti’s Space Time Code in Isotropic
Environment

Pilot SNR is varied and the error probability is measured to determine the 

performance of the system. The simulation results are represented with the bounds 

for fjjT =  0.0005, 0.03 and 0.05 which are presented by green, red and blue lines, 

respectively. Certainly when the data SNR is more, the performance is better. That 

is why the performance curves under data SNR =  30dB is better than that of data
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SNR =  10dB. When the channel is about to be quasi-static (value of is less), 

the system performs better. As the channel becomes more dynamic, the system 

performance degrades. At high pilot SNR, the error probability value becomes almost 

constant since beyond a certain point pilot SNR does not play any role to improve 

the performance.

Till now the performance has been shown for isotropic scattering environment. 

Performance curves for non-isotropic environment are shown in figure-3.4, 3.5 and 

3.6. In those curves it is tried to investigate how the performance varies when doppler 

spread or angle of arrival or width of angle of arrival is changed. For all cases, pilot 

SNR is fixed at 30dB and data SNR is varied to analyse the performance of the 

system.

Figure 3.4: Effect of Doppler Spread on Alamouti’s Space Time Code in
Non-isotropic Environment

Figure-3.4 shows the performance graphs while varying the Doppler spread. In 

this case the value of k is fixed at 100 and the value of /i is taken 30. Different
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values of Doppler spread gave different result. As the Doppler Spread is increasing 

the system performance is getting worse. When the Doppler Spread is increasing, it 

means that the signal is experiencing more fading. And when it experiences more 

fading, certainly the performance will deteriorate.

Figure 3.5: Effect of k on Alamouti’s Space Time Code in Non-isotropic
Environment

Figure-3.5 represents the system performance when the width of angle of arrival 

is varied. To investigate such scenario the value of f j jr  is taken to be 0.05 and the 

value of /x is considered 30. It is seen from the figure that as the value of k is increasing 

the overall system performance is improving. Since the width of angle of arrival is 

increasing, the performance is getting better.

Performance of a system while varying the angle of arrival is demonstrated in 

figure-3.6. For this case k is fixed at 30 while the value of fp r  is taken 0.05. Results 

show that as the angle of arrival is reducing, the performance of the system is improv

ing. When the angle of arrival is large, the receiver will receive transmitted signal
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Figure 3.6: Effect of p, on Alamouti’s Space Time Code in Non-isotropic
Environment

from a bigger angle and hence receive required information signal as well as more 

unwanted signals simultaneously. Due to this factor, system performance degrades 

with the increment of angle of arrival.

3.5 Conclusion

In this chapter, it was investigated how the wireless system performs with Alamouti’s 

scheme by deriving the bit error probability theoretically. The channel was considered 

as time varying Rayleigh faded channel. In Alamouti’s scheme, it was considered that 

channel state does not change in consecutive two time slots which may not be practical 

in all scenarios. To analyze the overall system performance comparable to the real 

situation, it was assumed that the channels are not quasi-static since the channel 

condition can change at any instant of time. Another thing which is also different
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from traditional analysis is about the pilot signals. It is considered that pilot signals 

might be erroneous which is sometimes ignored in some studies. The effect of channel 

estimation error and the channel condition on the system performance are evaluated. 

System performance is basically analyzed for isotropic scattering environment. Later 

system performance was evaluated for more realistic case, non-isotropic scattering, 

where some other parameters like Doppler frequency, angle of arrival, width of angle 

of arrival etc. are considered. It has been observed that those parameters play good 

role in the overall system performance.
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Chapter 4

Effect of Impulse Noise in Co-operative

Diversity System

In wireless communication systems, signal fading arising from multipath propagation 

is one of the major performance-limiting factors. Fading severely degrades the link 

performance and hence to maintain an acceptable level of performance, powerful 

countermeasures such as diversity techniques should be employed. Spatial diversity 

which basically involves with multiple transmit or receive antennas is commonly used 

to improve the link reliability, throughput in wireless systems. In many applications 

where spacing does limit the deployment of multiple antennas at transmission or 

reception end, cooperative diversity can be considered an effective fading-mitigation 

technique. [30-33].

Co-operative diversity has shown its ability to improvise system performance 

in terms of transmission reliability, system capacity, coverage area extension etc. As 

such it has attracted considerable attraction in recent years [34]. The idea of co

operative communication was first proposed in Van der Meulen’s work [35]. Since 

then numerous researches were done to utilize the maximum benefits from this tech

nique. In co-operative relay network two sources exchange their information with 

help of at least one node, which is called relay [36]. There are several schemes used in 

co-operative relay network namely Amplify and Forward (AF) [37], Denoise and For

ward (DF) [38] which is also known as Physical Network Coding (PNC) [39], Analog
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Network Coding (ANC) [40] etc. Depending upon the requirements of the network 

system, different scheme can be used.

An important noticeable matter about co-operative diversity is that co-operative 

diversity is studied only in a such condition where Additive White Gaussian Noise 

(AWGN) is considered. However the real scenario might be different depending upon 

the environment condition. Practically AWGN represents the thermal noise at the 

receiver while it does not consider the impulsive nature of the environment which can 

even degrade the system performance drastically. In many industrial applications as 

well as some radio scenarios, the system is characterized by a noise which exhibits 

the impulsive nature of the environment. It is not possible to describe this by AWGN 

model. This phenomena is referred to as impulse noise and it can be described by ei

ther Class-A model [41] or Bernoulli-Gaussian model [15]. Our concern with impulse 

noise will mainly be encompassing Bernoulli-Gaussian model.

A new era is going to be started where diversity is blended with the co-operative 

system. It can reap the benefit from both diversity technique as well as co-operative 

relay system. It is well known that protocols with Multiple Access (MAC) and the 

broadcast (BC) phases in a bi-directional relay system can attain a higher spectral 

efficiency than the conventional protocols which use basically three or four phases [42], 

A physical layer network coding (PNC) is used in [39], [43] to exchange information 

efficiently in a situation where the relay node detects and then forwards the XOR-like 

version of a pair of transmitted symbols. Ju et al. had derived upper and lower 

bounds on symbol error probability for the system with single antenna system in 

each node [36]. Authors described a model in [44] considering multiple antenna set 

at the relay end. In this thesis, multiple antennas will be under consideration at the 

transmission and reception end in a co-operative system.
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4.1 Co-operative system in Impulsive Noise 

environment

In this section, co-operative system will be discussed in an impulsive noise environ

ment. Physical-layer Network Coding (PNC) is to be considered for this analysis.

4.1.1 System Model

Let us consider a bidirectional relay network consisting of two sources and a relay. 

Each node has a single antenna and it operates in half duplex mode. Si, S2 and 

R are used to denote source-I, source-II and the relay respectively as shown in the 

figure-4.1

S 1
g

h
R

g

Figure 4.1: System Model for Co-operative Communication System

Let mi denotes binary information from the source S{. The BPSK modulated 

signal of Sj will then be X{ =  1 — 2raj where mj € { 0,1 }  and 6 { 1 ,-1 }  for i =  [1 , 2]. 

Let us denote the complex channel coefficient between Sj and R by hi during first time 

slot and gi during the second time slot. Channels can be modeled as hi ~  CJ\f(0, cr2) 

for i =  1 , 2 where h ~  CJ\f(m,ui) indicates h is circularly symmetric complex-valued 

Gaussian random variable with mean m and variance u>. For simplicity it can be 

assumed that channel coefficients are constant in two consecutive time slots. It means 

that hi =  <?j. It is assumed that the phase of the transmitted signals from S\ and S2 

are synchronized at the relay node.
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During first time slot, both Si and S2 transmit their information x\ and 

respectively to relay node R. The signal received by the relay node can be shown by

=  y/ËïhlXl +  \fE2h2x2 +  w + (4.1)

where is the transmission power at Sj, w is the additive white Gaussian Noise 

(AWGN) and i is impulse noise which can be defined as Bernoulli-Gaussian Model [15]. 

It implies that impulse noise is the product of real Bernoulli process and a complex 

Gaussian process as following:

% = bg (4.2)

where b is the Bernoulli process which is basically a random series of 0’s and l ’s with 

a probability of p occurring l ’s. g is the complex White Gaussian Noise with mean 

zero. In this system, it is assumed |fii| >  I/12I [19] so that the received signal r at 

relay becomes the same as the figure-4.2.

- r  r
(Slts 2) (-1,-1) (-1,1) (1,-1) (1,1)

A B
■
C D

z (1) (-1) (-1) (1)

Figure 4.2: Constellation of Received Signal at Relay Node

From figure-4.2, 7  defines the decision boundary to map z which is the infor

mation the relay transmits to both Si and S2 during second time slot. When [27 , £2] 

is equal to [—1 , 1 ] or [1 , - 1 ], it will fall into the decision region [-7 , 7 ] and hence the
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relay would transmit —1 towards both sources. Again when [xi,X2] is equal to [1,1] 

or [ - 1 , - 1 ], it will fall into the decision region outside of [-7 , 7 ] and the relay would 

transmit 1 towards both sources.

Once the mapping is done at the relay node, the relay forwards the XORed 

symbol 2 towards the sources over the BC. The signal received by Si is given by

Vi = \ f % h {z  +  rii +  Wi (4.3)

where Er means transmission power at relay, rii means AWGN at 5) and wi 

means IN at After receiving XORed signal from the relay node, source nodes 

Si and ¿>2 decode the received signal and detect the signal sent from peer node by 

executing XOR operation with the detected signal from relay node and its own signal.

4.1.2 Simulation and Result

In this section performance evaluation will be shown for co-operative relay communi

cation system under Rayleigh fading condition with AWGN as well as IN environment. 

It will be shown in two steps. At first Signal to Noise Ratio (SNR) will be varied 

and corresponding Error Rate will be observed to analyze the system performance. 

In that case a fixed amount of Impulse Noise will be in effect for each value of SNR. 

Secondly Signal to Impulse noise Ratio (SIR) will be varied and similarly correspond

ing Error Rate will be observed to study the overall performance. In this case SNR 

will be fixed to a certain value.
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4.1.2.1 Varying SNR

In this step error rate is measured while varying the value of SNR. The value of SIR 

is kept constant. Later the value of SIR is changed to another value to visualize how 

the performance changes. For a single value of SIR, different curves are considered 

by changing the value of p.

Figure 4.3: Effect of varying SNR in a co-operative communication system while
SIR =  5dB

Figure-4.3, figure-4.4 and figure-4.5 represent the performance graphs of co

operative relay system in impulsive noise environment considering the value of SIR 

as 5dB, lOdB and 15dB respectively. For each case, when the value of p is increasing, 

the performance deteriorates. Basically p is the probability of adding impulse noise 

with the system. In other words p implies how frequently impulse noise is adding to 

the received signal. For example, when the value of p is equal to 1, it means that
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Figure 4.4: Effect of varying SNR in a co-operative communication system while
SIR =  lOdB

Figure 4.5: Effect of varying SNR in a co-operative communication system while
SIR =  15dB
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Impulse Noise is considered for each bit of the information stream. When p is equal 

to zero, it indicates that there is no impulse noise is added with the received signal.

As expected when the value of p is increasing from 0 to 1 , the performance 

gradually deteriorates. Similarly when the value of SIR is increased, the performance 

improves since the signal strength is increasing or, in other words, impulse noise power 

is decreasing. It is also observed that while p has a value greater than 0 the graph 

saturates after a certain value. It is happening due to the fact that although the value 

of SNR is increasing which indicates less effect of noise, there is still a certain amount 

of impulse noise adding to the received signal. Since the increment of SNR does not 

have any hold on that, the performance curves saturate after a certain SNR value.

4.1.2.2 Varying SIR

Performance of the co-operative communication system is studied in this section while 

varying the value of SIR and putting the SNR into a fixed value. The value of SNR is 

then changed to another value to compare the system performance. For each scenario, 

the value of p is changed from 0 to 1 to analyze the impact of impulse noise to the 

system.

Three different scenarios are considered to investigate the overall system per

formance while varying SIR. Scenarios are selected for different values of SNR which 

are for 5dB, lOdB and 15dB shown in figure-4.6, figure-4.7 and figure-4.8 respectively.

For each case the value of p is varied from 0 to 1 which, in fact, describes the 

effect of impulse noise to the system. From the figures, it is clear that as the value 

of p is increasing, the performance of the system is getting worse. One interesting
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Figure 4.6: Effect of varying SIR in a co-operative communication system while
SNR =  5dB

Figure 4.7: Effect of varying SIR in a co-operative communication system while
SNR =  lOdB
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Figure 4.8: Effect of varying SIR in a co-operative communication system while
SNR =  15dB

fact can be observed from here that whenever the value of p is equal to zero, the 

performance curve is just parallel to X-axis. When the value of p is zero, it implies 

that there is no impulse noise adding to the system. So in such case, there is no 

impact of increasing the value of SIR and the system will only experience a fixed 

value of AWGN which makes the curve parallel to the X-axis. Saturation effect is 

similar to the effect described for varying SNR.

4.2 Bi-directional Co-operative System with 

Diversity Technique

In this section the objective is to analyze the system performance for bi-directional 

relay system using multiple antennas at the source nodes while single antenna at the 

relay node. For simplistic analysis, it is considered that there are two antennas at
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each of the source nodes. Alamouti’s space time code [2] is used at the source nodes 

to achieve transmit diversity.

4.2.1 System Model

Throughout the bi-directional co-operative communication system, Binary Phase 

Shift Keying (BPSK) modulation scheme is considered. The system model is shown 

in the figure-4.9 where S\ and denote two source nodes and R denotes the relay 

node.

Figure 4.9: System Model of Bi-directional Co-operative Communication System

It is assumed that the channel state condition does not change during two 

consecutive time slots in both MAC and BC phases. Let us consider z, j  and k 

denote the indices of antennas, time slots and source nodes respectively. As mentioned 

earlier, Alamouti’s space time coding is used at the source node. During MAC phase, 

information sent by S\ and S2 node are U  and V  as follows
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u  =
Ui *

~ u 2 (4.4)
U2

*
ul j

V  =

1-------
*CN1

(4.5)
V2 *

V1

The received signal at relay node is

Tr = f hTV + M * T V  +  wT (4.6)

where hi. = hk, 1 hk, 2 , k =  1, 2 is the channel condition of kth. channel, Ef- 

is transmit power at Sj~ and w ~  0 ,0̂ - 2) is AWGN at relay Node R. Let us

assume that XORed-like version of (u{, Wj), i =  1,2 be

Zi =  f{ui,Vi) =  l  1 {{i(ui) +£{vi)) (mod M)) (4.7)

where i(x) £ {  0 , 1 , M — 1 }  is the label index of x where M  is constellation 

size. Let us assume that the channel state information (CSI) is perfectly known at 

the relay node. Hence z\ can be detected as

=  arg max 
zeM E exp(—T(U , V )) (4.8)

(U ,V):/(W )=z

where T ( U , V )  = 71 uThf U 72 UThi V and 7  ̂ =  E^/a^ is the
or V 2 A V 2

signal to noise ratio at relay node from k source node to relay. Since it is considered

that fading channels are totally independent of each other, there is zero probability
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that channels will have any relationships with each other. Hence the solution for 

equation-4.8 should be uniquely decided.

In time slot j  of the Broadcast phase, receives:

y k,j y/Em&kZj d- ’ 3 ^ (4.9)

where Er is the transmit power at relay node R, g£ =  m. ■, a,, n is the chan

nel state condition of the channel from relay node to k node and j  ~  CJ\f(0, cr^I2) 

is Gaussian Noise at S .̂ Now detects zj as

zk,j =  arg mm 
,J zeM

YktJ -  \/~fk+2Skz (4.10)

where 'fk+2 =  Er !°\  the SNR at the node k. Each source node then finally

detects the information sent by the peer source node as

Vi =  t  ~ ^ K ) )  (mod M ))

«i =  ^~1 ( ( ^ 2j )  -  ¿(vi)) (mod M)) (4.11)

where i =  j  € ^ 1 ,2

4.2.2 Error Probability Analysis

In our system model, g*. can be assumed independent or identical to h^. Basically 

it depends upon the channels between and R. For simplicity let us assume that

9k — hfc, k =  1, 2. It is also assumed that k =  1 ,2 ;* =  1,2 are independent and

hk,i ~  CM(0,1) which actually indicates that they are Rayleigh Fading Channels.
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Let Pmac denotes the Symbol Error Probability (SEP) in MAC phase and can 

be expressed by (for hi and h )̂

Pmac= i [ P r p l  ?«/(u i,t>l)l(U ,V ),h1,h2} +

Pr{«2 #  /(«2, «2)I(U, V), hj, h2}] (4.12)

Let us assume that Pbc,k denotes the SEP during BC phase at S (for hj~)

1 2
Pbc,k ~  o J2 PTi*kJ ^ Zj\*Vhk} (4-13)

3=1

If the system had one way transmission and if there is only one error in one 

phase, receiver could not be able to correct the error. If both phases have errors, in 

that case the probability of correct detection will be 1 /(M  — 1) [45]. Hence end-to-end 

SEP can be calculated as follows

1 2 M  2
PEtoE =  Pmac +  -  ^  p bc,k ~  M  L \ Pmac Y L  Pbc,k (4-14)

k= 1 k= 1

The above expression is attained by the average of two way transmissions. Now the 

average end-to-end SEP can be obtained by

pEtoE =  ^ [p EtoE\ (4-15)

where expectation is taken with respect to (h i,h 2)

The purpose is now to derive the upper and lower limits. For BPSK, pbc,k can

be expressed by
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Pbc,k =  Q (-\/27A:+2l|h/cl|2)  (4-16)

where Q(-) is the Q-function [46].

During the MAC phase, Alamouti codewords are U  =  [Ui, U 2, U 3,U 4] and 

V  =  [V i ,V 2,V 3 ,V 4], where

U i = V i

u 2 =  v 2

U 3 =  V 3 =

U 4 =  V 4 =

1 - 1

1 1

1 1

- 1 1

- 1 1

- 1

------1
i-HI

- 1 - 1

1 - 1

The detection region for the above mentioned alphabets can not be specified 

easily [45]. Hence it is wise to derive the upper and lower limit of Pmac• Moreover, it 

is difficult to analyze the SEP for the ML detection rule in equation-4.8 since that is 

a sum of exponential functions. Let us modify the detection rule based on max-log 

approximation which is given by

Zn — arg min min T (U , V ) 
ze {-l ,l ]  (U,V):uiVi=z

(4.17)
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It is now required to derive the upper and lower limit for Pmac which will be 

discussed in the next subsection.

4.2.2.1 Derivation of Upper and Lower limits for M A C  phase

Without loss of generality, let us assume that (U i ,V i)  is sent So real XORed-like 

symbols are z\ — z2 =  1. Let

T i =  min r (U ,V ) ;  (U, V ) /  ((U ,, V j)  (4.18)
(U,V):uit;i=l

T2 =  min T(U , V) (4.19)
(U ,V ):u i« i= -l

Let us consider the error probability for z\ , it can be written as [45]

Pr{zi =  - l | ( U i ,V i ) ,h i ,h 2}

=  P r{m m (T(U 1 , V i ) , T i ) > r 2|(U i,V 1) }  -

=  Pr{(T ! >  T fU j. V 1 ) ) f c !T (U ,,V 1) >  72jKUi .V 1)}

+  P r { (r (U i, V i )  >  T iM T i  >  T2)|(Ui , V ] ) }  

< P r {T (U 1 , V 1 ) > r 2|(U i,V 1)}

+  P r{T (U 1 ,V 1 ) > T 1 |(U1 ,V 1)}

<  Y ,  P r {T (U i,V 1 ) > r ( U m,V „ )| (U i,V 1)}

=  ^  1 PpEP,m,n
(m,n^( 1 ,1 ))

where

PpEP,m,n Q{*im,n) with
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q m .n & I K /^ h f C U i-U , iv .

Here m and n are the indices for the codewords. Same derivation can be done 

for 22 and then upper bound for Pmac can be achieved.

To derive the lower bound, let us assume that the relay node is able to detect 

U  if 7 i||hi||2 >  72||h2||2 or V  if 72||h2||2 > 7 i||hi||2. If the relay can detect this, 

the system performance would be better than the system described in Section-4.2.1. 

If U is known, Pmac >  Q  ^\/72||h2ll2^ and if V  is known, Pmac >  Q ^ V / 7 l l l h i | P ^  

Hence lower bounds on Pmac can be written as

Pmac q ( J min (7ll|hi||2,72l|h2||2)^ (4.20)

4.2.2.2 Upper and Lower bounds for End-to-End Error Probability
S\

Now the objective is to calculate the upper and lower limits of End-to-End error 

probability. Once upper and lower bounds are determined, it can be used to justify 

the simulation.

From Section-4.2.2.1 and Equation-4.14, it can be written

max (iE [Pmad, \ ^^ [P bc,k\)  <  PEtoE
k=1

< n p L c )  +  lT ,n P b c ,k }
k= 1

(4.21)
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It can be observed that 11 112 is chi-square distributed with 4 degrees of free-

dom. Hence

E [Pbc,k\ =  0 ( 2 , lk+2)

where

< t > ( L ,x )  =
1 -  n{x) 1 +  n(x) -i l

(4.22)

(4.23)

with fi{x) =  t46^

Now since (U i — U m) and (V i — V m) are both orthogonal matrices, it can be

said

rjn
Qm,n ~  \A*m,nam,n (4.24)

where am,n =  amin^}T ~  CN{0 ,12 ). The value of am,n can be found

from the table below (Table-4.1) [45]

Table 4.1: Values of 6im,n

m/n 1 2 3 4
1 72 272 72
2 71 71 + 7 2 71 +  272 71+ 72
3 271 271 +  72 271 +  272 271 +  72
4 71 71 +  72 71 +  272 71 +  72

The average PEP is then given by

nPpEF,m ,„] =  <t>(2 .  ( 4 - 2 5 )

From Eqn-4.25 the upper bound of PeîoE can be obtained as
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PEtoE =  5 ^ (2 ,73) +  « 2 , 74) +  Y .  ^ 2’
1 < m, n < 4 

(m,n) ±  (1 , 1 )

To determine lower bound of PEtoE > it is required to calculate E[P?nu

assume,

7fc =  7fel|hfc||2 , k =  1,2 

ß =  m in(7 i, 72)

Here 7  ̂ has a Cumulative Distribution Function (CDF) as

F W i)  =  1 -  e % - 4 - e
7fc

Hence the Probability Density Function (PDF) of /3 is

fß (0  =  ci£e 7k +  ^|ç2e 7fc

Therefore, we will have

E[Pmac] =  Cl720(2, +  c27^(3, 77)7

(4.26)

.]. Let us

(4.27)

where
1 1



Chapter 4: Effect of Impulse Noise in Co-operative Diversity System 61

_  a  7172 
7  =  _

71 + 7 2

If we combine the derivation of E[P^ac], the lower bound on PEtoE can be 

calculated as

P E t o E  -  m a x  { ' l ' / 2® (2 . | )  +  C272^ (3 ,  | ) ,

5 ^(2 ,73) + « ( 2 , 74) J (+ 28)

The derived upper and lower limit for error probability can now be used to 

justify the simulation of the bi-directional co-operative system.

4.2.3 Simulation and Results

For simulation our concern is mainly on three systems: A. the co-operative system 

described in Section-4.2.1, B. the co-operative system with single antenna at all node, 

C. Almouti’s scheme with 2 x 2  MIMO system without any relay. Total transmit 

power is kept constant for each of the systems to compare them fairly. Since System- 

C does not have any relay, the distance between Tx and Rx is kept twice in System-C 

than the distance between Tx and relay or Rx and relay in System-A or Sytem-B. 

Noise variances are kept similar for all system. From the figure-4.10, it is certain 

the co-operative system described by Equation-4.8 and Equation-4.17 show almost 

similar performance. They are residing between the upper and lower limit of PEtoE 

of the system. It indicates the derivation of PEtoE can predict the error probability 

successfully. It is also obvious from the figure that system-A performs better than 

system-B since diversity technique is applied at system-A. System-A even performs
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Figure 4.10: Performance comparison of different systems (with

better than System-C as well when the SNR is low. At high SNR, the scenario flips 

though.

4.3 Conclusion

In this chapter, two branches of co-operative communication system have been an

alyzed. At first relay system was analyzed under Impulsive Noise environment. As 

expected the performance deteriorates when there is dense impulse noise in the sys

tem. It was investigated by varying different parameters of the system. Secondly 

performance was observed when diversity technique is implemented at the source 

nodes in relay communication system. Theoretically the error probability was de

rived for such system. Later simulation was also done with same configuration. It
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was found that the simulated result resided between the theoretical lower and upper 

limit of the probability of error.
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Chapter 5 

Conclusion
In this thesis, it is tried to investigate some important and promising fields in wire

less communication. At first diversity technique, more specifically space diversity, is 

explored comprehensively with its ins and outs. There were some assumptions made 

while implementing diversity technique in wireless communication system. For ex

ample, it is considered that channel does not change in two consecutive time slots, 

channel condition is perfectly known at the reception side etc. However these situa

tion might not be the case in practical. Practically it is difficult to have scenario such 

that channel does not change in two time slots. Moreover to estimate the channel 

perfectly, pilot symbols are sent along with the original signàl. When the channel 

fades very quickly, it will not be possible to determine the channel with the aid of 

pilot symbol since they are normally sent after some time period. Such practical 

scenarios are considered while implementing Alamouti’s scheme. Then theoretically 

it was determined how probability of error varies along with the data SNR and pilot 

SNR. Simulation was also done to show the performance of such system. Moreover 

other parameters like angle of arrival, doppler spread etc. which are useful to make 

the system more practical are also considered. Performances were also analyzed for 

the system while considering such important factors.

Performance was evaluated for another hot cake in wireless research arena, 

namely, co-operative communication system. At first system performance was eval

uated for typical co-operative communication system. Later it was implemented for
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an industrial application where impulse noise comes into the picture. System perfor

mance was evaluated in such environment varying SNR keeping SINR fixed and vice 

versa. While one parameter remained fixed, simulation was also done for different 

values of that parameter and then result was analyzed. Prom the simulation result it 

was found that impulse noise can change the overall performance severely depending 

upon the intensity of impulse noise. In next part of the thesis, co-operative commu

nication system is blended with the diversity technique. This is also a new research 

area to work with. When diversity technique is merged with relay communication 

system, advantages can be attained from both. Theoretically the system performance 

is evaluated for such system by deriving upper and lower limits of probability of error. 

Later system performance was determined by simulating the whole system. The sim

ulated results were found according to the expression obtained from the theoretical 

analysis.

In future this work can be extended for different modulation scheme. Experi

mental data can be collected from an industrial application and then simulation can 

be done to obtain exact result for that specific environment. There are also some 

assumptions made while combining relay system and MIMO system. Performance 

can be evaluated considering practical scenario as well. It can be mentioned here 

that publication work will be done after the thesis is completed.
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Appendix A
Derivation of Combining Scheme

A .l Derivation of Combining Scheme (Tx=2, 

R x = l)

First combining equation is given by

«0 = fy)r0 +  hlrl (A.l)

Putting the values of tq and r\

s0 =  h*0(h0sQ +  hisi +  uq) +  hi(-h,QSi +  h*5 q +  n*)

= HqSq +  hQh\si +  h^n q — h\hQS\ +  h-̂ SQ +  h\n^

= so(ho + hq) +  ho no +  h\n\ (A.2)

Second combining equation is given by

si =  h\rQ -  h0r* (A.3)
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Putting the values of rg and r\

si =  h*(hgsg +  h is\ +  ng) -  hg(-hgSi +  h*sg +  n*)

= h*hgsg +  h\s\ +  h*ng +  hgS\ -  hohlsg — hgn*

= Si(hg +  hi) +  h^no -  hgn* (A.4)

A .2 Derivation of Combining Scheme (Tx=2,

Rx=2)

First combining equation is given by

*0 = hgrg +  hir* +  h2r 2 +  h3r  ̂ (A.5)

Putting the values of rg , r2 and rg

s0 — hg(hgsg +  h \si +  ng) +  h i(—hgSi +  h*sg +  n*)

+  h2 (h2sg +  hgs\ +  n2) +  hg(—h2si +  hgsg +  n|)

=  /¿qSo +  hghisi +  hgng — hihgS\ + hlsg +  h\n\ +  h2sg 

A h2hgs\ -f* h2n2 — /ig/^si "P /^ sq -|- hgng 

— so(h.Q +  h“i +  h-2 +  hg) +  hgng +  h\n* +  h2n2 +  hgng (A .6)

Second combining equation is given by

si =  h*rg -  hgr* +  h\r2 -  h2r3 (A.7)
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Putting the values of ro , r\, r<i and r%

5i =  h*(koso +  hisi +  no) -  h o i-h fa  +  /i*so + n*)

+  ĥ (h2SQ +  htfi +  712) ~ h2(—h^si +  ĥ SQ +  n^)

=  /i*/iosO +  h\si +  h\n 0 +  fiQSi — h0hls0 — h$n*

+  h§h2S$ +  ^3^1 H- ^3^2 ”1“ ^2^1 — ^2^350 — ^2^3 

=  5i (/iq +  +  /̂ 2 "I- /13) hlno — /¿on* "1“ ^3^2 — ^2^3 (A.8)
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Appendix B

Residues of Scaled Poles
The objective is to demonstrate the residues are invariant to the scaling of the poles. 

In other words, the residue of <f>(s)/s at pole p is equal to the residue $ ( a s ) / s  at pole 

p/a, where a is the scaling factor. Let us consider a function <J>(s)/s such that

* (* )
2d 2d

« I K * * 5 “ 1) * n M s - i A t )
k= 1 k= 1

kl=  -Q- + k\
+

k\
+

k\
+

kl
s ( s -  1 / A i )  (s — 1 / A 2 ) ( s -  1 / A 2 )2 ( s  -  1 / A 2 ) 3

+ (B .l)

Let us substitute s =  as. Then Eqn-B.l becomes

<P(as) k1ZO + *1 +
k\

+
k\

+ 2̂
as as (as — 1 / A i )  ( a s - I / A 2 ) ( a s  -  I / A 2 ) 2  ( a s  -  I / A 2 ) 3

+

(B.2)

Multiplying both sides by a will yield

<P(as) kg k\ kl ki/a k h a*
s (s — 1 / a A i )  (s — l / a A 2 ) (s — l / a A 2 ) 2 ^  (s — l / a A 2 ) 3

+

(B.3)

Prom Eqn-B.3, it is clear that when we change the function from <3>(s)/s to 

$ ( a s ) / s ,  the pole is changeed from 1 / A j  to 1 / a A j .  Residues of <E>(as)/s at pole 1 / a A j
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do not vary from the residues of $(s)/s at pole 1 / A H e n c e  it can be concluded that 

residue is invariant to the scaling of the poles.
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