
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Books/Book chapters School of Electrical and Electronic Engineering

2006-01-01

Digital Signal Processing (Second Edition) Digital Signal Processing (Second Edition)

Jonathan Blackledge
Technological University Dublin, jonathan.blackledge@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/engschelebk

 Part of the Signal Processing Commons

Recommended Citation Recommended Citation
Blackledge, J.: Digital Signal Processing (Second Edition). Horwood Publishing, vol: ISBN: 1-904275-26-5.
2006.

This Book is brought to you for free and open access by
the School of Electrical and Electronic Engineering at
ARROW@TU Dublin. It has been accepted for inclusion in
Books/Book chapters by an authorized administrator of
ARROW@TU Dublin. For more information, please
contact yvonne.desmond@tudublin.ie,
arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engschelebk
https://arrow.tudublin.ie/engschele
https://arrow.tudublin.ie/engschelebk?utm_source=arrow.tudublin.ie%2Fengschelebk%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=arrow.tudublin.ie%2Fengschelebk%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
mailto:yvonne.desmond@tudublin.ie,%20arrow.admin@tudublin.ie,%20brian.widdis@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

DIGITAL SIGNAL PROCESSING

“Talking of education, people have now a-days” (he said) “got a strange opinion that
every thing should be taught by lectures. Now, I cannot see that lectures can do so
much good as reading the books from which the lectures are taken. I know nothing
that can be best taught by lectures, except where experiments are to be shown. You
may teach chymestry by lectures - You might teach making of shoes by lectures!”

James Boswell: Life of Dr Samuel Johnson, 1766

Dedication

To all those students with whom I had the good fortune to
work and, in using the material herein, taught me how to
teach it.

ABOUT THE AUTHOR

Jonathan Blackledge graduated in physics from Imperial College and music from the
Royal College of Music, London, in 1980 and obtained a Doctorate in theoretical
physics from the same university in 1983. He was appointed as Research Fellow of
Physics at Kings College, London from 1983 to 1988 specializing in inverse problems
in electromagnetism and acoustics. During this period, he worked on a number of
industrial research contracts undertaking theoretical and computational work on the
applications of inverse scattering theory for the analysis of signals and images.

In 1988, he joined the Applied Mathematics and Computing Group at Cran-
field University as Lecturer and later, as Senior Lecturer and Head of Group where
he promoted postgraduate teaching and research in applied, engineering and indus-
trial mathematics in areas which included computer aided engineering, digital signal
processing and computer graphics. In 1994, he was appointed Professor of Applied
Mathematics and Computing and Head of the Department of Mathematical Sciences
at De Montfort University where he established the Institute of Simulation Sciences.
He is currently Professor of Computer Science in the Department of Computer Science
at the University of the Western Cape, South Africa nd Professor of of Information
and Communications Technology in the Department of Electronics and Electrical En-
gineering at Loughborough University, England. He is also a co-founder and Direc-
tor of a group of companies specializing in communications technology and financial
analysis based in London and New York.

Professor Blackledge has published over one hundred scientific and engineering
research papers and technical reports for industry, six industrial software systems,
fifteen patents, ten books and has been supervisor to sixty research (PhD) graduates.
He lectures widely to a variety of audiences composed of mathematicians, computer
scientists, engineers and technologists in areas that include cryptology, communica-
tions technology and the use of artificial intelligence in process engineering, financial
analysis and risk management. His current research interests include computational
geometry and computer graphics, image analysis, nonlinear dynamical systems mod-
elling and computer network security, working in both an academic and commercial
context. He holds Fellowships with England’s leading scientific and engineering Insti-
tutes and Societies including the Institute of Physics, the Institute of Mathematics and
its Applications, the Institution of Electrical Engineers, the Institution of Mechan-
ical Engineers, the British Computer Society, the Royal Statistical Society and the
Institute of Directors. He is a Chartered Physicist, Chartered Mathematician, Char-
tered Electrical Engineer, Chartered Mechanical Engineer, Chartered Statistician and
a Chartered Information Technology Professional. He has an additional interest in
music for which he holds a Fellowship of the Royal Schools of Music, London.

DIGITAL SIGNAL PROCESSING

Mathematical and Computational Methods,
Software Development and Applications

Second Edition

JONATHAN M. BLACKLEDGE†

Professor of Information and Communications Technology,
Department of Electronic and Electrical Engineering,
Loughbourough University, England.

Horwood Publishing, Chichester,
West Sussex, England

†Professor of Computer Science, Department of Computer Science, University of the
Western Cape, Cape Town, South Africa.

HORWOOD PUBLISHING LIMITED
Coll House, Westergate, Chichester, West Sussex, PO20 3QL, England.
First published in 2003 and re-printed in 2006 with corrections and additions.

COPYRIGHT NOTICE
All Rights Reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopy, recording, or otherwise, without the permission of Horwood Publishing
Limited, Coll House, Westergate, Chichester, West Sussex, PO20 3QL, England.

c©J. M. Blackledge, 2006

British Library Cataloguing in Publishing Data
A catalogue record of this book is available from the British Library.

ISBN 1-904275-26-5

Typeset and produced by the author using LaTeX, the TeXnicCenter graphical user
interface and the stylefile of the Institute of Mathematics and its Applications.

Printed and bound in Great Britain by Antony Rowe Limited.

v

Foreword to the Second Edition

I was flattered when the publisher, Ellis Horwood asked me to write this Foreword,
because my introduction to signal processing began in the Second World War when,
as a communications officer in the Royal Corps of Signals, I worked with a war-time
teleprinter. We used a system based on 5-bit letters and a pair of copper wires. It
provided a bandwidth of about 200Hz that could be separated by filters from the rest
of a voice channel without noticeably distorting the speech. Today the bandwidth
available is huge by comparison and information can be conveyed through a multitude
of channels using tiny glass fibres. However, although the engineering associated with
information and communications technology in general has and continues to undergo
radical change, many of the underlying mathematical principles remain the same.

G H Hardy in his book A Mathematician’s Apology wrote that there were ‘no
interesting applications of pure mathematics’. This is no longer true and Professor
Blackledge’s book Digital Signal Processing will enable many people to make use
of their interest in, and perhaps fascination with, mathematics in such a way, and
through a field of study, that will help us all communicate our ideas more quickly and
conveniently through the digital world of today.

The Earl Kitchener of Khartoum

vi

Preface to the Second Edition

This book provides an account of the mathematical background, computational meth-
ods and software engineering associated with digital signal processing. The aim has
been to provide the reader with the mathematical methods required for signal analysis
which are then used to develop models and algorithms for processing digital signals
and finally to encourage the reader to design software solutions for Digital Signal
Processing (DSP). In this way, the reader is invited to develop a small DSP library
that can then be expanded further with a focus on his/her research interests and
applications.

There are of course many excellent books and software systems available on this
subject area. However, in many of these publications, the relationship between the
mathematical methods associated with signal analysis and the software available for
processing data is not always clear. Either the publications concentrate on mathe-
matical aspects that are not focused on practical programming solutions or elaborate
on the software development of solutions in terms of working ‘black-boxes’ without
covering the mathematical background and analysis associated with the design of
these software solutions. Thus, this book has been written with the aim of giving
the reader a technical overview of the mathematics and software associated with the
‘art’ of developing numerical algorithms and designing software solutions for DSP,
all of which is built on firm mathematical foundations. For this reason, the work
is, by necessity, rather lengthy and covers a wide range of subjects compounded in
four principal parts. Part I provides the mathematical background for the analysis of
signals, Part II considers the computational techniques (principally those associated
with linear algebra and the linear eigenvalue problem) required for array processing
and associated analysis (error analysis for example). Part III introduces the reader
to the essential elements of software engineering using the C programming language,
tailored to those features that are used for developing C functions or modules for
building a DSP library.

The material associated with parts I, II and III is then used to build up a DSP
system by defining a number of ‘problems’ and then addressing the solutions in terms
of presenting an appropriate mathematical model, undertaking the necessary analysis,
developing an appropriate algorithm and then coding the solution in C. This material
forms the basis for part IV of this work.

In most chapters, a series of tutorial problems is given for the reader to attempt
with answers provided in Appendix A. These problems include theoretical, computa-
tional and programming exercises. Part II of this work is relatively long and arguably
contains too much material on the computational methods for linear algebra. How-
ever, this material and the complementary material on vector and matrix norms forms
the computational basis for many methods of digital signal processing. Moreover,
this important and widely researched subject area forms the foundations, not only of
digital signal processing and control engineering for example, but also of numerical
analysis in general.

The material presented in this book is based on the lecture notes and supple-
mentary material developed by the author for an advanced Masters course ‘Digital
Signal Processing’ which was first established at Cranfield University, Bedford in 1990
and modified when the author moved to De Montfort University, Leicester in 1994.

vii

The programmes are still operating at these universities and the material has been
used by some 700++ graduates since its establishment and development in the early
1990s. The material was enhanced and developed further when the author moved
to the Department of Electronic and Electrical Engineering at Loughborough Uni-
versity in 2003 and now forms part of the Department’s post-graduate programmes
in Communication Systems Engineering. The original Masters programme included
a taught component covering a period of six months based on two semesters, each
Semester being composed of four modules. The material in this work covers the first
Semester and its four parts reflect the four modules delivered. The material deliv-
ered in the second Semester is published as a companion volume to this work entitled
Digital Image Processing, Horwood Publishing, 2005 which covers the mathematical
modelling of imaging systems and the techniques that have been developed to process
and analyse the data such systems provide.

Since the publication of the first edition of this work in 2003, a number of mi-
nor changes and some additions have been made. The material on programming
and software engineering in Chapters 11 and 12 has been extended. This includes
some additions and further solved and supplementary questions which are included
throughout the text. Nevertheless, it is worth pointing out, that while every effort
has been made by the author and publisher to provide a work that is error free, it is
inevitable that typing errors and various ‘bugs’ will occur. If so, and in particular, if
the reader starts to suffer from a lack of comprehension over certain aspects of the
material (due to errors or otherwise) then he/she should not assume that there is
something wrong with themselves, but with the author!

J M Blackledge, January 2006

viii

Acknowledgements

The material developed in this book has been helped and encouraged by numerous
colleagues of the author over the years. The author would like to thank all of his fellow
colleagues, but particular thanks go to Prof Roy Hoskins who, for many years, has
played a central role in teaching aspects of signal analysis coupled with the mathemat-
ical rigour required to come to terms with such entities as the Delta function. Thanks
also go to Dr Peter Sherar at Cranfield University who helped the author establish
the MSc programme in ‘Software Solutions for Digital Signal Processing’ from which
much of the material presented in this work has been derived. Thanks also go to
Dr Martin Turner, Dr Mohammed Jaffar, Dr Martin Crane and Prof Gwynne Evans
at De Montfort University who have worked with the author for many years, and
as module leaders for De Montfort University’s advanced MSc programme in digital
signal processing, developed valuable additions to the teaching and learning materials
first established by the author. Further, many students of this MSc course were the
result of research programmes established by Prof B Foxon at De Montfort University
with links to universities and research institutes in Russia, Poland, South Africa and
the USA, to whom the author (and the students) are very grateful. The author would
also like to thank Prof Peter Smith who as Head of the Department of Electronic and
Electrical Engineering at Loughborough University has provided the infrastructure
for the author to operate in an internationally acknowledge center of engineering ex-
cellence. Thanks also go to Dr S Datta of Loughborough University who has worked
with the author for many years and provided him with many valuable recommen-
dations, ideas and research themes. In addition, the author would like to thank all
those organizations and industries that have provided funding for the development
of his teaching and research activities over the years including: the Engineering and
Physical Sciences Research Council, the Defense Evaluation and Research Agency,
the International Science and Technology Council, British Coal, British Gas, British
Petroleum, British Aerospace, Oxford Instruments, Microsharp, Marconi, Microsoft
and British Intelligence. Finally, the author would like to thank all those postgrad-
uate students (both MSc and PhD) who, over the years, have used the material in
this book as part of their technical training and educational development and have
provided critical and constructive appraisal from one year to the next. The material
was written by the author for students undertaking advanced MSc programmes at the
universities of Cranfield, De Montfort and more recently, at Loughborough University
and has derived great pleasure from presenting it and developing it further as part
of his teaching portfolio. In addition to the taught postgraduate programmes from
which the material herein has been derived, numerous research students have worked
closely with the author providing valuable insights and comments that have helped
to enhance and strengthen the material.

ix

Notation

Alphabetic

an Real coefficients of a Fourier cosine series
adjA Adjoint of matrix A
A ≡ (aij) Matrix with element at ith row and jth column
AT Transpose of A
A−1 Inverse of A
[A | B] Augmented matrix formed from matrices A and B
| A | Determinant of A
A(t) Amplitude modulation (amplitude envelope)
A(ω) Amplitude spectrum
bn Real coefficients of a Fourier sine series
b Data vector of linear system Ax = b
chirp(t) Unit chirp function [with complex form exp(−iαt2)]
comb(t) Comb function [=

∑
n
δ(t− nT)]

cond(A) Condition number of matrix A (=‖A‖ × ‖A−1‖)
cn Complex coefficients of a complex Fourier series for example
C Capacitance or the contour followed by a path of integration in

the z-plane
c Data vector associated with linear system x = Mx + c
D Fractal dimension or diagonal matrix
detA Determinant of A (also denoted by | A |)
e Error vector
f(t) Arbitrary real function - typically object function or system input
f(z) Function of a complex variable
| f | modulus of complex variable or function f
‖f(t)‖ Norm (e.g. a Euclidean norm) of a function f(t)
‖fi‖ Norm of an array or vector fi

‖fi‖2 Euclidean norm of array or vector fi

‖x‖p p-norm of vector x
‖x‖∞ ‘Infinity’ or uniform norm of a vector x
‖A‖ Norm of matrix A
F (ω) Complex spectrum of function f(t)
Fr(ω) Real component of spectrum
Fi(ω) Imaginary component of spectrum
Fi Discrete complex spectrum of discrete function fi

g(t) Arbitrary function
g(t | t0, ω) Green’s function
H(t) Tophat function
I Unit or identity matrix
Im[f] Imaginary part of complex variable or function f

x

k Wavenumber (= 2π/λ)
L Lower triangular matrix
L1 Lower triangular matrix with 1’s along the leading diagonal
M Iteration matrix associated with linear system x = Mx + c
n(t) Noise function
ni Discrete noise function
Ni Noise spectrum
p(t) Instrument function or Impulse Response Function
pi Discrete Impulse Response Function
P (ω) Transfer Function (Fourier transform of pi)
Pi Discrete Transfer Function (DFT of pi

P (x) Probability density function also denoted by Pr[x(t)]
P (a | b) Conditional probability of obtaining a given b
P (ω) Power spectrum (=| F (ω) |2) where F (ω) is the

Fourier transform of f(t)
Pi Discrete power spectrum
Pr(x) Probability occurrence of x
q Fourier dimension
q(t) Quadrature signal
R Resistance
Ri Denotes the ith row of a matrix
Re[f] Real part of complex variable or function f
s(t) Real or complex (analytic) signal
si Discrete real or complex signal
sgn(t) Sign function
sinc(t) Sinc function (= sin(t)/t)
t Time
U Upper triangular matrix
U1 Upper triangular matrix with 1’s along the leading diagonal
U(t) Unit step function
u(x, t) Solution to a partial differential equation (e.g. wavefield)
vi Eigenvectors of linear system Avi = λivi

WAL(n, t) Walsh function
x Solution vector of linear system Ax = b
xi Eigenvectors of linear system Axi = λixi

xT Transpose of vector x
xi ith element of vector x
x0 Initial value
z Complex number of the form a+ ib
z∗ Complex conjugate a− ib of a complex number a+ ib
∈ In (e.g. x ∈ [a, b) is equivalent to a ≤ x < b)
∀ Forall (e.g. f(t) = 0, ∀t ∈ (a, b])

xi

Greek

α Chirping parameter
Γ(q) Gamma function
δ(t) Dirac delta function
δij Kronecker delta
δt Small increment (denoted also by Δt)
θ(t) Instantaneous phase
λ Wavelength
λi Eigenvalues of linear system Axi = λixi

ψ(t) Instantaneous frequency
φn Delta sequence function
ρ(M) Spectral radius of (iteration) matrix M
ω Angular frequency or the relaxation parameter
Ω Bandwidth of a spectrum

Operators

Ĉ Cosine transform operator
D̂ Linear differential operator
D̂q Fractional differential operator
F̂1 One dimensional Fourier transform
F̂−1

1 One dimensional inverse Fourier transform
Ĥ Hilbert transform operator
Îq Fractional integral operator (e.g. Riemann-Liouville fractional integral)
L̂ One sided Laplace transform operator
L̂−1 Inverse Laplace transform operator (Bromwich integral)
Ŝ Sine transform operator
Ŵ Wavelet transform
Ŵ−1 Inverse wavelet transform
⊗ Convolution operation (continuous or discrete and causal or otherwise,

depending on the context specified)
	 Correlation operation (continuous or discrete and causal or otherwise,

depending on the context specified)
⇐⇒ Transformation into Fourier space
←→ Transformation into some transform space (as defined)

xii

Glossary of Terms

Mathematical and Statistical

ACF Autocorrelation Function
AM Amplitude Modulations (the amplitude envelope)
BL BandLimited
CDP Common Depth Point
CP/M Control Program for Microprocessors
DFT Discrete Fourier Transform
FFT Fast Fourier Transform
FM Frequency Modulations
FIR Finite Impulse Response
GUI Graphical User Interface
IDFT Inverse Discrete Fourier Transform
IIR Infinite Impulse Response
IRF Impulse Response Function
LCM Linear Congruential Method
MAP Maximum a Posteriori
ML Maximum Likelihood
PDE Partial Differential Equation
PDF Probability Distribution or Density Function
PSDF Power Spectral Distribution or Density Function
RSRA ReScaled Range Analysis
RZC Real Zero Conversion
STFT Short Time Fourier Transform
TF Transfer Function
WV Wigner-Ville

Computer Science

BCD Binary Coded Decimal
CASE Computer Aided Software Engineering
CPU Central Processing Unit
DSP Digital Signal Processor
I/O Input/Output
JCL Job Control Language
PCNG Pseudo Chaotic Number Generator
PRNG Pseudo Random Number Generator
RAM Random Access Memory
VAX Virtual Address Extension
VDU Visual Display Unit
VMS Virtual Memory System

xiii

Organizational and Standards

DOS Disc Operating System
EMH Efficient Market Hypothesis
FMH Fractal Market Hypothesis
LPI Log Price Increment
MATLAB Highlevel technical computing language by MathWorks Inc.
MPT Modern Portfolio Theory
MS Microsoft
NYA New York Average
PKI Public Key Infrastructure
RSA Rivest, Shamir and Adleman

Contents

Foreword . v
Preface . vi
Acknowledgements . viii
Notation . ix
Glossary of Terms . xii

Introduction 1

I Signal Analysis 8

1 Complex Analysis 9
1.1 Introduction . 9
1.2 Complex Numbers . 9

1.2.1 Addition, Subtraction, Multiplication and Division 9
1.2.2 Powers of i =

√−1 . 10
1.2.3 The Complex Conjugate . 10
1.2.4 Geometrical Representation (The Argand Diagram) 11
1.2.5 De Moivre’s Theorem . 12
1.2.6 The Complex Exponential . 12

1.3 Complex Functions . 13
1.3.1 Differentiability of a Complex Function 14
1.3.2 The Cauchy-Riemann Equations 15
1.3.3 Analytic Functions . 16
1.3.4 Some Important Results . 18

1.4 Complex Integration . 18
1.4.1 Green’s Theorem in the Plane 21
1.4.2 Cauchy’s Theorem . 23
1.4.3 Defining a Contour . 25
1.4.4 Example of the Application of Cauchy’s Theorem 26
1.4.5 Cauchy’s Integral Formula . 28

1.5 Cauchy’s Residue Theorem . 28
1.5.1 Poles and Residues . 29
1.5.2 Residues at Simple Poles . 29
1.5.3 Residues at Poles of Arbitrary Order 30
1.5.4 The Residue Theorem . 31
1.5.5 Evaluation of Integrals using the Residue Theorem 32

xiv

CONTENTS xv

1.5.6 Evaluation of Trigonometric Integrals 36
1.6 Summary of Important Results . 36
1.7 Further Reading . 38
1.8 Problems . 38

2 The Delta Function 41
2.1 Some Important Generalized Function 42
2.2 The Delta Function . 43

2.2.1 Examples of δ-sequences . 44
2.2.2 Integral Representation of the δ-function 45

2.3 Properties of the δ-function . 45
2.4 Derivatives of the δ-function . 46
2.5 Integration Involving Delta Functions 48
2.6 Convolution . 49
2.7 The Green’s Function . 50
2.8 Summary of Important Results . 53
2.9 Further Reading . 55
2.10 Problems . 55

3 The Fourier Series 57
3.1 Derivation of the Fourier Series . 57
3.2 The Half Range Fourier Series . 60

3.2.1 Cosine Series . 61
3.2.2 Sine Series . 61

3.3 Fourier Series for an Arbitrary Period 62
3.4 Applications of the Fourier Series to Circuit Theory 63
3.5 The Complex Fourier Series . 67
3.6 The Fourier Transform Pair . 69
3.7 The Discrete Fourier Transform . 70
3.8 Relationship between the DFT and the Fourier Transform 70
3.9 ‘Standard’ and ‘Optical’ Forms of the DFT 71
3.10 Summary of Important Results . 72
3.11 Further Reading . 73
3.12 Problems . 73

4 The Fourier Transform 75
4.1 Introduction . 75

4.1.1 Notation . 76
4.1.2 Physical Interpretation . 76
4.1.3 The Spectrum . 77
4.1.4 The Inverse Fourier Transform 78
4.1.5 Alternative Definitions and Representations 79
4.1.6 Useful Notation and Jargon . 79
4.1.7 Bandlimited Functions . 79
4.1.8 The Amplitude and Phase Spectra 80
4.1.9 Differentiation and the Fourier Transform 81
4.1.10 Integration and the Fourier Transform 82

4.2 Selected but Important Functions . 82

xvi CONTENTS

4.3 Selected but Important Theorems . 86
4.4 Convolution and Correlation . 87

4.4.1 Convolution . 87
4.4.2 Correlation . 88
4.4.3 Physical Interpretation . 89
4.4.4 Autoconvolution and Autocorrelation 89
4.4.5 The Convolution Theorem . 90
4.4.6 The Product Theorem . 90
4.4.7 The Correlation Theorem . 91
4.4.8 The Autoconvolution and Autocorrelation Theorems 92
4.4.9 Selected but Important Properties 92

4.5 The Sampling Theorem . 93
4.5.1 Fourier Transform of the comb Function 94
4.5.2 Proof of the Sampling Theorem 96
4.5.3 Sinc Interpolation . 97

4.6 Fourier Filters . 97
4.6.1 Lowpass Filters . 99
4.6.2 Highpass Filters . 99
4.6.3 Bandpass Filters . 100
4.6.4 The Inverse Filter . 100

4.7 The Kronecker Delta Function and the DFT 101
4.8 Deriving Filters using the DFT . 102
4.9 Case Study: Scattering from Layered Media 104

4.9.1 Introduction to the Wave Equation 105
4.9.2 Asymptotic Green’s Function Solution 107
4.9.3 Discussion . 109

4.10 Summary of Important Results . 110
4.11 Further Reading . 111
4.12 Problems . 111

5 Other Integral Transforms 114
5.1 The Laplace Transform . 114
5.2 The Sine and Cosine Transforms . 123

5.2.1 The Sine Transform . 123
5.2.2 The Cosine Transform . 124

5.3 The Walsh Transform . 125
5.4 The Cepstral Transform . 127
5.5 The Hilbert Transform . 129

5.5.1 Modulation and Demodulation 130
5.5.2 Quadrature Detection . 131
5.5.3 The Analytic Signal . 132
5.5.4 Attributes of the Analytic Signal 134
5.5.5 Phase Unwrapping . 135

5.6 Case Study: FM Imaging by Real Zero Conversion 136
5.6.1 Real Zero Conversion . 136
5.6.2 Application to Seismic Imaging 138

5.7 STFT and The Gabor Transform . 139

CONTENTS xvii

5.8 The Wigner and the Wigner-Ville Transforms 141
5.8.1 Origins of the Transforms for Signal Processing 142
5.8.2 Properties of the Wigner-Ville Transform 143
5.8.3 Cross Term Interference . 146
5.8.4 Smoothing the Wigner-Ville Distribution 147
5.8.5 The Discrete Wigner-Ville Transform 148
5.8.6 Applications . 148

5.9 The Riemann-Liouville and the Wyle Transforms 149
5.10 The z-Transform . 150
5.11 The Wavelet Transform . 152
5.12 Discussion . 154
5.13 Summary of Important Results . 154
5.14 Further Reading . 157
5.15 Problems . 158

II Computational Linear Algebra 161

6 Matrices and Matrix Algebra 162
6.1 Matrices and Matrix Algebra . 163

6.1.1 Addition of Matrices . 163
6.1.2 Subtraction of Matrices . 163
6.1.3 Multiplication of a Matrix by a Scalar Quantity 164
6.1.4 Multiplication of Two Matrices 164
6.1.5 Further Results in Matrix Multiplication 165
6.1.6 The Unit Matrix . 166
6.1.7 The Transpose of a Matrix . 166
6.1.8 The Inverse Matrix . 167
6.1.9 Determinants . 168
6.1.10 Properties of Determinants . 169

6.2 Systems of Linear Algebraic Equations 170
6.2.1 Formal Methods of Solution . 171
6.2.2 Evaluation of adjA . 172
6.2.3 Cramers Rule . 173

6.3 Linear Systems . 175
6.3.1 Inhomogeneous systems . 175
6.3.2 Homogeneous Systems . 175
6.3.3 Ill-conditioned Systems . 176
6.3.4 Under-determined Systems . 177
6.3.5 Over-determined Systems . 177

6.4 Summary of Important Results . 178
6.5 Further Reading . 180
6.6 Problems . 180

xviii CONTENTS

7 Direct Methods of Solution 183
7.1 Gauss’ Method . 184

7.1.1 Generalization of the Idea . 185
7.1.2 Conversion to Pseudo-Code . 186
7.1.3 Pivots and Pivoting . 187
7.1.4 Pivotal Strategies . 188

7.2 Jordan’s Method . 190
7.2.1 Matrix Inversion by Jordan’s Method 191
7.2.2 Gauss’ .v. Jordan’s Method . 193

7.3 LU Factorization . 193
7.3.1 Existence and Uniqueness of LU Factorization 193
7.3.2 Generalization of Crout’s Method 196
7.3.3 Generalization of Cholesky’s Method 197
7.3.4 Matrix Inversion by LU Factorization 198

7.4 Banded Systems . 199
7.4.1 Tridiagonal Systems . 199
7.4.2 Solution to Tridiagonal Systems 200

7.5 Computational Considerations . 201
7.5.1 Computer Storage Requirements 201
7.5.2 Arithmetic Involved in the Computation 202
7.5.3 Scaling of Matrices . 203

7.6 Solution to Complex Systems of Equations 203
7.7 Summary of Important Results . 204
7.8 Further Reading . 205
7.9 Problems . 205

8 Vector and Matrix Norms 208
8.1 Vector Norms . 208

8.1.1 Definitions of a Vector Norm 209
8.1.2 Commonly Used Definitions . 209
8.1.3 Generalization of Vector Norms - The ‘p-Norm’ 209
8.1.4 Metric Spaces . 210
8.1.5 The Euclidean Norm . 210
8.1.6 The Cauchy-Schwarz Inequality for the Euclidean Norm 211

8.2 The Triangle Inequality for the Euclidean Norm 211
8.2.1 Holder’s Inequality . 212
8.2.2 Minkowski’s Inequality . 214

8.3 Matrix Norms . 215
8.3.1 Types of Matrix Norms . 215
8.3.2 Basic Definition of a Matrix Norm 215
8.3.3 Evaluation of �1 and �∞ Matrix Norms 216

8.4 The Conditioning of Linear Equations 218
8.4.1 Conditioning of Ax = b . 219
8.4.2 Example of an Ill-conditioned System 222

8.5 Iterative Improvement . 223
8.6 The Least Squares Method . 226

8.6.1 The Least Squares Principle . 226

CONTENTS xix

8.6.2 Linear Polynomial Models . 227
8.6.3 The Orthogonality Principle . 228
8.6.4 Complex Signals, Norms and Hilbert Spaces 228
8.6.5 Linear Convolution Models . 229

8.7 Summary of Important Results . 232
8.8 Further Reading . 233
8.9 Problems . 234

9 Iterative Methods of Solution 237
9.1 Basic Ideas . 238

9.1.1 Jacobi’s Method . 239
9.1.2 The Gauss-Seidel Method . 239
9.1.3 The Relaxation or Chebyshev Method 239

9.2 Iterative Methods . 240
9.3 Example of the Iteration Method . 240
9.4 General Formalism . 242
9.5 Criterion for Convergence of Iterative Methods 243

9.5.1 Diagonal Dominance . 243
9.5.2 Sufficient Condition for Convergence 244
9.5.3 Proof of the Necessary Condition for Convergence 245
9.5.4 Estimating the Number of Iterations 247
9.5.5 The Stein-Rosenberg Theorem 248

9.6 The Conjugate Gradient Method . 248
9.6.1 The Gram-Schmidt Process . 249
9.6.2 Example of the Gram-Schmidt Process 249
9.6.3 Practical Algorithm for the Conjugate Gradient Method 250

9.7 Summary of Important Results . 251
9.8 Further Reading . 252
9.9 Problems . 252

10 Eigenvalues and Eigenvectors 255
10.1 Formal Methods of Solution . 257
10.2 Properties of Eigenvalues . 258
10.3 The Cayley-Hamilton Theorem . 263
10.4 The Power Method . 265

10.4.1 Basic Algorithm for the Power Method 267
10.4.2 Problems Concerning the Power Method 268
10.4.3 Deflation . 268
10.4.4 The Deflation Method for a Non-symmetric Matrix 271
10.4.5 The Deflation Method for a Symmetric Matrix 272

10.5 Jacobi’s Method for Symmetric Matrices 272
10.5.1 The Transformation Matrix . 273
10.5.2 The Serial Method . 274

10.6 Sturm Sequence Iteration . 275
10.6.1 Gerschgorin’s Theorem . 277
10.6.2 Givens’ Method . 278
10.6.3 Householder’s Method . 279

xx CONTENTS

10.7 LR and QR Methods . 281
10.8 Inverse Iteration . 285
10.9 Special Types of Matrices . 285
10.10 Summary of Important Results . 290
10.11 Further Reading . 294
10.12 Problems . 295

III Programming and Software Engineering 298

11 Principles of Software Engineering 299
11.1 Introduction . 299

11.1.1 Programming Language Development 299
11.1.2 What is Software Engineering ? 302
11.1.3 Applications . 303
11.1.4 About Part III . 304

11.2 Decimal and Binary Number Systems 305
11.3 Binary Number Systems . 306

11.3.1 Binary Coded Decimal (BCD) 306
11.3.2 Binary Arithmetic . 307
11.3.3 Decimal to Binary Conversion of Whole Numbers 307
11.3.4 Decimal to Binary Conversion of Decimal Numbers 308
11.3.5 Conversion form Binary to Decimal 308

11.4 Fixed Point Storage and Overflow . 309
11.5 Floating Point Representation of Binary Numbers 309
11.6 Numerical Error and Accuracy . 310

11.6.1 Errors . 311
11.6.2 Types of Errors . 311
11.6.3 Accumulation of Errors . 313
11.6.4 Types of Error Growth . 313
11.6.5 Errors in Computer Arithmetic 313

11.7 Methods that Reduce Errors and Maintain Accuracy 316
11.8 Program Structures . 317

11.8.1 Syntax and Semantics . 317
11.8.2 Data declarations . 317
11.8.3 Input and Output . 318
11.8.4 Operations of Data . 318
11.8.5 Control . 319
11.8.6 Subprograms . 320

11.9 Procedures . 321
11.10 Processes Specification . 322

11.10.1 Pseudocode . 322
11.10.2 Program Flowcharts . 323
11.10.3 Program Structure Block Diagrams 323
11.10.4 Warnier Diagrams . 323
11.10.5 Decision Tables and Trees . 323

11.11 Program Specification . 324

CONTENTS xxi

11.11.1 Program Design, Style and Presentation 324
11.11.2 Program Reliability . 325
11.11.3 Program Efficiency . 325
11.11.4 Program Development Time 326
11.11.5 Program Documentation . 326

11.12 System Design . 327
11.12.1 Specification . 327
11.12.2 Design . 328
11.12.3 Testing . 328
11.12.4 Software Maintenance . 328

11.13 Requirement Specifications . 329
11.14 Modularity . 329
11.15 The Jackson Method . 330
11.16 Data Analysis . 331
11.17 Data Flow Design . 331
11.18 Testing and Implementation . 332
11.19 Stages of System Design . 333

11.19.1 Statement of User Requirements 333
11.19.2 Functional Specification . 333
11.19.3 Technical Specification . 333
11.19.4 Detailed Design . 334
11.19.5 Programming . 334
11.19.6 Unit Testing . 335
11.19.7 String and System Testing . 335
11.19.8 Summary on System Design 335

11.20 Computer Aided Software Engineering Tools 335
11.21 Operating Systems and Languages 336

11.21.1 Functions of an Operating System 337
11.21.2 Types of Operating System 338
11.21.3 DOS . 338
11.21.4 UNIX . 339

11.22 Programming Languages . 340
11.22.1 Factors in the Choice of a Language 340
11.22.2 FORTRAN . 341
11.22.3 Pascal . 343
11.22.4 Basic . 343
11.22.5 COBOL . 344
11.22.6 ALGOL . 344
11.22.7 PL/1 . 345
11.22.8 APL . 345
11.22.9 C . 346
11.22.10 C++ . 347
11.22.11 Java . 347

11.23 Object Oriented Programming . 348
11.23.1 Inheritance . 349
11.23.2 Virtual Functions and Abstract Classes 350
11.23.3 Polymorphism . 350

xxii CONTENTS

11.23.4 Dynamic Binding . 351
11.23.5 The C++ Programming Language 351
11.23.6 C++ as an Extension of C 353
11.23.7 The Object Oriented Programming Paradigm 354
11.23.8 Data . 356

11.24 Discussion . 357
11.25 Summary of Important Results . 358
11.26 Further Reading . 361
11.27 Problems . 362

12 Modular Programming in C 364
12.1 About C . 364

12.1.1 Statement Layout . 365
12.1.2 Documentation . 365
12.1.3 Input/Output . 365
12.1.4 Date Type Statements . 366
12.1.5 Variable Names . 367
12.1.6 Declarations . 367
12.1.7 Arrays . 367
12.1.8 Operators . 367
12.1.9 Expressions . 369
12.1.10 Control Statements . 369
12.1.11 Looping and Iteration . 371
12.1.12 User Defined Functions . 372
12.1.13 Passing Variables using Pointers 374
12.1.14 Internal Functions and Libraries 375
12.1.15 Prototyping . 375
12.1.16 Advantages and Disadvantages of C 377

12.2 Modular and Structured Programming in C 377
12.2.1 Array Processing . 378
12.2.2 Dynamic Memory Allocation 379

12.3 Modularity . 381
12.4 Module Size . 382
12.5 Structured Programming . 386
12.6 Modular Programming using Borland Turbo C++ 390

12.6.1 Speed and Memory . 391
12.6.2 Compiling and Linking . 392
12.6.3 Developing an Object Library 392
12.6.4 Object Libraries . 394
12.6.5 Practical Applications . 394

12.7 On Style and Presentation . 395
12.8 Summary of Important Results . 397
12.9 Further Reading . 398
12.10 Problems . 399

CONTENTS xxiii

IV DSP: Methods, Algorithms and Building a Library 403

13 Digital Filters and the FFT 404
13.1 Digital Filters . 404
13.2 The Fast Fourier Transform . 406

13.2.1 Basic Ideas . 406
13.2.2 Bit Reversal . 408
13.2.3 The FFT in C . 409

13.3 Data Windowing . 413
13.4 Computing with the FFT . 416
13.5 Discrete Convolution and Correlation 416
13.6 Computing the Analytic Signal . 418
13.7 Summary of Important Results . 420
13.8 Further Reading . 420
13.9 Programming Problems . 421

13.9.1 Digital Signal Generation . 421
13.9.2 Computing with the FFT . 422

14 Frequency Domain Filtering with Noise 426
14.1 Highpass, Lowpass and Bandpass Filters 426
14.2 The Inverse Filter . 427
14.3 The Wiener Filter . 428

14.3.1 The Least Squares Principle . 428
14.3.2 Derivation of the Wiener Filter 429
14.3.3 Signal Independent Noise . 430
14.3.4 Properties of the Wiener Filter 430
14.3.5 Practical Implementation . 430
14.3.6 FFT Algorithm for the Wiener Filter 431
14.3.7 Estimation of the Signal-to-Noise Power Ratio 434

14.4 Power Spectrum Equalization . 435
14.5 The Matched Filter . 437

14.5.1 Derivation of the Matched Filter 437
14.5.2 White Noise Condition . 438
14.5.3 FFT Algorithm for the Matched Filter 438
14.5.4 Deconvolution of Frequency Modulated Signals 439

14.6 Case Study: Watermarking using Chirp Coding 442
14.6.1 Introduction . 443
14.6.2 Matched Filter Reconstruction 445
14.6.3 The Fresnel Transform . 445
14.6.4 Chirp Coding, Decoding and Watermarking 446
14.6.5 Code Generation . 448
14.6.6 MATLAB Application Programs 450
14.6.7 Discussion . 456

14.7 Constrained Deconvolution . 457
14.8 Homomorphic Filtering . 458
14.9 Noise . 459
14.10 Noise Types . 460

xxiv CONTENTS

14.10.1 Multiple Scattering Effects 460
14.10.2 Beam Profile Effects . 462

14.11 Pseudo Random Number Generation 462
14.11.1 Pseudo Random Sequences 463
14.11.2 Real Random Sequences . 463
14.11.3 Pseudo Random Number Generators 464
14.11.4 Shuffling . 467

14.12 Additive Generators . 468
14.12.1 Pseudo Random Number Generators and Cryptography . . . 468
14.12.2 Gaussian Random Number Generation 471

14.13 Chaos . 474
14.13.1The Lyapunov Exponent and Dimension 481

14.14 Case Study: Cryptography using Chaos 482
14.14.1 Block Cyphers using Deterministic Chaos 484
14.14.2 Encrypting Processes . 485
14.14.3 Key Exchange and Authentication 486

14.15 Summary of Important Results . 488
14.16 Further Reading . 490
14.17 Programming Problems . 491

15 Statistics, Entropy and Extrapolation 494
15.1 Bayes Rule . 494

15.1.1 Bayesian Estimation . 496
15.1.2 Some Simple Examples of Bayesian Estimation 497
15.1.3 The Maximum Likelihood Estimation 498

15.2 The Maximum Likelihood Method . 501
15.3 Maximum a Posteriori Method . 502
15.4 The Maximum Entropy Method . 503

15.4.1 Information and Entropy . 503
15.4.2 Maximum Entropy Deconvolution 505
15.4.3 Linearization . 507
15.4.4 The Cross Entropy Method . 507

15.5 Spectral Extrapolation . 508
15.6 The Gerchberg-Papoulis Method . 511
15.7 Application of Weighting Functions . 512
15.8 Burg’s Maximum Entropy Method . 515
15.9 Summary of Important Results . 517
15.10 Further Reading . 519
15.11 Problems . 520

16 Digital Filtering in the Time Domain 522
16.1 The FIR Filter . 522
16.2 The FIR Filter and Discrete Correlation 526
16.3 Computing the FIR filter . 529

16.3.1 Moving Window Filters . 531
16.3.2 Interpolation using the FIR Filter 533
16.3.3 The FIR Filter and the FFT 534

CONTENTS xxv

16.4 The IIR Filter . 534
16.5 Non-Stationary Problems . 535
16.6 Summary of Important Results . 537
16.7 Further Reading . 539
16.8 Programming Problems . 539

17 Random Fractal Signals 541
17.1 Introduction . 542
17.2 Stochastic Modelling Revisited . 544
17.3 Fractional Calculus . 547

17.3.1 The Laplace Transform and the Half Integrator 548
17.3.2 Operators of Integer Order . 549
17.3.3 Convolution Representation . 550
17.3.4 Fractional Differentiation . 551
17.3.5 Fractional Dynamics . 554

17.4 Non-stationary Fractional Dynamic Model 556
17.5 Green’s Function Solution . 559
17.6 Digital Algorithms . 565
17.7 Non-stationary Algorithm . 566
17.8 General Stochastic Model . 572
17.9 Case Study: Fractal Modulation . 573

17.9.1 Secure Digital Communications 573
17.9.2 Fractal Modulation and Demodulation 575

17.10 Case Study: Financial Signal Processing 578
17.11 Introduction . 579
17.12 The Efficient Market Hypothesis . 580
17.13 Market Analysis . 583

17.13.1 Risk .v. Return: Arbitrage 584
17.13.2 Financial Derivatives . 585
17.13.3 Black-Scholes Analysis . 587
17.13.4 Macro-Economic Models . 589
17.13.5 Fractal Time Series and Rescaled Range Analysis 595

17.14 Modelling Financial Data . 601
17.14.1 Psychology and the Bear/Bull Cycle 603
17.14.2 The Multi-Fractal Market Hypothesis 604

17.15 Summary of Important Results . 609
17.16 Further Reading . 611
17.17 Problems . 611

Summary 612

A Solutions to Problems 616
A.1 Part I . 616

A.1.1 Solutions to Problems Given in Chapter 1 616
A.1.2 Solutions to Problems Given in Chapter 2 622
A.1.3 Solutions to Problems Given in Chapter 3 627
A.1.4 Solutions to Problems Given in Chapter 4 631
A.1.5 Solutions to Problems Given in Chapter 5 637

xxvi CONTENTS

A.1.6 Supplementary Problems to Part I 646
A.2 Part II . 661

A.2.1 Solutions to Problems Given in Chapter 6 661
A.2.2 Solutions to Problems Given in Chapter 7 665
A.2.3 Solutions to Problems Given in Chapter 8 672
A.2.4 Solutions to Problems Given in Chapter 9 677
A.2.5 Solutions to Problems Given in Chapter 10 685
A.2.6 Supplementary Problems to Part II 693

A.3 Part III . 703
A.3.1 Solution to Problems Given in Chapter 11 703
A.3.2 Solutions to Problems Given in Chapter 12 709
A.3.3 Supplementary Problems to Part III 720

A.4 Part IV . 731
A.4.1 Solutions to Problems Given in Chapter 13 731
A.4.2 Solutions to Problems Given in Chapter 14 751
A.4.3 Solutions to Problems Given in Chapter 15 762
A.4.4 Solutions to Problems Given in Chapter 16 768
A.4.5 Solutions to Problems given in Chapter 17 774
A.4.6 Supplementary Problems to Part IV 780

B Graphics Utility 788

Index 800

Introduction

Many aspects of electrical and electronic engineering have been reduced to the appli-
cation of programming methods for processing digital signals. In the ‘old days’, the
electrical engineer used to get the soldering iron out and ‘make things’, e.g. transistor
circuits and later, integrated circuits using functional electronics. Moreover, many
of these systems were based on analogue technology. Nowadays, much of the elec-
trical engineers job is based on processing information in the form of digital signals
using ever more powerful CPUs and increasingly specialist DSP hardware that, more
often than not, are just powerful floating point accelerators for processing specialist
software.

The design of any electronic system in terms of both the hardware that executes
it and the software that ‘drives’ it is inextricably bound up with the simulation of
the system. Indeed, although the jargon and sound bites change radically from one
scientific and engineering discipline to another, the use of mathematical modelling
for computer simulation has become of major significance in industry. A wealth of
excellent computer packages exist for this purpose, which engineers use routinely for
design and development. The electrical and electronic engineer now has many highly
sophisticated simulators for designing digital signal processors which can then be used
to program an appropriate chip directly. Much of the work is then undertaken in the
design and generation of code which is invariably based on C and/or C++ depending
on the characteristics of the problem. It is within this context that the material
herein has been prepared but with the proviso that the reader first comes to terms
with the mathematical and computational background upon which all such systems
are ultimately based.

The principal purpose of this book is to take the reader through the theoretical
and practical aspects required to design and apply a DSP object library using pro-
gramming techniques that are appropriate to the successful completion of this task.
The culmination of this process is the basis for the material given in Part IV and
Parts I-III can be considered to be the background to this process for those readers
that have no previous experience of the subject. The material is based on a set of
lecture notes and supplementary material developed by the author over a number of
years as part of an MSc programme in ‘Digital Signal Processing’ established by the
author at the Universities of Cranfield, De Montfort and Loughborough in England
over the 1990s. This programme has increasingly made use of MATLAB as a proto-
typing environment which is ideal for investigating DSP algorithms via application
of the MATLAB DSP toolbox. However, emphasis has and continues to be based on
instructing students on the design of C code for DSP so that software can be devel-

1

2 INTRODUCTION

oped that is independent of a commercial system (other than the C/C++ compiler).
The programming approach has been based on the use of Borland Turbo C++ and
this is reflected in some of the code discussed in this work, in particular, the graphics
utility that is provided for readers to display signals in Appendix B. Apart from this
aspect, the C code that is provided here is independent of a specific compiler and the
reader may introduce other graphics facilities as required, including those associated
with MATLAB which has excellent facilities in this regard and have been used in this
book from time to time.

Part I of this book covers the mathematical methods that lie behind the processing
of signals and their analysis. Chapter 1 covers the essentials of complex analysis from
the introduction of complex numbers through to the principles of complex integration
and the results that can be used to evaluate a wide variety of integrals. Such methods
are of significant value in providing analytical solutions to problems in signal and cir-
cuit analysis such as in the evaluation of the response of time invariant linear systems
to periodic and/or aperiodic inputs; this includes the design and characterisation of
different filters and their theoretical evaluation. Moreover, complex analysis features
routinely in the application of a wide variety of integral transforms such the Fourier
transform that is introduced in Chapter 4 for example.

Chapter 2 introduces the reader to a singularly important generalised function,
namely, the delta function together with other related generalised functions such as
the step function, the sign function and the tophat function for example. All of these
functions are of specific importance in signal analysis where the delta function plays
a pivotal role especially in the development of generalised Fourier theory and the
sampling theorem for example.

The Fourier transform is introduced and studied using two approaches. The first
of these is based on the Fourier series which is the basis for the material discussed in
Chapter 3 and introduces the Fourier transform (and the discrete Fourier transform)
using a classical approach. The second approach to introducing the Fourier transform
is via a path that is intrinsically related to the delta function; this is the so called
generalised approach to Fourier theory and is discussed in Chapter 4. In practice, both
approaches to Fourier theory are important especially when the reader is required to
comprehend the connection and synergies that exist between the theoretical basis for
many aspects of signal analysis and the systematic design of a computer algorithm for
processing digital signals. Although the Fourier transform is arguably the ‘work-horse’
(both theoretically and computationally) for studying time invariant linear systems,
it is not the only integral transform that is of value. Chapter 5 of Part I looks at other
integral transforms that are of value to signal analysis. These transforms include the
Laplace transform, the sine and cosine transforms which are used for solving causal or
initial value problems and for data compression for example, the Gabor, Wigner and
Wigner-Ville transforms for studying signals that are time variant, the z-transform
(which is used for solving models for signals that are based on discrete control systems
for example) and transforms such as the Riemann-Liouville transform which forms the
basis for modelling and analysing fractal signals for example. The wavelet transform
is also briefly introduced together with a short discussion of its origins and properties
with regard to its multi-resolution characteristics.

Part II is on computational linear algebra which starts with a review of matrix
algebra and linear algebraic systems of equations given in Chapter 6. The mater-

INTRODUCTION 3

ial covers methods of solving linear equations using direct methods (Chapter 7) and
indirect or iterative methods (Chapter 9) and considers techniques for solving the
linear eigenvalue problem in Chapter 10. In addition, a single chapter (Chapter 8) is
devoted to a study of vector and matrix norms which are an essential analytical tool
used for error analysis, optimization and the quantification of numerical procedures.
Part II is relatively extensive and there is arguably too much material on this sub-
ject given the remit of this book. However, many years experience in teaching DSP
to graduate students by the author has revealed that there is often a fundamental
lack of knowledge of computational linear algebra, a subject area that is absolutely
fundamental for the formal mathematical definition of digital signals and the digital
algorithms that process them. Many of the algorithms used in DSP end up being
expressed in matrix form and the numerical solutions to such problems invariable re-
quire the solution to systems of linear algebraic equations. Similarly, the computation
of eigenvalues and eigenvectors is not only an important aspect of linear algebra but
also enters into some practical methods of signal analysis.

Part III covers aspect of the software engineering methodologies and ideas that
a programmer should comprehend. This material is deliberately integrated into the
C programming language but does not represent a complete or even partial course
on C. Instead, those aspects of the language are discussed that are essential only to
the programming exercises that are given in Part IV. These ‘essentials’ are coupled
to a discussion on the principles of software engineering with an emphasis on good
programming practice; in particular, modular and structured programming and the
design of a DSP library. Thus, apart from introducing the reader to the principles
of signal analysis and DSP, one of the goals of this work is to help the reader design
their own software provision from which further extensions and developments can
be made. Chapter 11 provides an introduction to the essentials of number systems
and issues concerning numerical accuracy that are associated with them (e.g. errors
associated with the binary representation of decimal numbers) and provides a brief
overview of programming languages and operating systems that the reader may or
otherwise have acquired a working knowledge of. This chapter also provides a dis-
cussion on the principles of software engineering which are extended in Chapter 12
via a programming approach working with C. This includes the presentation of some
example programs relating to the computational methods discussed in Part II and
other numerical procedures that are either useful examples in themselves or relate to
methods that are required later on in the work. Specific examples are given of pro-
grams that are required to help the reader design, execute and test the DSP modules
discussed in Part IV.

Part IV discusses the principles of DSP in terms of a set of specific problems,
solutions, the design of an appropriate algorithm and finally, the development of C
code, which is left to the reader as an exercise. The material makes both general or
specific reference to that presented in Parts I-III and provides examples of specific
algorithms using pseudo code via the programming practices discussed in Part III.
Chapter 13 discusses the use of digital filters with regard to the application of the
Fast Fourier Transform or FFT. This is presented together with the C code that is
required by the reader to develop many of the digital signal processors studied in
this and later chapters, starting with Chapter 14 which investigates the process of
digital filtering in the Fourier or frequency domain. Chapter 15 introduces a statis-

4 INTRODUCTION

tical approach to the extraction of information from noise using Bayesian estimation
theory and techniques based on the application of entropy conscious approaches (e.g.
maximum entropy estimation). The chapter expands this theme to a study of the
problem of extrapolating the spectrum of bandlimited signals, which like so many
inverse problems, is an ill-posed problem. Chapter 16 investigates the computational
principles associated with processing signals in the time domain and looks at the def-
initions, mathematical models and applications of the Finite Impulse Response filter,
the Infinite Impulse Response filter and goes on to briefly investigate issues related to
processing non-stationary or time variant signals defined by a linear process. Finally,
Chapter 17 investigates the world of (random) fractal signals using an approach that
is based on fractional partial differential equations which has been a research interest
of the author for some years. The use of fractals or self-affine models for analysing
and processing signals has been around for many years and is important in that so
many naturally occurring signals in nature (speech, radar, seismic, economic and bio-
medical signals to name but a few) exhibit fractal properties. This chapter includes
a brief overview of some of the methods used for analysing and interpreting signals
that have been generated by nonlinear and chaotic systems using fractal geometry.
This chapter is, in effect a continuation of the material discussed in Chapter 14 which
introduces methods of simulating noisy and chaotic signals.

In this book, emphasis is placed on the use of set problems which are given at
the end of most chapters. These problems have been designed to instruct the reader
on aspects of the material which is either complementary or exploratory in terms of
advancing a specific theme further. Some of the questions are aimed at completing
aspects of the material which are not covered by the text in full; other questions form
the basis for material that occurs later on in the work. These problems have been
designed to complement the readers ‘learning curve’ and should ideally be attempted
after reading and comprehending the material provided in a given chapter. The
questions represent an important aspect of the readers appreciation of the theoretical
and practical programming techniques in order to develop an in-depth understanding
of the material herein.

Full solutions are provided in the appropriate Appendix. Providing these solutions
clearly adds to the bulk of the book but is of significant value to the reader in terms
of completeness and necessary reference. The solutions are in the form of answers
to the theoretical questions set in parts I and II and the theoretical and software
development questions (given in C) provided in Parts III and IV. In addition to
model solutions, the appendix contains a number of supplementary problems. These
problems have been taken from a selection of the examination papers prepared by the
author for assessment of students undertaking an MSc programme in ‘Digital Signal
Processing’. Hence, the style of the questions set are different to those of the problems
at the end of a chapter. No solutions are provided to these supplementary problems.

Throughout the book, a number of examples and case studies are provided. Some
of these cases studies have been designed to extend the material as required. Cer-
tain case studies are based on the authors research interests and represent new and
novel approaches to some specific problems. The ‘software solutions’ associated with
some of these examples and case studies are given in MATLAB which is an ideal
prototyping environment for investigating new approaches to numerical problems.
Here, MATLAB’s DSP and other toolboxes are used to present prototype code that

INTRODUCTION 5

can be investigated further as required by the reader. The graphical examples given
are not extensive for reasons of page minimization but also, because it is of greater
educational value for readers to investigate a processing technique by plotting and
interpreting the output of software they have developed for themselves (as discussed
in Part IV); a principle, which is the central kernel of this publication. Finally, each
chapter contains a list of textbooks which the author has used and in some cases,
has been involved in developing. The list is not extensive but is aimed at introducing
‘further reading’ which in most cases, either complements the material provided in
a chapter or (significantly) extends it using works that are of historical as well as
academic value and span an appropriate period over which the subject has been sig-
nificantly developed. It was originally intended to include a list of references based
on resources available on the Internet. However, such resources change so rapidly
and are available so readily, that it was later considered better to leave the reader to
make use of the Internet directly through the available search engines from which the
reader can acquire a wealth of excellent material on this subject area and beyond.

Above all, the book attempts to provide a unified and coherent approach to the
subject and to give the reader a blend of theory and practice that is, where ever
possible, linked together via an appropriate underlying mathematical model. One
such model that can be taken by the reader to be a fundamental underlying theme is
the equation

s(t) = p(t)⊗ f(t) + n(t)

where s is the output (a recorded signal), f is the input signal to a system described
by the function p and the process of convolution (denoted by the symbol ⊗) and n is
the noise generated by the system. This is the classic time invariant linear systems
model which forms the basis for a wide range of problems, from control engineering to
speech processing, from active radar to biomedical signal analysis. The convolution
equation is actually an integral equation. It can be considered to be a special form of
the so called inhomogeneous Fredholm equation of the second kind, namely

s(t) =

b∫
a

p(t, τ)f(τ)dτ + n(t)

where n(t) is a known function and a and b are the fixed points at which s satisfies
boundary conditions. A more general case occurs when the integral above runs from
a to t giving the so called inhomogeneous Volterra equation of the second kind, both
cases having homogeneous forms when n = 0. From a theoretical point of view, we
can consider this book to be on the subject of analysing and solving integral equations
of this form except for the fact that the function n is not known, only its probability
density function is known (at best).

The convolution process is absolutely fundamental to so many aspects of physics.
It describes the smearing or blurring of one function with another which can be seen
in terms of the information content of a signal being distorted by that of another. The
convolution process is also of fundamental importance to statistics in that it describes
the statistical distribution of a system that has evolved from combining two isolated
and distinct sub-systems characterised by specific statistical distributions. Moreover,
as more and more ‘sub-systems’ are combined (linearly), the statistics of the output

6 INTRODUCTION

approaches a normal or Gaussian distribution. This is the so called Central Limit
Theorem which is absolutely fundamental to statistical physics and the stochastic
behaviour systems in general.

A principle requirement is to established the form of the function p. In the ideal
case of a noise free environment (i.e. when n(t) = 0∀t) this can be achieved by
inputting an impulse which is described mathematically in terms of the Dirac delta
function δ (as discussed in detail later in Chapter 2). In this case,

s(t) = p(t)⊗ δ(t) = p(t)

i.e. the output is p(t). For this reason, p is often referred to as the Impulse Response
Function (IPF) because it is in effect, describing the response of a system to an
impulse. This fundamental model has an equivalence in frequency space, and, via the
convolution theorem can be written as (with n(t) = 0∀t)

S(ω) = P (ω)F (ω)

where S, P and F are the spectra of s, p and f respectively and ω is the (angular)
frequency. Here, P characterises the way in which the frequency distribution of the
input is transferred to the output and for this reason it is commonly referred to
as the (frequency) Transfer Function (TF). In this sense, we can define an ideal
system as one in which P (ω) = 1∀ω. The addition of noise is an important aspect of
signal processing systems because it must always be assumed that no signal or signal
processing system is noise free. The physical origins of noise are determined by a
range of effects which vary considerably from one system to the next. In each case,
suitable statistical models are required to model the noise term which in turn, can be
used to design algorithms for processing signals that are robust to noise. This involves
the so called extraction of information from noise which is discussed in Chapter 15
using Bayesian estimation methods.

The basic model for a signal, i.e.

s(t) = p(t)⊗ f(t) + n(t)

can be cast in terms of both piecewise continuous and generalised functions and also
discrete functions or vectors. Indeed, many authors present the problem in terms of
the equation

s = Lf + n

where L is a linear operator (typically a linear matrix operation) and s,p and n are
vectors describing the discrete or digital versions of the functions s, p and n respec-
tively (as given on the front cover this book). Moreover, there is a close connection
between the application of this model for signal processing and that associated with
the general solution to physical problems specified by certain partial differential equa-
tions (PDE’s) which are linear, homogeneous or inhomogeneous with homogeneous
and/or inhomogeneous boundary conditions. In this case, it is often useful to de-
termine how the system described by a PDE responds to an impulse. The solution
to this problem is known as a Green’s function named after the English mathemati-
cian and physicist George Green whose work dates from early nineteenth century and
who provided one of most indispensable mathematical tools of the twentieth century.

INTRODUCTION 7

However, the Green’s function is essentially an impulse response function, an exam-
ple being the wave generated by dropping a small stone vertically into a large pool of
still water. It provides a solution that is based on a convolution process which is an
underlying theme of many models in engineering, physics and statistics for example
and a central component of the methods and ideas discussed in this work.

As an example, consider the process of diffusion, in which a source of material
diffuses into a surrounding homogeneous medium; the material being described by
some source function which is a function of both space and time and of compact
support (i.e. has limited spatial extent). Physically, it is to be expected that the
material will increasingly ‘spread out’ as time evolves and that the concentration
of the material decreases further away from the source. It can be shown that a
Green’s function solution to the diffusion equation yields a result in which the spatial
concentration of material is given by the convolution of the source function with a
Gaussian function and that the time evolution of this process is governed by a similar
process. Such a solution is determined by considering how the process of diffusion
responds to a single point source (a space-time dependent impulse) which yields the
Green’s function (in this case, a Gaussian function). The connection between the
basic convolution model for describing signals and systems and the Green’s function
solution to PDEs that describe these systems is fundamental. Thus, the convolution
model that is the basis for so much of the material discussed in this work is not
phenomenological but based on intrinsic methods of analysis in mathematical physics
via the application of Green’s function solutions. A useful example of this is given in
Chapter 4 in terms of a case study which serves to highlight the role of the Fourier
transform and the convolution operation in terms of the ‘physics’ of the propagation
and scattering of waves and the signal model (a convolution integral) that this physics
produces.

Part I

Signal Analysis

8

Chapter 1

Complex Analysis

1.1 Introduction

Complex analysis is an essential aspect of signal analysis and processing. Examples
of the use of complex analysis for signal processing include: (i) The Fourier transform
which provides a complex spectrum; (ii) the analytic signal, which is a complex signal
with real and imaginary (quadrature) components; (iii) complex roots or ‘complex
zeros’ for representing a signal; (iv) the amplitude and phase of a signal - essentially
a complex plane or ‘Argand diagram’ representation of a signal. Complex or contour
integration is also often used to derive analytical results relating to ‘filtering’ type
operations on spectral (complex) functions.

In this chapter, for the sake of completeness and with regard to the portfolio of
this book, a short overview of complex analysis is given primarily for those readers
who are not familiar with the subject or need to re-familiarize themselves with it.
The aspects taken from the field of complex analysis focus on those areas that have
direct relevance to the field of signal analysis.

1.2 Complex Numbers

There are a number of ways to introduce a complex number, but, typically, we can
consider the fact that within the real domain, the equation x2 +1 = 0 has no solution.
We therefore specify a solution of the type

x = ±i where i =
√−1.

A complex number has the form z = a+ ib where a and b are real numbers. The real
part of z is defined as Re[z] = a and the imaginary part of z as Im[z] = b and we
consider pure real numbers as a+ i0 and pure imaginary numbers as 0 + ib.

1.2.1 Addition, Subtraction, Multiplication and Division

Addition and subtraction

(a+ ib)± (c+ id) = (a± c) + i(b± d)

9

10 CHAPTER 1. COMPLEX ANALYSIS

Multiplication

(a+ ib)(c+ id) = ac+ iad+ ibc+ ibid = ac+ i(ad+ bc) + i2bd

Now i2 = (
√−1)2 = −1, therefore i2bd = −bd and thus,

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc).

Division
a+ ib

c+ id
must be expressed as A+ iB.

We note that (c+ id)(c− id) = c2 + d2 so that

a+ ib

c+ id

c− id
c− id =

(ac+ bd) + i(bc− ad)
c2 + d2

.

Hence,

A =
ac+ bd

c2 + d2
and B =

bc− ad

c2 + d2
.

1.2.2 Powers of i =
√−1

We note that

i =
√−1, i2 = −1, i3 = −i, i4 = 1 etc.

and

i−1 =
1
i

=
1
i

i

i
=

i

−1
= −i

i−2 = −1, i−3 = i etc.

1.2.3 The Complex Conjugate

If z = a + ib, then z∗ = a − ib and if z = a − ib, then z∗ = a + ib. z∗ is called the
complex conjugate of z. Note that if a+ ib = c+ id, then formally, a = c and b = d.
Also note that

zz∗ = (x+ iy)(x− iy) = x2 + y2

and

Re[z] =
1
2
(z + z∗) = x, Im[z] = − i

2
(z − z∗) = y.

1.2. COMPLEX NUMBERS 11

1.2.4 Geometrical Representation (The Argand Diagram)

Figure 1.1: Geometrical representation of a complex number.

The Argand diagram is based on considering the real and imaginary parts of a
complex number to be the positions on the vertical (imaginary) and horizontal (real)
axis of a conventional graph respectively as shown in Figure 1.1. This leads directly
to polar or (r, θ) notation. Let

r =
√
x2 + y2 =

√
zz∗ ≡| z |,

| z | being referred to as the modulus of z with alternative notation modz. Then
x = r cos θ and y = r sin θ giving

z = r(cos θ + i sin θ), z∗ = r(cos θ − i sin θ)

where
θ = tan−1 y

x
.

The phase θ is referred to as the argument of z and is therefore sometimes donated
by argz. Note that argz ≡ tan−1 y/x is multi-valued. We can restrict argz to a
principal phase or range between −π

2 and π
2 . The value of argz is then referred to as

the ‘principal value’.

Example Consider the complex number z = 1 + i. Then r2 = 1 + 1 = 2 or r =
√

2,
cos θ = 1/

√
2 and sin θ = 1/

√
2. Further, tan θ = 1 so θ = tan−1 1 = 45o or

π/4 radians. Hence, we can write

modz ≡| z |=
√

2, argz =
π

4
.

12 CHAPTER 1. COMPLEX ANALYSIS

Note that in general,
arg z = θ + 2πn

where
n = 0,±1,±2, ...

1.2.5 De Moivre’s Theorem

Suppose that
z1 = r1(cos θ1 + i sin θ1), (1.2.1)

z2 = r2(cos θ2 + i sin θ2).

Then
z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2)]

= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].

Thus, by induction,

z1z2...zn = r1r2...rn[cos(θ1 + θ2 + ...+ θn) + i sin(θ1 + θ2 + ...+ θn)].

Now let

z1 = z2 = ... = zn, r1 = r2 = ... = rn and θ1 = θ2 = ... = θn.

Then
zn
1 = rn

1 [cos(nθ1) + i sin(nθ1)].

But from equation (1.2.1)

zn
1 = rn

1 (cos θ1 + i sin θ1)n.

Hence,
(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

1.2.6 The Complex Exponential

Unlike other functions, whose differentiation and/or integration yields different func-
tions (with varying levels of complexity), the exponential function retains is functional
form under differentiation and/or integration. Thus, we can define the exponential
function as that function f(x) say, such that

f ′(x) ≡ d

dx
f(x) = f(x).

What form should such a function have? Suppose we consider the power series

f(x) = 1 + x+
x2

2!
+
x3

3!
+ ...+

xn

n!
+ ...

1.3. COMPLEX FUNCTIONS 13

Differentiating,

f ′(x) = 0 + 1 + x+
x2

2!
+ ...+

xn−1

(n− 1)!
+ ... = f(x)

as n→∞. This power series is unique with regard to this fundamental property and
is given the special notation e or exp, both of which are used throughout this text.
The reason why e appears so commonly throughout mathematics is because of its
preservation under differentiation and/or integration. This property can be extended
further if we consider an exponential of complex form exp(ix). Suppose we let

f(θ) = cos θ + i sin θ. (1.2.2)

Then
f ′(θ) = − sin θ + i cos θ = if(θ).

Now, a solution to f ′(θ) = if(θ) is

f(θ) = A exp(iθ) (1.2.3)

where A is an arbitrary constant. From equation (1.2.2), f(0) = 1 and from equation
(1.2.3), f(0) = A. Thus A = 1 and

exp(iθ) = cos θ + i sin θ.

Another way of deriving this result is to consider the expansion of exp(iθ), i.e.

exp(iθ) = 1 + iθ+
i2θ2

2!
+
i3θ3

3!
+
i4θ4

4!
+
i5θ5

5!
+ ... = 1 + iθ− θ2

2!
− iθ3

3!
+
θ4

4!
+
iθ5

5!
− ...

= 1− θ2

2!
+
θ4

4!
− ...+ i

(
θ − θ3

3!
+
θ5

5!
− ...

)
= cos θ + i sin θ.

Finally, we note (from De Moivre’s theorem) that

exp(inθ) = (cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

1.3 Complex Functions

Some simple examples of complex functions are

z + 3,
1
z
, zn, exp(z), cos z, a0 + a1z + a2z

2 + ...+ anz
n.

If f(x) is a function of a real variable, then f(z) is a function of a complex variable.
Just as the function y = f(x) defines a mapping from x to y, so the function w = f(z)
defines a mapping from the z-plane to a w-plane as illustrated in Figure 1.2. Both
planes are complex planes.

14 CHAPTER 1. COMPLEX ANALYSIS

Figure 1.2: Mappings of a real function in the real plane (top) and a complex function
in the complex plane (bottom).

Example Consider the function w = z2, then

w = z2 = (x+ iy)2 = x2 − y2 + 2ixy = u+ iv

where u = x2 − y2 and v = 2xy. In general,

w = f(z) = u(x, y) + iv(x, y)

where u = Re[w] and v = Im[w].

1.3.1 Differentiability of a Complex Function

Consider the function w = f(z), then

w + δw = f(z + δz)

and
δw

δz
=
f(z + δz)− f(z)

δz
.

Thus
dw

dz
≡ f ′(z) = lim

δz→0

δw

δz
.

1.3. COMPLEX FUNCTIONS 15

which provides a result consistent with the differentiation of a real function.

Figure 1.3: There are many way to approach a point in the complex plane. A complex
function is differentiable if the same result is obtained irrespective of the path taken
to the point.

However, in the complex plane, there are many ways of approaching z from z + δz.
Thus, the function w = f(z) is said to be differentiable if all paths leading to the
point z yield the same limiting value for the ratio δw/δz as illustrated in Figure 1.3.

1.3.2 The Cauchy-Riemann Equations

Figure 1.4: Two paths are considered: Path 1 is parallel to the x-axis and path 2 is
parallel to the y-axis.

Consider a path that is parallel to the x-axis (path 1 in Figure 1.4) so that δx �=
0, δy = 0 and δz = δx. Then

δw

δz
=
δu+ iδv

δx
=
δu

δx
+ i

δv

δx

and thus,

f ′(z) =
∂u

∂x
+ i

∂v

∂x
.

16 CHAPTER 1. COMPLEX ANALYSIS

Now consider a path parallel to the y-axis (path 2 in Figure 1.4) so that δx = 0, δy �= 0
and δz = iδy. In this case,

δw

δz
=
δu+ iδv

iδy
=
δv

δy
− i δu

δy

and thus,

f ′(z) =
∂v

∂y
− i∂u

∂y
.

As f(z) is assumed to be differentiable at z = x+ iy,

∂u

∂x
+ i

∂v

∂x
=
∂v

∂y
− i∂u

∂y

or after equating real and imaginary parts

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
.

These are necessary conditions for the differentiability of a complex function. Now,
since δz = δx+ iδy,

dw = du+ idv =
∂u

∂x
dx+

∂u

∂y
dy + i

(
∂v

∂x
dx+

∂v

∂y
dy

)
.

Using the Cauchy-Riemann equations

dw =
(
∂u

∂x
dx− ∂v

∂x
dy

)
+ i

(
∂v

∂x
dx+

∂u

∂x
dy

)
=
∂u

∂x
(dx + idy) + i

∂v

∂x
(dx + idy)

=
(
∂u

∂x
+ i

∂v

∂x

)
(dx+ idy) =

(
∂u

∂x
+ i

∂v

∂x

)
dz.

Hence,
dw

dz
=
∂u

∂x
+ i

∂v

∂x
.

Note that the right hand side of the equation above is independent of z.

1.3.3 Analytic Functions

If f(z) is differentiable at every point in a neighbourhood of the point P (see Figure
1.5), we say that it is analytic at the point P .

Example 1 Consider the function w = zz∗ = x2 +y2 in which u = x2 +y2 and v = 0.
Then

∂u

∂x
= 2x,

∂v

∂y
= 0,

∂v

∂x
= 0,

∂u

∂y
= 2y.

1.3. COMPLEX FUNCTIONS 17

In this case, the Cauchy-Riemann equations are satisfied only at the origin x = y = 0.
Hence, | z |2 is differentiable at z = 0 only and it is not an analytic function anywhere
else.

Example 2 Consider the function w = z∗ = x− iy where u = x and v = −y. In this
case,

∂u

∂x
= 1,

∂v

∂y
= −1,

∂u

∂x
�= ∂v

∂y

and
∂u

∂y
= 0,

∂v

∂x
= 0.

Therefore, z∗ is not differentiable anywhere.

Figure 1.5: The neighbourhood of a point P in the complex plane is the region in the
complex plane that (completely) surrounds that point.

Example 3 For the function

w =
1
z

=
1

x+ iy
=

x− iy
x2 + y2

,

u =
x

x2 + y2
and v = − y

x2 + y2
.

In this case,
∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x
.

Therefore, the Cauchy-Riemann equations are satisfied everywhere except at z = 0.
Hence, 1/z is analytic at all points of the z-plane except at z = 0.

Example 4 Consider the function

w = exp(z) = exp(x+ iy) = exp(x)(cos y + i sin y),

so that
u = exp(x) cos y, v = exp(x) sin y

18 CHAPTER 1. COMPLEX ANALYSIS

and
∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x
.

In this example, the Cauchy-Riemann equations are satisfied everywhere in the z-
plane. Hence, exp(z) is an analytic function at all points in the complex plane.

Note that | exp(z) |= exp(x) and arg[exp(z)] = y+2πn, n = 0,±1,±2, Thus,
exp(z) is a periodic function with a period of 2π.

1.3.4 Some Important Results

For analytic functions w1 = f1(z) and w2 = f2(z):

d

dz
(w1 + w2) =

dw1

dz
+
dw2

dz
,

d

dz
(w1w2) = w1

dw2

dz
+ w2

dw1

dz
,

d

dz

(
1
w

)
= − 1

w2

dw

dz
, w �= 0

and
dz

dw
=

1
dw
dz

,
dw

dz
�= 0.

If w = w(ξ) and ξ = ξ(z), then
dw

dz
=
dw

dξ

dξ

dz
.

Also
d

dz
zn = nzn−1

where n is an integer.

1.4 Complex Integration

The integral of a complex function is denoted by

I =
∫
C

f(z)dz

where
f(z) = u(x, y) + iv(x, y), dz = dx+ idy

and C denotes the ‘path’ of integration in the complex plane (see Figure 1.6). Hence,

I =
∫
C

(u+ iv)(dx+ idy) =
∫
C

(udx− vdy) + i

∫
C

(udy + vdx)

1.4. COMPLEX INTEGRATION 19

with the fundamental results∫
C

[f(z) + g(z)]dz =
∫
C

f(z)dz +
∫
C

g(z)dz,

∫
C

kf(z)dz = k

∫
C

f(z)dz

and ∫
C1+C2

f(z)dz =
∫
C1

f(z)dz +
∫
C2

f(z)dz

as illustrated in Figure 1.7.

Figure 1.6: Integration in the complex plane is taken to be along a path C.

Figure 1.7: Integration over two paths C1 and C2 in the complex plane is given by
the sum of the integrals along each path.

20 CHAPTER 1. COMPLEX ANALYSIS

Example 1 Integrate f(z) = 1/z from 1 to z along a path C that does not pass
through z = 0 (see Figure 1.8), i.e. evaluate the integral

I =
∫
C

dz

z
.

Let z = r exp(iθ), so that dz = dr exp(iθ) + r exp(iθ)idθ. Then

I =
∫
C

exp(iθ)(dr + ridθ)
r exp(iθ)

=
∫
C

(
dr

r
+ idθ

)

=

|z|∫
1

dr

r
+ i

θ+2πn∫
0

dθ

where n is the number of time that the path C encircles the origin in the positive
sense, n = 0,±1,±2, Hence

I = ln | z | +i(θ + 2πn) = ln z.

Note, that substitutions of the type z = r exp(iθ) are a reoccurring theme in the
evaluation and analysis of complex integration.

Figure 1.8: Illustration of the path of integration C for integrating 1/z from 1 to z.

Example 2 Integrate f(z) = 1/z around z = exp(iθ) where 0 ≤ θ ≤ 2π (see Figure
1.9). Here,

dz = exp(iθ)idθ

and

I =
∫
C

1
z
dz =

2π∫
0

idθ = 2πi.

1.4. COMPLEX INTEGRATION 21

The path of integrationC in this case is an example of a contour. A Contour is a simple
closed path. The domain or region of the z-plane through which C is chosen must
be simply connected (no singularities or other non-differentiable features). Contour
integrals are a common feature of complex analysis and will be denoted by

∮
from

here on.

Important Result ∮
C

dz

zn+1
= 0, n > 0.

Proof Let z = r exp(iθ), then dz = r exp(iθ)idθ and∫
C

dz

zn+1
=

2π∫
0

r exp(iθ)idθ
rn+1 exp[i(n+ 1)θ]

=
i

rn

2π∫
0

exp(−inθ)dθ

= − i

rn

1
in

[exp(−inθ)]2π
0 = − 1

rn

1
n

[exp(−2πin)− 1] = 0.

Note, that n must be an integer > 0.

Figure 1.9: Integration of 1/z around z = exp(iθ), 0 ≤ θ ≤ 2π.

1.4.1 Green’s Theorem in the Plane

Theorem If S is a closed region in the x− y plane bounded by a simple closed curve
C and if P and Q are continuous function of x and y having continuous derivatives
in S, then ∮

C

(Pdx+Qdy) =
∫
S

∫ (
∂Q

∂x
− ∂P

∂y

)
dxdy

22 CHAPTER 1. COMPLEX ANALYSIS

Proof Consider the accompanying diagram (see Figure 1.10).

Let curve ACB be described by the equation

y = Y1(x).

Let curve BDA be described by the equation

y = Y2(x).

Let curve DAC be described by the equation

x = X1(y).

Let curve CBD be described by the equation

x = X2(y).

Figure 1.10: Path of integration for the proof of Green’s theorem in the plane.

Then,

∫
S

∫
∂P

∂y
dxdy =

b∫
a

⎛⎝ Y2∫
Y1

∂P

∂y
dy

⎞⎠ dx =

b∫
a

[P (x, Y2)− P (x, Y1)]dx

=

b∫
a

P (x, Y2)dx−
b∫

a

P (x, Y1)dx = −
b∫

a

P (x, Y1)dx−
a∫

b

P (x, Y2)dx = −
∮
C

Pdx.

1.4. COMPLEX INTEGRATION 23

Similarly, ∫
S

∫
∂Q

∂x
dxdy =

d∫
c

⎛⎝ X2∫
X1

∂Q

∂x
dx

⎞⎠ dy =

d∫
c

[Q(X2, y)−Q(X1, y)]dy

=

d∫
c

Q(X2, y)dy −
d∫

c

Q(X1, y)dy =

d∫
c

Q(X2, y)dy +

c∫
d

Q(X1, y)dy =
∮
C

Qdy.

1.4.2 Cauchy’s Theorem

Theorem If f(z) is analytic and f ′(z) is continuous in a simply connected region R,
and C is a simple closed curve lying within R, then∮

C

f(z)dz = 0.

Proof ∮
C

f(z)dz =
∮
C

(udx− vdy) + i

∮
C

(udy + vdx).

Using Green’s theorem in the plane, i.e.∮
C

(Pdx+Qdy) =
∫
S

∫ (
∂Q

∂x
− ∂P

∂y

)
dxdy

where P and Q have continuous partial derivatives, we get∮
C

f(z)dz =
∫
S

∫ (
−∂v
∂x
− ∂u

∂y

)
dxdy + i

∫
S

∫ (
∂v

∂y
− ∂u

∂x

)
dxdy.

But from the Cauchy-Riemann equations

∂v

∂x
= −∂u

∂y

and
∂u

∂x
=
∂v

∂y
.

Hence, ∮
C

f(z)dz = 0.

Corollary 1 If C1 and C2 are two paths joining points a and z in the z-plane (see
Figure 1.11) then, provided f(z) is analytic at all points on C1 and C2 and between
C1 and C2,

z∫
a|C1↑

f(z)dz =

z∫
a|C2↑

f(z)dz.

24 CHAPTER 1. COMPLEX ANALYSIS

Here, ↑ denotes that the path of integration is in an anti-clockwize direction and ↓ is
taken to denote that the path of integration is in a clockwize direction. This result
comes from the fact that the path taken is independent of the integral since from
Cauchy’s theorem ⎛⎜⎝ z∫

a|C1↑

+

a∫
z|C2↓

⎞⎟⎠ f(z)dz = 0

and thus,
z∫

a|C1↑

f(z)dz = −
a∫

z|C2↓

f(z)dz =

z∫
a|C2↑

f(z)dz.

Figure 1.11: An integral is independent of the path that is taken in the complex plane.

Corollary 2 If f(z) has no singularities in the annular region between the contours
C1 and C2, then ∮

C1↑

f(z)dz =
∮

C2↑

f(z)dz.

We can show this result by inserting a cross-cut between C1 and C2 to produce a
single contour at every point within which f(z) is analytic (Figure 1.12). Then, from
Cauchy’s theorem

∫
C1↑

f(z)dz +

b∫
a

f(z)dz −
∫

C2↓

f(z)dz +

d∫
c

f(z)dz = 0.

1.4. COMPLEX INTEGRATION 25

Rearranging, ∫
C1↑

f(z)dz +

b∫
a

f(z)dz −
c∫

d

f(z)dz =
∫

C2↑

f(z)dz.

But
b∫

a

f(z)dz −
c∫

d

f(z)dz = 0

and hence, ∮
C1↑

f(z)dz =
∮

C2↑

f(z)dz.

Figure 1.12: Two contours C1 and C2 made continuous through a cross-cut.

1.4.3 Defining a Contour

A contour can be defined around any number of points in the complex plane. Thus,
if we consider three points z1, z2 and z3, for example, then the paths Γ1,Γ2 and Γ3

respectively can be considered to be simply connected as shown in Figure 1.13. Thus,
we have ∮

C

f(z)dz =
∫
Γ1

f(z)dz +
∫
Γ2

f(z)dz +
∫
Γ3

f(z)dz.

Example

I =
∮
C

dz

z
=
∫
Γ

dz

z

26 CHAPTER 1. COMPLEX ANALYSIS

where Γ is a circle which can be represented in the form z = r exp(iθ), 0 ≤ θ ≤ 2π.
Then, dz = r exp(iθ)idθ and

∫
Γ

dz

z
=

2π∫
0

idθ = 2πi.

Figure 1.13: Defining the contour C which encloses three points in the complex plane.

1.4.4 Example of the Application of Cauchy’s Theorem

Let us consider the evaluation of the integral
∞∫
0

sinx
x

dx.

Consider the complex function exp(iz)/z which has one singularity at z = 0. Note
that we have chosen the function exp(iz)/z because it is analytic everywhere on and
within the contour illustrated in Figure 1.14. By Cauchy’s theorem,∫

CR

exp(iz)
z

dz +

−r∫
−R

exp(ix)
x

dx+
∫
Cr

exp(iz)
z

dz +

R∫
r

exp(ix)
x

dx = 0.

We now evaluate the integrals along the real axis:

R∫
r

exp(ix)
x

dx+

−r∫
−R

exp(ix)
x

dx =

R∫
r

exp(ix)
x

dx−
R∫

r

exp(−ix)
x

dx =

R∫
r

exp(ix)− exp(−ix)
x

dx

= 2i

R∫
r

sinx
x

dx = 2i

∞∫
0

sinx
x

dx as R→∞ and r → 0.

1.4. COMPLEX INTEGRATION 27

Evaluating the integral along Cr:

∫
Cr

exp(iz)
z

dz =

0∫
π

exp[ir(cos θ + i sin θ)]idθ [with z = r exp(iθ)]

= −
π∫

0

exp[ir(cos θ + i sin θ)idθ = −
π∫

0

exp(0)idθ as r→ 0 (i.e.− iπ).

Figure 1.14: Contour used for evaluating the integral of sin(x)/x, x ∈ [0,∞).

Evaluating the integral along CR:

∫
CR

exp(iz)
z

dz =

π∫
0

exp[iR(cos θ + i sin θ)idθ [with z = R exp(iθ)]

=

π∫
0

exp(iR cos θ) exp(−R sin θ)idθ = 0 as R→∞.

Combining the results,

2i

∞∫
0

sinx
x

dx− iπ = 0.

Hence,
∞∫
0

sinx
x

dx =
π

2
.

28 CHAPTER 1. COMPLEX ANALYSIS

1.4.5 Cauchy’s Integral Formula

Theorem If f(z) is analytic in a simply connected region R and C is a contour that
lies within R and encloses point z0, then∮

C

f(z)
z − z0 dz = 2πif(z0).

Proof Consider a small circle Γ with center z0 and radius r, lying entirely within C
(see Figure 1.15).

Figure 1.15: Circular contour Γ within arbitrary contour C enclosing a point z0.

Then
I =

∮
C

f(z)
z − z0 dz =

∮
Γ

f(z)
z − z0 dz.

Let z − z0 = r exp(iθ), then dz = r exp(iθ)idθ and

I =

2π∫
0

f [z0 + r exp(iθ)]
r exp(iθ)

r exp(iθ)idθ = i

2π∫
0

f [z0+r exp(iθ)]dθ = i

2π∫
0

f(z0)dθ as r → 0

= 2πif(z0).

Hence,

f(z0) =
1

2πi

∮
C

f(z)
z − z0 dz.

1.5 Cauchy’s Residue Theorem

Cauchy’s residue theorem is fundamental to complex analysis and is used routinely
in the evaluation of integrals. We start with some important preliminaries. If f(z) is
analytic at z0 it may be expanded as a power series in (z− z0), i.e. as a Taylor series,

f(z) = a0 + a1(z − z0) + a2(z − z0)2 + ...+ an(z − z0)n

1.5. CAUCHY’S RESIDUE THEOREM 29

where
an =

1
n!
f (n)(z0).

To expand a function f(z) which is analytic (apart from singular points) about one
of its singular points z0 we can write

f(z) = a0 + a1(z − z0) + a2(z − z0)2 + ...+ an(z − z0)n

+
b1

z − z0 +
b2

(z − z0)2 + ...+
bn

(z − z0)n
.

This series has two component parts, i.e. f(z) = analytic part + principal part.
Expanding the function in this way allows us to develop the residue theorem.

1.5.1 Poles and Residues

If the principal part terminates at the term bn

(z−z0)n , f(z) is said to have a pole of
order n at z0. The coefficient b1 is called the residue of f(z) at z0.

Examples

f(z) =
3
z

z = 0 is a simple pole and the residue is 3.

f(z) =
1
z2

z = 0 is a double pole with residue is 0.

f(z) = sin z +
5
z
− 2
z3

z = 0 is a pole of order 3; the residue is 5.

f(z) =
2i

z2 − 1
=

i

z − 1
− i

z + 1

has a simple pole at z = 1 with a residue i and a simple pole at z = −1 with residue
−i.

1.5.2 Residues at Simple Poles

To find the residue at a simple pole z0 we write

f(z) = g(z) +
b1

z − z0 .

Then
(z − z0)f(z) = (z − z0)g(z) + b1

giving
b1 = lim

z→z0
[(z − z0)f(z)].

30 CHAPTER 1. COMPLEX ANALYSIS

Example

f(z) =
1

(z − 1)(z + 2)(z + 3)

has simple poles at
z = 1, z = −2, z = −3

with residues
1
12
, −1

3
,

1
4
.

1.5.3 Residues at Poles of Arbitrary Order

Residue at a double pole

f(z) = g(z) +
b1

(z − z0) +
b2

(z − z0)2

or
(z − z0)2f(z) = (z − z0)2g(z) + (z − z0)b1 + b2.

Now
d

dz
[(z − z0)2f(z)] =

d

dz
[(z − z0)2g(z)] + b1.

Hence,

b1 = lim
z→z0

d

dz
[(z − z0)2f(z)].

Residue at a triple pole

f(z) = g(z) +
b1

(z − z0) +
b2

(z − z0)2 +
b3

(z − z0)3

or
(z − z0)3f(z) = (z − z0)3g(z) + b1(z − z0)2 + b2(z − z0) + b3.

Now
d2

dz2
[(z − z0)3f(z)] =

d2

dz2
[(z − z0)3g(z)] + 2b1.

Hence

b1 =
1
2

lim
z→z0

d2

dz2
[(z − z0)3f(z)].

Residue at an n-order pole

From the results above, by induction, the residue at a pole of order n is given by

b1 =
1

(n− 1)!
lim

z→z0

d(n−1)

dz(n−1)
[(z − z0)nf(z)].

1.5. CAUCHY’S RESIDUE THEOREM 31

1.5.4 The Residue Theorem

Theorem If f(z) is analytic in and on a closed contour C except for a finite number
of poles within C, then ∮

C

f(z)dz = 2πi
∑

i

Ri

where
∑
i

Ri=sum of residues of f(z) at those poles which lie in C.

Proof Make cuts and small circles Γi around each pole zi which lies within the contour
C (see Figure 1.16).

Figure 1.16: Cuts of small circles Γi around poles at zi which lie within the contour
C.

Since f(z) is analytic at all points within the new contour, by Cauchy’s theorem∫
C↑

f(z)dz +
∑

i

∫
Γi↓

f(z)dz = 0

or ∫
C↑

f(z)dz =
∑

i

∫
Γi↑

f(z)dz.

Thus, ∮
C

f(z)dz =
∑

i

∮
Γi

f(z)dz

If the point zi is a pole of order n, then on the small circle Γi

f(z) = g(z) +
b1

z − zi
+

b2
(z − zi)2

+ ...+
bn

(z − zi)n
.

32 CHAPTER 1. COMPLEX ANALYSIS

By Cauchy’s Theorem ∮
Γi

g(z)dz = 0

and ∮
Γi

dz

(z − zi)n
= 0, n = 2, 3, 4, ...

Hence, ∮
Γi

f(z)dz = b1

∮
Γi

dz

z − zi
= 2πib1 ≡ 2πiRi.

where Ri is the residue associate with the pole z = zi. Repeating this analysis for all
poles within C, we have ∮

C

f(z)dz = 2πi
∑

i

Ri

1.5.5 Evaluation of Integrals using the Residue Theorem

Example 1 Evaluate the contour integral∮
C

1 + 4z − 3z2

z − 1
dz

around:

(i) a circle

x2 + y2 =
1
4
;

(ii) an ellipse
x2

9
+
y2

4
= 1.

The integral has a simple pole at z = 1 and the residue at this pole is

lim
z→1

(
(z − 1)(1 + 4z − 3z2)

z − 1

)
= 2.

The pole is outside the circle | z |= 1
2 and thus,∮

|z|= 1
2

1 + 4z − 3z2

z − 1
dz = 0.

The pole is inside the ellipse, hence,∮
ellipse

1 + 4z − 3z2

z − 1
dz = 2πi× 2 = 4πi.

1.5. CAUCHY’S RESIDUE THEOREM 33

Example 2 Evaluate ∮
C

sin(πz)
(z − 1)4

dz

where C is the circle | z |= 3 (or any other circle that encloses z = 1). There is a pole
of order 4 at z = 1. The residue in this case is

1
3!

lim
z→1

d3

dz3
sin(πz) = − 1

3!
lim
z→1

π3 cos(πz) =
π3

6
.

By Cauchy’s theorem ∮
C

sin(πz)
(z − 1)4

dz = 2πi× π3

6
= i

π4

3
.

Example 3 Evaluate
∞∫

−∞

dx

x2 + 1
.

Consider
1

z2 + 1
=

1
(z + i)(z − i)

which has poles at ±i and the contour illustrated in Figure 1.17. The residue at z = i
is

lim
z→i

(
z − i

(z + i)(z − i)
)

=
1
2i

and thus
R∫

−R

dx

x2 + 1
+
∫
Γ

dz

z2 + 1
= 2πi× 1

2i
= π.

The integral over Γ can be written in the form [with z = R exp(iθ)]∫
Γ

R exp(iθ)idθ
R2 exp(2iθ) + 1

→ 0 as R→∞.

Hence
∞∫

−∞

dx

x2 + 1
= π

and (since the integrand is symmetric about x = 0)

∞∫
0

dx

x2 + 1
=
π

2
.

34 CHAPTER 1. COMPLEX ANALYSIS

Example 4 Evaluate
∞∫
0

√
x

1 + x2
dx.

Consider the complex function

f(z) =
√
z

1 + z2

and the contour illustrated in Figure 1.18. Let z = R exp(iθ), then on the path just
above the cut, θ = 0 and

f(z) =

√
R exp(0)

1 +R2 exp(0)
=

√
x

1 + x2
.

On the path just below the cut, θ = 2π and

f(z) =

√
R exp(πi)

1 +R2 exp(4πi)
= −

√
x

1 + x2
.

Figure 1.17: Contour used to evaluate the integral of the function (1 + x2), x ∈
(−∞,∞).

The poles inside the contour exist at z = ±i. The residue at z = i is

lim
z→i

(
(z − i)√z

(z + i)(z − i)
)

=
√
i

2i
=

exp(iπ/4)
2i

=
1√
2

+ i√
2

2i
=
√

2
4

(1 − i).

The residue at z = −i is

lim
z→−i

(
(1 + i)

√
z

(z − i)(z + i)

)
=
√−i
−2i

=
exp(3iπ/4)

−2i
=
√

2
4

(−1− i).

1.5. CAUCHY’S RESIDUE THEOREM 35

By Cauchy’s residue theorem∮
Γ

f(z)dz = 2πi
∑

i

Ri = 2πi×
√

2
4

(1− i− 1− i) = 2πi
√

2
4

(−2i) =
√

2π.

Hence,

R∫
r

√
x

1 + x2
dx+

∫
Γ

√
z

1 + z2
dz +

r∫
R

−√x
1 + x2

dx+
∫
γ

√
z

1 + z2
dz =

√
2π

=⇒ 2

R∫
r

√
x

1 + x2
dx+

2π∫
0

√
Reiθ/2Reiθidθ

1 +R2e2iθ
+

0∫
2π

√
reiθ/2reiθidθ

1 + r2e2iθ
=
√

2π.

Finally, √
RR

1 +R2
→ 0 as R→∞ and

√
rr

1 + r2
→ 0 as r → 0

and hence
∞∫
0

√
x

1 + x2
dx =

√
2π
2

=
π√
2
.

Figure 1.18: Contour used to evaluate the integral of the function
√
x/(1 + x2), x ∈

[0,∞).

36 CHAPTER 1. COMPLEX ANALYSIS

1.5.6 Evaluation of Trigonometric Integrals

To evaluate integrals of the form

2π∫
0

f(cos θ, sin θ)dθ

we can substitute z = exp(iθ), so that

cos θ =
1
2

(
z +

1
z

)

sin θ =
1
2i

(
z − 1

z

)
dθ =

dz

iz

and integrate round a unit circle | z |= 1.

Example Evaluate

I =

2π∫
0

dθ

2 + cos θ
.

Consider

I =
∮
C

dz/iz

2 + 1
2

(
z + 1

z

) =
2
i

∮
C

dz

z2 + 4z + 1
.

Now, z2 + 4z + 1 = 0 when z = −2 ± √3 and the residue at z = −2 +
√

3 is 1
2
√

3
.

Hence,

I =
2
i
× 2πi× 1

2
√

3
=

2π√
3
.

1.6 Summary of Important Results

Complex numbers
z = x+ iy; x = Re[z], y = Imz

Complex conjugate
z∗ = x− iy

Polar representation

z = r cos θ + ir sin θ, r =
√
x2 + y2, θ = tan−1

(y
x

)
De Moivre’s Theorem

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

1.6. SUMMARY OF IMPORTANT RESULTS 37

Complex exponential
exp(iθ) = cos θ + i sin θ

Complex functions

w = f(z) is a mapping from the z = x+ iy plane to the w = u+ iv plane.

Cauchy-Riemann equations

The necessary conditions for the differentiability of a complex function, i.e.

∂u

∂x
=
∂v

∂y

and
∂v

∂x
= −∂u

∂y
.

Analytic functions

Functions f(z) that are differentiable at everywhere in a neighbourhood of the point
z, i.e. complex functions that satisfy the Cauchy-Riemann equations.

Complex integrals

I =
∫
C

f(z)dz

where C defines a path in the complex plane; a contour if C is a closed path where
the notation is

I =
∮
C

f(z)dz.

Green’s theorem in the plane∮
C

(Pdx+Qdy) =
∫
S

∫ (
∂Q

∂x
− ∂P

∂y

)
dxdy

Cauchy’s theorem ∮
C

f(z) = 0

where f(z) is analytic in a simply connected region.

Cauchy’s integral formula ∮
C

f(z)
z − z0 dz = 2πif(z0)

38 CHAPTER 1. COMPLEX ANALYSIS

Cauchy’s residue theorem ∮
C

f(z)dz = 2πi
∑

i

Ri

where Ri are the residues of f(z) at the poles which lie within C.

1.7 Further Reading

There are a wide range of text books covering complex analysis that have been pub-
lished over many years. The following texts provide some examples covering these
years.

• Copson E T, An Introduction to the Theory of Functions of a Complex Variable,
Oxford University Press, 1935.

• Titchmarsh E C, The Theory of Functions, Oxford University Press, 1939.

• Knopp K, Theory of Functions, Dover Publications, 1945.

• Apostol T M, Mathematical Analysis, Addison-Wesley, 1957.

• Fuchs B A and Shabat B V, Functions of a Complex Variable, Pergamon Press,
1964.

• Silverman R A, Complex Analysis with Applications, Prentice -Hall, 1974.

• Churchill R V and Brown J W, Complex Variables and Applications, McGraw-
Hill, 1984.

• Paliouras J D and Meadows D S, Complex Variables for Scientists and Engi-
neers, Macmillan Publishing Company, 1990.

1.8 Problems

1.1 Write the following complex numbers z in the form z = a + ib where a = Re[z]
and b = Im[z]:

(i)
1 + i

2− i , (ii)
1
i5
, (iii)

4− 5i
(2 − 3i)2

,

(iv)
(1 + 2i)(1 + 3i)(3 + i)

1− 3i
, (v)

(
−1

2
+ i

√
3

2

)2

.

1.2 Plot the following complex numbers in the z-plane: (i) z, (ii) z∗, (iii) z + z∗, (iv)√
(zz∗), (v) iz.

1.8. PROBLEMS 39

1.3 If z1 and z2 are complex numbers, prove that

(z1 + z2)∗ = z∗1 + z∗2

and that
(z1z2)∗ = z∗1z

∗
2 .

1.4 Find the moduli and the arguments of the following: (i) 1− i√3, (ii) exp(iπ/2) +√
2 exp(iπ/4), (iii) (1 + i) exp(iπ/6), (iv) z1z2, (v) z1/z2 where z1 = 2 exp(iπ/5) and

z2 = 3 exp(iπ/3).

1.5 Show that: (i) exp(iπ) + 1 = 0, (ii) exp(iπ/2) − i = 0, (iii) ii = 1/
√
eπ, (iv)

i1/i =
√
eπ, (v) i1/i = i−i.

1.6 If C =
∫

exp(ax) cos bxdx and S =
∫

exp(ax) sin bxdx show that C + iS =∫
exp[(a+ ib)x]dx and hence (ignoring constants of integration) that

C =
exp(ax)
a2 + b2

(a cos bx+ b sin bx)

and

S =
exp(ax)
a2 + b2

(a sin bx− b cos bx).

1.7 Given that z = r exp(iθ) and z − 1 = R exp(iα), show that

Re[ln(z − 1)] =
1
2

ln(1− r2 − 2r cos θ).

1.8 Given that
∞∫

−∞
exp(−x2)dx =

√
π show that

∞∫
0

exp(−x2) cos axdx =
1
2

exp(−a2/4)
√
π

by integrating exp(−z2) around the rectangle whose sides are x = R, x = −R, y =
0, y = a/2, and letting R→∞.

1.9 Evaluate the following contour integrals:

(i)
∫
z3 − z + 2
z − 1

dz around x2 + 2y2 = 4 and around x2 + y2 =
1
2
,

(ii)
∫

3z2 − 2z + 1
(z2 + 1)(z − 1)

dz around x2 + y2 = 4.

1.10 Show that ∞∫
−∞

dx

x2 + 2x+ 2
= π

40 CHAPTER 1. COMPLEX ANALYSIS

by integrating (z2 + 2z + 2)−1 around a large semicircle.

1.11 Evaluate
2π∫
0

dθ

2 + sin θ

by writing z = exp(iθ) and integrating around the unit circle.

1.12 By integrating exp(iz)/(1 + z2) around a large semicircle show that

∞∫
0

cosx
1 + x2

dx =
π

2e
.

Chapter 2

The Delta Function

This chapter is primarily concerned with an introduction to the delta or δ-function
which is used routinely in the study of signals and systems. However, we also introduce
the convolution integral (a natural consequence of the sampling property of the δ-
function) and further, consider the role of the Green’s function. Although the Green’s
function is not a necessary pre-requisite for much of the mathematical background
required in signal analysis, it does provides an important link between the δ-function
and the convolution process - a process that is fundamental to signal analysis and
processing and is related to a fundamental approach to solving linear inhomogeneous
partial differential equations. Thus, it is introduced to the reader in this chapter for
reasons of both interest and continuity.

Since the mid 1930s, engineers and physicists have found it convenient to introduce
fictitious functions having idealized properties that no physically significant functions
can possibly possess. A typical example of these functions is the so-called Dirac delta
function, which is defined by some authors as having the following properties:

δ(t) =

{
0, t �= 0;
∞, t = 0.

∞∫
−∞

f(t)δ(t)dt = f(0).

The δ-function was first introduced by Paul Dirac in the 1930s as part of his pioneering
work in the field of quantum mechanics but the idea may well have been around
in mathematical circles for some time before that. Nevertheless, the δ-function is
sometimes referred to as the Dirac δ-function. Clearly, such a function does not exist
in the classical (analysis) sense. It was originally referred to by Dirac as an improper
function and he recommended its use in analysis only when it is obvious that no
inconsistency will follow from it.

When attempting to provide a rigorous interpretation of the above equations, it
is necessary to generalize the concept of a function. It was the work of L Schwartz
in the 1950s which put the theory of δ(t), and another fictitious functions, on a
firm foundation. The mathematical apparatus developed by Schwartz is known as

41

42 CHAPTER 2. THE DELTA FUNCTION

the ‘Theory of Distributions’ - more accessible and simplified versions of this theory
being developed in the classical text books of Lighthill and Zemanian for example
which form the basis of the theory of generalized functions.

The δ-function is just one of a class of ‘generalized functions’ that has fundamental
importance in signal analysis. It is a function that needs to be introduced at this stage
in order for the reader to be acquainted with its use later on. It is, for example, of
fundamental importance in generalized Fourier analysis and in the sampling theorem
which are discussed later on in Part I of this work. We shall start by introducing some
special functions that are of particular importance in signal analysis and are related
to definitions and applications involving the δ-function. We consider the functions
discussed here to be functions of t which is taken to denote time.

2.1 Some Important Generalized Function

The Tophat Function

The tophat function is defined as

H(t) =

{
1, | t |≤ T ;
0, | t |> T.

The Unit Step Function

We define the unit step function U by the relation

U(t) =

{
1, t > 0;
0, t < 0.

where U(0) is undefined. Where necessary, we adopt the following convention:

Uc(t) =

⎧⎪⎨⎪⎩
1, t > 0;
c, t = 0;
0, t < 0.

where c is any value between 0 and 1, i.e. c ∈ [0, 1].

The Signum Function

The signum function sgn is defined as

sgn(t) =

{
1, t > 0;
−1, t < 0.

Note that
sgn(t) = U(t)− U(−t)

and
U(t) =

1
2
[1 + sgn(t)].

2.2. THE DELTA FUNCTION 43

Each of these functions have discontinuities and are therefore in the classical sense,
not differentiable. If we let f be any function whose only discontinuity is a simple
‘jump’ discontinuity at t = a, then f can always be expressed in the form

f(t) = φ1(t)U(a− t) + φ2(t)U(t− a)

where φ1 and φ2 are continuous everywhere.

The Comb Function

Another function that is of importance in signal analysis (in particular, in the analysis
of sampled functions) is the comb function given by

comb(t) =
∞∑

n=−∞
δ(t− nT)

where T is a constant and δ is the δ-function whose properties are now discussed.

2.2 The Delta Function

If we assume the existence of a δ-function which behaves formally as the derivative of
the unit step function U , then:

(i) The pointwize behaviour of δ should be given by

δ(t) =

{
∞, t = 0;
0, t �= 0.

(ii) If f is any function which is continuous in a neighbourhood of t = 0, then

∞∫
−∞

f(t)δ(t)dt = f(0).

This last result is known as the sampling property of the δ-function. In particular,

t∫
−∞

δ(τ)dτ =

∞∫
−∞

U(t− τ)δ(τ)dτ = U(t), for t �= 0.

Note that if U(t) = 1 ∀t then (normalization property)

∞∫
−∞

δ(t− τ)dτ = 1.

The properties (i) and (ii) above are actually incompatible. In fact, there is no
function, in the ordinary sense of the term, which can behave consistently as the

44 CHAPTER 2. THE DELTA FUNCTION

‘derivative’ of the unit step function. In what follows, we use the symbol δ as a
convenient way of representing the fundamental sampling operation stated in point
(ii) above, and construct a consistent set of rules for operating with this symbol. No
appeal should be made to the apparent pointwize behaviour of the ‘function’ δ(t),
except for purely descriptive purposes.

The descriptive or symbolic definition is compounded in point (i) above and de-
scribes an infinitely ‘thin’ spike with infinite amplitude which is clearly not a proper
function. It is therefore sometimes convenient to ‘visualize’ a δ-function in terms of
the limit of a sequence of ‘proper’ functions Sn(x) which are known as δ-sequences,
i.e.

δ(t) = lim
n→∞Sn(t).

The δ-function can then be thought of in terms of the role it plays in the following
fundamental definition:

∞∫
−∞

δ(t)f(t)dt = lim
n→∞

∞∫
−∞

Sn(t)f(t)dt = f(0).

2.2.1 Examples of δ-sequences

A delta- or δ-sequence can be generated from any piecewize continuous function that
has the property whereby it contracts and increases its amplitude as a parameter is
increased. Examples include the following:

The Gaussian function

Sn(t) =
n√
π

exp(−n2t2).

The tophat function

Sn(t) =

{
n
2 , | t |≤ 1/n;
0, | t |> 1/n.

The Cauchy function

Sn(t) =
n

π

1
(1 + n2t2)

.

The sinc function
Sn(t) =

n

π
sinc(nt)

where

sinc(nt) =
sin(nt)
nt

.

2.3. PROPERTIES OF THE δ-FUNCTION 45

2.2.2 Integral Representation of the δ-function

The last δ-sequence example provides an important and widely used integral repre-
sentation of the δ-function. Noting that

1
2π

n∫
−n

exp(iωt)dω =
1
2π

exp(int)− exp(−int)
it

=
n

π
sinc(nt),

then, since

lim
n→∞

∞∫
−∞

Sn(t)f(t)dt =

∞∫
−∞

δ(t)f(t)dt

we can write

δ(t) =
1
2π

∞∫
−∞

exp(iωt)dω.

2.3 Properties of the δ-function

Having introduced the δ-function, we now provide a collection of its fundamental
properties.

Generalization Sampling Property

If f is continuous on a neighbourhood of t = a, then

∞∫
−∞

f(t)δ(t− a)dt ≡
∞∫

−∞
f(t)δa(t)dt = f(a).

Note that we use the symbol φa to denote the translation of any given function φ, i.e.

φa(t) ≡ φ(t− a).

Addition

(i)
∞∫

−∞
f(t)[φ(t) + δ(t)]dt =

∞∫
−∞

f(t)φ(t)dt + f(0).

(ii)
∞∫

−∞
f(t)[δa(t) + δb(t)]dt = f(a) + f(b).

46 CHAPTER 2. THE DELTA FUNCTION

Multiplication

(i) For any number k
∞∫

−∞
f(t)[kδ(t)]dt = kf(0).

(ii) For any function φ, the formal product φ(t)δ(t) is defined by

∞∫
−∞

f(t)[φ(t)δ(t)]dt =

∞∫
−∞

[f(t)φ(t)]δ(t)dt = f(0)φ(0).

Differentiation of Discontinuous Functions

Let f be a function defined by

f(t) = φ1(t)u(a− t) + φ2(t)u(t− a)
where φ1 and φ2 are differentiable functions, and f has a jump at t = a. The classical
derivative f ′ of f is defined everywhere except at t = a as

f ′(t) = φ′1(t)u(a− t) + φ′2(t)u(t− a), for t �= a.

The generalized derivative Df is now given by

Df(t) = φ′1(t)u(a− t) + φ′2(t)u(t− a) + δa(t)[φ2(a)− φ1(a)]

= f ′(t) + [f(a+)− f(a−)]δ(t− a).
Integration of the generalized derivative will recover the original function f , complete
with the jump discontinuity at t = a. Integration of the classical derivative loses
the information about the jump. Often it is clear from the context, which of the
derivatives is referred to. The same symbol f ′ is used for either sense of the term.
(But this usage can cause confusion.)

2.4 Derivatives of the δ-function

The derivative δ′ of δ is defined in terms of the following fundamental sampling prop-
erty: For any function f which has a derivative f ′ continuous in some neighbourhood
of t = 0,

∞∫
−∞

f(t)δ′(t)dt = −f ′(0).

More generally, for any given positive integer n, the generalized function δ(n) is defined
by the characteristic sampling property

∞∫
−∞

f(t)δ(n)(t)dt = (−1)nf (n)(0)

2.4. DERIVATIVES OF THE δ-FUNCTION 47

where f is any function with continuous derivatives at least up to nth order in some
neighbourhood of t = 0.

Translation
∞∫

−∞
f(t)δ′a(t)dt = −f ′(a),

∞∫
−∞

f(t)δ(n)
a (t)dt = (−1)nf (n)(a).

Addition
∞∫

−∞
f(t)[φ(t) + δ(n)(t)]dt =

∞∫
−∞

f(t)φ(t)dt + (−1)nf (n)(a).

More generally, if n and m are positive integers with n ≥ m, and if f is any function
with continuous derivatives at least up to the nth order, then,

∞∫
−∞

f(t)[δ(n)
a (t) + δ

(m)
b (t)]dt = (−1)nf (n)(a) + (−1)mf (m)(b).

Multiplication

(i) For any number k,

∞∫
−∞

f(t)[kδ(n)(t)]dt = (−1)nkf (n)(0).

(ii) If φ is continuously differentiable, then φ(t)δ′(t) is defined by

∞∫
−∞

f(t)[φ(t)δ′(t)]dt = −
[
d

dt
(fφ)

]
t=0

= −f ′(0)φ(0)− f(0)φ′(0).

Therefore
φ(t)δ′(t) ≡ φ(0)δ′(t)− φ′(0)δ(t).

(iii) If φ has continuous derivatives at least up to order n, then

φ(t)δn(t) = φ(0)δ(n)(t)−nφ′(0)δ(n−1)(t)+
n(n− 1)

2
φ′′(0)δ(n−2)(t)+...+(−1)nφ(n)(0)δ(t).

48 CHAPTER 2. THE DELTA FUNCTION

2.5 Integration Involving Delta Functions

(i)
t∫

−∞
δ(t)dt = u(t), for t �= 0,

∞∫
−∞

δ(t)dt = 1.

(ii)
t∫

−∞
δ(n)(t)dt = δ(n−1)(t), n ≥ 1,

∞∫
−∞

δ(n)(t)dt = 0.

(iii) If a < 0 < b, then

b∫
a

f(t)δ(n)(t)dt = (−1)nf (n)(0).

(iv) If 0 < a or b < 0, then
b∫

a

f(t)δ(n)(t)dt = 0.

(v) If a = 0 or b = 0, then the integrals are not defined.

Change of Variable

To interpret expressions of the form δ[φ(t)] we can use one or other of the following
methods:

(i) Generalization of the ordinary change of variable rule for integrals. Thus, let
x = φ(t), so that t = φ−1(x) ≡ ψ(x) say. Then,

b∫
a

f(t)δ[φ(t)]dt =

φ(b)∫
φ(a)

f [ψ(x)]δ(x)ψ′(x)dx.

2.6. CONVOLUTION 49

(ii) Alternatively, we can use the fact that

δ[φ(t)] =
d

dt
U(x) =

d

dt
U [φ(t)]

dt

dx
=

d
dtu[φ(t)]

dφ
dt

.

Both methods can be adapted to apply to expressions of the form δ(n)[φ(t)].

Special Results

(i)

δ(αt− β) =
1
| α |δ(t− β/α).

(ii)

δ[(t− α)(t− β)] =
1

β − α [δ(t− α) + δ(t− β)], α < β.

(iii)

δ(sin t) =
∞∑

m=−∞
δ(t−mπ).

Note that δ behaves like an even function and δ′ like an odd function, i.e.

δ(−t) = δ(t), δ′(−t) = −δ′(t).

2.6 Convolution

The convolution f1 ⊗ f2 of two ordinary function f1 and f2 is defined by

(f1 ⊗ f2)(t) =

∞∫
−∞

f1(τ)f2(t− τ)dτ

whenever the infinite integral exists. In particular, this will certainly be the case
whenever f1 and f2 are absolutely integrable, i.e.

∞∫
−∞

| fi(t) | dt <∞, i = 1, 2.

(i) Convolution is associative,

(f1 ⊗ f2)⊗ f3 = f1 ⊗ (f2 ⊗ f3)

and commutative,
f1 ⊗ f2 = f2 ⊗ f1.

50 CHAPTER 2. THE DELTA FUNCTION

If h is a function such that h(t) = 0, ∀t < 0 then,

(f ⊗ h)(t) =

∞∫
0

f(t− τ)h(τ)dτ =

t∫
−∞

f(τ)h(t− τ)dτ.

If, in addition, f is such that f(t) = 0, ∀t < 0 then,

(f ⊗ h)(t) =

t∫
0

f(t− τ)h(τ)dτ =

t∫
0

f(τ)h(t− τ)dτ.

(ii) For any piecewize continuous function f we have

(f ⊗ δ)(t) =

∞∫
−∞

f(t− τ)δ(τ)dτ =

∞∫
−∞

f(τ)δ(t − τ)dτ = f(t)

and

(f ⊗ δa)(t) =

∞∫
−∞

f(t− τ)δa(τ)dτ = f(t− a).

(iii) For any function f which has continuous derivatives at least up to the nth order,

(f ⊗ δ(n))(t) =

∞∫
−∞

f(t− τ)δ(n)(τ)dτ =

∞∫
−∞

f (n)(t− τ)δ(τ)dτ = f (n)(t).

(iv)

(δa ⊗ δb)(t) =

∞∫
−∞

δa(t− τ)δb(τ)dτ = δa(t− b) = δa+b(t),

(δ(n) ⊗ δ(m))(t) =

∞∫
−∞

δ(n)(t− τ)δ(m)(τ)dτ = δ(m+n)(t).

2.7 The Green’s Function

Convolution has been introduced in the previous section as a natural consequence
of our discussion of the δ-function. The convolution of a function with a δ-function
provides us with a working definition of the δ-function. In this sense, it is not the
δ-function itself that is important but the role it plays in this operation, i.e. the
sampling property.

2.7. THE GREEN’S FUNCTION 51

Convolution is absolutely fundamental in terms of modelling analogue (the convo-
lution integral) and digital (the convolution sum) signals. For a time invariant linear
system, the output signal generated by the system responding to some input signal
is modelled in terms of the convolution of the input signal with a function describing
the system. To find this function, we can input a δ-function or, in the ‘engineers
language’, an impulse, in order to determine the Impulse Response Function (IRF)
since the convolution of a function with the δ-function reproduces the function.

The convolution process occurs in many areas of mathematical analysis, statistics,
physics and engineering and can be introduced in many different ways. One way
is through the Green’s function which, as introduced here, provides a link between
the convolution process, the δ-function and a system taken to be described by some
inhomogeneous linear partial differential equation.

Green’s functions are named after the mathematician and physicist George Green
who was born in Nottingham in 1793 and ‘invented’ the Green’s function in 1828. This
invention is developed in an essay written by Green entitled Mathematical Analysis to
the Theories of Electricity and Magnetism originally published in Nottingham in 1828
and reprinted by the George Green Memorial Committee to mark the bicentenary of
the birth of George Green in 1993. In this essay, Green’s function solutions to the
Laplace and Poisson equation are formulated.

The Green’s function is a powerful mathematical tool rather than a physical con-
cept and was successfully applied to classical electromagnetism and acoustics in the
late nineteenth century. More recently, the Green’s function has been the working tool
of calculations in particle physics, condensed matter and solid state physics, quantum
mechanics and many other topics of advanced applied mathematics and mathemat-
ical physics. Just as the Green’s function revolutionized classical field theory in the
nineteenth century (hydrodynamics, electrostatics and magnetism) so it revolution-
ized quantum field theory in the mid-twentieth century through the introduction of
quantum Green’s functions. This provided the essential link between the theories of
quantum electrodynamics in the 1940s and 1950s and has played a major role in theo-
retical physics ever since. It is interesting to note that the pioneering work of Richard
Fynman in the 1950s and 1960s, which lead to the development of the Fynman dia-
gram, was based on the Green’s function. The Fynman diagram can be considered
to be a pictorial representation of a Green’s function (a Green’s function associated
with wave operators) - what Fynman referred to as a ‘propagator’.

The Green’s function is possibly one of the most powerful analytical tools for
solving partial differential equations, a tool that is all the more enigmatic in that the
work of George Green was neglected for nearly thirty years after his death in 1841
and to this day no one knows what he looked like or how and why he developed
his revolutionary ideas. Green’s functions are used mainly to solve certain types
of linear inhomogeneous partial differential equations (although homogeneous partial
differential equations can also be solved using this approach). In principle, the Green’s
function technique can be applied to any linear constant coefficient inhomogeneous
partial differential equation (either scalar or vector) in any number of independent
variables, although in practice, difficulties can arise in computing the Green’s function
analytically. In fact, Green’s functions provide more than just a solution. They
transform a partial differential equation representation of a physical problem into a
integral equation representation, the kernel of the integral equation being composed

52 CHAPTER 2. THE DELTA FUNCTION

(completely or partly) of the Green’s function associated with the partial differential
equation. This is why Green’s function solutions are considered to be one of the most
powerful analytical tool we have for solving partial differential equations, equations
that arise in areas such as electromagnetism (Maxwell’s equations), wave mechanics
(elastic wave equation) optics (Helmholtz equation), quantum mechanics (Schrödinger
and Dirac equations) to name but a few.

In one-dimensional time independent problems, the Green’s function can be con-
sidered to be the solution to an equation of the form1

D̂g = δ(x− x0)

where D̂ is a linear differential operator and g is the (scalar) Green’s function. Green’s
functions can be used to solve problems which are both time dependent or indepen-
dent. In one-dimensional time independent problems for example, Green’s functions
are usually written in the form g(x | x0) or g(x, x0) both forms being equivalent to
g(| x− x0 |).

By way of an example, let us consider the inhomogeneous wave equation given by(
∂2

∂x2
+ k2

)
u(x, k) = f(x)

where f(x) is some source term. We can think of the function u as being the amplitude
of a wave or ‘signal’ at a point x where k defines the frequency of oscillation. We then
introduce the following equation for the Green’s function:(

∂2

∂x2
+ k2

)
g(x | x0, k) = δ(x− x0).

Note that the source term is now replaced with an impulse as described by the δ-
function. Multiplying the first equation by g gives

g

(
∂2

∂x2
+ k2

)
u = gf

and multiplying the second equation by u gives

u

(
∂2

∂x2
+ k2

)
g = uδ(x− x0).

Subtracting the two results and integrating,
∞∫

−∞

(
g
∂2u

∂x2
− u∂

2g

∂x2

)
dx =

∞∫
−∞

fgdx−
∞∫

−∞
uδ(x− x0)dx.

Now, using the generalized sampling property of the δ-function, we get

u =

∞∫
−∞

fgdx−
∞∫

−∞

(
g
∂2u

∂x2
− u∂

2g

∂x2

)
dx.

1It is sometimes useful to define the Green’s function as the solution to an equation of the form
D̂g = −δ(x−x0). Many authors use this definition as it saves having to express the Green’s function
with a negative sign in front of it (see Question 2.9).

2.8. SUMMARY OF IMPORTANT RESULTS 53

Evaluating the second integral on the right hand side,

∞∫
−∞

(
g
∂2u

∂x2
− u∂

2g

∂x2

)
dx =

∞∫
−∞

[
∂

∂x

(
g
∂u

∂x

)
− ∂g

∂x

∂u

∂x
− ∂

∂x

(
u
∂g

∂x

)
+
∂u

∂x

∂g

∂x

]
dx

=

∞∫
−∞

∂

∂x

(
g
∂u

∂x

)
dx−

∞∫
−∞

∂

∂x

(
u
∂g

∂x

)
dx =

[
g
∂u

∂x

]∞
−∞

−
[
u
∂g

∂x

]∞
−∞

= 0

provided of course that u and ∂u
∂x are zero as x → ±∞. With these conditions, we

obtain the Green’s function solution given by

u(x0, k) =

∞∫
−∞

f(x)g(x | x0, k)dx ≡ f(x)⊗ g(| x |, k).

Observe, that this result is just a convolution (since x | x0 = x0 | x) of the source
term f with the Green’s function g. Thus, using the Green’s function (which has been
defined in terms of the δ-function), we obtain a result that has effectively re-cast a
mathematical model for the function u defined in terms of a (inhomogeneous) partial
differential equation to one that is defined in terms of a convolution operation (subject
to appropriate conditions). Since convolution processes are fundamental to modelling
and processing signals (the discrete equivalent being known to engineers as a Finite
Impulse Response filter for example), it is important for the reader to appreciate that
this process has a deeper significance in terms of general (Green’s function) solutions
to linear partial differential equations which in turn, are the basis for describing signal
supporting and processing systems (e.g. the equation for a transmission line). This
is explored further in Chapter 4 using a case study.

To conclude this chapter, the reader should note that the symbol δ may be in-
terpreted as a convenient way of representing the fundamental sampling operation
which maps any continuous function f(t) into the value f(0) which is assumed to be
at the origin. It is convenient to use the integral notation for this operation but it
should be borne in mind, that integrals involving delta functions have at most, only a
symbolic meaning. The material provided in this chapter gives a set of practical rules
for manipulating expressions containing delta functions which cover most situations
of interest.

2.8 Summary of Important Results

Sampling Property

f(t) =

∞∫
−∞

f(τ)δ(t − τ)dτ ≡ f(t)⊗ δ(t).

54 CHAPTER 2. THE DELTA FUNCTION

Delta Sequences

Functions Sn(t) such that

∞∫
−∞

δ(t)f(t)dt = lim
n→∞

∞∫
−∞

Sn(t)f(t)dt = f(0).

Normalization
∞∫

−∞
δ(t− τ)dτ = 1.

Differentiation
∞∫

−∞
f(t)δ(n)

a (t)dt = (−1)nf (n)(a).

Integration
t∫

−∞
δ(t)dt = u(t), t �= 0.

Integral Representation

δ(t) =
1
2π

∞∫
−∞

exp(iωt)dω

Green’s Function

The function defined by the solution to equations of the form (time-independent case)

D̂u(x) = δ(x − x0)

where D̂ is a linear differential operator.

Green’s Function Solution

Solution to equations of the type (time-independent case)

D̂u(x) = f(x)

given by
u(x) = f(x)⊗ g(| x |)

where g is the Green’s function.

2.9. FURTHER READING 55

2.9 Further Reading

• Dirac P A M, The Principles of Quantum Mechanics, Oxford University Press,
1947.

• Van der Pol R, Operational Calculus, Cambridge University Press, 1955.

• Lighthill M J, An Introduction to Fourier Analysis and Generalized Functions,
Cambridge University Press, 1960.

• Cannell D M, George Green: Mathematician and Physicist, 1793-1841, Athline
Press, 1993.

• Hoskins R F, The Delta Function, Horwood Publishing, 1999.

• Evans G A, Blackledge, J M and Yardley P, Analytical Solutions to Partial
Differential Equations, Springer, 1999.

2.10 Problems

Show that:

2.1
f(t)δ(t− a) = f(a)δ(t− a);

2.2
xδ(t) = 0;

2.3
δ(a− t) = δ(t− a);

2.4

δ(at) =
1
| a |δ(t), a �= 0;

2.5
∞∫

−∞
f(t)δ′dt = −f ′(0);

2.6

δ(a2 − t2) =
1
2a

[δ(t+ a) + δ(t− a)];

56 CHAPTER 2. THE DELTA FUNCTION

2.7

δ(sin t) =
∞∑

n=−∞
δ(t− nπ);

2.8 The Fourier transform pair are defined by

F (ω) =

∞∫
−∞

f(t) exp(−iωt)dt,

f(t) =
1
2π

∞∫
−∞

F (ω) exp(iωt)dω.

Determine the Fourier transform of δ(t) and obtain an integral representation of δ(t).
Hence, evaluate the Fourier transforms of cos t and sin t. (Hint: use the complex
exponential representations for the sine and cosine functions.)

2.9 The Green’s function for the one-dimensional wave equation is given by the solu-
tion to (

∂2

∂x2
+ k2

)
g(x | x0, k) = −δ(x− x0)

where k = ω/c. Here, ω is the angular frequency of the waves and c is the wave speed.
By writing

g(X, k) =
1
2π

∞∫
−∞

g(u, k) exp(iuX)du

and

δ(X) =

∞∫
−∞

exp(iuX)du

where X =| x− x0 |, find a solution for g using Cauchy’s Residue theorem. Interpret
the solution in terms of the propagation of waves to the left and right of the source
point x0.

2.10 Show that the asymptotic (Green’s function) solution to the wave equation(
∂2

∂x2
+ k2

)
u(x, k) = −f(x)

for left travelling waves only is characterized by the Fourier transform of f(x). (Hint:
the asymptotic solution for this problem is that obtain by considering the case when
x0 −→∞).

Chapter 3

The Fourier Series

In this chapter, we introduce the Fourier series which provides a method of repre-
senting a signal in terms of its Fourier coefficients. After discussing the method of
representing a signal as a Fourier series, we derive the ‘classical’ Fourier transform
which is then explored further (in terms of the generalized Fourier transform) in
Chapter 4.

Many signals are periodic but the period may approach infinity (when the signal
is, in effect, non-periodic). Approximations to such signals are important for their
analysis and many possibilities exist. The principal idea is to represent a function in
terms of some (infinite) series. The problem is to find a series that provides: (i) a
useful representation of the function that can manipulated and analysed accordingly;
(ii) a series whose component parts (coefficients) can be evaluated relatively easily.
We could for example, consider a simple power series

f(t) =
∑

n

ant
n,

or a Taylor series

f(t) =
∑

n

(t− a)n

n!
f (n)(a),

but the Fourier series
f(t) =

∑
n

cn exp(int),

which is written here in complex form, provides one of the most versatile representa-
tions of signals with a finite period.

3.1 Derivation of the Fourier Series

The Fourier series is a trigonometrical series that can be used to represent almost any
function f(t) in the range −π ≤ t ≤ π. Outside this range, the series gives a periodic
extension of f(t) with period 2π, i.e.

f(t+ 2π) = f(t).

57

58 CHAPTER 3. THE FOURIER SERIES

Such a series is useful when: (i) f(t) is already periodic; (ii) f(t) is not periodic but
only exists in the range [−π, π]. Let us consider the trigonometrical Fourier series,
given by

f(t) =
a0

2
+

∞∑
n=1

an cos(nt) +
∞∑

n=1

bn sin(nt). (3.1.1)

Our problem now, is to find expressions for the coefficients an and bn.

Computation of a0: Integrate both sides of equation (3.1.1) between −π and π
giving

π∫
−π

f(t)dt =

π∫
−π

a0

2
dt = πa0,

since all integrals of the type
π∫

−π

sin(nt)dt and
π∫

−π

cos(nt)dt are zero. Hence

a0 =
1
π

π∫
−π

f(t)dt.

Computation of an: Multiply both sides of equation (3.1.1) by cos(kt) where k is
an integer (k = 1, 2, 3, ...) and integrate between −π and π giving

π∫
−π

f(t) cos(kt)dt =
a0

2

π∫
−π

cos(kt)dt+
∞∑

n=1

an

π∫
−π

cos(nt) cos(kt)dt

+
∞∑

n=1

bn

π∫
−π

sin(nt) cos(kt)dt.

Now,
π∫

−π

sin(nt) cos(kt)dt = 0 ∀ n and k.

Hence, all terms involving bn are zero. Also,

π∫
−π

cos(nt) cos(kt)dt =

{
0, n �= k;
π, n = k.

This property illustrates that the functions cos(nt) and cos(kt) are ‘orthogonal’. Also,
since

π∫
−π

cos(kt)dt = 0,

π∫
−π

f(t) cos(nt)dt = anπ

3.1. DERIVATION OF THE FOURIER SERIES 59

or

an =
1
π

π∫
−π

f(t) cos(nt)dt.

Computation of bn: Multiply both sides of equation (3.1.1) by sin(kt) and integrate
over t between −π and π. Using the results

π∫
−π

sin(kt)dt = 0,

π∫
−π

cos(nt) sin(kt)dt = 0

and
π∫

−π

sin(nt) sin(kt)dx =

{
0, n �= k;
π, n = k.

we obtain

bn =
1
π

π∫
−π

f(t) sin(nt)dt.

Note that these results have been obtained by exploiting the orthogonality of the
trigonometrical functions sin and cos. This provides a Fourier series representation
of a function in the range −π ≤ t ≤ π that can be written out as

f(t) =
a0

2
+

∞∑
n=1

an cos(nt) +
∞∑

n=1

bn sin(nt)

where

a0 =
1
π

π∫
−π

f(t)dt,

an =
1
π

π∫
−π

f(t) cos(nt)dt, n = 1, 2, 3, ...,

bn =
1
π

π∫
−π

f(t) sin(nt)dt, n = 1, 2, 3,

Example Find the Fourier series representation of a ‘square wave’ signal given by

f(t) =

{
−1, −π ≤ t < 0;
1, 0 ≤ t ≤ π.

where f(t+ 2π) = f(t). In this case,

a0 =
1
π

π∫
−π

f(t)dt =
1
π

0∫
−π

(−1)dt+
1
π

π∫
0

1dt = 0,

60 CHAPTER 3. THE FOURIER SERIES

an =
1
π

π∫
−π

f(t) cos(nt)dt =

0∫
−π

(−1) cos(nt)dt+

π∫
0

cos(nt)dt

=
[
− sin(nt)

n

]0

−π

+
[
sin(nt)
n

]π

0

= 0,

bn =
1
π

π∫
−π

f(t) sin(nt)dt =

0∫
−π

(−1) sin(nt)dt+

π∫
0

sin(nt)dt

=
[
cos(nt)
n

]0

−π

+
[
−cos(nt)

n

]π

0

=
1
n

[1− cos(−nπ)]− 1
n

[cos(nπ)−1] =
2
n

[1− cos(nπ)].

Now, since

cos(nπ) =

{
1, n even;
−1, n odd.

or cos(nπ) = (−1)n, n = 1, 2, ...

we can write

bn =
2
πn

[1− (−1)n]

and hence, f(t) for the square wave signal in which f(t) = f(t+ 2π) is given by

f(t) =
∞∑

n=1

2
nπ

[1− (−1)n] sin(nt) =
4
π

(
sin t
1

+
sin(3t)

3
+

sin(5t)
5

+ ...

)
.

Like any series representation of a function, we may need many terms to get a good
approximation, particularly if the function it describes has discontinuities - ‘jump’
type and other ‘sharp’ and/or ‘spiky’ features. Note that the series goes to zero
at t = 0,±π,±2π, .. where f(t) has discontinuities. The term 4

π sin t is the ‘funda-
mental’ frequency and the other terms are the harmonics. Each term of the series
represents the harmonic components required to describe a square wave. The values
1, 3, 5, ... determine the frequency at which these harmonics oscillate (which becomes
increasingly large) and the values 1, 1

3 ,
1
5 , ... determine the amplitudes of these oscil-

lations (which become increasingly small). Note that this square wave is ‘odd’, i.e.
f(−t) = −f(t) and that sin(nt) is also odd, so only sine terms occur in the Fourier
series. Observing this result saves the inconvenience of finding that the cosine terms
are all zero. Similarly, an even function, where f(−t) = f(t), only has cosine terms.
Thus, if f(−t) = f(t) we need only compute an and if f(−t) = −f(t) we need only
compute bn.

3.2 The Half Range Fourier Series

If we require a series representation for f(t) in the range 0 ≤ t ≤ π rather than in the
range −π ≤ t ≤ π, then we can choose either a sine or a cosine Fourier series.

3.2. THE HALF RANGE FOURIER SERIES 61

3.2.1 Cosine Series

Define a new function g(t) where g(t) = f(t), 0 ≤ t ≤ π and g(t) = f(−t), −π ≤
t ≤ 0. Since g(−t) = g(t), g(t) is even. Hence, the Fourier series has only cosine
terms and

an =
1
π

π∫
−π

g(t) cos(nt)dt =
1
π

0∫
−π

f(−t) cos(nt)dt+

π∫
0

f(t) cos(nt)dt

=
1
π

π∫
0

f(t) cos(nt)dt+

π∫
0

f(t) cos(nt)dt =
2
π

π∫
0

f(t) cos(nt)dt, n = 0, 1, 2, ...

3.2.2 Sine Series

Define g(t) so that g(t) = f(t), 0 ≤ t ≤ π and g(t) = −f(−t), −π ≤ t ≤ 0. In this
case, g(−t) = −f(t) = −g(t) so g(t) is odd. Thus, the series has only sine terms, the
coefficients being given by

bn =
1
π

π∫
−π

g(t) sin(nt)dt = − 1
π

0∫
−π

f(−t) sin(nt)dt+

π∫
0

f(t) sin(nt)dt

=
1
π

π∫
0

f(t) sin(nt)dt+

π∫
0

f(t) sin(nt)dt =
2
π

π∫
0

f(t) sin(nt)dt

Example Find a sine series for t2 in the range 0 ≤ t ≤ π. Here,

t2 =
∞∑

n=1

bn sin(nt)

where
π

2
bn =

π∫
o

t2 sin(nt)dt =
[
− t

2 cos(nt)
n

]π

0

+

π∫
0

2t
cos(nt)
n

dt

= −π
2

n
cos(nπ) +

2
n

[
t sin(nt)

n

]π

0

− 2
n

π∫
0

sin(nt)
n

dt

= −π
2

n
(−1)n +

2
n2

[
cos(nt)
n

]π

0

= −π
2

n
(−1)n +

2
n3

[(−1)n − 1].

Hence,

t2 =
∞∑
0

2
π

(
2
n3

[(−1)n − 1]− π2

n
(−1)n

)
sin(nt), for 0 ≤ t ≤ π.

62 CHAPTER 3. THE FOURIER SERIES

3.3 Fourier Series for an Arbitrary Period

The analysis in the previous section was based on a function with a period of 2π (or
π in the case of the half range series). If we consider an arbitrary value for this period
of 2T say, then

f(t) = f(x+ 2T)

and by induction, based on the results and approach covered previously, we have

f(t) =
a0

2
+

∞∑
n=1

an cos(πnt/T) +
∞∑

n=1

bn sin(πnt/T)

where

an =
1
T

T∫
−T

f(t) cos(nπt/T)dt

and

bn =
1
T

T∫
−T

f(t) sin(nπt/T)dt.

Example Expand t as a cosine series in the range 0 ≤ t ≤ T . Here,

T

2
an =

T∫
0

t cos(πnt/T)dt =
[
tT

πn
sin(πnt/T)

]T

0

−
T∫

0

T

πn
sin(πnt/T)dt

= − T

πn

[
− T

πn
cos(πnt/T)

]T

0

.

Hence,

an =
2T

(πn)2
[(−1)n − 1], n > 0

and for n = 0,

a0 =
2
T

T∫
0

tdt =
2
T

[
t2

2

]T

0

= T

giving the result,

t =
T

2
+

∞∑
n=1

2T
(πn)2

[(−1)n − 1] cos(πnt/T).

This (half-range) Fourier series gives a ‘sawtooth’ waveform outside the range 0 ≤
t ≤ T . If we differentiate both sides of the last equation we obtain a Fourier series
representing unity for 0 ≤ t ≤ T and a square wave outside this range, i.e.

1 =
∞∑

n=1

2
πn

[1− (−1)n] sin(πnt/T), 0 ≤ t ≤ T

3.4. APPLICATIONS OF THE FOURIER SERIES TO CIRCUIT THEORY 63

which can be compared with the Fourier series for a square wave of period 2π derived
earlier. Note that a Fourier series can be differentiated term by term if it is continuous.
It can also always be integrated.

3.4 Applications of the Fourier Series to Circuit

Theory

Fourier series are used routinely to model the output of electronic circuits. To briefly
illustrate this, we shall consider the following problem: Find the steady state output
Vo for a RC (Resistor-Capacitor) circuit in which the input voltage Vi is a square
wave given by

Vi =
∞∑

n=1

an sin(nt)

where
an =

2
πn

[1− (−1)n].

This problem has been chosen to illustrate the use of the Fourier series to analyse RC
circuits which can be used to construct highpass and lowpass (analogue) filters.

Highpass Filters

The basic equations for a ‘highpass system’ are

Vo = RI = R
dq

dt
,

Vi =
q

C
+RI =

q

C
+R

dq

dt

where I is the current and q is the electric charge (see Figure 3.1).

Figure 3.1: RC circuit for a highpass filter.

The method of solution is based on solving the second equation for q and substituting
the solution for q into the first equation to obtain Vo. The key to this approach is to

64 CHAPTER 3. THE FOURIER SERIES

note that the equation for Vi is linear and therefore, we can consider each term in the
Fourier series representation of the input square wave separately and solve

R
dqn
dt

+
qn
C

= an sin(nt)

or
d

dt

(
CRqne

t/RC
)

= anC sin(nt)et/RC

giving

qn = e−t/RC 1
RC

(
anC

∫
et/RC sin(nt)dt+ constant

)
.

Physically, the charge must decay to zero as time increases, i.e.

qn → 0 as t→∞
so that the constant of integration is zero giving

qn = e−t/RC an

R
Im

[∫
et/RCeintdt

]
= e−t/RC an

R
Im

[
1

in+ 1/RC
et/RCeint

]
=

anC

1 + (nRC)2
[sin(nt)− nRC cos(nt)].

We can ‘clean up’ this result by letting nRC = tanφn, then

sin(nt)− nRC cos(nt) = sin(nt)− sinφn

cosφn
cos(nt)

=
1

cosφn
sin(nt− φn) =

√
1 + (nRC)2 sin(nt− φn).

The solution can then be written in the form

qn =
anC√

1 + (nRC)2
sin(nt− φn).

From the equation for Vo, each component of the output is given by

Vn = R
dqn
dt

=
RCnan√

1 + (nRC)2
cos(nt− φn).

The output is then given by summing over all the components providing the solution

Vo =
∞∑

n=1

Vn =
∞∑

n=1

RCn√
1 + (nRC)2

an cos(nt− φn).

Note that the nth Fourier component an in Vo is changed by the factor

Hn =
nRC√

1 + (nRC)2
.

For large n, Hn → 1, so high frequency (i.e. large n) components are unaffected
by the circuit. For small n, Hn → 0, so low frequency components are restricted.
Thus, the circuit acts as a ‘highpass filter’ (see Figure 3.2). The output of the filter
is illustrated in Figure 3.3 for RC ∼ 1 and RC << 1. In the latter case, the filter
behaves as a differentiator.

3.4. APPLICATIONS OF THE FOURIER SERIES TO CIRCUIT THEORY 65

Figure 3.2: Response of the RC highpass filter.

Figure 3.3: Output of RC highpass filter for RC ∼ 1 and RC << 1.

Lowpass Filters

The basic equations for a ‘lowpass system’ are

Vo =
q

C
,

Vi =
q

C
+RI =

q

C
+R

dq

dt
,

the latter equation being the same as that for a ‘highpass filter’ (see Figure 3.4).

66 CHAPTER 3. THE FOURIER SERIES

Figure 3.4: RC circuit for a lowpass filter.

Figure 3.5: Response of the RC lowpass filter.

The solution for the nth component is

qn =
anC√

1 + (nRC)2
sin(nt− φn).

The output component Vn is given by

Vn =
an√

1 + (nRC)
sin(nt− φn)

and hence

Vo =
∞∑

n=1

Vn =
∞∑

n=1

1√
1 + (nRC)2

an sin(nt− φn).

In this cases, the nth Fourier component an in Vo is changed by the factor

Hn =
1√

1 + (nRC)2

3.5. THE COMPLEX FOURIER SERIES 67

For large n, Hn → 0, so high frequency (i.e. large n) components are ‘attenuated’ by
the circuit. As n → 0, Hn → 1, so low frequency components are unaffected by the
circuit which acts as a ‘lowpass filter’ (see Figure 3.5).

3.5 The Complex Fourier Series

A complex Fourier series performs a similar role to the trigonometrical Fourier series
although its implementation is easier and more general. It is just one of a number
of linear polynomials which can be used to ‘model’ a piecewize continuous function
f(t). In general, we can consider

f(t) =
∑

n

cnBn(t)

where Bn(t) are the basis function and cn are the coefficients (complex or otherwise).
A complex Fourier series is one in which the basis functions are of the form

Bn(t) = exp(int).

This series is basic to all Fourier theory and is used to model signals that are periodic.
The problem is then reduced to finding the coefficients cn.

Consider the complex Fourier series for an arbitrary period 2T given by

f(t) =
∞∑

n=−∞
cn exp(intπ/T).

Observe that the summation is now over (−∞,∞). To find the coefficients cn, we
multiply both sides of the equation above by exp(−imtπ/T) and integrate from −T
to T , thus,

T∫
−T

f(t) exp(−imtπ/T)dt =
∞∑

n=−∞
cn

T∫
−T

exp[i(n−m)tπ/T]dt.

Now, the integral on the right hand side is given by

2T sinπ(n−m)
π(n−m)

=

{
2T, n = m;
0, n �= m.

Note that,
sin t
t

= 1− t3

3!
+
t5

5!
− ...

so that [
sin t
t

]
t=0

= 1.

Thus, all terms on the right hand side vanish except for the case when n = m and we
can therefore write

cn =
1

2T

T∫
−T

f(t) exp(−intπ/T)dt.

68 CHAPTER 3. THE FOURIER SERIES

By way of an example, suppose we require the complex Fourier series for a square
wave signal with period of 2π given by

f(t) =

{
−1, −π ≤ t < 0;
1, 0 ≤ x ≤ π.

where f(t+ 2π) = f(t), then

cn =
1
2π

π∫
−π

f(t) exp(−int)dt = − 1
2π

0∫
−π

exp(−int)dt+
1
2π

π∫
0

exp(−int)dt

=
1
inπ

[1− cos(nπ)]

and

f(t) =
∞∑

n=−∞

1
inπ

[1− cos(nπ)] exp(inπ)

=
∞∑

n=0

1
inπ

[1− (−1)n] exp(inπ)−
∞∑

n=0

1
inπ

[1− (−1)n] exp(−inπ)

=
∞∑

n=1

2
nπ

[1− (−1)n] sin(nt).

which recovers the result obtained in Section 3.1 using the trigonometrical Fourier
series (but with less computation). As mentioned before, with either the trigonomet-
rical or complex Fourier series, we need many terms to get a good fit to the sharp
features and discontinuities. The Fourier series representation of an ‘on-off’ type sig-
nal such as a square wave requires many terms to represent it accurately. Truncation
of the series leads to truncation errors which in a Fourier series is generally referred to
as ‘ringing’ . The generalization of this effect is called the Gibbs’ phenomenon. This
leads to a general rule of thumb which is an important aspect of all signal process-
ing, namely, that ‘sharp’ features in a signal require many Fourier coefficients to be
represented accurately whereas smooth features in a signal require fewer Fourier co-
efficients. Hence, one way of ‘smoothing’ a signal is to reduce the number of Fourier
coefficients used to represent the signal. This is the basis of lowpass filtering. More-
over, if a signal is relatively smooth, it may require relatively few Fourier coefficients
to reconstruct it accurately. In such cases, storing the coefficients cn instead of the
(digital) signal itself can lead to a method of reducing the amount of data required
to store the (digital) signal. This approach to data compression is actually applied in
practice using the Discrete Cosine Transform (DCT) - the cosine transform is briefly
discussed in Chapter 5 - and is the basis for the Joint Photographics Experts Group
or JPEG compression scheme. The DCT is used because it has properties that are op-
timal in terms of using it to design a data compression algorithm, i.e. in expressing a
digital signal in terms of its DCT coefficients and reproducing it from them. However,
the principal ‘philosophy’ behind this approach is the same as that discussed above.
Actually, the Discrete Fourier Transform or DFT, which is discussed shortly, can also
be used for this purpose. It is not such a good compressor as the DCT (because it

3.6. THE FOURIER TRANSFORM PAIR 69

is a complex transform with both real and imaginary parts), but it does provide the
option of processing the data in compression space using the Fourier amplitude and
phase which the DCT does not provide.

3.6 The Fourier Transform Pair

The Fourier transform is the subject of the following chapter and it is prudent at
this stage to derive the Fourier transform pair (i.e. the forward and inverse Fourier
transforms) from the complex Fourier series. To do this in a way that is notationally
consistent, we let cn = Fn/2T so that

f(t) =
1

2T

∑
n

Fn exp(intπ/T)

and

Fn =

T∫
−T

f(t) exp(−intπ/T)dt

where ∑
n

≡
∞∑

n=−∞
.

Now, let ωn = nπ/T and Δωn = π/T . We can then write

f(t) =
1
2π

∑
n

Fn exp(iωnt)Δωn

and

Fn =

T∫
−T

f(t) exp(−iωnt)dt.

Then, in the limit as T →∞, we have

f(t) =
1
2π

∞∫
−∞

F (ω) exp(iωt)dω,

F (ω) =

∞∫
−∞

f(t) exp(−iωt)dt.

Here, F (ω) is the Fourier transform of f(t) and f(t) is the inverse Fourier transform
of F (ω). Taken together, these integral transforms form the ‘Fourier transform pair’.
Note that f(t) is a non-periodic function, since we have used T → ∞ to obtain this
result.

70 CHAPTER 3. THE FOURIER SERIES

3.7 The Discrete Fourier Transform

The discrete Fourier transform or DFT is the ‘work horse’ for so many of the routine
algorithms used for processing digital signals and in Part IV of this work, the basis
of a fast algorithm for computing the DFT will be discussed. For now, it is useful
and informative to demonstrate the derivation of the DFT from the complex Fourier
series.

The complex Fourier series can be written as

f(t) =
1

2T

∑
n

Fn exp(iπnt/T)

where

Fn =

T∫
−T

f(t) exp(−iπntπ/T)dt

over the range [−T, T]. The DFT can now be derived be considering a discretized
form of the function f(t) with uniform sampling at points t0, t1, t2, ..., tN−1 giving the
discrete function or vector

fm ≡ f(tm); m = 0, 2, 3, ..., N − 1

with sampling interval Δt. Now, tm = mΔt and if we let N = T/Δt, we have

fm =
1
N

∑
n

Fn exp(i2πnm/N),

Fn =
∑
m

fm exp(−i2πnm/N).

Note that the summations are now finite with n and m running from −N/2 to (N/2)−
1 or alternatively from n = 0 to N − 1.

3.8 Relationship between the DFT and the Fourier

Transform

Consider the Fourier transform pair given by

F (ω) =

∞∫
−∞

f(t) exp(−iωt)dt,

f(t) =
1
2π

∞∫
−∞

F (ω) exp(it)dω

and the DFT pair, i.e.
Fn =

∑
m

fm exp(−i2πnm/N),

3.9. ‘STANDARD’ AND ‘OPTICAL’ FORMS OF THE DFT 71

fm =
1
N

∑
n

Fn exp(i2πnm/N).

To study the relationship between these two results, we can consider the following
discretization of the Fourier transform pair:

F (ωn) =
∑
m

f(tm) exp(−iωntm)Δt,

f(tm) =
1
2π

∑
n

F (ωn) exp(iωntm)Δω

where Δt and Δω are the sampling intervals. Writing ωn = nΔω and tm = mΔt, by
inspection (i.e. comparing the results above with the DFT pair) we see that

ΔωΔt =
2π
N
.

This result provides the relationship between the (sampling) interval Δω of the num-
bers Fn and the (sampling) interval Δt of the numbers fm.

3.9 ‘Standard’ and ‘Optical’ Forms of the DFT

In the previous section, the limits on the sums defining the DFT have been assumed
to run from −N/2 to (N/2) − 1 assuming the data is composed of N − 1 elements.
When we consider the case where

∑
n

≡
(N/2)−1∑
n=−N/2

the DC (Direct Current) or zero frequency level is taken to occur at the centre of
array Fm giving what is termed the optical form of the DFT. In the case when

∑
n

≡
N−1∑
n=0

the DC level is taken to occur at F0 - first value of array Fm. This is known as the
standard form of the DFT.

The optical form has some valuable advantages as it provides results that are
compatible with those associated with Fourier theory in which the spectrum F (ω)
is taken to have its DC component at the centre of the function. The reason for
calling this form of the DFT ‘optical’ is that there is an analogy between this form
and that of the 2D DFT in which the DC component occurs at the centre of a 2D
array. In turn the 2D Fourier transform can be used to model the process of a
well corrected lens focusing light on to the ‘focal plane’ in which the zero frequency
occurs in the centre of this plane. The standard form of the DFT is often useful
for undertaking analytical work with the DFT and in particular, developing the Fast
Fourier Transform algorithm that is discussed in Part IV of this text.

72 CHAPTER 3. THE FOURIER SERIES

3.10 Summary of Important Results

The Trigonometrical Fourier Series

f(t) =
a0

2
+

∞∑
n=1

an cos(πnt/T) +
∞∑

n=1

bn sin(πnt/T)

where

an =
1
T

T∫
−T

f(t) cos(nπt/T)dt

and

bn =
1
T

T∫
−T

f(t) sin(nπt/T)dt

for a periodic function with period 2T .

Complex Fourier Series

f(t) =
∞∑

n=−∞
cn exp(intπ/T)

where

cn =
1

2T

T∫
−T

f(t) exp(−intπ/T)dt

for a periodic function with period 2T .

Fourier Transform Pair

f(t) =
1
2π

∞∫
−∞

F (ω) exp(iωt)dω,

F (ω) =

∞∫
−∞

f(t) exp(−iωt)dt

where f(t) is a non periodic function.

Discrete Fourier Transform Pair

fm =
1
N

(N/2)−1∑
n=−N/2

Fn exp(i2πnm/N),

Fn =
(N/2)−1∑
m=−N/2

fm exp(−i2πnm/N)

3.11. FURTHER READING 73

where the relationship between Δω (the sampling interval of Fn) and Δt (the sampling
interval of fm) is given by

ΔωΔt =
2π
N
.

3.11 Further Reading

• Beauchamp K G, Signal Processing, Allen & Unwin, 1973.

• Schwartz M and Shaw L, Signal Processing, McGraw-Hill, 1975.

• Papoulis A, Signal Analysis, McGraw-Hill, 1977.

• Lynn P A, An Introduction to the Analysis and Processing of Signals, Macmillan,
1979.

• Connor F R, Signals, Arnold, 1982.

• Chapman M J, Goodall D P and Steel, N C, Signal Processing in Electronic
Communications, Horwood Publishing, 1997.

3.12 Problems

3.1 Verify that when n and k are integers,

(i)
π∫

−π

cosnt sinωtdt = 0 ∀ n, ω;

(ii)
π∫

−π

sinnt sinωtdt =

{
0, n �= ω;
π, n=ω.

3.2 Sketch the following functions in the range −3π ≤ t ≤ 3π:

(i)

f(t) =

{
0, −π ≤ t ≤ 0;
t, 0 ≤ t ≤ π.

where
f(t+ 2π) = f(t).

74 CHAPTER 3. THE FOURIER SERIES

(ii)
f(t) =| t |, −π ≤ t ≤ π; f(t+ 2π) = f(t).

(iii)
f(t) = H(t), −π ≤ t ≤ π; f(t+ 2π) = f(t)

where

H(t) =

{
1, t ≥ 0;
0, t < 0.

3.3 Show that the function given in question 2(i) above can be represented by the
series

f(t) =
π

4
− 2
π

(
cos t+

cos 3t
32

+
cos 5t

52
+ ...

)
+
(

sin t− sin 2t
2

+
sin 3t

3
− ...

)
.

Hence, deduce that
π2

8
= 1 +

1
32

+
1
52

+ ...

3.4 Expand the function π− t first as a Fourier sine series and then as a Fourier cosine
series valid in the range 0 ≤ t ≤ π.

3.5 Expand the function cos t as a Fourier sine series valid in the range 0 ≤ t ≤ π.

3.6 A function f(t) has period 2π and is equal to t in the range −π ≤ x ≤ π. Show
that

F (ω) = 2πi
∞∑

n=1

(−1)n+1

n
[δ(ω + n)− δ(ω − n)]

where F (ω) is the Fourier transform of f(t).

3.7 A function f(t) has period 2π and is equal to | t | in the range −π ≤ t ≤ π. Show
that

F (ω) = π2δ(ω) + 2
∞∑

n=1

[(−1)2 − 1]
n2

[δ(ω − n) + δ(ω + n)]

where F (ω) is the Fourier transform of f(t). Sketch the graph of f(t) and F (ω).

3.8 Expand the function f(t) = t2 as a Fourier series valid in the range −π ≤ t ≤ π.
Hence, show that

F (ω) =
2π3

3
δ(ω) + 4π

∞∑
n=1

(−1)n

n2
[δ(ω − n) + δ(ω + n)]

where F (ω) is the Fourier transform of f(t) and deduce that

π2

12
= 1− 1

22
+

1
32
− 1

42
+ ...

Chapter 4

The Fourier Transform

The Fourier transform is used extensively in many branches of science and engineering.
It is particularly important in signal processing and forms the ‘work horse’ of many
methods and algorithms. This chapter provides an introduction to this transform and
presents most of the fundamental ideas, results and theorems that are needed to use
Fourier theory for the analysis of signals.

4.1 Introduction

The Fourier transform is attributed to the French mathematician Joseph Fourier
who, as scientific adviser and reputedly a spy master to Napoleon, ‘invented’ the
transform as a by product into his investigation of the laws of thermodynamics. In
1798, Napoleon invaded Egypt and during this campaign it became clear that the
time period over which artillery could be primed and fired from one round to the next
was different from that in the European theater of war. In particular, the period of
time required to allow a cannon to be fired operating from one round to the next in
a hot climate such as that in Egypt was significantly greater than that in northern
Europe and on many occasions the cannon pre-ignited as a charge was being loaded.
Although obvious today, the laws of thermal conduction at that time were not fully
appreciated. Napoleon asked Fourier to investigate the problem. This led Fourier to
develop his famous law of conduction in which the heat flux (i.e. the flow of heat) is
proportional to the gradient in temperature. Coupled with the equation of continuity
for thermal conduction, Fourier derived a partial differential equation that is now
commonly known as the ‘diffusion equation’ which, for the temperature u, has the
basic form

∂2u

∂x2
=
∂u

∂t
.

Some years later, Fourier developed his transform to investigate solutions to this
equation; a transform that was essentially invented in an attempt solve an equation
derived from a military problem of the time. Since then, the Fourier transform has
found applications in nearly all areas of science and engineering and is arguably one
of the most, if not, the most important integral transforms ever devised.

75

76 CHAPTER 4. THE FOURIER TRANSFORM

4.1.1 Notation

The Fourier transform of a function f is usually denoted by the upper case F but
many authors prefer to use a tilde above this function, i.e. to denote the Fourier
transform of f by f̃ . In this work, the former notation is used throughout. Thus, the
Fourier transform of f can be written in the form

F (ω) ≡ F̂1f(t) =

∞∫
−∞

f(t) exp(−iωt)dt

where F̂1 denotes the one-dimensional Fourier transform operator. Here, F (ω) is
referred to as the Fourier transform of f(t) where f(t) is a non-periodic function (see
Chapter 3).

The sufficient condition for the existence of the Fourier transform is that f is
square integrable, i.e.

∞∫
−∞

| f(t) |2 dt <∞.

4.1.2 Physical Interpretation

Physically, the Fourier transform of a function provides a quantitative picture of the
frequency content of the function which is important in a wide range of physical
problems and is fundamental to the processing and analysis of signals and images.
The variable ω has dimensions that are reciprocal to those of the variable t. There
are two important cases which arise:

(i) t is time in seconds and ω is the temporal frequency in cycles per second (Hertz).
Here, ω is referred to as the angular frequency which is given by 2π × ν where ν is
the frequency.

(ii) t is distance in metres (usually denoted by x) and ω and the spatial frequency in
cycles per metre (usually denoted by k). Here, k is known as the wavenumber and is
given by

k =
2π
λ

where λ is the wavelength and we note that

c =
ω

k
= νλ

where c is the wavespeed. The Fourier transform is just one of a variety of integral
transforms but it has certain properties which make it particularly versatile and easy
to work with. This was expressed eloquently by Lord Kelvin, who stated that:

Fourier’s theorem is not only one of the most beautiful results of modern analysis, but
it may be said to furnish an indispensable instrument in the treatment of nearly every
recondite question in modern physics.

As discussed at the beginning of this chapter, it is interesting to note that this im-
portant transform arose from a scientist having to contemplate a technical problem

4.1. INTRODUCTION 77

that was directly related to a military issue - such is the nature of so many aspects
of modern science and engineering!

4.1.3 The Spectrum

The Fourier transform of a function is called its ‘spectrum’ or frequency distribution
- a term that should not be confused with that used in statistics. It is generally a
complex function which can be written in the form

F (ω) = Fr(ω) + iFi(ω)

where
Fr = Re[F] and Fi = Im[F],

i.e. the real and imaginary parts of the spectrum respectively. Note that if f(t) is a
real valued function, then the real and imaginary parts of its Fourier transform are
given by

Fr(ω) =

∞∫
−∞

f(t) cos(ωt)dt

and

Fi(ω) =

∞∫
−∞

f(t) sin(ωt)dt

respectively. An alternative and often more informative (Argand diagram) represen-
tation of the spectrum is based on writing it in the form

F (ω) = A(ω) exp[iθ(ω)]

where
A(ω) =| F (ω) |=

√
F 2

r (ω) + F 2
i (ω)

and

θ(ω) = tan−1

[
Fi(ω)
Fr(ω)

]
.

The functions F , A and θ are known as the complex spectrum, the amplitude spectrum
and the phase spectrum respectively. In addition to these functions, the function

A2(ω) =| F (ω) |2

is also important in Fourier analysis. This function is known as the the Power Spectral
Density Function (PSDF) or just the power spectrum. Finally, the value of the
spectrum at ω = 0 is called the zero frequency or DC (after Direct Current) level and
is given by the integral of f , i.e.

F (0) =

∞∫
−∞

f(t)dt.

Note that this value provides a measure of the scale of the Fourier transform and is
proportional to its mean value.

78 CHAPTER 4. THE FOURIER TRANSFORM

4.1.4 The Inverse Fourier Transform

The function f(t) can be recovered from F (ω) by employing the inverse Fourier trans-
form which is given by

f(t) = F̂−1
1 F (ω) =

1
2π

∞∫
−∞

F (ω) exp(iωt)dω.

The operator F̂−1
1 is used to denote the inverse Fourier transform. The superscript

−1 is used to denote that this operator is an inverse operator (N.B. it does not mean
1/F̂1).

In Chapter 3, the inverse Fourier transform was derived from the complex Fourier
series in a way that is often referred to as the ‘classical approach’ and is informative
in terms of detailing the relationships between the complex Fourier series, the Fourier
transform pair and the discrete Fourier transform pair. However, ‘armed’ with the
‘power’ of the δ-function, we can derive this result in an arguably more elegant way;
thus, multiplying F (ω) by exp(iωt′) and integrating over ω from −∞ to ∞ we can
write

∞∫
−∞

F (ω) exp(iωt′)dω =

∞∫
−∞

dtf(t)

∞∫
−∞

exp[iω(t′ − t)]dω.

We now employ the integral representation for the delta function discussed in Chapter
2, i.e.

∞∫
−∞

exp[iω(t′ − t)]dω = 2πδ(t′ − t).

By substituting this result into the previous equation and using the sampling property
of the delta function, we get

∞∫
−∞

F (ω) exp(iωt′)dω =

∞∫
−∞

dtf(t)2πδ(t′ − t) = 2πf(t′)

or

f(t) =
1
2π

∞∫
−∞

F (ω) exp(iωt)dω.

The inverse Fourier transform is essentially the same as the forward Fourier transform
(ignoring scaling) except for a change from −i to +i. This is one of the most unique
and important features of the Fourier transform; essentially, computing the inverse
Fourier transform is the same as computing a forward Fourier transform which is not
the case with other integral transforms such as the Laplace transform for example
(see Chapter 5).

4.1. INTRODUCTION 79

4.1.5 Alternative Definitions and Representations

Some authors prefer to define the forward and inverse Fourier transforms as

F (ω) =
1
2π

∞∫
−∞

f(t) exp(−iωt)dt, f(t) =

∞∫
−∞

F (ω) exp(iωt)dω

or

F (ω) =
1√
2π

∞∫
−∞

f(t) exp(−iωt)dt, f(t) =
1√
2π

∞∫
−∞

F (ω) exp(iωt)dω.

Also it is a matter of convention that F is called the Fourier transform of f when
−i occurs in the exponential and that f is the inverse Fourier transform of F when
+i appears in the exponential. The exact form of the forward and inverse Fourier
transforms that are used does not really matter and the user may choose the definition
which he or she likes the best. What does matter is that consistency with a given
definition is maintained throughout a calculation. Here, the definitions for the forward
and inverse Fourier transforms given by

F (ω) =

∞∫
−∞

f(t) exp(−iωt)dt

and

f(t) =
1
2π

∞∫
−∞

F (ω) exp(iωt)dω

respectively are used throughout. Collectively, these integral transforms are known
as the Fourier transform pair.

4.1.6 Useful Notation and Jargon

To avoid constantly having to write integral signs and specify the forward or inverse
Fourier transform in full, we can make use of the symbolic form

f(t) ⇐⇒ F (ω)

which means that F is the Fourier transform of f and f is the inverse Fourier transform
of F . This notation is useful when we want to indicate the relationship between a
mathematical operation on f and its effect on F . Mathematical operations on f are
referred to as operations in real or t-space. Similarly, operations on F are referred to
as operations in Fourier space or ω-space.

4.1.7 Bandlimited Functions

A bandlimited function is characterized by a complex spectrum F (ω) such that

F (ω) = 0, | ω |> Ω.

80 CHAPTER 4. THE FOURIER TRANSFORM

In this case, the inverse Fourier transform is given by

f(t) =
1
2π

Ω∫
−Ω

F (ω) exp(iωt)dω.

Here, f is known as a bandlimited function and 2Ω is referred to as the bandwidth.
A bandlimited function is therefore a function that is composed of frequencies which
are limited to a particular finite band.

If f(t) is such that
f(t) = 0, | t |> T

then its complex spectrum is given by

F (ω) =

T∫
−T

f(t) exp(−iωt)dt.

In this case, f is referred to as a time (t - time in seconds) or space (t - length in
meters) limited signal. Note that in practice, all signals are of a finite duration and are
therefore space/time limited; in the latter case, the function is said to be of ‘compact
support’. They are also nearly always bandlimited for a variety of different physical
reasons.

4.1.8 The Amplitude and Phase Spectra

Given that the amplitude spectrum and the phase spectrum, taken together, uniquely
describe the time signature of a signal, it is pertinent to ask how these spectra, taken
separately, contribute to the signal. As a general rule of thumb, the phase spectrum
is more important than the amplitude spectrum in that, if the amplitude spectrum is
perturbed but the phase spectrum remains intact, then the signal can be reconstructed
relatively accurately (via the inverse Fourier transform) particularly in terms of the
positions at which the signal is zero. For a real valued signal with A(ω) > 0, ∀ω, its
zeros occur when ω + θ(ω) = ±nπ/2, n = 1, 2, 3... since

f(t) = Re
1
2π

∞∫
−∞

A(ω) exp[iθ(ω)] exp(iωt)dω =
1
2π

∞∫
−∞

A(ω) cos[ω + θ(ω)]dω.

This can be observed by taking an amplitude only and a phase only reconstruction
of a signal, i.e. computing

fA(t) =
1
2π

∞∫
−∞

A(ω) exp(iωt)dω

and

fθ(t) =
1
2π

∞∫
−∞

exp[iθ(ω)] exp(iωt)dω.

4.1. INTRODUCTION 81

An amplitude only reconstruction basically yields ‘rubbish’ compared to a phase only
reconstruction which yields features that are recognisable in terms of the original
signal. Thus, the Fourier phase of a signal is ‘more important’ than the Fourier
amplitude and is less robust to error. In some special applications, only the amplitude
or power spectrum can be measured and it is necessary to recover the phase. A well
known example is X-ray crystal developing the double helix model for DNA in 1953
for example. Here, X-rays with a constant wavelength of λ are diffracted by the
three dimensional molecular structure (in a crystal defined by an object function
O(x, y, z) which is of compact support. To a first order (single or weak scattering)
approximation, the diffracted field F (x0, y0) generated by a plane wave travelling
along the z-axis and recorded at a point z0 in the far field is given by (ignoring
scaling)

F (x0, y0) =
∫ ∫

f(x, y) exp(−i2πx0x/λz0) exp(−i2πy0y/λz0)dxdy

where
f(x, y) =

∫
O(x, y, z)dz.

Now, the X-ray image that is recorded is not F but the intensity | F |2 and so our
problem becomes: given | F (u, v) |2 find f(x, y) where

F (u, v) =
∫ ∫

f(x, y) exp(−iux) exp(−ivy)dxdy, u = 2πx0/λz0, v = 2πy0/λz0.

This is equivalent to computing the two-dimensional Fourier transform of the function
f(x, y), deleting the phase spectrum and then having to recover it from the amplitude
spectrum alone together with any available a priori information on the diffractor itself
such as its spatial extent (because the diffractor will be of compact support). This is
an ill-posed problem and like so many ‘solutions’ to such problems in signal processing,
relies on the application of a priori knowledge on the object function coupled with an
information theoretic criterion upon which a conditional solution is developed (e.g.
application of the least squares method, the maximum entropy criterion, Bayesian
estimation etc. as discussed in Part IV).

4.1.9 Differentiation and the Fourier Transform

Given that
f(t) ⇐⇒ F (ω)

we have
d

dt
f(t)⇐⇒ iωF (ω).

The proof of this result is easily established by making use of the inverse Fourier
transform, thus:

d

dt
f(t) =

1
2π

d

dt

∞∫
−∞

F (ω) exp(iωt)dω =
1
2π

∞∫
−∞

iωF (ω) exp(iωt)dω.

82 CHAPTER 4. THE FOURIER TRANSFORM

Differentiating n times, by induction, we have

dn

dtn
f(t)⇐⇒ (iω)nF (ω).

This simple and elegant result is the basis for an important and versatile generalization
which stems from the question as to the meaning of a fractional differential. In this
case, we can consider a definition for a fractional differential based on a generalization
of the result above to

dq

dtq
f(t)⇐⇒ (iω)qF (ω)

where q > 0 and can be non-integer. Although many other definitions for a fractional
differential exist, the one considered here is arguably one of the simplest and most
versatile of them. Moreover, this definition can be used to define a fractal signal which
is discussed later on in this work (see Chapter 17).

4.1.10 Integration and the Fourier Transform

If we consider integration to be the inverse of differentiation, then it is clear that∫
f(t)dt⇐⇒ 1

iω
F (ω)

and that ∫
...

∫
f(t)dt...dt⇐⇒ 1

(iω)n
F (ω)

where n is the number of times that the integration is performed. Similarly, we can
define a fractional integral to be one that is characterized by (iω)−q where q > 0 is
the (fractional) order of integration.

4.2 Selected but Important Functions

There are numerous cases where the Fourier transform of a given function f(t) can
be computed analytically and many tables of such results are available. Here, some
results which are particularly important in signal analysis are derived, some of them
relating to the Fourier transforms of the generalized functions discussed in Chapter 2
and all of them being used later on in this work.

Fourier Transform of the Tophat Function

The tophat function (so called because of its shape) is given by

H(t) =

{
1, | t |≤ T ;
0, | t |> 0.

and the Fourier transform of this function is given by

∞∫
−∞

H(t) exp(−iωt)dt =

T∫
−T

exp(−iωt)dt

4.2. SELECTED BUT IMPORTANT FUNCTIONS 83

=
1
iω

[exp(iωT)− exp(−iωT)] = 2
sin(ωT)

ω
= 2T sinc(ωT)

where

sinc(ωT) =
sin(ωT)
ωT

.

The sinc function occurs very often in signal analysis. One reason for this is that the
tophat function is routinely used to model real signals of finite duration by windowing
(multiplying) hypothetical signals of infinite duration. Whenever this is done, the sinc
function emerges in one form or another.

Fourier Transform of the Cosine Function

Consider the cosine function cos(ω0t), where ω0 is a constant which determines the
rate at which this function oscillates about zero. To compute the Fourier transform
of this function, we first write it in terms of complex exponentials, i.e.

cos(ω0t) =
1
2
[exp(i0t) + exp(−iω0t)].

The Fourier transform can then be written as
∞∫

−∞
cos(ω0t) exp(−iωt)dt =

1
2

∞∫
−∞

exp[−i(ω − ω0)t]dt+
1
2

∞∫
−∞

exp[−i(ω + ω0)t]dt

= π[δ(ω − ω0) + δ(ω + ω0)]

using the integral representation of the δ-function.

Fourier Transform of the Sine Function

By defining sin(ω0t) in terms of complex exponentials, i.e.

sin(ω0t) =
1
2i

[exp(iω0t)− exp(−iω0t)]

we get

∞∫
−∞

sin(ω0t) exp(−iωt)dt =
1
2i

∞∫
−∞

exp[−i(ω − ω0)t]dt− 1
2i

∞∫
−∞

exp[−i(ω + ω0)t]dt

= iπ[δ(ω + ω0)− δ(ω − ω0)].

Fourier Transform of a Gaussian Function

The Gaussian function or normal distribution is given by (ignoring scaling)

f(t) = exp(−at2)
where a is a constant. This function is one of the most important examples of con-
tinuous probability distributions found in statistics and frequently arises in the area

84 CHAPTER 4. THE FOURIER TRANSFORM

of signal analysis, especially when statistical methods (including Bayesian methods
for example) are introduced. The Fourier transform of this function is slightly more
complicated and than the previous examples given and is based on exploiting the
result ∞∫

−∞
exp(−τ2)dτ =

√
π.

The Fourier transform is given by

F (ω) =

∞∫
−∞

exp(−at2) exp(−iωt)dt.

Noting that (√
at+

iω

2
√
a

)2

= at2 + iωt− ω2

4a

we can write

F (ω) = exp(−ω2/4a)

∞∫
−∞

exp

[
−
(√

at+
iω

2
√
a

)2
]
dt.

If we now let

τ =
(√

at+
i

2
√
a

)
,

then dτ =
√
adt and

F (ω) =
1√
a

exp(−ω2/4a)

∞∫
−∞

exp(−τ2)dτ =
√
π

a
exp(−ω2/4a).

Fourier Transform of the Sign Function

The sign function sgn(t) is defined by

sgn(t) =

{
1, t > 0;
−1, t < 0.

The Fourier transform of this function can be obtained by computing the Fourier
transform of exp(−ε | t |) sgn(t) over the interval [−τ, τ] say and then letting τ →∞
and ε→ 0. Thus,

∞∫
−∞

sgn(t) exp(−iωt)dt

= lim
ε→0

lim
τ→∞

⎛⎝ τ∫
0

exp(−ε | t |) exp(−iωt)dt−
0∫

−τ

exp(−ε | t |) exp(−iωt)dt
⎞⎠

4.2. SELECTED BUT IMPORTANT FUNCTIONS 85

= lim
ε→0

lim
τ→∞

⎛⎝ τ∫
0

exp(−εt) exp(−iωt)dt−
τ∫

0

exp(−εt) exp(iωt)dt

⎞⎠
= lim

ε→0
lim

τ→∞

(
exp[−τ(ε− iω)]

ε− iω − exp[−τ(ε+ iω)]
ε+ iω

+
1

ε+ iω
− 1
ε− iω

)
= lim

ε→0

(−2iω
(ε+ iω)(ε− iω)

)
=

2
iω
.

Hence,

sgn(t) ⇐⇒ 2
iω
.

Fourier Transform of the Unit Step Function

The unit or Heaviside step function is defined by

U(t) =

{
1, t > 0;
0, t < 0.

To obtain the Fourier transform of this function, we write it in terms of the sign
function, i.e.

U(t) =
1
2
[1 + sgn(t)].

We then get,

∞∫
−∞

U(t) exp(−iωt)dt =
1
2

∞∫
−∞

exp(−iωt)dt+
1
2

∞∫
−∞

sgn(t) exp(−iωt)dt

= π

(
δ(t)− i

πω

)
.

Fourier Transform of 1/t

Using the result sgn(t) ⇐⇒ 2/iω, we have

1
2π

∞∫
−∞

2
iω

exp(iωt)dω = sgn(t).

Interchanging t and ω and changing the sign of i, this equation becomes

∞∫
−∞

1
t

exp(−iωt)dt = −iπ sgn(ω)

and hence,
1
t
⇐⇒ −iπ sgn(ω).

86 CHAPTER 4. THE FOURIER TRANSFORM

Note by taking the inverse Fourier transform of −iπ sgn(ω), we get

i

πt
=

1
2π

∞∫
−∞

sgn(ω) exp(iωt)dω.

4.3 Selected but Important Theorems

Addition Theorem

The Fourier transform of the sum of two functions f and g is equal to the sum of
their Fourier transforms F and G respectively.

Proof:
∞∫

−∞
[f(t) + g(t)] exp(−iωt)dt =

∞∫
−∞

f(t) exp(−iωt)dt+

∞∫
−∞

g(t) exp(−iωt)dt

= F (ω) +G(ω).

Similarity Theorem

The Fourier transform of f(at) is (1/a)F (ω/a) where a is a constant.

Proof:
∞∫

−∞
f(at) exp(−iωt)dt =

1
a

∞∫
−∞

f(at) exp
(
i
ω

a
at
)
d(at) =

1
a
F
(ω
a

)
.

Shift Theorem

The Fourier transform of f(t− a) is given by exp(−iωa)F (ω).

Proof:
∞∫

−∞
f(t−a) exp(−iωt)dt =

∞∫
−∞

f(t−a) exp[−iω(t−a)] exp(−iωa)d(t−a) = exp(−iωa)F (ω).

Parseval’s Theorem

If f and g have Fourier transforms F and G respectively, then

∞∫
−∞

f(t)g∗(t)dt =
1
2π

∞∫
−∞

F (ω)G∗(ω)dω

where g∗ is the complex conjugate of g and G∗ is the complex conjugate of G.

4.4. CONVOLUTION AND CORRELATION 87

Proof: ∞∫
−∞

f(t)g∗(t)dt =

∞∫
−∞

g∗(t)

⎛⎝ 1
2π

∞∫
−∞

F (ω) exp(iωt)dω

⎞⎠ dt

=
1
2π

∞∫
−∞

F (ω)

⎛⎝ ∞∫
−∞

g∗(t) exp(iωt)dt

⎞⎠ dω

=
1
2π

∞∫
−∞

F (ω)

⎛⎝ ∞∫
−∞

g(t) exp(−iωt)dt
⎞⎠∗

dω

=
1
2π

∞∫
−∞

F (ω)G∗(ω)dω.

Rayleigh’s Theorem (also known as the energy theorem)

If f ⇐⇒ F , then
∞∫

−∞
| f(t) |2 dt =

1
2π

∞∫
−∞

| F (ω) |2 dω.

Proof:

The proof follows directly from setting g = f in Parseval’s theorem.

4.4 Convolution and Correlation

Convolution has been introduced in Chapter 2 where it was pointed out that this
process is fundamental to the mathematical models and methods used in signal analy-
sis. The process of correlation is very similar to that of convolution but it has certain
properties that are critically different. In both cases, these processes are fundamen-
tally associated with the Fourier transform, an association that is compounded in the
convolution and correlation theorems.

Notation

Because the convolution and correlation integrals are of such importance and oc-
cur regularly, they are usually given a convenient notation. Throughout this work,
convolution shall be denoted by the symbol ⊗ and correlation by the symbol 	.

4.4.1 Convolution

The convolution of two functions f and g in one dimension is defined by the operation

f ⊗ g =

∞∫
−∞

f(τ)g(t − τ)dτ

88 CHAPTER 4. THE FOURIER TRANSFORM

where f ⊗ g is taken to be a function of t. This is a convolution over the interval
(−∞,∞) and is sometime written in the form f(t)⊗ g(t) or (f ⊗ g)(t) to emphasize
the fact that the operation is a function of the independent variable t.

If f and g are of finite extent | t |≤ T , then the convolution is finite and given by

f ⊗ g =

T∫
−T

f(τ)g(t− τ)dτ.

Note that if g(t) = δ(t), t ∈ (−∞,∞), then

f(t)⊗ g(t) = f(t)⊗ δ(t) = f(t).

In other words, the convolution of a function with the delta function replicates the
function. Also, note that if we let t′ = t− τ then we can write

f ⊗ g =

∞∫
−∞

f(t− t′)g(t′)dt′

and hence, convolution is commutative, i.e.

f ⊗ g = g ⊗ f.
If f and g are both zero for t < 0, then

f ⊗ g =

∞∫
0

f(τ)g(t− τ)dτ.

The equation

h(t) =

∞∫
0

f(τ)g(t− τ)dτ

is known as the Wiener-Hopf equation and is important in solving problems which
are causal, i.e. problems that are governed by an initial condition at t = 0.

4.4.2 Correlation

The correlation (also known as cross-correlation) of two functions f and g in one
dimension is defined by the operation

f 	 g =

∞∫
−∞

f(τ)g(τ − t)dτ.

This is very similar to convolution except that the function g is a function of τ − t
and not t− τ , a seemingly small but very important difference. When the functions
are complex, it is often useful to define the complex correlation operation

f∗ 	 g =

∞∫
−∞

f∗(τ)g(τ − t)dτ.

4.4. CONVOLUTION AND CORRELATION 89

The important difference between correlation and convolution is that in correlation,
the function g is not reversed about the origin as in convolution. Note that for real
functions

f(t)⊗ g(t) = f(t)	 g(−t).
Also, note that if we let t′ = τ − t then the correlation integral can be written as

f(t)	 g(t) =

∞∫
−∞

f(t+ t′)g(t′)dt′.

Some authors prefer to define the correlation integral in this way where the indepen-
dent variable of one of the functions is expressed in terms of an addition rather than
a subtraction. However, note that the correlation integral, (unlike the convolution
integral) is not generally commutative, i.e.

f 	 g �= g 	 f.

4.4.3 Physical Interpretation

Physically, convolution can be thought of as a ‘blurring’ or ‘smearing’ of one func-
tion by another. Convolution integrals occur in a wide variety of physical problems.
Referring to Chapter 2, they occur as a natural consequence of solving linear inho-
mogeneous partial differential equations using the Green’s function method, i.e. if
f is some source term for a linear PDE, then a solution of the form f ⊗ g can be
developed where g is the Green’s function. Convolution type processes are important
in all aspects of signal and image analysis where convolution equations are used to
describe signals and images of many different types. If we describe some system in
terms of an input signal f(t) and some output signal s(t) and this system performs
some process that operates on f(t), then we can write

s(t) = P̂ f(t)

where P̂ is the process operator. In many cases, this operator can be expressed in
terms of a convolution with a so called Impulse Response Function p and we can write

s(t) = p(t)⊗ f(t).

This result is used routinely to model a signal (typically a recorded signal that is
output from some passive or active ‘system’) when it can be assumed that the system
processes are linear and stationary (i.e. p does not change with time). Such systems
are referred to as time invariant linear systems.

4.4.4 Autoconvolution and Autocorrelation

Two other definitions which are important in the context of convolution and correla-
tion are:

Autoconvolution

f ⊗ f =

∞∫
−∞

f(t)f(τ − t)dt

90 CHAPTER 4. THE FOURIER TRANSFORM

and

Autocorrelation

f 	 f =

∞∫
−∞

f(t)f(t− τ)dt.

4.4.5 The Convolution Theorem

The convolution theorem is one of the most important results of Fourier theory. It
can be stated thus:

The convolution of two functions in real space is the same as the product of their
Fourier transforms in Fourier space.

The proof of this result can be obtained in a variety of ways. Here, we give a proof
that is relatively ‘short and sweet’ and based on the definition for an inverse Fourier
transform. Thus, writing

f(t) =
1
2π

∞∫
−∞

F (ω) exp(iωt)dω,

g(t) =
1
2π

∞∫
−∞

G(ω) exp(iωt)dω

we have

f ⊗ g =
1

(2π)2

∞∫
−∞

dt

∞∫
−∞

F (ω) exp(iωt)dω

∞∫
−∞

G(ω′) exp[iω′(τ − t)]dω′

=
1
2π

∞∫
−∞

dωF (ω)

∞∫
−∞

dω′G(ω′) exp(iω′τ)
1
2π

∞∫
−∞

exp[it(ω − ω′)]dt

=
1
2π

∞∫
−∞

dωF (ω)

∞∫
−∞

dω′G(ω′) exp(iω′τ)δ(ω − ω′) =
1
2π

∞∫
−∞

F (ω)G(ω) exp(iωτ)dω

or
f(t)⊗ g(t)⇐⇒ F (ω)G(ω).

4.4.6 The Product Theorem

The product theorem states that the product of two functions in real space is the same
(ignoring scaling) as the convolution of their Fourier transforms in Fourier space. To
prove this result, let

F (ω) =

∞∫
−∞

f(t) exp(−iωt)dt

4.4. CONVOLUTION AND CORRELATION 91

and

G(ω) =

∞∫
−∞

g(t) exp(−iωt)dt.

Then

F ⊗G =

∞∫
−∞

dω

∞∫
−∞

f(t) exp(−iωt)dt
∞∫

−∞
g(τ) exp[−iτ(ω′ − ω)]dτ

=

∞∫
−∞

dtf(t)

∞∫
−∞

dτg(τ) exp(−iω′τ)

∞∫
−∞

exp[−iω(t− τ)]dω

=

∞∫
−∞

dtf(t)

∞∫
−∞

dτg(τ) exp(−iω′τ)2πδ(t − τ)

= 2π

∞∫
−∞

dtf(t)g(t) exp(−iω′t)

or

f(t)g(t)⇐⇒ 1
2π
F (ω)⊗G(ω).

4.4.7 The Correlation Theorem

The correlation theorem follows from the convolution theorem and can be written in
the form

f(t)	 g(t)⇐⇒ F (ω)G(−ω)

for f and g real and
f(t)	 g∗(t) ⇐⇒ F (ω)G∗(ω)

for f and g complex. Note that if g is a purely real function, then the real part of its
Fourier transform G(ω) is symmetric and its imaginary part is asymmetric, i.e.

Gr(−ω) = Gr(ω)

and
Gi(−ω) = −Gi(ω).

In this case,

G(−ω) = Gr(−ω) + iGi(−ω) = Gr(ω)− iGi(ω) = G∗(ω)

and thus, for real functions f and g, we can write

f(t)	 g(t)⇐⇒ F (ω)G∗(ω).

92 CHAPTER 4. THE FOURIER TRANSFORM

4.4.8 The Autoconvolution and Autocorrelation Theorems

From the convolution theorem, we have

f(t)⊗ f(t)⇐⇒ [F (ω)]2

and from the correlation theorem, we have

f(t)	 f(t)⇐⇒| F (ω) |2 .
The last result has a unique feature which is that information about the phase of
F is entirely missing from | F |2 in contrast to the autoconvolution theorem where
information about the phase of the spectrum is retained, i.e.

[F (ω)]2 = A2
F (ω) exp[2iθF (ω)]

where AF and θF are the amplitude and phase spectra of F respectively. Hence, the
autocorrelation function f	f contains no information about the phase of the Fourier
components of f and is consequently unchanged if the phase changes.

4.4.9 Selected but Important Properties

1. Convolution is commutative, i.e.

f ⊗ g = g ⊗ f.

2. Convolution is associative, namely,

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h.
Multiple convolutions can therefore be carried out in any order.

3. Convolution is distributive, or

f ⊗ (g + h) = f ⊗ g + f ⊗ h.

4. The derivative of a convolution can be written as

d

dx
[f(x)⊗ g(x)] = f(x)⊗ d

dx
g(x) = g(x)⊗ d

dx
f(x).

5. Correlation does not in general commute, i.e.

f 	 g �= g 	 f
unless both f or g are symmetric functions.

Exercise Prove the results above using the convolution integral directly and then
using the convolution theorem.

We conclude this section by providing a table of example Fourier transforms as given
below.

4.5. THE SAMPLING THEOREM 93

Function Fourier Transform

f(t) = 1
2π

∞∫
−∞

F (ω) exp(iωt)dω F (ω) =
∞∫

−∞
f(t) exp(−iωt)dt

exp(−at2) √
π
a exp(−ω2/4a)

1√
4πa

exp(−t2/4a) exp(−aω2)
df
dt iωF (ω)

d2f
dt2 (iω)2F (ω)

∞∫
−∞

f(τ)g(t− τ)dτ F (ω)G(ω)

δ(t− t0) exp(−iωt0)
f(t− a) exp(−iωa)F (ω)
tf(t) idF

dω

H(t) 2 sin(ωT)
ω

Table 4.1: Table of example Fourier transforms

4.5 The Sampling Theorem

Digital signals are often obtained from analogue signals by converting them into
a sequence of numbers (a digital signal) so that digital computers can be used to
process them. This conversion is called digitization. When conversion takes place, it
is a naturally common requirement that all the information in the original analogue
signal is retained in digital form. To do this, the analogue signal must be sampled at
the correct rate. So what is the correct rate? The answer to this question is provided
by the sampling theorem. The sampling theorem states that if a continuous function
f(t) is bandlimited and has a complex spectrum F (ω), | ω |≤ Ω, then it is fully
specified by values spaced at regular intervals

δt ≤ π

Ω
.

The parameter Ω/π is important and is given a special name. It is called the ‘Nyquist
frequency’.

To convert an analogue signal into a digital signal with no loss of information,
one must choose a sampling rate that is at least equal to the Nyquist frequency
of the signal. To show why this is the case, the comb function (which was briefly
introduced in Chapter 2) must first be considered. The comb function describes a
train of impulses (delta functions) and is given by

comb(t) =
∞∑

n=−∞
δ(t− nT).

This function describes a sequence of delta functions spaced apart by a fixed period
T as illustrated in Figure 4.1.

Sampling a function can be described mathematically by multiplying it by this
comb function. Thus, if f(t) is the bandlimited function and g(t) is the sampled

94 CHAPTER 4. THE FOURIER TRANSFORM

function, then we can write
g(t) = comb(t)f(t).

The sampling theorem is obtain by analysing the spectrum of the sampled function
g(t).

4.5.1 Fourier Transform of the comb Function

The evaluation of F̂1 comb(t) is important generally and is crucial to the proof of the
sampling theorem to follow. Using the definition of comb(t), we can write

∞∫
−∞

comb(t) exp(−iωt)dt =

∞∫
−∞

∞∑
n=−∞

δ(t− nT) exp(−iωt)dt

=
∞∑

n=−∞

∞∫
−∞

δ(t− nT) exp(−iωt)dt =
∞∑

n=−∞
exp(−iωnT).

Hence, using the product theorem,

comb(t)f(t) ⇐⇒ 1
2π
F (ω)⊗

∞∑
n=−∞

exp(−iωnT).

Although valid, the above result is not in itself very useful. The key result which is
required to prove the sampling theorem comes from expressing comb(t) as a complex
Fourier series (not a transform). This can be done because, although it is a special
case, the comb function is just a periodic function and thus, a Fourier series repre-
sentation can be used. Hence, using the results discussed in Chapter 3, we consider
writing comb in terms of a complex Fourier series given by

comb(t) =
∞∑

n=−∞
cn exp(i2πnt/T)

where the coefficients cn are obtained by computing the integral

cn =
1
T

T/2∫
−T/2

comb(t) exp(−i2πnt/T)dt.

Substituting the definition for the comb function into the equation above and noting
that comb(t) = δ(t) in the interval [−T/2, T/2], we get

cn =
1
T

T/2∫
−T/2

δ(t) exp(−i2πnt/T)dt =
1
T
.

4.5. THE SAMPLING THEOREM 95

Figure 4.1: Illustration of the sampling of a function by multiplication with a comb
function.

Hence, we can represent the comb function by the complex Fourier series

comb(t) =
1
T

∞∑
n=−∞

exp(i2πnt/T)

and the Fourier transform of the comb function can now be written as

∞∫
−∞

1
T

∞∑
n=−∞

exp(i2πnt/T) exp(−iωt)dt

96 CHAPTER 4. THE FOURIER TRANSFORM

=
1
T

∞∑
n=−∞

∞∫
−∞

exp[−it(ω − 2πn/T)]dt =
2π
T

∞∑
n=−∞

δ(ω − 2πn/T).

We have therefore obtained the fundamental and important result (crucial to the
proof of the sampling theorem)

∞∑
n=−∞

δ(t− nT)⇐⇒ 2π
T

∞∑
n=−∞

δ(ω − 2πn/T).

4.5.2 Proof of the Sampling Theorem

Suppose we sample a function at regular intervals δt. The sampled function g(t) is
then given by

g(t) = f(t)
∞∑

n=−∞
δ(t− nδt).

Using the product theorem, in Fourier space, this equation becomes

G(ω) = F (ω)⊗ 2π
δt

∞∑
n=−∞

δ(ω − 2πn/δt)

=
2π
δt

∞∑
n=−∞

F (ω − 2πn/δt).

This result demonstrates that sampling the function f , creates a new spectrum G
which is a periodic replica of the spectrum F spaced at regular intervals±2π/δt,±4π/δt,±6π/δt
and so on as illustrated in Figure 4.2. Since F is a bandlimited function, the total
width of the spectrum is Ω−(−Ω) = 2Ω, i.e. the bandwidth of F . Thus, if 2π/δt < 2Ω,
then the replicated spectra will overlap. This effect is known as aliasing. To ensure
that aliasing does not occur, we require that

2π
δt
≥ 2Ω

or a sampling rate where

δt ≤ π

Ω
.

A digital signal that has been sampled according to the condition

δt =
π

Ω

is called a Nyquist sampled signal where Ω/π is the Nyquist frequency (equal to
twice the frequency bandwidth of the signal). This is the optimum sampling interval
required to avoid aliasing and to recover the information of an analogue signal in
digital form. It is the fundamental result used in all A-to-D (Analogue-to-Digital)
conversion schemes.

4.6. FOURIER FILTERS 97

4.5.3 Sinc Interpolation

If the condition given above provides the necessary sampling rate that is required to
convert an analogue signal into a digital signal without loss of information, then one
should be able to recover the analogue signal from the digital signal also without loss
of information (i.e. undertake D-to-A or Digital-to-Analogue conversion). Assuming
that f has been sampled at the Nyquist frequency, the only difference between g and
f is that the spectrum of g consists of F repeated at regular interval 2πn/δt; n =
±1,±2,±3, ...,±∞. Clearly, f can be obtained from g by retaining just the part of G
for values of | ω | less than or equal to Ω and setting all other values in the spectrum
to zero, i.e.

F (ω) = G(ω)

provided we set
G(ω) = 0 ∀ | ω |> Ω.

We can describe this process mathematically by multiplying G with the Tophat func-
tion

H(ω) =

{
1, | ω |≤ Ω;
0, | ω |> 0.

Thus, F is related to G by the equation

F (ω) = H(ω)G(ω).

Using the convolution theorem, we then obtain

f(t) = 2Ω sinc(Ωt)⊗ g(t).

This result describes the restoration of a continuous function f(t) from a sampled
function g(t) and therefore demonstrates that a function can be interpolated by con-
volving it with the appropriate sinc function. This is known as sinc interpolation. In
practice, a sampled function can be sinc interpolated by ‘zero padding’ its complex
spectrum.

4.6 Fourier Filters

The design of filters is an inherent aspect of signal processing. Many of these (Fourier)
filters operate on the spectrum of the signal. An operation which changes the distrib-
ution of the Fourier components of a function (typically via a multiplicative process)
may be defined as a (Fourier) filtering operation. Thus, in an operation of the form

S(ω) = P (ω)F (ω)

P may be referred to as a filter and S can be considered to be a filtered version of
F . In this sense, many of the operations already discussed can be thought of as just
filtering operations. For example, differentiation is characterized by the (highpass)
filter

P (ω) = iω

98 CHAPTER 4. THE FOURIER TRANSFORM

Figure 4.2: Illustration of the sampling theorem: The spectrum of the analogue signal
becomes replicated when sampling takes place. If an analogue signal of bandwidth
2Ω is under sampled, then the digital signal does not contain the same amount of
information and the data is aliased. The information that is lost is associated with
that part of the spectrum which overlaps (the shaded regions). Aliasing is avoided by
sampling the analogue signal at a rate that is greater or equal to π/Ω.

4.6. FOURIER FILTERS 99

and integration is characterized by the (lowpass) filter

P (ω) =
1
iω
.

In general, (Fourier) filters tend to fall into one of three classes: lowpass filters,
highpass filters and bandpass filters.

4.6.1 Lowpass Filters

A lowpass filter is one which suppresses or attenuates the high frequency components
of a spectrum while ‘passing’ the low frequencies within a specified range. Some
examples of lowpass filters include the following:

(i) The ideal lowpass filter (the tophat function)

P (ω) =

{
1, | ω |≤ Ω;
0, | ω |> Ω.

The bandwidth of the filter is 2Ω.

(ii) The Gaussian lowpass filter

P (ω) = exp(−ω2/σ2)

where σ is the standard deviation of the filter, i.e. its half width when P = exp(−1).

(iii) The Butterworth lowpass filter

P (ω) =
1

1 +
(

ω
Ω

)2n , n = 1, 2, ...

where Ω is the ‘cut-off’ frequency which defines the bandwidth of the filter and n is
the ‘order’ of the filter which determines its ‘sharpness’.

4.6.2 Highpass Filters

A highpass filter does exactly the opposite to a lowpass filter, i.e. it attenuates the
low frequency components of a spectrum while ‘passing’ the high frequencies within
a specified range. Some examples of highpass filters include the following:

(i) The ideal highpass filter

P (ω) =

{
0, | ω |< Ω;
1, | ω |≥ Ω.

(ii) The Gaussian highpass filter

P (ω) = exp(ω2/σ2)− 1.

100 CHAPTER 4. THE FOURIER TRANSFORM

(iii) The Butterworth highpass filter

P (ω) =
1

1 +
(

Ω
ω

)2n ; n = 1, 2, ..., ω �= 0.

4.6.3 Bandpass Filters

A bandpass filter only allows those frequencies within a certain band to pass through.
In this sense, lowpass and highpass filters are just special types of bandpass filters.
Examples include:

(i) The ideal bandpass filter (with ω0 > Ω)

P (ω) =

{
1, if ω0 − Ω ≤ ω ≤ ω0 + Ω and − ω0 − Ω ≤ ω ≤ −ω0 + Ω;
0 otherwise.

Here, ω0 is the centre frequency of the filter which defines the location of the frequency
band and Ω defines the bandwidth.

(ii) The quadratic-Gaussian bandpass filter given by

P (ω) = ω2 exp(−ω2/σ2).

Note that as σ increases, the frequency band over which the filter operates increases.
In general, bandpass filters have at least two control parameters; one to adjust the
bandwidth and another to adjust the position of the band.

A large number of signals can be modelled in terms of some bandpass filter modify-
ing the distribution of the (complex) Fourier components associated with an informa-
tion source. Processing may then be required to restore the out-of-band frequencies
in order to recover the complex spectrum of the source. This requires a good estimate
of the original bandpass filter.

4.6.4 The Inverse Filter

Suppose that S(ω) and P (ω) are known functions and it is required to find F (ω) from
which f(t) can be computed (via the inverse Fourier transform). In this case

F (ω) =
S(ω)
P (ω)

.

Here, 1/P (ω) is known as the inverse filter and can be written in the form

P ∗(ω)
| P (ω) |2 , | P (ω) |�= 0.

4.7. THE KRONECKER DELTA FUNCTION AND THE DFT 101

4.7 The Kronecker Delta Function and the DFT

Given the analysis provided in the previous chapter and the results discussed in this
chapter, and coupled with the fact that many of the results and ideas developed using
the Fourier transform can be implemented using the Discrete Fourier Transform or
DFT, it is pertinent to ask how the results developed here can be rigorously justified
using the DFT. In other words, how can we develop results (such as the convolution
theorem for example) that are based explicitly on the use of the DFT. If we consider
a generalized approach, then it is imperative that we consider a discrete version of
the delta function since nearly all of the results discussed in this chapter have been
based on using the generalized Fourier transform (compared with those discussed in
the previous chapter which are based on a classical approach) which in turn have been
dependent on the application of the delta function and its properties. The solution
to this problem is based on the introduction of the so called Kronecker delta function
which can be defined as

δnm =

{
1, n = m;
0, n �= m.

to which we can extend the following properties:∑
n

fnδnm = fm

and
δnm =

1
N

∑
k

exp[2πik(n−m)/N]

where N is the array size and the limits of the sums are taken to run from −∞ to ∞.
The first of these properties is the definition of this discrete delta function in terms
of its fundamental sampling property. The second of these properties can be derived
directly from a discretization of the integral representation of the delta function, i.e.

δ(t) =
1
2π

∞∫
−∞

exp(iωt)dω.

Thus, consider

δ(tn) =
1
2π

∑
m

exp(iωmtn)Δω

which can be written in the form

δ(tn) =
1
2π

∑
m

exp(imnΔωΔt)Δω

where Δt and Δω denote the sampling intervals between the elements tn and ωm

respectively. Now, with

ΔωΔt =
2π
N
,

δ(tn) =
1

ΔtN

∑
m

exp(2πinm/N)

102 CHAPTER 4. THE FOURIER TRANSFORM

or
Δtδ(tn) =

1
N

∑
m

exp(2πinm/N).

Hence, defining the Kronecker delta function as δn ≡ δ(tn)Δt we obtain the desired
result.

With these results, we can derive a number of important results in a way that is
directly analogous to those derived for the Fourier transform. For example, suppose
we want to prove the convolution theorem for the DFT, i.e. show that

fn ⊗ gn ⇐⇒ FnGn

where
fn ⊗ gn =

∑
n

fngm−n

and Fn and Gn are the DFTs of fn and gn respectively. Let

fn =
1
N

∑
m

Fm exp(2πinm/N)

and
gn =

1
N

∑
m

Gm exp(2πinm/N).

Then ∑
n

fngm−n =
1
N2

∑
n

∑
k

Fk exp(2πikn/N)
∑

�

G� exp[2πi�(m− n)/N]

=
1
N

∑
k

Fk

∑
�

G� exp(2πi�m/N)
∑
n

exp[2πin(k − �)/N]

=
1
N

∑
k

Fk

∑
�

G� exp(2πi�m/N)δk�

=
1
N

∑
k

FkGk exp(2πikm/N).

Hence,
fn ⊗ gn ⇐⇒ FnGn.

4.8 Deriving Filters using the DFT

Digital filters can be derived from application of the DFT in much the same way as
analogue filters can from application of the Fourier transform. For example, consider
the differentiation of a digital signal using forward differencing and whose digital
gradient is given by (ignoring scaling by the ‘step length’)

gn = fn+1 − fn.

4.8. DERIVING FILTERS USING THE DFT 103

Now, with

fn =
1
N

∑
m

Fm exp(i2πnm/N),

we have

gn =
1
N

∑
m

Fm exp(i2πnm/N)[exp(i2πm/N)− 1]

which shows that the DFT filter for this operation is given by

exp(i2πm/N)− 1 = [cos(2πm/N)− 1] + i sin(2πm/N).

Similarly, the DFT filter that characterizes the center differenced approximation to a
second order derivative (i.e. fn+1 − 2fn + fn−1) is given by

exp(i2πm/N) + exp(−iπm/N)− 2 = 2[cos(2πm/N)− 1].

Note that these filters differ from the application of Fourier filters in discrete form,
i.e. iωm and −ω2

m. In particular, their response at high frequencies is significantly
different. Also, note that a process such as fn+1 − 2fn + fn−1 for example can be
considered in terms of a discrete convolution of the signal fn with (1,−2, 1) and in
this sense we can write

(1,−2, 1)⊗ fn ⇐⇒ 2[cos(2πm/N)− 1]Fm.

Processes of this type (i.e. discrete convolutions and other ‘moving window’ opera-
tions) are discussed extensively in Part IV of this work.

We conclude this chapter with a schematic diagram of the relationships between
the Fourier transform, the complex Fourier series (Chapter 3) and the discrete Fourier
transform as given below. This diagram illustrates qualitatively the principal prop-
erties associated with each of these approaches to Fourier analysis which should be
born in mind when their utilities are exercised. In particular, the relationship be-
tween the Fourier transform and the corresponding discrete Fourier transform (and
hence between analogue and digital signal processing) should be understood in terms
of the fact that the DFT does not produce identical results (due to numerical error
associated with the discretization of arrays that are of finite duration) to those of
the Fourier transform. Nevertheless, the use of Fourier theory can be used to inves-
tigate the analysis of (analogue) signals to design processing methods that can be
implemented using the DFT. Details of the numerical considerations that need to be
addressed with regard to this statement are discussed in Part IV of this book.

104 CHAPTER 4. THE FOURIER TRANSFORM

Fourier ←− Complex −→ Discrete
Transform Fourier Fourier

Series Transform
↓ ↓ ↓

Non-periodic Periodic Single Period
Signals Signals Signals
↓ ↓ ↓

Continuous Continuous Discrete
Space/Time, Space/Time, Space/Time,
Continuous Discrete Discrete
Frequency Frequency Frequency

↓ ↓
Fourier Theory ←→ DFT Theory
(Analytical) (Computational)

↓ ↓
Analogue ←→ Digital

Signal Signal
Processing Processing

Diagram 4.1: Schematic diagram of the relationship between the Fourier transform,
the (complex) Fourier series and the discrete Fourier transform (DFT).

4.9 Case Study: Scattering from Layered Media

This case study is devoted to illustrating how the Fourier transform, the convolution
process and the reflection or (back) scattering of waves are related and further, how
the equation s(t) = p(t) ⊗ f(t) for modelling a signal can be established from first
principles. Thus, we consider the case where a pulse of radiation is normally incident
upon a material which has a layer The pulse can be considered to be an electromag-
netic pulse reflected from a layered dielectric or an acoustic pulse in which a spectrum
of acoustic waves are reflected from a layered structure with variations in density for
example. In any case, we assume that a pulsed radiation field or wavefield is emit-
ted and recorded through some appropriate technology (depending of the frequency
range that is being used) and that the time history of the reflected field is obtained
giving a signal that can then be digitized for appropriate processing in order to per-
haps analyse the layered structure under investigated. This is a classical example of
the type of situation that occurs in many areas of non-destructive evaluation, radar,
seismology and medical ultrasonic imaging to name but a few. The problem is to
develop a suitable model for the recorded signal. The approach that is considered
here is not confined to layered materials but this assumption provides a method of
analysis that can be confined to a one-dimensional model.

4.9. CASE STUDY: SCATTERING FROM LAYERED MEDIA 105

4.9.1 Introduction to the Wave Equation

We start be considering the wave equation which is a second order partial differential
(hyperbolic) equation of the form(

∂2

∂x2
+ k2

)
u(x, k) = 0.

Here, u describes the wavefield which is a function of space x and the wavenumber k
which in turn is given by

k =
ω

c

where ω is the angular frequency (=2π× frequency) and c is the speed at which
the wavefield propagates. If the medium through which the wavefield propagates
is homogeneous with no variations of the wavespeed c, then the above equation is
homogeneous with a solution of the form

u(x, k) = P exp(−ikx)

where P is the amplitude of the wavefield. Note that this solution holds if P is a
function of k and so we can write

u(x, k) = P (k) exp(−ikx).

Here, P (k) can be taken to describe the spectrum of the pulse that is emitted. If P
is a constant forall k ∈ (−∞,∞), then the pulse becomes an ideal impulse or delta
function. On the other hand, if P only exist for k = k0 say, then the wavefield can be
taken to be continuous - a Continuous Wave or CW field.

Suppose that at some position along x, material is introduced, that in effect,
changes the wave speed. For example, suppose a dielectric is introduced with permit-
tivity ε, then the electromagnetic wave speed will change from

c0 =
1√
ε0μ0

to c =
1√
εμ0

where ε0 and μ0 are the permittivity and permeability of free space. A change in
the wave speed will of course lead to a change in the refractive index leading directly
to partial reflection of a light wave from a glass plate for example. Similarly, if the
wavefield was an acoustic field, and a change in density ρ was introduced, then the
acoustic wave speed would change from

c0 =
1√
ρ0κ0

to c =
1√
ρκ0

where ρ0 and κ0 are the density and compressibility of a homogeneous space. Note
that in electromagnetics, if ε0 is taken to be the permittivity of a vacuum then ε > ε0
always. However, in acoustics it is possible for the density ρ to be both greater or less
than the ambient density ρ0, i.e. the speed of propagation of an acoustic wave can
increase or decrease above or below the ambient velocity, but in electromagnetics, the
wave speed can only decrease form that of the speed of light.

106 CHAPTER 4. THE FOURIER TRANSFORM

In addition to introducing a material at some position x, suppose we now extend
the problem and consider the material to have a characteristic profile defined by c(x).
Further, let us consider this profile to be defined in terms of a perturbation of an
ambient constant velocity c0 so that

c(x) = c0 + v(x).

The effect of introducing an inhomogeneity characterized by v(x) is to produce a
change or perturbation to the behaviour of the wavefield u. Suppose we model this
change in a similar way to that of the speed profile, i.e. consider

u(x, k) = u0(x, k) + w(x, k)

where u0(x, k) = P (k) exp(−ikx) which is the solution to the homogeneous equation(
∂2

∂x2
+ k2

)
u0(x, k) = 0.

Having defined the problem above, we shall now apply suitable approximations to
the problem in order to establish a first order solution that in many cases is valid
physically (a solution that is actually compounded in a single convolution). The
principal conditions are that v and w are small perturbations to c0 and u0 respectively,
i.e. v(x) << c0, ∀x and w(x, k) << u0(x, k), ∀x and k. In other words, the change
in the wave speed generated by an inhomogeneity is relatively small leading to a
small or weak effect on the wavefield. The latter condition is referred to as the weak
scattering condition and is generally attributed to Max Born who was the first to
introduce such an approximation applied to quantum scattering theory in the 1930s.
These conditions allow us to formulate a modified inhomogeneous wave equations as
follows. First, we evaluate 1/c2, thus,

1
c2

=
1

(c0 + v)2
=

1
c20

(
1 +

v

c0

)−2

=
1
c20

(
1− 2v

c0
+ ...

)
� 1
c20
− 2v
c30

since v/c0 << 1 and the nonlinear terms in the binomial expansion given above can
therefore be neglected. Now,(

∂2

∂x2
+
ω2

c20
− ω2 2v

c30

)
(u0 + w)

=
(
∂2

∂x2
+
ω2

c20

)
u0 +

(
∂2

∂x2
+
ω2

c20

)
w − 2ω2

c30
(vu0 + vw)

=
(
∂2

∂x2
+
ω2

c20

)
w − 2ω2

c30
(vu0 + vw)

�
(
∂2

∂x2
+
ω2

c20

)
w − 2vω2

c30
u0 = 0

or (
∂2

∂x2
+ k2

)
w = k2 2v

c0
u0

4.9. CASE STUDY: SCATTERING FROM LAYERED MEDIA 107

where
k =

ω

c0
.

This equation facilitates a first order approximation to the solution of the inhomoge-
neous Helmholtz equation, i.e.(

∂2

∂x2
+ k2

)
u(x, k) = k2f(x)u(x, k)

where u is the wavefield and f(x) is the inhomogeneity. Note that this equation can
be developed directly from the electromagnetic or acoustic field equations. In doing
so, the functional form of f(x) will be defined directly in terms of the electromagnetic
and acoustic ‘scatter generating parameters’ (i.e. the permittivity, permeability in
electromagnetic problems and the density and compressibility in acoustics).

4.9.2 Asymptotic Green’s Function Solution

Referring to the Green’s function method discussed in Chapter 2 (see Question 2.9),
the solution for w can be written in the form (for right travelling waves and where v
is now a dimensionless quantity used to denote the quotient v/c0)

w(x0, k) = 2k2
∞∫

−∞
g(x | x0, k)v(x)u0(x, k)dx

= 2k2
∞∫

−∞
i

2k exp(ik | x− x0 |)v(x)P (k) exp(−ikx)dx

= ikP (k)
∞∫

−∞
exp(ik | x− x0 |)v(x) exp(−ikx)dx.

Note that using ⊗ to denote the convolution operation, we can write this result in
the form

w(x, k) = 2k2P (k)g(| x |, k)⊗ v(x) exp(−ikx).
Thus, we observe that the basic solution to this problem is compounded in a convo-
lution operation involving the Green’s function. Now, as x0 −→ ∞, | x − x0 |−→
x0 − x, ∀x ∈ (−∞,∞) and hence,

w(x0, k) = exp(ikx0)ikP (k)

∞∫
−∞

exp(−2ikx)v(x)dx

and the solution for the wavefield u required is thus given by

u(x0, k) = u0(x0, k) + w(x0, k)

= P (k) exp(−ikx0) + exp(ikx0)ikP (k)

∞∫
−∞

exp(−2ikx)v(x)dx.

This result expresses the wavefield in term of the sum of the incident field P (k) exp(−ikx0)
and the reflected wavefield exp(ikx0)S(k) where S is the reflection coefficient which

108 CHAPTER 4. THE FOURIER TRANSFORM

can be written in terms of the angular frequency ω as

S(ω) = P (ω)iω

∞∫
−∞

exp(−2iωt)v(t)dt

or, replacing t by t/2,

S(ω) =
1
2
P (ω)iω

∞∫
−∞

exp(−iωt)v(t/2)dt.

Here, we see that the spectrum of the reflected signal is characterized by the Fourier
transform of the velocity profile which is a function of the ‘half-way’ travel time. We
can therefore write

S(ω) =
1
2
P (ω)iωV (ω)

where

V (ω) =

∞∫
−∞

v(t/2) exp(−iωt)dt.

Finally, if we Fourier invert this equation, then, noting that

iω ⇐⇒ d

dt

and using the convolution theorem, we get

s(t) = p(t)⊗ f(t)

where

f(t) =
1
2
d

dt
v(t/2).

Thus, we arrive at the convolution model for the reflected signal which demonstrates
that the amplitude modulations of this signal are not determined by the velocity
profile itself but by its first derivative. Thus, sharp changes in the velocity profile
of a layered material will produce large amplitude variations in the reflected signal.
Finally, note that s, p and f are functions of t which is actually the two-way travel
time, since, replacing t/2 by t, we have

s(2t) = p(2t)⊗ f(2t)

where

f(2t) =
1
4
d

dt
v(t)

in which the signal is a function of the time taken for the wavefield to propagate to
the inhomogeneity from the source and return back to the detector after interacting
(i.e. reflecting) from it.

4.9. CASE STUDY: SCATTERING FROM LAYERED MEDIA 109

4.9.3 Discussion

The purpose of this case study has been to show how it is possible to produce the
convolution model for a signal based on a more fundamental appreciation of a physical
problem. In undertaking this study, it has been shown that the convolution model
is a direct result of applying conditions on the strength of the wavefield that define
a physical process in which only weak or single interactions (i.e. reflections) take
place. Thus, with regard to active pule-echo type signal and imaging systems, the
convolution model is actually based on the Born scattering approximation in which
multiple scattering events are neglected. Finally, it is of value to quantify the condition
under which this approximation holds, namely that w is small compared to u0 or that

‖w(x, k)‖ << ‖u0(x, k)‖
where we consider the norm (for x ∈ L)

‖f(x)‖ ≡
⎛⎝∫

L

| f(x) |2 dx
⎞⎠

1
2

.

Now

‖w(x0, k)‖ = ‖2k2

∞∫
−∞

g(x | x0, k)v(x)u0(x, k)dx‖

≤ 2k2‖u0(x0, k)‖ × ‖
∞∫

−∞
g(x | x0, k)v(x)dx‖

and the condition for weak scattering can be written as

2k2‖
∞∫

−∞
g(x | x0, k)v(x)dx‖ << 1.

We can progress further by noting that

‖g(| x |, k)⊗ v(x)‖ ≤ ‖g(| x |, k)‖ × ‖v(x)‖
and that

‖g(| x |, k)‖ =

√
L

2k
.

Thus, it is clear that our condition reduces to

‖v(x)‖ << 1
k
√
L
.

Finally, suppose that v(x) is of compact support x ∈ [−L/2, L/2] where L is the scale
length over which the inhomogeneity exists. Then, by defining the root mean square
value to be given by (noting that v is real)

〈v2〉 ≡

⎛⎜⎝ 1
L

L/2∫
−L/2

[v(x)]2dx

⎞⎟⎠
1
2

110 CHAPTER 4. THE FOURIER TRANSFORM

we can write (noting that k = 2π/λ and ignoring scaling by 2π)

〈v2〉 << λ.

This result demonstrates that for arbitrary values of ‖v‖, the wavelength needs to be
significantly large compared to the scale length of the inhomogeneity (specifically, the
square root). However, if an experiment is undertaken in which the wavelength of the
wavefield is of the same order of magnitude as the scale length of the scatterer (which
is usual in pulse-echo systems where a wavelength of the order of the scale length of
the scatterer is required) then with λ ∼ 2π

√
L say, we have

‖v‖ << 1.

Now, v is actually the dimensionless quantity v/c0 where c0 is the ambient velocity
and v is the change in this velocity. Thus, provided v is a relatively small perturbation
to the velocity of free space, the Born approximation holds, reducing the problem to
a time invariant convolution as shown above. Note that this condition is consistent
with the condition used earlier on to develop an approximate form for (c0+v)−2 using
a binomial expansion and the result is therefore self-consistent.

4.10 Summary of Important Results

Convolution Theorem

f(t)⊗ g(t)⇐⇒ F (ω)G(ω)

Product Theorem
f(t)g(t)⇐⇒ 1

2π
F (ω)⊗G(ω)

Correlation Theorem

f(t)	 g(t) ⇐⇒ F (ω)G∗(ω)

Autocorrelation Theorem

f(t)	 f(t)⇐⇒| F (ω) |2

Sampling Theorem

f(t)
∞∑

n=−∞
δ(t− nT)⇐⇒ 2π

T

∞∑
n=−∞

F (ω − 2πn/T)

where f(t) is a bandlimited function with (angular) bandwidth Ω.

Nyquist Sampling Rate
T =

π

Ω

4.11. FURTHER READING 111

Nyquist Frequency

Ω/π = 2× Bandwidth frequency

Sinc Interpolation

f(t) = 2Ωsinc(Ωt)⊗ f(t)
∞∑

n=−∞
δ(t− nT)

4.11 Further Reading

• Bateman H, Tables of Integral Transforms, McGraw-Hill, 1954.

• Papoulis A, The Fourier Integral and its Applications, McGraw-Hill, 1962.

• Bracewell R N, The Fourier Transform and its Applications, McGraw-Hill, 1978.

• Oppenheim A V, Willsky A S and Young I T, Signals and Systems, Prentice-
Hall, 1983.

• Kraniauskas P, Transforms in Signals and Systems, Addison-Wesley, 1992.

4.12 Problems

4.1 Show that the Fourier transform of the function

f(t) =

{
t, | t |≤ a;
0, | t |> a.

is

F (ω) =

{
2ia
ω

(
cosωa− sin ωa

ωa

)
, ω �= 0;

0, ω = 0.

4.2 Find the Fourier transform of the ‘comb function’

comb(t) =
n∑

i=1

δ(t− ti).

4.3 Find the Fourier transform of

f(t) =

{
1− |t|

a , | t |≤ a;
0, | t |> a.

112 CHAPTER 4. THE FOURIER TRANSFORM

and by inversion, prove that
∞∫

−∞

sin2 t

t2
dx = π.

4.4 Find the Fourier transform of

f(x) =

{
1/2a, | x |≤ a;
0, | x |> a.

and by considering the limit as a→ 0, verify that

∞∫
−∞

δ(t) exp(−iωt)dt = 1.

4.5 Find the Fourier transform of exp(− | t |) and, by inversion, prove that

∞∫
−∞

cos t
1 + t2

dx =
π

e
.

4.6 Find the Fourier transform of the function

f(t) =

{
1, | t |< a;
0, | x |> a.

and by applying the convolution theorem to the Fourier transform of [f(t)]2, show
that ∞∫

0

sin2 t

t2
dt =

π

2
.

4.7 Show that
f(t)⊗ exp(iωt) = F (ω) exp(iωt).

Hence, prove the convolution theorem for Fourier transforms.

4.8 Show that if α is small enough, then

f(t)⊗ exp(iαt2) � [F (2αt)− iαF ′′(2αt)] exp(iαt2).

4.9 If f(t)⇐⇒ F (ω) and 1/πt⇐⇒ −i sgn(ω) where

sgn(ω) =

{
1, ω > 0;
−1, ω < 0.

show that
f ′(t)⊗ 1

πt
⇐⇒| ω | F (ω),

4.12. PROBLEMS 113

1
πt2

⇐⇒| ω |
and

− 1
πt
⊗ 1
πt

= δ(t).

4.10 Show that
fn 	 gn ⇐⇒ FnG

∗
n

where
fn 	 gn =

∑
n

fngn+m

and that
fngn ⇐⇒ 1

N
Fn ⊗Gn

where
Fn ⊗Gn =

∑
n

FnGm−n.

4.11 Show that the inverse solution for f to the equation(
∂2

∂x2
+ k2

)
u(x, k) = k2f(x)u(x, k)

is

f(x) =
1

u(x, k)

(
∂2

∂x2
(s(x) ⊗ [u(x, k)− u0(x, k)] +

1
k2

[u(x, k)− u0(x, k)])
)
,

| u(x, k) |> 0

where u0 is the solution to (
∂2

∂x2
+ k2

)
u0 = 0

and

s(x) =

{
x, x ≥ x0;
0, x < x0.

Chapter 5

Other Integral Transforms

Although it is fair to state that the Fourier transform is absolutely fundamental to
signal analysis, there are a number of other integral transforms that play an impor-
tant role in signal analysis, simulation and processing. These transforms include:
the Laplace transform, the sine and cosine transforms, the Hilbert transform, the
z-transform, the Wigner and Wigner-Ville transform, the Riemann-Liouville or frac-
tional integral transform and the wavelet transform. In this chapter, we briefly intro-
duce these transforms and discuss some of their properties.

5.1 The Laplace Transform

The single sided Laplace transform (usual case) is given by

F (p) = L̂f(t) ≡
∞∫
0

f(t) exp(−pt)dt

and the double sided Laplace transform is defined as

F (p) =

∞∫
−∞

f(t) exp(−pt)dt.

The Laplace transform together with the Fourier transform is arguably the mathe-
matical signature of the communications engineer and electrical engineering in general
and it has a long history of applications to problems in engineering. Like the Fourier
transform, it changes or transforms some of the most important differential equations
of physics into algebraic equations, which are generally much easier to solve. The
essential difference, is that the (one-sided) Laplace transform can be used to solve
causal problems, i.e. those that are characterized by initial conditions. This is not
the only transform that can be used to solve causal problems. Both the Fourier sine
and cosine transforms have applications in this respect. However, these transforms
are not unique to this type of problem solving either. The essential difference lies
in whether a two-sided transform (where the integral ‘runs’ from −∞ to ∞) or a

114

5.1. THE LAPLACE TRANSFORM 115

single-sided transform (where the limits of the integral are from 0 to ∞, in the so
called ‘positive half-space’).

By 1785, Laplace was working with transforms of the type

F (p) =

∞∫
0

tpf(t)dt

which is today used to solve certain differential equations with variable coefficients for
example and is known as the Mellin transform. In 1807, Laplace’s fellow countryman,
Joseph Fourier, published the first monograph describing the heat equation which
is more commonly known as the diffusion equation and Laplace attempted to solve
this equation in a way that inspired Fourier to developed his own transform. The
connection between the Fourier transform to study the power and energy spectra of
signals and the Laplace transform is intimate but they are not equivalent. While
the Fourier transform is useful for finding the steady state output of a linear circuit
in response to a periodic input for example (see Chapter 3), the Laplace transform
can provide both the steady state and transient responses for periodic and aperiodic
signals. However, one of the most important features of both transforms is their
ability to map the convolution operation into a multiplicative operation in Fourier or
Laplace space. Interestingly and fundamentally, the convolution integral also plays
a central role in the theory of random variables; namely, if Pf (x) and Pg(x) are the
probability density functions of two independent random variables or signals f(t) and
g(t), then the probability density function of the random variable h(t) = f(t) + g(t)
is given by the convolution of Pf (x) with Pg(x) - a result that was first introduced by
Gauss using the Laplace transform. Moreover, if we have a number of independent
random functions f1(t), f2(t), ..., fn(t), then in the limit as n → ∞, the probability
density function of the function f1(t) + f2(t) + ... + fn(t) is given by a Gaussian or
normal distribution, a result that is fundamental to so many statistical systems and
is commonly referred to as the Central Limit Theorem.

Another important development involving the Laplace transform was first ad-
vanced by the rather eccentric Englishman Oliver Heaviside (1850-1925) who reduced
differential equations directly to algebraic ones by representing time differentiation as
an operator. He used p, as in px ≡ dx/dt and p2x ≡ d2x/dt2 and 1/p(x) ≡ ∫

xdt,
and then manipulated these equations using any algebraic trick that could be in-
vented, including his famous Heaviside expansion theorem which is essentially the
partial fraction expansion of modern Laplace theory. Heaviside also introduced frac-
tional operators such as p1/2 which can be used to investigate properties relating to
the fractional calculus which is explored in Part IV (Chapter 17). Toward the end
of his life, Heaviside communicated with John Bromwich (1875-1929), who provided
greater rigor to Heaviside’s work in terms of complex, Laplace-like integrals such as
the Bromwich integral which is in effect the inverse Laplace transform. On this note,
it is important to understand that the Fourier transform has one major advantage
over the Laplace transform, which is that the form of the inverse Fourier transform is
the same as the forward Fourier transform. In terms of applications to signal process-
ing, the Fourier transform is more readily applicable because it is rare that data is
provided subject to a set of initial conditions, i.e. signal processing is essentially a
non-causal ‘art-form’ and for this reason, together with the intrinsic symmetry of

116 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

the Fourier transform, the application of the Laplace transform is not as extensive.
Nevertheless, the Laplace transform has and continues to have value in some forms
of signal and circuit analysis.

Some Elementary Laplace Transforms

(i) The function f(t) = 1∀t ≥ 0 (the Laplace transform of unity) has the Laplace
transform

F (p) =

∞∫
0

exp(−pt)dt =
[
−1
p

exp(−pt)
]∞
0

=
1
p
, p > 0.

(ii) The Laplace transform of the function f(t) = exp(at) is given by

F (p) =

∞∫
0

exp[(a− p)t]dt =
[

1
a− p exp[(a− p)t]

]∞
0

=
1

p− a , p > a.

(iii) Consider the function f(t) = tn where n is an integer, then

F (p) = In =

∞∫
0

tn exp(−pt)dt

= −1
p

[tn exp(−pt)]∞0 +
n

p

∞∫
0

tn−1 exp(−pt)dt

=
n

p
In−1 =

n

p

(n− 1)
p

In−2 =
n

p

(n− 1)
p

(n− 2)
p

In−3 = ...

provided p > 0. Hence

F (p) =
n!
pn+1

.

Note that this result provides us with a integral representation for a factorial, i.e.
with p = 1,

n! =

∞∫
0

tn exp(−t)dt.

From this equation, we can quite naturally extend the definition of a factorial of an
integer n to that for a non-integer q. This provides us with the definition of the
Gamma function given by

Γ(q) =

∞∫
0

tq−1 exp(−t)dt, q − 1 > 0

so that
Γ(q + 1) = q!

5.1. THE LAPLACE TRANSFORM 117

Thus, note that for q > 0

L̂tq =
Γ(1 + q)
p1+q

.

(iv) The Laplace transform of tnf(t) can be evaluated thus: Since

F (p) =

∞∫
0

f(t) exp(−pt)dt,

dF

dp
=

d

dp

∞∫
0

f(t) exp(−pt)dt = −
∞∫
0

f(t)t exp(−pt)dt

and
d2F

dp2
= − d

dp

∞∫
0

f(t)t exp(−pt)dt =

∞∫
0

f(t)t2 exp(−pt)dt.

By induction,
dnF

dpn
= (−1)nL̂[tnf(t)].

Hence,

L̂[tnf(t)] = (−1)n d
nF (p)
dpn

.

Similarly, the Laplace transform of t−nf(t) is given by

L̂[t−nf(t)] = (−1)n

∫
...

∫
n

F (p)dnp.

(v) The Laplace transform of a periodic function can be evaluated if we consider the
function f(t) to have a period a say. Then

F (p) =

∞∫
0

f(t) exp(−pt)dt =

a∫
0

f(t) exp(−pt)dt+

2a∫
a

f(t) exp(−pt)dt+ ...

=

a∫
0

f(t) exp(−pt)dt+

a∫
0

f(t) exp[−p(t+ a)]dt+ ...

= [1 + exp(−pa) + exp(−2pa) + ...]

a∫
0

f(t) exp(−pt)dt.

Now, the series above is a geometric series and if

s = 1 + exp(−pa) + exp(−2pa) + ...+ exp(−npa)

118 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

then

s exp(−pa) = exp(−pa) + exp(−2pa) + exp(−3pa) + ...+ exp[−(n+ 1)pa].

Subtracting these equations gives

s =
1− exp[−(n+ 1)pa]

1− exp(−pa) =
1

1− exp(−pa) as n→∞.

Hence, the Laplace transform of a function with period a can be written as

1
1 + exp(−pa)

a∫
0

f(t) exp(−pt)dt.

It is important to note that not all Laplace transforms can be evaluated, i.e. in some
cases the integral does not converge. For example, for the function f(t) = 1/t,

F (p) =

∞∫
0

1
t

exp(−pt)dt

and divergence occurs at the lower limit. Therefore the integral does not exist and
there is no Laplace transform of 1/t whereas the Fourier transform of this function
does exist (i.e. t−1 ⇐⇒= −iπsgn(ω) - see Chapter 4). Another example includes the
function f(t) = exp(t2) whose Laplace transform is

F (p) =

∞∫
0

exp(t2) exp(−pt)dt.

In this case, the upper limit takes the integrand to infinity; the integral does not exist
and there is no Laplace transform of exp(t2).

Laplace Transform of a Derivative

L̂

(
df

dt

)
=

∞∫
0

d

dt
[f(t) exp(−pt)] dt−

∞∫
0

f
d

dt
exp(−pt)dt

= [f(t) exp(−pt)]∞0 + pF (p) = pF (p)− f(0)

and

L̂

(
d2f

dt2

)
=

∞∫
0

d

dt

(
df

dt
exp(−pt)

)
dt−

∞∫
0

df

dt

d

dt
exp(−pt)dt

=
[
df

dt
exp(−pt)

]∞
0

+ p

∞∫
0

df

dt
exp(−pt)dt

= p2F (p)− pf(0)−
[
df

dt

]
t=0

.

5.1. THE LAPLACE TRANSFORM 119

Thus, by induction

L̂

[
dnf

dtn

]
= pnF (p)− pn−1f(0)− pn−2

[
df

dt

]
t=0

...−
[
dn−1f

dtn−1

]
t=0

.

Compare this result with the equivalent result for the Fourier transform, i.e.

F̂1

[
dnf

dtn

]
= (iω)nF (ω).

For the Laplace transform, the values of the function and its derivatives must be
known at t = 0 which is not the case with the Fourier transform. This highlights the
use of the Laplace transform for solving initial value problems compared to the Fourier
transform which is non-causal. However, since few signals are provided together with
an initial condition, the Fourier transform dominates the field compared to the Laplace
transform.

Laplace Transform of an Integral

L̂

⎛⎝ t∫
f(τ)dτ

⎞⎠ =

∞∫
0

exp(−pt)
t∫
f(τ)dτdt.

Since
−1
p

d

dt
exp(−pt) = exp(−pt)

the integral above can be written as

−1
p
I

where

I =

∞∫
0

d

dt
[exp(−pt)]

t∫
f(τ)dτdt

=

∞∫
0

d

dt

⎛⎝exp(−pt)
t∫
f(τ)dτ

⎞⎠ dt−
∞∫
0

exp(−pt)
⎛⎝ d

dt

t∫
f(τ)dτ

⎞⎠ dt

=

⎡⎣exp(−pt)
t∫
f(τ)dτ

⎤⎦∞

0

−
∞∫
0

exp(−pt)f(t)dt

= −
t∫
f(τ)dτ |t=0 −F (p).

Hence,

L̂

⎛⎝ t∫
f(τ)dτ

⎞⎠ =
1
p
F (p) +

1
p
f−1(0)

120 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

where

f−1(0) ≡
t∫
f(τ)dτ |t=0 .

Important Theorems

• Linearity
L̂[af(t) + bg(t)] = aF (p) + bG(p)

• Scaling

L̂[f(at)] =
1
a
F
(p
a

)

• Convolution

L̂

⎡⎣ t∫
0

f(τ)g(t− τ)dτ
⎤⎦ = F (p)G(p)

• Shift Theorem
L̂[f(t− a)] = exp(−ap)F (p)

• Inverse Shift Theorem

L̂[exp(at)f(t)] = F (p− a)

The Inverse Laplace Transform

Given that

F (p) =

∞∫
0

f(t) exp(−pt)dt

with f(t) = 0, t < 0 and p = iω we can view the Laplace transform as a Fourier
transform of the form

F (iω) =

∞∫
−∞

f(t) exp(−iωt)dt

whose inverse is

f(t) =
1
2π

∞∫
−∞

F (iω) exp(iωt)dω.

5.1. THE LAPLACE TRANSFORM 121

Now, with ω = p/i, this integral can be written in the form

f(t) = L̂−1F (p) ≡ 1
2πi

c+i∞∫
c−i∞

F (p) exp(px)dp

where L̂−1 is the inverse Laplace operator and c denotes an arbitrarily small constant
which takes the path of the integral away from the imaginary axis. This result is often
called the ‘Bromwich integral’. Unlike the Fourier transform, the Laplace transform
is not symmetrical, i.e. the forward and inverse Laplace transforms are not of the
same form. For analytical problems, the Laplace transforms are inverted using tables
generated by computing the forward Laplace transform for a range of different func-
tions. Direct evaluation of the inverse Laplace transform requires contour integration
of the type discussed in Chapter 1.

Causal Convolution

In cases where f and g are zero for t < 0 we can define the causal convolution integral
(Wiener-Hopf integral)

f ⊗ g =

∞∫
0

f(t)g(t′ − t)dt.

In this case, the convolution theorem is

f ⊗ g ⇐⇒ FG

where F and G are the Laplace transforms of f and g respectively (and not the Fourier
transforms), i.e.

F (p) =

∞∫
0

f(t) exp(−pt)dt,

G(p) =

∞∫
0

g(t) exp(−pt)dt.

This is the convolution theorem for Laplace transforms. It can be proved using a
similar approach to that adopted to prove the convolution theorem for the Fourier
transform. Thus, consider f and g in terms of their respective inverse Laplace trans-
forms

f(t) =
1

2πi

c+i∞∫
c−i∞

F (p) exp(pt)dp,

g(t) =
1

2πi

c+i∞∫
c−i∞

G(p) exp(pt)dp.

122 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

Then

∞∫
0

f(t)g(t′ − t)dt =

∞∫
0

dt
1

(2πi)2

c+i∞∫
c−i∞

F (p) exp(pt)dp

c+i∞∫
c−i∞

G(p′) exp[p′(t′ − t)]dp′

=
1

(2πi)2

c+i∞∫
c−i∞

dp′G(p′) exp(p′t′)

c+i∞∫
c−i∞

F (p)
p− p′ dp

=
1

2πi

c+i∞∫
c−i∞

G(p′)F (p′) exp(p′x′)dp′

since (Cauchy’s integral formula)∮
C

F (p)
p− p′ dp = 2πiF (p′).

Hence, for Laplace transforms
f ⊗ g ⇐⇒ FG.

The convolution theorem (for both the Fourier and Laplace transform) provides a
method for solving integral equation which frequently occurs in signal analysis. In
the case of non-causal equations we use the Fourier transform. For example, suppose
we are required to solve the equation

u(t) = f(t)−
∞∫

−∞
u(τ)g(t − τ)dτ

for u. Since t ∈ (−∞,∞), we take Fourier transforms and use the convolution theorem
to obtain

U(ω) = F (ω)− U(ω)G(ω).

Hence,

U(ω) =
F (ω)

1 +G(ω)

and we can write a solution of the type

u(t) =
1
2π

∞∫
−∞

F (ω)
1 +G(ω)

exp(iωt)dω, G(ω) �= −1.

Now suppose we are required to solve the (causal) equation

u(t) = f(t)−
∞∫
0

u(τ)g(t− τ)dτ

5.2. THE SINE AND COSINE TRANSFORMS 123

for u. Since t ∈ [0,∞), we use Laplace transforms and the convolution theorem to
obtain

U(p) = F (p)− U(p)G(p)

so that

U(p) =
F (p)

1 +G(p)
and on inversion

u(t) =
1

2πi

c+i∞∫
c−i∞

F (p)
1 +G(p)

exp(pt)dp.

To complete this section, the following table gives some examples of the Laplace
transform.

Function Laplace Transform

f(t) = 1
2πi

c+i∞∫
c−i∞

F (p) exp(pt)dp F (p) = L̂[f(t)] ≡
∞∫
0

f(t) exp(−pt)dt
1 1

p

tn, n > −1 n!p−(n+1)

exp(at) 1
p−a

sin(ωt) ω
p2+ω2

cos(ωt) p
p2+ω2

sinh(at) = 1
2 (eat − e−at) 1

2

(
1

p−a − 1
p+a

)
= a

p2−a2

cosh(at) = 1
2 (eat + e−at) 1

2

(
1

p−a − 1
p+a

)
= p

p2−a2

df
dt pF (p)− f(0)

d2f
dt2 p2F (p)− pf(0)− f ′(0)

−tf(t) dF
dp

exp(at)f(t) F (p− a)
U(t− b)f(t− b) exp(−bp)F (p) b > 0
t∫
0

f(t− τ)g(τ)dτ F (p)G(p)

δ(t− b) exp(−bp), b ≥ 0

Table 5.1: Table of example Laplace transforms

5.2 The Sine and Cosine Transforms

5.2.1 The Sine Transform

Let f(t) = 0, t < 0 and consider the imaginary part of the Fourier transform. We
can then consider the transform

F (ω) = Ŝ[f(t)] ≡
∞∫
0

f(t) sin(ωt)dt

124 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

and

f(t) =
2
π

∞∫
0

F (ω) sin(ωt)dω.

A table giving some examples of the sine transform is given below.

Function Sine Transform

f(t) = 2
π

∞∫
0

F (ω) sin(ωt)dω Ŝ[f(t)] = F (ω) =
∞∫
0

f(t) sin(ωt)dt

df
dt −ωĈ[f(t)]

d2f
dt2 ωf(0)− ω2F (ω)

exp(−εt) ω
ε2+ω2

1 1
ω

Table 5.2: Some examples of the sine transforms

Note that, like the one-sided Laplace transform, the sine transform is causal.

5.2.2 The Cosine Transform

Let f(t) = 0, t < 0 and consider the real part of the Fourier transform. Then

F (ω) = Ĉ[f(t)] ≡
∞∫
0

f(t) cos(ωt)dt

and

f(t) =
2
π

∞∫
0

F (ω) cos(ωt)dω.

A table giving some examples of the cosine transform is given below.

Function Cosine Transform

f(t) = 2
π

∞∫
0

F (ω) cos(ωt)dω Ĉ[f(t)] = F (ω) =
∞∫
0

f(t) cos(ωt)dt

df
dt −f(0) + ωŜ[f(t)]

d2f
dt2 −f ′(0)− ω2F (ω)

exp(−εt) ε
ε2+ω2

exp(−αt2) √
π
4α exp(−ω2/4α)

Table 5.3: Some examples of the cosine transforms

5.3. THE WALSH TRANSFORM 125

As with the Laplace and sine transforms, the cosine transform is causal and can be
used to solve initial value problems when f(0) and f ′(0) are known. The convolution
theorem for the cosine transform is

∞∫
0

f(τ)[g(t+ τ) + g(t− τ)]dτ ⇐⇒ F (ω)G(ω).

For the sine transform, the convolution theorem is
∞∫
0

f(τ)[g(t + τ)− g(t− τ)]dτ ⇐⇒ Ŝ[f(t)]Ĉ[g(t)]

5.3 The Walsh Transform

The origins of the Fourier transform (as discussed in Chapter 3) are based on the
application of the function exp(inπt/T) to describe a signal with a period T given by

f(t) =
∑

n

cn exp(iπnt/T)

where

1
T

T/2∫
−T/2

exp(i2πnt/T) exp(−i2πmt/T)dt =

{
1, n = m;
0, n �= m.

the functions exp(inπt/T), forming an orthogonal system. However, the complex
exponential (together with the sin and cosine) is not the only function to form such a
system; many such functions are available. Instead of considering cosinusoidal wave
functions oscillating at different frequencies, suppose we consider a set of rectangular
waveforms taking on just two amplitude values of +1 and -1. These wave functions
are another example of an orthogonal set of functions. Known as Walsh functions,
they are defined over a limited time interval T (the time-base), which requires to be
known if quantitative values are to be assigned to the function. Like the sine-cosine
functions, two arguments are required for complete definition, a time period t and an
ordering number n which is related to the frequency, the function being written in
the form WAL(n, t) with the property:

1
T

T∫
0

WAL(m, t)WAL(n, t)dt =

{
1, n = m;
0, n �= m.

With this property, we can define the Wash transform pair as

f(t) =
1
T

N−1∑
n=0

FnWAL(n, t),

Fn =

T∫
0

f(t)WAL(n, t)dt.

126 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

Discretising, we then obtain the discrete Walsh transform given by

fm =
1
N

N−1∑
n=0

FnWAL(n,m),

Fn =
N−1∑
m=0

fmWAL(n,m).

The Walsh transform has many of the properties of the Fourier transform including
the convolution theorem for example and the Walsh coefficients Fn can be analysed
as a Walsh spectrum to which filters can be applied. Thus, Walsh function series can
be applied to many of those areas where sinusoidal techniques dominate. However,
the applications for which the Walsh transform are ideal are those in which the binary
form (i.e. -1, +1 or 0,1) of the function can be used to match binary logic and binary
computer algorithmic techniques. Additionally, there are certain characteristics of the
Walsh transform that have no equivalence to the Fourier transform which permit new
approaches to the design of hardware/software. The main focus for the applications
of the Walsh transform are in digital communications and coding. These include mul-
tiplexing (the simultaneous transmission of many independent signals over a common
communications channel), binary group coding and digital image transmission and
processing. Compared with the Fourier transform, which requires a broad spectrum
to describe high frequency features in a signal, the bandwidth of the Walsh transform
can be relatively low. This is because relatively few terms in the Walsh series rep-
resentation of an ‘on-off’ type signal (which requires many Fourier coefficients to be
represented accurately) are required in comparison with a Fourier series; the Fourier
transform being based on smooth orthogonal basis functions and the Walsh transform
being based on discontinuous or ‘on-off’ type orthogonal basis functions.

Walsh functions are, like cosinusoids, just one of a number of basis functions that
form an orthogonal series Bn(t) and so in general, we can consider a signal of the
form

f(t) =
N−1∑
n=0

cnBn(t).

Suppose the series Bn(t), n = 0, 1, 2, ... is orthogonal over the interval 0 ≤ t ≤ T ,
i.e.

T∫
0

Bn(t)Bm(t)dt =

{
T, n = m;
0, n �= m.

where n and m have integer values. Now, ideally we want N → ∞ to represent f(t)
exactly. However, in practice, only a finite number of terms N is possible for the
evaluation of f(t) (leading to truncation error) and thus, the coefficients cn need to
be chosen to provide the best approximation to f(t). This can be achieved by solving
for cn such that the mean-square error defined by

e(cn) =

T∫
0

[
f(t)−

N−1∑
n=0

cnBn(t)

]2

dt

5.4. THE CEPSTRAL TRANSFORM 127

is a minimum. Thus occurs when

d

dcm
e(cn) =

T∫
0

2

[
f(t)−

N−1∑
n=0

cnBn(t)

]
Bm(t)dt = 0

or when
T∫

0

f(t)Bm(t)dt =
N−1∑
n=0

cn

T∫
0

Bn(t)Bm(t)dt =
N−1∑
n=0

cn

T∫
0

Bn(t)Bm(t)dt = Tcm

and hence,

cm =
1
T

T∫
0

f(t)Bm(t)dt.

Clearly, the ability to compute this set of coefficients depends exclusively on the fact
that Bn(t) are orthogonal and given this condition, we see that the Fourier transform
and the Walsh transform are essentially based on the application of certain orthogonal
basis functions which are part of a much wider class of functions in general.

5.4 The Cepstral Transform

When the spectrum of a signal is computed via the Fourier transform, a common
characteristic is for the high frequency components to have amplitudes that are rel-
atively small compared to those at the low frequency end of the spectrum especially
when the signal is dominatad by a large DC component. Typically, this leads to a
plot of the amplitude or power spectrum being dominated by the low frequency char-
acteristics of the signal. A simple method of enhancing the high frequency spectrum
is to apply a logarithmic transform and instead of plotting the amplitude spectrum
| F (ω) |, we plot and analyse log | F (ω) | given that F (ω) > 0 ∀ω or log(1+ | F |)
given that F (ω) ≥ 0 ∀ω. When the logarithm is to base 10, the spectral scale is mea-
sured in decibels. This simple transform for enhancing the high frequency spectral
characteristics leads directly to the idea of computing its inverse Fourier transform.
Thus, given that F (ω) is the Fourier transform of f(t), instead of computing

f(t) =
1
2π

∞∫
−∞

F (ω) exp(iωt)dω

we consider computing

f̂(t) =
1
2π

∞∫
−∞

log | F (ω) | exp(iωt)dω.

The function f̂(t) is referred to as the real cepstrum (or just the cepstrum), the
complex cepstrum being given by

f̂(t) =
1
2π

∞∫
−∞

log[F (ω)] exp(iωt)dω.

128 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

Note that since F (ω) is a complex function which can be written as AF (ω) exp[iθF (ω)]
where AF and θF are the amplitude spectrum and the phase spectrum respectively,

log[F (ω)] = logAF (ω) + iθF (ω).

Also, note that the signal f(t) can be reconstructed from the complex cepstrum but
not from the real cepstrum because the phase spectrum is missing. In the analysis of
θF , as with all phase plots, it is usually necessary to phase unwrap; a technique that
is discussed further in the following section.

The cepstral transform and cepstrum based filtering has value in the analysis of
homomorphic systems. The idea is to transform a multiplicative model for a process
into an additive one with the use of a logarithmic transform. Thus, if a spectrum
is given by F (ω) = F1(ω)F2(ω) where it can be assumed F1 and F2 have distinct
characteristics in the low and high frequency range of the spectrum respectively, then
by computing

logF (ω) = logF1(ω) + logF2(ω)

and applying an appropriate lowpass or highpass filter to logF , it is possible to
recover (approximately) F1 or F2 respectively. This approach has significant value in
speech processing for example, in which a speech signal can often be well modelled
in terms of the convolution of a low frequency signal (generated by the vibration of
the vocal chords which is a low frequency noise source) and a high frequency signal
(generated by the movement of the mouth, tong and lips to form an utterance).
Cepstral speech analysis can be used to compute templates of speech signals that are
used in speech recognition systems for example. The templates produced are usually
more sensitive and robust to those generated from an analysis of the speech signal
and/or its spectrum directly.

In general, cepstral analysis is a logarithmic based enhancement method used to
diagnose the presence of certain features hidden in a signal. For example, situations
arise which cause the spectrum to have periodic components. Using the cepstrum,
it is often possible to detect these components and relate them back to features of
a signal which are not apparent in the time domain. A number of phenomena can
cause oscillatory patters in the power spectrum such as:

• non-linearities in the signal generating mechanism where the periodicities are
associated with harmonic components of a fundamental frequency;

• delayed replicas of a signal component added to the original time series causing
a periodic oscillation in the power spectrum.

Since ceptral analysis can be used to detect peaks in the power spectrum, attention
needs to focus in obtaining accurate power spectral estimates that are free from spec-
tral leakage (windowing errors - see Section 13.3) otherwise the spectral components
to be analysed can be corrupted. The quality of a cepstral analysis is influenced by a
number of factors that include:

• differentiation or high pass filtering of the power spectrum or source data which
emphasises echo-type phenomena and can lead to more clearly defined ceptral
peaks;

5.5. THE HILBERT TRANSFORM 129

• the use of different windows on a signal which can enhance the echo discrimi-
nating aspects of a cepstrum in certain cases.

The cepstrum was originally designed for pulse-echo-delay systems and was applied
to seismic signal processing, an area that is typified by data consisting of a primary
wave form together with filtered and delayed versions (or echos) of the primary signal,
modelled in terms of low frequency acoustic waves scattering from a layered media
(see Section 4.9). These echos are typically hidden in noise and, as such, are often
indistinguishable from the original time trace. Ceptral analysis can often detect such
echos and their relative positions in the seismic signal. However, cepstral analysis is,
in general, a rather subjective signal analysis tool and can yield useful results in one
application while providing inexplicably poor results in another. It is most likely to
be helpful in situations involving a basic time function that has been convolved with
a sequence of impulse functions.

5.5 The Hilbert Transform

The Hilbert transform is named after David Hilbert, who’s career spanned many
years of both the nineteenth and twentieth centuries and covered many aspects of
mathematical analysis, logic and aspects of mathematical physics. In signal analysis,
this transform provides a way of analysing a signal in the complex plane (i.e. using
an Argand diagram). Given a real signal, the Hilbert transform converts the signal
into its quadrature or imaginary component. With both real and imaginary parts
available, complex plane analysis can be undertaken. This transformation also allows
the signal attributes to be computed such as the amplitude envelope and the phase
and it is closely associated with methods of modulation and demodulation which are
also addressed in this section. Taken in combination, a real signal together with its
Hilbert transform is known as the analytic signal.

The Hilbert transform q(t) of a real function f(t) can be defined by

q(t) = Ĥf(t) =
1
π

∞∫
−∞

f(τ)
t− τ dτ

where Ĥ is the Hilbert transform operator. Note that the more usual definition of
the Hilbert transform (as quoted by most authors) is

q(t) =
1
π

∞∫
−∞

f(τ)
τ − tdτ

and the definition used here is sometimes referred to as the Stieltjes-Riemann integral.
Also, note that in both cases, it is common to prefix the integral with P to indicate
that the integral refers to the principal part in order to take account of the singularity
at τ = t. Nevertheless, this transform is a just a convolution, a convolution of f(t)
with 1/πt. Hence, we may write the Hilbert transform in the following way:

q(t) =
1
πt
⊗ f(t).

130 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

Using the convolution theorem and noting (as derived in Chapter 4) that

F̂1

(
1
πt

)
= −i sgn(ω),

the Fourier transform of q can be written as

Q(ω) = −i sgn(ω)F (ω).

Hence,
q(t) = F̂−1

1 [−i sgn(ω)F (ω)].

This result immediately provides the following method for computing the Hilbert
transform of a function: (i) Take the Fourier transform of the function; (ii) multiply
the result by −i sgn(ω); (iii) compute the inverse Fourier transform of the result.
Thus, for example, it is easy to show that the Hilbert transform of cos(ωt) is sin(ωt)
and the Hilbert transform of sin(ωt) is − cos(ωt). In this sense, the Hilbert transform
can be considered to change the phase of a cosinusoidal wave by 90o. A table of
example Hilbert transforms is given below.

Function Hilbert Transform

f(t) q(t) = 1
π

∞∫
−∞

f(τ)
τ−t dτ

δ(t) 1
πt

U(t− t0) 1
π ln | t− t0 |

U(t− b)− U(t− a) − 1
π ln

∣∣∣ t−a
t−b

∣∣∣
cos(ωt), ω > 0 sin(ωt)
sin(ωt), ω > 0 − cos(ωt)
sin(ωt)

ωt , ω > 0 sin2(ωt/2)
ωt/2

t
a2+t2 , Re a > 0 − a

a2+t2
a

a2+t2 , Re a > 0 t
a2+t2

Table 5.4: Table of example Hilbert transforms

5.5.1 Modulation and Demodulation

If f(t) is a bandlimited function with spectrum F (ω), | ω |≤ Ω, then multiplying this
function by cos(ω0t) say, shifts or modulates the location of the centre of F (ω) from
ω = 0 to ω = ±ω0. The frequency ω0 is commonly referred to as the carrier frequency.
This processes is known as modulation and can be described mathematically by

f(t) cos(ω0t) ⇐⇒ F (ω)⊗ π[δ(ω − ω0) + δ(ω + ω0)]

or, using the sampling property of the delta function

f(t) cos(ω0t)⇐⇒ π[F (ω − ω0) + F (ω + ω0)].

A modulated spectrum of this kind is known as a sideband spectrum. If a spectrum
has its centre at ω = 0, then it is known as a baseband spectrum. Shifting a side-
band spectrum back to baseband is called demodulation. Demodulating a modulated

5.5. THE HILBERT TRANSFORM 131

spectrum (modulated to ±ω0) is accomplished by multiplying by another cosine func-
tion oscillating at the same (carrier) frequency ω0. This process can be described
mathematically as follows:

f(t) cos(ω0t) cos(ω0t)⇐⇒ π[F (ω − ω0) + F (ω + ω0)]⊗ π[δ(ω − ω0) + δ(ω + ω0)]

or using the sampling property of the delta function

f(t) cos(ω0t) cos(ω0t)⇐⇒ π2[2F (ω) + F (ω − 2ω0) + F (ω + 2ω0)].

By neglecting the part of the spectrum which is modulated to ±2ω0 by this process,
the baseband spectrum F (ω) can be extracted. In practice this can be achieved by
applying a lowpass filter.

5.5.2 Quadrature Detection

The Hilbert transform of a signal is often referred to as the quadrature signal which
is why it is usually denoted by the letter q. Electronic systems which perform Hilbert
transforms are also known as quadrature filters. These filters are usually employed
in systems where the signal is a continuous wave or a narrowband signal (i.e. a
signal whose bandwidth is a small percentage of the dominant carrier frequency).
They operate on the basis that if y(t) is a real valued and bandlimited signal with a
spectrum Y (ω), | ω |≤ Ω and

f(t) = y(t) cos(ω0t)

where ω0 > Ω, then the quadrature signal can be obtained by simply multiplying y(t)
by sin(ω0t), i.e.

q(t) = y(t) sin(ω0t).

This result can be derived by analysing the Fourier transform of f(t) which is given
by (using the convolution theorem)

F (ω) = Y (ω)⊗ π[δ(ω − ω0) + δ(ω + ω0)] = π[Y (ω − ω0) + Y (ω + ω0)].

Now, the spectrum of the Hilbert transform of F is obtained by multiplying F by
−i sgn(ω). Hence, provided ω0 > Ω,

Q(ω) = −iπ sgn(ω)[Y (ω − ω0) + Y (ω + ω0)] = iπ[Y (ω + ω0)− Y (ω − ω0)]

= Y (ω)⊗ iπ[δ(ω + ω0)− δ(ω − ω0)].

Using the product theorem, in real space, the last equation is

q(t) = y(t) sin(ω0t).

The quadrature filter is mostly used in systems where frequency demodulation is
required to extract a baseband signal from a narrowband signal.

132 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

5.5.3 The Analytic Signal

In signal analysis (where the independent variable is usually time), a real valued
signal can be represented in terms of the so called analytic signal. The analytic signal
is important because it is from this signal that the amplitude, phase and frequency
modulations of the original real valued signal can be determined.

If f(t) is a real valued signal with spectrum F (ω), then f(t) can be computed
from F (ω) via the inverse Fourier transform

f(t) =
1
2π

∞∫
−∞

F (ω) exp(iωt)dω.

Note that as usual, this involves applying a two-sided integral where integration is
undertaken over ω from −∞ to ∞. The analytic signal is obtained by integrating
only over the positive half of the spectrum which contains the ‘physically significant’
frequencies, i.e. integrating over ω from 0 to ∞. In a sense, this is the key of the
answer to the question: what is the meaning of a negative frequency? If s is used to
denote the analytic signal of f , then by definition

s(t) =
1
π

∞∫
0

F (ω) exp(iωt)dω.

From this result, it is possible to obtain an expression for s in terms of f which is
done by transforming s into Fourier space and analysing the spectral properties of
the analytic signal. This leads to the following theorem:

Theorem The analytic signal is given by

s(x) = f(x) + iq(x)

where q is the Hilbert transform of f .

Proof In Fourier space, the analytic signal can be written as

S(ω) = 2U(ω)F (ω)

where S and F are the Fourier transforms of s and f respectively and U(ω) is the
unit step function given by

U(ω) =

{
1, ω ≥ 0;
0, ω < 0.

We now employ a simple but useful analytical trick by writing the step function in
the form

U(ω) =
1
2

+
1
2

sgn(ω)

where

sgn(ω) =

{
1, ω > 0;
−1, ω < 0.

5.5. THE HILBERT TRANSFORM 133

The inverse Fourier transform of this function can then be written as

u(t) =
1
2π

∞∫
−∞

1
2

exp(iωt)dω +
1
2π

∞∫
−∞

1
2

sgn(ω) exp(iωt)dω

=
1
2
δ(t) +

i

2πt
where we have used the results

δ(t) =
1
2π

∞∫
−∞

exp(iωt)dω

and
1
2π

∞∫
−∞

sgn(ω) exp(iωt)dω =
i

πt
.

Now, since
2U(ω)F (ω)⇐⇒ 2u(t)⊗ f(t)

we have

s(t) = 2u(t)⊗ f(t) = f(t)⊗
(
δ(t) +

i

πt

)
= f(t) +

i

πt
⊗ f(t)

or
s(t) = f(t) + iq(t)

where q is the Hilbert transform of f , i.e.

q(t) =
1
πt
⊗ f(t)

which completes the proof.
From the last result it is clear that the analytic signal associated with a real valued

function f can be obtained by computing its Hilbert transform to provide the quadra-
ture component. This process is called quadrature detection. The analytic signal is a
complex function and therefore contains both amplitude and phase information. The
important feature about the analytic signal is that its spectrum (by definition) is zero
for all values of ω less than zero. This type of spectrum is known as a single sideband
spectrum because the negative half of the spectrum is zero. An analytic signal is
therefore a single sideband signal.

This result provides another way of computing the Hilbert transform of a function
f(t):

(i) Compute the Fourier transform of f(t);

(ii) set the components of the complex spectrum F (ω) in the negative half space to
zero;

(iii) compute the inverse Fourier transform which will have real and imaginary parts
f(t) and q(t) respectively.

134 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

5.5.4 Attributes of the Analytic Signal

As with any other complex function, the behaviour of the analytic signal can be
analysed using an Argand diagram and may be written in the form

s(t) = A(t) exp[iθ(t)]

where

A(t) =
√
f2(t) + q2(t)

and

θ(t) = tan−1

(
q(t)
f(t)

)
.

Here, the real part of s(t) is f(t) = A(t) cos θ(t), as illustrated in Figure 5.1, and the
imaginary component (computed by taking the Hilbert transform of f) is given by
q(t) = A(t) sin θ(t).

Figure 5.1: Complex plane representation of a real signal.

The function A describes the dynamical behaviour of the amplitude modulations of f .
For this reason, it is sometimes referred to as the amplitude envelope. The function
θ measures the phase of the signal at an instant in time and is therefore known as
the instantaneous phase. Note that because the arctangent function is periodic, this
function is multi-valued. Hence, strictly speaking, the analytic function should be
written as

s(t) = A(t) exp[i(θ(t) + 2πn)], n = 0,±1,±2, ...

If we confine the value of the phase to a fixed period (i.e. we compute the phase
using only one particular value of n), then it is referred to as the wrapped phase. In
this case, there is only one unique value of the phase within a fixed period. However,
any other interval of length 2π can be chosen. Any particular choice, decided upon
a priori, is called the principal range and the value of the phase within this range, is
called the principal value.

5.5. THE HILBERT TRANSFORM 135

5.5.5 Phase Unwrapping

The wrapped phase is not an ideal way of analysing the phase of the analytic signal.
The problem comes from the fact that the arctangent based definition of the phase
is inherently multi-valued. Overcoming this problem to produce an unwrapped phase
function requires a different approach. Thus, the problem is to find another definition
of the phase function that does not rely on the conventional arctangent definition.
What follows is an intriguing method of doing this and relies on taking the logarithm
of the analytic signal. Since

s(t) = A(t) exp[i(θ(t) + 2πn)], n = 0,±1,±2, ...,

taking the natural logarithm of both sides yields the result

ln s(t) = lnA(t) + i(θ(t) + 2πn)

from which it follows that

θ(t) + 2πn = Im[ln s(t)].

This result of course relies on the condition that A(t) > 0∀t. Now, another important
property of the analytic signal is its instantaneous frequency. This parameter (denoted
by ψ say) measures the rate of change of phase, i.e.

ψ(t) =
d

dt
θ(t).

The effect of considering this function is to eliminate the constant 2πn from the
equation for θ, i.e.

ψ(t) = Im
[
d

dt
ln s(t)

]
= Im

[
1
s(t)

d

dt
s(t)

]
or alternatively (since s = f + iq)

ψ(t) = Im
[
s∗(t)
| s(t) |2

d

dt
s(t)

]
=

1
A2(t)

[
f(t)

d

dt
q(t)− q(t)

d

dt
f(t)

]
.

The instantaneous frequency provides a quantitative estimate of the frequency of the
real valued signal f at any instant in time. From this function, we may obtain another
closely related description for the signal in terms of its frequency modulations which
are given by | ψ |. The phase θ can be obtained from ψ by integrating. Using the
initial conditions

t∫
ψ(τ)dτ = 0, t = 0

and
θ = θ0 when t = 0

we get

θ(t) = θ0 +

t∫
ψ(τ)dτ.

136 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

This phase function is called the unwrapped phase. It is not multi-valued and therefore
the problem of choosing a principal range to compute the phase does not occur.
Collectively, the amplitude modulations, frequency modulations and the (unwrapped)
instantaneous phase are known as the attributes of the analytic signal. They all
provide different but related information on the time history of a signal.

5.6 Case Study: FM Imaging by Real Zero Conver-

sion

In addition to the amplitude modulations of a signal, analysis of the unwrapped phase
and the frequency modulations can be of interest. FM imaging is based on displaying
the Frequency modulations (FM) given by | ψ |. In practice, the nonlinear depen-
dence of ψ on A2 means that ψ is very sensitive to relatively small scale variations
in A; it is ill-conditioned. Hence, a straight forward display of the frequency modu-
lations tends to ‘highlight’ those positions in time where the amplitude modulations
are small. The problem with this is that it produces an image of a signal that is
entirely contrary to conventional AM (Amplitude Modulated) imaging. Without any
additional pre-processing of the data, FM images do not convey useful information.

A variety of different methods can be used to pre-process the data in a form that
is suited to the display of the frequency modulations. One method is to smooth the
original signal f(t) be applying a lowpass filter prior to computing ψ. The effect of
doing this is to reduce the dynamic range of 1/A2. The smoothed FM image is then
given by | ψ | and the smoothed phased image obtained by integrating ψ using a filter
of the type 1

(iω) for example.

5.6.1 Real Zero Conversion

Another way of overcoming the problems associated with FM and phase imaging is
to real zero convert the signal f(t). One way of expressing a real valued function is
in terms of the polynomial

f(t) =
N∑

n=0

ant
n ≡ a0 + a1t+ a2t

2 + ...+ aN t
N .

In this form, it is clear that we can associate N roots with the signal by solving the
equation f(z) = 0 where we have switched from t to z to indicate that these roots
may be complex. If the roots of this equation are z1, z2, ..., zN say, then the equation
f(z) = 0 can be written in the factored form

N∏
n=1

(z − zn) ≡ (z − z1)(z − z2)...(z − zN) = 0.

In general, these roots can have both real and complex values and in signal analysis,
are referred to as the real and complex zeros respectively. In addition to Fourier
analysis and other integral transform analysis, a digital signal can be analysed by
studying the location and distribution of its zeros. If the zeros are computed accu-
rately enough, then a signal can be described in terms of its roots in the same way

5.6. CASE STUDY: FM IMAGING BY REAL ZERO CONVERSION 137

that it can be described by its Fourier coefficients for example. Such signals can then
be reconstructed from ‘zero information’ ! Moreover, in some cases, the signal can be
usefully processed by manipulating the values of its roots or by ‘root filtering’. This
is known as complex zero or root analysis.

The real zeros of a signal are just the positions in time where it changes polarity
and therefore passes through zero (i.e. they are the points in time where the amplitude
of the signal vanishes). The complex zeros of a signal correspond to those more subtle
attributes where the amplitude is modulated but the polarity of the signal remains the
same as illustrated in Figure 5.2. Complex zero signals are among the most common
types of signals and a signal of this type can be uniquely determined from its zeros.

Figure 5.2: Example features in a real valued signal that correspond to its real and
complex zeros.

In terms of a descriptive framework, frequency modulations access the information
encoded primarily in the real zeros of a signal. It is therefore appropriate to modify
the information contained in the original signal in such a way that it is completely
encoded in the real zeros. Signals of this form are known as real zero signals and
methods of analysing and processing them can be developed which are based entirely
on the zero-crossings of the signal. The conversion of a complex zero signal to a real
zero signal is known as Real Zero Conversion of RZC. Compared to the complex zeros,
the real roots of a digital signal are relatively straightforward to obtain. One simply
has to evaluate the points in time where the amplitude of the signal changes sign
subject to a suitable interpolation algorithm for computing a good approximation to
the value at which the amplitude is zero between the two data points that lie above
and below the axis.

There are two ways in which a signal can be real zero converted. One way is to
successively differentiate it. The problem here, is that in practice, this method requires
extremely sharp filters to control out-of-band noise. Also, multiple differentiation is
not strictly invertible because of the loss of addition constants. The second and
more practical method (if only because of its sheer simplicity) is to add a sine wave
a sin(ω0t) say with a frequency ω0 and an amplitude a equal to or greater than the
highest frequency and amplitude present in the signal respectively. Thus, given a
bandlimited real signal f(t) whose spectrum is F (ω), | ω |≤ Ω, the corresponding
RZC signal is given by

fRZC(t) = f(t) + a sin(ω0t), a ≥| f(t) |, ω0 ≥ Ω.

138 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

This method is very easy to perform in analogue of digital form. A RZC signal which
is generated in this way amounts to a sine wave with ‘jitter’ in the position of its real
zeros. This jitter is determined by both the amplitude and frequency modulation in
the original signal. The information on the original signal is completely encoded in
the displacement of the zeros from the regular sine wave locations. We can therefore
consider a RZC signal as a sine wave (whose amplitude and frequency modulations are
constant in time), perturbed by a signal whose amplitude and frequency modulation
vary in time. The result is to produce a signal with fluctuations in the amplitude
envelope A about a, fluctuations in ψ about ω0 and changes in the phase which
perturb an otherwise linear phase function ω0t. By adjusting the magnitude of a to
an appropriate value, information encoded in the frequency modulations and phase
of the original signal can be assessed in terms of how they perturb the regular sine
wave. Once the signal has been real zero converted, the frequency modulations can
be obtained by computing | ψ |.

5.6.2 Application to Seismic Imaging

The propagation and reflection of seismic waves through the earth has been studied
intensively for many years, especially in the context of the exploration of oil, coal and
gas. In this case, an image is generated of the interior structure of the ground at
a variety of depths. This provides information on the geology of regions which are
mostly or to a reasonable approximation, stratified. Hence, seismic imaging is often
based on the principles of the reflection of (low frequency, e.g. 1-500 Hz) acoustic
radiation from layered media. Seismic waves are typically generated by chemical
explosions (for deep penetration) or vibrating impacts of short duration. By recording
the time history of the reflected seismic waves using a array of geophones, information
on the nature and geological significance of the earth’s interior can be obtained. A
typical seismic image is produced by collecting together and displaying side-by-side
the seismic signals that are produced at different ‘shot locations’ (the location of a
point source of seismic energy). Each trace is the sum of all the signals that have
been detected and recorded by a linear array of geophones extending outward from
the shot location after they have been corrected for normal moveout (i.e. aligned to
coincide with reflections form points at a common depth). This is called ‘stacking’
and a seismic image of this type is therefore commonly known as a Common Depth
Point (CDP) stack. It provides a set of seismic signals with an improved signal-to-
noise ratio compared to the original pre-stacked data. It is convention to shade in the
area under the positive lobes of each signal to emphasize the lateral correlation of the
data. This makes it easier for a geologist to distinguish between layers of geological
interest.

An example of a conventional CDP stack is given in Figure 5.3 together with the
corresponding FM image after real zero conversion. In seismology, an image of the
instantaneous frequency has an application in direct detection techniques because it
is often observed (qualitatively) that a shift toward lower FM values occurs immedi-
ately below hydrocarbon-bearing structures. This is precisely what happens in the
example given here in which the instantaneous frequency decreases and remains so
for a relatively long period of time after the main events (as indicated by >). It is
interesting to note that this seismic image is of one of the main coal seems of the

5.7. STFT AND THE GABOR TRANSFORM 139

South Yorkshire coal field in England.

Figure 5.3: Conventional seismic image or CDP stack (top) and the RZC FM image
(bottom).

5.7 STFT and The Gabor Transform

The Fourier transform, i.e.

F (ω) =
∫
f(t) exp(−iωt)dt,

provides a function that characterizes the spectral properties of a signal f(t) in its
entirety. This assumes that the signal is the result of a stationary process, the Fourier
transform being a stationary transform. Suppose, however, that we wanted to inves-
tigate the spectral properties of just part of the signal and study how these properties
changed as the signal developed under the assumption that the signal was the result
of some non-stationary process. We could segment the signal into sections or blocks
and take the Fourier transform of each of these blocks. Thus, if we consider the case
where

f(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f1(t), t ∈ [0, T)
f2(t), t ∈ [T, 2T)
...
fN(t), t ∈ [(N − 1)T,NT)

140 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

T being the ‘length’ of each block, then we could consider an analysis of the spectrum
Fn(ω) where

Fn(ω) =

T/2∫
−T/2

fn(t) exp(−iωt)dt, n = 1, 2, ..., N.

This process would allow us to investigate how the spectral properties of the signal
change (or otherwise) as it develops over its ‘lifetime’. If the signal was composed
of frequencies whose distribution are continuous over its duration (i.e. the signal is
stationary), then one would expect the spectrum to be constant for each value of n.
However, if the signal had a marked change in its frequency content over its life time,
then this feature would be observed via a marked difference in the characteristics of
Fn(ω) as a function of n. In this case, the partitioning scheme involves a ‘window’ that
segments the signal into consecutive blocks that are of equal length. Alternatively,
we can consider a windowing function w say, that extracts data as it ‘slides’ over the
signal. We can write this process as

F (ω, τ) =

∞∫
−∞

w(τ − t)f(t) exp(−iωt)dt.

The window usually has a short time duration (i.e. it windows data whose length is
small compared to the duration of the signal) and the approach is thereby called the
‘Short Time Fourier Transform’ or STFT. The STFT yields a ‘spectrogram’ F (ω, τ)
which is an image of the time variations in the frequency components of the signal.
Compared to the Fourier transform of f(t), the Fourier transform of f(t)w(τ − t)
reflects the signal’s local frequency characteristics and thus provides an image of how
a signal’s frequency content evolves over time. It is assumed here, that the windowing
function is an ‘on-off’ function of the form

w(t) =

{
1, | t |≤ T ;
0, | t |> T

where T is the ‘length’ of the window. However, the functional form of the window can
be changed to provide an output that is conditioned by its form in order to provide a
‘spectrogram’ that is not distorted by frequency components that have been generated
by the discontinuity associated with the window function defined above.

If the time duration and frequency bandwidth of w(t) are Δt and Δω respectively,
then the STFT extracts the signal’s behaviour in the vicinity of (t − Δt, t + Δt) ×
(ω − Δω, ω + Δω). In order to analyse a signal at a particular time and frequency
(t, ω), it is natural to desire that Δt and Δω be as narrow as possible. However, the
selections of Δt and Δω are not independent but related via the Fourier transform.
If we make the time interval around the time t small, then the bandwidth becomes
high as applied to the windowed signal, i.e. to the short interval that is artificially
constructed for the purpose of the analysis. For a digital signal of length N , the
product ΔtΔω satisfies the relationship (see Section 3.8)

ΔtΔω =
2π
N

5.8. THE WIGNER AND THE WIGNER-VILLE TRANSFORMS 141

and thus, there is a trade-off in the selection of the time and frequency resolution. If
w(t) is chosen to have good time resolution (smaller Δt), then its frequency resolution
deteriorates (larger Δω) and vice versa. A window that provides an optimum solution
to this problem (i.e. in terms of providing optimum resolution in both the time and
frequency domains) is the Gaussian function given by (ignoring scaling)

w(t) = exp(−at2)
where a is a constant. This function provides a ‘taper’ at the extreme ends of the
signal over which the Fourier transform is to be taken. Formally, the use of a Gaussian
window gives the Gabor transform which provides the common basis for computing
the spectrogram of a signal, i.e. an analysis of the frequency content of a signal as a
function of time. It assumes that the signal is stationary when seen through a window
of limited extent at time location τ . Its application includes passive sonar and speech
analysis to name but a few in which the analysis of a time varying Fourier space is
required. Such analysis is typically undertaken by viewing a grey level or pseudo
colour image of | F (ω, τ) | or, using a logarithmic scale to enhance the spectrogram,
an image of log(1+ | F (ω, τ) | for example, working of course, with digital data and
a DFT.

5.8 The Wigner and the Wigner-Ville Transforms

The Wigner transform originated as a technique in quantum mechanics for computing
the time varying spectral response of a multimode wavefield. Originally, the Wigner
transform was derived by Wigner in the early 1930s for calculating the quantum
correction terms to the Boltzman formula in which a joint distribution of position
and momentum was required. Wigner devised a joint distribution that gave the
quantum mechanical distributions of position and momentum.

The Wigner-Ville transform originated from the work designed to develop a trans-
form for the analysis of the Dirac field equations in a manner that is similar to
the use of Fourier transform for analysis relating to the Schrödinger equation. The
Schrödinger equation was first proposed in the 1920s as a partial differential equation
describing quantum physics at a time when a mathematical development of quan-
tum mechanics was being undertaken in parallel by Heisenberg using an eigenvalue
approach. In both cases, the ‘spin’ of a particle was not considered until Dirac de-
rived his famous field equations which can be considered to be an extension and in
someways, a completion, of Schrödinger’s and Heisenberg’s work to include particle
spin.

The Wigner transform is defined by

F (ω, t) =

∞∫
−∞

f(t+ τ/2)f(t− τ/2) exp(−iωτ)dτ

where f(t) is a real signal. The Wigner-Ville transform is an extension of this result
to

S(ω, t) =

∞∫
−∞

s(t+ τ/2)s∗(t− τ/2) exp(−iωτ)dτ

142 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

where s(t) is the analytic function given by

s(t) = f(t) + iq(t),

q(t) being the quadrature component that is itself, given by taking the Hilbert trans-
form of f(t). In both cases, the transform can be understood in terms of ‘sliding’
two functions over each other and taking the resultant products as the inputs to a
Fourier transform. Applications of this transform include speech analysis and control
engineering, including the analysis of noise generated by the critical components of
rotation contact mechanical systems such as a gear box in order to monitor pre-failure
(noise) signatures.

5.8.1 Origins of the Transforms for Signal Processing

In signal analysis, the Wigner and/or Wigner-Ville transform can be justified in terms
of an approach to solving the problems associated with the application of the Gabor
transform and the STFT in general. With STFT analysis the result is strongly influ-
enced by the choice of the window function w(t). In the interpretation of a spectro-
gram, it is always necessary to take into account the shape and size of the window
used. The best results are usually achieved if a window is used that matches the char-
acteristics of the signal. The effect of the window on the spectrum will be minimal
if the characteristics of the signal are not altered by the application of the window.
However, in many applications this may be difficult, or even impossible, especially
when the characteristics of the signal change rapidly as a function of time. In such
cases, it is necessary to find an appropriate time dependent window. A simple way
to achieve this is to use the signal itself as the window and consider the transform

S(t, ω) =

∞∫
−∞

s(τ)s(t − τ) exp(−iωτ)dτ

or

S(t, ω) =

∞∫
−∞

s(τ)s∗(t− τ) exp(−iωτ)dτ

with symmetric forms

S(t, ω) =

∞∫
−∞

s(t+ τ/2)s(t− τ/2) exp(−iωτ)dτ

and

S(t, ω) =

∞∫
−∞

s(t+ τ/2)s∗(t− τ/2) exp(−iωτ)dτ

respectively, which, in the latter case, is the Wigner-Ville transform of the analytic
signal s(t) defined earlier - sometimes referred to as the auto-Wigner-Ville distribu-
tion. Thus, one of the interpretations of the Wigner and/or Wigner-Ville transform
is that it is the Fourier transform of the signal after it has been windowed with the

5.8. THE WIGNER AND THE WIGNER-VILLE TRANSFORMS 143

reverse of itself. Clearly, for applications in digital signal processing, the discrete
Fourier transform can be applied to compute this transform.

The application of the Wigner transform in signal analysis is non-standard but
is useful for specialised diagnostic purposes. It is sensitive to features in noise that
are not easily discernible in conventional time-frequency spectral analysis. The trans-
form provides a time-frequency distribution that, in general, yields excellent time and
frequency resolution together with other valuable properties. However, it also yields
some undesirable outputs such as aliasing and cross-term interference.

5.8.2 Properties of the Wigner-Ville Transform

Realness

The Wigner-Ville (WV) transform is real since if

S(t, ω) =

∞∫
−∞

s(t+ τ/2)s∗(t− τ/2) exp(−iωτ)dτ

then

S∗(t, ω) =

∞∫
−∞

s∗(t+ τ/2)s(t− τ/2) exp(iωτ)dτ = −S(t, ω).

Time-shift Invariance

An important feature of the WV transform is that it is invariant to time and frequency
shifts. If the WV transform of a signal s(t) is S(t, ω), then the WV transform of the
time-shifted version s′(t) = s(t− t′, ω) is a time-shifted WV transform of s(t), i.e.

S′(t, ω) = S(t− t′, ω).

Frequency Modulation Invariance

If the WV transform of a signal s(t) is S(t, ω), then the WV transform of the frequency
modulated version s′(t) = s(t) exp(iω′t) is a frequency shifted WV transform of s(t),
i.e.

S′(t, ω) = S(t, ω − ω′).

Power Spectrum

Integration of the WV transform over time yields the power spectrum of the signal
s(t) since

∞∫
−∞

S(t, ω)dt =

∞∫
−∞

∞∫
−∞

s(t+ τ/2)s∗(t− τ/2) exp(−iωτ)dtdτ

144 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

=

∞∫
−∞

exp(−iωτ)
∞∫

−∞
s(t)s∗(t− τ)dτdt = S(ω)S∗(ω) =| S(ω) |2 .

Instantaneous Energy

Integration of the WV transform over frequency yields an expression for the instan-
taneous energy of the signal, i.e.

1
2π

∞∫
−∞

S(t, ω)dω =
1
2π

∞∫
−∞

∞∫
−∞

s(t+ τ/2)s∗(t− τ/2) exp(−iωτ)dτdω

=

∞∫
−∞

s(t+ τ/2)s∗(t− τ/2)
1
2π

∞∫
−∞

exp(−iωτ)dωdτ

=

∞∫
−∞

s(t+ τ/2)s∗(t− τ/2)δ(τ)dτ =| s(t) |2 .

Thus, from Rayleigh’s theorem (i.e. the energy theorem), since

1
2π

∞∫
−∞

| S(ω) |2 dω =

∞∫
−∞

| s(t) |2 dt

we have

1
2π

∞∫
−∞

∞∫
−∞

S(t, ω)dωdt =

∞∫
−∞

| s(t) |2 dt =
1
2π

∞∫
−∞

| S(ω) |2 dω.

Instantaneous Frequency

Let s(t) = A(t) exp[iθ(t)] where A and θ are real. Then

〈ω〉t = Im

1
2π

∞∫
−∞

iωS̄(t, ω)dω

1
2π

∞∫
−∞

S̄(t, ω)dω
= Im

1
2π

∞∫
−∞

iωS̄(t, ω)dω

[s(t)]2
= 2

d

dt
θ(t)

where

S̄(t, ω) =

∞∫
−∞

s(t+ τ/2)s(t− τ/2) exp(−iωτ)dτ

and 〈 〉t denotes the mean or average value at a time t. This result comes from the
fact that

1
2π

∞∫
−∞

dω iω

∞∫
−∞

dτs(t + τ/2)s(t− τ/2) exp(−iωτ)

5.8. THE WIGNER AND THE WIGNER-VILLE TRANSFORMS 145

= −
∞∫

−∞
dτs(t + τ/2)s(t− τ/2)

d

dτ

1
2π

∞∫
−∞

dω exp(−iωτ)

= −
∞∫

−∞
dτs(t + τ/2)s(t− τ/2)

d

dτ
δ(τ) =

d

dt
[s(t)]2 = 2s(t)

d

dt
s(t).

Thus,

〈ω〉t = 2Im
1
s(t)

d

dt
s(t) = 2Im

d

dt
ln s(t)

and the instantaneous frequency can be defined as (see Section 5.5.5)

d

dt
θ(t) = Im

[
d

dt
ln s(t)

]
.

This result shows that at an instant in time t, the mean frequency content of the signal
for the WV distribution is given by the instantaneous frequency of the signal. Thus,
another way of computing the instantaneous frequency (and hence the unwrapped
phase) of a signal (see Section 5.5.5) is by computing the mean frequency using the
WV distribution.

Group Delay

Assume that the Fourier transform of a signal s(t) is given by S(ω) = A(ω) exp[iθ(ω)].
Then the first derivative of the Fourier phase θ is called the group delay. Noting that

1
2π

∞∫
−∞

dt it

∞∫
−∞

dΩS(ω + Ω/2)S(ω − Ω/2) exp(−iΩt)

= −
∞∫

−∞
dΩS(ω + Ω/2)S(ω − Ω/2)

d

dΩ
1
2π

∞∫
−∞

exp(−iΩt)dt

= −
∞∫

−∞
dΩS(ω + Ω/2)S(ω − Ω/2)

d

dΩ
δ(Ω) =

d

dω
[S(ω)]2 = 2S(ω)

d

dω
S(ω)

and that
1
2π

∞∫
−∞

dt

∞∫
−∞

dΩS(ω + Ω/2)S(ω − Ω/2) exp(−iΩt)

=

∞∫
−∞

dΩS(ω + Ω/2)S(ω − Ω/2)
1
2π

∞∫
−∞

exp(−iΩt)dt

=

∞∫
−∞

dΩS(ω + Ω/2)S(ω − Ω/2)δ(Ω) = [S(ω)]2

146 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

then, since
d

dω
θ(ω) = Im

[
d

dω
lnS(ω)

]
we can write

〈t〉ω = Im

1
2π

∞∫
−∞

its̄(t, ω)dt

1
2π

∞∫
−∞

s̄(t, ω)dt
= 2

d

dω
θ(ω).

where

s̄(t, ω) =

∞∫
−∞

S(ω + Ω/2)S(ω − Ω/2) exp(−iΩt)dΩ

Thus, the mean time of the WV distribution at a frequency ω is given by the group
delay.

The properties of the WV transform compared with those of the Gabor transform
(a spectrogram) are summarized in the table below which is based on those properties
that a time-frequency distribution should ideally have and which of these properties
is fulfilled by each transform.

Property Gabor Transform Wigner-Ville
(Spectrogram) Transform

Shift in time YES YES
Shift in frequency YES YES
Realness YES YES
Finite support in time NO YES
Finite support in frequency NO YES
Positivity YES NO
Integration of time
=power spectrum NO YES
Integration of frequency
=instantaneous energy NO YES
Average frequency at time t
=instantaneous frequency NO YES
Average time at frequency ω
=group delay NO YES

5.8.3 Cross Term Interference

Suppose we have a signal that is composed of the sum of two signals s1 and s2. Then

s(t) = s1(t) + s2(t)

and the spectrum of s will be

S(ω) = S1(ω) + S2(ω).

5.8. THE WIGNER AND THE WIGNER-VILLE TRANSFORMS 147

The power spectrum is given by

| S |2=| S1 + S2 |2=| S1 |2 + | S2 |2 +2Re[S∗
1S2] �=| S1 |2 + | S2 |2 .

Thus, the power spectrum is not the sum of the power spectrum of each signal. The
physical reason for this is that when two signals are added, the waveforms may add
and interfere in a number of ways to give different weights to the original frequencies.
For the WV transform

S(t, ω) = Ss1(t, ω) + Ss2(t, ω) + 2Re[Ss1,s2(t, ω)]

In addition to the two auto-terms, this expression contains a cross-term. Because this
cross-term has an amplitude that is twice as large of the auto-terms (i.e. a coefficient of
2), it tends to obscure the auto-terms. Methods to reduce the cross-term interference
patterns without destroying the useful properties of the WV distribution are therefore
important in developing algorithms for WV transform based time-frequency analysis.
Note that the WV distribution of an N -component signal consists of N auto-terms
and N(N − 1)/2 cross-terms. Thus while the number of auto-terms grows linearly
with the number of signal components, the number of cross-terms grows quadratically
with N .

With real signals, the cross-terms produce significant interference which can be
reduced by smoothing the output. However, by using the analytic signal, the cross-
term interference is reduced because the negative frequency components are zero (the
analytic signal is a single side-band signal). Thus, use of the analytic function avoids
all cross-terms that are associated with negative frequency components. However, this
is only the case for real valued signals in which the Hilbert transform is computed
to generate the analytic signal as in Section 5.5.3. For complex signals, the spectra
are not symmetric and therefore it is not possible to neglect the negative frequency
components.

5.8.4 Smoothing the Wigner-Ville Distribution

Since most signals have multiple components, the WV distribution is ‘confused’ by
cross-terms which grow quadratically with the number of signal components and
makes the interpretation of the time-frequency distribution difficult. In general, the
auto-terms of the WV distribution are relatively smooth compared to the cross-terms
which are strongly oscillatory. This allows for the application of a lowpass filter P (t, ω)
to the WV distribution to reduce cross-term interference obtained via the convolution
process

R(T,Ω) =

∞∫
−∞

∞∫
−∞

S(t, ω)P (T − t,Ω− ω)dtdω

where R denotes the smoothed distribution. With regard to the nature of the low-
pass smoothing filter, a Gaussian filter provides for symmetry in both the time and
frequency domains. Although application of a Gaussian lowpass filter, for example,
can substantially suppress the cross-term interference, this is obtained at the expense
of resolution and a trade-off must be introduced between the degree of smoothing
and the resolution acceptable for a time-frequency analysis. In the application of a

148 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

Gaussian lowpass filter, this trade-off is compounded in the value of the standard
deviation that is used.

5.8.5 The Discrete Wigner-Ville Transform

The definition a the discrete WV distribution is not straightforward and several ap-
proaches are possible. By letting u = τ/2 we can write

S(t, ω) = 2
∫
s(t+ u)s∗(t− u) exp(−2iωu)du.

For a regularly sampled signal, with sampling interval Δt, we can write

S(tn, ωm) = 2Δt
∑

k

s(tn + kΔt)s(tn − kΔt) exp(−2iωmkΔt)

and for tn = nΔt and ωm = mΔω we have

S(nΔt,mΔω) = 2Δt
∑

k

s[(n+ k)Δt]s∗[(n− k)Δt] exp(−2imkΔωΔt).

Hence, for a regular array sk, the discrete WV distribution is given by

Snm =
∑

k

sn+ks
∗
n−k exp(−2πimk/N)

where
ΔωΔt =

π

N
and is thus, compounded in the DFT of the array sn+ks

∗
n−k instead of sk. However,

note that the sampling period in the frequency domain is now π/(NΔt) rather than
2π/(NΔt) as is the case with the discrete Fourier transform.

5.8.6 Applications

There has been an increasing interest in the applications of the WV transform to the
analysis of signals particularly with regard to the detection of information in noise. For
example, the WV distribution can be used to analyse time domain averaged vibration
signals of a gearbox in which different faults, such as tooth cracking and pitting,
produce different and significant (i.e. detectable) patterns in the WV distribution (e.g.
Staszewski W J, Worden K and Tomlinson G R, 1997, Time-Frequency Analysis in
Gearbox Fault Detection using the Wigner-Ville Distribution and Pattern Recognition,
Mechanical Systems and Signal Processing, 11(5), 673-692). As with a spectrogram,
the patterns produced (if significant) can be used to generate a set of templates that
can be correlated with an input WV distribution or used for more advanced pattern
recognition systems (e.g. for training a neural pattern recognition engine).

Other applications of the WV distribution include seismic signal processing (acoustic
well logging) and fuel injection monitoring via analysis of the injector vibrations ob-
tained using a transducer positioned on the outer surface of the injector body. Noise
and vibration analysis is applicable to a wide range of engineering applications and
within the context of mechanical, control and process engineering, the WV distribu-
tion has an important role to play.

5.9. THE RIEMANN-LIOUVILLE AND THE WYLE TRANSFORMS 149

5.9 The Riemann-Liouville and the Wyle Transforms

These transforms are an essential basis for the description and analysis of random
fractal or statistical self-affine signals. The Riemann-Liouville transform is given by

s(t) =
1

Γ(q)

t∫
0

f(τ)
(t− τ)1−q

dτ

where q > 0 and the Weyl transform, by

s(t) =
1

Γ(q)

∞∫
t

f(τ)
(t− τ)1−q

dτ, q > 0.

In both cases, Γ denotes the ‘Gamma function’ given by

Γ(q) =

∞∫
0

xq−1 exp(−x)dx.

These transforms are the classical fractional integral operators and for integer
values of q (i.e. when q = n where n is a non-negative integer), the Riemann-Liouville
transform reduces to the standard Riemann integral. Note that the Riemann-Liouville
transform is a causal convolution of the function f(t) with tq−1/Γ(q). In the case
when f(t) is white noise, i.e. noise whose power spectrum is uniform or ‘white’,
these transforms describe a signal whose Power Spectral Density Function (PSDF) is
characterized by 1/(iω)q or

| S(ω) |2∝ 1
| ω |2q

.

Many noise types found in nature have a PSDF of this form. Moreover, this spectral
form is characteristic of signals whose statistical distribution is the same at different
scales. This can be shown by taking the Riemann-Liouville transform of a function
in which a scale length parameter λ has been introduced; thus with x = λτ ,

1
Γ(q)

t∫
0

f(λτ)
(t− τ)1−q

dτ =
1

λqΓ(q)

λt∫
0

f(x)
(λt − x)1−q

dx =
1
λq
s(λt).

Hence, with Pr denoting the Probability Density Function or PDF of the function s,
we can write

λqPr[s(t)] = Pr[s(λt)]

which is the equation describing statistical self-affinity, namely, the PDF of the signal
is the same over different scale lengths λ subject to a change in amplitude determined
by λq . In other words, the ‘shape’ of the PDF is the same at different scales. This
is the fundamental principle of statistical self-affinity and is discussed further in Part
IV of this work (Chapter 17).

150 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

5.10 The z-Transform

The z-transform is used as a tool for the analysis and design of linear sampled data
systems, i.e. typically in cases, when a processing system is modelled via linear
difference equations for example. The z-transform is defined by

Ẑ[fk] = F (z) =
∞∑

k=0

fkz
−k

where z is an arbitrary complex number. F (z), which is the sum of complex numbers,
is also a complex number. This transform has many similar properties to the (dis-
crete) Fourier transform such as the convolution theorem for example and the shifting
property, i.e.

Ẑ[fk+1] = zF (z)− zf0
for which the general result is

Ẑ[fk+n] = znF (z)−
n−1∑
j=0

fjz
n−j, k ≥ −n.

However, the process of determining the inverse z-transform is similar to that of
determining the inverse Laplace transform using tabulated results rather than through
direct computation. As with other transforms, it is typical to compute the z-transform
for a range of different functions. One such function that is important with regard to
the z-transform is the geometric sequence

fk =

{
ak, k ≥ 0;
0, k < 0

for any real number a where

F (z) =
∞∑

k=0

akz−k =
∞∑

k=0

(az−1)k =
1

1− az−1
=

{
z

z−a , | z |>| a |;
unbounded, | z |<| a | .

Thus, for example, the z-transform of a unit step function is

Uk ↔ z

z − 1

where

Uk =

{
1, k ≥ 0;
0, k < 0.

and ↔ denotes the z-transform process.
Suppose that a linear discrete system is described by the difference equation

ck+1 − ck = rk, c0 = 0

and we want to find the impulse response function satisfying the equation

ck+1 − ck = δk

5.10. THE Z-TRANSFORM 151

where δk is the discrete unit impulse function (the Kronecker delta function) given by

δk =

{
1, k = 0;
0, k �= 0.

Taking the z-transform, we can transform this equation into z-space to give

(z − 1)C(z) = 1

since
δk ↔ 1.

Thus,

C(z) =
1

z − 1
.

Now,
z

z − 1
↔ (−1)k

and hence, from the shifting property

zC(z)− zc0 ↔ ck+1

we have
Ẑ−1[C(z)] = (−1)k−1, k ≥ 1.

The z-transform has traditionally been used as a key analytical tool for designing
control systems that are described by linear difference equations and linear discrete
systems in general. Like the Fourier and Laplace transforms, we can consider a model
for the output of a time invariant linear system of the form

sk = pk ⊗ fk ≡
∞∑

j=0

pk−jfj

where fk and sk are the inputs and output respectively and pk is the impulse response
function (the weighting sequence as it is sometime called in this context). Now

Ẑ[sk] = S(z) =
∞∑

k=0

skz
−k

or

S(z) =
∞∑

k=0

⎡⎣ ∞∑
j=0

pk−jfj

⎤⎦ z−k =
∞∑

j=0

fj

∞∑
k=0

pk−jz
−k.

Now, with � = k − j,

S(z) =
∞∑

j=0

fj

∞∑
�=−j

p�z
−�−j =

∞∑
j=0

fjz
−j

∞∑
�=0

p�z
−� = F (z)P (z).

Thus, we have

P (z) =
S(z)
F (z)

which is the z-transfer function of a linear discrete system.

152 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

5.11 The Wavelet Transform

Wavelet signal analysis is based on a correlation-type operation which includes a scal-
ing property in terms of the amplitude and temporal extent of the correlation kernel
under the assumption that the signal is non-stationary. It provides an alternative
to the classical short time Fourier transform (the Gabor transform). Wavelet theory
has been developed as a unifying framework for non-stationary signal analysis only
recently, although similar ideas have been around for many years. The idea of looking
at a signal at various scales and analysing it with various resolutions emerged inde-
pendently in many different fields of mathematics, physics and engineering. The term
wavelet or ‘Ondelette’ originates primarily from theoretical work undertaken mainly
in France in the mid-1980s which was inspired by geophysical problems and seismic
signal processing.

The wavelet transform can be evaluated in terms of the effect of a correlation over
different scales. If a signal contains a specific identifiable feature (i.e. an amplitude
variation of finite support within the data stream) then a correlation of such a signal
with an identical feature (a template) provides a correlation function with a flag - a
‘spike’ - in the locality of the data stream in which the feature occurs, a process that
is one of the most basic methods of pattern recognition in signal an image analysis.
However, if the feature has a different scale (in terms of its amplitude and/or temporal
extent) then a correlation process will not provide a flag. This is because, although
the feature may look the same as the template, it does not provide a match in terms of
its scale; the correlation integral is not scale invariant. In order to address this short-
coming, one could apply a multiple correlation process in which a variety of different
templates are used, each of which are of a different scale or resolution. Applying such
a process in a systematic fashion, a number of correlation functions will be obtained,
one of which will provide a flag in the case when the scale of the template is the
same as that of the feature in the signal the template describes. If f(t) is the signal
in question and g(t) is the template, then we can consider the approach considered
above to be compounded mathematically as

s(t, λ) = λ

∫
f(τ)g [λ(τ − t)]dτ

where λ is a scaling parameter.
The multi-resolution properties of the wavelet transform have been crucial to their

development and success in the analysis and processing of signals and images. Wavelet
transformations play a central role in the study of self-similar or fractal signals and
images. The transform constitutes as natural a tool for the manipulation of self-similar
or scale invariant signals as the Fourier transform does for translation invariant such
as stationary and periodic signals.

In general, the (continuous) wavelet transformation of a signal f(t) say

f(t) ↔ FL(t)

is defined in terms of projections of f(t) onto a family of functions that are all nor-
malized dilations and translations of a prototype ‘wavelet’ function w, i.e.

Ŵ [f(t)] ≡ FL(t) =
∫
f(τ)wL(τ, t)dτ

5.11. THE WAVELET TRANSFORM 153

where

wL(t, τ) =
1√| L |w

(
τ − t
L

)
.

Here, we assume that the wavelet function is real; for complex wavelets, the com-
plex conjugate of w is taken. The parameters L and τ are continuous dilation and
translation parameters respectively and take on values in the range −∞ < L, τ <
∞, L �= 0. Note that the wavelet transformation is essentially a correlation in which
w(t) is the kernel but with a factor L introduced. The introduction of this factor
provides dilation and translation properties into the correlation integral that gives
it the ability to analyse signals in a multi-resolution role. Note that the correlation
integral is now a function of L and that wavelet analysis is self-similar. In general,
a multi-resolution signal analysis is a framework for analysing signals based on iso-
lating variations in the signal that occur on different temporal or spatial scales. The
basic analysis involves approximating the signal at successively coarser scales through
repeated application of a smoothing (correlation) operator. Just as the short time
Fourier transform can be used to compute a spectrogram, i.e. an image of the power
spectrum | F (ω, τ) |2 say, so by computing an image of | FL(t) |2, we can analyse the
wavelet decomposition of a signal. This is known as a ‘scalogram’. It is a distribution
of the energy of the signal in the time-scale plane and is thus, expressed in power per
unit frequency, like the spectrogram. However, in contrast to the spectrogram, the
energy of the signal is here, distributed with different resolutions.

Wavelet analysis results in a set of wavelet coefficients which indicate how close
the signal is to a particular basis or wavelet function w. Thus, we expect that any
general signal can be represented as a decomposition into wavelets, i.e. that the
original waveform is synthesized by adding elementary building blocks, of constant
shape but different size and amplitude. Another way to say this is that we want the
wavelets wL(t) to behave just like an orthogonal basis. As with many of the other
integral transforms discussed so far, orthogonality can be used to develop an inverse
transform and the (discrete) wavelet transform is no exception. A necessary and
sufficient condition for this transformation to be invertible is that wL(t) satisfy the
admissibility condition ∫

|W (ω) |2| ω |−1 dω = Cw <∞

where W is the wavelets Fourier transform, i.e.

W (ω) =
∫
w(t) exp(−iωt)dt.

Provided w has reasonable decay at infinity and smoothness, as is usually the case in
practice, the admissibility condition above is equivalent to the condition∫

w(t)dt = 0.

For any admissible w(t), the wavelet transform has an inverse given by

f(t) = Ŵ−1[FL(τ)] =
1
Cw

∫ ∫
FL(τ)wL(t, τ)L−2dLdτ.

154 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

There are a wide variety of wavelets available (i.e. functional forms for wL) which
are useful for processing signals in ‘wavelet space’ when applied in discrete form. The
discrete wavelet transform of the digital signal fn, n = 0, 1, ..., N say, can be written
as

Fij = L−j/2
N∑

n=0

fnw

(
n− i
Lj

)
where the value of L is equal to 2 (for a so called ‘dyadic transform’). The properties
of the wavelets vary from one application to another but in each case, the digital
signal fi is decomposed into a matrix Fij (a set of vectors) where j is the ‘level’ of
the decomposition.

5.12 Discussion

There are a wide variety of integral transforms that can be applied in discrete form
to digital signals for their analysis and processing. Many of the these transforms
yield properties that are better or worse in terms of doing ‘something useful’ with the
signal. Thus, if one is interested in observing and working with the properties of a
signal at different resolutions, then the wavelet transform provides an ideal ‘working
environment’ or if analysis is required of the response of a system to a known input
where the system can be described by a set of discrete linear difference equations, then
the z-transform plays a central role. However, in terms of linking the characteristics
of a signal to the ‘physics’ of the system that produces it, particularly with regard
to the interactions of wavefields with matter and the design of sensors to record such
interactions, the Fourier transform has and continues to rein supreme. This is because
it provides the most general and comprehensive solution (via the Green’s function for
example) to physical systems described by differential equations and most of the laws
of physics can be expressed in the form of differential equations; that is our legacy
from Isaac Newton.

5.13 Summary of Important Results

The Laplace Transform

F (p) =

∞∫
0

f(t) exp(−pt)dt,

f(t) =
1

2πi

c+i∞∫
c−i∞

F (p) exp(px)dp.

The Sine Transform

F (ω) =

∞∫
0

f(t) sin(ωt)dt,

5.13. SUMMARY OF IMPORTANT RESULTS 155

f(t) =
2
π

∞∫
0

F (ω) sin(ωt)dω.

The Cosine Transform

F (ω) =

∞∫
0

f(t) cos(ωt)dt,

f(t) =
2
π

∞∫
0

F (ω) cos(ωt)dω.

The (discrete) Walsh Transform

f(t) =
N−1∑
n=0

FnWAL(n, t),

Fn =
1
T

T∫
0

f(t)WAL(n, t);

where the Walsh functions WAL(n, t) describe a set of rectangular or square wave-
forms taking only two amplitude values, namely +1 and -1, and form an orthogonal
set of functions.

The Cepstral Transform

f̂(t) =
1
2π

∞∫
−∞

log[F (ω)] exp(iωt)dω

where

F (ω) =

∞∫
−∞

f(t) exp(−iωt)dt.

The Hilbert Transform

q(t) =
1
π

∞∫
−∞

f(τ)
τ − tdτ

The Stieltjes-Riemann Transform

q(t) =
1
π

∞∫
−∞

f(τ)
t− τ dτ

156 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

The Analytic Signal

s(t) = f(t) + iq(t), q(t) =
1
πt
⊗ f(t).

Amplitude Modulations

A(t) =
√
f2(t) + q2(t)

Frequency Modulations
| ψ |

where

ψ =
1

A2(t)

[
f(t)

d

dt
q(t)− q(t) d

dt
f(t)

]
.

Unwrapped Phase

θ(t) = θ(t = 0) +

t∫
ψ(τ)dτ

The Gabor Transform

F (ω, τ) =

∞∫
−∞

w(t+ τ)f(t) exp(−iωt)dt

where
w(t) = exp(−at2).

The Wigner Transform

F (ω, τ) =

∞∫
−∞

f(t+ τ/2)f(t− τ/2) exp(−iωt)dt

The Wigner-Ville Transform

F (ω, τ) =

∞∫
−∞

s(t+ τ/2)s∗(t− τ/2) exp(−iωt)dt

The Riemann-Liouville Transform

F (t) =
1

Γ(q)

t∫
0

f(τ)
(t− τ)1−q

dτ, q > 0

5.14. FURTHER READING 157

where

Γ(q) =

∞∫
0

xq−1 exp(−x)dx.

The Weyl Transform

F (t) =
1

Γ(q)

∞∫
t

f(τ)
(t− τ)1−q

dτ, q > 0.

The z-Transform

F (z) =
∞∑

k=0

fkz
−k

The Wavelet Transform

FL(t) =

∞∫
−∞

f(τ)wL(t, τ)dτ

where

wL(t, τ) =
1√| L |w

(
τ − t
L

)
.

5.14 Further Reading

• Jury E I, Theory and Application of the z-transform Method, Wiley, 1964.

• Oberhettinger F and Badii L, Tables of Laplace Transforms, Springer, 1973.

• Oldham K B and Spanier J, The Fractional Calculus, Academic Press, 1974.

• Rabiner L R and Gold B, Theory and Application of Digital Signal Processing,
Prentice-Hall, 1975.

• Beauchamp K G, Walsh Functions and their Applications, Academic Press,
1975.

• Watson E J, Laplace Transforms and Applications, Van Nostrand Reinhold,
1981.

• Candy J V, Signal Processing, McGraw-Hill, 1988.

158 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

• Cohen L, Time-Frequency Analysis, Prentice-Hall, 1995.

• Mecklenbräuker W and Hlawatch F (Eds.), The Wigner Distribution, Elsevier,
1997.

5.15 Problems

5.1 If

L̂f(t) ≡
∞∫
0

f(t) exp(−pt)dt and

∞∫
0

exp(−u2)du =
√
π

2

show that

L̂ cosh(at) =
p

p2 − a2
, p >| a |; L̂t exp(at) =

1
(p− a)2 , p > a;

L̂

(
1√
t

)
=
√
π

p
, p > 0 and L̂δ(t− a) = exp(−ap).

5.2 Given that

J0(at) =
∞∑

n=0

(−1)n

(n!)2

(
at

2

)2n

,

prove that

L̂J0(at) =
1√

a2 + p2
.

5.3 Using the convolution theorem for Laplace transforms, show that if

y(x) = f(x) +

x∫
0

g(x− u)y(u)du

then

L̂y(x) =
L̂f(x)

1− L̂g(x) .

Hence, solve the integral equation

y(x) = sin(3x) +

x∫
0

sin(x− u)y(u)du.

5.4 Using the convolution theorem for Laplace transforms, find the general solution
to the equation

d2y

dx2
+ 4y = f(x)

where f(x) is an arbitrary function and where y(0) = 1 and y′(0) = 1.

5.15. PROBLEMS 159

5.5 Solve

φ(x) = x−
x∫

0

(t− x)φ(t)dt

using Laplace transforms.

5.6 Solve the equation
∂2u

∂x2
=
∂u

∂t

in the region x > 0, t > 0, using the sine transform subject to the conditions: u(0, t) =
1 for t > 0, u(x, 0) = 0 for x > 0, and u→ 0 as x→∞.

5.7 Compute the z-transform of the sinusoidal function

f(k) =

{
sin(kωT), k ≥ 0;
0, k < 0.

and the cosinusoidal function

f(k) =

{
cos(kωT), k ≥ 0;
0, k < 0.

5.8 A linear discrete control system is described by

c(k + 2) + a1c(k + 1) + a2c(k) = b0r(k + 2) + b1r(k + 1) + b2r(k)

where c(k) = 0 and r(k) = 0 for k < 0. Find the z-transfer function for this system.
Derive the transfer function for the general case when

c(k) + a1c(k − 1) + ...+ anc(k − n) = b0r(k) + b1k − 1) + ...+ bnr(k − n)

when c(k) = 0 and r(k) = 0 for k < 0 (i.e. zero initial conditions and a causal input).

5.9 The central limit theorem stems from the result that the convolution of two
functions generally yields a function which is smoother than either of the functions
that are being convolved. Moreover, if the convolution operation is repeated, then
the result starts to look more and more like a Gaussian function. Prove the central
limit theorem for the case when the functions being convolved are tophat functions.
In particular, show that as the number of convolutions of a tophat function increases,
the result approximates a Gaussian function; specifically, if

f(t) =

{
1, | t |≤ 1

2 ;
0, otherwise

then
N∏

n=1

⊗ fn(t) ≡ f1(t)⊗ f2(t)⊗ ...⊗ fN(t) �
√

6
πN

exp(−6t2/N)

where fn(x) = f(x), ∀n and N is large. (Hint: Consider the effect of multiple
convolutions in Fourier space and then work with a series representation of the result.)

160 CHAPTER 5. OTHER INTEGRAL TRANSFORMS

5.10 The Morlet wavelet (without the correction term) is given by

w(t) = π− 1
4 exp(iω0t− t2/2)

where ω0 is the characteristic frequency of the wavelet.

(i) Calculate the Fourier transform of this wavelet, noting that

exp(−at2)⇐⇒
√
π

a
exp(−ω2/4a)

(ii) Define analytically the centre frequency of the Morlet wavelet, i.e. the frequency
maximising the power spectrum of this wavelet function.

(ii) Explain how the Morlet wavelet can detect a ‘brick wall’ discontinuity, i.e. a
signum function with amplitude a, in other words, when a constant positive signal
f(t) = a suddenly drops to a constant negative value f(t) = −a.

5.11 (i) Compute the Wigner-Ville transform of the multi-component signal composed
of four complex sinusoids, i.e.

f(t) =
4∑

n=1

xn(t)

where
xn = an exp(iωnt)

and characterise the cross-terms.

(ii) Describe the relationship between the Wigner-Ville transform and the instanta-
neous auto-correlation function of a signal.

Part II

Computational Linear
Algebra

161

Chapter 6

Matrices and Matrix Algebra

Many of the algorithms associated with processing digital signals are based on the
mathematical ideas and analysis discussed in Part I. However, in practice, the process-
ing of a digital signal requires such analysis to be converted into discrete or digital
form. In other words, instead of working with a continuous function f(t) (an ana-
logue signal) and indefinite or definite integrals, we are required to work with discrete
functions (digital signals), vectors or arrays of the type f ≡ fi = f1, f2, ..., fN (where
N is the size of the array) and consider indefinite or definite sums. This inevitably
leads to problems being specified in terms of matrices and matrix equations for which
knowledge of matrix algebra is a necessary requirement. Moreover, such matrix equa-
tions typically describe sets of linear simultaneous equations for which solutions need
to be found. Further, it is often necessary to extend this study to encompass the
linear eigenvalue problem.

A typical and re-occurring theme is related to the convolution of two discrete
functions in which the convolution integral is replaced by a convolution sum, i.e. the
integral equation

s(t) =
∫
p(t− τ)f(τ)dτ

is replaced with
si =

∑
j

pi−jfj .

In turn, this convolution sum can be expressed in terms of the matrix equation (see
Chapter 16)

s = P f

where P is a matrix whose elements are composed from those of p. Note that some
authors prefer to use the notation f [i] and p[i − j] for example to describe digital
signals. In this work, the notation fi, pi etc. is used throughout to denote digital
signals.

Part II of this book covers the computational methods associated with solving sets
of linear algebraic equations and briefly considers the linear eigenvalue problem. In
addition, a study is given that is concerned with the use of vector and matrix norms
which provide the analysis required to establish conditions for numerical stability

162

6.1. MATRICES AND MATRIX ALGEBRA 163

and application of the least square methods for example which is used to construct
solutions to certain classes of digital signal processors.

We shall start be first reviewing the algebra of matrices and matrix based equa-
tions.

6.1 Matrices and Matrix Algebra

A matrix (which shall usually be denoted by A) is a rectangular array of numbers

A =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

⎞⎟⎟⎟⎠ .

Here, A is said to be an m × n matrix (with m rows and n columns) - a matrix of
‘order’ mn. When m = n, the array is called a square matrix of order n. The element
in the ith row and jth column of A is denoted by aij and we can write

A = (aij).

Two matrices A and B are equal if they are identical (they must be of the same type).
In this case, each element of A is equal to the corresponding element of B. If all the
elements of a matrix are zero then it is referred to as a null matrix.

6.1.1 Addition of Matrices

Two matrices A and B can be added together if and only if they are of the same type.
B must have the same number of rows as A and the same number of columns as A.
A and B are then said to be conformable for addition. Let A = (aij) and B = (bij),
each being m× n matrices. Then

A+B = C

where C is also an m× n matrix. Then, the ijth element in C = (cij) is given by

cij = aij + bij .

For example, (
1 0 3
5 −1 2

)
+
(

4 −7 2
5 3 1

)
=
(

5 −7 5
10 2 3

)
.

6.1.2 Subtraction of Matrices

The matrix −A is a matrix of the same type as A where the elements are all multiplied
by −1, i.e. if

A = (aij)

then
−A = (−aij).

164 CHAPTER 6. MATRICES AND MATRIX ALGEBRA

If A and B are conformable for addition, then A−B = A+ (−B) and

C = A−B

or
cij = aij − bij .

6.1.3 Multiplication of a Matrix by a Scalar Quantity

If λ is a scalar and A is a matrix, then λA is a matrix of the same type as A and each
element of λA is equal to λ multiplied by the corresponding element of A. Also,

λ(A +B) = λA+ λB.

6.1.4 Multiplication of Two Matrices

Let A and B be two matrices. They are conformable for the product AB, written in
that order, if the numbers of columns of A is equal to the number of rows in B. With
this restriction, the product AB can be defined thus: Let A be an m× n matrix and
let B be an n× p matrix. Then C = AB is an n× p matrix whose elements cij are
defined by

cij =
n∑

k=1

aikbkj

For example, if

A =
(

1 3 4
2 −1 5

)
and B =

⎛⎝ 2 1 4
−7 5 2
−1 3 1

⎞⎠ ,

then

C = AB =
(

1 3 4
2 −1 5

)⎛⎝ 2 1 4
−7 5 2
−1 3 1

⎞⎠ =
(−23 28 14

6 12 11

)
.

In general, if A is an m×n matrix and B is an n× p matrix, then BA will only exist
if p = m. Even so, AB �= BA in general. The product may be of matrices of different
types. If A is m × n and B is n ×m then AB is m × n and BA is n × m. If the
product AB can be formed, then B is said to be pre-multiplied by A and A is said to
be post-multiplied by B. The matrices A and B for which

AB = BA

are said to commute under multiplication.

6.1. MATRICES AND MATRIX ALGEBRA 165

6.1.5 Further Results in Matrix Multiplication

The Distributive Law

Let A, B and C be three matrices where A, B are conformable for addition and A,
C are conformable for the product AC. Then

(A+B)C = AC +BC.

If A, C are conformable for the product CA, then

C(A+B) = CA+ CB.

The Associative Law

Suppose that A is a m × n matrix, B is a n × p matrix and C is a p × q matrix.
The product AB can be formed (m × p). This can be post-multiplied by C (since
C is p × q) to give (AB)C (m × p). Alternatively, BC can be formed (n × q) and
pre-multiplied by A (since A is m × n) to give A(BC) (m × q). We can then prove
that

(AB)C = A(BC).

Proof

A = (aij) (m× n), B = (bij) (n× p) and C = (cij) (p× q)
Let AB = D = (dij) (m× p), then

dij =
n∑

k=1

aikbkj.

The ijth element in (AB)C is given by

=
p∑

�=1

di�c�j =
p∑

�=1

n∑
k=1

aikbk�c�j . (6.1)

Now let BC = E = (eij) (n× q), where

eij =
p∑

�=1

bi�c�j .

The ijth element in A(BC) is then given by

=
n∑

k=1

aikekj =
n∑

k=1

p∑
�=1

aikbk�c�j . (6.2)

Equations (6.1) and (6.2) are equal, hence the result is proved.
In view of the proof given above, we can write

(AB)C = A(BC) = ABC,

i.e. the order must be preserved - brackets are not valid. If A is a square n×n matrix,
then the products AA or AAA all exist and are denoted by A2, A3 etc.

166 CHAPTER 6. MATRICES AND MATRIX ALGEBRA

6.1.6 The Unit Matrix

A square matrix in which all the elements are zero except those along the leading
diagonal where they are all equal to 1 is called a unit matrix and is usually denoted
by I. For example, the matrix

I =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠
is a unit matrix of order 3 and in general, the unit matrix is given by

I =

⎛⎜⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 1

⎞⎟⎟⎟⎠
We denote the ijth element in I by using the Hermitian or Kronecker delta symbol,

I = δij =

{
0, i �= j;
1, i = j.

Note that I = I2 = I3 = ... are all n× n matrices if I is n× n since if aij is the ijth

element in I2, then

aij =
n∑

k=1

δikδkj = δij .

For IA = A, I and A must be conformable for the product IA and for BI = B, B
and I must be conformable for the product BI.

6.1.7 The Transpose of a Matrix

The transpose of A (m × n) is a matrix denoted by AT (n ×m). If A = (aij) then
AT = (aji). The elements of the ith row of AT are the elements of the ith column of
A.

Theorem If A and B are conformable for the product AB, then

(AB)T = BTAT .

Proof Let A be an m× n matrix and B be an n× p matrix. Then

C = AB (m× p)

where

cij =
n∑

k=1

aikbkj .

6.1. MATRICES AND MATRIX ALGEBRA 167

Hence, if CT = (zij), then

zij = (cij)T =
n∑

k=1

ajkbki.

Now
AT = (aji), BT = (bji)

and BT and AT are conformable for the product BTAT = (wij) where

wij =
n∑

k=1

bkiajk = zij .

Hence,
(AB)T = BTAT .

Theorem If A1, A2, ..., An are conformable for the product A1A2...An, then

(A1A2...An)T = AT
nA

T
n−1...A

T
1 .

Proof (by induction)

(A1A2...An)T = [(A1A2...An−1)An]T = AT
n (A1A2...An−1)T

= AT
n [(A1A2...An−2)An−1]T = AT

nA
T
n−1(A1A2...An−2) = ... = AT

nA
T
n−1...A

T
1 .

6.1.8 The Inverse Matrix

Let A be a square (n × n) matrix, then it may be possible to construct a second
matrix A−1 (also n× n) such that

AA−1 = A−1A = I.

Theorem The inverse of a non-singular matrix A is unique, i.e. if AX = I then
X = A−1.

Proof If AX = I then pre-multiplying by A−1 gives

A−1AX = A−1I = A−1.

Now, IX = A−1 so X = A−1. Similarly, if Y A = I then Y = A−1.

Theorem Suppose A, B are both n× n and non-singular, then (AB)−1 = B−1A−1.

Proof Let C = AB, then

B−1A−1C = B−1A−1AB = B−1IB = B−1B = I.

Hence
B−1A−1 = C−1.

168 CHAPTER 6. MATRICES AND MATRIX ALGEBRA

6.1.9 Determinants

The determinant of a matrix A, which is denoted by | A | or by detA, arises nat-
urally in the solution to a set of linear equations. They are essentially a notational
convenience from which we can derive a number of useful properties. For example,
consider the solution to the equations

a11x1 + a12x2 = b1,

a21x1 + a22x2 = b2.

Solving for x1 and x2 gives

x1 =
b1a22 − b2a12

a11a22 − a21a12
,

x2 =
b2a11 − b1a21

a11a22 − a21a12
.

Note that this solution requires that

a11a22 − a21a12 �= 0.

Suppose we now define the following ‘second order determinants’:∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21,∣∣∣∣ b1 a12

b2 a22

∣∣∣∣ = b1a22 − b2a12,∣∣∣∣ a11 b1
a21 b2

∣∣∣∣ = b2a11 − b1a21.

We can then write

x1∣∣∣∣ b1 a12

b2 a22

∣∣∣∣ =
x2∣∣∣∣ a11 b1

a21 b2

∣∣∣∣ =
1∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ .
Now, consider and extension of the idea to the 3× 3 system⎛⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎠⎛⎝ x1

x2

x3

⎞⎠ =

⎛⎝ b1
b2
b3

⎞⎠ .

The solution for x1 is

x1 =
b1a22a33 − b1a32a23 + b2a32a13 − b2a12a33 + b3a12a23 − b3a22a13

a11a22a33 − a11a32a23 + a21a32a13 − a21a12a33 + a31a12a23 − a31a22a13
.

We write the denominator in terms of the ‘third order determinant’∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a21

∣∣∣∣ a12 a13

a32 a33

∣∣∣∣+ a31

∣∣∣∣ a12 a13

a22 a23

∣∣∣∣ ,

6.1. MATRICES AND MATRIX ALGEBRA 169

and write the numerator in terms of the third order determinant∣∣∣∣∣∣
b1 a12 a13

b2 a22 a23

b3 a32 a33

∣∣∣∣∣∣ = b1

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− b2 ∣∣∣∣ a12 a13

a32 a33

∣∣∣∣+ b3

∣∣∣∣ a12 a13

a22 a23

∣∣∣∣ .
Similar analysis of the solutions for x2 and x3 leads to the result

x1∣∣∣∣∣∣
b1 a12 a13

b2 a22 a23

b3 a32 a33

∣∣∣∣∣∣
=

x2∣∣∣∣∣∣
a11 b1 a13

a21 b2 a23

a31 b3 a33

∣∣∣∣∣∣
=

x3∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣
=

1∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
.

We can extend this approach to larger systems of equations. This is the basis for a
method of solution often referred to a ‘Cramers rule’. In general,∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
= a11 |M11 | −a21 |M21 | +a31 |M31 | −...+ an1 |Mn1 |

where Mi1 are the matrices obtained by deleting the first column and ith row. Mi1 is
called the minor corresponding to the element ai1 and it is usual to write

detA = a11A11 + a21A21 + a31A31 + ...+ an1An1

where Ai1 is the cofactor of the element ai1 given by

Ai1 = (−1)i+1 |Mi1 | .

Note that a square n× n matrix A will be singular if and only if detA = 0.

6.1.10 Properties of Determinants

The value of a determinant is unaltered by interchanging the elements of all corre-
sponding rows and columns, i.e.

| A |=| AT | .

For example, ∣∣∣∣∣∣
1 2 3
1 2 1
1 3 4

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 1 1
2 2 3
3 1 4

∣∣∣∣∣∣ = 2.

The sign of a determinant is reversed by interchanging any two of its rows (or
columns): ∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = −
∣∣∣∣∣∣
a21 a22 a23

a11 a12 a13

a31 a32 a33

∣∣∣∣∣∣ .

170 CHAPTER 6. MATRICES AND MATRIX ALGEBRA

The value of a determinant is zero if any two of its rows (or columns) are identical.
Scalar multiplication of a row or a column by a constant λ gives λ | A |, i.e.∣∣∣∣∣∣

λa11 a12 a13

λa21 a22 a23

λa31 a32 a33

∣∣∣∣∣∣ = λ

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ .
If any two rows (or columns) of a determinant have proportional elements, the value
of the determinant is zero. For example,∣∣∣∣∣∣

1 −1 3
2 −2 4
3 −3 5

∣∣∣∣∣∣ = 0.

If the elements of any row (or column) are the sums or differences of two or more terms,
the determinant may be written as the sum or difference of two or more determinants.
For example,∣∣∣∣∣∣

a11 + x1 a12 a13

a21 + x2 a22 a23

a31 + x3 a32 a33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
x1 a12 a13

x2 a22 a23

x3 a32 a33

∣∣∣∣∣∣ .
The value of a determinant is unchanged if equal multiples of the elements of any row
(or column) are added to the corresponding elements of any other row (or column).
For example,∣∣∣∣∣∣

a11 + λa12 a12 a13

a21 + λa22 a22 a23

a31 + λa32 a32 a33

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣+
∣∣∣∣∣∣
λa12 a12 a13

λa22 a22 a23

λa32 a32 a33

∣∣∣∣∣∣
= λ

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ .
Finally, we note that

| AB |=| A || B | .

6.2 Systems of Linear Algebraic Equations

There are two types of systems:

(i) Inhomogeneous equations.

(ii) Homogeneous equations.

Inhomogeneous equations are a set of equations given by

a11x1 + a12x2 + ...+ a1nxn = b1,

a21x1 + a22x2 + ...+ a2nxn = b2,

6.2. SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS 171

...

an1x1 + an2x2 + ...+ annxn = bn.

where aij and bi are known values which may be positive, negative, zero or complex.
The basic problem is: given aij and bi find x1, x2, ..., xn - the ‘solution vector’, which
we can denote by

x = (x1, x2, ..., xn)T .

These equations can be cast as
Ax = b

where b �= 0. Homogeneous equations are a set of equations in which bi = 0∀i or
b = 0.

6.2.1 Formal Methods of Solution

Formal methods of solution involve writing the system of equations in matrix form:

Ax = b

where

A =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎞⎟⎟⎟⎠ ,

x =

⎛⎜⎜⎜⎝
x1

x2

...
xn

⎞⎟⎟⎟⎠ ≡ (x1, x2,, xn)T

and

b =

⎛⎜⎜⎜⎝
b1
b2
...
bn

⎞⎟⎟⎟⎠ ≡ (b1, b2,, bn)T .

The formal solution to Ax = b is based on constructing an inverse matrix A−1 such
that

A−1A = I

where I is the unit or identity matrix given by

I =

⎛⎜⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞⎟⎟⎟⎠ .

Then,
A−1Ax = A−1b

172 CHAPTER 6. MATRICES AND MATRIX ALGEBRA

and
Ix = A−1b.

Now,

Ix =

⎛⎜⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x1

x2

...
xn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
x1

x2

...
xn

⎞⎟⎟⎟⎠ = x.

and therefore
x = A−1b.

In ‘formal’ methods, the problem is reduced to finding the inverse or reciprocal matrix
A−1. This is given by

A−1 =
adjA
detA

where adjA is the adjoint of matrix A and detA is the determinant of matrix A.
Computation of A−1 requires that detA �= 0, i.e. A is non-singular.

6.2.2 Evaluation of adjA

adjA is the transpose of the matrix whose elements are the cofactors of A. The
cofactors Aij of aij are given by

Aij = (−1)(i+j)Mij

where Mij are the minors of the elements aij . The minors are obtained by deleting the
row and column in which aij occurs and computing the determinant of the remaining
elements. For example, suppose we are required to solve the following set of linear
equations by computing the inverse matrix:

4x1 − 3x2 + x3 = 11,

2x1 + x2 − 4x3 = −1,

x1 + 2x2 − 2x3 = 1.

In matrix form, Ax = b where

A =

⎛⎝ 4 −3 1
2 1 −4
1 2 −2

⎞⎠ , x =

⎛⎝ x1

x2

x3

⎞⎠ , b =

⎛⎝ 11
−1
1

⎞⎠ .

Now, the formal solution is x = A−1b where A−1 = adjA/ detA. The computation
of detA is as follows:∣∣∣∣∣∣

4 −3 1
2 1 −4
1 2 −2

∣∣∣∣∣∣ = 4
∣∣∣∣ 1 −4

2 −2

∣∣∣∣− (−3)
∣∣∣∣ 2 −4

1 −2

∣∣∣∣+ 1
∣∣∣∣ 2 1

1 2

∣∣∣∣
= 4× 6− (−3)× 0 + 1× 3 = 27.

6.2. SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS 173

The computation of the cofactors is as follows:

A11 = (−1)1+1

∣∣∣∣ 1 −4
2 −2

∣∣∣∣ = 6,

A12 = (−1)1+2

∣∣∣∣ 2 −4
1 −2

∣∣∣∣ = 0,

A13 = (−1)1+3

∣∣∣∣ 2 1
1 2

∣∣∣∣ = 3,

A21 = (−1)2+1

∣∣∣∣ −3 1
2 −2

∣∣∣∣ = −4,

A22 = (−1)2+2

∣∣∣∣ 4 1
1 −2

∣∣∣∣ = −9,

A23 = (−1)2+3

∣∣∣∣ 4 −3
1 2

∣∣∣∣ = −11,

A31 = (−1)3+1

∣∣∣∣ −3 1
1 −4

∣∣∣∣ = 11,

A32 = (−1)3+2

∣∣∣∣ 4 1
2 −4

∣∣∣∣ = 18,

A33 = (−1)3+3

∣∣∣∣ 4 −3
2 1

∣∣∣∣ = 10.

The matrix of cofactors is therefore given by⎛⎝ 6 0 3
−4 −9 −11
11 18 10

⎞⎠
and thus,

adjA =

⎛⎝ 6 −4 11
0 −9 18
3 −11 10

⎞⎠
and ⎛⎝ x1

x2

x3

⎞⎠ =
1
27

⎛⎝ 6 −4 11
0 −9 18
3 −11 10

⎞⎠⎛⎝ 11
−1
1

⎞⎠ =

⎛⎝ 3
1
2

⎞⎠ .

6.2.3 Cramers Rule

The formal solution to the equation Ax = b is

x = A−1b =
adjA
detA

b =
1
| A |

⎛⎜⎜⎜⎝
A11 A21 . . . An1

A12 A22 . . . An2

...
...

. . .
...

A1n A2n . . . Ann

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

b1
b2
...
bn

⎞⎟⎟⎟⎠

174 CHAPTER 6. MATRICES AND MATRIX ALGEBRA

where Aij are the cofactors of the matrix A, the solutions being given by

x1 =
1
| A | (b1A11 + b2A21 + ...+ bnAn1),

x2 =
1
| A | (b1A12 + b2A22 + ...+ bnAn2),

...

xn =
1
| A | (b1A1n + b2A2n + ...+ bnAnn).

Cramers rule comes from observing that

b1A11 + b2A21 + ...+ bnAn1 =

⎛⎜⎜⎜⎝
b1 a12 . . . a1n

b2 a22 . . . a2n

...
...

. . .
...

bn an2 . . . ann

⎞⎟⎟⎟⎠ ,

b1A12 + b2A22 + ...+bnAn2 =

⎛⎜⎜⎜⎝
a11 b1 . . . a1n

a12 b2 . . . a2n

...
...

. . .
...

a1n bn . . . ann

⎞⎟⎟⎟⎠
and so on. Hence,

x1 =

∣∣∣∣∣∣∣∣∣
b1 a12 . . . a1n

b2 a22 . . . a2n

...
...

. . .
...

bn an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣

, x2 =

∣∣∣∣∣∣∣∣∣
a11 b1 . . . a1n

a12 b2 . . . a2n

...
...

. . .
...

an1 bn . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
with similar results for the elements x3, x4, ..., xn. For example, suppose we want to
solve the set of equations

4x1 − 3x2 + x3 = 11,

2x1 + x2 − 4x3 = −1,

x1 + 2x2 − 2x3 = 1.

We first compute the determinant of the system

| A |=
∣∣∣∣∣∣

4 −3 1
2 1 −4
1 2 −2

∣∣∣∣∣∣ = 27.

6.3. LINEAR SYSTEMS 175

Then,

x1 =
1
27

⎛⎝ 11 −3 1
−1 1 −4
1 2 −2

⎞⎠ =
1
27

(66 + 18− 3) = 3,

x2 =
1
27

⎛⎝ 4 11 1
2 −1 −4
1 1 −2

⎞⎠ =
1
27

(24 + 0 + 3) = 1,

x3 =
1
27

⎛⎝ 4 −3 11
2 1 −1
1 2 1

⎞⎠ =
1
27

(12 + 9 + 33) = 2.

6.3 Linear Systems

6.3.1 Inhomogeneous systems

Inhomogeneous systems are characterized by Ax = b for which the formal solution is

x = A−1b =
adjA
detA

b.

This solution exists provided A−1 exists, i.e. provided | A |�= 0. The system Ax = b
is consistent if at least one solution exists. If | A |= 0, then no formal solution of the
equations exists; the equations are inconsistent or incompatible. For example, the
equations

2x1 − 3x2 = 4,

2x1 − 3x2 = 6,

have no solution since | A |= 0. The geometrical interpretation of this result is that
there are two parallel lines and such lines do not intersect. If both detA and (adjA)b
are zero, then an infinity of solutions exist. In this case, the equations are linearly
dependent. For example, consider the equations

2x1 − 3x2 = 4,

−4x1 + 6x2 = −8.

These are the same equations and therefore, geometrically describe the same line.
Hence, the solution to the system is any point along the line.

6.3.2 Homogeneous Systems

Homogeneous systems are of the type

Ax = 0

whose formal solution is x = A−10. If | A |�= 0 and A−1 exists, then x = 0 which is
the trivial solution. If | A |= 0, then an infinity of non-trivial solutions exist. For
example, consider the equations

2x1 − 3x2 = 0,

176 CHAPTER 6. MATRICES AND MATRIX ALGEBRA

4x1 − 6x2 = 0.

These equations are linearly dependent and represent the same line on which an
infinity of solutions exist.

6.3.3 Ill-conditioned Systems

If the solution to Ax = b is very sensitive to relatively small changes in aij and
bi, then the system is ill-conditioned. It is usually important to establish whether a
system of linear equations is ill-conditioned in cases where aij and bi are derived from
data with experimental error or noise (inevitable in all but a few cases). To illustrate
the problem, consider the system of equations

3x1 + 1.52x2 = 1,

2x1 + 1.02x2 = 1.

Now

| A |=
(

3 1.52
2 1.02

)
= 3.06− 3.04 = 0.02

and using Cramers rule

x1 =
1

0.02

(
1 1.52
1 1.02

)
= − 0.5

0.02
= −25,

x2 =
1

0.02

(
3 1
2 1

)
=

1
0.02

= 50.

Now, suppose we change a22 from 1.02 to 1.03 which represents a 1% change in the
value of a22. Then

| A |=
(

3 1.52
2 1.03

)
= 3.09− 3.04 = 0.05

and using Cramers rule again

x1 =
1

0.05

(
1 1.52
1 1.03

)
= −0.49

0.05
= −9.8,

x2 =
1

0.05

(
3 1
2 1

)
=

1
0.05

= 20.

This simple example demonstrates that a 1% change in the value of this coefficient
leads to a 200-300% change in the solution and no reliance can be placed on the
solution of such a system in practice.

6.3. LINEAR SYSTEMS 177

6.3.4 Under-determined Systems

An under-determined system is one where there are more unknowns than equations.
For example, consider the system Ax = b where

A =

⎛⎜⎜⎜⎜⎝
1 −3 0 5 0
0 0 1 2 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ and b =

⎛⎜⎜⎜⎜⎝
4
−7
1
0
0

⎞⎟⎟⎟⎟⎠ .

In this case
x1 − 3x2 + 5x4 = 4,

x3 + 2x4 = −7,

x5 = 1,

or
x1 = 3x2 − 5x4 + 4,

x3 = −2x4 − 7,

x5 = 1.

Hence

x =

⎛⎜⎜⎜⎜⎝
x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
3a− 5b+ 4

a
−2b− 7

b
1

⎞⎟⎟⎟⎟⎠
for any a and b.

6.3.5 Over-determined Systems

Over-determined systems take the form Ax = b where A has more rows than columns,
i.e. there are more equations than unknowns. Formally, such systems have no solu-
tion. However, an estimate for x can be obtained based on the application a specific
criterion. A widely exploited example of such a criterion is the least squares method.
Here, given an over determined system Ax = b we find x such that

‖Ax− b‖22
is a minimum where

‖x‖2 =

(
n∑

i=1

| xi |2
) 1

2

which is an example of the application of the Euclidean norm. Vector and matrix
norms are discussed further in Chapter 8.

178 CHAPTER 6. MATRICES AND MATRIX ALGEBRA

6.4 Summary of Important Results

Matrices
C = A+B = C where cij = aij + bij ,

C = AB where cij =
n∑

k=1

aikbkj ,

(AB)T = ATBT , (AB)−1 = B−1A−1, A−1A = I

where

A =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎞⎟⎟⎟⎠ .

Determinants

detA ≡

∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
= a11A11 + a21A21 + a31A31 + ...+ an1An1

where Ai1 is the cofactor of the element ai1 given by

Ai1 = (−1)i+1 |Mi1 |

and Mi1 are the minors obtained by deleting the first column and ith row of A.

Properties
| A |=| AT |, | AB |=| A || B | .

Adjoint

adjA is the transpose of the matrix whose elements are the cofactors of A.

Inverse Matrix

A−1 =
adjA
detA

Formal solution

If Ax = b, then
x = A−1b

where
x1 =

1
| A | (b1A11 + b2A21 + ...+ bnAn1),

x2 =
1
| A | (b1A12 + b2A22 + ...+ bnAn2),

6.4. SUMMARY OF IMPORTANT RESULTS 179

...

xn =
1
| A | (b1A1n + b2A2n + ...+ bnAnn).

Cramers Rule

Solution to Ax = b is

x1 =

∣∣∣∣∣∣∣∣∣
b1 a12 . . . a1n

b2 a22 . . . a2n

...
...

. . .
...

bn an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣

, x2 =

∣∣∣∣∣∣∣∣∣
a11 b1 . . . a1n

a12 b2 . . . a2n

...
...

. . .
...

an1 bn . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣

, ...,

xn =

∣∣∣∣∣∣∣∣∣
a11 a12 . . . b1
a12 a22 . . . b2
...

...
. . .

...
an1 an2 . . . bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣

.

Inhomogeneous Systems

Ax = b, x = A−1b =
adjA
detA

b.

If detA �= 0, then a solution exists.

If at least one solution exists, then the system Ax = b is consistent.

If detA = 0, then no formal solution exists.

If detA and adjA = 0, then an infinity of solutions exist.

Homogeneous Systems

Ax = 0, x = A−10 =
adjA
detA

0.

If det �= 0, then x = 0.

If det = 0, then an infinity of solutions exist.

180 CHAPTER 6. MATRICES AND MATRIX ALGEBRA

Ill-conditioned Systems
Ax = b

where, if b+δb and/or A+δA yields x+δx and δx is large for relatively small values
of δb and/or δA.

Under-determined Systems
Ax = b

where there are more unknowns that equations. The solution is parameter dependent
where the number of parameters is determined by the number of unknowns that
exceeds the number of equations.

Over-determined Systems
Ax = b

where there are more equations than unknowns. Formally, no solution exists but
criteria based solutions (e.g. least squares criterion) can be applied.

6.5 Further Reading

• Ayres F, Matrices, Schaum, 1962.

• Stephenson G, An Introduction to Matrices, Sets and Groups, Longman, 1974.

• Broyden C G, Basic Matrices, Macmillan, 1975.

• Lipschutz S, Linear Algebra, Schaum (McGraw-Hill), 1981.

• Perry W L, Elementary Linear Algebra, McGraw-Hill, 1988.

• Anton H and Rorres C, Elementary Linear Algebra, Wiley, 1994

6.6 Problems

6.1 (i) Show that the equations

−2x+ y + z = 1,

x− 2y + z = 2,

x+ y − 2z = −3,

are linearly dependent and find the infinity of solutions which satisfies this system.

(ii) Find the value of k for which the equations

x+ 5y + 3z = 0,

6.6. PROBLEMS 181

5x+ y − kz = 0,

x+ 2y + kz = 0,

have non-trivial solutions. Show that the equations are linearly dependent and find
the infinity of solutions.

6.2 (i) Find the value(s) of λ for which the equations

x1 + 2x2 + x3 = λx1,

2x1 + x2 + x3 = λx2,

x1 + x2 + 2x3 = λx3,

have non-trivial solutions and obtain the general solution for one such value of λ.

(ii) Find the most general form of solution of the equations

x1 − x2 + 2x3 − x4 = 1,

2x1 − x2 + 3x3 − 4x4 = 2,

−x1 + 3x2 − x3 − x4 = −1.

(iii) Show that the equations

x1 + 2x2 − 3x3 = 0,

2x1 − x2 + 2x3 = 0,

x1 + 7x2 − 11x3 = 0,

have a non-trivial solution and find a solution which satisfies

x2
1 + x2

2 + x2
3 = 1.

6.3 Investigate the ill-conditioned nature of the equations

x+ 1.52y = 1,

2x+ (3.05 + δ)y = 1,

for δ = −0.02, −0.01, 0.0, 0.01 and 0.02 using Cramers rule.

6.4 Using the least squares method, show that the ‘best value’ for x1 and x2 in the
over-determined system

a11x1 + a12x2 = b1,

a21x1 + a22x2 = b2,

a31x1 + a32x2 = b3,

182 CHAPTER 6. MATRICES AND MATRIX ALGEBRA

is given by the solution to the following equations

3∑
i=1

ai1(ai1x1 + ai2x2 − bi) = 0,

3∑
i=1

ai2(ai1x1 + ai2x2 − bi) = 0.

Find the ‘best value’ of x and y for the over-determined systems

2x+ 3y = 8,

3x− y = 1,

x+ y = 4,

and
x− y = 2,

x+ y = 4,

2x+ y = 8.

Compute the associated root mean square error in each case.

Chapter 7

Direct Methods of Solution

Formal methods of solving linear equations such as Cramers rule are useful as hand
calculations when only a few equations are involved. With larger systems of equations,
formal methods are not appropriate because they require an excessive number of
operations. For n equations they typically require n! cross-products (e.g. to solve a
set of 10 linear equations requires ∼ 106 cross products). Hence, such methods are
very slow. In addition to the number of operations required, errors can ‘propagate’
through the calculation (due primarily to arithmetic ‘round-off errors’) growing at
each stage. A large number of computations can therefore lead to a final result
which is inaccurate or worse, completely wrong, especially if the equations are ill-
conditioned.

Computationally practical methods of solution such as those of Gauss, Jordan,
Crout and others as discussed in this chapter, typically require ∼ n3 multiplica-
tions and additions to solve systems consisting of n linear equations. Such methods
are known as direct methods of solution. Indirect or iterative methods (techniques
attributed to Jacobi, Gauss, Seidel and others) involve a different approach to the
problem in which the number of computations depends mainly on the number of it-
erations required to achieve an accurate solution. In this case, the principal aim is to
obtain a solution which requires as few iterations as possible.

As a general rule of thumb, direct methods are preferable when the characteristic
matrix of the system is dense, whereas indirect methods are often implemented when
the matrix is sparse. In turn, there is a close synergy between the approaches taken to
solving sets of linear systems of equations using iterative methods and finite difference
approaches to solving elliptic equations for example such as the Laplace (∇2u = 0) and
Poisson (∇2u = f) equations. However, direct methods of solution are usually more
efficient, except in cases where: (i) the equations to be solved are of a form especially
suited to an iterative technique; (ii) a good starting approximation is available. Direct
and indirect techniques are sometimes combined. For example, the initial solution
obtained by a direct method of a system of ill-conditioned equations may be improved
upon by using an iterative method. This is known as iterative improvement. Further,
in addition to both direct and indirect methods, there are semi-iterative approaches
such as the ‘Conjugate Gradient Method’.

The solution of a system of linear equations by a computer is almost invariably

183

184 CHAPTER 7. DIRECT METHODS OF SOLUTION

subject to rounding errors. In most practical cases, the coefficients of the equations
are non-integer, but even if this is not so, the methods to be described give rise
to non-integer numbers during the computation. Such numbers, unless they can be
expressed as fractions whose denominators are powers of 2, have non-terminating
representations in the binary arithmetic used by a computer. Each number must be
stored in a finite space, and hence only the most significant figures can be retained.
It is important to minimize the effects of the rounding errors which arise in this way,
so that the highest possible accuracy is achieved in the solution. In other words, the
solution to Ax = b on a digital computer is limited by calculations involving a finite
number of decimal places. Errors induced by limited decimal place calculation can
lead to seriously inaccurate results. To illustrate this, consider the solution to the
system of equations (using Cramers rule)

x1 +
1
2
x2 +

1
3
x3 = 1,

1
2
x1 +

1
3
x2 +

1
4
x3 = 0,

1
3
x1 +

1
4
x2 +

1
5
x3 = 0,

which has the exact solution x1 = 9, x2 = −36, x3 = 30 and compare this solution
with that of the system

1.00x1 + 0.50x2 + 0.33x3 = 1.00,

0.50x1 + 0.33x2 + 0.25x3 = 0.0, 0

0.33x1 + 0.25x2 + 0.20x3 = 0.00,

using 2 decimal place computations which gives x1 = 7.00, x2 = −24.00, x3 =
17.00, i.e. significantly different results to the exact solution.

7.1 Gauss’ Method

The solution of a set of linear equations is unaffected if any of the following elementary
row operations is performed: (i) altering the order of the equations; (ii) multiplying
any equation by a non-zero constant; (iii) addition or subtraction of any two equations.

Also known as Gauss elimination or Gauss reduction, Gauss’ method is based on
using points (i)-(iii) above to implement the following basic idea: Process the system
Ax = b in such a way that we can write Ux = h where U is an upper triangular
matrix of the form

U =

⎛⎜⎜⎜⎝
u11 u12 . . . u1n

0 u22 . . . u2n

...
...

. . .
...

0 0 . . . unn

⎞⎟⎟⎟⎠
and h = (h1, h2, ..., hn)T is a new column vector formed from the data b as a result
of applying this process.

7.1. GAUSS’ METHOD 185

Once this process has been completed, the solution can be obtained by back-
substitution, i.e.

unnxn = hn, xn =
hn

unn
;

un−1,n−1xn−1 + un−1,nxn = hn−1, xn−1 =
hn−1 − un−1,nxn

un−1,n−1

and so on. Hence,

Triangularization and Back-substitution ≡ Gauss’ method.

For example, suppose we want to solve the set of equations

2x1 − x2 + 3x3 = 2,
4x1 + x2 + x3 = −1,
−2x1 + 3x2 + 2x3 = 3.

Since the problem is completely defined by the matrix of coefficients of the variables
and the column vector of constants, we may suppress all unnecessary symbols and
operate upon an ‘augmented matrix’. The process of triangularization can be per-
formed using this augmented matrix which is essentially a type of ‘counting board’
which is just a useful way of displaying the information. Thus, with Ri referring to
the ith row, the augmented matrix for this case is given by⎛⎝ 2 −1 3 | 2

4 1 1 | −1
−2 3 2 | 3

⎞⎠
and the process of triangularization is as follows:

R2 − 2R1

R3 +R1

⎛⎝ 2 −1 3 | 2
0 3 −5 | −5
0 2 5 | 5

⎞⎠ −→
R3 − 2

3R2

⎛⎝ 2 −1 3 | 2
0 6 −10 | −10
0 0 25

3 | 25
3

⎞⎠ .

Back-substituting:
25x3 = 25, x3 = 1;
6x2 − 10 = −10, x2 = 0;
2x1 − 0 + 3 = 2, x1 = − 1

2 .

The denominator occurring in term 2
3R2 and terms like it is called a ‘pivot’. Note

that we use | to distinguish between those elements of the augmented matrix that are
part of the characteristic matrix A and those that belong to the data b. The notation
−→ is used to denote a subsequent processing stage.

7.1.1 Generalization of the Idea

Consider the general 3× 3 system:

a11x1 + a12x2 + a13x3 = b1,

a21x1 + a22x2 + a23x3 = b2, (7.1.1)

186 CHAPTER 7. DIRECT METHODS OF SOLUTION

a31x1 + a32x2 + a33x3 = b3. (7.1.2)

We can now eliminate x1 from equation (7.1.1) using R2 −R1
a21
a11

and then eliminate
x1 from equation (7.1.2) with the process R3 −R1

a31
a11

. The system then becomes

a11x1 + a12x2 + a13x3 = b1,

a′22x2 + a′23x3 = b′2,

a′32x2 + a′33x3 = b′3, (7.1.3)

where
a′22 = a22 − a21a12

a11
, a′23 = a23 − a21a13

a11
,

a′32 = a32 − a12a31

a11
, a′33 = a33 − a13a31

a11
,

b′2 = b2 − b1 a21

a11
, b′3 = b3 − b1 a31

a11
.

Eliminating x2 from equation (7.1.3) using the process R3 − R2
a′

32
a′22

, the system be-
comes

a11x1 + a12x2 + a13x3 = b1,

a′22x2 + a′23x3 = b′2,

a′′33x3 = b′′3,

where
a′′33 = a′33 − a′32a′23

a′22
, b′′3 = b′3 − b′2a′32

a′22
.

In this process of triangularization, the pivots a11 and a′22 must clearly be non-zero.
Back-substituting

x3 =
b′′3
a′′33

x2 =
b′2 − a′23x3

a′22

x1 =
b1 − a13x3 − a12x2

a11
.

7.1.2 Conversion to Pseudo-Code

Based on the algebraic form of multipliers obtained for the 3×3 system above and gen-
eralizing to a n×n system, the essential lines of pseudo code for Gaussian elimination
are:

a(i,j)=a(i,j)-a(i,k)*a(k,j)/a(k,k)

and

b(i)=b(i)-b(k)*a(i,k)/a(k,k)

where k runs from 1 to n-1, i runs from k+1 to n and j runs from k to n. Note that
the term

7.1. GAUSS’ METHOD 187

a(i,k)/a(k,k)

is common to both lines of code given above. Therefore, we can let

c=a(i,k)/a(k,k)

so that the pseudo code for Gaussian elimination becomes

for k=1 to n-1, do:

for i=k+1 to n, do:
c=a(i,k)/a(k,k)

for j=k to n, do:
a(i,j)=a(i,j)-a(k,j)*c

enddo

b(i)=b(i)-b(k)*c
enddo

enddo

The pseudo code for back-substitution is

x(n)=b(n)/a(n,n)
for k=n-1 to 1 in steps of -1, do:

sum=b(k)

for j=k+1 to n, do:
sum=sum-a(k,j)*x(j)

enddo

x(k)=sum/a(k,k)
enddo

Observe, that the way in which this code is developed is based on establishing a
systematic processing path using a small set of equations and then generalizing the
result for an arbitrary size. This is typical of the process of developing software
solutions for computational linear algebra.

7.1.3 Pivots and Pivoting

Zero pivots in the Gaussian elimination process must clearly be avoided. However, in
practice, small pivots can cause problems. To illustrate this, let us consider a system
given by

−0.001x1 + x2 = 1,

x1 + x2 = 2.

Applying Gaussian elimination working to 3 decimal places only gives

−0.001x1 + x2 = 1,

188 CHAPTER 7. DIRECT METHODS OF SOLUTION

1001x2 = 1002,

from which we derive the results x2 = 1.000, x1 = 0 which is not a solution since
0 + 1 �= 2. However, if we interchange the rows and work with

x1 + x2 = 2,

−0.001x1 + x2 = 1,

Gaussian elimination gives
x1 + x2 = 2,

1.001x2 = 1.002

and hence, x2 = 1.000 and x1 = 1 which is the 3 decimal place hypothetical ‘machine
solution’.

7.1.4 Pivotal Strategies

There are two pivotal strategies available: (i) partial pivoting; (ii) full pivoting.

Partial Pivoting

Partial pivoting is based on: (i) searching the relevant column of the reduced matrix
for the largest entry at each stage of the elimination process; (ii) interchange the
relevant rows.

Example Consider the equations

10x2 − 3x3 = −5,
2x1 + x2 − x3 = 7,
4x1 + 10x2 − 2x3 = 10,

with augmented matrix ⎛⎝ 0 10 −3 | −5
2 1 −1 | 7
4 10 −2 | 10

⎞⎠ .

Interchange R3 and R1, then ⎛⎝ 4 10 −2 | 10
2 1 −1 | 7
0 10 −3 | −5

⎞⎠
and

R1

R2 − 2
4R1

R3

⎛⎝ 4 10 −2 | 10
0 −4 0 | 2
0 10 −3 | −5

⎞⎠ .

Interchange R3 and R2, then⎛⎝ 4 10 −2 | 10
0 10 −3 | −5
0 −4 0 | 2

⎞⎠

7.1. GAUSS’ METHOD 189

and
R1

R2

R3 − (−4)
10 R2

⎛⎝ 4 10 −2 | 10
0 10 −3 | −5
0 0 − 6

5 | 0

⎞⎠ .

Back-substituting, we get ⎛⎝ x1

x2

x3

⎞⎠ =

⎛⎝ 15/4
−1/2

0

⎞⎠ .

The extension to partial pivoting is ‘full’ or ‘complete pivoting’.

Full Pivoting

In this case, we search the matrix of coefficients for the largest entry and interchange
relevant rows.

Example Solve Ax = b where

A =

⎛⎝ 2 1 3
1 6 4
3 7 2

⎞⎠ , b =

⎛⎝ 14
3
−8

⎞⎠ .

Here, the augmented matrix is⎛⎝ 2 1 3 | 14
1 6 4 | 3
3 7 2 | −8

⎞⎠
Interchanging R1 and R3, ⎛⎝ 3 7 2 | −8

1 6 4 | 3
2 1 3 | 14

⎞⎠ .

Then
R1

R2 − 6
7R1

R3 − 1
7R1

⎛⎝ 3 7 2 | −8
−11/7 0 16/7 | 69/7
11/7 0 19/7 | 106/7

⎞⎠ .

Interchanging R3 and R2,⎛⎝ 3 7 2 | −8
11/7 0 19/7 | 106/7
−11/7 0 16/7 | 69/7

⎞⎠
and

R1

R2

R3 − 16
19R2

⎛⎝ 3 7 2 | −8
11/7 0 19/7 | 106/7

−385/133 0 0 | −385/133

⎞⎠ .

Back-substituting:
x1 = 1,

190 CHAPTER 7. DIRECT METHODS OF SOLUTION

11
7

+
19
7
x3 =

106
7
−→ x3 = 5,

3 + 7x2 + 10 = −8 −→ x2 = −3.

In practice, application of full pivoting requires more computing time because the
matrix must be searched for the largest entry. Also full pivoting requires the output
data to be reordered.

7.2 Jordan’s Method

As with Gauss’ method, Jordan’s method relies on a process of reduction. However,
instead of processing the augmented matrix to become triangular, processing is ap-
plied to reduce the matrix to a diagonal form. Thus, the basic idea is: given Ax = b,
via a process of elimination, reduce this system to the form Ix = h where

I =

⎛⎜⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞⎟⎟⎟⎠ , h =

⎛⎜⎜⎜⎝
h1

h2

...
hn

⎞⎟⎟⎟⎠ .

The solution is then trivial, since
x1 = h1,

x2 = h2,

...

xn = hn.

Note that in this case, no back-substitution is required.

Example of Jordan’s Method Solve

x1 − 2x2 + x3 = 7,
2x1 − 5x2 + 2x3 = 6,
3x1 + 2x2 − x3 = 1,

which has the augmented matrix⎛⎝ 1 −2 1 | 7
2 −5 2 | 6
3 2 −1 | 1

⎞⎠ .

Then,

R2 − 2R1

R3 − 3R1

⎛⎝ 1 −2 1 | 7
0 −1 0 | −8
0 8 −4 | −20

⎞⎠ −→ −R2

⎛⎝ 1 −2 1 | 7
0 1 0 | 8
0 8 −4 | −20

⎞⎠ −→

R1 + 2R2

R3 − 8R2

⎛⎝ 1 0 1 | 23
0 1 0 | 8
0 0 −4 | −84

⎞⎠ −→
−R3/4

⎛⎝ 1 0 1 | 23
0 1 0 | 8
0 0 1 | 21

⎞⎠ −→

7.2. JORDAN’S METHOD 191

R1 −R3

⎛⎝ 1 0 0 | 2
0 1 0 | 8
0 0 1 | 21

⎞⎠ .

Hence, the solution is ⎛⎝ x1

x2

x3

⎞⎠ =

⎛⎝ 2
8
21

⎞⎠ .

7.2.1 Matrix Inversion by Jordan’s Method

The solution of a set of linear equations amounts to finding, for a given matrix A and
column vector b, a column vector x satisfying

Ax = b.

The related inversion problem is that of finding A−1 such that AA−1 = I, where I is
a unit matrix of appropriate dimensions. To take a 3× 3 example, we have⎛⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎠⎛⎝ α11 α12 α13

α21 α22 α23

α31 α32 α33

⎞⎠ =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠
where we wish to determine the elements αij . From the laws of matrix multiplication,
it is apparent that the elements of the first column on the right-hand side are equal
to the scalar product of the first, second and third rows of A respectively with the
first column of A−1. We may therefore calculate⎛⎝ α11

α21

α31

⎞⎠
by taking (1 0 0)T as the right-hand side of a set of three linear equations; the
elements of the second and third columns of A−1 are found in a similar manner.
Thus, the basic idea is to setup an augmented matrix of the form [A | I] and apply
a process which transforms [A | I] into [I | B]; then, B = A−1. The inversion of
an n× n matrix is therefore equivalent to the solution of a set of n linear equations
for n different right-hand sides - the columns of the unit matrix. We may deal with
all the right-hand sides simultaneously, as illustrated in the following example which
uses Jordan’s method.

Example Consider the matrix

A =

⎛⎝ 1 2 −2
1 3 −1
2 1 −6

⎞⎠
and the augmented matrix⎛⎝ 1 2 −2 | 1 0 0

1 3 −1 | 0 1 0
2 1 −6 | 0 0 1

⎞⎠ .

192 CHAPTER 7. DIRECT METHODS OF SOLUTION

We can then carry out the following process:

R2 −R1

R3 − 2R1

⎛⎝ 1 2 −2 | 1 0 0
0 1 1 | −1 1 0
0 −3 −2 | −2 0 1

⎞⎠ −→

R1 − 2R2

R3 + 3R2

⎛⎝ 1 0 −4 | 3 −2 0
0 1 1 | −1 1 0
0 0 1 | −5 3 1

⎞⎠ −→

R1 + 4R3

R2 −R3

⎛⎝ 1 0 0 | −17 10 4
0 1 0 | 4 −2 −1
0 0 1 | −5 3 1

⎞⎠
and hence,

A−1 =

⎛⎝ −17 10 4
4 −2 −1
−5 3 1

⎞⎠ .

As a further example of this method, consider the following computation (using Jor-
dan’s method with partial pivoting):⎛⎜⎜⎝

3 1 −2 −1 | 1 0 0 0
2 −2 2 3 | 0 1 0 0
1 5 −4 −1 | 0 0 1 0
3 1 2 3 | 0 0 0 1

⎞⎟⎟⎠ −→

R2 − 2
3R1

R3 − 1
3R1

R4 −R1

⎛⎜⎜⎝
3 1 −2 1 | 1 0 0 0
0 −8/3 −10/3 11/3 | −2/3 1 0 0
0 14/3 −10/3 −2/3 | −1/3 0 1 0
0 0 4 4 | −1 0 0 1

⎞⎟⎟⎠ −→

R1 − 3
14R3

R3

R2 + 4
7R3

⎛⎜⎜⎝
3 0 −9/7 −6/7 | 15/14 0 −3/14 0
0 14/3 −10/3 −2/3 | −1/3 0 1 0
0 0 10/7 23/7 | −6/7 1 4/7 0
0 0 4 4 | −1 0 0 1

⎞⎟⎟⎠ −→

R1 + 9
28R4

R2 + 5
6R4

R4

R3 − 5
14R4

⎛⎜⎜⎝
3 0 0 3/7 | 3/4 0 −3/14 9/28
0 14/3 0 8/3 | −7/6 0 1 5/6
0 0 4 4 | −1 0 0 1
0 0 0 13/7 | −1/2 1 4/7 −5/14

⎞⎟⎟⎠ −→

R1 − 3
13R4

R2 − 56
39R4

R3 − 28
13R4

⎛⎜⎜⎝
3 0 0 0 | 45/52 −3/13 −9/26 21/52
0 14/3 0 0 | −35/78 −56/39 7/39 35/26
0 0 4 0 | 1/13 −28/13 −16/13 23/13
0 0 0 13/7 | −1/2 1 4/7 −5/14

⎞⎟⎟⎠ −→

1
3R1
3
14R2
1
4R3
7
13R4

⎛⎜⎜⎝
1 0 0 0 | 15/12 −1/13 −3/26 7/52
0 1 0 0 | −5/52 −4/13 1/26 15/52
0 0 1 0 | 1/52 −7/13 −4/13 23/52
0 0 0 1 | −7/26 7/13 4/13 −5/26

⎞⎟⎟⎠ .

7.3. LU FACTORIZATION 193

7.2.2 Gauss’ .v. Jordan’s Method

Jordan’s method requires more arithmetic than Gauss’ method and there is no simple
pivotal strategy available for this method. Although the method of Jordan is less
efficient than that of Gauss for solving a single set of equations, the latter loses ground
in the inversion problem, since it requires a separate back-substitution for each column
of the inverse. Jordan’s method involves no back-substitution, and in fact the total
number of arithmetic operations proves to be identical for inversion by either method.
Gauss’ method of matrix inversion is the more difficult method to program, though
it permits easier analysis of rounding errors. However, it is obviously inefficient from
the computational point of view to solve a system of equations by first evaluating
the inverse, which should in fact only be calculated if it is needed explicitly. In
addition, the error analysis associated with Jordan’s method for both the solution to
linear systems of equations and matrix inversion is more difficult. In general, Jordan’s
method is usually used to invert matrices and Gauss’ method (typically with partial
pivoting) is used to solve systems of linear equations. It is often useful to design
algorithms to do both to produce the so called the ‘Gauss-Jordan’ method.

7.3 LU Factorization

The basic idea of LU factorization is, given Ax = b, factorize A into lower L and
upper U triangular matrices. Thus, let

A = LU,

then
Ax = LUx = b.

Now, let
Ux = y

so that
Ly = b.

The problem then becomes a two stage process: (i) Solve the equation Ly = b by
forward-substitution; (ii) solve the equation Ux = y by back-substitution. Now
both forward and back-substitution is trivial and thus, the main problem is reduced
to finding L and U given A. In Gauss’ method, rounding errors occur each time an
element of the reduced matrix is computed; LU factorization avoids this.

7.3.1 Existence and Uniqueness of LU Factorization

Consider the 3× 3 system of equations with the characteristic matrix

A = (aij) =

⎛⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎠

194 CHAPTER 7. DIRECT METHODS OF SOLUTION

and write this system in the form

A =

⎛⎝ �11 0 0
�21 �22 0
�31 �32 �33

⎞⎠⎛⎝ u11 u12 u13

0 u22 u23

0 0 u33

⎞⎠ .

As written, there are more unknowns than equations since 3× 3 �= 6 + 6.

Crout’s Method

The problem becomes unique if we consider

A = LU1 =

⎛⎝ �11 0 0
�21 �22 0
�31 �32 �33

⎞⎠⎛⎝ 1 u12 u13

0 1 u23

0 0 1

⎞⎠ .

Writing 1’s along the diagonal of U (= U1) gives Crout’s method.

Doolittle’s Method

Alternatively, we can consider

A = L1U =

⎛⎝ 1 0 0
�21 1 0
�31 �32 1

⎞⎠⎛⎝ u11 u12 u13

0 u22 u23

0 0 u33

⎞⎠ .

With 1’s along the diagonal of L (= L1), the method is known as Doolittle’s method.

Cholesky’s Method

A special case arises if A is symmetric and positive definite. In this case, we can
consider

A = CCT =

⎛⎝ c11 0 0
c21 c22 0
c31 c32 c33

⎞⎠⎛⎝ c11 c21 c31
0 c22 c32
0 0 c33

⎞⎠ .

This factorization is known as Cholesky’s method.

Example Solve the equations

2x1 + x2 + 3x3 = 14,
x1 + 6x2 + 4x3 = 3,
3x1 + 7x2 + 2x3 = −8.

Using Crout’s method

A =

⎛⎝ 2 1 3
1 6 4
3 7 2

⎞⎠ =

⎛⎝ �11 0 0
�21 �22 0
�31 �32 �33

⎞⎠⎛⎝ 1 u12 u13

0 1 u23

0 0 1

⎞⎠ .

Now, from R1 :

�11 = 2; �11u12 = 1, u12 = 1/2; �11u13 = 3, u13 = 3/2.

7.3. LU FACTORIZATION 195

From R2 :

�21 = 1; �21u12 + �22 = 6, �22 = 11/2; �21u13 + �22u23 = 4, u23 = 5/11,

and from R3 :

�31 = 3; �31u12 + �32 = 7, �32 = 11/2; �31u13 + �32u23 + �33 = 2, �33 = −5.

Hence,

A = LU1 =

⎛⎝ 2 0 0
1 11/2 0
3 11/2 −5

⎞⎠⎛⎝ 1 1/2 3/2
0 1 5/11
0 0 1

⎞⎠ .

We can now solve Ly = b by forward-substitution, i.e. solve⎛⎝ 2 0 0
1 11/2 0
3 11/2 −5

⎞⎠⎛⎝ y1
y2
y3

⎞⎠ =

⎛⎝ 14
3
−8

⎞⎠
giving the results

2y1 = 14, y1 = 7;

y1 +
11
2
y2 = 3, y2 = − 8

11
;

3y1 +
11
2
y2 − 5y3 = −8, y3 = 5.

We can then solve Ux = y by back-substitution, i.e. solve⎛⎝ 1 1/2 3/2
0 1 5/11
0 0 1

⎞⎠⎛⎝ x1

x2

x3

⎞⎠ =

⎛⎝ 7
−8/11

5

⎞⎠
giving

x3 = 5;

x2 +
5
11
x3 = − 8

11
, x2 = −3;

x1 +
1
2
x2 +

3
2
x3 = 7, x1 = 1;

and the solution vector is
x = (1,−3, 5)T .

Example of Cholesky’s Method

Solve the equations
2x1 − x2 = 1,
−x1 + 2x2 − x3 = 0,
−x2 + 2x3 = 1.

196 CHAPTER 7. DIRECT METHODS OF SOLUTION

In this case

A =

⎛⎝ 2 −1 0
−1 2 −1
0 −1 2

⎞⎠ =

⎛⎝ c11 0 0
c21 c22 0
c31 c32 c33

⎞⎠⎛⎝ c11 c21 c31
0 c22 c32
0 0 c33

⎞⎠

=

⎛⎜⎜⎝
√

2 0 0

− 1√
2

√
3
2 0

0 −
√

2
3

√
4
3

⎞⎟⎟⎠
⎛⎜⎜⎝
√

2 − 1√
2

0

0
√

3
2 −

√
2
3

0 0
√

4
3

⎞⎟⎟⎠ .

We can then solve Cy = b by forward-substitution, i.e. solve⎛⎜⎜⎝
√

2 0 0

− 1√
2

√
3
2 0

0 −
√

2
3

√
4
3

⎞⎟⎟⎠
⎛⎝ y1

y2
y3

⎞⎠ =

⎛⎝ 1
0
1

⎞⎠
giving

y =

(
1√
2
,
1
2

√
2
3
,
4
3

√
3
4

)T

.

Finally we solve CT x = y by back-substitution, i.e. solve⎛⎜⎜⎝
√

2 − 1√
2

0

0
√

3
2 −

√
2
3

0 0
√

4
3

⎞⎟⎟⎠
⎛⎝ x1

x2

x3

⎞⎠ =

⎛⎜⎜⎝
1√
2

1
2

√
2
3

4
3

√
3
4

⎞⎟⎟⎠
to give the solution vector

x = (1, 1, 1)T .

7.3.2 Generalization of Crout’s Method

We start be considering the general 3× 3 system⎛⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎠ =

⎛⎝ �11 0 0
�21 �22 0
�31 �32 �33

⎞⎠⎛⎝ 1 u12 u13

0 1 u23

0 0 1

⎞⎠ .

Then,

R1 : �11 = a11; �11u12 = a12, u12 = a12/�11; �11u13 = a13, u13 = a13/�11.

R2 : �21 = a21; �21u12 + �22 = a22, �22 = a22 − u12�21; �21u13 + �22u23 = a23,

u23 = (a23 − �21u13)/�22.

R3 : �31 = a31; �31u12 + �32, �32 = a32 − �31u12; �33 = a33 − �31u13 − �32u23..

7.3. LU FACTORIZATION 197

Hence, by induction for an n× n system of equations we can write

uij =
1
�ii

(
aij −

i−1∑
k=1

�ikukj

)
for j = i+ 1, i+ 2, ..., n;

�ij = aji −
i−1∑
k=1

�ikukj for j = i, i+ 1, i+ 2, ..., n

where i = 1, 2, ..., n and requires that �ii �= 0.
The method is closely related to that of Gauss. The final matrix U is, in both

cases, the same and, in fact, the element �ij of L is identical with the number by which
the pivotal row is multiplied in Gauss’ process before its subtraction from the ith row
to generate a zero in the position of aij . In Gauss’ process, each time an element of a
reduced matrix is calculated and recorded, a rounding error is likely to occur. With
Crout’s process, these errors may be largely avoided by the use of double-precision
arithmetic in the calculation of the elements of L and U from the foregoing formulae.
The results are then rounded to single precision and recorded on the completion of
each calculation. The removal of the necessity for calculating and recording several
intermediate matrices has therefore localized what might otherwise be a significant
source of error to a single step in the determination of each element of L and U . The
use of double precision arithmetic in this step leads to a degree of accuracy comparable
to that which would result if the entire Gauss process were carried out with double
precision. The total number of additions and of multiplications is the same as for
Gauss’ method. Since division by �ii is involved in calculating the elements of L, the
method fails if any diagonal element of L is found to be zero. A row interchanging
modification (analogous to the use of partial pivoting in Gauss’ process) is available
which overcomes this problem.

7.3.3 Generalization of Cholesky’s Method

Consider the 3× 3 system in which⎛⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎠ =

⎛⎝ c11 0 0
c21 c22 0
c31 c32 c33

⎞⎠⎛⎝ c11 c21 c31
0 c22 c32
0 0 c33

⎞⎠ .

Then,

R1 : c211 = a11, c11 =
√
a11; c11c21 = a12, c21 = a12/c11; c11c31 = a13, c31 =

a13/c11.

R2 : c221 + c222 = a22, c22 =
√
a22 − c221; c21c31 + c22c32 = a23, c32 = (a23 −

c21c31)/c22.

R3 : c231 + c232 + c233 = a33, c33 =
√
a33 − c231 − c232.

Thus, for an n× n system of equation, we have

cii =

√√√√ajj −
j−1∑
k=1

c2jk, for i = j;

198 CHAPTER 7. DIRECT METHODS OF SOLUTION

cij =
1
cjj

(
aji −

j−1∑
k=1

cikcjk

)
for i > j

where j = 1, 2, ..., n and cjj > 0∀j. Note that, as with Gaussian elimination, row
interchanges should be used to avoid any small diagonal elements which occur in the
process. It is normal to use the largest available pivot at any step of the process.

It may be found that one of the diagonal elements of C is the square root of a neg-
ative number. This does not invalidate the factorization, but it does mean that other
imaginary elements will arise in the course of the computation. No complex numbers
will occur however and complex arithmetic need not be resorted to provided that an
imaginary element is stored as its modulus and has a marker symbol associated with
it. All that is necessary is for appropriate marking and sign changing on multiplica-
tion or division by such a marked element. The occurrence of a zero diagonal element
causes the method to break down and in general, the use of row interchanging de-
stroys the symmetry of the system. For this reason, Cholesky’s method is perhaps
best reserved for use with positive definite matrices, when all the diagonal elements
will be real and greater than zero. In the positive definite case, there is an additional
advantage, since if the equivalent of full pivoting is used, with appropriate row and
column interchanges, the symmetry of the system is retained and a useful gain in
accuracy may be achieved. Cholesky’s method, used in the manner just described,
may be expected to be slightly slower than the method of Gauss elimination used with
full pivoting (as is possible for positive definite matrices), owing to the necessity for
the evaluation of square roots. However, Cholesky’s method has a slight advantage in
accuracy and double-precision arithmetic may be used in computing inner products
to gain a further improvement. Thus, Cholesky’s method is an attractive proposition
for problems involving positive definite matrices.

7.3.4 Matrix Inversion by LU Factorization

As with the Gauss and Jordan methods, inversion of an n × n matrix A may be
accomplished, using triangular decomposition, by solving the equation Ax = b for
n right-hand sides, namely the columns of the appropriate unit matrix. Improved
accuracy is achieved, at little expense of extra computing time, if double precision
arithmetic is used for the accumulation of inner products. For symmetric positive
definite matrices, the method of Cholesky may be used to good advantage.

Our problem is to invert A = LU . Now,

LUU−1 = AU−1

and
L = AU−1 since UU−1 = I.

Also,
LL−1 = AU−1L−1

and
I = AU−1L−1 since LL−1 = I.

Hence,
A−1 = U−1L−1.

7.4. BANDED SYSTEMS 199

The recipe for matrix inversion using LU factorization is therefore as follows:

(i) Find L and U ;

(ii) compute L−1 and U−1;

(iii) compute L−1U−1.

The advantage of this approach over Jordan’s method is that the computation of L−1

and U−1 is relatively easy and computationally efficient.

7.4 Banded Systems

Many numerical problems lead to linear systems of equations with a banded structure.
Examples include the computation of splines for modelling signals and surfaces, the
solution of boundary value problems for differential equations using finite difference
schemes and the discrete convolution of two discrete functions when the impulse
response function consists of a few elements only.

A matrix A = (aij) is called a banded matrix if there is a positive integer k
substantially smaller than the order n of the matrix such that

aij = 0 if | i− j |≥ k.

The parameter k is called the ‘width’ of the band. The storage requirements of
banded matrices are significantly less than those required for general matrices of the
same order.

7.4.1 Tridiagonal Systems

Tridiagonal systems are particularly important because of their commonality and
simplicity of solution. They involve matrices whose elements are all zero except for
those along the leading diagonal and the two diagonals just above and just below the
leading diagonal (the sub-diagonals), i.e.

A = (aij) = 0 ∀i, j if | i− j |≥ 2.

A n×n tridiagonal matrix must have at most n+2(n−1) = 3n−2 non-zero elements.
Consider the following tridiagonal system

d1x1 + c1x2 = b1,
a1x1 + d2x2 + c2x3 = b2,
a2x2 + d3x3 + c3x4 = b3,

...
an−2xn−2 + dn−1xn−1 + cn−1xn = bn−1,
an−1xn−1 + dnxn = bn.

Instead of storing an n× n matrix we need only store the vectors ai, di, ci which
have dimensions of n− 1, n and n− 1 respectively.

200 CHAPTER 7. DIRECT METHODS OF SOLUTION

7.4.2 Solution to Tridiagonal Systems

By choosing the diagonal element d1 as a pivot, we need only eliminate x1 from the
second equation, all other equations remaining the same. This gives the following:

d1x1 + c1x2 = b1,

d
(1)
2 x2 + c2x3 = b

(1)
2 ,

a2x2 + d3x3 + c3x4 = b3,

...

where
d
(1)
2 = d2 − a1

d1
c1,

b
(1)
2 = b2 − a1

d1
b1.

Choosing d(1)
2 as the pivot, we get

d1x1 + c1x2 = b1,

d
(1)
2 x2 + c2x3 = b

(1)
2 ,

d
(1)
3 x3 + c3x4 = b

(2)
3 ,

...

where
d
(2)
3 = d3 − a2

d
(1)
2

c2,

b
(2)
3 = b3 − a2

d
(1)
2

b
(2)
1 .

Repeating this operation, we obtain an upper triangular matrix of the form

d1x1 + c1x2 = b1,

d
(1)
2 x2 + c2x3 = b

(1)
2 ,

d
(2)
3 x3 + c3x4 = b

(2)
3 ,

...

d
(n−2)
n−1 xn−1 + cn−1xn = b

(n−2)
n−1 ,

d(n−1)
n xn = b(n−1)

n ,

where
d
(k)
k+1 = dk+1 − ak

d
(k−1)
k

ck,

b
(k)
k+1 = bk+1 − ak

d
(k−1)
k

b
(k−1)
k ,

7.5. COMPUTATIONAL CONSIDERATIONS 201

for k = 1, 2, ..., n− 1. Back-substitution then gives

xn =
b
(n−1)
n

d
(n−1)
n

and

xk =
b
(k−1)
k − ckxk+1

d
(k−1)
k

, k = n− 1, n− 2, ..., 1.

The total number of additions and multiplications in this algorithm is 2(n−1)+n−1 =
3n− 3 and the number of divisions is (n− 1) + n = 2n− 1. For large n, this is small
compared to the ∼ n3 additions and multiplications required by Gaussian elimination.

Example Solve
x1 + 2x2 = 2,
x1 + 3x2 + 2x3 = 7,
x2 + 4x3 + 2x4 = 15,
4x3 + x4 = 11.

The augmented matrix is ⎛⎜⎜⎝
1 2 0 0 | 2
1 3 2 0 | 7
0 1 4 2 | 15
0 0 4 1 | 11

⎞⎟⎟⎠
and we undertake the processing to upper triangular form as follows:

R2 −R1

⎛⎜⎜⎝
1 2 0 0 | 2
0 1 2 0 | 5
0 1 4 2 | 15
0 0 4 1 | 11

⎞⎟⎟⎠ −→
R3 −R2

⎛⎜⎜⎝
1 2 0 0 | 2
0 1 2 0 | 5
0 0 2 2 | 10
0 0 4 1 | 11

⎞⎟⎟⎠ −→

R4 − 2R3

⎛⎜⎜⎝
1 2 0 0 | 2
0 1 2 0 | 5
0 0 2 2 | 10
0 0 0 −3 | −9

⎞⎟⎟⎠
Back-substituting:

x4 = −9
−3 = 3, x3 = 10−2×3

2 = 2, x2 = 5− 2× 2 = 1 and x1 = 2− 2× 1 = 0.

7.5 Computational Considerations

7.5.1 Computer Storage Requirements

Let us first consider the storage needed by a program for solving a single set of linear
equations, which is effectively independent of the method used. Unless a copy of the
original matrix of coefficients is required, this original matrix may be overwritten as

202 CHAPTER 7. DIRECT METHODS OF SOLUTION

the computation proceeds; the space needed is therefore that for n(n + 1) variables
plus a little working space, where the order of the system is n× n.

With LU factorization, whichever method is used, it is customary to store not only
the final upper triangular matrix but also the corresponding lower triangular matrix.
The latter is obtained as previously described in the case of the decomposition meth-
ods; when using the elimination methods we obtain its element �ij as the number
by which the jth pivotal row is multiplied before subtraction from the ith row in the
process of generating zeros. All this information is stored for a number of right-hand
sides, not all of which are known at the time when the elimination or decomposition
is being performed. Under such circumstances, we must be able to apply to the new
right-hand sides, the same transformations as would normally be applied during the
reduction process; hence, the necessity for storing the multipliers. The elements of
both the upper and lower triangles may be recorded in the same rectangular array.
The diagonal elements of this array, however, should be used to store the reciprocals
of the pivots (or of the diagonal elements of U in Doolittle’s method or the diag-
onal elements of L in Crout’s and Cholesky’s methods), since these reciprocals are
used in calculating the multipliers �ij and subsequently in the back-substitution. In
Doolittle’s method, for example, an original 4× 4 matrix A would be overwritten by⎛⎜⎜⎝

u−1
11 u12 u13 u14

�21 u−1
22 u23 u24

�31 �32 u−1
33 u34

�41 �42 �43 u−1
44

⎞⎟⎟⎠ .

The inversion problem amounts to the solution of n linear equations for n right-hand
sides, and storage is therefore needed for 2n2 variables plus working space.

7.5.2 Arithmetic Involved in the Computation

The following tables give the number of arithmetic operations necessary for the solu-
tion of an n× n system of equations and inversion of an n× n matrix.

Methods of Solution

Method Reciprocals Multiplications Additions
Gauss n n(1

3n
2 + n− 1

3) n(1
3n

2 + 1
2n− 5

6)
Decomposition n n(1

3n
2 + n− 1

3) n(1
3n

2 + 1
2n− 5

6)
Jordan n 1

2n
3 + n2 − 1

2n
1
2n

3 − 1
2n

Methods of Inversion

Method Reciprocals Multiplications Additions
Gauss n n3 − 1 n3 − 2n2 + n

Decomposition n n3 − 1 n3 − 2n2 + n
Jordan n n3 − 1 n3 − 2n2 + n

7.6. SOLUTION TO COMPLEX SYSTEMS OF EQUATIONS 203

In general, all three methods of solution are equally efficient for inverting a matrix,
though Jordan’s method is less so than the others for solving a single system of
equations. When symmetric positive definite matrices arise, a significant saving may
be made using Cholesky’s method or the symmetric version of Gauss’ method. The
use of row (or row and column) interchanges with the above methods involves no
extra arithmetic, but the necessary search for the largest pivot takes additional time,
as does the process of reshuffling the rows at each stage.

7.5.3 Scaling of Matrices

It is good practice to scale the rows and/or columns of a matrix before commencing
a computation so that the maximum modulus of the elements in any row and column
lies between 0.5 and 1. Unfortunately, it is not easy to define a ‘best’ method of doing
this, and justification for it in the literature seems to be based more on experience
and intuition than on theory. The effect appears to be that the numerical stability of
the computation is enhanced. Furthermore, most error analyses are concerned with
matrices which have been ‘scaled’ in this manner, so that it is easier to ascertain what
reliance may be placed on computed solutions. Row scaling, of course, does not affect
the computed solutions, but column scaling has the effect of dividing the solution
component for a particular column by the scaling multiplier. It is usual to scale by
powers of 2 so that (in the binary arithmetic used by the computer) no rounding
errors arise.

7.6 Solution to Complex Systems of Equations

Complex systems of equations may be solved by any of the standard methods with
the use of complex arithmetic. Alternatively, real arithmetic may be used throughout
if advantage is taken of the fact that the matrices

I =
(

1 0
0 1

)
and J =

(
0 1
−1 0

)
have the same algebraic properties as 1 and i, the real and imaginary units. A complex
number a+ ib may therefore be represented as the 2× 2 matrix(

a b
−b a

)
.

If every complex element of an n × n matrix is replaced by a 2 × 2 matrix of this
type, the result is a 2n × 2n matrix whose elements are all real, and any of the
methods discussed here may be employed to deal with it. In the following example
Jordan elimination is used (without pivoting) in order that the final result is obtained
without back-substitution.

Example Solve the equations

(1 + i)z1 − 2iz2 = −5 + 3i,

(3− 2i)z1 + (2 + i)z2 = 18− 5i.

204 CHAPTER 7. DIRECT METHODS OF SOLUTION

The augmented matrix and its transformations are⎛⎜⎜⎝
1 1 0 −2 | −5 3
−1 1 2 0 | −3 −5
3 −2 2 1 | 18 −5
2 3 −1 2 | 5 18

⎞⎟⎟⎠ −→

R2 +R1

R3 − 3R1

R4 − 2R1

⎛⎜⎜⎝
1 1 0 −2 | −5 3
0 2 2 −2 | −8 −2
0 −5 2 7 | 33 −14
0 1 −1 6 | 15 12

⎞⎟⎟⎠ −→

R1 − 1
2R2

R3 + 5
2R2

R4 − 1
2R2

⎛⎜⎜⎝
1 0 −1 −1 | −1 4
0 2 2 −2 | −8 −2
0 0 7 2 | 13 −19
0 0 −2 7 | 19 13

⎞⎟⎟⎠ −→

R1 + 1
7R3

R2 − 2
7R3

R4 + 2
7R3

⎛⎜⎜⎝
1 0 0 −5/7 | 6/7 9/7
0 2 0 −18/7 | −82/7 24/7
0 0 7 2 | 13 −19
0 0 0 53/7 | 159/7 53/7

⎞⎟⎟⎠ −→

R1 + 5
53R4

R2 + 18
53R4

R3 − 14
53R4

⎛⎜⎜⎝
1 0 0 0 | 3 2
0 2 0 0 | −4 6
0 0 7 0 | 7 −21
0 0 0 53/7 | 159/7 53/7

⎞⎟⎟⎠ −→

1
2R2
1
7R3
7
53R4

⎛⎜⎜⎝
1 0 0 0 | 3 2
0 1 0 0 | −2 3
0 0 1 0 | 1 −3
0 0 0 1 | 3 1

⎞⎟⎟⎠ .

The solutions are clearly
z1 = 3 + 2i, z2 = 1− 3i.

7.7 Summary of Important Results

Gauss’ Method
Ax = b −→ Ux = h

where U is an upper triangular matrix.

Jordan’s Method
Ax = b −→ Ix = h

where I is the unit matrix.

Crout’s Method
Ax = b −→ LU1x = b

7.8. FURTHER READING 205

Doolittle’s Method
Ax = b −→ L1Ux = b

Cholesky’s Method
Ax = b −→ CCT x = b

7.8 Further Reading

• Goult R J, Hoskins R F, Milner J A and Pratt M J, Computational Methods in
Linear Algebra, Thornes, 1974.

Atkinson K E, An Introduction to Numerical Analysis, Wiley, 1978.

• Johnson L W and Dean Riess R, Introduction to Linear Algebra, Addison-
Wesley, 1981.

• Yakowitz S and Szidarovszky F, An Introduction to Numerical Computations,
Macmillan, 1989.

• Fraleigh J B and Beauregard R A, Linear Algebra, Addison-Wesley, 1990.

7.9 Problems

7.1 Use Gaussian Elimination (GE) with natural pivoting to solve the following equa-
tions

x1 − x2 = 1,

x2 + x4 = −1,

x1 − x3 = 2,

x1 + x2 + x3 + x4 = 1.

7.2 Use GE with (i) natural pivoting and (ii) partial pivoting to solve the equations

x1 + 2x2 − x3 = −3,

3x1 + 7x2 + 2x3 = 1,

4x1 − 2x2 + x3 = −2.

7.3 Use GE with (i) natural pivoting, (ii) partial pivoting and (iii) complete pivoting
to solve the equations

x1 + 3x2 + 2x3 − 4x4 = 10,

206 CHAPTER 7. DIRECT METHODS OF SOLUTION

−2x1 + x2 + 4x3 + x4 = 11,

x1 − 2x2 − 3x3 + 2x4 = −9,

3x1 − 3x2 − 5x3 − 2x4 = −17.

7.4 (i) Obtain the inverse of the matrices⎛⎝ 3 2 −1
1 −1 2
2 1 1

⎞⎠ and

⎛⎝ 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

⎞⎠
using Jordan’s method.

7.5 Use Jordan’s method with natural pivoting to find the inverse of the matrix⎛⎜⎜⎝
1 2 0 1
−1 −1 1 0
2 3 0 0
1 4 −1 5

⎞⎟⎟⎠
and hence solve,

x1 + 2x2 + x4 = 2,

−x1 − x2 + x3 = 1,

2x1 + 3x2 = 5,

x1 + 4x2 − x3 + 5x4 = 0.

When is it be computationally efficient to compute the inverse of the characteristic
matrix of a system of linear equations?

7.6 Use Crout’s method with exact arithmetic to solve the following system of linear
equations

2x1 + x2 − 3x3 = −5,
x1 − 2x2 − x3 = −6,
x1 + x2 + x3 = 6.

7.7 Using Cholesky factorization and exact arithmetic, solve the equations

2x1 − x2 = 1,
−x1 + 2x2 − x3 = 0,
−x2 + 2x3 = 1.

7.8 Obtain the Doolittle factorization of the matrix

A =

⎛⎜⎜⎝
2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎞⎟⎟⎠

7.9. PROBLEMS 207

and hence solve the system of equations given by

Ax = b

where b = (1 2 3 4)T .

7.9 Solve the system of linear equations given in the last question using Cholesky
factorization and exact arithmetic.

7.10 Using an LU factorization method of your choice, solve the equations

x1 + 2x2 − 3x3 + x4 = −4,

2x1 + 5x2 − 4x3 + 6x4 = −1,

−x1 + x2 + 13x3 + 31x4 = 53,

2x1 + 3x2 − 5x3 + 15x4 = 8.

Chapter 8

Vector and Matrix Norms

This chapter is devoted to a study of vector and matrix norms and the role they
play in the analysis of linear algebraic systems. In particular, we derive results and
study approaches to the analysis of discrete variables that are used routinely in com-
putational algorithms for a wide range of applications inclusive of those designed for
solving sets of linear simultaneous equations and digital signal processing in general.
For example, we use the principal results of vector and matrix norms to derive cri-
terion on the stability of linear systems and investigate the role norms play in the
optimization methods for solving these systems.

8.1 Vector Norms

Consider the set of vectors

x1 =
(

2
3

)
, x2 =

(
1
10

)
, x3 =

(
1

2.5

)
.

Which is the ‘biggest’ vector? We could just choose the maximum value of each
vector, i.e. 3, 10, 2.5. We could also just add the elements together (5, 11, 3.5) or
we could also use Pythagoras’ theorem to get � (3.6, 10.0, 2.7). In general, for an
arbitrary vector x ∈Rn, i.e.

x = (x1, x2, ..., xn)T

we can define various different numbers which provide a measure of the size of the
vector such as

x1 + x2 + ...+ xn,

(x2
1 + x2

2 + ...+ x2
n)

1
2 ,

(x3
1 + x3

2 + ...+ x3
n)

1
3 ,

...

Alternatively, we could choose xmax, the element of the vector with the largest mag-
nitude value.

208

8.1. VECTOR NORMS 209

8.1.1 Definitions of a Vector Norm

For a vector x, the norm is denoted by ‖x‖ and satisfies the following:

‖x‖ = 0 if x = 0, otherwise ‖x‖ > 0;

‖kx‖ =| k | ‖x‖ (the homogeneity condition)

where k is a scalar and
‖x + y‖ ≤ ‖x‖+ ‖y‖,
‖x · y‖ ≤ ‖x‖‖y‖.

8.1.2 Commonly Used Definitions

Three useful and commonly used classes of vector norm are:

(i) The �1 norm given by

‖x‖1 =
n∑

i=1

| xi | .

(ii) The �2 norm or Euclidean norm defined as

‖x‖2 =

(
n∑

i=1

| xi |2
) 1

2

.

(iii) The �∞ norm (the ‘infinity’ or ‘uniform’ norm) given by

‖x‖∞ = max
i
| xi | .

8.1.3 Generalization of Vector Norms - The ‘p-Norm’

Vector norms can be generalized by introducing the so called ‘p-norm’ defined as

‖x‖p =

(
n∑

i=1

| xi |p
) 1

p

, p ≥ 1.

Then,
‖x‖1 ≡ ‖x‖p=1

‖x‖2 ≡ ‖x‖p=2

...

Theorem
lim

p→∞ ‖x‖p = ‖x‖∞

210 CHAPTER 8. VECTOR AND MATRIX NORMS

Proof Let
| xm |= max

i
| xi |≡ ‖x‖∞.

Then,

‖x‖p =

[
n∑

i=1

| xm |p
(| xi |
| xm |

)p
] 1

p

=

⎡⎢⎣| xm |p + | xm |p
n∑

i=1
i	=m

(| xi |
| xm |

)p

⎤⎥⎦
1
p

=| xm |

⎡⎢⎣1 +
n∑

i=1
i	=m

(| xi |
| xm |

)p

⎤⎥⎦
1
p

.

Hence,

lim
p→∞ ‖x‖p =| xm | lim

p→∞

⎡⎢⎣1 +
n∑

i=1
i	=m

(| xi |
| xm |

)p

⎤⎥⎦
1
p

=| xm |≡ ‖x‖∞.

8.1.4 Metric Spaces

It is sometimes convenient to define a distance d(x,y) between any two vectors x and
y as

d(x,y) = ‖x− y‖
which defines a metric or measure and where the norm can be arbitrary. A sequence
of vectors x(1),x(2),x(3), ... converge to x if

lim
k→∞

d(x,x(k)) = lim
k→∞

‖x− x(k)‖ = 0.

Metrics of this type are typically used to study the convergence of iterative solutions
involving vector and/or matrix algebra for example.

8.1.5 The Euclidean Norm

The Euclidean norm is given by

‖x‖2 = (x2
1 + x2

2 + ...+ x2
n)

1
2 .

Other forms of notation of this important and widely used vector norm include
√

x · x ≡| x | and 〈x,x〉.

The Euclidean norm is one of the most commonly used norms. It has a variety of
applications in functional and numerical analysis. The �2 norm defines the length of
modulus of x and x · y defines the scalar product in Rn given by

x · y = x1y1 + x2y2 + ...+ xnyn.

8.2. THE TRIANGLE INEQUALITY FOR THE EUCLIDEAN NORM 211

Two important inequalities relating to the Euclidean norm are:

(i) the Cauchy-Schwarz inequality given by

| x · y |≤| x || y |;

(ii) the triangle inequality, namely

| x + y |≤| x | + | y | .

8.1.6 The Cauchy-Schwarz Inequality for the Euclidean Norm

For any real number θ, let (x · y)θx − y be a vector in Rn. Then

[(x · y)θx − y] · [(x · y)θx − y] ≥ 0.

Expanding, we get
(x · y)2θ2 | x |2 −2(x · y)2θ+ | y |2≥ 0

and with
θ =

1
| x |2 ,

we have
(x · y)2

1
| x |2 − 2(x · y)2

1
| x |2 + | y |≥ 0,

| x |2| y |2 −(x · y)2 ≥ 0,

| x · y |≤| x || y | .
The generalization of this result is ‘Holder’s inequality’, i.e.

n∑
i=1

| xi || yi |≤ ‖x‖p‖y‖q.

8.2 The Triangle Inequality for the Euclidean Norm

We start with

| x + y |2= (x + y) · (x + y) = x · x + 2x · y + y · y
≤| x |2 +2 | x || y | + | y |2

by the Cauchy-Schwarz inequality. Now,

| x |2 +2 | x || y | + | y |2= (| x | + | y |)2

and thus,
| x + y |2≤ (| x | + | y |)2

212 CHAPTER 8. VECTOR AND MATRIX NORMS

or
| x + y |≤| x | + | y | .

Hence,
‖x + y‖2 ≤ ‖x‖2 + ‖y‖2.

The generalization of this result to a ‘p-norm’ is given by the ‘Minkowski inequality’,
i.e. (

n∑
i=1

| xi + yi |p
) 1

p

≤
(

n∑
i=1

| xi |p
) 1

p

+

(
n∑

i=1

| yi |p
) 1

p

.

8.2.1 Holder’s Inequality

Holder’s inequality is based on application of the result

a
1
p b

1
q ≤ a

p
+
b

q

where p > 1 and
1
p

+
1
q

= 1.

Let us first look at a proof of this result. If

1
p

+
1
q

= 1

then
1
q

= 1− 1
p
, q =

p

(p− 1)
; =⇒ q > 1 if p > 1.

Thus,
t−

1
q ≤ 1, if t ≥ 1

and therefore
x∫

1

t−
1
q dt ≤

x∫
1

1dx for x ≥ 1.

Evaluating the integrals, we have [
t1−

1
q

1− 1
q

]x

1

≤ [x]x1

or
x1− 1

q

1− 1
q

− 1
1− 1

q

≤ x− 1.

Rearranging, we get
px

1
p − p ≤ x− 1

or
x

1
p ≤ x

p
+ 1− 1

p
.

8.2. THE TRIANGLE INEQUALITY FOR THE EUCLIDEAN NORM 213

Now, since
1
q

= 1− 1
p

we obtain

x
1
p ≤ x

p
+

1
q
.

Suppose that a ≥ b > 0 and let x = a/b. Using the result derived above we get

a
1
p

b
1
p

≤ a

bp
+

1
q

and therefore

a
1
p b(1−

1
p) ≤ a

p
+
b

q

or

a
1
p b

1
q ≤ a

p
+
b

q
.

By symmetry, p and q can be interchanged giving

a
1
q b

1
p ≤ a

q
+
b

p
.

Having derived the above, we can now go on to prove Holder’s inequality by intro-
ducing the following definitions for a and b:

a =
| xi |p

n∑
i=1

| xi |p

and

b =
| yi |q

n∑
i=1

| yi |q
.

Using these results, we have⎛⎜⎜⎝ | xi |p
n∑

i=1

| xi |p

⎞⎟⎟⎠
1
p
⎛⎜⎜⎝ | yi |q

n∑
i=1

| yi |q

⎞⎟⎟⎠
1
q

≤ | xi |p

p
n∑

i=1

| xi |p
+

| yi |q

q
n∑

i=1

| yi |q

and summing over i gives

n∑
i=1

| xi || yi |(
n∑

i=1

| xi |p
) 1

p
(

n∑
i=1

| yi |q
) 1

q

≤

n∑
i=1

| xi |p

p
n∑

i=1

| xi |p
+

n∑
i=1

| yi |q

q
n∑

i=1

| yi |q
.

214 CHAPTER 8. VECTOR AND MATRIX NORMS

Hence,
n∑

i=1

| xi || yi |(
n∑

i=1

| xi |p
) 1

p
(

n∑
i=1

| yi |q
) 1

q

≤ 1
p

+
1
q

= 1

or
n∑

i=1

| xi || yi |≤ ‖x‖p‖y‖q.

8.2.2 Minkowski’s Inequality

If p > 1, then using the result

| xi + yi |≤| xi | + | yi |

together with Holder’s inequality, we can write

n∑
i=1

| xi+yi |p=
n∑

i=1

| xi+yi |p−1| xi+yi |≤
n∑

i=1

| xi || xi+yi |p−1 +
n∑

i=1

| yi || xi+yi |p−1

≤
(

n∑
i=1

| xi |p
) 1

p
(

n∑
i=1

| xi + yi |q(p−1)

) 1
q

+

(
n∑

i=1

| yi |p
) 1

p
(

n∑
i=1

| xi + yi |q(p−1)

) 1
q

.

But q(p− 1) = p and therefore

n∑
i=1

| xi + yi |p≤
(

n∑
i=1

| xi + yi |p
) 1

q
(

n∑
i=1

| xi |p
) 1

p

+

(
n∑

i=1

| xi + yi |p
) 1

q
(

n∑
i=1

| yi |p
) 1

p

.

Dividing through by (
n∑

i=1

| xi + yi |p
) 1

q

gives (
n∑

i=1

| xi + yi |p
)1− 1

q

≤
(

n∑
i=1

| xi |p
) 1

p

+

(
n∑

i=1

| yi |2
) 1

p

.

Finally, since 1− 1/q = 1/p, we get(
n∑

i=1

| xi + yi |p
) 1

p

≤
(

n∑
i=1

| xi |p
) 1

p

+

(
n∑

i=1

| yi |p
) 1

p

.

8.3. MATRIX NORMS 215

8.3 Matrix Norms

The norm of a matrix A is, like the vector norm, denoted by ‖A‖. A matrix norm
satisfies the following conditions:

‖A‖ = 0 if A = 0 otherwise ‖A‖ > 0;

‖kA‖ =| k | ‖A‖ (the homogeneity condition);

‖A+B‖ ≤ ‖A‖+ ‖B‖;
‖AB‖ ≤ ‖A‖‖B‖.

8.3.1 Types of Matrix Norms

Matrix norms are in many ways similar to those used for vectors. Thus, we can
consider an �2 (matrix) norm (analogous to the Euclidean norm for vectors) given by

‖A‖2 =

⎛⎝ n∑
i=1

n∑
j=1

| aij |2
⎞⎠

1
2

.

Then there is the �1 (matrix) norm,

‖A‖1 = max
j

n∑
i=1

| aij |

and the �∞ (matrix) norm defined as

‖A‖∞ = max
i

n∑
j=1

| aij | .

8.3.2 Basic Definition of a Matrix Norm

Let ‖x‖ be any (vector) norm on the n-dimensional vector space Rn. For any real
n× n matrix A we define the ‘subordinate matrix norm’ of A as

‖A‖ = max
‖Ax‖
‖x‖

where the maximum is taken for all vectors x ∈ Rn. The main point of defining
a matrix norm in this way is that because ‖Ax‖ is a vector norm, the results and
properties derived for vector norms can be applied directly to matrix norms. This is
compounded in the following theorems.

Theorem If A and B are both n× n matrices then for any matrix norm

‖A+B‖ ≤ ‖A‖+ ‖B‖.

216 CHAPTER 8. VECTOR AND MATRIX NORMS

Proof By Minkowski’s inequality

‖(A+B)x‖ = ‖Ax +Bx‖ ≤ ‖Ax‖+ ‖Bx‖.

Dividing through by ‖x‖, we have

‖(A+B)x‖
‖x‖ ≤ ‖Ax‖

‖x‖ +
‖Bx‖
‖x‖

and therefore

max
‖(A+B)x‖

‖x‖ ≤ max
‖Ax‖
‖x‖ + max

‖Bx‖
‖x‖

or
‖A+B‖ ≤ ‖A‖+ ‖B‖.

Theorem If A and B are both n× n matrices then for any matrix norm

‖AB‖ ≤ ‖A‖‖B‖.

Proof

‖AB‖ = max
‖(AB)x‖
‖x‖ = max

‖(AB)x‖
‖x‖

‖Bx‖
‖Bx‖ , Bx �= 0

= max
‖A(Bx)‖
‖Bx‖

‖Bx‖
‖x‖ .

Now,
‖A(Bx)‖
‖Bx‖ ≤ ‖A‖

and ‖Bx‖
‖x‖ ≤ ‖B‖.

Hence,
‖AB‖ ≤ ‖A‖‖B‖.

8.3.3 Evaluation of �1 and �∞ Matrix Norms

The definition for ‖A‖ can be re-phrased to define ‖A‖ as the maximum of ‖Ax‖ for
all x ∈ Rn with ‖x‖ = 1. Consider ‖A‖1 and let x be any vector with ‖x‖1 = 1, i.e.

‖x‖1 =
n∑

i=1

| xi |= 1.

Let v1,v2, ...,vn be the column vectors of A, then

‖Ax‖1 = ‖x1v1 + x2v2 + ...+ xnvn‖1 ≤| x1 | ‖v1‖1+ | x2 | ‖v2‖1 + ...+ | xn | ‖vn‖1
≤ (| x1 | + | x2 | +...+ | xn |)max

i
‖vi‖1 ≤ max

i
‖vi‖1 .

8.3. MATRIX NORMS 217

Hence,

‖A‖1 = max
j

n∑
i=1

| aij | .

Now, consider ‖A‖∞ and let x be any vector with ‖x‖∞ = 1, i.e.

‖x‖∞ = max
i
| xi |= 1.

Then,

‖Ax‖∞ = ‖x1v1 + x2v2 + ...+ xnvn‖∞

≤| x1 | ‖v1‖∞+ | x2 | ‖v2‖∞ + ...+ | xn | ‖vn‖∞

≤ max
i
| xi | (‖v1‖∞ + ‖v2‖∞ + ...+ ‖vn‖∞)

≤ max
i
| xi | max

i

n∑
i=1

‖vi‖∞ = max
i

n∑
i=1

‖vi‖∞.

Hence,

‖A‖∞ = max
i

n∑
j=1

| aij | .

Example Let

A =

⎛⎝ 2 2 −1
3 1 −2
−3 4 −1

⎞⎠ , B =

⎛⎝ 1 0 2
−1 2 3
1 3 −2

⎞⎠ .

Then ‖A‖1 = 8 - the modular sum of column 1.

‖A‖∞ = 8 - the modular sum of row 3.

‖B‖1 = 7 - the modular sum of column 3.

‖B‖∞ = 6 - the modular sum of row 2 or row 3.

Also,

AB =

⎛⎝ −1 1 12
0 −4 13
−8 5 8

⎞⎠
and ‖AB‖1 = 33 and ‖AB‖∞=21. Note that for each of these norms

‖AB‖ ≤ ‖A‖‖B‖.

218 CHAPTER 8. VECTOR AND MATRIX NORMS

8.4 The Conditioning of Linear Equations

A fundamental problem in computational linear algebra is to estimate how a pertur-
bation in b or A or both b and A will effect the solution x. The solution to this
problem is important because if small perturbations in A or b produce large changes
in x for a given method of solution, then the equations are ‘ill-conditioned’ and nu-
merical solutions may have significant errors associated with them. For example,
consider the system of equations

x1 +
1
2
x2 +

1
3
x3 = 1,

1
2
x1 +

1
3
x2 +

1
4
x3 = 0,

1
3
x1 +

1
4
x2 +

1
5
x3 = 0.

The characteristic matrix A of this set of equations is known as a Hilbert matrix.
Using Gaussian elimination with natural pivoting and exact arithmetic, we construct
the augmented matrix ⎛⎝ 1 1

2
1
3 | 1

1
2

1
3

1
4 | 0

1
3

1
4

1
5 | 0

⎞⎠
and proceed as follows:

R2 − 1
2R1

R3 − 1
3R1

⎛⎝ 1 1
2

1
3 | 1

0 1
12

1
12 | − 1

2
0 1

12
4
45 | − 1

3

⎞⎠ −→
R3 −R2

⎛⎝ 1 1
2

1
3 | 1

0 1
12

1
12 | − 1

2
0 0 1

180 | 1
6

⎞⎠ .

Back-substituting, the solution vector is

x = (9,−36, 30)T .

Now consider a solution to the same system of equations using exactly the same
technique but working to an accuracy of just 2 decimal places. In this case, the
augmented matrix is given by⎛⎝ 1.00 0.50 0.33 | 1.00

0.50 0.33 0.25 | 0.00
0.33 0.25 0.20 | 0.00

⎞⎠
and

R2 − 0.50R1

R3 − 0.33R1

⎛⎝ 1.00 0.50 0.33 | 1.00
0.00 0.08 0.08 | −0.50
0.00 0.08 0.09 | −0.33

⎞⎠ −→

R3 −R2

⎛⎝ 1.00 0.50 0.33 | 1.00
0.00 0.08 0.08 | −0.50
0.00 0.00 0.01 | 0.17

⎞⎠ .

Back-substituting, we have

x = (7.00,−24.00, 17.00)T

8.4. THE CONDITIONING OF LINEAR EQUATIONS 219

using a 2 decimal place calculation which should be compared with x = (9,−36, 30)T

using exact arithmetic. The 2 decimal place computation has sizable errors. A small
perturbation in aij can therefore yield large changes in the solution vector when
computations are performed to a limited number of decimal places as is the case in
practice (with a digital computer). The size of the error illustrated here, however,
is based on a special type of matrix (the Hilbert matrix) which is relatively highly
ill-conditioned and has been used to highlight the problem of numerical instability.

8.4.1 Conditioning of Ax = b

In terms of the conditioning of linear systems, there are three cases of interest:

(i) b→ b + δb, x→ x + δx for which

‖δx‖
‖x‖ ≤ cond(A)

‖δb‖
‖b‖ .

(ii) A→ A+ δA, x→ x + δx for which

‖δx‖
‖x + δx‖ ≤ cond(A)

‖δA‖
‖A‖ .

(iii) b→ b + δb, A→ A+ δA, x→ x + δx for which

‖δx‖
‖x‖ ≤ cond(A)

(‖δb‖
‖b‖ +

‖δA‖
‖A‖

)
where

cond(A) = ‖A‖‖A−1‖
which is known as the ‘condition number’. The stability of a solution to Ax = b is
determined by the magnitude of the condition number which provides a measure of
how ill-conditioned the system is.

Derivation of the Results

All results are based on the application of inequalities associated with vector and
matrix norms (i.e. Holder’s and Minkowski’s inequalities) together with a couple of
tricks.

Case 1: Perturbation of Data b→ b + δb

We note that
A(x + δx) = b + δb,

Ax +Aδx = b + δb,

Aδx = δb since Ax− b = 0.

. ˙. δx = A−1δb.

220 CHAPTER 8. VECTOR AND MATRIX NORMS

Taking norms of both sides

‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖‖δb‖.

Now ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖ giving

‖x‖ ≥ ‖b‖
‖A‖ .

Hence,
‖δx‖
‖x‖ ≤

‖A−1‖‖δb‖
‖x‖ ≤ ‖A−1‖‖A‖‖δb‖‖b‖

or
‖δx‖
‖x‖ ≤ cond(A)

‖δb‖
‖b‖

where
cond(A) = ‖A‖‖A−1‖.

The magnitude of cond(A) (for a matrix of a given size) determines how much a small
change in b effects the solution where any norm may be used. If cond(A) is large,
then the system is likely to be ill-conditioned so that conversely, we require cond(A)
to be relatively small to have confidence in the solution. For example, consider the
characteristic matrix

A =

⎛⎝ 1 2 −2
1 3 −1
2 1 −6

⎞⎠ , A−1 =

⎛⎝ −17 10 4
4 −2 −1
−5 3 1

⎞⎠ .

In this case

‖A‖∞ = max
i

3∑
j=1

| aij |=| 2 | + | 1 | + | −6 |= 9.

Similarly,
‖A−1‖∞ =| −17 | + | 10 | + | 4 |= 31.

Hence,
cond(A) = 9× 31 = 279.

Case 2: Perturbation of Matrices A→ A+ δA

In this case,
(A+ δA)(x + δx) = b,

x + δx = (A+ δA)−1b,

δx = (A+ δA)−1b +A−1b, since Ax = b.

We now use the following result (basic trick)

(B−1 −A−1)b = A−1(A−B)B−1b

8.4. THE CONDITIONING OF LINEAR EQUATIONS 221

since

A−1(A−B)B−1b = (A−1AB−1 −A−1BB−1)b = (B−1 −A−1)b.

This gives

δx = A−1[A− (A+ δA)](A + δA)−1b = −A−1δA(A+ δA)−1b = −A−1δA(x + δx).

Taking norms of both sides,

‖δx‖ = ‖ −A−1δA(x + δx)‖ ≤ ‖A−1‖‖δA‖‖x + δx‖.
Therefore ‖δx‖

‖x + δx‖ ≤ cond(A)
‖δA‖
‖A‖ , cond(A) = ‖A‖‖A−1‖.

Case 3: Perturbation of Data and Matrices (General Case)

The general case is concerned with the effect on the solution vector when A→ A+δA
and b→ b + δb. Here,

(A+ δA)(x + δx) = b + δb,

Ax +Aδx + δAx + δAδx = b + δb,

Aδx = δb− δAx− δAδx, since Ax− b = 0.

.˙. δx = A−1δb−A−1δAx −A−1δAδx.

Taking norms of both sides,

‖δx‖ = ‖A−1δb−A−1δAx−A−1δAδx‖ ≤ ‖A−1δb‖+ ‖A−1δAx‖ + ‖A−1δAδx‖
≤ ‖A−1‖‖δb‖+ ‖A−1‖‖δA‖‖x‖+ ‖A−1‖‖δA‖‖δx‖.

Dividing through by ‖x‖ and noting that

‖x‖ ≥ ‖b‖
‖A‖

we get
‖δx‖
‖x‖ ≤ ‖A‖‖A

−1‖‖δb‖‖b‖ + ‖A−1‖‖δA‖+ ‖A−1‖‖δA‖‖δx‖‖x‖ .

Rearranging, we can write

‖δx‖
‖x‖

(
1− cond(A)

‖δA‖
‖A‖

)
≤ cond(A)

‖δb‖
‖b‖ + cond(A)

‖δA‖
‖A‖

where
cond(A) = ‖A‖‖A−1‖

giving
‖δx‖
‖x‖ ≤

cond(A)
1− cond(A)‖δA‖/‖A‖

(‖δb‖
‖b‖ +

‖δA‖
‖A‖

)
.

222 CHAPTER 8. VECTOR AND MATRIX NORMS

A further simplification to the above result can be made via the following argument:
To have confidence in the solution Ax = b we require that

cond(A)
‖δA‖
‖A‖ << 1

If this is the case, then
1

1− cond(A)‖δA‖/‖A‖ ∼ 1

giving
‖δx‖
‖x‖ ≤ cond(A)

(‖δb‖
‖b‖ +

‖δA‖
‖A‖

)
.

In this case, cond(A) provides a bound to possible errors in a solution due to perturba-
tions in b and A. For any of the three cases considered above, if cond(A) is (relatively)
large, then the equations are ‘ill-conditioned’ and if cond(A) is (relatively) small, then
the equations are ‘well-conditioned’. The term ‘relative’ used here relates to systems
that are known to be ill-conditioned.

8.4.2 Example of an Ill-conditioned System

Consider the Hilbert matrix

A =

⎛⎝ 1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

⎞⎠ , A−1 =

⎛⎝ 9 −36 30
−36 192 −180
30 −180 180

⎞⎠ .

For an �1 norm:

‖A‖1 = max
j

n∑
i=1

| aij |=| 1 | +
∣∣∣∣12
∣∣∣∣+ ∣∣∣∣13

∣∣∣∣ =
11
6

and
‖A−1‖1 =| −36 | + | 192 | + | −180 |= 408.

Therefore, the condition number of this matrix for an �1 norm is 748. For an �∞
norm:

‖A‖∞ = max
i

n∑
j=1

| aij |=| 1 | +
∣∣∣∣12
∣∣∣∣+ ∣∣∣∣13

∣∣∣∣ =
11
6

and
‖A−1‖∞ =| −36 | + | 192 | + | −180 |= 408.

Therefore, the condition number of this matrix for an �∞ norm is 748. For the
characteristic matrix

A =

⎛⎝ 1 2 −2
1 3 −1
2 1 −6

⎞⎠ , A−1 =

⎛⎝ −17 10 4
4 −2 −1
−5 3 1

⎞⎠
the condition number for the �1 norm is 234 and the condition number for the �∞
norm is 279. These condition numbers are significantly smaller than the condition

8.5. ITERATIVE IMPROVEMENT 223

number for a Hilbert matrix of equal size. Linear systems characterized by Hilbert
matrices are very unstable as indicated by the magnitude of the condition number.
Another well known example involves sets of linear equations characterized by a van
der Monde matrix of the type⎛⎜⎜⎜⎝

1 t1 t21 t31 . . . tn1
1 t2 t22 t32 . . . tn2
...

...
...

...
...

...
1 tn t2n t3n . . . tnn

⎞⎟⎟⎟⎠ .

In fact, as a general rule of thumb, any system of equations with a characteristic
matrix whose elements vary significantly in value from one part of the matrix to
another especially via some geometric progression tend to be ‘ill-conditioned’. This
situation often occurs with the numerical inversion of certain integral transforms, a
notorious example being the inversion of the Laplace transform. Given that

F (p) =

∞∫
0

f(t) exp(−pt)dt

we can discretize this result and write

Fm =
N−1∑
n=0

fn exp(−pmtn) =
N−1∑
n=0

fn exp[−(mΔp)(nΔt)] =
N−1∑
n=0

Tnmfn

where
Tnm = tnm, tm = exp(−mΔpΔt).

Thus, we can write the discrete Laplace transform using matrix form as⎛⎜⎜⎜⎝
F0

F1

...
FN−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 t0 t20 t30 . . . tN−1

0

1 t1 t21 t31 . . . tN−1
1

...
...

...
...

...
...

1 tN−1 t2N−1 t3N−1 . . . tN−1
N−1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

f0
f1
...

fN−1

⎞⎟⎟⎟⎠ .

Because the characteristic matrix associated with the discrete Laplace transform is of
van der Monde type, numerical methods for computing the inverse Laplace transform
are notoriously ill-conditioned. This is another reason why the Fourier transform
and its inverse are preferable (provided the problem is non-causal) or the cosine/sin
transforms are preferable in the application of problems that are causal (if applicable).

8.5 Iterative Improvement

If the condition number of a linear system of equations is small, then we can use one of
the direct methods of solution (e.g. Gaussian elimination with partial pivoting or LU
factorization). If the condition number is large so that the solution vector obtained has
errors, we can apply the process of ‘iterative improvement’ (also known as ‘successive
improvement’). Essentially, iterative improvement is a post-solution modification to

224 CHAPTER 8. VECTOR AND MATRIX NORMS

improve the accuracy of the solution. The basic idea behind iterative improvement
is to solve Ax = b using some (direct) method giving some approximation x0 to the
exact solution x. We then construct a residual r0 associated with x0 given by

r0 = b−Ax0.

Now, since
0 = b−Ax

by subtracting, we get
r0 = Az0, z0 = x− x0

and can solve Az0 = r0 to get z0. Now

x1 = x0 + z0

and if x1 is the exact solution, then

Ax1 = Ax0 +Az0 = Ax0 + r0 = Ax0 + b− Ax0 = b

exactly. If x1 is not an exact solution, then we can repeat the process, i.e. iterate
and find the next residual

r1 = b−Ax1

and then solve
Az1 = r1, z1 = x− x1

giving
x2 = x1 + z1

where x2 is a second approximation to x. In general, we use an iterative loop and
introduce the following algorithm:

For all n = 1, 2, 3, ...,

Step 1: Solve Axn = b.

Step 2: Compute rn = b−Axn.

Step 3: Solve Azn = rn for zn.

Step 4: Compute xn+1 = xn + zn.

Step 5: Compute rn+1 = b−Axn+1 or stop if ‖rn+1‖ is sufficiently small.

Each system Azn = rn has the same matrix A. Therefore we can make use of the
multipliers already stored from the first solution via LU factorization. Hence, iterative
improvement adds only a moderate amount of computing time to the algorithm once
LU factorization has been accomplished. It is essential that the residuals rn are
computed with higher precision than the rest of the computation. If Ax = b gives x0

to single precision, then r = b−Ax0 must be computed to double precision.
As an example of iterative improvement, consider the system

Ax = b

8.5. ITERATIVE IMPROVEMENT 225

where

A =
(

1.1 2.3
2.2 3.4

)
, b =

(
5.7
9.0

)
which has the exact solution

x = (1, 2)T .

We solve the equations using L1U factorization and 2 digit precision, i.e.

L1U =
(

1.0 0.0
2.0 1.0

)(
1.1 2.3
0.0 −1.2

)
giving

x0 = (1.6, 1.7)T .

The first iteration involves computing the residual using double precision (i.e. 4
digits), thus,

r0 = b−Ax0 =
(

0.030
−0.460

)
.

Solving Az0 = r0 via L1U factorization (using the same factors) gives

z0 =
(−0.872

0.430

)
and

x1 = x0 + z0 =
(

0.828
2.030

)
.

Iterating again, we compute the residual

r1 = b−Ax1 =
(

0.120
0.276

)
.

Solving Az1 = r1 gives

z1 =
(

0.172
−0.030

)
and

x2 = x1 + z1 =
(

1.000
2.000

)
.

The justification of this technique is based on the following: Suppose the computer
to which the method is applied, has an effective precision of p digits and let the first
approximation x0 have d digits correct, then, the residual r0 has p− d correct digits
(initially). The solution to Az0 = r0 should have the same relative precision as the
initial solution to Ax0 = b. z0 should then have a minimum of d digits correct and
x1 = x0 +z0 will then have 2d digits correct. Each iteration will correct d digits until
full p digit precision is obtained.

In conclusion to this section, the diagram below provides a rough guide to the use
of direct methods of solution coupled with iterative improvement and the conditions
under which they should be applied.

226 CHAPTER 8. VECTOR AND MATRIX NORMS

Ax = b where A Ax = b where A
is dense and symmetric is dense, symmetric

or non-symmetric and positive definite
↙↘ ↓

Well conditioned Ill conditioned Cholesky factorization
↓ ↓ ↓

Gaussian elimination LU factorization Iterative improvement
↓ ↓ (as required)
x Iterative improvement ↓

↓ x
x

Diagram 8.1: Schematic diagram illustrating the application of direct methods.

8.6 The Least Squares Method

The least squares method and the orthogonality principle are used extensively in
signal processing and we shall conclude this chapter with a discussion of this method.

8.6.1 The Least Squares Principle

Suppose we have a real function f(t) which we want to approximate by a function
f̂(t). We can construct f̂ in such a way that its functional behaviour can be controlled
by adjusting the value of a parameter a say. We can then adjust the value of a to
find the best estimate f̂ of f . So what is the best value of a to choose? To solve this
problem, we can construct the mean square error

e =
∫

[f(t)− f̂(t, a)]2dt

which is a function of a. The value of a which produces the best approximation f̂ of
f is therefore the one where e(a) is a minimum. Hence, a must be chosen so that

∂e

∂a
= 0.

Substituting the expression for e into the above equation and differentiating we obtain∫
[f(t)− f̂(t, a)]

∂

∂a
f̂(t, a)dt = 0.

Solving this equation for f̂ provides the minimum mean square estimate for f . This
method is known generally as the least squares method. However, in order to use the
least squares method, some sought of model for the estimate f̂ must be introduced.
There are a number of such models that can be used.

8.6. THE LEAST SQUARES METHOD 227

8.6.2 Linear Polynomial Models

Suppose we expand f̂ in terms of a linear combination of (known) basis functions
yn(t), i.e.

f̂(t) =
∑

n

anyn(t)

where ∑
n

≡
N/2∑

n=−N/2

and where, for simplicity, let us first assume that f is real. Since the basis functions
are known, to compute f̂ , the coefficients an must be found. Using the least squares
principle, we require an such that the mean square error

e =
∫ (

f(t)−
∑

n

anyn(t)

)2

dt

is a minimum. This occurs when
∂e

∂am
= 0 ∀ m.

Differentiating,

∂

∂am

∫ (
f(t)−

∑
n

anyn(t)

)2

dt

= 2
∫ (

f(x)−
∑

n

anyn(t)

)
∂

∂am

(
f(t)−

∑
n

anyn(t)

)
dt.

Noting that
∂

∂am

(
f(t)−

∑
n

anyn(t)

)
= − ∂

∂am

∑
n

anyn(t)

= − ∂

∂am
(...+ a1y1(t) + a2y2(t) + ...+ anyn(t) + ...)

= −y1(t), m = 1;

= −y2(t), m = 2;
...

= −ym(t), m = n;

we have
∂e

∂am
= −2

∫ (
f(t)−

∑
n

anyn(t)

)
ym(t)dt = 0.

The coefficients an which minimize the mean square error for a linear polynomial
model are therefore obtained by solving the equation∫

f(t)ym(t)dt =
∑

n

an

∫
yn(t)ym(t)dt

for an.

228 CHAPTER 8. VECTOR AND MATRIX NORMS

8.6.3 The Orthogonality Principle

The previous result can be written in the form∫ (
f(t)−

∑
n

anyn(t)

)
ym(t)dt = 0

which demonstrates that the coefficients an are such that the error f− f̂ is orthogonal
to the basis functions ym. It is common to write this result in the form

〈f − f̂ , ym〉 ≡
∫

[f(t)− f̂(t)]ym(t)dt = 0.

This is known as the orthogonality principle.

8.6.4 Complex Signals, Norms and Hilbert Spaces

Let us consider the case where f is a complex signal. In this case, f̂ must be a complex
estimate of this signal and we should also assume that both yn and an (which we shall
denote by cn) are also complex. The mean square error is then given by

e =
∫
| f(t)−

∑
n

cnyn(t) |2 dt.

Now, since the operation (∫
| f(t) |2 dt

)1/2

defines the (Euclidean) norm of the function f which shall be denoted by ‖ • ‖2, we
can write the mean square error in the form

e = ‖f(t)− f̂(t)‖22
which saves having to write integral signs all the time. The error function above is an
example of a ‘Hilbert space’. The error function above is a function of the complex
coefficients cn and is a minimum when

∂e

∂crm
= 0

and
∂e

∂cim
= 0

where
crm = Re[cm]

and
cim = Im[cm].

The above conditions lead to the result∫ (
f(t)−

∑
n

cnyn(t)

)
y∗m(t)dt = 0

8.6. THE LEAST SQUARES METHOD 229

or
〈f − f̂ , y∗m〉 = 0.

This result can be shown as follows:

e =
∫
| f(t)−

∑
n

(crn + icin)yn(t) |2 dt

=
∫ (

f(t)−
∑

n

(crn + icin)yn(t)

)(
f∗(t)−

∑
n

(crn − icin)y∗n(t)

)
dt.

Now
∂e

∂crm
=
∫ (

f(t)−
∑

n

(crn + icin)yn(t)

)
y∗m(t)dt−

∫
(f∗(t)

−
∑

n

(crn − icin)y∗n(t)ym(t)dt = 0

and
∂e

∂cim
= i

∫ (
f(t)−

∑
n

(crn + icin)yn(t)

)
y∗m(t)dt

−
∫ (

f∗(t)−
∑

n

(crn − icin)y∗n(t)

)
ym(t)dt = 0

or∫ (
f(t)−

∑
n

(crn + icin)yn(t)

)
y∗m(t)dt−

∫ (
f∗(t)−

∑
n

(crn − icin)y∗n(t)

)
ym(t)dt = 0.

Subtracting these results gives∫ (
f(t)−

∑
n

(crn + icin)yn(t)

)
y∗m(t)dt = 0

or ∫ (
f(t)−

∑
n

cnyn(t)

)
y∗m(t)dt = 0.

8.6.5 Linear Convolution Models

So far we have demonstrated the least squares principle for approximating a function
using a model for the estimate f̂ of the form

f̂(t) =
∑

n

anyn(t).

Another important type of model that is used in the least squares method for signal
processing and has a number of important applications is the convolution model, i.e.

f̂(t) = y(t)⊗ a(t).

230 CHAPTER 8. VECTOR AND MATRIX NORMS

In this case, the least squares principle can again be used to find the function a. A
simple way to show how this can be done, is to demonstrate the technique for digital
signals and then use a limiting argument for continuous functions.

Real Digital Signals

If fi is a real digital signal consisting of a set of numbers f1, f2, f3, ..., then we may
use a linear convolution model for the discrete estimate f̂i given by

f̂i =
∑

j

yi−jaj .

In this case, using the least squares principle, we find ai by minimizing the mean
square error

e =
∑

i

(fi − f̂i)2.

This error is a minimum when

∂

∂ak

∑
i

⎛⎝fi −
∑

j

yi−jaj

⎞⎠2

= 0.

Differentiating, we get

−2
∑

i

⎛⎝fi −
∑

j

yi−jaj

⎞⎠ ∂

∂ak

∑
j

yi−jaj = −2
∑

i

⎛⎝fi −
∑

j

yi−jaj

⎞⎠ yi−k = 0

and rearranging, we have

∑
i

fiyi−k =
∑

i

⎛⎝∑
j

yi−jaj

⎞⎠ yi−k.

The left hand side of this equation is just the discrete correlation of fi with yi and
the right hand side is a correlation of yi with∑

j

yi−jaj

which is itself just a discrete convolution of yi with ai. Hence, using the appropriate
symbols (as discussed in Chapter 4) we can write this equation as

fi 	 yi = (yi ⊗ ai)	 yi.

Real Analogue Signals

With real analogue signals, the optimum function a which minimizes the mean square
error

e =
∫

[f(t)− f̂(t)]2dt

8.6. THE LEAST SQUARES METHOD 231

where
f̂(t) = a(t)⊗ y(t)

is obtained by solving the equation

[f(t)− a(t)⊗ y(t)]	 y(t) = 0.

This result is based on extending the result derived above for digital signals to infinite
sums and using a limiting argument to integrals.

Complex Digital Signals

If the data are a complex discrete function fi where fi corresponds to a set of complex
numbers f1, f2, f3, ..., then we use the mean square error defined by

e =
∑

i

| fi − f̂i |2

and a linear convolution model of the form

f̂i =
∑

j

yi−jcj .

In this case, the error is a minimum when

∂e

∂ck
=
∑

i

⎛⎝fi −
∑

j

yi−jci

⎞⎠∗

yi−k = 0

or
fi 	 y∗i = (yi ⊗ ci)	 y∗i .

Complex Analogue Signals

If f̂(t) is a complex estimate given by

f̂(t) = c(t)⊗ y(t)
then the function c(t) which minimizes the error

e = ‖f(t)− f̂(t)‖22
is given by solving the equation

[f(t)− c(t)⊗ y(t)]	 y∗(t) = 0.

This result is just another version of the orthogonality principle.

Points on Notation

Notice that in the work presented above, the signs ⊗ and 	 have been used to denote
convolution and correlation respectively for both continuous and discrete data. With
discrete signals ⊗ and 	 denote convolution and correlation sums respectively. This
is indicated by the presence of subscripts on the appropriate functions. If subscripts
are not present, then the functions in question should be assumed to be continuous
and ⊗ and 	 are taken to denote convolution and correlation integrals respectively.

232 CHAPTER 8. VECTOR AND MATRIX NORMS

8.7 Summary of Important Results

Vector Norms

‖x‖ ≡ ‖x‖p =

(
n∑

i=1

| xi |p
) 1

p

, p ≥ 1; ‖x‖∞ = max
i
| xi |;

‖x + y‖ ≤ ‖x‖‖y‖, ‖x · y‖ ≤ ‖x‖‖y‖.

Matrix Norms

‖A‖ = max
‖Ax‖
‖x‖ .

‖A+B‖ ≤ ‖A‖+ ‖B‖, ‖AB‖ ≤ ‖A‖‖B‖.

‖A‖1 = max
j

n∑
i=1

| aij |, ‖A‖∞ = max
i

n∑
j=1

| aij |,

‖A‖2 =

⎛⎝ n∑
i=1

n∑
j=1

| aij |2
⎞⎠

1
2

.

Condition Number
cond(A) = ‖A‖‖A−1‖.

Conditioning of Equations

If Ax = b, then (A+ δA)(x + δx) = (b + δb) and

‖δx‖
‖x‖ ≤ cond(A)

(‖δb‖
‖b‖ +

‖δA‖
‖A‖

)
, cond(A)

‖δA‖
‖A‖ << 1.

Iterative Improvement

Iterative procedure for improving upon the accuracy of the solution to Ax = b using
LU factorization. The procedure is as follows:

For n = 1, 2, 3, ...,

Step 1: Solve Axn = b for xn (single precision).

Step 2: Compute rn = b−Axn (double precision).

Step 3: Solve Azn = rn for zn.

Step 4: Compute xn+1 = xn + zn.

Step 4: Compute rn+1 = b−Axn+1

8.8. FURTHER READING 233

Step 5: If ‖rn+1‖ ≤ ε (the tolerance value) then Stop, else goto Step 3.

The Orthogonality Principle

1. If (linear polynomial model)

f̂(t) =
∑

n

cnyn(t)

is an estimate of f(t), then the Hilbert space,

e = ‖f(t)− f̂(t)‖22 ≡
∫
|f(t)− f̂(t)|2dt

is a minimum when

〈f − f̂ , ym〉 ≡
∫

[f(t)− f̂(t)]y∗m(t)dt = 0.

2. If (linear convolution model)

f̂(t) = y(t)⊗ c(t) ≡
∫
y(t− τ)c(τ)dτ

is an estimate of f(t), then

e = ‖f(t)− f̂(t)‖22
is a minimum when

[f(t)− f̂(t)]	 y∗(t) = 0.

8.8 Further Reading

• Wilkinson J H, Rounding Errors in Algebraic Processes, Prentice-Hall, 1963.

• Forsyth G E and Moler C B, Computer Solution of Linear Algebraic Systems,
Prentice-Hall, 1967.

• Hamming R W, Introduction to Applied Numerical Analysis, McGraw-Hill, 1971.

• Conte S D and de Boor C, Elementary Numerical Analysis, McGraw-Hill, 1980.

• Skelton R E, Dynamic Control Systems, Wiley, 1988.

234 CHAPTER 8. VECTOR AND MATRIX NORMS

8.9 Problems

8.1 Find the condition number cond(A) of the matrix

A =

⎛⎝ 1 3 1
2 5 −3
−1 −1 8

⎞⎠
for both ‖A‖1 and ‖A‖∞. Obtain exact solutions to

Ax = b; b = (1 − 3 8)T

using a method of your choice. For ‖A‖1, verify that if b1 is changed from 1 to 1.01,
then ‖δx‖

‖x‖ = cond(A)
‖δb‖
‖b‖ .

8.2 Consider the following linear system

Ax = b

where

A =

⎛⎝ 3.1 1.3 2.4
2.0 4.1 1.2
1.1 −2.8 1.1

⎞⎠
and

b =

⎛⎝ 4.4
6.1
−1.7

⎞⎠ .

Solve this system of equations using Doolittles method working to 2 decimal places
only and compare your result with the exact solution vector x = (1 0 0)T . Working
to double precision, find an improved solution to this system of equations.

8.3 Show that if r is the residual associated with an approximate solution x̂ of the
equation Ax = b, then

‖x− x̂‖
‖x‖ ≤ cond(A)

‖r‖
‖b‖

where cond(A) is the condition number of A.

8.4 Prove that

cond(A) ≥ ‖B−1 −A−1‖ ‖A‖
‖A− B‖ ‖B−1‖

where A and B are matrices of the same order and cond(A) is the condition number
of the matrix A.

8.5 Prove Banach’s Lemma

‖(I +A)−1‖ ≤ 1
1− ‖A‖ ; ‖A‖ < 1.

8.9. PROBLEMS 235

Hint: (I +A)−1(I +A) ≡ I.

8.6 If x̂ is an approximation of the vector x which is given by

x̂i =
n∑

j=1

yi−jaj , i = 1, 2, ..., n

show that the optimum coefficients aj which minimizes

‖x− x̂‖22
may be obtained by solving the equation

n∑
i=1

⎛⎝xi −
n∑

j=1

yi−jaj

⎞⎠ yi−k = 0; k = 1, 2, ..., n

for aj .

8.7 Use the approximate Doolittle factorization

A =

⎛⎜⎜⎝
4 3 1 2
1 4 3 1
2 3 6 1
−2 1 3 8

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 0
.25 1 0 0
.50 .46 1 0
−.50 .77 .33 1

⎞⎟⎟⎠
⎛⎜⎜⎝

4 3 1 2
0 3.30 2.70 .50
0 0 4.2 −.25
0 0 0 8.7

⎞⎟⎟⎠
to solve to 4 significant digit accuracy, the linear equations:

4x1 + 3x2 + x3 + 2x4 = 5,

x1 + 4x2 + 3x3 + x4 = 6,

2x1 + 3x2 + 6x3 + x4 = 7,

−2x1 + x2 + 3x3 + 8x4 = 8.

8.8 Find, correct to 2 decimal places only, the approximate Cholesky factorization of

A =

⎛⎜⎜⎝
4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2

⎞⎟⎟⎠ .

Use this factorization, together with an iterative improvement method, to find the
solution of

Ax = (5 6 7 8)T

correct to 4 decimal places.

236 CHAPTER 8. VECTOR AND MATRIX NORMS

8.9 Working to 2 decimal places only, find a Cholesky factorization of the matrix

A =

⎛⎜⎜⎝
10 5 3.3 0
5 3.3 2.5 2

3.3 2.5 4 1.7
0 2 1.7 6.5

⎞⎟⎟⎠ .

Use this factorization together with iterative improvement to find a solution to the
equation

Ax = (10 8 6 4)T

which is correct to 4 decimal places.

Chapter 9

Iterative Methods of Solution

Iterative or indirect method are based on reformulating Ax = b as

x(n+1) = Mx(n) + c

where n refers to the iteration number, M is known as the iteration matrix and c is
a new vector formed by the reformulation process. This approach requires that x(n)

converges to x, the exact solution, i.e.

x = lim
n→∞x(n)

Convergence depends on the choice of M and should not depend critically upon the
choice of x(0). Ideally, the choice of x(0) should be based on a priori information on
x but, in practice, we can set x(0) = 0.

Advantages of Iterative Methods

(i) The iteration matrix is virtually unaltered by most methods.

(ii) The methods are generally self correcting.

(iii) The methods are generally simple to program and require little additional storage.

(iv) The methods lend themselves to the application of parallel processing.

Disadvantages of Iterative Methods

(i) In general, there is no guaranty of convergence.

(ii) Even when the method converges, the number of iterations can be large.

(iii) The computing time can be large if many iteration are required and the system
of equations is large.

As a general rule of thumb, iterative methods are recommended only for large linear
systems of equations Ax = b when A is a large sparse matrix. Systems of this type,

237

238 CHAPTER 9. ITERATIVE METHODS OF SOLUTION

frequently occur in numerical solutions to partial differential equations using finite
difference analysis and (to a lesser extent) finite element analysis. They also occur
in cases when the impulse response function of a system is characterized by a matrix
which is banded and sparse.

The types of iterative techniques that are discussed in this chapter include:

Jacobi’s method,
the Gauss-Seidel method,
the relaxation method,
The conjugate gradient method which is a semi-iterative technique.

The conditions for convergence (which are discussed later on in this chapter) are as
follows:

(i) A sufficient condition for convergence is that A is strictly diagonally dominant, i.e.

| aii |>
n∑

j=1
j 	=i

| aij | .

(ii) A necessary and sufficient condition for convergence is that

ρ(M) < 1

where ρ(M) is the ‘spectral radius’, given by

ρ(M) = max
i
| λi | .

Here, λi are the eigenvalues of M . The largest eigenvalue of the iteration matrix must
therefore be less than unity to ensure convergence.

9.1 Basic Ideas

Consider the following system of equations:⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x1

x2

...
xn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
b1
b2
...
bn

⎞⎟⎟⎟⎠ .

We can rewrite this set of equations as

x1 =
1
a11

(b1 − a12x2 − ...− a1nxn),

x2 =
1
a22

(b2 − a21x1 − ...− a2nxn),

...

xn =
1
ann

(bn − an1x1 − ...− an,n−1xn−1).

Clearly this requires that aii �= 0, i.e. the diagonal elements are non zero.

9.1. BASIC IDEAS 239

9.1.1 Jacobi’s Method

Jacobi’s method involves the most basic iteration process of the type:

x
(k+1)
1 =

1
a11

(b1 − a12x
(k)
2 − ...− a1nx

(k)
n),

x
(k+1)
2 =

1
a22

(b2 − a21x
(k)
1 − ...− a2nx

(k)
n),

...

x(k+1)
n =

1
ann

(bn − an1x
(k)
1 − ...− an(n−1)x

(k)
n−1).

9.1.2 The Gauss-Seidel Method

The Gauss-Seidel method involves updating the sub-diagonal elements as the compu-
tation proceeds. The iteration process is

x
(k+1)
1 =

1
a11

(b1 − a12x
(k)
2 − ...− a1nx

(k)
n),

x
(k+1)
2 =

1
a22

(b2 − a21x
(k+1)
1 − ...− a2nx

(k)
n),

...

x(k+1)
n =

1
ann

(bn − an1x
(k+1)
1 − ...− an(n−1)x

(k+1)
n−1).

9.1.3 The Relaxation or Chebyshev Method

The relaxation method involves using a ‘relaxation parameter’ to ‘tune’ the system
in order to reduce the number of iterations required. The iteration process is

x
(k+1)
1 = x

(k)
1 +

ω

a11
(b1 − a12x

(k)
2 − ...− a1nx

(k)
n − a11x

(k)
1),

x
(k+1)
2 = x

(k)
2 +

ω

a22
(b2 − a21x

(k+1)
1 − ...− a2nx

(k)
n − a22x

(k)
2),

...

x(k+1)
n = x(k)

n +
ω

ann
(bn − an1x

(k+1)
1 − ...− an(n−1)x

(k+1)
n−1 − annx

(k)
n).

where ω is called the ‘relaxation parameter’. The value of this parameter affects
(increases) the rate of convergence. There are two cases in which 1 < ω < 2 giving the
so called ‘Successive-Over-Relaxation’ or SOR method and the case when 0 < ω < 1
known as the ‘Successive-Under-Relaxation’ or SUR method.

240 CHAPTER 9. ITERATIVE METHODS OF SOLUTION

9.2 Iterative Methods

In the previous section the basic ideas were introduced. In this section, we develop
the approach further. We start with b = Ax where A is a n × n matrix and write
this equation in the form

bi =
n∑

j=1

aijxj =
n∑

j=1
j 	=i

aijxj + aiixi.

Rearranging,

xi =
1
aii

⎛⎜⎜⎝bi − n∑
j=1
j 	=i

aijxj

⎞⎟⎟⎠
and iterating,

x
(k+1)
i =

1
aii

⎛⎜⎜⎝bi − n∑
j=1
j 	=i

aijx
(k)
j

⎞⎟⎟⎠ , k = 1, 2, ...

where
x

(1)
i =

bi
aii

which is equivalent to setting x
(0)
i = 0∀i. The above iterative scheme is Jacobi’s

method. Gauss-Seidel iteration is given by

x
(k+1)
i =

1
aii

⎛⎝bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

⎞⎠
and the relaxation method is compounded in the result

x
(k+1)
i = x

(k)
i +

ω

aii

⎛⎝bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
i − aiix

(k)
i

⎞⎠ .

It is easy to translate the formulae above into code which requires a loop to compute
the sums, a loop over i and a loop over k. Note that if ω = 1, then the relaxation
method reduces to Gauss-Seidel iteration. For ω �= 1, the relaxation method can
increase the rate of convergence, depending on the characteristics of the system.

9.3 Example of the Iteration Method

Suppose we are required to solve

10x1 − x2 + x3 = 20,

x1 − 20x2 − 2x3 = −16,

9.3. EXAMPLE OF THE ITERATION METHOD 241

2x1 − x2 + 20x3 = 23.

We re-write this system as

x1 =
1
10

(20 + x2 − x3),

x2 =
1
20

(16 + x1 − 2x3),

x3 =
1
20

(23− 2x1 + x2).

Note that the characteristic matrix A of this system is diagonally dominant and that
convergence is likely because 1/aii is small. Applying Jacobi iteration, we have

x
(n+1)
1 = (20 + x

(n)
2 − x(n)

3)/10,

x
(n+1)
2 = (16 + x

(n)
1 − 2x(n)

3)/20,

x
(n+1)
3 = (23− 2x(n)

1 + x
(n)
2)/20,

and taking x(0) = 0, gives
x0 = (0, 0, 0)T ,

x(1) = (2.0, 0.8, 1.15)T ,

x(2) = (1.965, 1.015, 0.990)T ,

x(3) = (2.0025, 0.99725, 1.003)T ,

Applying Gauss-Seidel iteration, we get

x
(n+1)
1 = (20 + x

(n)
2 − x(n)

3)/10,

x
(n+1)
2 = (16 + x

(n+1)
1 − 2x(n)

3)/20,

x
(n+1)
3 = (23− 2x(n+1)

1 + x
(n+1)
2)/20,

and with x0 = 0, we have
x(0) = (0, 0, 0)T ,

x(1) = (2.0, 0.9, 0.995)T ,

x(2) = (1.995, 0.999475, 1.000024)T ,

x(3) = (2.000055, 1.000050, 0.999995)T.

The exact solution vector is x = (2, 1, 1)T .

242 CHAPTER 9. ITERATIVE METHODS OF SOLUTION

9.4 General Formalism

Given Ax = b, we decompose the characteristic matrix A into lower triangular L,
diagonal D and upper triangular U matrices, i.e.

A = L+D + U

or Characteristic Matrix = Lower triangular + Diagonal + Upper triangular.

Then,
(L+D + U)x = b,

Dx = −Lx− Ux + b,

and
x = −D−1Lx−D−1Ux +D−1b

where
D−1 = diag(a−1

11 , a
−1
22 , ..., a

−1
nn).

The iteration methods can then be written as follows:

Jacobi iteration

x(n+1) = −D−1(L + U)x(n) +D−1b = MJx(n) + cJ

Gauss-Seidel iteration

x(n+1) = −D−1Lx(n+1) −D−1Ux(n) +D−1b

or after rearranging,

x(n+1) = −(D + L)−1Ux(n) + (D + L)−1b = MGx(n) + cG

Relaxation iteration

x(n+1) = x(n) + ω(−D−1Lx(n+1) −D−1Ux(n) +D−1b− x(n))

which after rearranging gives

x(n+1) = −(D + ωL)−1[(ω − 1)D + ωU]x(n) + (D + ωL)−1ωb = MRx(n) + cR

These results are compounded in the table below.

Method Iteration Matrix M Vector c
Jacobi −D−1(L+ U) D−1b

Gauss-Seidel −(D + L)−1U (D + L)−1b
Relaxation −(D + ωL)−1[(ω − 1)D + ωU] ω(D + ωL)−1b

9.5. CRITERION FOR CONVERGENCE OF ITERATIVE METHODS 243

SOR .v. SUR

When do we use under (ω < 1) and over (ω > 1) relaxation? Experimental results
suggest the following:

(i) Use ω > 1 when Gauss-Seidel iteration converges monotonically (most common).

(ii) Use ω < 1 when Gauss-Seidel iteration is oscillatory.

Note that as a general rule of thumb, if A is diagonally dominant, SOR or SUR
iteration is only slightly faster than Gauss-Seidel iteration. However, If A is near or
not diagonally dominant, then SOR or SUR can provide a noticeable improvement.

9.5 Criterion for Convergence of Iterative Methods

There are two criterion for convergence:

(i) Sufficient condition: A is strictly diagonally dominant.

(ii) Necessary and sufficient condition: The iteration matrix M has eigenvalues λi

such that
max

i
| λi |< 1.

9.5.1 Diagonal Dominance

The matrix

A =

⎛⎝ 5 2 −1
1 6 −3
2 1 4

⎞⎠
is diagonally dominant because

5 > 2+ | −1 |,

6 > 1+ | −3 |,
4 > 2 + 1

and the matrix

A =

⎛⎝ 1 2 −2
1 1 1
2 2 1

⎞⎠
is not diagonally dominant because

1 < 2+ | −2 |,

1 < 1 + 1,

1 < 2 + 2.

244 CHAPTER 9. ITERATIVE METHODS OF SOLUTION

In general, A is diagonally dominant if

| aii |>
n∑

j=1
j 	=i

| aij | ∀i.

9.5.2 Sufficient Condition for Convergence

Let us define the error e(n) at each iteration (n) as

x(n) = x + e(n)

where x is the exact solution. Now, since

x(n+1) = Mx(n) + c

we have
x + e(n+1) = M(x + e(n)) + c.

If this process is appropriate to obtain a solution, then we must have

x = Mx + c.

From the equations above, we get

e(n+1) = Me(n),

i.e.
e(1) = Me(0),

e(2) = Me(1) = M(Me(0)) = M2e(0),

e(3) = Me(2) = M(M2e(0)) = M3e(0),

...

e(n) = Mne(0).

Now, for global convergence, we require that

e(n) → 0 as n→∞

or
lim

n→∞Mne(0) = 0 ∀ e(0).

This will occur if
‖Mn‖ < 1.

But
‖Mn‖ ≤ ‖M‖n

and hence, we require that
‖M‖n < 1

9.5. CRITERION FOR CONVERGENCE OF ITERATIVE METHODS 245

or
‖M‖ < 1.

Consider Jacobi iteration, where

MJ = −D−1(L+ U) = −aij

aii
, j �= i.

For the �∞ norm

‖MJ‖∞ = max
i

n∑
j=1
j 	=i

| aij |
| aii | < 1

and therefore

| aii |>
n∑

j=1
j 	=i

| aij | .

Diagonal dominance is a sufficient but not a necessary condition for convergence.
However, in general, the greater the diagonal dominance, the greater the rate of
convergence.

9.5.3 Proof of the Necessary Condition for Convergence

For convergence, we require that

lim
n→∞ e(n) = 0.

Let M be the iteration matrix associated with a given process and consider the eigen-
value equation

(M − Iλi)vi = 0

where λi are the eigenvalues ofM and vi are the eigenvectors of M . (N.B. Eigenvalues
and eigenvectors are discussed in the following chapter.) Let us now write the error
vector e(0) as

e(0) =
n∑

i=1

aivi

where ai are appropriate scalars. From previous results we have

e(n) = Mne(0).

Hence,
Me(0) = M

∑
i

aivi =
∑

i

aiMvi =
∑

i

aiλivi

since
Mvi = λivi.

Further,
M(Me(0)) = M

∑
i

aiλivi =
∑

i

aiλiMvi =
∑

i

aiλ
2
i vi

246 CHAPTER 9. ITERATIVE METHODS OF SOLUTION

and by induction,
e(n) = Mne(0) =

∑
i

aiλ
n
i vi

Now, we want
e(n) → 0 as n→∞.

But this will only occur if
λn

i → 0 as n→∞,
a condition which requires that

ρ(M) < max
i
| λi | .

The parameter ρ(M) is called the ‘spectral radius’. This result leads to the following
recipe for establishing the convergence of an iterative process for solving Ax = b:

Given
x(n+1) = Mx(n) + c,

(i) find the largest eigenvalue of M ;

(ii) if the eigenvalue is < 1 in modulus, then the process converges;

(iii) if the eigenvalue if > 1 in modulus, then the process diverges.

Example Find the spectral radii for MJ and MG given that

A =

⎛⎝ −4 1 0
1 −4 1
0 1 −4

⎞⎠ .

The iteration matrix for Jacobi’s method is

MJ = −D−1(L+ U) =

⎛⎝ 0 1/4 0
1/4 0 1/4
0 1/4 0

⎞⎠ .

The eigenvalues of MJ can be found by solving equation (see Chapter 10)

|MJ − λI |= 0 for λ, i.e.∣∣∣∣∣∣
−λ 1/4 0
1/4 −λ 1/4
0 1/4 −λ

∣∣∣∣∣∣ = 0

or

−λ
∣∣∣∣ −λ 1/4

1/4 −λ
∣∣∣∣− 1

4

∣∣∣∣ 1/4 1/4
0 −λ

∣∣∣∣ = 0.

Thus,

λ

(
λ2 − 1

16

)
− λ

16
= 0

9.5. CRITERION FOR CONVERGENCE OF ITERATIVE METHODS 247

and
λ = 0 or ± 1√

8
.

Hence,

ρ(MJ) = max
i
| λi |= 1√

8
� 0.3536.

The Gauss-Seidel iteration matrix is given by

MG = −(D + L)−1U.

Using Jordan’s method (see Chapter 7) to find (D + L)−1 we get

MG =

⎛⎝ 0 1/4 0
0 1/16 1/4
0 1/64 1/16

⎞⎠ .

The eigenvalues of MG are then obtained by solving∣∣∣∣∣∣
−λ 1/4 0
0 1/16− λ 1/4
0 1/64 1/16− λ

∣∣∣∣∣∣ = 0

giving

λ = 0, 0 or
1
8
.

Therefore
ρ(MG) = 0.125.

9.5.4 Estimating the Number of Iterations

The smaller | λ |max, the faster e(n) → 0 as n → ∞. Hence, the magnitude of ρ(M)
indicates how fast the iteration processes converges. This observation can be used to
estimate the number of iterations. If n is the number of iterations required to obtain
a solution vector accurate to d decimal places, then

ρn � 10−d

so that n is given by

n � − d

log10ρ
.

In the SOR method, the iteration matrix is a function of the relaxation parameter
ω. Hence the spectral radius ρ is a functional of ω. The optimum value of ω is
the one for which ρ is a minimum. In some simple cases, the optimum value of ω
can be computed analytically. However, in practice, it is common to sweep through
a range of values of ω (in steps of 0.1 for example) using an appropriate computer
program and study the number of iterations required to generate a given solution.
The relaxation parameter ω is then set at the value which gives the least number of
iterations required to produce a solution with a given accuracy.

248 CHAPTER 9. ITERATIVE METHODS OF SOLUTION

9.5.5 The Stein-Rosenberg Theorem

In general, ρ(MG) ≤ ρ(MJ). Therefore Gauss-Seidel iteration usually converges faster
than Jacobi iteration for those cases in which both methods of iteration can be applied.
The comparisons between Jacobi and Gauss-Seidel iteration are compounded in the
Stein-Rosenberg theorem:

If MJ contains no negative elements, then there exists the following four possibilities:

Convergence

(i) ρ(MJ) = ρ(MG) = 0;

(ii) 0 < ρ(MG) < ρ(MJ) < 1.

Divergence

(iii) ρ(MJ) = ρ(MG) = 1,

(iv) 1 < ρ(MJ) < ρ(MG).

9.6 The Conjugate Gradient Method

The conjugate gradient method can be used to solve Ax = b when A is symmetric
positive definite. We start by defining the term ‘conjugate’. Two vectors v and w
are conjugate if vTAw = 0, vTAv > 0∀v. The basic idea is to find a set of linearly
independent vectors (v1,v2, ...,vn) which are conjugate with respect to A, i.e.

vT
i Avj = 0 if i �= j.

If we expand x as a linear series of basis vectors

x =
n∑

j=1

αjvj

then the problem is reduced to finding αj∀j. Now, the equation Ax = b becomes

n∑
j=1

αjAvj = b.

Multiplying both sides of this equation by vT
i we get

n∑
j=1

αjvT
i Avj = vT

i b.

Now, since vT
i Avj = 0 if i �= j, we have

n∑
j=1

αjvT
i Avj = αivT

i Avi = vT
i b.

9.6. THE CONJUGATE GRADIENT METHOD 249

Thus,

αi =
vT

i b
vT

i Avi

and the solution becomes

x =
n∑

j=1

(
vT

i b
vT

i Avi

)
vi.

This solution only requires the computation of Avi and the scalar products. There-
fore, the computation is easy once the conjugate directions vi are known. In principal,
the conjugate gradient method is a direct method. However, in practice, an iterative
solution is required to find the conjugate directions using a ‘Gram-Schmidt’ type
process.

9.6.1 The Gram-Schmidt Process

Our problem is, given (v1,v2, ...,vn) of a vector space Rn with inner product denoted
by 〈 〉, find an orthonormal basis (w1,w2, ...,wn) of Rn. The Gram-Schmidt process
is based on the following procedure:

w1 = v1,

w2 = v2 − 〈v2,w1〉
‖w1‖2 w1,

w3 = v3 − 〈v3,w2〉
‖w2‖2 w2 − 〈v3,w1〉

‖w1‖2 w1,

...

wn = vn − 〈vn,wn−1〉
‖wn−1‖2 wn−1 − ...− 〈vn,w2〉

‖w2‖2 w2 − 〈vn,w1〉
‖w1‖2 w1,

where
〈x,y〉 ≡ xT y, ‖x‖ ≡

√
〈x,x〉.

The orthonormal basis is then given by(
w1

‖w1‖ ,
w2

‖w2‖ , ...,
wn

‖wn‖
)
,

i.e.
〈wi/‖wi‖,wj/‖wj‖〉 = 0, i �= j.

9.6.2 Example of the Gram-Schmidt Process

Consider
v1 = (1, 1, 0)T and v2 = (−1, 0, 1)T .

Then

w1 = v1 =

⎛⎝ 1
1
0

⎞⎠ ,

250 CHAPTER 9. ITERATIVE METHODS OF SOLUTION

w2 = v2 − 〈v2,v1〉
‖w1‖2 w1

=

⎛⎝ −1
0
1

⎞⎠− (−1)
2

⎛⎝ 1
1
0

⎞⎠ =

⎛⎝ −1
0
1

⎞⎠+

⎛⎝ 1/2
1/2
0

⎞⎠ =

⎛⎝ −1/2
1/2
1

⎞⎠ ,

wT
1 w2 = 0,

wT
2 w1 = 0.

Therefore w1 and w2 are orthogonal and the orthonormal basis is

w1

‖w1‖ =

⎛⎝ 1/
√

2
1/
√

2
0

⎞⎠ ,
w2

‖w2‖ =
2
3

⎛⎝ −1/2
1/2
1

⎞⎠ .

9.6.3 Practical Algorithm for the Conjugate Gradient Method

To solve Ax = b, we begin with an arbitrary starting vector x0 = (1, 1, ..., 1)T say
and compute the residual r0 = b−Ax0. We then set v0 = r0 and feed the result into
the following iterative loop:

(i) compute coefficients of conjugate gradients

αj =
vT

i ri

vT
i Avi

;

(ii) update x,
xi+1 = xi + αivi;

(iii) compute the new residual

ri+1 = ri + αiAvi;

(iv) compute the next conjugate gradient using the Gram-Schmidt process

vi+1 = ri +
rT

i+1ri+1

rT
i ri

vi.

Important points

1. The conjugate directions are v0,v1,v2, ...,vn.

2. The matrix A is only used to compute Avi.

3. The process is stopped when ‖ri‖ ≤ ε, i.e. the required tolerance.

4. The algorithm works well when A is large and sparse.

9.7. SUMMARY OF IMPORTANT RESULTS 251

We conclude this chapter with a schematic diagram illustrating the principal iterative
methods of approach to solving Ax = b as given below.

Ax = b where A Ax = b where A
is sparse and symmetric is sparse, symmetric

or non-symmetric and positive definite
↓ ↓

ρ(λ) < 1 Conjugate gradient method
↓ ↓

SOR with ω = 1 x
↙↘

Monotonic Oscillatory convergence convergence
↓ ↓

SOR SUR
↓ ↓
x x

Diagram 9.1: Schematic diagram illustrating the iterative methods

9.7 Summary of Important Results

Iterative Method
x(n+1) = Mx(n) + c

Jacobi Iteration
M = −D−1(L+ U), c = D−1b

Gauss-Seidel Iteration

M = −(D + L)−1U, c = (D + L)−1b

Relaxation Iteration

M = −(D + ωL)−1[(ω − 1)D + ωU], c = ω(D + ωL)−1b

SOR Method
1 < ω < 2

SUR Method
0 < ω < 1

Condition for Convergence
‖M‖ << 1

252 CHAPTER 9. ITERATIVE METHODS OF SOLUTION

Sufficient Condition for Convergence

| aii |>
n∑

j=1
j 	=i

| aij |

Necessary Condition for Convergence

ρ(M) < max
i
| λi |

Conjugate Gradient Solution

x =
n∑

j=1

(
vT

i b
vT

i Avi

)
vi, vT

i Avj = 0 if i �= j.

9.8 Further Reading

• Traub J F, Iterative Methods for the Solution of Equations, Prentice-Hall, 1964.

• Smith G D, Numerical Solution of Partial Differential Equations, Oxford Uni-
versity Press, 1978.

• Fogeil M, The Linear Algebra Problem Solver, Research and Education Associ-
ation, 1986.

• Gerald C F and Weatley P O, Applied Numerical Analysis, Addison-Wesley,
1989.

• Ciarlet O G, Introduction to Numerical Linear Algebra and Optimization, Cam-
bridge University Press, 1989.

9.9 Problems

9.1 (i) Solve the following system of equations using Gauss-Seidel iteration:

−2x1 + x2 = −1,

x1 − 2x2 + x3 = 0,

x2 − 2x3 + x4 = 0,

x3 − 2x4 = 0.

Observe the number of iterations that are required for the process to converge, giving
a solution that is correct to 2 decimal places.

9.9. PROBLEMS 253

(ii) Compare the number of iterations using Jacobi and then Gauss-Seidel method
that are required to solve Ax = (2, 4, 6, 8)T where

A =

⎛⎜⎜⎝
4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2

⎞⎟⎟⎠ .

9.2 Consider the following equations:

5x1 + 2x2 − x3 = 6,

x1 + 6x2 − 3x3 = 4,

2x1 + x2 + 4x3 = 7.

State whether or not the characteristic matrix of this system is diagonally dominant.
Compute the Jacobi and Gauss-Seidel iteration matrices for this system and solve
these equations using Jacobi iteration and then Gauss-Seidel iteration. Use a ‘stopping
criterion’ given by

max
i
| x(n+1)

i − x(n)
i |≤ 1

2
× 10−2.

If we wanted to improve the rate of convergence of the Gauss-Seidel process, should
we use SOR or SUR. By choosing a suitable value for the relaxation parameter, solve
the system of equations above using the relaxation method. Is the rate of convergence
significantly improved? Comment on your result.

9.3 Compare the convergence rates of GS and SOR iteration using a relaxation para-
meter value of 1.6 to solve the equations:

−3x1 + x2 + 3x4 = 1,

x1 + 6x2 + x3 = 1,

x2 + 6x3 + x4 = 1,

3x1 + x3 − 3x4 = 1.

Use a ‘stopping criterion’ of 5× 10−3. Comment on the result.

9.4 For which of the following system of equations does the (i) Jacobi method and
(ii) Gauss-Seidel method converge? Start with the zero vector and use a tolerance of
0.001:

(a)
−4x1 + x2 = 1,

x1 − 4x2 + x3 = 1,

x2 − 4x3 + x4 = 1,

x3 − 4x4 = 1.

254 CHAPTER 9. ITERATIVE METHODS OF SOLUTION

(b)
2x1 + x2 + x3 = 4,

x2 + 2x2 + x3 = 4,

x1 + x2 + 2x3 = 4.

(c)
x1 + 2x2 − 2x3 = 3,

x1 + x2 + x3 = 0,

2x1 + 2x2 + x3 = 1.

9.5 Find the spectral radii of the Jacobi and Gauss-Seidel iteration matrices corre-
sponding to each system given in question 9.4. Hence, comment on the convergence
or divergence in each case.

9.6 Which, if any, of the coefficient matrices in question 9.4 are diagonally dominant?
Is diagonal dominance a necessary condition for convergence of the Jacobi and Gauss-
Seidel method?

9.7 ‖v‖ denotes any norm of Rn and ‖A‖ is the associated norm for an n× n matrix
A. Prove that if ρ(A) denotes the spectral radius of A, then

ρ(A) ≤ ‖A‖.

9.8 Find a set of vectors which are mutually conjugate with respect to the matrix

A =

⎛⎝ 3 1 −1
1 2 1
−1 1 3

⎞⎠ .

Hence, solve the equation
Ax = (4, 6, 4)T .

9.9 Use the Gram-Schmidt process to solve the equation Ax = (4 4 4)T where

A =

⎛⎝ 2 1 0
1 3 −1
0 −1 2

⎞⎠ .

Chapter 10

Eigenvalues and Eigenvectors

The problem of computing the eigenvalues and eigenvectors occur in the study of
systems described by:

(i) homogeneous systems where
Axi = λixi;

(ii) inhomogeneous systems in which

Axi = λixi + b

where xi are the eigenvectors and λi are the eigenvalues. To illustrate where such a
problem originates, consider the homogeneous wave equation given by(

∂2

∂x2
+ k2

)
u(x, k) = 0

which has a general solution

u(x, k) = A cos(kx) +B sin(kx)

where A and B are constants. Suppose we want the solution to the case of standing
waves on a string of length L. The boundary conditions in this case are u(0, k) = 0
and u(L, k) = 0. The first of these conditions implies that A = 0. The second
conditions implies that either B = 0 which gives a trivial solution or that kL = nπ
where n is an integer. The solution is then given by (for unit amplitude)

un(x, k) = sin(knx)

where
kn =

nπ

L
.

Here, the frequency of oscillation is determined by π/L which defines the eigenvalues
kn - discrete frequencies - and the wavefield is determined by the set of eigenfunctions
un(x, k). Suppose we now investigate the discrete solution to this problem over an
array of size N say, by centre differencing it so that we have

un+1 − 2un + un−1 + λun = 0, n = 1, 2, ..., N

255

256 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

where λ = k2Δx2 (Δx being the ‘step length’). This difference equation defines a set
of coupled equations given by

−u2 + 2u1 − u0 = λu1,

−u3 + 2u2 − u1 = λu2,

...

−uN+1 + 2uN − uN−1 = λuN .

If we now introduce the (boundary) conditions u0 = 0 and uN+1 = 0, then we can
write this set of equations in the form⎛⎜⎜⎜⎜⎜⎝

2 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0

...
. . .

...
−1 2

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
u1

u2

u3

...
uN

⎞⎟⎟⎟⎟⎟⎠ = λ

⎛⎜⎜⎜⎜⎜⎝
u1

u2

u3

...
uN

⎞⎟⎟⎟⎟⎟⎠
which is the eigenvalue problem for a characteristic matrix that is tridiagonal.
The vector u ≡ (u1, u2, ..., uN) - known as the eigenvector - is the (discrete) wave-
amplitude subject to the boundary conditions imposed which stipulate that the am-
plitude is zero at the beginning and the end of the array (a wave on a string which
is fixed at both ends). The eigenvalue λ describes the frequency with which this
wave can oscillate. There may be a set of eigenvalues and eigenvectors that satisfy
this system. Physically, they describe the frequencies at which standing waves are
supported by the string. In problems of this type, in which the characteristic matrix
is tridiagonal, a method known as Sturm sequence iteration can be efficiently applied
to compute the eigenvalues and eigenvectors as discussed later on in this chapter.

There is clearly an association between the eigenvalues of such a system and its
Fourier representation. For example, if we consider un in terms of the Discrete Fourier
Transform (see Chapter 3), i.e.

um =
1
N

∑
n

Un exp(2πinm/N),

then the equation
um+1 − 2um + um−1 + λum = 0

transforms to

1
N

∑
n

[exp(2πin/N)− 2 + exp(−2πin/N)]Un exp(2πinm/N)

+
λ

N

∑
n

Un exp(2πinm/N) = 0

from which it is clear that

exp(2πin/N) + exp(−2πin/N)− 2 + λ = 0

10.1. FORMAL METHODS OF SOLUTION 257

or
λn = 2[1− cos(2πn/N)].

The eigenvectors are then given by

un
m+1 = 2un

m − un
m−1 − λnu

n
m, m = 0, 1, 2, ..., N − 1

given un
0 and un−1.

10.1 Formal Methods of Solution

If we consider the homogeneous case, then we can write

Axi = λiIxi

and hence,
(A− Iλi)xi = 0.

The equation Ax = 0 is generally not soluble unless | A |= 0. Hence, to compute the
eigenvalues we require that

| A− Iλi |= 0.

This is the ‘characteristic equation’ or ‘characteristic polynomial’ of A because we
can write

| A− Iλ |=

∣∣∣∣∣∣∣∣∣
a11 − λ a12 . . . a1n

a22 − λ
. . .

ann − λ

∣∣∣∣∣∣∣∣∣
= f(λ)

where f(λ) is a polynomial of degree n. Our problem is two-fold. First we need to
solve | A − Iλi |= 0 for λi, i.e. find the roots of f(λ) = 0. Having obtained the
eigenvalues we then need to solve (A− Iλi)xi = 0 for xi given λi.

Example Consider the characteristic matrix

A =

⎛⎝ −1 2 −2
−2 3 −1
2 −2 4

⎞⎠ .

The characteristic equation is∣∣∣∣∣∣
−1− λ 2 −2
−2 3− λ −1
2 −2 4− λ

∣∣∣∣∣∣ = 0.

Factorizing, we get
(2− λ)(λ − 1)(λ− 3) = 0

whose roots are λ1 = 1, λ2 = 2 and λ3 = 3. For λ1 = 1, x1 = (x1, x2, x3)T is given
by solution to ⎛⎝ −2 2 −2

−2 2 −1
2 −2 3

⎞⎠⎛⎝ x1

x2

x3

⎞⎠ = 0.

258 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

Now, the augmented matrix is⎛⎝ −2 2 −2 | 0
−2 2 −1 | 0
2 −2 3 | 0

⎞⎠
and using Gaussian elimination we obtain⎛⎝ −2 2 −2 0

0 0 2 0
0 0 1 0

⎞⎠
Therefore x3 = 0 and x1 = x2 giving x1 = (1, 1, 0)T which is the eigenvector of
the eigenvalue λ1. The same approach can then be used to find the eigenvectors for
eigenvalues λ2 and λ3.

10.2 Properties of Eigenvalues

The characteristic equation may be written in the form

f(λ) =| A− Iλ |= (−1)n[λn − αn−1λ
n−1 + αn−2λ

n−2 − ...+ (−1)nα0].

Let λ1, λ2, ..., λn be eigenvalues (roots) of the equation f(λ) = 0. Then

f(λ) = (λ1 − λ)(λ2 − λ)(λ3 − λ)...(λn − λ).

Comparing these equations,

αn−1 = (λ1 + λ2 + ...+ λn),

αn−2 = λ1λ2 + λ1λ3 + ...+ λ1λn + λ2λ3 + λ2λ4 + ...+ λ2λn + ...+ λn−1λn,

αn−3 = λ1λ2λ3 + ...+ λn−2λn−1λn,

...

α0 = λ1λ2λ3...λn.

Important Results

(i) Let λ = 0, then | A |= α0 = λ1λ2...λn or

detA =
n∏

i=1

λi.

(ii) By inspection

αn−1 = a11 + a22 + ...+ ann = λ1 + λ2 + ...+ λn

or

TrA ≡
n∑

i=1

aii =
n∑

i=1

λi.

10.2. PROPERTIES OF EIGENVALUES 259

Orthogonal Properties of Eigenvectors

From the properties of determinants (see Chapter 6), A and AT have the same eigen-
values. However, A and AT have different eigenvectors unless A is symmetric. If A is
non-symmetric, then

Axi = λixi (10.1)

and
ATyi = λiyi. (10.2)

Taking the transpose of equation (10.2) gives

yT
i A = λiyT

i . (10.3)

From equation (10.1)
yT

j Axi = λiyT
j xi (10.4)

and from equation (10.3)
yT

i Axj = λiyT
i xj

or
yT

j Axi = λjyT
j xi. (10.5)

Now, subtracting equation (10.5) from equation (10.4) gives

(λj − λi)yT
j xi = 0.

Hence, if λi �= λj then
yT

j xi = 0.

In other words, the eigenvectors are orthogonal.

Normalized Eigenvectors

The eigenvectors
(x1,x2, ...,xn)

can be normalized by considering re-scaling them as(
x1

‖x1‖ ,
x2

‖x2‖ , ...,
xn

‖xn‖
)

where
‖xi‖ =

√
〈xi,xi〉

Linearly Dependent Eigenvectors

If there exists a relationship

c1x1 + c2x2 + ...+ cnxn = 0 (10.6)

where the coefficients ci are not all zero, then the eigenvectors are linearly dependent.

260 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

Linearly Independent Eigenvectors

If equation (10.6) above can only be satisfied when ci = 0∀i then the eigenvectors are
linearly independent.

Theorem If the eigenvalues λ1, λ2, ..., λn of an n× n matrix A are all distinct, then
the corresponding eigenvectors x1,x2, ...,xn are linearly independent.

Proof If xi are linearly independent, then

c1x1 = −(c2x2 + ...+ cnxn)

and
A(c2x2 + ...+ cnxn) = −c1Ax1 = −c1λ1x1 = λ1(c2x2 + ...+ cnxn).

=⇒ c2λ2x2 + ...+ cnλnxn = c2λ1x2 + ...+ cnλ1xn

or
c2(λ2 − λ1)x2 + c3(λ3 − λ1)x3 + ...+ cn(λn − λ1)xn = 0.

The effect is that x1 is eliminated. Further,

c2(λ2 − λ1)x2 = −[c3(λ3 − λ1)x3 + ...+ cn(λn − λ1)xn] = 0

and

Ac2(λ2 − λ1)x2 = c2(λ2 − λ1)λ2x2 = −[c3(λ3 − λ1)λ2x3 + ...+ cn(λn − λ1)λ2xn).

=⇒ [c3(λ3−λ1)λ2x3+ ...+cn(λn−λ1)λ2xn] = c3(λ3−λ1)λ3x3+ ...+cn(λn−λ1)λnxn

or
c3(λ3 − λ1)(λ3 − λ2)x3 + ...+ cn(λn − λ1)(λn − λ2)xn = 0

which eliminates x2. Eliminating x3 using the same method gives

c4(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)x4 + ...+ cn(λn − λ1)(λn − λ2)(λn − λ3)xn = 0

Hence, by induction, if we repeat the same method n times we will get

cn(λn − λ1)(λn − λ2)(λn − λ3)...(λn − λn−1)xn = 0.

=⇒ cn = 0 if λi are distinct ∀i.
By a similar argument

c1 = c2 = c3 = ... = ci = 0

and therefore xi are linearly independent.

Diagonalization of Matrices

The matrix A is diagonalizable if matrix T exists such that

T−1AT =

⎛⎜⎜⎜⎝
b11

b22
. . .

bnn

⎞⎟⎟⎟⎠ .

10.2. PROPERTIES OF EIGENVALUES 261

Theorem An nth order matrix is diagonalizable if it possesses a complete set of
linearly independent eigenvectors.

Proof Let xi be an eigenvector of A with eigenvalues λi. Consider a ‘model matrix’
X = (x1,x2, ...,xn) then

AX = A(x1,x2, ...,xn) = (Ax1, Ax2, ..., Axn) = (λ1x1, λ2x2, ..., λxn).

Hence,

AX = (x1,x2, ...,xn)

⎛⎜⎜⎜⎝
λ1

λ2

. . .
λn

⎞⎟⎟⎟⎠
and thus,

X−1AX = Λ ≡ diag(λ1, λ2, ..., λn).

Integral Powers of A

Theorem If n is a positive integer, then An has the same system of eigenvectors as
A but its eigenvalues are λn

i .

Proof Consider Axi = λixi. Then

Anxi = An−1Axi = An−1λixi = λiA
n−1xi.

Repeating the process,

λiA
n−1xi = λiA

n−2Axi = λiA
n−2λixi = λ2

iA
n−2xi

and
λ2

iA
n−2xi = ...

...

... = λn
i xi

Hence,
Anxi = λn

i xi.

Theorem If n is a positive integer, then An = XΛnX−1.

Proof
A = XΛX−1,

A2 = (XΛX−1)(XΛX−1) = XΛ2X−1,

A3 = (XΛX−1)(XΛ2X−1) = XΛ3X−1,

...

262 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

An = XΛnX−1.

Example Given

A =
(

4 1
2 3

)
compute A8. The characteristic equation is

| A− λI |=
∣∣∣∣ 4− λ 1

2 3− λ
∣∣∣∣ = (λ− 2)(λ− 5) = 0

and the eigenvalues are 2 and 5. For λ = 2:(
2 1
2 1

)(
x1

x2

)
=
(

0
0

)
so that

2x1 + x2 = 0 twice,

x1 = −1
2
x2.

For the normalized eigenvector, x2
1 + x2

2 = 1 which gives

x1 = − 1√
5
, x2 =

2√
5
.

For λ = 5: (−1 1
2 −2

)(
x1

x2

)
=
(

0
0

)
and

x1 = x2 twice.

Normalising, we get

x1 =
1√
2
, x2 =

1√
2
.

Then,

x1 =
(−1/

√
5

2/
√

5

)
, x2 =

(
1/
√

2
1/
√

2

)
,

the model matrix is

X = (x1,x2) =
(−1/

√
5 1/

√
2

2/
√

5 1/
√

2

)
and

X−1 =
(−√5/3

√
5/3

2
√

2/3
√

2/3

)
.

Now,

X−1AX =
(

2 0
0 5

)
= Λ

10.3. THE CAYLEY-HAMILTON THEOREM 263

and
A8 = XΛ8X−1.

Thus,

λ8 =
(

2 0
0 5

)8

=
(

28 0
0 58

)
=
(

256 0
0 390625

)
so that

A8 =
(−1/

√
5 1/

√
2

2/
√

5 1/
√

2

)(
256 0
0 390625

)(−√5/3
√

5/3
2
√

2/3
√

2/3

)

=
(

260502 130123
260246 130379

)
.

Important Points

Non-symmetric matrices with different eigenvalues are diagonalizable. For symmetric
matrices

λ = X−1AX = XTAX

since XTX = I and XT = X−1. For Hermitian matrices

Λ = X−1AX = X†AX

since X†X = I or X† = X−1 where X† = (X∗)T .

10.3 The Cayley-Hamilton Theorem

The Cayley-Hamilton theorem states that a a square matrix satisfies its own charac-
teristic equation. Thus, if

f(λ) =| A− λI |
then

f(A) = 0.

Example Consider

A = left(0 −2
1 −3

then

f(λ) =
∣∣∣∣ −λ −2

1 −3− λ
∣∣∣∣ = λ2 + 3λ+ 2 = 0.

From the Cayley-Hamilton theorem

f(A) = A2 + 3A+ 2I = 0.

Now,

A2 =
(−2 6
−3 7

)
, 3A =

(
0 −6
3 −9

)
, 2I =

(
2 0
0 2

)
.

264 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

and hence,

f(A) =
(

0 0
0 0

)
.

Proof of the Cayley-Hamilton Theorem

Let
f(λ) = (−1)n[λn − αn−1λ

n−1 + αn−2λ
n−2 − ...+ (−1)nα0] = 0

and
f(A) = (−1)n[An − αn−1A

n−1 + αn−2A
n−2 − ...+ (−1)nα0].

Now, does f(A) = 0? Since
Axi = λixi

and
Anxi = λn

i xi,

f(A)xi = (−1)n[Anxi − αn−1A
n−1xi + αn−2A

n−2xi − ...+ (−1)nα0xi]

= (−1)n[λnxi − αn−1λ
n−1xi + αn−2λ

n−2xi − ...+ (−1)nα0xi]

= (−1)n[λn − αn−1λ
n−1 + αn−2λ

n−2 − ...+ (−1)nα0]xi = f(λ)xi = 0.

This result shows that

[f(A)x1, f(A)x2, ..., f(A)xn] = 0

or
f(A)U = 0, U = (x1,x2, ...,xn).

Now xi are linearly independent and therefore U−1 exists. Thus,

f(A)UU−1 = 0

or
f(A)I = f(A) = 0.

Applications of the Cayley-Hamilton Theorem

From the Cayley-Hamilton theorem,

(−1)n[An − αn−1A
n−1 + αn−2A

n−2 − ...+ (−1)nα0] = 0.

Pre-multiplying both sides of the equation above by A−1 gives

A−1An − αn−1A
−1An−1 + αn−2A

−1An−2 − ...+ (−1)nα0A
−1 = 0

or
An−1 − αn−1A

n−2 + αn−2A
n−3 − ...+ (−1)nα0A

−1 = 0.

Rearranging

A−1 =
(−1)n

α0
(−An−1 + αn−1A

n−2 − αn−2A
n−3 + ...).

10.4. THE POWER METHOD 265

There are some practical problems associated with this approach to computing A−1

since the powers of A must be formed and stored and ∼ n4 multiplications are needed
for an n× n matrix.

Example Consider

A =

⎛⎝ 1 2 −1
1 0 1
2 2 3

⎞⎠ .

Then

| A− Iλ |=
∣∣∣∣∣∣

1− λ 2 −1
1 −λ 1
2 2 3− λ

∣∣∣∣∣∣ = −λ3 + 4λ2 − λ− 6.

The characteristic equation is

λ3 − 4λ2 + λ+ 6 = 0.

From the Cayley-Hamilton theorem, we have

A3 − 4A2 +A+ 6I = 0,

A2 − 4A+ I + 6A−1 = 0,

A−1 =
1
6
(−A2 + 4A− I),

A2 =

⎛⎝ 1 0 −2
3 4 2
10 10 9

⎞⎠ .

Hence,

A−1 =
1
6

⎛⎝ 2 8 −2
1 −5 2
−2 −2 2

⎞⎠ .

10.4 The Power Method

The power method is used to find the eigenvalue (and eigenvector) of largest modulus.
Suppose that the eigenvectors are v1,v2, ...,vn. Also, consider an arbitrary initial
approximation x0 (any vector). Let

x0 =
N∑

i=1

αivi.

Then

Anx0 =
N∑

i=1

αiA
nvi =

N∑
i=1

αiλ
n
i vi

because
Anvi = λn

i vi.

266 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

Now, if λ1 is the largest eigenvalue, then

Anx0

λn
1

=
N∑

i=1

αi

(
λi

λ1

)n

vi = α1v1 +
N∑

i=2

αi

(
λi

λ1

)n

vi = α1v1 as n→∞

since
λi

λ1
< 1 ∀ 2 ≤ i ≤ N.

For large n
Anx0

λn
1

= α1v1

and
An+1x0

λn+1
1

= α1v1.

If we now choose some vector y not orthogonal to vi, then

1
λn

1

(Anx0 · y) = α1v1 · y

and
1

λn+1
1

(An+1x0 · y) = α1v1 · y.

Hence,
1

λn+1
1

(An+1x0 · y) =
1
λn

1

(Anx0 · y) �= 0

or
An+1x0 · y
Anx0 · y =

λn+1
1

λn
1

= λ1.

If we now choose y = Anx0, then

λ1 =
An+1x0 · Anx0

Anx0 · Anx0
=
A(Anx0) ·Anx0

Anx0 · Anx0
.

Eigenvector Associated with λ1

We know that

λ1 =
A(Anx0) · Anx0

Anx0 ·Anx0
.

But Avi = λvi or

λ =
Avi · vi

vi · vi
.

Thus, Anx0 ≡ v1 must be the approximate eigenvector corresponding to λ1. The
quotient

Av1 · v1

v1 · v1

is called the ‘Rayleigh quotient’.

10.4. THE POWER METHOD 267

Example of the Power Method

Compute the dominant eigenvalue and associated eigenvector of

A =
(−7 2

8 −1

)
.

noting that the exact results are λ = −9 and x = (−1, 1)T . We start with x0 = (1, 1)T .
Then

Ax0 =
(−5

7

)
,

A2x0 =
(

49
−47

)
,

A3x0 =
(−437

439

)
and

λ1 � A3x0 · A2x0

A2x0 · A2x0
= −42046

4610
= −9.121.

Overflow

In the previous example, relatively large numbers were produced. If large powers of
A are computed then very large numbers start to accumulate which may exceed the
storage facility of the computer. This is called ‘overflow’. Overflow can be avoided by
scaling, i.e. dividing the vectors by their maximum modulo component. Repeating
the previous example with scaling, we have:

Ax0 =
(−5

7

)
or with scaling,

1
7

(−5
7

)
=
(−0.714

1

)
,

A2x0 =
(−7 2

8 −1

)(−0.714
1

)
=
(

6.998
−6.712

)
or

(
1

−0.959

)
with scaling,

A3x0 =
(−7 2

8 −1

)(
1

−0.959

)
=
(

8.918
8.959

)
or

(−0.995
1

)
with scaling.

Then
λ1 =

Av1 · v1

v1 · v1

where v1 = (−1, 1)T giving a value of -9 for the dominant eigenvalue.

10.4.1 Basic Algorithm for the Power Method

The basic steps required in developing an algorithm for the power method are as
follows:

Step 1: Compute yi = Axi where x0 is arbitrary but usually set to (1, 1, ..., 1)T .

268 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

Step 2: Evaluate xi+1 = yi/max | yi |, i.e. scale eigenvector to prevent overflow.

Step 3: Terminate the process when ‖xi+1 − xi‖ ≤ ε where ε is some user defined
tolerance.

Step 4: xi+1 is the dominant eigenvector ≡ v1.

Step 5: The dominant eigenvalue is then given by computing

λ1 =
Av1 · v1

v1 · v1
.

Note that (λ1,v1) are sometimes referred to as the ‘dominant eigenpair’.

10.4.2 Problems Concerning the Power Method

The power method is not applicable when A does not have a dominant eigenvalue or
when λ2 is just less than λ1. When λ2/λ1 is just less than 1, (λ2/λ1)n → 0 as n→∞
slowly. Therefore many iterations are required. If the entries of A contain significant
errors, powers An of A have significant round-off errors in their entries. Therefore
errors accumulate as the iteration proceeds. Hence, the basic rule of thumb for using
the Power Method is:

1. Try the power method and if

(Axi) · xi

xi · xi
with x0 = (1, 1, ..., 1)T

approaches a single number λ1 goto 2.

2. Check whether
Av1 = λ1v1.

3. If 2 checks out, then accept (λ1,v1) as the dominant eigenpair.

10.4.3 Deflation

Deflation of a matrix is based on 2 Lemmas:

Lemma 1. If a matrix A has eigenvalues λi corresponding to eigenvectors xi, then
P−1AP has the same eigenvalues as A but with eigenvectors P−1xi for any nonsin-
gular matrix P .

Proof The eigenvalue equation is Axi = λixi, thus

(P−1AP)P−1xi = P−1A(PP−1)xi = P−1Axi = P−1(λixi) = λi(P−1xi).

The matrices A and P−1AP are said to be similar because they have the same eigen-
values. The transform

A→ P−1AP

10.4. THE POWER METHOD 269

is called a similarity transform. Many numerical techniques for computing the eigen-
values of a matrix are based on some type of similarity transform.

Lemma 2. Let

B =

⎛⎜⎜⎜⎜⎜⎝
λ1 a12 a13 . . . a1n

0 c22 c23 . . . c2n

0 c32 c33 . . . c3n

...
...

...
. . .

...
0 cn2 cn3 . . . cnn

⎞⎟⎟⎟⎟⎟⎠
and let C be the (n−1)×(n−1) matrix obtained by deleting the first row and column
of B. Then:

(i) The matrix B has eigenvalues λ1 together with the n− 1 eigenvalues of C.

(ii) If (β2, β3, ..., βn)T is an eigenvector of C with eigenvalue μ �= λ1, then the corre-
sponding eigenvector of B is (β1, β2, ..., βn)T where

β1 =

n∑
j=2

a1jβj

μ− λ1
.

Proof

The characteristic polynomial of B is∣∣∣∣∣∣∣∣∣∣∣

λ1 − λ a12 a13 . . . a1n

0 c22 − λ c23 . . . c2n

0 c32 c33 − λ . . . c3n

...
...

...
. . .

...
0 cn2 cn3 . . . cnn − λ

∣∣∣∣∣∣∣∣∣∣∣
.

Expanding this determinant down, the first column gives

(λ1 − λ)

∣∣∣∣∣∣∣∣∣
c22 − λ c23 . . . c2n

c32 c33 − λ . . . c3n

...
...

. . .
...

cn2 cn3 . . . cnn − λ

∣∣∣∣∣∣∣∣∣
= (λ1 − λ) | C − λI |

The eigenvalues of C are therefore the eigenvalues of B, i.e. the eigenvalues of B are
given by

(λ1 − λ) | C − λI |= 0.

Hence, one eigenvalue is λ1, the rest being obtained by solving

| (C − λI) |= 0.

270 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

Further, if (β1, β2, ..., βn)T is an eigenvector of B with eigenvalue μ, then⎛⎜⎜⎜⎜⎜⎝
λ1 a12 a13 . . . a1n

0 c22 c23 . . . c2n

0 c32 c33 . . . c3n

...
...

...
. . .

...
0 cn2 cn3 . . . cnn

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
β1

β2

β3

...
βn

⎞⎟⎟⎟⎟⎟⎠ = μ

⎛⎜⎜⎜⎜⎜⎝
β1

β2

β3

...
βn

⎞⎟⎟⎟⎟⎟⎠ .

These equations can be written as⎛⎜⎜⎜⎝
c22 c23 . . . c2n

c32 c33 . . . c3n

...
...

. . .
...

cn2 cn3 . . . cnn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

β2

β3

...
βn

⎞⎟⎟⎟⎠ = μ

⎛⎜⎜⎜⎝
β2

β3

...
βn

⎞⎟⎟⎟⎠
and

λ1β1 + a12β2 + a13β3 + ...+ a1nβn = μβ1.

From the last equation we have

β1 =

n∑
j=2

a1jβj

μ− λ1
.

From Lemma (2) we know that if λ1 is known (obtained from A via the power method
for example) then we can concentrate attention on finding another eigenvalue by
extracting the reduced matrix C and applying the power method again. This is the
principle of deflation. The remaining question is what transformation matrix P gives
B = P−1AP of the appropriate form. The matrix required is given by

P =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0
ξ2 1 0 . . . 0
ξ3 0 1 . . . 0
...

...
...

. . .
...

ξn 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠
and if x1 = (x1, x2, ..., xn)T is the eigenvector associated with λ1, then

ξi =
xi

| x1 | ; 2 ≤ i ≤ n.

The inverse of P is

P−1 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0
−ξ2 1 0 . . . 0
−ξ3 0 1 . . . 0

...
...

...
. . .

...
−ξn 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠ .

10.4. THE POWER METHOD 271

10.4.4 The Deflation Method for a Non-symmetric Matrix

Deflation for the case when A is non-symmetric is based on the following important
property: If A is any real matrix and P is a real non-singular matrix, then A and
B = P−1AP have the same eigenvalues and related eigenvectors given by vi = P−1xi

where xi are the eigenvectors of A. The application of a similarity transform of this
type is a good idea if the eigenpairs of B are easier to compute than the eigenpairs
of A. Note that xi can be recovered from vi = P−1xi since

Pvi = PP−1xi = xi.

Example Consider the matrix

A =

⎛⎝ 10 −6 −4
−6 11 2
−4 2 6

⎞⎠
where the dominant eigenpair (λ1,v1) is given by λ1 = 18 and x1 = (1,−1,−1/2)T .
The transform matrix we require for deflation is given by

P =

⎛⎝ 1 0 0
−1 1 0
−1/2 0 1

⎞⎠ , P−1 =

⎛⎝ 1 0 0
1 1 0

1/2 0 1

⎞⎠
so that

P−1AP =

⎛⎝ 18 −6 −4
0 5 −2
0 −1 4

⎞⎠ .

The deflated matrix is

C =
(

5 −2
−1 4

)
.

The eigenvalues (λ2, λ3) of this matrix are (6, 3) and the eigenvectors of this matrix
are (1,−1/2)T and (1, 1)T . Now

β1 =

3∑
j=2

a1jβj

μ− λi

= 1/3, i = 2;

= 2/3, i = 3.

Hence,
v2 = (1/3, 1,−1/2)T and v3 = (2/3, 1, 1)T .

Finally, vi = P−1xi giving

x2 =

⎛⎝ 1 0 0
−1 1 0
−1/2 0 1

⎞⎠⎛⎝ 1/3
1

−1/2

⎞⎠ =

⎛⎝ 1/3
2/3
−2/3

⎞⎠ .

272 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

Similarly

x3 =

⎛⎝ 2/3
1/3
2/3

⎞⎠ .

10.4.5 The Deflation Method for a Symmetric Matrix

If A is symmetric and (λ1,v1) is the dominant eigenpair of A, then

B = A− λ1u1uT
1 where u1 = v1/ | v1 |

has eigenvalues 0, λ2, λ3, ..., λn and the eigenvectors of B are the eigenvectors of A.
To find λ2 (the second dominant eigenvalue) we can apply the power method to B.
To find all eigenpairs of a symmetric matrix A, we can apply the following algorithm:

Step 1: Given that Avi = λivi apply the power method starting with i = 1 to
compute (λi,vi).

Step 2: Compute ui = vi/ | vi | and then Ai+1 = Ai − λiuiuT
i .

Step 3: Use the power method to compute (λi+1,vi+1).

Step 4: Repeat the process until all the eigenpairs are obtained.

Note that errors in λ1 and v1 can propagate through the calculation. Therefore, λi

and vi become more inaccurate as i increases.

10.5 Jacobi’s Method for Symmetric Matrices

The principal idea behind Jacobi’s method is that since P = (x1,x2, ...,xn) where xi

are linearly independent eigenvectors of a matrix A, then P−1AP = Λ where Λ is a
diagonal matrix and that the elements of the leading diagonal of Λ are the eigenvalues
of A. Hence, if we can find some transformation matrices P1, P2, ..., Pn such that

P−1
n ...P−1

2 P−1
1 AP1P2...Pn = Λ

then, after n steps, the eigenvalues of A are the elements along the leading diagonal
of Λ and the eigenvectors of A are the columns of the matrix P1P2...Pn.

10.5. JACOBI’S METHOD FOR SYMMETRIC MATRICES 273

10.5.1 The Transformation Matrix

The transformation matrix which does the trick is the ‘rotation matrix’ given by

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
1

cos θ sin θ
1

. . .
1

. . .
1

− sin θ cos θ
1

. . .
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where

θ =
1
2

tan−1

(
2apq

aqq − app

)
.

P has the following important properties:

1. P−1 = PT therefore P−1 is easy to compute.

2. Given A, PTAP gives a matrix with 0’s at positions pq and pp, i.e. 0’s occur in
PTAP at the locations of − sin θ and sin θ in P . By repeating the process, i.e. using

Am+1 = PT
mAmPm

where the positions of sin θ and − sin θ in P change as m increases, the off-diagonal
elements of A can be eliminated.

Example Find the eigenvalues of the matrix

A =
(

2 1
1 3

)
using Jacobi’s method.

P =
(

cos θ sin θ
− sin θ cos θ

)
where

θ =
1
2

tan−1

(
2× 1
3− 2

)
=

1
2

tan−1(2) = 31.72.

Working to 2 decimal places only,

P =
(

0.85 0.53
−0.53 0.83

)

274 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

and

P−1 = PT =
(

0.85 −0.53
0.53 0.85

)
giving

A1 = P−1AP =
(

1.39 −8.9× 10−3

−8.9× 10−3 3.63

)
.

Thus, the eigenvalues are given approximately by (1.39, 3.63) which should be com-
pared with the formal method of solution which gives

λ =
5±√5

2
� 1.38, 3.62.

10.5.2 The Serial Method

The serial method is based on eliminating the off-diagonal elements in row order using
an appropriate rotation matrix. To illustrate this technique schematically, consider
Jacobi’s method for the 3× 3 system (where ∗ denotes an element of the matrix)

A =

⎛⎝ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎞⎠ .

Then,

P1 =

⎛⎝ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞⎠ , PT
1 AP1 = A1 =

⎛⎝ ∗ 0 ∗
0 ∗ ∗
∗ ∗ ∗

⎞⎠ ,

P2 =

⎛⎝ cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎞⎠ , PT
2 A1P2 = A2 =

⎛⎝ ∗ 0 0
0 ∗ ∗
0 ∗ ∗

⎞⎠ ,

P3 =

⎛⎝ 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎞⎠ , PT
3 A2P3 = A3 =

⎛⎝ ∗ 0 0
0 ∗ 0
0 0 ∗

⎞⎠ .

Note that in practice, all the 0’s above, are relatively small numbers. The procedure
can therefore be repeated to improve the result, i.e. to get smaller numbers in the
off-diagonal positions. To illustrate the method further, consider the application of
Jacobi’s method for a 4× 4 system using the serial technique when

A =

⎛⎜⎜⎝
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞⎟⎟⎠ .

10.6. STURM SEQUENCE ITERATION 275

In this case,

P1 =

⎛⎜⎜⎝
cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , PT
1 AP1 = A1 =

⎛⎜⎜⎝
∗ 0 ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞⎟⎟⎠ ,

P2 =

⎛⎜⎜⎝
cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1

⎞⎟⎟⎠ , PT
2 A1P2 = A2 =

⎛⎜⎜⎝
∗ 0 0 ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞⎟⎟⎠ ,

P3 =

⎛⎜⎜⎝
cos θ 0 0 sin θ

0 1 0 0
0 0 1 0

− sin θ 0 0 cos θ

⎞⎟⎟⎠ , PT
3 A2P3 = A3 =

⎛⎜⎜⎝
∗ 0 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

⎞⎟⎟⎠ .

Similarly, we compute A4 and A5 and finally A6 given by

A6 =

⎛⎜⎜⎝
∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

⎞⎟⎟⎠ .

10.6 Sturm Sequence Iteration

Sturm sequence iteration is used for the evaluation of the eigenvalues of a matrix A
when A is symmetric and tridiagonal. Consider the matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

d1 c1
c1 d1 c2

c2 d3

. . .
cn−1

cn−1 dn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where di and ci are non-zero ∀i. The eigenvalues of A are the roots of the equation

f(λ) =| A− λI |= 0.

The Sturm Sequence

The principal leading minors of | A− λI | are as follows:

f1(λ) = (d1 − λ),

f2(λ) = (d2 − λ)(d1 − λ)− c21 = (d2 − λ)f1(λ)− c21f0(λ),

where by definition, f0(λ) = 1. Similarly,

f3(λ) = (d3 − λ)f2(λ) − c22f1(λ),

276 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

f4(λ) = (d4 − λ)f3(λ) − c23f2(λ),

...

fn+1(λ) = (dn+1 − λ)fn(λ)− c2nfn−1(λ).

These polynomials form a ‘Sturm sequence’. We can evaluate | A − λI | using this
result if A is tridiagonal. For λ = 0, we can evaluate | A | using the Sturm sequence.

Computing the Eigenvalues using a Sturm Sequence

This is based on the fundamental result that for any value of λ, the number of agree-
ments in sign of successive terms of the Sturm sequence is equal to the number of
eigenvalues of A which are strictly greater than λ, the sign of a zero being taken
to be opposite to that of the previous term. The basic idea is to find the number
of eigenvalues in a given range, count the number of agreements in sign s(λ) in the
sequence f0(λ), f1(λ), f2(λ), ..., fn(λ) and use the result

s(λ) = number of roots > λ.

Example Find the number of eigenvalues of the matrix

A =

⎛⎜⎜⎝
2 4 0 0
4 10 3 0
0 3 9 −1
0 0 −1 5

⎞⎟⎟⎠
lying in the interval [0, 5]. Take λ = 0 giving f0(0) = 1 (by definition) then

f1(0) = (d1 − 0) = 2− 0 = 2,

f2(0) = (d2 − 0)f1(0)− c21f0(0) = (10− 0)× 2− 42 × 1 = 4,

f3(0) = (d3 − 0)f2(0)− c22f1(0) = (9− 0)× 4− 32 × 2 = 18,

f4(0) = (d4 − 0)f3(0)− c23f2(0) = (5 − 0)× 18− (−1)2 × 4 = 86.

The signs of the terms are + + + + + which gives 4 agreements in sign. Hence,
there are 4 eigenvalues of A greater than 0. Now, if λ = 5, then

f0(5) = 1, f1(5) = −3, f2(5) = −31, f3(5) = −97, f4(5) = 31.

The signs of the terms are + - - - + which gives 2 agreements in sign. Hence,
there are 2 eigenvalues of A greater than 5. Now, there are 4 eigenvalues altogether,
4 eigenvalues > 0 and 2 eigenvalues > 5. Hence, there must be 2 eigenvalues in the
range [0, 5]. Note that f4(5) =| A− I5 |�= 0 and therefore 5 is not an eigenvalue.

Bisection

10.6. STURM SEQUENCE ITERATION 277

To estimate any individual eigenvalues we can bisect the interval in which the desired
eigenvalue is known to lie and repeat the process.

Example Consider

A =

⎛⎝ 2 −1 0
−1 2 −1
0 −1 1

⎞⎠ .

If all the eigenvalues lie in the interval [0, 4], 0 ≤ λ3 < λ2 < λ1 ≤ 4, find λ2 with an
error at most of 0.25.

First stage Compute the Sturm sequence for λ = 2 (i.e. the mid point or bisection
of interval [0, 4]):

f0(2) = 1, f1(2) = 0, f2(2) = −1, f3(2) = 1,

giving 1 agreement in sign. Hence, only 1 eigenvalue > 2 (i.e. λ1) and λ2 ∈ [0, 2].

Second stage Compute the Sturm sequence for λ = 1 (bisection of the interval [0, 2]):

f0(1) = 1, f1(1) = 1, f2(1) = 0, f3(1) = −1

giving 2 agreements in sign. Hence, there are two eigenvalues > 1 (i.e. λ3 and λ2)
and λ2 ∈ [1, 2].

Third stage Compute the Sturm sequence for λ = 1.5:

f0(1.5) = 1, f1(1.5) = 0.5, f2(1.5) = −0.75, f3(1.5) = −0.125

giving 2 agreements in sign. Hence λ2 ∈ [1.5, 2] and

λ2 = 1.75± 0.25.

10.6.1 Gerschgorin’s Theorem

Gerschgorin’s theorem is used to find the intervals in which eigenvalues lie. The
theorem states that every eigenvalue of a matrix A = (aij) lies in at least one of the
circles in the complex plane with centre aii and radius

n∑
j=1
j 	=i

| aij | .

Example Consider

A =

⎛⎝ 5 1 0
−1 3 1
−2 1 10

⎞⎠ .

Then

278 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

Centre Radius
5 | 1 | + | 0 |= 1
3 | −1 | + | 1 |= 2
10 | −2 | + | 1 |= 3

By Gerschgorin’s, theorem the eigenvalues lie in the ranges

[5− 1, 5 + 1] = [4, 6]; [3− 2, 3 + 2] = [1, 5] and [10− 3, 10 + 3] = [7, 13].

Gerschgorin’s Theorem and Sturm Sequence Iteration

Gerschgorin’s theorem can be used to find the range in which an eigenvalue lies.
Bisection using the Sturm sequence iteration is then used to ‘focus down’ on an
eigenvalue. From Gerschgorin’s theorem, the range in which all the eigenvalues lie
must be [−‖A‖∞, ‖A‖∞].

10.6.2 Givens’ Method

If A is tridiagonal, we can use Sturm sequence iteration to compute the eigenvalues.
Givens’ method converts A (assumed to be symmetric) to tridiagonal form so that
Sturm sequence iteration can be used to solve the eigenvalue problem. The basic
idea is to use Jacobi’s method with a subtle change in tactics to create zeros in A
by application of suitable rotation matrices. In Jacobi’s method, zeros are created at
(p, q) and (q, p); in Givens’ method, the zeros are created at (p− 1, q) and (q, p− 1).
Givens’ method works by using the formula

θ = − tan−1

(
ap−1,q

ap−1,p

)
instead of

θ =
1
2

tan−1

(
2apq

aqq − app

)
as used for Jacobi’s method.

Schematic Example of Givens’ Method

Consider the matrix

A =

⎛⎜⎜⎝
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞⎟⎟⎠
and the transformation matrix

P1 =

⎛⎜⎜⎝
1 0 0 0
0 c s 0
0 −s c 0
0 0 0 1

⎞⎟⎟⎠ , θ = − tan−1

(
a13

a12

)

10.6. STURM SEQUENCE ITERATION 279

where c ≡ cos θ and s ≡ sin θ. Then

A2 = PT
1 AP1 =

⎛⎜⎜⎝
∗ ∗ 0 ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞⎟⎟⎠ .

Now consider

P2 =

⎛⎜⎜⎝
1 0 0 0
0 c 0 s
0 0 1 0
0 −s 0 c

⎞⎟⎟⎠ , θ = − tan−1

(
a
(2)
14

a
(2)
12

)

where a(2)
ij are elements of A2 Then

A3 = PT
2 A2P2 =

⎛⎜⎜⎝
∗ ∗ 0 0
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

⎞⎟⎟⎠
and with

P3 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 c s
0 0 −s c

⎞⎟⎟⎠ , θ = − tan−1

(
a
(3)
24

a
(3)
23

)

and

A4 = PT
3 A3P3 =

⎛⎜⎜⎝
∗ ∗ 0 0
∗ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 ∗ ∗

⎞⎟⎟⎠ .

The matrix A4 is now tridiagonal. We can therefore apply Sturm sequence iteration
together with Gerschgorin’s theorem to compute the eigenvalues.

10.6.3 Householder’s Method

Householder’s method is used to convert a symmetric matrix A to tridiagonal form
so that Sturm sequence iteration can be applied. It does the same thing as Givens’
method but with increased efficiency using partitioning. The method is based on a
similarity transform of the type

Ai+1 = P−1
i AiPi

with

Pi =
(
Ii 0T

0 Qi

)
.

Here, Qi are Householder matrices given by

Qi = Ii − 2uiuT
i

uT
i u

280 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

where
ui = xi − kiei,

ei is the first column of Ii, i.e. (1, 0, ..., 0)T ,

ki = ±(xT
i xi)

1
2 ,

and

xi =

⎛⎜⎜⎜⎝
ai+1,i

ai+2,i

...
ani

⎞⎟⎟⎟⎠ .

Note that Pi is orthogonal and symmetric, therefore

P−1
i = PT

i = Pi.

The sign of ki is chosen to be opposite to that of the first component of xi. At each
step i, Qi is a (n− i)× (n− i) Householder matrix satisfying

Qixi = kiei

Schematic Illustration

Consider the matrix

A1 =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a12 a22 . . . a2n

...
...

. . .
...

a1n a2n . . . ann

⎞⎟⎟⎟⎠ =
(
a11 xT

1

x1 B1

)
.

Let

P1 =
(

1 0T

0 Q1

)
where Q1x1 = k1e1.

Then,

A2 = P−1
1 A1P1 = P1A1P1 =

(
1 0T

0 Q1

)(
a11 xT

1

x1 B1

)(
1 0T

0 Q1

)

=
(

1 0T

0 Q1

)(
a11 (Q1x1)T

x1 B1Q1

)
=
(

a11 (Q1x1)T

Q1x1 Q1B1Q1

)

=
(

a11 k1eT
1

k1e1 Q1B1Q1

)
=

⎛⎜⎜⎜⎜⎜⎝
a11 k1 0 . . . 0
k1

0
... Q1B1Q1

0

⎞⎟⎟⎟⎟⎟⎠ .

10.7. LR AND QR METHODS 281

Hence,

A2 =

⎛⎜⎜⎜⎜⎜⎜⎝
a
(2)
11 a

(2)
12 0 . . . 0

a
(2)
21 a

(2)
22 a

(2)
32 . . . a

(2)
n2

0 a
(2)
32 a

(2)
33 . . .

...
...

...
. . .

...
0 a

(2)
n2 . . . a

(2)
nn

⎞⎟⎟⎟⎟⎟⎟⎠ =
(

A XT

X B2

)
.

Let

P2 =
(
I2 0T

0 Q2

)
=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 . . . 0
0 1 0 . . . 0
0 0
...

... Q2

0 0

⎞⎟⎟⎟⎟⎟⎠ .

Then,

A3 = P2A2P2 =
(

A (Q2X)T

Q2X Q2B2Q2

)
.

Now,

Q2X = Q2

⎛⎜⎜⎜⎜⎝
0 a

(2)
32

0 a
(2)
42

...
...

0 a
(2)
n2

⎞⎟⎟⎟⎟⎠ = (0, Q2x2) = (0, k2e2) =

⎛⎜⎜⎜⎝
0 k2

0 0
...

...
0 0

⎞⎟⎟⎟⎠
and

(Q2X)T =
(

0 0 . . . 0
k2 0 . . . 0

)
.

Hence,

A3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a
(2)
11 a

(2)
12 0 0 . . . 0

a
(2)
21 a

(2)
22 k2 0 . . . 0

0 k2

0 0
...

... Q2B2Q2

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Continued application of this process produces a tridiagonal matrix. At each stage,
application of the Householder matrix produces 0’s along all appropriate entries. The
Householder method is therefore more efficient than Givens’ method which produces
near zeros (i.e. small numbers) at only two entries each time the rotation matrix is
applied.

10.7 LR and QR Methods

These methods are used for finding the eigenvalues of non-symmetric matrices. Both
methods are based on similarity transforms. Here LR means Left-Right and QR is
taken to denote Orthogonal-Right. The LR method is based on LU decomposition.

282 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

The QR method is based on decomposing the matrix into the product of an orthogonal
matrix Q and an upper triangular matrix R.

The LR Method

Consider
A1xi = λixi

to which we apply Doolittle factorization A1 = L1R1. Now compute A2 = R1L1,
factorize A2 and repeat the process. The general equations for this process are:

Ai = LiRi,

Ai+1 = RiLi,

for i = 1, 2, ... As i → ∞ the diagonal elements of the matrix Ai reduce to the
eigenvalues of A1, i.e.

lim
i→∞

Ai =

⎛⎜⎜⎜⎝
λ1 ∗

λ2

. . .
0 λn

⎞⎟⎟⎟⎠ .

Note that Ri = L−1
i Ai. Therefore Ai+1 = L−1

i AiLi is a similarity transform.

The QR Method

The QR method is based on the same idea as the LR method, the general equations
being:

Ai = QiRi,

Ai+1 = RiQi,

for i = 1, 2, ... and

lim
i→∞

Ai =

⎛⎜⎜⎜⎝
λ1 ∗

λ2

. . .
0 λn

⎞⎟⎟⎟⎠ .

To find Q and R, we pre-multiply A1 by the transpose of a plane rotation matrix PT

with

θ = − tan−1

(
aqp

app

)
.

This produces a zero in the qp position of PTA1. The process is repeated to produce
an upper triangular matrix R, i.e.

PT
n ...P

T
2 P

T
1 A1 = R.

Here, Pi are orthogonal so PT = P−1 and hence

A1 = (P1P2...Pn)R ≡ QR.

10.7. LR AND QR METHODS 283

Conversion to Hessenberg Form

This is used to improve the efficiency of the QR algorithm. The basic idea is to apply
some similarity transform to A of the form M−1AM to obtain an upper Hessenberg
matrix H . We then only need to generate zeros in the lower off-diagonal entries to get
A and hence Q in the QR algorithm. This is a particularly good idea because RQ is
also of Hessenberg form. Therefore (the crucial point) Hessenberg form is preserved.
The basis for the algorithm is as follows: Transform A to H using the similarity
transform. Then the eigenvalues of H are the same as A and

PT
n ...P

T
2 P

T
1 H = R, H = QR, Q = P1P2...Pn.

The general equations are:
Hi = QiRi,

Hi+1 = RiQi.

Reduction to Upper Hessenberg Form

The reduction of a matrix to upper Hessenberg form is accomplished using transfor-
mation matrices resembling those used in the analysis of Gauss elimination. Consider
the 3× 3 example

A1 =

⎛⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎠ .

To reduce this matrix to upper Hessenberg form, we need to annihilate the 31 entry.
This can be done by pre-multiplying A by

M1 =

⎛⎝ 1 0 0
0 1 0
0 −m31 1

⎞⎠ , where m31 =
a31

a21
.

We require the eigenvalues of our upper Hessenberg matrix to be the same as A.
Hence, it is necessary to post-multiply the inverse of M which is given by

M−1
1 =

⎛⎝ 1 0 0
0 1 0
0 m31 1

⎞⎠ .

Computing A2 = M−1
1 A1M1 gives

A2 =

⎛⎜⎝ a11 a
(2)
12 a13

a21 a
(2)
22 a23

0 a
(2)
32 a

(2)
33

⎞⎟⎠
where a(2)

ij denotes the new element in position ij. As a further illustration of the
method, consider the 4× 4 case when

A1 =

⎛⎜⎜⎝
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎞⎟⎟⎠ .

284 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

To transform A1 to upper Hessenberg form, we need to annihilate the entries at 31,
41 and 42. To do this we first form the matrix

M1 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 −m31 1 0
0 −m41 0 1

⎞⎟⎟⎠ , m31 =
a31

a21
, m41 =

a41

a21

with

M−1
1 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 m31 1 0
0 m41 0 1

⎞⎟⎟⎠ .

Thus, A2 = M−1
1 A1M1 is given by

A2 =

⎛⎜⎜⎜⎝
a11 a

(2)
12 a13 a14

a21 a
(2)
22 a23 a24

0 a
(2)
32 a

(2)
33 a

(2)
34

0 a
(2)
42 a

(2)
43 a

(2)
44

⎞⎟⎟⎟⎠ .

We now construct the matrix

M2 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −m42 1

⎞⎟⎟⎠ , where m42 =
a
(2)
42

a
(2)
32

with

M−1
2 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 m42 1

⎞⎟⎟⎠
and compute A3 = M−1

2 A2M2 which is given by

A3 =

⎛⎜⎜⎜⎝
a11 a

(2)
12 a

(3)
13 a14

a21 a
(2)
22 a

(3)
23 a24

0 a
(2)
32 a

(3)
33 a

(2)
34

0 0 a
(3)
43 a

(3)
44

⎞⎟⎟⎟⎠
and is an upper Hessenberg matrix. A general n × n matrix A1 can be reduced to
upper Hessenberg form in exactly n−2 steps. Step j annihilates elements in positions
(j + 2, j), (j+3, j), ..., (n, j) which is achieved by performing the similarity transform

Aj+1 = M−1
j AjMj .

The columns of Mj are those of the n× n identity matrix with the exception of the
(j + 1)th column which is

(0, 0, ..., 1,mj+2,j,mj+3,j , ...,mnj)T

10.8. INVERSE ITERATION 285

where

mij =
a
(j)
ij

a
(j)
j+1,j

.

This reduction method fails if any a
(j)
j+1,j = 0. As in Gauss elimination, row and

column interchanges can be used to avoid this difficulty.

10.8 Inverse Iteration

If the eigenvalues of a matrix are known (computed via some method) then the as-
sociated eigenvectors can be computed using a technique called ‘inverse iteration’.
Inverse iteration can be used for any matrix for which an approximate eigenvalue is
known.

Basic algorithm

If λ is an approximate eigenvalue then

(i) Solve (A− Iλ)z1 = y0 where y0 = (1, 1, ..., 1)T via LU factorization;

(ii) set y1 = z1/‖z1‖;
(iii) solve (A− Iλ)z2 = y1;

(iv) set y2 = z2/‖z2‖;
(v) solve (A− Iλ)z3 = y2;

(vi) continue the process until yn is sufficiently small.

Diagram 10.1 provides a schematic guide to the application of the methods discussed
in this chapter.

10.9 Special Types of Matrices

We conclude this chapter and Part II in general with a brief review of the matrices
and some of their special forms or types.

A = (aij) =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

⎞⎟⎟⎟⎠
1. Row Matrix or Row Vector A matrix of one row of order 1× n.

a = (a1, a2, ..., an)

Axi = λixi

286 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

where A is a square matrix

↓

Largest A A A
eigenvalue tridiagonal symmetric non symmetric
↓ ↓ ↓ ↘ ↓ ↘
Power Sturm Jacobi’s Givens’ Householder’s Conversion to
method sequence method method method Hessenberg form

iteration
↓ ↓ ↓ ↓ ↓ ↓

Sturm Sturm QR
sequence sequence algorithm
iteration iteration
↓ ↓ ↓

(λ1,x1) λi λi λi λi λi

↓ ↓ ↓ ↓ ↓
Inverse Inverse Inverse Inverse Inverse
iteration iteration iteration iteration iteration
xi xi xi xi xi

Diagram 10.1: Schematic diagram illustrating solutions to the linear eigenvalue prob-
lem.

2. Column Matrix or Column Vector A matrix of one column of order m× 1.

a =

⎛⎜⎜⎜⎝
a1

a2

...
am

⎞⎟⎟⎟⎠
3. Null or Zero Matrix A matrix where every element is zero - it may be of order
m× n.

O =

⎛⎜⎜⎜⎝
0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞⎟⎟⎟⎠
4. Transpose of a Matrix Denoted by AT or Ã and obtained from A by interchanging
rows and columns.

AT =

⎛⎜⎜⎜⎝
a11 a21 . . . am1

a12 a22 . . . am2

...
...

. . .
...

a1n a2n . . . amn

⎞⎟⎟⎟⎠
If A is of order m× n then AT is of order n×m.

10.9. SPECIAL TYPES OF MATRICES 287

5. Square Matrix A matrix of order n× n.

A =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎞⎟⎟⎟⎠
6. Trace of a Matrix The sum of the elements on the leading diagonal (a11, a22, ..., ann).

TrA =
n∑

i=1

aii

7. Symmetric Matrix A square matrix A = (aij) such that aij = aji for all i, j.

AT = A

8. Skew-Symmetric Matrix A square matrix A = (aij) such that aij = −aji for all
i, j.

AT = −A

9. Diagonal Matrix A square matrix whose off-diagonal elements are all zero, i.e.
aij = 0 whenever i �= j.

10. Unit or Identity Matrix A matrix of order n whose diagonal elements are all
equal to one and whose off-diagonal elements are all zero.

I =

⎛⎜⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞⎟⎟⎟⎠
11. Singular Matrix A square matrix A whose determinant is zero.

detA = 0

12. Non-singular Matrix A square matrix A whose determinant is non-zero.

detA �= 0

13. Adjoint of a matrix Denoted by adjA, this is defined for square matrices A only.
It is the transpose of the matrix whose elements are the cofactors of the elements of
A. The cofactors Aij of aij are given by

Aij = (−1)i+jMij

288 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

whereMij are the minors of the elements aij , obtained by deleting the row and column
in which aij occurs and computing the determinant of the elements that remain.

14. Inverse or Reciprocal matrix Denoted by A−1, this type of matrix is uniquely
defined for square matrices only and exists if and only if A is non-singular (i.e. if
detA �= 0). A−1 is defined by

A−1 =
adjA
detA

.

15. Orthogonal Matrix A square matrix such that

AAT = AT A = I

16. Upper Triangular Matrix A square matrix for which all elements below the
leading diagonal are zero.

U =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

0 a22 . . . a2n

...
...

. . .
...

0 0 . . . ann

⎞⎟⎟⎟⎠
| U | is equal to the product of all the elements on the leading diagonal. U−1 exist
only if no element on the leading diagonal of U is zero. In this case, U−1 is another
upper triangular matrix.

17. Lower Triangular Matrix A square matrix for which all elements above the
leading diagonal are zero.

L =

⎛⎜⎜⎜⎝
a11 0 . . . 0
a21 a22 . . . 0
...

...
. . .

...
an1 an2 . . . ann

⎞⎟⎟⎟⎠
The determinant of this type of matrix is given by

detL =
n∏

i=1

aii

and is non-zero only if aii �= 0, ∀i. Then, L−1 exists and is another lower triangular
matrix.

18. Idempotent Matrix A square matrix A which satisfies the relation

A2 = A.

19. Nilpotent Matrix A square matrix which satisfies the relation

Ak = 0

10.9. SPECIAL TYPES OF MATRICES 289

where k is any positive integer.

20. Complex Conjugate of a Matrix If A is a matrix of order m × n with complex
elements aij , then the complex conjugate of A - denoted by A∗ - is obtained by taking
the complex conjugate of all the elements aij .

21. Hermitian Conjugate of a Matrix Denoted by A† and defined by

A† = (A∗)T = (AT)∗.

22. Hermitian Matrix A is hermitian if

A† = A.

23. Skew Hermitian Matrix A is skew hermitian if

A† = −A.

24. Unitary Matrix A square matrix A such that

AA† = A†A = I.

25. Sparse Matrix A matrix which has a large number of elements which are equal
to zero.

26. Dense Matrix A matrix which has relatively few elements equal to zero.

27. Tridiagonal Matrix A matrix with elements on the leading diagonal and the
diagonals on each side of the leading diagonal (the subdiagonals).

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 0 0 . . . 0 0 0 0
∗ ∗ ∗ 0 . . . 0 0 0 0
0 ∗ ∗ ∗ . . . 0 0 0 0
0 0 ∗ ∗ . . . 0 0 0 0
...

...
...

...
.

...
...

...
0 0 0 0 . . . ∗ ∗ 0 0
0 0 0 0 . . . ∗ ∗ ∗ 0
0 0 0 0 . . . 0 ∗ ∗ ∗
0 0 0 0 . . . 0 0 ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
28. Hilbert Matrix A matrix of order n+ 1 given by

A =

⎛⎜⎜⎜⎝
1 1/2 . . . 1/(n+ 1)

1/2 1/3 . . . 1/(n+ 2)
...

...
. . .

...
1/(n+ 1) 1/(n+ 2) . . . 1/(2n+ 1)

⎞⎟⎟⎟⎠

290 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

29. Hessenberg matrix A matrix A = (aij) where aij = 0∀i > j + 1 (Upper Hessen-
berg) or where aij = 0∀j > i+ 1 (Lower Hessenberg).

Upper Hessenberg (all elements below subdiagonal are zero)

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ . . . ∗ ∗
∗ ∗ . . . ∗ ∗
0 ∗ . . . ∗ ∗
...

...
. . .

...
...

0 0 . . . ∗ ∗
0 0 . . . ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Lower Hessenberg (all elements above subdiagonal are zero)

A =

⎛⎜⎜⎜⎜⎜⎝
∗ ∗ 0 . . . 0 0
∗ ∗ ∗ . . . 0 0
...

...
...

. . .
...

...
∗ ∗ ∗ . . . ∗ ∗
∗ ∗ ∗ . . . ∗ ∗

⎞⎟⎟⎟⎟⎟⎠
30 Toeplitz Matrix A matrix A whose leading diagonal consists of elements of the
same value.

A =

⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎞⎟⎟⎟⎠
where

a11 = a22 = ... = ann.

10.10 Summary of Important Results

Eigenvector Equation
Axi = λixi.

detA =
n∏

i=1

λi.

TrA ≡
n∑

i=1

aii =
n∑

i=1

λi.

Orthogonality

If
AT yi = λiyi

10.10. SUMMARY OF IMPORTANT RESULTS 291

then
yT

j xi = 0

provided λi �= λj .

Linearly Dependent Eigenvectors

c1x1 + c2x2 + ...+ cnxn = 0

where ci, i = 1, 2, ..., n are not all zero.

Linearly Independent Eigenvectors

c1x1 + c2x2 + ...+ cnxn = 0

where ci, i = 1, 2, ..., n are all zero.

Diagonalization
X−1AX = Λ ≡ diag(λ1, λ2, ..., λn)

where
X = (x1,x2, ...xn).

Integral Powers
An = XΛnX−1

Cayley-Hamilton Theorem

If
f(λ) =| A− Iλ |

then
f(A) = 0.

The Power Method

λ1 =
A(Anx0) ·Anx0

Anx0 · Anx0

and
v1 = Anx0

where x0 = (1, 1, ..., 1)T .

Similarity Transform
AP−1AP

where P−1AP has the same eigenvalues as A.

Jacobi Method

292 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

Based on the result
P−1

n ...P−1
2 P−1

1 AP1P2...Pn = Λ

where

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
1

cos θ sin θ
1

. . .
1

. . .
1

− sin θ cos θ
1

. . .
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P−1 = PT and

θ =
1
2

tan−1

(
2apq

aqq − app

)
giving zeros at (p, q) and (q, p).

Sturm Sequence Iteration

Given

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

d1 c1
c1 d1 c2

c2 d3

. . .
cn−1

cn−1 dn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
the Sturm sequence is

f1(λ) = (d1 − λ),

f2(λ) = (d2 − λ)f1(λ) − c21f0(λ),

f3(λ) = (d3 − λ)f2(λ) − c22f1(λ),

...

fn+1(λ) = (dn+1 − λ)fn(λ)− c2nfn−1(λ).

where f0(λ) = 1.

The number of agreements in sign of the Sturm sequence gives the number of roots
greater than λ.

10.10. SUMMARY OF IMPORTANT RESULTS 293

Givens’ Method

Based on the application of

P−1
n ...P−1

2 P−1
1 AP1P2...Pn = T

where T is a tridiagonal matrix,

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
1

cos θ sin θ
1

. . .
1

. . .
1

− sin θ cos θ
1

. . .
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P−1 = PT and

θ =
1
2

tan−1

(
ap−1,q

ap−1,q

)
giving zeros at (p− 1, q) and (q, p− 1). Sturm sequence iteration is then used to find
the eigenvalues.

Householder Method

Based on the similarity transform

Ai+1 = P−1
i AiPi

where

Pi =
(
Ii 0T

0 Qi

)
,

Qi are Householder matrices given by

Qi = Ii − 2uiuT
i

uT
i u

where
ui = xi − kiei,

ei is the first column of Ii, i.e. (1, 0, ..., 0)T ,

ki = ±(xT
i xi)

1
2 ,

294 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

and

xi =

⎛⎜⎜⎜⎝
ai+1,i

ai+2,i

...
ani

⎞⎟⎟⎟⎠ .

Used to convert the characteristic matrix to tridiagonal form so that Sturm sequence
iteration can be used to compute the eigenvalues.

QR Method
Ai = QiRi,

Ai+1 = RiQi,

for i = 1, 2, ... and

lim
i→∞

Ai =

⎛⎜⎜⎜⎝
λ1 ∗

λ2

. . .
0 λn

⎞⎟⎟⎟⎠
where

PT
n ...P

T
2 P

T
1 A1 = R,

A1 = (P1P2...Pn)R ≡ QR.

Q and R are obtained by pre-multiply A1 by the transpose of a rotation matrix PT

with

θ = − tan−1

(
aqp

app

)
which produces a zero in the qp position of PTA1.

Inverse Iteration

Iterative method of computing the eigenvectors given the eigenvalues (assumed to
have been obtained by an appropriate method). Based on solving

(A− λI)zi+1 = yi

where y0 = (1, 1, ..., 1)T and yi = zi/‖zi‖.

10.11 Further Reading

• Wilkinson J H, The Algebraic Eigenvalue Problem, Oxford University Press,
1965.

• Gill P E, Murray W and Wright M H, Numerical Linear Algebra and Optimiza-
tion, Addison-Wesley, 1991.

10.12. PROBLEMS 295

• Hageman L A and Young D M, Applied Iterative Methods, Academic Press,
1981.

• Cheney W and Kincaid D, Numerical Mathematics and Computing, Monterey,
1985.

• Barnett S and Cameron R G, Introduction to Mathematical Control Theory,
Clarendon Press, 1992.

10.12 Problems

10.1 Starting with initial approximation x0 = (1 1)T , use the power method to find
the dominant eigenpair of the matrix(

5 −2
−2 8

)
correct to 2 decimal places. Normalize each iterate so that the largest element in
modulus is 1.

10.2 The matrix

A =

⎛⎜⎜⎝
8 −2 −3 1
7 −1 −3 1
6 −2 −1 1
5 −2 −3 4

⎞⎟⎟⎠
has an eigenvector (1 1 1 1)T with eigenvalue 4. Use the deflation method with
exact arithmetic to find the remaining eigenvalues and eigenvectors of A.

10.3

P =

⎛⎝ cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎞⎠ , A =

⎛⎝ 5 0 1
0 −3 0.1
1 0.1 2

⎞⎠ .

Calculate PTAP and deduce that if

θ = −1
2

tan−1

(
2
3

)
then the (1 3) and (3 1) entries of this product are zero. Hence, working to 4 decimal
places, write down approximations to the eigenvalues and eigenvectors of A.

10.4 If

P =

⎛⎜⎜⎝
cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1

⎞⎟⎟⎠

296 CHAPTER 10. EIGENVALUES AND EIGENVECTORS

and

A =

⎛⎜⎜⎝
2 0.1 2 0.1

0.1 3 0.1 0.2
2 0.1 6 0.05

0.1 0.2 0.05 1

⎞⎟⎟⎠
calculate PTAP and show that A is nonsingular.

10.5 Prove that every eigenvalue of a matrix A = (aij) lies in at least one of the circles
in the complex plane with centre aii and radius

n∑
j=1
j 	=i

| aii | .

(Gerschgorin’s theorem)

10.6 Use Gerschgorin’s theorem to find the intervals in which the eigenvalues of⎛⎜⎜⎝
1 2 0 0
2 −1 3 0
0 3 6 4
0 0 4 −3

⎞⎟⎟⎠
lie. Use the Sturm sequence to find the number of eigenvalues which lie in the interval
[1, 2].

10.7 Show that the range in which all the eigenvalues of⎛⎝ 2 1 0
1 −1 −1
0 −1 2

⎞⎠
lie is [−3, 3]. Hence find, with an error of less than 0.25, all the eigenvalues of this
matrix.

10.8 The Householder matrix is given by

Q = I − 2wwT

where I is the n × n identity matrix and w is some n × 1 vector satisfying wTw =
1. Verify that Q is both symmetric and orthogonal and show that the form of the
Householder matrix required to satisfy the equation

Qx = ke

form some scalar k where e is the first column of I, is given by

Q = I − 2
uuT

uTu

10.12. PROBLEMS 297

where
u = x− ke.

10.9 Construct Householder matrices Q1 and Q2 such that

Q1

⎛⎝ 2
1
2

⎞⎠ = k1

⎛⎝ 1
0
0

⎞⎠
and

Q2

(−3
−1

)
= k2

(
1
0

)
.

Hence, reduce the matrix ⎛⎜⎜⎝
3 2 1 2
2 −1 1 2
1 1 4 3
2 2 3 1

⎞⎟⎟⎠
to tridiagonal form.

10.10 Obtain an orthogonal (QR) decomposition of the matrix⎛⎝ 1 4 2
−1 2 0
1 3 −1

⎞⎠
working to 4 decimal places.

Part III

Programming and Software
Engineering

298

Chapter 11

Principles of Software
Engineering

11.1 Introduction

Software engineering is a discipline that has and continues to develop rapidly in par-
allel with advances in hardware specifications and the sophistication of computer
applications, especially in information and communications technology. It is arguable
that the first example of software engineering (albeit of a primitive form) took place
at Bletchley Park (Station X) in Buckinghamshire, England in 1944 when the first
programmable computer - the ‘Colossus’ - was developed as part of the Allied war
effort to decrypt the ciphers of the Axis powers. What Winston Churchill called his
‘Ultra’ secrete remained classified for nearly fifty years after the end of the second
world war and it is only relatively recently that information on the technology devel-
oped at station X and its impact on the development of computer science has been
declassified.

11.1.1 Programming Language Development

Since the development of the first commercial mainframe programmable computers
in the 1950s, a range of programming languages have been developed. Those lan-
guages that became most popular early on were FORTRAN used by the scientific
and engineering communities and COBOL used in business, the banking industry
and the financial sector in general. FORTRAN concentrated on the use of computers
for the numerical evaluation of formulas, hence the name, FORmula TRANslation.
COBOL or the COmmon Business Oriented Language focused on aspects of comput-
ing associated with data storage, data access, relational databases and I/O. However,
the sophistication of the applications to which these programming languages were
applied was relatively low and the idea of developing methods for ‘engineering’ the
software developed was not an issue. What was an over-riding issue in those early
days of program development was the importance of designing software that was as
efficient as possible in terms of: (i) minimal integer and, in particular, floating point
computations; (ii) minimal use of core memory. The reasons for this were the limi-

299

300 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

tations placed on the speed of the central processor and the core memory as well as
(to a lesser extent) external memory storage (e.g. magnetic tapes). The 1960s saw
a rapid expansion in the development of computing hardware and, in parallel with
this, the development of new programming languages and standards. These included
languages such as BASIC (Beginner’s All-purpose Symbolic Instruction Code) which
became central to the development for programming microprocessors and ALGOL
(Algorithmic Language) which has been particularly important in the development of
programming languages, no other single language having had such a far-reaching influ-
ence on the design and definition of languages. Throughout this period, the facilities
offered by the hardware and the programming languages available lead to the need
to develop methodologies for designing software especially with regard to specifying
standards and protocols needed for employing teams of programmers. Even so, many
such programmers were from a scientific and/or engineering background with little
or no formal training in the engineering of software components or the design of a
complete system. In the 1970s, as computing facilities and accessibility to them grew,
it started to become clear that new approaches to engineering software were required
in order to enhance the performance and delivery of software packages that were being
used in an increasing number of applications. Thus, programming techniques were
developed that were based on utilising specific approaches and rationale for training
the increasing number of programmers and software engineers needed for a rapidly
growing market. This included the introduction of Pascal which was developed in
1970 to make available a language suitable to teach programming as a systematic dis-
cipline and to develop implementations which were both reliable and efficient. Pascal
became one of the major ‘teaching languages’ in the USA and Europe. The 1970s was
a period of rapid expansion in the area of computing and many other new languages
were developed during this time. These included PL/1 (Programming Language 1) for
example that was designed to be a multi-purpose programming language and whose
original goal was to succeed FORTRAN with the inclusion of more extensive data
structuring facilities. Many other languages were considered, some of which were
adopted by specific industries while others ‘fell by the wayside’. Operating systems
also developed significantly over this period, one of the more successful results be-
ing the development of the VAX/VMS (Virtual Address Extension/Virtual Memory
System) by the American based company Digital which significantly improved on the
memory capacity of a mainframe by utilising external memory as if it were part of the
core memory; hence the term ‘Virtual Memory System’. However, in hindsight, it is
arguable that the most significant development of all, if only in terms of the personal
computing we now benefit from, was the development by Microsoft of DOS (Digital
Operating System) and independently, the development of the C programming lan-
guage and the UNIX operating system at the AT & T Bell Laboratories in the early
1970s.

From the foundations laid in the 1970s, the development of microprocessor based
computing over the 1980s has forged an explosion in the utilization of computers for a
broad spectrum of applications in which the development of Microsoft Windows from
DOS was independently accompanied by the development of C++ from C. Although
many specialised mainframes (such as super computers) and UNIX based workstations
have and continue to be utilized for specialist applications, the use of microprocessors
(personal computers) in general has become standard throughout the world. This

11.1. INTRODUCTION 301

has resulted in the development of distributed computing using a local network of
microprocesors to enhance the overall performance and computing power and thus,
to the concept of grid computing, which is the same basic idea but on a much larger
(world wide) scale.

There are two developments that have significantly enhanced computer applica-
tions and the utilities provided that were pioneered over the 1980s and the 1990s: (i)
Graphical User Interfaces (GUIs); (ii) internet access. Until the concept of a visual
or graphical approach to operating a computer was considered at the Xerox Labora-
tories in the mid-late 1970s, (leading directly to the Apple Macintosh series of PCs
- the first commercial microprocessors to utilise GUIs effectively), most operating
systems were based on a command line language which required extensive experience
to learn properly. The applications of GUIs is now common in all areas of computer
science and many aspects of software engineering are concerned, and rightly so, with
the development of GUIs for which specific systems have been designed (e.g. the X-
windows series of GUI builders developed at MIT in the early 1980s). GUIs are now
the principal focus for user operation of a microprocessor and significant advances
have been made in the design methodologies associated with making an applications
package ‘user friendly’. This includes the development of systems that are designed
to enhance the task of a programmer and help configure a programming project -
Computer Aided Software Engineering.

A major revolution in computer science has occurred since the concept of a distrib-
uted information communications network was invented at the CERN particle physics
Laboratories, Switzerland, in the 1980s. The Internet and the World Wide Web, to-
gether with electronic mailing facilities, information search engines and so on has
radically changed the way in which we utilize the computer. Consequently, computer
science has changed many of the original themes upon which it was originally based
and has now become dominated by the engineering associated with Information and
Communications Technology (ICT). Techniques for software engineering have followed
this trend and the field is now dominated by issues associated with the exchange and
processing of digital information. However, throughout the revolution in ICT, there
are a number of issues that have remained constant in terms of the programming lan-
guage(s) used and the operating systems implemented. The principal programming
language is C and its derivatives including C++ (which has become well associated
with the principles of object oriented programming), Java (a development of C/C++
with a focus on Internet based applications), J++ (Java with a number of enhanced
facilities), C# (Microsoft’s version of Java for compatibility with MS-Windows) and
so on. The principal operating systems are Microsoft Windows and Linux (originally
a UNIX emulator for PCs) both of which have been and continue to be developed
using the C/C++ programming language.

Coupled with the use of various CASE tools, the quasi-standardisation of the
programming language, operating system(s) and emphasis on design techniques such
as object orientation with open source policies or at least public domain object li-
braries, an individual software engineer can now achieve results that only a few years
ago would have required a team of software engineers and associated management
infrastructure to bring a complex software engineering project to a successful conclu-
sion. This has been made possible, at least in part, by the development of object
oriented programming and component based software engineering which have many

302 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

profound advantages over the previous programming styles such as modular and ‘pro-
cedure oriented’ programming once the idea of an object is understood, upon which,
the task of a software engineer becomes easier.

Procedure oriented programming is concerned with the following:

Modular programming
Within the context of a given problem, identifying a sequence of specific processes
which can be used to form the basis of a set of procedures (C void functions).

Structured programming
Designing functions in such a way that they are based almost exclusively on a set of
well defined control statements where the code can be read as a book (i.e. from left
to right and from top to bottom - ‘line by line’ and ‘page by page’).

Testing procedures
Designing a processor - a test unit - to test the procedure/function/module using data
that is consistent with the real thing.

In object oriented programming, an object contains two principal features: attributes
and behaviour. Attributes, which can be member variables or data members, describe
an object and determine how it is different from other objects. The member variables
can be either instance variables of class variables. Behaviour is determined by what
an object does, implemented through its member functions. Objects are instances
of classes and so objects are instantiated individually. The behaviour of an object
is activated by invoking one of its methods such as sending it a message. When
an object receives a message, it either performs an action or modifies its state or
both. Sending a massage to an object is equivalent to calling a function using a
procedure oriented approach. Objects become, in effect, ‘black boxes’ which send
and receive messages. This approach enhances the development time of software
engineering projects and, if properly used, improves the maintenance, reusability and
modifiability of software. It is arguable that ‘reusability’ is one of the most important
features of object oriented programming leading directly to component based software
engineering in which various components or objects can be assembled to form an
applications package. Consequently, many object oriented programming languages
have been developed since the development of this methodology in the late 1980s
although the leading commercial object oriented languages are far fewer in number,
e.g. C++, Smalltalk and Java, the latter example being designed principally for Web-
enabled object oriented programming. This includes the modification and extension
of some of the more conventional languages to provide object oriented facilities, C
being one of the best known examples.

11.1.2 What is Software Engineering ?

The origins and meaning of the term ‘Software Engineering’ are related to the de-
velopment of the earliest programmable computers. Although the term was used
occasionally in the late 1950s and 1960s it was first popularised by the 1968 NATO
Software Engineering Conference held in Garmisch, Germany. Software engineering
describes the broad range of activities that were formally called programming and

11.1. INTRODUCTION 303

systems analysis and incorporates all aspects of the practice of computer program-
ming as opposed to the theory of computer programming. The IEEE Standard 610.12
states that software engineering is:

‘(1) the application of a systematic, disciplined, quantifiable approach to the develop-
ment, operation and maintenance of software, that is, the application of engineering
to software’ and ‘(2) the study of approaches as in (1).’

It is arguable that the term software development is a more appropriate term than
software engineering for the process of creating software. Software engineering can
imply levels of rigor and proven processes that are not appropriate for all types of
software development. If Bill Gates had adopted for a rigorous formal methods ap-
proach to software engineering, he would probably still be working from of his garage
rather than running one of the worlds most successful software engineering companies,
i.e. Microsoft Corporation. Thus, in practice, ‘craftsmanship’ is an important and
appropriate metaphor because it focuses on the skills of the developer as the key to
success of the ‘manufacturing’ process. It is also arguable that this field is not ma-
ture enough to warrant the term engineering since, over the last few decades, at least
one radical new approach has entered mainstream software development, e.g. struc-
tured programming, modular programming, procedure oriented programming, object
oriented programming, component based programming and agile development. This
implies that the field is changing too rapidly to be considered an engineering disci-
pline. On the other hand, radical new approaches can be viewed as evolutionary rather
than revolutionary; they are mere introductions of new tools rather than fundamental
changes.

11.1.3 Applications

The applications of software engineering are countless. However, the nature of the
applications can be losely categorised into the following:

• System software

– operating system components;

– drivers;

– editors;

– file management;

– compilers.

• Real-time software

– data gathering from external environments;

– transformation of information, e.g. DSP;

– systems monitoring.

304 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

• Business software

– management information systems;

– relational data bases;

– financial time series analysis.

• Scientific and engineering software

– simulation (‘number crunching’ algorithms);

– CAD/CAM/CAE;

– CFD.

• Embedded software

– limited functions usually residing in ROM;

– digital control functions (A/D convertors);

– mobile communication systems.

• PC software

– computer graphics;

– LAN and WWW;

– games.

• Artificial intelligence software

– knowledge based systems;

– fuzzy systems control;

– ANN - pattern recognition (image and voice).

11.1.4 About Part III

The primary goal of Part III of this book is to provide readers with an overview a
programming language, namely C, and through this language, discuss techniques for
structured and modular programming. Part III is divided into two chapters which
cover those elements of the following subjects considered to be important for the soft-
ware development of digital signal processors, namely: an understanding of number
systems, numerical error and accuracy; programming and software engineering includ-
ing a short discussion on operating systems and programming languages; an overview
of the C programming language. The material discusses programming and software
engineering using C and prepares the reader for the programming problems given at

11.2. DECIMAL AND BINARY NUMBER SYSTEMS 305

the end of each chapter. However, the principles presented are independent of the
programming language used and in this chapter, a brief overview of the principles
of software engineering is provided without specifying any particular programming
language or operating system. This material is followed by a chapter which continues
with the theme of programming and software engineering using the C programming
language and a procedure oriented approach to software engineering which is the
principal focus for developing DSP algorithms and systems.

A set of problems are included for the reader to enhance their understanding
of the material and to practice programming in C (Chapter 12). These problems
are related to some of the numerical methods used to design algorithms for DSP
which are discussed in more detail in Part IV. They are also related to some of
the computational methods discussed in Part II. The emphasis of the material is on
structured programming in modular form.

Although the material given in Chapter 12 discusses issues using C, it should
be understood, that it is not a complete survey of the C programming language for
which there is a large variety of excellent text books available. Instead, those aspects
of programming and software engineering that are required for the design of a DSP
system are discussed using C with the aim of addressing those aspects of the language
that are pertinent to the material presented in Part IV. The principal aspects of the
language presented in Chapter 12 are concerned with array processing and the design
of specific functions using defined array inputs and outputs together with associated
numerical I/O parameters. This includes the use of dynamic memory management
during run time.

11.2 Decimal and Binary Number Systems

Computers store numbers in some approximate form that can be packed into a fixed
number of bits. A decimal system counts in 10’s using the marks 0-9 to represent
values so that for example 32 = 3 × 101 + 2 × 100 and 4281 = 4 × 103 + 2 × 102 +
8 × 101 + 1 × 100. Each digit in the number has positional value and represents the
number of occurrences of the weight of that position. Non-integral numbers (real
numbers) can be represented in a similar way. For example 4281.82 = 4× 103 + 2 ×
102 + 8× 101 + 1× 100 + 8× 10−1 + 2× 10−2. Here, the decimal ‘weights’ are:

103, 102, 101, 100, 10−1, 10−2.

Fixed Point, Floating Point and Normalized Floating Point Representation

Consider the fixed point numbers 8340000.00, 0.00000834, 22.18 and 3.1415926. Float-
ing point representation of these numbers could include the representation 834.00×
104, 0.834× 10−5, 22.18× 100 and 3.1415926×100. Normalized floating point rep-
resentation involves the standardization of the floating point and we write 0.834 ×
106, 0.834× 10−5 0.2218×102 and 0.31415926× 101. In general, a decimal number
can be written in the form

decimal number = M× 10E

where M is the Mantissa and E is the Exponent.

306 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

11.3 Binary Number Systems

Binary number system count in 2’s instead of 10’s using the marks 0 and 1 to represent
a number. The binary weights are:

..., 25, 24, 23, 22, 21, 20, 2−1, 2−2, 2−3, ...

which are of course equivalent to the decimal numbers

..., 32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.125, ...

Thus, 32 = 1×25+0×24+0×23+0×22+0×21+0×20 or has binary representation
100000. Similarly, 41 = 1× 25 + 0× 24 + 1× 23 + 0× 22 + 0× 21 + 1× 20 or binary
representation 101001. We can binary encode the decimal digits as follows:

Decimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Similarly, we can binary encode floating point decimal numbers using a binary point
as illustrate by the examples given below

Decimal numbers Binary numbers
5.0 101.0
5.5 101.1
6.25 110.01
8.75 1000.111

11.3.1 Binary Coded Decimal (BCD)

BCD is used to represent decimal digits directly. For example,

Decimal 19.25
Binary 10011.01
BCD 00011001.00100101

Here, each decimal digit is represented by its binary form directly instead of attempt-
ing to represent the decimal number in binary form directly.

11.3. BINARY NUMBER SYSTEMS 307

11.3.2 Binary Arithmetic

Binary arithmetic is based on the following:

Addition Multiplication
0 + 0 = 0 0× 0 = 0
0 + 1 = 1 0× 1 = 0
1 + 0 = 1 1× 0 = 0
1 + 1 = 10 1× 1 = 1

For example,

Decimal Binary
12 1100
+5 +101
17 10001

and

Decimal Binary
11 01011
+6 +00110
17 10001

Binary numbers (and binary arithmetic) are the basis switches in which 0 is repre-
sented by a current that is off and 1 is represented by a current that is on.

11.3.3 Decimal to Binary Conversion of Whole Numbers

For whole number conversion, we divide by 2 and write result beneath with a remain-
der to the side (1 or 0) and repeat process until a fraction is obtained. For example,
to covert 41 to binary form,

41/2 1
20/2 0
10/2 0 4110 → 1010012

5/2 1
2/2 0
1/2 1

As a further example, consider the conversion of 63 to binary form based on the
following:

308 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

63/2 1
31/2 1
15/2 1 6310 → 1111112

7/2 1
3/2 1
1/2 1

11.3.4 Decimal to Binary Conversion of Decimal Numbers

For conversion, we multiply by 2, write the result beneath and remove the digit before
the point to form the binary fraction. The process is repeated until a zero fraction
value occur, or the required accuracy is reached. For example, consider the conversion
of 0.625 to binary form based on the following:

0.625×2
1.25 1

0.25×2
0.5 0 0.62510 → .1012

0.5×2
1.0 1

0.0×2

As a further example consider the conversion of 27.375 to binary form. The first step
is to convert the whole number part, i.e.

27/2 1
13/2 1
6/2 0 2710 → 110112

3/2 1
1/2 1

The second step is to convert the decimal part, i.e.

0.375×2
0.75 0

0.75×2
1.5 1 .37510 → .0112

0.5×2
1.0 1

0.0×2

Combining the results: 27.37510 → 11011.0112.

11.3.5 Conversion form Binary to Decimal

This process is straight forward and can be illustrated using the following example in
which the binary number 11.101 is converted to a decimal value: Since,

11.4. FIXED POINT STORAGE AND OVERFLOW 309

21 20 . 2−1 2−2 2−3

Decimal 2 1 . 0.5 0.25 0.125
Binary 1 1 . 1 0 1

conversion is given by

11.1012 = 1× 2 + 1× 1 + 1× 0.5 + 0× 0.25 + 1× 0.125 = 3.62510.

11.4 Fixed Point Storage and Overflow

Consider a 16 bit word (for demonstration purposes only) where the binary point is
taken to occur between the 8th and 9th entries. Thus,

Decimal Binary Fixed Point Storage
5.0 101.0 0000010100000000
5.5 101.1 0000010110000000
5.75 101.11 0000010111000000
5.875 101.111 0000010111100000

A problem occurs if the number becomes so large that the number of bits required to
represent it using fixed point storage exceeds the word length. For example, in the
storage of the number 500.875 we would have

Decimal Binary Fixed Point Storage
500.875 111110100.111 11111010011100000

In this case, 17 bits are required to store the number. If the number of bits required
exceeds the word length, the result is called ‘overflow’. The word length sets a limit
on the magnitude of the number that can be stored.

11.5 Floating Point Representation of Binary Num-

bers

In this representation, we use a Mantissa/Exponent to represent the number as illus-
trated below.

Decimal Binary Normalized Floating Point Binary
0.5 0.1 0.1× 100

1.5 1.1 0.11× 101

2.5 10.1 0.101× 1010

33.25 100001.01 0.10000101× 10110

500.875 111110100.111 0.111110100111× 101001

310 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

In a 16 bit word for example, normalized floating point representation of the numbers
above is given by

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0
1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 1

Here, the bits from 1 to 12 are taken to represent the mantissa and the last four bits
(from 13 to 16) represent the exponent. Observe, that the first column is always 1 and
can be ignored providing further storage space. Also, note that in this case, there is
no overflow for the decimal number 500.875. This is the principal upon which number
storage is based with VAX (Virtual Address Extension) systems for example in which
32, 64 or 128 bit words are used instead of 16 bit. Integer decimal numbers have
an exact representation in a binary number system and integer arithmetic is exact.
However, most real decimal numbers can not be represented exactly using a binary
number system and hence, real arithmetic is not exact which is an important point to
bare in mind with numerical computing. Examples of exact binary representation are
for example 0.5 = 1/21 so that the binary representation is 0.1. Similarly 0.25 = 1/22

which has an exact binary representation of 0.01. An example of an approximate
binary representation includes decimal numbers such as 0.2 with binary representation
0.0010011001... This is illustrated as follows:

Binary Weight Decimal Value Appropriate bit
2−1 0.5 0
2−2 0.25 0
2−3 0.175 1
2−4 0.0625 0
2−5 0.03125 0
2−6 0.015625 1
2−7 0.0078125 1
2−8 0.00390625 0
2−9 0.001953125 0
2−10 0.0009765625 1
2−11 0.00048828125 1

Now,
1
23

+
1
26

+
1
27

+
1

210
+

1
211

= 0.199902343

and the approximate binary representation of 0.2 is 0.00100110011.

11.6 Numerical Error and Accuracy

Computing essentially consists of information input and information output (‘Infor-
mation or Data Processing’). The method of computing is known as the algorithm

11.6. NUMERICAL ERROR AND ACCURACY 311

and we can consider the essential underlying process in terms of the following:

Input information−→ The algorithm −→ Output information

A programmer is often concerned with the design of the algorithm. This involves
a number of factors: (i) principle; (ii) architecture; (iii) effectiveness; (iv) computa-
tional efficiency; (v) accuracy (in the presence of error); (vi) stability. The algorithm
typically induces further errors, i.e.

Input errors−→ Algorithm errors −→ Output errors

An essential algorithm design feature is to minimize the output errors. Loosely speak-
ing, the clever manipulation of errors (truncation errors) is practically the entire basis
of numerical analysis (although don’t tell numerical analysts this because in tends to
make them insecure and cross, but not necessarily in that order).

11.6.1 Errors

A numerical error occurs when the value use to represent some quantity is not the
true value of that quantity.

Absolute error is the difference between the exact value of a number and an ap-
proximation to that number, i.e.

ε = n−N
where ε is the error, n is the approximate value and N is the exact value.

Relative Error allows the importance of an error to be better appreciated by com-
paring it to the quantity being approximated, e.g.

Relative error =
∣∣∣ ε
N

∣∣∣
Relative errors are particularly important if the exact value of a number N is very
small or very large. For example, ε = 0.00001 sounds acceptable. However, if N =
0.00002, the approximation of N by n might be only half the size of N . Similarly,
ε = 2340 sounds very large, but if N = 4× 1020, ε is negligible in comparison.

Error Analysis is an essential element of numerical analysis because of the inherent
use of approximations to exact numbers.

11.6.2 Types of Errors

Numerical errors include:

(i) data errors;
(ii) transcription errors;
(iii) conversion errors;
(iv) rounding errors;
(v) computational errors;
(vi) truncation errors;
(vii) algorithmic errors.

312 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

Data errors occur when the input to the computer may be subject to error because
of limitations on the method of data collection. These limitations may include the
accuracy to which it was possible to make measurements, the skill of the observer and
the resources available to obtain the data.

Transcription errors are mistakes in copying from one form to another. Examples
could include typing 369 for 396 and mixed doubles, i.e. typing 3226 for 3326. Tran-
scription errors may be reduced or avoided by using direct encoding and validation
checks.

Conversion errors occur when converting data from its input form to its stored form
(e.g. binary coded decimal to pure binary form). Such errors may occur because of
the practical limits placed on accuracy. On output similar errors may occur.

Rounding errors occur when not all the significant digits of a decimal number are
given. Suppose that for a given real number α, the digits after the decimal point are
α1, α2, ...αn, αn+1.... To round down or truncate α to n decimal places, all digits after
the nth place are removed. To round up α to n decimal places, then if αn+1 ≥ 5,
αn is increased by one and all digits after the nth place are removed. In either
case, the magnitude of the rounding error does not exceed 1

2 × 10−n. Rounding off
involves rounding up or down according to which of these processes makes the least
difference in the stated value. For example π = 3.14159265..., which rounded up to
3 decimal places gives π = 3.142 and rounded down to 3 decimal places gives π =
3.141. In general, suppose x is a number and let u be an approximation to x obtained
by rounding up to n decimal places and d be an approximation to x obtained by
rounding down after n decimal places. Then,

rounding up error εup = |u− x| ≤ 1
2 × 10−n;

rounding down error εdown = |d− x| ≤ 10−n.

Thus, for example, π rounded up to 3 decimal places = 3.142 and εup = |3.142 −
3.14159265...| = 0.000407... < 1

2 × 10−3 and π rounded down to 3 decimal places =
3.141 and εdown = |3.141− 3.14159265...|= 0.000592... < 10−3.

Computational errors occur as a result of performing arithmetic operations and
are usually caused by overflow or rounding to intermediate results.

Truncation errors occur when a limited number of terms of an infinite series (rep-
resenting a certain number for example) are taken to approximate that number. For
example, since

tan−1x = x− x3

3
+
x5

5
− x7

7
+ ... | x |≤ 1

and
π

4
= tan−11,

π can be evaluated to any accuracy using the infinite series

π = 4×
(

1− 1
3

+
1
5
− 1

7
+

1
9
− 1

11
+

1
13
− ...

)
.

11.6. NUMERICAL ERROR AND ACCURACY 313

If the series is truncated to

1− 1
3

+
1
5
− 1

7
,

then a truncation error results. Truncation errors are particularly important in numer-
ical procedures that are based on application of arrays of finite length in algorithms
that are based on piecewise continuous functions over an infinite domain. For exam-
ple, in the application of the Discrete Fourier Transform as discussed in Chapters 3
and 4, truncations errors lead to effects such as the Gibbs’ phenomenon. In addition,
the finite length of the arrays lead to an effect known as spectral leakage which is
discussed further in Part IV (Chapter 13).

Algorithmic errors are concerned with an algorithm which is a set of procedure
steps used in the solution of a given problem. Errors incurred by the execution of an
algorithm are called algorithmic errors.

11.6.3 Accumulation of Errors

If we add n numbers together, each of which has been rounded to K decimal places,
there could be a maximum total error of n× 1

2 × 10−K . In practice, it is unlikely to
be as large as this and it can be shown that

probable error ∝ √n× 10−K .

This result needs to be taken into account when a calculation involving rounded
numbers is involved and an answer to a certain accuracy is required. Relative error
may be affected even more. For example, consider f(x) = 1−cosx where x = 1o; then
cos 1o = 0.9998476952... If the system being used can only cope say with 4 digits, then
cos 1o = 0.9998 and the approximate value of f(1o) = 1 − 0.9998 = 0.0002 whereas
the true value of f(1o) = 1 − 0.99984769... = 0.0001523... In this case, ε = 0.0002−
0.0001523... = 0.00004769... and the relative error = 0.00004769.../0.0001523... =
0.31312... or 31.316 % .

11.6.4 Types of Error Growth

Suppose, that in a algorithm involving rounded numbers, the error ε associated with
each calculation is determined by the function R(ε). Also suppose, that there are n
operations involved. If R(ε) ∝ nε, we say that the growth of the error is linear.
This is normal, unavoidable and usually does not matter too much. If R(ε) ∝ Kn(ε)
where K is some constant > 1, we say that the growth is exponential. This can be
disastrous and must be avoided at all costs. A process which exhibits exponential
error growth is unstable.

11.6.5 Errors in Computer Arithmetic

Rounding errors in stored data

Since all computers have a finite word length, there is always a limit to the accuracy
of the stored data. The following factors are relevant:

314 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

(i) For fixed point integer representation, there is good control over accuracy within
the allowed range since there is no fractional part to be rounded.

(ii) For other fixed point representations where part of or all of the number is frac-
tional, rounding will occur often. However, the precision provided may still allow
reasonable control over accuracy during addition and subtraction.

(iii) In floating point representations, almost all number storage and calculations can
lead to rounding errors.

(iv) Rounding should be unbiased if possible, i.e. numbers should be rounded off
rather than rounded up or rounded down.

Conversion errors

In converting fractions from decimal to binary for storage, rounding errors are often
introduced. For example,

0.810 → 0.1100110011001100...2
and 0.1100112 → 0.79687510.

Computational error

In general, every arithmetic operation performed by a computer may produce a round-
ing error. The cause of this error will be one of:

(i) the limited number of bits available to store the result;

(ii) overflow and underflow;

(iii) rounding in order to normalize a result.

The size of the error will depend on the size of the word length and the method of
rounding up, rounding down or rounding off. Another aspect of computational error
relates to the use of intrinsic mathematical functions which are invariably computed
using their series representation. Since most such series are infinite series, a truncation
error is inevitable.

Errors in Stored Results

All results stored in mantissas of the same length will be subject to the same maximum
relative error. This will be the case for any floating point arithmetic operation; add,
subtract, multiply or divide.

Floating Point Error Formula

This formula is used to find the maximum error in the result of a floating-point
arithmetic operation and is given by

R(x o y) = (x o y)(1 ± ε)

11.6. NUMERICAL ERROR AND ACCURACY 315

where o represents one of the operations +,−,× or /. Here, ε is the maximum relative
error for the given method of representation and R(x o y) represents the worst
result of the operation x o y. For example, assuming 3 digit decimal representations
with ε = 0.005, let us consider the maximum error associated with the operations
195+23.4 = 218.4 and 195×23.4 = 4563. In this case, R(195+23.4) = (195+23.4)(1±
0.005) = 218(1± 0.005) = 218± 1.09 and R(195× 23.40) = (195× 23.4)(1± 0.005) =
4560(1± 0.005) = 4560± 22.8 respectively.

Further Errors in Computer Arithmetic

The order of operations can critically effect the output. In general, it is better to
add ‘floating-point’ numbers in order of magnitude if possible. For example, suppose
we compute 0.273000+0.001480+0.000862 (=0.275342) by truncating intermediate
results stored with mantissas 3 digits long; then,

0.273000 + 0.001480 = 0.274480→ 0.274000

and

0.27400 + 0.000862 = 0.274862→ 0.274000

whereas

0.000862 + 0.001480 = 0.002342→ 0.002340

and

0.002340 + 0.27300 = 0.275340→ 0.275000

Algorithmic Errors

The errors produced when using an algorithm will frequently depend on:

(i) the order of the operations performed;

(ii) the number of operations performed.

If the errors from one stage of the algorithm are carried over to successive stages,
then the size of the error may grow. These accumulated errors ultimately make the
results obtained unreliable. For example, suppose we want to compute the values in
the sequence

1
3
,

2
3
, 1,

4
3
,

5
3
, ..., 6

using 3 digit accuracy at each stage. Using pseudo code, suppose we design a first
algorithm as follows:

Algorithm_1

* Define variables *
float x

316 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

Begin:
x=0

* Perform calculation *
repeat

x=x+0.333
until x>6

end

The result is

0.333 0.666 0.999 1.33 1.66 1.99 2.32 2.65 ...

Now consider a second algorithm:

* Define variables *
integer n
float x

Begin:
n=0

* Perform calculation *
repeat

n=n+1
x=n/3

until n>18
end

The result is:

0.333 0.667 1.00 1.33 1.67 2.00 2.33 2.67 ...

11.7 Methods that Reduce Errors and Maintain Ac-
curacy

Nesting

One of the most significant methods of maintaining accuracy that can be performed
by the programmer is nesting. Nesting reduces the number of operations, thereby
reducing error accumulation. For example, to evaluate

3x3 + 2x2 + 5x+ 1

11.8. PROGRAM STRUCTURES 317

for a given value of x we use

((3x+ 2)x+ 5)x+ 1

starting with the innermost bracket and working outwards.

Batch Adding

Batch adding is based on grouping numbers of similar magnitude and adding them.
The result is then added to the number of a group of numbers with a similar magnitude
and so on.

Conditioning

Conditioning is important when solutions are required to systems that are ill-conditioned
in which a small change to the data yields large changes in the solution. Methods of
conditioning can be used to assess the size of error that is likely to occur with such
systems before implementing an algorithm on the computer and techniques such as
iterative improvement used to improve the accuracy of the output (see Chapter 8).

11.8 Program Structures

Program structures are the forms in which program components are constructed,
organised and interrelated. The structure of a program covers:

(i) Its syntax and semantics.

(ii) Data declarations.

(iii) Basic operations on the data.

(iv) Control structures.

(v) Subprograms.

11.8.1 Syntax and Semantics

The syntax of a language are the grammatical rules that govern the ways in which
words, symbols, expressions and statements may be formed and combined. The se-
mantics of a language are the rules that govern its meaning. In the case of a computer
language, meaning is defined in terms of what happens when the program is executed.

11.8.2 Data declarations

Data types such as constants and variables must be defined within a program so that
the appropriate operations may be performed upon the data values. Such information
is typically given at the start of a program. Declarative statements are used to state
the properties of the data, i.e. data that may be of type integer, floating point or
character.

318 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

In the declaration of a real constant, a value is explicitly assigned to the identifier.
A variable name does not have an associated value until it has been assigned one.
This is done by either using an assignment statement or by using them as arguments
in input functions. The processes of assigning values to variables before using them
is called initialization and must be done in a systematic way. In some programming
languages, certain characters are given default properties. For example, in the older
Fortran compilers, the variables

i,j,k,l,m,n

have traditionally been taken to be integer by default because of the routine use
of these variables for indexing the elements of arrays (as used in linear algebra for
example). Other languages dictate that all variables types are declared explicitly.

11.8.3 Input and Output

Many programming languages have special functions for dealing with input and out-
put. Common names for these functions are: input, get, accept, output, write, print,
put, display and so on. Input and Output or I/O typically concerns: (i) interacting
with the user via the Visual Display Unit or VDU and (ii) writing and reading data
to and from a file respectively.

The most immediate type of I/O is the type that outputs a statement on the VDU
and inputs a string from the keyboard, i.e.

output(’statement’)
input(string)

When input, the string will be stored in main storage and referred to by the appro-
priate identifier. Depending on the original context and applications under which a
language was first developed, its sophistication in terms of its I/O facilities and their
functionality can change radically. For example, Cobol and its many derivatives were
originally designed for business and administration which required first and foremost,
methods of storing, transferring, manipulating and processing data compared to a
language such as Fortran which was originally designed for scientists and engineers
to translate their formulas. Thus, the I/O facilities available in Cobol were, by way
of the application, significantly more sophisticated than those of Fortran.

11.8.4 Operations of Data

Operations on data include:

(i) arithmetic operations;

(ii) operations on integers;

(iii) operations on reals;

(iv) operations on characters;

(v) logical relational operations.

11.8. PROGRAM STRUCTURES 319

11.8.5 Control

The order in which program instructions are performed must be carefully controlled
and programming languages contain features that allow the order of instruction exe-
cution to be controlled. All programming problems may be reduced to combinations
of controlled sequences, selections or repetitions of basic operations on data.

Control Structures

Program control structures are used to regulate the order in which program statements
are executed and fall into three categories:

(i) sequences;

(ii) selections;

(iii) repetitions.

Sequences

In the absence of selections or repetitions, program statements are executed in the
sequence in which they appear in the program:

statement_1
statement_2
statement_3

Selections

Selections form part of the decision-making facilities within a programming language.
They allow alternative actions to be taken according to the conditions that exist at
particular stages in execution. Versions of the if-then-else statement are available in
most high-level languages. The form of syntax for this statement is:

if
condition

then
statement_sequence_1

else
statement_sequence_2

endif

Selections include nested if-then-else and case statements.

Repetitions

There are many programming problems in which the same sequence of statements
needs to be performed again and again a definite number of times. The repeated

320 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

performance of the same statement is referred to as looping. Loop constructs for
repetitions can be generated using entities such as the ‘while’ loop, a ‘repeat’ loop, a
‘for’ loop and a ‘do’ loop. Efficient looping schemes form an essential aspect of array

processing.

11.8.6 Subprograms

The term ‘subprogram’ may be used to describe a component part of a program. A
well constructed subprogram should be:

(i) self-contained;

(ii) perform well-defined operations on well-defined data;

(iii) have an internal structure that is independent of the program in which it is
contained.

The two basic types of subprogram are:

(i) functions;

(ii) procedures, subroutines or void functions;

Functions

Many high-level programming languages have in-built functions or provide the facility
for the user to define and construct a function. For example, consider the following
program to find the square root of a number using an in-built square root function
called sqrt.

Program Find_root

* This program has the name "Find_root". It inputs a number and
outputs the value of the square root of the number. *

Define variables:
real number
real root

Begin:
output("Input number")
input(number)

if
number<0

then
output "No root."

else
root=sqrt(number)

11.9. PROCEDURES 321

output("Square root is", root)

endif
end

11.9 Procedures

Any defined way of carrying out some actions may be called a ‘procedure’. Pro-
gramming procedures are defined operations on defined data and may be used as
program components. These components are referred to as subroutines or void func-
tion. Procedure definitions are similar to function definitions, but procedure calls are
statements whereas function calls appear in programs as expressions. For example,
consider the following procedure for computing the area of a rectangle.

procedure area(IN: real first_side, real second_side; OUT: real area)

* This procedure takes in the values of first_side and second_side.

If the value is not positive then the procedure returns
area with zero value. Otherwise, the procedure multiplies
the first_side by the second_side and returns area with the
value of the result *

Begin:

if
(first_side<=0) OR (second_side<=0)
then
area=0

else
area=first_side*second_side

endif
end

The input and output of this procedure are called parameters. The input parameters
of a procedure correspond to the arguments of a function. The output parameters of a
procedure serve the same purpose as the value returned by a function. Procedures may
have I/O parameters which control the way in which data is passed into a procedure,
manipulated by it in some defined way and then passed out again. The input to a
procedure may or may not be overwritten. As a general rule of thumb, it is better not
to overwrite the input so that after the procedure has been used the input parameters
are unaltered. Parameters which are internal to the procedure should always but
always be initialized. Non-initialization of internal parameters is a common way of
generating algorithmic errors.

322 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

11.10 Processes Specification

The specification of how the processing is to take place needs to give a precise defin-
ition of what processing is needed by giving the relationship between the input data
and the output data. Some standard ways of specifying processes are:

(i) pseudocodes;

(ii) flowcharts;

(iii) program structure block diagrams;

(iv) Warnier diagrams;

(v) decision tables and trees.

11.10.1 Pseudocode

Pseudocode is a set of statements whose aim is to quantify the process without obscur-
ing its function with the syntax and semantics of a particular programming language.
We have already seen some examples of pseudo code in the previous section which
was introduced to present the principle of procedures. In general, the syntax used for
pseudo code is arbitrary and user dependent and typically reflects the programming
language the user is most familiar with. The key to using pseudo code is to convey
the process clearly and accurately in a way that real code using some programming
language can not necessarily do as well, otherwise, one might as well write out the
code directly - many programmers do! The following examples illustrate the use of
pseudo-code.

Example 1 Pseudo-code to read in a number from the keyboard, square it and write
out the result to the VDU.

output("Input number")
input(number)

number=number*number
output("Number squared is", number)

Here, the data I/O is assumed to be controlled by the functions output and input.

Example 2 Pseudo-code to compute the square-root of an array containing 10 ele-
ments.

for i=1,2,...,10; do:
array(i)=sqrt(array(i))

enddo

Example 3 Pseudo-code to read a number (assumed to be non-zero), check whether
it is positive or negative and output the result.

11.10. PROCESSES SPECIFICATION 323

output("Input positive or negative numbers")
input(number)

Begin:
if number > 0

then
output("Number is positive")

endif

if number < 0
then

output("Number is negative")
endif

end

11.10.2 Program Flowcharts

Flowcharts are a traditional means of showing, in diagrammatic form, the sequence
of steps in performing a programming task. There are two levels of flowchart:

(i) outline program flowcharts;

(ii) detailed program flowcharts.

Outline program flowcharts represent the first stage of turning a systems flowchart
into the necessary detail to enable a programmer to write the program. They present
the actual computer operations in outline only. Detailed program flowcharts are charts
that contain the detailed computer steps necessary to perform the particular task. It
is from these charts that the programmer may generate code.

11.10.3 Program Structure Block Diagrams

Structure block diagrams are intended to replace the traditional flowcharts to aid the
writing of structured code. There are many varieties of these diagrams but they are
all only suitable for low-level specifications.

11.10.4 Warnier Diagrams

Warnier diagrams are a simple way of writing out processing requirements in a struc-
tured form. They are mostly used for drafting out simple procedures before attempt-
ing to express the procedures in more precise forms such as pseudocode. Warnier
diagram operate from left to right and typically use a left brace { to segment a
process in to its component parts.

11.10.5 Decision Tables and Trees

Decision tables and trees are a means of expressing process logic. Decision tables are
used to analyse a problem. The conditions applying in the particular problem are set

324 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

out, and the actions taken (as a result of any combination of the conditions arising)
are shown. Decision trees are a graphical representation of decision tables. Their
purpose is to aid the construction of decision tables.

11.11 Program Specification

Program specification usually forms part of system specification which defines the
whole system. Much of the detail within a program specification is specific to the
particular problem to be solved but some general design aims may be expressed ex-
plicitly as part of the program specification irrespective of the particular problem.
They are:

(i) program design, style and presentation;

(ii) program readability;

(iii) program efficiency;

(iv) program development time;

(v) program development costs;

(vi) program documentation.

11.11.1 Program Design, Style and Presentation

Structured programming can directly contribute to the overall quality of programs
and the achievement of many design aims. Structured programs are not only more
comprehensible, they are also much easier to test. In general, one should think of
reading a program in a similar way to reading a paper or book; although references
and flags to other parts of the text will occur from time to time, the paper should
read naturally from top to bottom and from left to right. Good programming provides
a natural and logical flow to the code in the same way as good writing does. This
includes the overall presentation of the text on the page. Aids to program presentation
include:

(i) The use of meaningful identifiers for programs, subprograms, variables and con-
stants.

(ii) The indenting of code to highlight its structure (as used in some of the previous
pseudo code examples).

(iii) The use of appropriate program structures.

(iv) Restricting the size of subprograms to manageable lengths, e.g. insisting that no
subprogram occupies more than one page say of A4, especially when hard copies are
required.

(v) Incorporating comments within the program that explain what is being done and
how it is done, a particularly important aspect of coding to which many programmers
would argue that for every one line of code there should at least two lines of comment.

11.11. PROGRAM SPECIFICATION 325

Point (v) cannot be stressed enough. For all the flow charts, data flow diagrams etc.
that may be used to establish a process, the potential reader and modifier of a program
will typically only have access to the source code. It is therefore very important for
the code to be well commented in order to make a future programmer comprehend
the code. In some respects, it is arguable that clarity and comprehension of code is
more important than efficiency especially when software engineering projects involve
a high turn-over of programming staff.

11.11.2 Program Reliability

Program specification must always be accompanied by carefully considered methods
for testing the program. Even if the principles of the program and its coding (auto-
matic or otherwise) are proved, in practice, testing procedures are required, i.e. until
such a time as formal methods in computer science become compatible with practical
software engineering projects. A program that passes its test may be certified and
put to use and if the program continues to work for some appreciable time without
failure, it may be regarded as reasonably reliable. The reliability of a system which
is composed of many functions is often related to the cohesiveness of the functions
which in all cases should be maximized with little or no coupling and interdependence
from one function to another.

One useful measure of reliability is the mean time between failures. This is the
average time that elapses between program failures being detected - a failure being
anything from the output of a wrong result to a non-recoverable and unexpected
termination of execution (i.e. a crash).

Formal methods provide an approach that ultimately may allow the programmer
to do away with test procedures as the output from some automatic code generator
would be based on a process specification that is rigorously proved correct in all
cases. However, such methods are only applicable (at present) to problems that
are relatively simple. They are typically applied to systems that are not necessarily
complex but safety critical. Many such systems are related to digital signal process
in control engineering including areas such as avionics, weapons control systems and
secure communications systems.

11.11.3 Program Efficiency

The efficiency of a program may be expressed in terms of its use of recourses such as
time and storage space. Efficiency is achieved by adopting a sound design method
rather than by using programming ‘tricks’ that result in compact but unreadable
programs. A program should be designed to work first and then, if possible, made to
work more efficiently. A good design may turn out to be efficient enough by itself. If
it is not, it will be much easier to make efficient than a poorly designed program. The
use of subprograms - which is the key to structured programming - can slow down
execution slightly because of the time taken for parameter passing, but this can be
turned to advantage in dealing with the efficient use of restricted storage space. This
happens when segmentation is possible.

A segmented program is one that, when executed, allows some parts of the program
(segments) to take turns in occupying the same area of main storage. Segments will

326 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

occupy main storage when they are executed and held on disk for example the rest
of the time. Copying programs or subprograms into the same area of main storage
during execution is known as performing an overlay.

11.11.4 Program Development Time

There is usually some limit set on the time allocated to designing and implementing
a program. Time limits can cause the quality of a program to suffer but the qual-
ity should not be allowed to suffer unnecessarily. Time limitations typically cause
a programmer to economize on the design and rush on to the implementation stage
without implementing appropriate test procedures. Rushing the coding stage of a
program makes matters worse. The best solution is to put most of the time allocated
to program development into producing a good design from which a quick and sim-
plified implementation can be produced as necessary. Working toward specific dates
by which certain parts of the programming task must be completed is also of value.
There is an obvious close relationship between development times and budgets. Sig-
nificant improvements have been made through the introduction of Computer Aided
Software Engineering or CASE tools. One of the most significant results has been the
ability for a complex system to be developed with a software engineering team that is
composed of fewer personnel, allowing the system to be developed with significantly
less overheads and time management.

11.11.5 Program Documentation

Program documentation is very important and varies according to its intended use.
Three main areas of use are:

• For the programmer’s own present or future use and as an aid to all stages in
programming.

• For the present or future use of other programmer, including the programmer’s
supervisor, e.g. for maintenance, modification, debugging, etc.

• For the users of the program, who may themselves vary in expertise.

The following items may be expected as part of the complete process of documenta-
tion:

(i) A statement of the problem (system and program specification).

(ii) Documents specifying the format of inputs and outputs, including checks on the
validity of data.

(iii) Details of the data structures used, plus details of how data in files is organised,
accessed and kept secure.

(iv) Details of the algorithms and procedures used to solve the problem presented in
a suitable form such as pseudocode.

11.12. SYSTEM DESIGN 327

(v) A carefully devised set of test data with evidence to show that the test data has
been used to good effect.

(vi) Evidence to show that the program not only works but also that it has simple,
effective, unambiguous and error-free methods of input and output for the program-
mer’s use (i.e. a good ‘user interface’).

(vii) Detailed instructions to the installer/user such as:

(a) limitations of the program;
(b) requirements in order to run the program (e.g. hardware);
(c) details of how to run the program;
(d) instructions (with examples) on how to use the program.

Instructions on how to use the program may take the form of a user manual and
on-line help with additional instructions output by the program when it runs. Online
documentation and a run-time help facility are valuable aids and becoming more and
more common.

11.12 System Design

System design is crucially dependent on the so called software life cycle and can be
described schematically as follows:

Specification

⇓
Design

⇓
Testing

⇓
Software Maintenance

Within the context of the above, we now discuss the stages of this life-cycle.

11.12.1 Specification

Specification is concerned with the formulation of software requirements in terms of:

• functions;

• operational constraints;

• external system behaviour;

328 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

• support environment;

• hardware on which software is to perform.

11.12.2 Design

Design deals with the realisation of code on the target system. This activity is depen-
dent upon individual skill, attention to detail, knowledge of how best to use available
tools and management organisation.

11.12.3 Testing

Testing involves:

• exercising the program using data which is similar to the real thing;

• observing the outputs;

• inferring program errors or inadequacies from anomalies in the output.

This can only be achieved through the establishment of a suitable design strategy
which:

(i) tests to see if the individual components meet their requirements;

(ii) ensures that the integrated system functions perform correctly.

In practice, testing a module is done using a set of carefully selected ‘test data’.
Testing may be conducted by executing the program on the computer or by simulating
its execution by a manual paper exercise called a ‘dry run’. There are two basic types
of testing:

1. Functional testing or black box testing which is based upon typical, extreme and
invalid data values that are representative of those covered by the specification.

2. Logical testing or white box testing which is based upon examining the internal
structure of the program and selecting data which gives rise to the alternative cases
of control flow, e.g. both paths through an if..then..else.

Functional testing is used at the final stage of programming as a basis for accepting
or rejecting the system.

11.12.4 Software Maintenance

Upon completion of the implementation stage, the software is typically transferred
to operations staff where it must be maintained. Problems associated with software
maintenance can invariably be traced to deficiencies in the way the software was
designed and developed. A lack of control and discipline in the early stages of the

11.13. REQUIREMENT SPECIFICATIONS 329

software life-cycle nearly always translates into problems in the last stage. This leads
to ‘defect amplification’ which refers to the following phenomenon: During any phase
of software development, errors may be generated. Errors that are not removed will
be passed through to the next phase. Some of the errors that are passed through will
have more significant ramifications on the next and/or subsequent phases.

An important aspect of the software life-cycle is that it is dynamic. In other words,
as the software is designed, coded, tested etc., any or all of the requirements (from
specification to software maintenance) will invariably change and cycle back to one or
all of the previous stages. This feature of software engineering is known as ‘Bersoff’s
law of system engineering’ which states:

‘No matter where you are in the system life cycle, the system will change, and the
desire to change it will persist throughout the life cycle’.

11.13 Requirement Specifications

In general terms, a requirement specification will comprise of six sections as follows:

Function
A ‘user-eye’ view of the system, dealing with all aspects of the user interface.

Allocation
Delineation of responsibility, for each of the functions that have been defined, to
hardware/software/operator.

Constraints
Any particular limitations on the way the system is to do its work, together with their
level of importance.

Standards
A definition of existing (i.e. known) and documented techniques which have to be
applied to the development of the system.

Quality
Details of the quality control procedures under which the projects progress will be
monitored.

Schedule
Targets, i.e. what is expected to be ready and by when.

11.14 Modularity

High modularity of software in which each module is well structured is the key to
all good programming design. Moreover, if these modules can be designed in such a
way that there implementation can be orientated toward numerous applications, then
their existence saves on the duplication of tasks and hence the duplications of software
which leads naturally to the principles of objected oriented programming and systems
design. The following guide-lines are of value in deciding what to do during the act of

330 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

design (leading to programs that are clear, simple and flexible) and provide a criteria
for assessing the structure of an existing piece of software.

Restricting module size is one crude way to reduce complexity. An extreme view
is to restrict all modules to no more than seven statements. This argument is based
on experimental evidence of the human mind being able to comprehend the inter-
relationship or otherwise of only seven or less statements. Various quantitative mea-
sures of complexity are available. A useful measure of a modules complexity is one
plus the number of decisions within a module (usually as a result of an if-type state-
ment) - the McCabe cyclometric complexity measure. The principle of information
hiding holds that data should be inaccessible other than by means of the procedures
that are specially provided for accessing data.

Coupling and cohesion are terms that describe the character of the interaction
between modules and within modules, respectively. Coupling and cohesion are com-
plementary. Strong coupling and weak cohesion are bad; weak coupling and strong
cohesion are good. Coupling can be characterized into a number of types, ranging
from one module altering another’s code to modules communicating by exchanging
serial data streams only. Coupling and cohesion provide a terminology and a quali-
tative analysis of modularity. Modules that are used in more than one place should
not arise from a top-down design process, but from a bottom-up approach.

11.15 The Jackson Method

This method (first published by Michael Jackson, Principles of Program Design, Aca-
demic Press, 1975) is arguably the most systematic method in existence for structured
programming. The basic thesis is that the structure of a program should match the
structure of the file or files that the program is going to act on. The Jackson method
is only useful for designing the detail of a software function - the structure of individ-
ual programs and modules. It gives little help in designing the overall structure of a
large piece of software, which needs to be broken down into programs and modules.
The steps in the method are as follows:

1. Draw a diagram (a data structure diagram) describing the structure of each file
that the program uses.

2. Derive a single program structure diagram from the set of data structure diagrams.

3. Associate the elementary operations with their appropriate positions in the pro-
gram structure diagram.

5. Transform the program structure diagram to schematic logic.

The main advantages of this method are:

• There is high ‘proximity’ between the structure of the program and the structure
of the files. Hence a minor change to a file structure will lead only to a minor
change in the program.

• There is a series of well-defined steps leading from the specification to the design.
Each stage creates a well defined product.

11.16. DATA ANALYSIS 331

From a programmer’s point of view, the method can be seen as an increased regimen-
tation of programming and a means of subjecting work to closer control.

11.16 Data Analysis

Data analysis is concerned with identifying the requirements for data to be input to
a system, and output from it. It may concentrate solely on I/O requirements - the
interface with the environment - for the system as a whole. Since every system should
be designed in terms of a sequence of sub-systems each of which have their own I/O,
data analysis can equally well be used to cover sub-systems as well. In practice, the
activities of the processing sub-system may well be functionally decomposed into a
number of separate modules. Each module of the processing sub-system operates in
series with another. The input received by one module is the output generated by a
previous module operating at a sub-functional level.

11.17 Data Flow Design

Data flow design examines the flow of data within a prospective piece of software and
the transformations that will act upon these flows. The end product is a structure
chart for the software that shows:

• the modules of which the software is composed;

• the interaction between the modules.

Data flow diagrams are used in the functional description of systems and/or sub-
systems by showing how the input data of a processing component is transformed to
the output data. This typically consist of two components:

• circles or ‘bubbles’ representing the functions performed at the intermediate
stages;

• arrowheaded lines with suitable annotations alongside highlighting what the
data object is.

The bubbles represent the transformations performed on the data objects identified
by the arrowheaded lines. By convention, inputs to a process should arrive from
the left; all outputs from an intermediate process are generated on the right. The
information flow through the entire group of functions should be from left to right.
Drawing a data flow diagram for a proposed piece of software is a vital step in the
method. There are three alternative approaches:

1. Start with a single bubble identifying the overall function of the software and its
I/O data flows. Break this function down into a set of smaller functions. Continue

332 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

this process until it is impossible to continue any further. This is typical of a ‘top
down’ approach which introduces a number of levels - level 01, level 02, ... etc.

2. Start with the output data flow from the system and identify the final transforma-
tion that has produced this data. Then identify the previous transformation and so
on until the diagram is complete.

3. Start from the input flow to the system and construct the sequence of transforma-
tions that should be applied.

Once the data flow diagram is completed, one can regard each function described by
a given bubble as a module (an individual function) that inputs and outputs a serial
stream of data from one function to another.

11.18 Testing and Implementation

Testing can account for a significant amount of effort required to develop software.
In the bottom-up approach to modular programming, each module is tested by in-
putting appropriate data and analysing the output against a suitable ‘bench mark’ -
a known analytical result for example. Bottom-up testing requires the time consum-
ing construction of ‘test beds’, and it often tests new modules in groups rather than
individually. In the bottom-up approach, the lowest level modules are designed first
and tested independently of each other. The next level of subprograms is tested in
the same way until the top level program (an interface for example) is reached. In
principle, top-level or top-down testing can lead to less programming time, less com-
puter time and above all else, gives better awareness of project progress leading to
more reliable software. Here, the highest level of the software is coded first. Program
‘stubs’ are used to stand in for invoked but as yet unwritten lower level components.
These stubs are rudimentary replacements for missing subprograms. Implementation
proceeds by selecting lower-level components (formerly stubs) for design and coding
and incorporation into the system. At any stage in the software development there
are:

(i) higher level components which have already been tested;

(ii) a single component under test;

(iii) stubs.

In practice, it is rare that the development of a software system is based solely
on a top-down or top-up scenario but more on a hybrid approach in which all levels
are interlinked in terms of the software cycle and the evolution of the design. The
elements of software engineering as discussed here, should be seen in terms of a lose
guide as to the way in which software evolves. Many of the ideas that are developed
under the heading of ‘software engineering’ have significant credit in terms of their
rational and pragmatic approach. However, as any programmer knows, it does not
always work out that way and there is nothing more illuminating than getting ‘stuck-
in’ to having to program a system from scratch. It is arguable that many of the
principles of software engineering are based on common sense, but this can only be

11.19. STAGES OF SYSTEM DESIGN 333

fully appreciated by those who have undertaken a significant amount of programming
and systems development. It is all to easy for over-paid and over-fed project managers
who have never written a program in their lives, to come up with fatuous phases such
as ‘...its all just a matter of programming’.

11.19 Stages of System Design

The stages of system design are as follows:

1. Statement of User Requirements.

2. Functional Specification.

3. Technical Specification.

4. Detailed Design.

5. Programming and Unit Testing.

6. System Testing.

7. Conversion and ‘Going-Live’

11.19.1 Statement of User Requirements

The statement of user requirements describes what the user expects from the system.
This may form part of a proposal for the work or it may be part of an ‘invitation
to tender’ from a client or it may be put together by talking to the client at a high
level. Typically ‘high level’ discussions relates to ‘functional’ issues. It is particularly
important to get the user requirement correct because:

• it gives the user(s) confidence in what you can do for them;

• it enables you to fix the scope of the project early on;

• it ensures that you are able to proceed to the next phase.

11.19.2 Functional Specification

This document expands on the functional description of the system. It specifies all
inputs, outputs and processing requirements at a functional level. It generally contains
sample input/inquiry screen and sample report layouts together with conversation
flows for the system. It is important to get client input on the functional specification
and to get them involved in the system design process.

11.19.3 Technical Specification

This document describes how the functionality of the system will be achieved in
practical terms. It typically contains:

334 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

• database design;

• technical/performance figures;

• recommendations for platform/architecture and language/operating system;

• a breakdown of system functions into programmable modules.

In some cases, smaller projects may combine the functional and technical specifica-
tions to avoid unnecessary administrative overhead.

11.19.4 Detailed Design

A detailed design considers the process by which module descriptions in the technical
specifications are turned into program designs. Here, it is important to adopt a con-
sistent approach to variable/file names. Two of the most common design approaches
are:

• flow diagrams;

• structure charts.

In both cases, it is essential to adopt a modular approach to program design, because:

(i) it avoids code redundancy;

(ii) it increases code efficiency;

(iii) it facilitates code portability.

11.19.5 Programming

With regard to turning the designs into code, it is useful to consider the following
points:

• Stay with to the design specification; if you change it make sure you change the
document.

• Develop standards for naming program variables.

• Introduce comments which are updated for the purpose code maintainability.

• Avoid the temptation to design whilst coding; it can lead to some seriously
doggy code.

11.20. COMPUTER AIDED SOFTWARE ENGINEERING TOOLS 335

• Avoid code redundancy by putting common logic into subprograms.

• Introduce machine specific code such as graphics and file handling into separate
modules.

11.19.6 Unit Testing

Unit testing is concerned with introducing a test or test set that verifies that the code
does what the design says it should do. The following points are valid:

• Obtain unit test conditions from the detailed design; do not use the code itself.

• Use a structured approach to listing test conditions, so you know which ones
have been completed.

• Avoid the temptation to skip the conditions that you are ‘sure’ will work, they
tend to be the ones that don’t !

11.19.7 String and System Testing

String and system testing involves tests that ensure that all the unit tested modules
work properly together to perform the functions specified in the functional specifica-
tion. This testing is done in close collaboration with the users of the system and should
be based on ‘realistic’ test data. Particular importance should be attached to testing
parts of the system where data is passed between modules. Security/performance and
external interfaces may also be tested as part of the system test.

11.19.8 Summary on System Design

The above stages are not rigid, and on smaller projects they tend to be relaxed.
However, documentation, although sometimes a pain, is very important. Setting out
standards for variable file names etc. at the beginning of a project is also important.
It means that on larger projects, analysts and programmers can work as a team. Not
adhering to standards can mean a lot of work.

11.20 Computer Aided Software Engineering Tools

There are a wide range of Computer Aided Software Engineering or CASE tools cur-
rently available. For the most part, these tools help to make designing and installing
systems easier. They are not however a ‘cure-all’, but they can help system designers
concentrate on what the system does, rather than how to achieve it. CASE tools are
typically used for

• prototyping;

336 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

• screen and report layouts;

• design of the database;

• detailed design;

• code generation;

• generation of test data.

Case tools have their place, but they should not be seen as a natural solution for
making life easy. It may be of interest to reader for the author to recollect on an
interesting scenario concerning CASE tools. Some time ago, I was presenting a short
course on ‘Computational Methods for Engineering Design’ which was a hands-on
approach to designing software that implements some of the more important numerical
procedures for computational geometry and finite element analysis. The delegates
were composed of six graduates of computer science and IT degrees which I shall call
Group I and six graduates of electrical, mechanical engineering and physics which I
shall call Group II. When it came to the practical sessions, in which delegates had
to design, code and test various modules, inevitably hands went up for assistance. It
became immediately clear that Group I were using an inordinate number of windows
for editing, compiling, visualising etc. and every time I asked them to show me the
problem there appeared to be a large amount of ‘pointing and clicking’ required in
order to illustrate the problem. Not only was the problem difficult to find but the
‘mess’ on the VDU was enough to give the computer a head-ache. Group II on the
other hand, all opted for a simple editor and a command line approach based on a
systematic rather old-fashioned approach, in which the material displayed on the VDU
was reminiscent of the days before windows was introduced. The problem was easy to
evaluate and solve and clarity rained supreme (most of the time). Moreover, Group
II managed to accomplished the programming tasks set and developed a working, if
primitive object library, whereas Group I appeared to have accomplished very little.
I can’t help thinking that Group I achieved less because of the way in which they had
been trained to use current ‘bloatware’ which led to significant confusion and diffusion
(of the process a module was supposed to perform into the operating environment of
the machine). However, it all looked very impressive on the screen and sounded good
as well!

11.21 Operating Systems and Languages

An operating system is a suite of programs that operates and controls the various
units of a computer. It controls the way software uses hardware. This control
ensures that the computer not only operates in the way intended by the user but does
it in a systematic, reliable and efficient manner, i.e. schematically, we can think of an
operating system in terms of the following:

11.21. OPERATING SYSTEMS AND LANGUAGES 337

Users

⇓
Other software

⇓
Operating system

⇓
Hardware

Part of the operating system remains in main storage permanently during the running
of the computer. This part is called the kernel and is the controlling part of the
operating system. The rest of the operating system is usually stored on a direct-
access storage device from which any particular program can be called into main
memory by the kernel when required.

11.21.1 Functions of an Operating System

The principal functions of an operating system can be summarized as follows:

• The scheduling and loading of programs, or subprograms, in order to provide a
continuous sequence of processing or to provide appropriate responses to events.

• Control over hardware resources, e.g. control over the selection and operation
of devices used for input, output or storage.

• Protecting hardware, software and data from improper use.

• Calling into main storage programs and functions as and when required.

• Passing of control from one job (program) to another under a system of priority
when more than one application program occupies main storage.

• Provision of error correction routines.

• Furnishing a complete record of all that happens during processes.

• Communication with the computer operator usually by means of the keyboard/mouse
and visual display unit.

The operator typically communicates with the operating system by means of a Job
Control Language (JCL) which is translated and executed by an interactive command
interpreter.

338 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

11.21.2 Types of Operating System

Single program systems are the basis for the majority of small microcomputer-
based systems. They allow a single user to operate the machine in an interactive
mode but normally only allow one user program to be in main storage and processed
at a time. (e.g. MS-DOS - MicroSoft Disc Operating System, or DR-DOS - Digital
Research Disc Operating System).

Simple batch systems provide multi-programming of batch programs but have few
facilities for interaction or multi-access.

Multi-access and time-sharing systems represent the majority of systems but
there is a wide range of complexity. On large microcomputers, there are a number
of operating systems available for use on different machines produced by many differ-
ent manufacturers (e.g. UNIX). On large minicomputers and mainframes, operating
systems are normally specific to a particular machine and manufacturer.

Real time systems cater for the type of real-time system being used and fall in to
three basic categories:

(i) complex multi-access time-sharing;

(ii) commercial real-time systems in which there is an essential job usually making
extensive use of data bases;

(iii) process control systems to control and operate processes in which response to
change must be as fast and reliable as possible.

11.21.3 DOS

DOS (Disk Operating System) has been the basis for most single-user operating sys-
tems of IBM and IBM compatible personal computers. It is one of the most widely
used operating system in existence and underpins the development and execution of
Microsoft’s generation of windows based graphical user interface, from Windows 3.1
through to windows 95, 98 and 2000. Microsoft DOS (MS-DOS) was first introduced
in 1981 and was marketed by IBM as PC-DOS; the two systems being virtually indis-
tinguishable. The origins of this operating system lie in CP/M (Control Program for
Microprocessors), the operating system for 8-bit computers popular in the late 1970s
which used the Intel 8080 microprocessors. CP/M was created in the late 1970s as
floppy disk drives became available for early personal computers, designed with as
little as 16K RAM. MS-DOS is basically a clone of CP/M and was originally designed
to facilitate the transition of 8-bit CP/M business software so that the software would
run in the new 16-bit IBM PC environment. IBM originally approached CP/M’s pub-
lisher, Digital Research, to write the operating system for its new computer, but as
the result of a now legendary communications breakdown, Microsoft Corporation got
the job instead.

Important Features of DOS

DOS is a command-line operating system with an interface that requires users to

11.21. OPERATING SYSTEMS AND LANGUAGES 339

memorise a limited set of commands, arguments, and syntax to use MSDOS computers
successfully. After mastering DOS commands, users can achieve a high degree of
control over the operating system’s capabilities. The most severe limitation of DOS
was for many years, the 640K RAM barrier that the operating system imposed on
IBM PC-compatible computing. The 640K RAM ‘barrier’ was first broken by a new
successor to DOS called OS/2 (Operating System 2) introduced in 1987.

11.21.4 UNIX

UNIX was the product of work at AT & T Bell laboratories during the early 1970s.
Because Bell Laboratories were prohibited from marketing UNIX by the antitrust
regulations then governing AT& T UNIX (the first version to gain significant distri-
bution), the compiler was provided without charge to universities throughout North
America, beginning in 1976. In 1979, the University of California at Berkely devel-
oped an enhanced version of UNIX for VAX computers. This version of UNIX led to
other versions being made available commercially. In the early 1980s, AT& T gained
the right to market the system and released System V in 1983.

UNIX is a comprehensive C-based operating system or programming environment
that expresses a unique programming ‘philosophy’. It provides:

(i) a filing system, with tree-structured directories;

(ii) a textural command language, based on command verbs followed by parameters;

(iii) a unique facility for joining pieces of software together called ‘pipes’;

(iv) a primitive set of facilities, e.g. a file copy tool.

UNIX is based on the concept of creating ‘software tools’, each of which performs
one (and only one) function and together constitute the ‘operating system’. In this
environment, application programs need not rely on their own features to accomplish
functions, but can take advantage of the software tools available. This philosophy
helps keep application programs within manageable bounds. In UNIX, each element
of software is called a ‘filter’. A filter is a program that inputs a serial stream of
information, processes it and outputs another serial stream. The communication of
data from one software tool to another is accomplished via a ‘pipe’, a user command
that couples the output of one command to the input of another. Pipes are highly
flexible and enable the user to control virtually every aspect of the operating environ-
ment. It is possible to extend the command set to create commands for situations not
anticipated in the operating systems development. Compared with DOS, UNIX is a
highly flexible and powerful operating environment. However, it can exact a heavy
toll on end users. With more than 200+ basic commands, inadequate error messages
and a cryptic command syntax, UNIX requires a long ‘learning curve’ and imposes
heavy burdens on users who do not use the system regularly. The main virtues of
UNIX as a basis for software tools are:

(i) it encourages the use of existing software;

(ii) software is constructed in a highly modular fashion;

340 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

(iii) UNIX readily supports the dataflow software design method.

Once a dataflow diagram has been designed, it can be directly implemented as UNIX
filters, connected by pipes. Unlike most PC operating systems, UNIX was designed
as a multi-user system. With its multitasking capabilities, UNIX can perform more
than one function at a time. In the past, these features have been in little demand by
PC users of stand alone machines for running one application at a time. With current
trends in personal computing, including the linking of workstations to corporate mi-
crocomputers and mainframes, UNIX is destined for greatness. UNIX for PC’s is now
readily available. Known as Linux, it is an emulating system to run UNIX on a PC
environment and is one of the fastest growing operating systems currently available.

11.22 Programming Languages

There have been many programming languages developed since the early 1950s, some
of which have come and gone while others have stayed and been continuously up-
graded and enhanced. However, nearly all programming language have fundamental
attributes in common and it is arguable that, in theory, the development of computer
science is language independent. However, in practice, it is imperative that a lan-
guage should be mastered as completely as possible, especially when it is based on
the application of a specific field of interest as discussed in this book.

11.22.1 Factors in the Choice of a Language

Clarity, Simplicity and Unity of the Language

A programming language should provide the conceptual framework for thinking about
an system as well as providing the means for expressing the system for machine
execution. It is the semantic clarity which is arguably the most significant factor in
selecting a language.

Clarity of Structure

The syntax of a language affects the ease with which a program may be written,
tested, and later understood and modified. A language should have the property that
semantic differences should be mirrored syntactically.

Naturalness of Application

The language should provide appropriate data structures, operations, control struc-
tures and a natural syntax for the problem to be solved. A language particularly
suited (in both syntax and semantics) to a certain class of applications may greatly
simplify the creation of individual programs in that area.

Ease of Extension

A substantial part of a programming task is to construct a library of functions specific
to the application. This may be viewed in terms of language extension and the

11.22. PROGRAMMING LANGUAGES 341

language should allow extension through simple, natural and elegant mechanisms.

External Support

The technical structure of a programming language and its implementation is only
one aspect affecting its unity. The presence of complete and usable documentation
and a tested and error-free implementation are also strong determinants of the unity
of a language.

Portability

An important aspect of many programming tasks is that programs are portable. A
language which is widely available and whose definition is independent of the features
of a particular machine forms a useful base for the production of portable programs.

Efficiency

Efficiency is one of the major concerns in the evaluation of a programming language.
Efficiency of program execution is important in language design and of primary im-
portance for large production programs designed to be executed many times. The
efficiency of program compilation in certain languages rather than execution may
be paramount. In such cases, it is important to have a fast and efficient compiler
rather than a compiler which produces optimized executable code. Efficiency of pro-
gram creation, testing and use is important in problems whose solution must be
designed, coded, tested and modified with minimum waste of the programmers time
and energy. In the following section, a number of programming languages are briefly
reviewed giving a brief history of their development and some of their advantages and
disadvantages.

11.22.2 FORTRAN

FORTRAN (FORmula TRANslation) was the first high level language to be devel-
oped. Earliest versions date from the mid 1950s but the first standard compiler to
have widespread use (FORTRAN IV) was released in 1962. Over the 1960s and 1970s,
various additional feature were added leading to the FORTRAN 77 version released
in 1977. A new version of this language was due to be released in 1988 but failed
to appear on the market, due primarily to the competition from the UNIX/C envi-
ronment which is (for good reasons) currently dominating the computer market. A
Fortran 90 compiler (first released in 1991 and upgraded in 1994) included a number
of superior features such as dynamic memory management.

FORTRAN is a language which resembles elementary algebra, augmented by cer-
tain English words. Because of its similarity to ordinary algebra, FORTRAN is well
suited to problems in mathematics, physics and engineering. FORTRAN is also ap-
plied to a wide variety of other areas, virtually any area requiring extensive manip-
ulation of numerical data or (post 1977) character information. The large number
of application areas together with the simplicity of learning and usage makes FOR-
TRAN one of the most popular computer languages for scientific computing. There

342 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

is a significant amount of ‘legacy code’ which is FORTRAN based in the scientific
and engineering communities.

Important Features

FORTRAN was designed with the primary goal of execution efficiency. It can be
implemented on most computers so that execution is extremely efficient. It uses
hardware structures directly for almost everything except I/O which makes it ideal
for scientific computing. A FORTRAN program consists of a main program and a
set of separately compiled subprograms, with translated subprograms linked together
during loading. No run time storage management (dynamic memory allocation) is
provided in versions that pre-date Fortran 90. Subprograms can only communicate
by passing arrays and parameters through subprogram calls. Hence, the run time
structure of a FORTRAN program is static.

Advantages and Disadvantages

Advantages

• The semantic structure of the language is perfect for translation of complex
algebraic equations and algorithms used in engineering.

• Iteration algorithms are particularly easy to construct using FORTRAN DO-
loops.

• Execution of load modules produced by most FORTRAN compilers is extremely
efficient.

• FORTRAN provides a number of useful intrinsic functions for number and char-
acter manipulation.

• Because FORTRAN is an ‘old’ well established language it can be implemented
on most computers and in most operating environments, given an appropriate
compiler.

Disadvantages

• It is a poorly structured language and allows inexperienced programmers to
produce a ‘mess’, e.g. ‘spaghetti program’ with uncontrolled use of GOTO
statement.

• It was originally unable to access features associated with the operating system
during run time. This was overcome to a limited extent on VAX/VMS systems
(for example) in the mid 1970s using the run time library facilities; a sequence

11.22. PROGRAMMING LANGUAGES 343

of commands/statements which can be included in a FORTRAN program to
access certain features of the VAX/VMS operating environment.

• FORTRAN has poor data typing and I/O facilities in general.

• The run time structure of a FORTRAN (pre-Fortran 90) program is static.

• There is no run time storage management.

Of all the disadvantages of the original FORTRAN programming language, its run
time memory management is possibly its worse feature. In any programming lan-
guage, this feature actively hinders modular programming especially on computers
with low memory capacity and operating systems which can only address a low RAM
(i.e. PC/DOS systems).

11.22.3 Pascal

Pascal was developed in 1970 to make available a language suitable to teach pro-
gramming as a systematic discipline and to develop implementations which are both
reliable and efficient. It is one of the major ‘teaching languages’ in the USA and
Europe.

Important Features of Pascal

A Pascal program is composed of a data definition section, executable block definitions
and an executable ‘main’ program block. The standard data types are those of integer
and real numbers, logical values and the printable characters. Data may be allocated
dynamically and there is a facility to declare new data types with symbolic constants;
this extensionability is one of Pascal’s most significant features. All objects such as
constants, variables, procedures etc. must be declared before they are referenced.
Pascal allows procedures and functions to be called with recursion.

11.22.4 Basic

Basic (Beginner’s All-purpose Symbolic Instruction Code) was developed in the early
1960s. One of the objectives was to develop a language that could be learned quickly
and was powerful enough to be used in solving problems from small scale to medium
scale in any discipline. Basic statements and operands are very close to both the
English language and algebra and is very easy to comprehend.

Important Features of Basic

Basic is commonly available on time sharing systems but is most commonly imple-
mented on mini- and micro-computer systems. A Basic program consists of a single
block of numbered statements. Subroutines and functions are within the same block
and no independent subprograms are allowed. Therefore Basic does not facilitate any
form of modular programming.

344 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

11.22.5 COBOL

COBOL (COmmon Business-Oriented Language) was developed in the late 1950’s to
provide a relatively machine-independent language for solving business data process-
ing problems. A standard version was approved by the American National Standards
Institute (ANSI). This standard version (ANSI COBOL) was revised in 1974 and
has now been implemented by all major manufacturers. COBOL is a business data
processing language designed to implement relatively simple algorithms coupled with
high volume I/O. Because I/O is a prime concern, COBOL is designed with emphasis
on features for specification of the properties and structure of I/O files.

Important Features of COBOL

A COBOL program is organised into four divisions:

1. The procedure division which includes the algorithm.

2. The data division which contains the data descriptions.

3. The environment division which specifies the machine dependent I/O devices
to be used.

4. The identification division which begins the program and serves to identify it
and its author, which also helps in providing program documentation.

The basic data types are numbers and character strings, with the basic structure
being the record. COBOL has an English-like syntax which provides good self-
documentation. This syntax makes writing even the simplest program a fairly lengthy
process.

11.22.6 ALGOL

ALGOL (Arithmetic Language) was originally designed by an international committee
during the late 1950’s and early 1960’s (ALGOL-60, ALGOL-68). The definition of
ALGOL was particularly important in the development of programming languages.
No other single language has had such a far-reaching influence on the design and
definition of languages. ALGOL has been the central language on which much research
in programming languages has been based. It is usually classified as a language for
scientific computations because of its emphasis on numeric data and homogeneous
array data structures. ALGOL has a particularly clear and elegant structure. The
manner of its definition and control structure have influenced later versions of other
languages (in particular FORTRAN and Pascal). The language has served for many
years as the primary publication language for algorithms in a variety of computer
science journals. Hence, a knowledge of ALGOL is a prerequisite to much advanced
work in programming languages and related areas. ALGOL programs in general
cannot be executed as efficiently as equivalent FORTRAN programs on conventional
hardware. This is one major reason why ALGOL has never replaced FORTRAN in
much of scientific computing.

11.22. PROGRAMMING LANGUAGES 345

Important Features of ALGOL

ALGOL is a language designed for compilation; programs and subprograms are com-
piled into machine code, with only a minimum of software simulation required for
some of the primitive operations. Owing to the dynamic storage allocation and ref-
erencing environment, updating is necessary during execution. Data in ALGOL is
restricted to simple homogeneous arrays of integer, real or Boolean elements. An
extensive set of arithmetic, relational, and logical operations are provided. ALGOL
provides two options for transmission of actual parameters to subprograms: trans-
mission by value, and transmission by name. An ALGOL program is composed of a
main program and a set of subprograms constructed of blocks - a set of declarations
followed by a sequence of statements. The main program is just a single block.

11.22.7 PL/1

PL/1 (Programming Language 1) is a multi-purpose programming language. The
original goal of PL/1 was to succeed FORTRAN and to include more extensive data
structuring facilities. It is designed to be used by both scientific and commercial
programmers and is constructed so that the individual programmer can program at
his/her own level of experience.

Important Features of PL/1

A PL/1 program consists of one or more separately compiled external procedures.
Internal and external procedures are identical syntactically but differ in that any
variable in the external procedure is accessible to the internal procedure. PL/1 con-
tains a wide variety of elementary data types, including an extensive set of possible
type specifications for numeric data. The language is complex and is not easy to
read or write. Its wide versatility makes it a relatively hard language to learn in its
entirety.

11.22.8 APL

APL (A Programming Language) is a versatile programming language providing a
direct means of problem solving. It is used interactively on a computer terminal. It is
particularly well suited for the interactive environment because only a few characters
typed on the terminal can lead to a relatively large amount of computing. APL is
not suitable for the construction of large programs for repeated use in production
computing.

Important Features of APL

There is no concept of a main program in APL. Subprogram execution is initiated
either by a call from another subprogram, or by the programmer at a terminal through
entry and execution of an expression containing a function call. In this sense, a
programmer creates and executes the main program line by line during a session at
the terminal.

346 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

11.22.9 C

C is a general-purpose and highly portable programming language designed for and
implemented on the UNIX operating environment which is itself written in C. C has
been closely associated with the UNIX operating system and like UNIX is a product
of work at the Bell laboratories during the early 1970’s. It is sometimes known as a
‘systems programming language’ because it is useful for writing operating systems.
Indeed, the reason for being called ‘C’ is because the first attempts at writing a
systems programming language were called A and B, with the third attempt leading
to acceptable performance characteristics. Its generality and absence of restrictions
makes it more convenient and effective for many tasks.

Important Features of C

C is a relatively low level language. It provides no operations to deal directly with
composites such as character strings, sets, lists or arrays considered as a whole. It
does not define any storage allocation facility other than static definition and the stack
discipline provided by the local variables or functions. There are no read or write
type statements and no wired-in file access methods. C provides the fundamental
flow control constructions required for well-structured programs. The functions of a
C program may be compiled separately. Variables may be internal to a function or
external which are known only within a single source file or are completely global.

Procedure Oriented Programming in C

The basic principle of procedure oriented programming is to design libraries of mod-
ules which perform well defined functions or procedures that can be used by other
systems as required. When the appropriate libraries have been completed, the soft-
ware engineer can concentrate on the functionality of the ‘system’ (compounded in
the design of a GUI for example) instead of having to design and/or re-design lower
level processors. This approach to software engineering, for which the C program-
ming language is ideal, tends to be used in software engineering projects in which the
processes are relatively complex and require careful design and analysis but where the
data types and throughputs are relatively simple. In DSP, many of the procedures
are oriented toward the efficient processing of single and/or multi-dimensional arrays
(2D DSP) of floating point numbers. It is this approach (i.e. a procedure oriented
approach) that is emphasised in Part III of this work and extended further in Part
IV with regard to building a DSP module library.

C versus FORTRAN

Although C is a general purpose language and can therefore be used in ‘number
crunching’ applications, FORTRAN usually performs better in such applications.
This is because: (i) a large number of efficient mathematical libraries have been
developed using FORTRAN (e.g. numerical solutions of Partial Differential Equa-
tions for Computational Fluid Dynamics); (ii) FORTRAN is a language which can
easily be optimised by advanced compilers.

The case for using C in numerical computations rests mainly with the fact that it

11.22. PROGRAMMING LANGUAGES 347

supports memory allocation. In linear algebra or signal processing applications, this
can be very important. However, with the advent of Fortran 90, the situation has
changed somewhat. Fortran 90 supports a range of features originally attributed to C
such as memory allocation and pointers at a higher level, so that it is, in general, easier
to use. Care has also been taken during the definition of the language to preserve
the potential for optimising compilers. Finally, FORTRAN 77 code can be mixed
with Fortran 90. For strictly mathematical applications, Fortran 90 may arguably be
a more useful language. However, for a large number of domains such as interface
development, operating systems, interaction with hardware and so on, C/C++ is
generally superior and should be used whenever possible.

11.22.10 C++

C++ was developed as an extension of C and in one sense can be seen as a version
of C with greater functionality. However, in a significantly more important sense, the
language was developed to enhance the programming methodology of C to include the
principles of object orientation which provides an approach to the re-use of software.

C++ can be viewed as C with classes, a class being the C++ term for an abstract
data type. C has a way of aggregating data into a complex type - the struct; a class
is a struct with a few more features. Part of the data can be kept ‘private’, with the
only access to this data through the ‘methods’ associated with the class. A method
is just a C function, but is bound to a particular class and has access to all of the
class’s data. A class that is entirely ‘public’ is the same thing as a struct and can be
defined as a struct. Classes also have the capability of inheritance. The programmer
can ‘inherit’ all of the data, and methods, of another classes and add what is needed.
This is particularly useful for code reuse. In C and other conventional languages, if
some code does not meet our needs, we at least must modify the code. Inheritance
allows us to take an existing class and augment or modify it as necessary. In fact, a
C++ class has the capability of ‘multiple inheritance’; a class can inherit data from
more than one other class.

11.22.11 Java

Java is a relatively new language but borrows from existing ones, the best parts being
taken from C++, Smalltalk and Lisp. It tries to balance functionality, speed and
portability. Compared with C/C++ which is fast, unsecure and reasonably portable,
Java is relatively fast, secure and very portable.

Java originated from a programme to develop software for information appliances
(e.g cellular phones and personal digital assistants etc). The goal was to enable the
transfer of information and real time applications over packet based networks. This
required small, efficient code which was safe and robust. The development of the
language began with C++ but this was found it too big and complex. Instead the
language was developed from scratch leading to a new language called Oak. Attention
shifted to interactive TV set top boxes and although oak fitted the requirements
well the market was not there. Instead Sun targeted the Internet and World Wide
Web. Oak was developed as a small, robust, architecture independent and object
oriented language which were the ideal requirements for a universal, network based

348 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

programming language. Hence oak was modified a little to the new environment and
renamed Java.

In comparison with C++, Java does not allow the explicit use of pointers. Instead
it uses references, a kind of safe pointer (no arithmetic allowed). Java has no operator
overloading (except + for strings) and only allows single inheritance. Multiple inher-
itance is replaced with Java interfaces and all methods (unless explicitly declared)
are virtual or dynamically bound, i.e. Java is a late-binding language. Hence all
over-ridden methods are selected at run-time. There is no preprocessor and hence
no define type statements are required with Java and there are no include header
files. All basic types (e.g. int, float, double etc.) have a platform independent fixed
size. Java has automatic garbage collection and there is no need for destructors and
delete operators. There are no pointers to methods (simulated by use of interfaces
and callbacks). Instead, Java has true arrays, i.e. arrays are first class objects.

11.23 Object Oriented Programming

Object-oriented programming (OOP) is characterized by many concepts: inheritance
(single or multiple), dynamic binding, polymorphism, and information hiding. These
concepts overlap somewhat but are relatively easy to define. OOP itself involves
designing software around the ‘objects’ in question. These objects are instances of
‘abstract data types’ or ‘classes’ (the C++ handle for an abstract data type). An ab-
stract data type is simply a definition of a complex data type as well as the ‘methods’
that can act upon the data. Nothing can get at the data that constitutes an abstract
data type without using the data type’s methods.

Another way of defining OOP is just ‘data centered design’. Design the program
around the data you will be acting on. It is unlikely that the fundamental data you
are working with will change significantly. However, the functionality (what you will
do with the data) will be constantly enhanced and modified as time goes on. Typical
structured programming techniques, such as ‘functional decomposition’, concentrate
on what a program does, rather than what it does it to. Such design methods require
large-scale overhaul of the software when changes to the functionality are required.

A class may be described as an ‘abstract data type’. It is an aggregation of related
data elements together with all the ‘methods’ that may operate on that data type
to represent a unified concept. For a true abstract data type, the only access to the
data itself is through the defined methods. An object is an instantiation of a class.
Anything that is of the abstract data type that the class defines is an object. In a
pure object-oriented program, we work only with objects. Our only function calls are
messages to objects (or invocations of the objects’ methods).

Information hiding refers to the concept that our only access to the data in an
abstract data type (or a class in C++ terminology) is through the ‘methods’ defined in
those classes. In fact, all of the data and methods have some attribute of information
hiding associated with them. These attributes in C++ terminology are referred to
as ‘public’, ‘private’, and ‘protected’. ‘Public’ methods or data are available to any
other class. Most methods are public. Exceptions are those methods that are used
internally by the class to implement its public methods. Most data is not public, and
there should be few exceptions to this rule. ‘Private’ methods and data are available
only to objects of the specified class. In general, all data used to represent an object

11.23. OBJECT ORIENTED PROGRAMMING 349

of a particular class should be private. Private methods are used only to implement
methods of the specified class. ‘Protected’ methods or data are available only to
objects of derived classes, where a derived class is a class that ‘inherits’ its properties
from a parent class.

Information hiding when used to maximum effect has several benefits: reliability,
understandibility, and, in some cases, efficiency. Software developed with information
hiding tends to be more reliable since access to the data representation is restricted
to those implementing the abstract data type. ‘Clients’ of these abstract data types
(developers using the code in their own applications) have no direct access to the
data itself. Any actions on the data are taken through the controlled gateways of
the class’s methods, which presumably are written such that the integrity of the data
is ensured. Once the methods are written and debugged, use of the class should be
completely safe.

Understandibility is enhanced since client developers need not understand the
inner workings of the class’s methods or even the data representation of the object.
The only thing a developer using the class needs to understand is the ‘class interface’,
or the set of methods available for that class. In a C++ program, this can be reduced
to a procedure as simple as reading the method prototypes listed in the public section
of a class definition in a header file. Of course, the developer also needs to know what
each method requires to operate and what state the object is in after the method is
called. It is important that the documentation for any class interface contain this
information in a very accessible way.

11.23.1 Inheritance

Inheritance is the creation of a new class as an extension or specialization of an
existing class. It allows the conceptual relationship between different classes to be
made explicit. For example, the class Apple might be a descendant of the class Fruit.
It is mostly identical to the class Fruit, but it may include some additional methods
or data. Instead of duplicating the identical parts of the two classes, we can say that
Apple ‘inherits’ its definition from Fruit. In this case, only the additional methods
and data need to be specified in the child class. Thus, inheritance allows not only easy
comprehension of relationships between classes but also much easier construction of
the classes themselves.

Inheritance also allows existing classes and class libraries to be easily modified to
suit the job at hand. Inheritance enhances reusability of code, since existing code
need not be modified at all. Existing classes can simply be inherited and the changes
made to the derived class. Inheritance may be single or multiple. Single inheritance
implies obtaining characteristics from just one parent class. The preceding example
used single inheritance. Multiple inheritance obtains methods and data from multiple
parent classes. An example might be an object of class CircularWindow that is derived
from classes Window and Circle; it has available all the methods peculiar to circles
as well as the methods appropriate to windows.

Another characteristic of inheritance is the ability to treat objects of different
classes as instances of the ‘generic’ parent class. This allows us to handle groups of
disparate objects as instances of a more uniform class. An example might be a generic
class called Shape that has several derived classes, such as Rectangle, Triangle, and

350 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

Circle. These derived classes will share methods and characteristics of the data of the
parent class.

If we have a heterogeneous group of objects that share a parent class, we can treat
it as a group of homogeneous objects as if they were of the same type. For example,
we could group all the different Rectangle, Triangle, and Circle objects in a linked list
of shapes. If we have the capability of sending identical commands to these different
objects, this feature is even more useful. There is another type of ‘genericness’ that
does not involve inheritance. Parametrised types allow the creation of a class whose
data representation can be changed as the need arises. For example, a vector class
could be constructed such that the data representation appears as a parametrized.
This allows a generic class to which a parameter can be supplied to create specific
classes for the different types of vectors. Such classes in C++ are called ‘template’
classes.

11.23.2 Virtual Functions and Abstract Classes

If the only purpose of a class is to be a parent for more specific derived classes, we may
wish to have some methods in this base class be ‘virtual methods’. In this case, if a
pointer to the parent object invokes the method name and the object is actually of the
derived class, the derived class method is invoked. For example, the class Shape may
have a draw method that is defined (has some code associated with it) but is listed
as ‘virtual’. In this case, if the pointer is of class Shape but the actual instantiated
object at run-time is of a derived class such as Rectangle, the Rectangle draw method
will be invoked.

If we decide that a particular method will never be defined for a class, we can
define the method as a ‘pure virtual’ method, and no code will be associated with it.
This makes the class an ‘abstract class’. No object of an abstract class can ever be
instantiated.

Pointers may be of the class type, but they must actually refer to objects of
derived classes. The notion of an abstract class is especially powerful in conjunction
with a system that lets us group disparate objects on a common parent class (such
as a linked list of shapes, where the individual shapes actually might be a circle, a
triangle, and a rectangle) and send identical messages to each of the objects, which
must each respond appropriately to them.

11.23.3 Polymorphism

The concept of sending different messages to different types of objects in object-
oriented programming is referred to as polymorphism. Polymorphism allows us to send
identical messages to different objects and have each object respond appropriately.
An example above was given where we might want to invoke methods on disparate
objects with the same parent class. We may invoke a display method on each member
of a linked list of shapes, the individual objects of which might be triangles, rectangles,
and circles. However, it is not necessary for the objects to be grouped or related for
polymorphism to come into play.

At the simplest level, two completely unrelated objects of two different classes may
each receive a display command, and each will respond to the command differently. In

11.23. OBJECT ORIENTED PROGRAMMING 351

this case, polymorphism is required, but the specific code to be executed can actually
be determined at compile-time.

In the previous example, objects of several different classes were grouped together
as a linked list of pointers to objects of the parent class. The linked list might be
built dynamically, in which case we would not know at compile-time what specific
code would be executed for the display method. This would have to be determined
on the fly at run-time for each invocation of a method on any element of the linked
list. Often when polymorphism is mentioned, this is the phenomenon that is referred
to. This definition of polymorphism is a bit stricter, implying the capability to send
different commands to different objects that are grouped as heterogeneous collections
of descendants of a common base class. Under this definition, it is the combination
of inheritance and the ability to determine the actual code at run-time (dynamic
binding) that enables us to perform polymorphism.

11.23.4 Dynamic Binding

Dynamic binding might also be referred to as ‘late binding’ because the method is
not bound to specific code until as late as possible (when the method is invoked at
run-time). Dynamic binding requires that a ‘method table’ be maintained during
execution. When the display method is called for an object, the class of the object
is determined first. Then the actual function to be executed for the method is de-
termined by looking up the method name and class identifier in the method table.
Thus, with dynamic binding we incur not just the overhead of the function call when
invoking a method, but also the expense of the method lookup.

11.23.5 The C++ Programming Language

During the 1980s the C language emerged as one of the most universal programming
languages. It made it possible to write code that was portable to a wide class of
computers. Software could be written faster and projects grew in size. This in turn
led to increased complexity and development times. The language C++ was developed
to make programming easier. To enable this goal to be achieved the language itself
had to be more complex than C. C++ is a compatible superset of the C programming
language, providing extensions to support the object-oriented programming (OOP)
methodology and was developed in the early 80’s at AT&T Bell Labs by Dr Bjarne
Stroustrup. All the added features of C++ are designed with the aim of reducing levels
of difficulty. The language’s name C++ is a play on C’s ++ increment operator. The
language C++ is literally ‘one step beyond C’. The inventor of the language, Bjarne
Stroustrup of AT&T originally called the language ‘a better C’. The major extension
to the syntax of C was the implementation of the ‘class’ construct. Since a great
deal of C code already existed, C++ compilers had to be designed to ensure that the
language was compatible with C; any C program should compile and execute properly
in the C++ environment. In addition, extensions to C were added and in the end a
very high degree of compatibility was achieved. There are few changes, as opposed to
additions, to the syntax of C++ from ANSI C and almost all ANSI C programs run
in the C++ environment.

An important advantage of using C++ is that C programmers can switch gradually

352 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

to C++ without wasting their C programming skills. Today ANSI C and C++ are
close counterparts and most ANSI C programs are compatible with C++. Hence
existing C code can normally be compiled without modification by C++ compilers.

Most aspects with regard to programming in ANSI C apply to C++. ANSI C and
C++ programs look pretty much the same. They use nearly identical syntax, as well
as the same kind of loops, data types, pointers, and other elements. Although C++
was designed to make programming easier the mere adoption of the language does not
automatically guarantee better or simpler software. To reap the real rewards of C++
it is necessary to adopt a new programming methodology, commonly referred to as
object oriented programming or OOP. To enable this methodology to be implemented,
in addition to the facilities provided by C, C++ provides a variety of new facilities
such as those for:

• data abstraction

• multiple inheritance

• strong type checking

• passing arguments by reference

• guaranteed initialization

• automatic cleanup

• operator and function overloading

• type conversions

The terms data abstraction and inheritance are the basic ingredients of the OOP
methodology which allows programmers to write applications using concepts and no-
tations natural to the application domain. An object is a collection of code and data
designed to emulate a physical or abstract entity. Data abstraction allows program-
mers to elegantly model application domain objects such as input/output devices, ro-
bots, and employees. Inheritance allows for the preservation of relationships between
object types that are related to each other, e.g. employees and managers, students
and tutors etc. In addition, the twin concepts of data abstraction and inheritance
together encourage the reuse of existing code by making it available in packaged form
and allowing it to be enhanced or specialized.

OOP is a methodology that gives great importance to relationships between ob-
jects rather than implementation details. Relationships are ties between objects and
are usually developed through genealogical trees in which new objects are derived
from others. Hiding the implementation details of an object results in the user being
more concerned with an objects relation to the rest of the system rather than how
an objects behaviours are implemented. This distinction is important and represents
a fundamental departure from earlier languages in which functions and function calls
were the centre of activity. C++ is an important software engineering tool, especially
in the context of writing large programs.

Software engineering aims to produce quality programs that take less time to
debug, maintain and port. When used well and as intended, C++ facilities lead to

11.23. OBJECT ORIENTED PROGRAMMING 353

programs that are easier to understand and maintain because data can be modelled
in terms of the application domain.

11.23.6 C++ as an Extension of C

C++ extends C in three principal ways:

• It encourages and supports development of Abstract Data Types (ADTs).

• It supports program design and construction using object-oriented programming
(OOP) principles.

• It implements many smaller extensions and improvements to the syntax of the
C language.

ADTs are types defined by the programmer in addition to those supplied as part
of the language. In normal C the nearest approach to ADTs is through the typedef
mechanism. Here the user creates a new type based on a structure declaration. An
ADT in the OOP context also includes definition of the operations which may be
carried out on its data components. The internal implementation of an ADT is
hidden from all other operations which are not part of the ADT. C++ implements
ADTs using the OOP approach. Because of the way ADTs package their data and
operations, software designed with them tends to be more modular and less complex
than in traditional methods. The interfaces between modules are well-defined and
interdependences across modules are few. This promotes easy division of tasks among
software developers. Also, because the internal implementation of an ADT is hidden,
there is some assurance that a module will not be tampered with by outside code.

C++ implements ADTs and OOP in the following ways:

• It implements objects, defined as classes, which incorporate not just the data
definitions found in C structures but also declarations and definitions of func-
tions which operate on that data. This encapsulation of data and functions in
a single object is the main innovation of C++.

• Instances of classes may automatically be initialised and discarded using con-
structors and destructors. This prevents program initialisation errors.

• The way in which C++ classes are defined enforces data hiding; data defined
in a class is by default only available to the member functions of that class.
External, or client code which uses a class cannot tamper with the internal
implementation of the class but is restricted to accessing the class by calling its
member functions.

• C++ allows overloading of operators and functions. More than one definition
of a function may be made having the same name. The compiler identifies the
appropriate definition for a function call. Ordinary operators such as ‘++’ and
‘-¿’ can also be overloaded with additional meanings.

354 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

• C++ allows the characteristics of the ‘class’ type - data and functions - to be
inherited by sub classes, called derived classes. The class being derived from
is called a base class. The derived classes may in turn add further data and
function definitions. This facility encourages it code re-use and the generation
of shareable class libraries. This gives cost and time savings in the software
development process.

• Multiple inheritance is possible; here sub classes can inherit characteristics from
more than one base class.

• C++ allows classes to define virtual functions; more than one definition of the
functions with the same prototype. The decision as to which one is selected
is taken at run-time. This concept is called polymorphism, and the run-time
selection among function definitions is called late binding or dynamic binding.

• Template classes can be defined. These allow different instances of the same
class to be used with data of different types but with unchanged code. This also
promotes code re-use.

C++ facilities for OOP are characterised by classes, inheritance and virtual func-
tions. This makes C++ a good language for writing software to handle a multitude
of related objects. A particularly appropriate use for C++ is in the design and im-
plementation of Graphical User Interfaces (GUIs). Here many different but related
objects are represented on the screen and allowed to interact. Using the OOP ap-
proach, these objects are stored in class hierarchies. By use of virtual functions a
generic interface to the objects can be presented. Hence the programmer does not
need to know the detail of how the objects are manipulated.

C++ is a hybrid language. It is intended to be used for OOP but can be used in
a procedure way (C programs run in the C++ environment). There are other OOP
languages (e.g Smalltalk) which force the OOP approach. Data type checking and
conversion in C++ are stronger than in traditional C. Function prototypes make the
transfer of parameters at the function call interface less error prone. C++ provides
a large number of small syntactic improvements over C. There is a new reference
mechanism, simplifying the pointer dereferencing approach of C. Allocating and deal-
locating memory is simplified. A stream (I/O) library is implemented. This defines
in a class hierarchy streams for input and output. C++ is an extension of C which,
by facilitating improved design practices, provides an environment for the develop-
ment of software that better reflects the ‘real world’. It also reduces complexity and
increases reliability.

11.23.7 The Object Oriented Programming Paradigm

The OPP paradigm and other programming paradigms can be characterized as fol-
lows:

Procedure Programming

The program is designed as a collection of functions which are then coded using
optimal algorithms. Almost all programming languages support the procedure pro-
gramming paradigm.

11.23. OBJECT ORIENTED PROGRAMMING 355

Modular Programming

The program is designed as a collection of modules. Each module hides its data from
the other modules and provides a set of interface functions which must be used to
access the data. Hence, provided the interface functions remain the same, module
internals can be modified without effecting client modules, i.e. users of the interface
functions. The client modules do not even have to be recompiled. The languages
Modula, Ada, and C (files can be used as modules) are examples that support the
modular programming paradigm.

User-Defined (or Abstract Data) Types

Designing a program by defining new types and manipulating objects of these types
is essentially the same as modular programming with one exception: user-defined
data types, unlike modules, are fully fledged types. C++ supports the programming
paradigm based on abstract data types. Note that the C typedef facility is not re-
ally a fully-fledged facility for defining new types because it does not support data
encapsulation and operations cannot be associated with the new types.

Object-Oriented Programming

This approach is similar to the programming paradigm based on abstract data types
except that inheritance can be used to define related types. Inheritance supports
code reuse by factoring out the common components of related types. C++ is a
prime example of a language that supports the OOP paradigm.

Object-oriented software design is the construction of a software system as a struc-
tured collection of objects that interact with each other. Programs are written, as
far as possible, using concepts that are natural to the application domain. Object-
oriented software design enhances program readability and, at the same time, it speeds
up the program development process and makes it easier to maintain programs.

An OPP language should provide the following facilities (in addition to the con-
ventional facilities found in languages like C):

• A mechanism for defining first class object types which have the same rights
and privileges as the predefined types.

• Inheritance, i.e. a mechanism for ‘deriving’ new types from old ones.

• Dynamic binding, i.e. invocation of the appropriate interface function to operate
upon an object even though the object type may not be known at compile time.

OOP languages provide a mechanism (in particular the class facility in C++) to
define new types to easily and naturally model entities in the application domain.
Proper design of the class ‘user interface’ is critical because otherwise the class may
not have the right functionality. This may result in it becoming awkward to use or it
may simply not be used at all.

356 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

11.23.8 Data

Most languages provide a set of primitive data types, which are used by program-
mers to build more complicated data structures such as symbol tables, lists, trees etc.
These data items must be manipulated according to the semantics specified by the
implementer. However, in may high level languages such as FORTRAN and Pascal,
the data structure implementer has no way of ensuring that the data is manipulated
correctly and consistently with respect to the specified semantics. Even if the im-
plementer provides routines to manipulate the data, the compiler cannot insure that
these ‘interface’ routines are actually used to manipulate the data. It is often the case
that programmers will tend to manipulate the data structures directly, by-passing
the interface routines to increase program execution speed, functionality and so on.
This can lead to errors and it makes the resulting code become dependent upon the
specifics of the data structure implementation.

Using data abstraction facilities, data structures are defined as ‘classes’ which are
fully-fledged types that can be used like the predefined types. Users of class objects
can manipulate them (i.e manipulate the data encapsulated by the objects) using only
the items (‘data members’ and ‘function members’) specified in the ‘public’ part of the
class specification. Data abstraction ensures that programmers use and manipulate
objects without knowing about or directly accessing their internal representations.
That is, data abstraction facilities are mechanisms for defining ‘black-box’ classes.
Just as procedure abstraction allows programmers to build libraries of types such as
strings, complex numbers, polynomials, simulation objects, and so on.

Simple data abstraction does not allow customization of existing classes and does
not support code reuse. For example, assume that a class employee has been defined.
Suppose now that the programmer wants to define another class called manager, which
is similar to the class employee but it has some additional components (‘members’ in
C++).

Without inheritance, two strategies can be used for defining both employees and
managers:

(i) A new manager class can be defined from scratch. This strategy results in code
duplication because employee and manager will have many members in common.
Hence, changes to class employee may require corresponding changes to class manager.
Another disadvantage of this strategy is that is does not preserve the relationship
between the employee and manager classes, i.e, class manager is a specialization or
customization of class employee.

(ii) Class employee can be modified to include additional information for managers.
Modifying an exiting type violates the concept of modularity and it may break existing
code that works. Also, users of class employee will now have to understand the fact
that class employee contains members especially for implementing manager objects.
Further changes to manager-specific members of class employee will affect all users of
class employee regardless of whether or not they refer to employees who are managers.
Finally, modifying an existing type will require recompilation of existing code.

The ‘type inheritance’ mechanism in languages such as C++ allows new types to
be ‘derived’ from existing types. The new types inherit properties of the types they
are derived from (i.e. the properties of the base types). Type inheritance allows the

11.24. DISCUSSION 357

development of customized types by allowing new attributes to be added to existing
types without requiring modification to these types. Hence, inheritance eliminates
code duplication and at the same time it preserves the relationship between the ‘de-
rived’ and ‘base’ types. Data abstraction and inheritance are orthogonal concepts
and they represent real advances in the repertoire of software building facilities.

The primary extension C++ makes to C is the addition of the class facility, which
supports both data abstraction and inheritance. The language also extends C in many
other ways that facilitate the development of both small and large programs. For
example, C++ allows users to define constant variables, pass arguments by reference,
overload functions and operators, and so on.

11.24 Discussion

The brief overview of the programming languages discussed here has been designed
to introduce the reader to some of the more common languages available. However,
like any natural language, a programming language is not static and is continually
being upgraded and improved upon in line with technology and competition from the
facilities available with other languages. Also, many of the languages discussed here
have been used to create more specialized versions based on ‘variations on a theme’
in order to satisfy the demands of a particular technology. This is particularly so
with COBOL which has been re-cast into many different forms for applications in the
business, financial and banking industries. Further, over the 1990s, nearly all such
languages and compilers have been modified to operate in a windows environment and
have a variety of ‘visual’ forms (e.g. visual Basic, visual C++ etc.). Moreover, CASE
tools have been introduced where possible and desirable to help the programmer
undertake projects that were beyond the scope of a single individual in former times.
In all languages, it is typical to introduce more and more libraries of intrinsic functions,
I/O facilities and graphics options especially for the development of graphical user
interfaces.

The use of a programming language depends critically on its historical legacy and
the code and systems that have been developed through its application. However,
more recently, the commercial environment in which software products are expected
to perform has had an even more significant effect on dictating the programming
language and operating environment that is used. With the rapid increase in the
availability and computing power of personal computers, many companies have been
forced to develop versions of their products (originally developed for workstations or
even a mainframe for example) for the PC market in order to remain in business. The
reason for the growth in the PC market is not that PC computing and the operating
environment that comes with it is better of worse, but that it provides the user
with a degree of independence (a time invariant human need). It could be argued
that the PC has, to the 1990s person (to be PC), become what the Ford model
T automobile was to the 1920s man. In addition to the above, the IT revolution,
which in a sense, involves the application of digital signal processors as much as
it does central processing units, has become dominated by systems which are, for
better or worse, based on the exclusive use of the C programming language and its
derivatives (C++, Java, Java plus and many others, now and in the future). The
C programming language and PC based operating environments, whether they are

358 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

based on Linux or Microsoft windows, have become the principle attributes of the
majority of software engineers in nearly all areas of commerce, science and engineering.
Further, many high-level programming environments are actually based on C. One
such environment is MATLAB which includes a DSP toolbox and provides the facility
to output MATLAB code (.m files) in C. It is within this context that the following
chapter should be studied.

11.25 Summary of Important Results

Decimal Number Systems
Systems that count in 10’s using the marks 0-9 to represent a number and weights of
the type 10n.

Binary Number Systems
Systems that count in 2’s instead of 10’s using the marks 0 and 1 to represent a
number and weights of the type 2n.

Binary Coded Decimal (BCD)
Used to represent decimal digits directly where each decimal digit is replace by its
binary form.

Overflow
The effect caused when the number of bits required exceeds the word length which
sets a limit on the magnitude of the number that can be stored.

Rounding Error
Error that occur when not all the significant digits of a number are given.

Computational Error
Error as a result of performing arithmetic operations, usually caused by overflow or
rounding to intermediate results.

Truncation Error
Error that occurs when a limited number of terms of an infinite series (representing
a certain number for example) are taken to approximate that number.

Algorithmic Error
Error incurred by the execution of an algorithm, an algorithm being a set of procedural
steps used in the solution of a given problem.

Accumulation Error
Error that accumulates as a numerical solution evolves which is typically based on a
poor representation of floating point numbers by a limited number of decimal places
for example.

11.25. SUMMARY OF IMPORTANT RESULTS 359

Linear Error Growth
R(ε) ∝ nε

where n is the number of operations and ε is the absolute error that occurs with each
operation.

Exponential Error Growth
R(ε) ∝ Kn(ε)

where K is some constant > 1, n is the number of operations and ε is the absolute
error that occurs with each operation.

Nesting
A method of maintaining accuracy by reducing the number of operations, thereby
reducing error accumulation used in the evaluation of polynomials for example.

Batch Adding
Grouping numbers of similar magnitude, adding them together and then adding the
result to the output obtained from adding another group of numbers with a similar
magnitude and so on.

Conditioning
Assessment of the possible ill-conditioned nature of a numerical solution to a problem
(e.g. see Chapter 8).

Subprogram
A component part of a program referred to as a subroutine, function, void function
or module which undertakes a specific and well defined processing task.

Function
A module that processes data and returns the results via the function name, e.g.
intrinsic functions such as cos, sin, exp, log etc.

Procedure
Any defined way of carrying out some action or actions using well defined operations
on well defined data using program components; a module which inputs data and
returns the result through some parameter, set of parameters or an array for example.

Modular Programming
Design of a system based on constructing a library of functions which process serial
streams of data in a specific and well defined way that is unique to each module.

Structured Programming
Design of a module that is based on a well defined set of procedures excluding the
use of the goto statement.

360 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

Object Library
A collection of objects or compiled functions and procedures in a library that is specific
to a given task or a set of tasks.

Bottom-up Design
Development of a system that is based on developing object libraries that start with
functions that are one level above those provided by the compiler and progressively
working upwards level by level, each level being ideally based on those modules that
have been developed for the object library at the level below.

Top-down Design
Development of a system that is based on considering an overview of the system at a
top level first and progressive working down level by level developing object libraries
as required which are initially designated by stubs at the level above.

Jackson Method
Design of a module in which the logic and structure of the procedure that processes
the data reflects that of the data itself.

Requirement Specification
Specification of those aspects of the system design that include a suitable road-map,
functionality, function definition, constraints and a schedule.

Process Specification
Specification of the processes that a system requires in order to accomplish the task(s).

System Specification
Statement of the system design which includes and statement of user requirements,
functional specification, technical specification and module, object library and system
testing.

Program Specification
Part of the system specification which defines issues including program design, effi-
ciency, development time, costs and documentation.

Software Life Cycle
The cycle of events that covers the development of a software system from specification
through design to its implementation, testing and maintenance.

Bersoff’s Law of System Engineering
‘No matter where you are in the system life cycle, the system will change, and the
desire to change it will persist throughout the life cycle’

Object Oriented Design
Application of programming techniques and paradigms that aims to produce re-usable

11.26. FURTHER READING 361

software or objects, i.e. software engineering which is oriented toward the use of object
libraries composed of functions that are accessible and in the widest possible context.

CASE Tools
Computer Aided Software Engineering systems that aid the programmer in the design
of software from the graphical user interface to code generation.

11.26 Further Reading

• Dahl O J, Dijkstra E W and Hoare C A R, Structured Programming, Academic
Press, 1972.

• Coleman M and Pratt S, Software Engineering for Students, Chartwell-Bratt,
1986

• Pressman R S, Software Engineering: A Practitioners Approach, McGraw-Hill,
1987.

• Abel P, IBM PC Assembler Language and Programming, Prentice-Hall, 1987.

• Yakowitz S and Szidarovszky F, An Introduction to Numerical Computations,
Macmillan, 1989.

• Morgan D, Numerical Methods, M& T Publishing, 1992.

• Bell D, Morrey I and Pugh J, Software Engineering: A Programming Approach,
Prentice-Hall, 1992.

• Denton N and Hill G, Systems Construction and Analysis: A Mathematical and
Logical Framework, McGraw-Hill, 1993.

• Booch G, Object-Oriented Analysis and Design with Applications, Benjamin/Cummings,
1994.

• Runciman C and Wakeling D, Applications of Functional Programming, UCL
Press, 1995.

• Fogiel M, Handbook and Guide for Comparing and Selecting Computer Lan-
guages, Research and Education Association, 1985.

362 CHAPTER 11. PRINCIPLES OF SOFTWARE ENGINEERING

11.27 Problems

11.1 Write the decimal number 8.25 in the following forms:

• Binary

• Binary Coded Decimal

11.2 Explain the meaning of:

• Fixed point storage of binary numbers

• Floating point representation of binary numbers

What are the advantages of using a floating point representation?

11.3 What are the three basic constructs of a structured program? Briefly explain
their purpose.

11.4 Review the arguments for and against goto statements in the context of structured
programming.

11.5 Convert the following pseudo code into a structured form: [5]

i:=start
loop:

IF array(i)=x, goto Found
IF i=end, goto notFound
i:=i+1
goto loop

notFound:
write ’not Found’
action1
goto finish

Found:
write ’Found’
action2

finish

Compare and contrast the two programs in terms of their structure and their respec-
tive cyclometric complexity measures.

11.6 Within the context of the ‘system life cycle’, discuss the principal issues associated
with system design commenting on the following:

11.27. PROBLEMS 363

• specification;

• design;

• testing;

• software maintenance and defect amplification.

11.7 Explain why the ‘system life cycle’ is inherently dynamic and how this process
is compounded in terms of ‘Bersoff’s law of systems engineering’.

11.8 An aeroengine company require a micro processor-based monitoring system for
a prototype gas turbine engine that receives input from the following sensors each of
which has a boolean output:

• Temperature Sensors: detect temperature threshold of combustion chamber.

• Pressure Sensors: detect pressure threshold of primary compressor.

• Vibration Sensors: detect critical mode of vibration.

• Fuel Sensor: detect fuel flow threshold.

When activated, the system should be capable of performing the following Activation
Responses:

• Generating Alarms

• Turning On Lights

• Printing Out Messages

The control module has buttons that allow the following programming:

• Adjusting Sensor Levels: Each sensor can be adjusted to be activated by a range
of INPUT (environmental) conditions.

• Selecting Response List: Each sensor can activate any combination of Activation
Responses.

• Setting Mode: The system has two modes: ON, OFF.

• Inactivating: After activation, it is possible to halt the responses and reset the
system by inactivating it.

(i) Design a functional description for the system that would suffice for the ‘System
Specification’.

(ii) Prepare Data Flow Diagrams for levels 01 (toplevel) and 02 (next level).

Chapter 12

Modular Programming in C

This chapter has been written to provide the reader with a quick-guide to program-
ming in C with an emphasis on those features of the language that are primarily
required to undertake the problems set in Part IV. Clearly, it is not possible to give
a complete account of the language in a single chapter, but, as in many applications
that focus on a specific theme, the aspects of the C programming language that are
required to develop DSP modules form a relatively small subset of the languages full
capabilities. It is this subset, together with some necessary examples and discussions
that are presented here.

12.1 About C

C was crated by Dennis Ritchie of the Bell Labs in 1972 and first appeared in the public
domain with the publication of The C programming Language in 1978 by Kernighan
and Ritchie. C is a general purpose programming language which, from its conception,
has been closely associated with the UNIX operating system which is written in C.
C is a relatively low-level language because it puts the programmer ‘very close to
the machine’. It incorporates the control features that computer science theory and
practice find desirable. The design of C makes it natural for users to use top-down
planning, structured programming and modular design. It is a relatively efficient
language because its design takes advantage of the abilities of current computers. C
is also a portable language which means that C programs written on one system can
be run with minimal or no modification on another system. It exhibits some of the fine
control usually associated with assembly languages. Programs can be fined tuned for
maximum efficiency. It is also sufficiently structured to encourage good programming.
Finally, C has become one of the most widely used languages available. There is an
abundance of compilers available, many of them free and accessible via the Internet
and is currently one of the preferred language for communications engineering and
signal processing in general.

364

12.1. ABOUT C 365

12.1.1 Statement Layout

There are no restrictions placed on the layout of C code. It can be written in free
form with any number of spaces and/or new lines used to separate the words and
symbols. Each statement, which is case sensitive, must by separated from the next
by a semicolon. A C program or subprogram (a function) always starts with a left
brace { and ends with a right brace }. For example, the code

main()
{

printf(".c is the extension used
for a C program file name.\n");

}

defines a main program with no I/O which prints the text to the screen using the

printf

function together with a carriage return using

\n

12.1.2 Documentation

Comments can be inserted anywhere in the program provided they are enclosed by
the symbols /* and */. Comments do not nest but can appear anywhere that a blank
or new line can appear. For example,

/* This is a C comment line */

12.1.3 Input/Output

C provides no I/O facilities, i.e. there are no read or write statements and no wired-in
file access methods.

Unformatted Output

Unformatted output text to the screen is achieved using the puts function which has
the form

puts("Text.....");

Formatted Output

Formatted output is achieved using the printf function which has the form

printf("control string", arg1, arg2, ...);

366 CHAPTER 12. MODULAR PROGRAMMING IN C

which converts, formats and prints its arguments on the standard output under control
of the string control. The control string contains two types of objects: ordinary
characters, which are copied to the output stream and conversion specifications, each
of which causes conversion and printing of the next successive argument to printf.
Each argument is represented in order within the string by the specification

%type

where type includes one of the following:

d /* decimal integer */
u /* unsigned decimal integer */
c /* single character\index */
s /* string (null-terminated) */
f /* floating-point number */
e /* floating-point number in exponential format */
g /* %e or %f whichever is shorter */

The ‘length’ n of the type is specified thus,

%ntype

Input is undertaken with a format control based on the function scanf which has the
form

scanf("control string", &var1, &var2, ...)

12.1.4 Date Type Statements

There are only basic data types in C:

char is a single byte, capable of holding one character in the local character set.

int is an integer, typically reflecting the natural size of integers on the host machine.

float is for single-precision floating point.

double is for double-precision floating point.

N.B. by default, most C compilers store floating point numbers using double precision.
There are a number of different qualifiers which can be applied to integers such as

short, long and unsigned. short and long refer to different sizes of integers. unsigned
numbers obey the laws of modulus 2n arithmetic were n is the number of bit in an
integer. unsigned numbers are always positive. For example:

short int x;
long int y;
unsigned int z;
float a,b;
double c,d,e;

12.1. ABOUT C 367

Data can be ‘cast’ from one type using another using casting. For example, if x is of
type int and its value is required to be assigned to a which is of type float, then we
can cast as follows:

a=(float)x;

12.1.5 Variable Names

An identifier in C is a sequence of letters and digits where the first character must
be a letter. The underscore counts as a letter and upper and lower case letters are
different. A conventional rule of thumb is to use lower case letters for variable names
and upper case letters for symbolic constants. Keywords such as if, else, int, float
etc. are reserved and cannot be used as variable names.

12.1.6 Declarations

All variables must be declared before use, although certain declarations can be made
implicitly by context. A declaration specifies a type and is followed by a list of one
or more variables of that type.

12.1.7 Arrays

In C, array subscripts always start at zero instead of 1. For example, the line

int ndigit [10];

declares ndigit to be an array of 10 integers with elements

ndigit[0], ndigit[1], ..., ndigit[9]

and

float array[10][10];

declares array to be an array of 100 floating point numbers. A subscript can be any
integer expression, which includes integer variables like i, j, k and integer constants.

12.1.8 Operators

The arithmetic operators are

+, -, *, /

and are grouped from left to right. Integer division truncates any fractional part. The
modulus operator is

%

and the expression

368 CHAPTER 12. MODULAR PROGRAMMING IN C

x%y

provides the remainder when x is divided by y and thus, is zero when y divides x
exactly. The operator

%

cannot be applied to a float or double. The relational operators are

>, >=, <, <=

and the equality operators are

== /* (equal to) */

and

!= /* (not equal to) */

. The logical connectives AND and OR are

&&

and

||

respectively. C provides an incremental operator

++

which adds 1 to its operand The decremental operator

--

subtracts 1 from its operand.

Bitwise Logical Operators

C provides a number of operators for bit manipulation; these may not be applied to
float or double types. They include:

& /* bitwise AND */
| /* bitwise inclusive OR */
^ /* bitwise exclusive OR */
<< /* left shit */
>> /* right shift */
~ /* one’s complement (unary) */

Assignment Operators

Most binary operators have a corresponding assignment operator op=, where op is
one of the following:

12.1. ABOUT C 369

+, -, *, /, %, <<, &, >>, |, ^

. For example, the expression

i=i+2

can be written in the compressed for

i+=2

. Finally note that C has no exponentiation operator (like ∗∗ in Fortran). For this
type of operation the pow function is required.

12.1.9 Expressions

Numerical quantities are represented by arithmetic expressions , while Boolean quan-
tities are represented by logical expressions. Examples of arithmetic expressions are

x*y, x%y, x+y

a Assignment expressions include

x>=y, x!=z

and assignment expressions are of the form

i=i+3

or

i+=3, x=x*(y+1)

or

x*=y+1

.

12.1.10 Control Statements

Unconditional Branching

Control may be transferred unconditionally by means of the statement

go to identifier;

where the identifier must be label located in the current function. For example, the
code

go to start;

start:

370 CHAPTER 12. MODULAR PROGRAMMING IN C

provides the facility for unconditionally transferring the process before the statement

go to start;

to the processes associated with the code after the statement

start:

Conditional Branching

Conditional branching is achieved by if-else, else-if and switch constructs. Nesting is
possible. An example of a if-else construct is

if (n > 0)
{
if (a > 0)

z=a;
}

else
z=b;

An example of an else-if construct is

if (i > 0)
{
if (x > y)

T=x+1;
else if (x < y)

s=x-1;
}
else

T=y;

The Switch Construct

The switch statement is a special multi-way decision maker that tests whether an
expression matches one of the numbers of constant value and branches accordingly.
The basic form is as follows:

switch (expression)
{
case label1: statement1;

break;
case label2: statement2;

break;
default: statement3;
}

12.1. ABOUT C 371

There can be more than two labeled statements and the default case is optional. For
example

switch (letter)
{
case ’a’ :

printf("This line is printed if letter is a\n");
break;

case ’b’ :
printf("This line is printed if letter is b\n");
break;

default :
printf("This line is printed if there is no match\n");

}

12.1.11 Looping and Iteration

C provides three forms of loop constructs: for, while and do. All three can be nested.

The For Loop

The basic form of the for loop is

for (expr1; expr2; expr3)
statement;

For example, to print the integers 1 through to 6 and their squares, we can construct
the following code:

main()
{
int num;

printf(" n n squared\n");
for (num=1; num <= 6; num++)

printf("%5d %5d\n", num, num*num);
}

The While Loop

The basic form is

while (expression)
statement;

For example, considering the problem above, using the while loop we have

372 CHAPTER 12. MODULAR PROGRAMMING IN C

main()
{
int num;
printf(" n n squared\n");

num = 1;
while (num <= 6)
{

printf("%5d %5d\n", num, num*num);
num++;

}
}

The Do Loop

The basic form of the do loop is

do
statement;
while (expression):

Taking the previous problem again, we have

main()
{
int num;

printf(" n n squared\n")
num=1;
do {

printf("%5d %5d\n", num, num*num);
num++;
}

while(num <= 6);
}

12.1.12 User Defined Functions

In C, a function is equivalent to a subroutine or function in Fortran for example. A
function is a convenient way to compound a computational procedure. Each function
has the same form:

name(argument list)
argument declarations
{

declarations
statements

}

12.1. ABOUT C 373

For example consider a main program and function to compute mn where m and n
are the integers as given below:

main()
{
int i;

for (i=1; i<=10; i++)
printf("%d %d %d\n", i, power(2,i), power(-3,i));

}

power(x,n) /*Raise x to the nth power for n > 0*/
int x,n;
{
int i,p;
p=1;
for(i=1; i <= n; i++)

p=p*x;
return(p);

}

Here, the program computes the powers of 2 and -3 for n=1,2,...,10. In this case, the
function returns the numerical value through its name. Another important use of a
function is in passing and returning variables via the functions utility. Such functions
are known as void functions. Taking, the previous example, we have

main()
{
int i,x,y;

for (i=1; i <= 10; i++)
{
power(2,i,x);
power(-3,i,y);

printf("%d %d %d\n", i, x, y);
}

}

void power(x,n,y)
int x,y,n;
{
int i,p;
p=1;
for(i=1; i <= n; i++) p=p*x;
y=p;

}

Observed that in the void function above, the variables x, n and y are declared
after specifying the function with its I/O. This is an example of K & R (Kernighan

374 CHAPTER 12. MODULAR PROGRAMMING IN C

and Ritchie) C. The ANSI (American National Standards Institute) form, which
is arguably more informative, is to declare the variable type within the functions
parenthesis, i.e.

void power(int x, int n, int y)

It is ultimately a matter of taste, but it is useful if the name of a void function is
specified in upper case which helps to identify subprograms in the labyrinth of (lower
case) code. This practice is adopted form here on.

12.1.13 Passing Variables using Pointers

Pointers provide the facility to ‘point to’ an area of the stack (random access memory)
directly, and can be used to pass variables to and from a void function. For example,
suppose a void function is designed to compute a variable from an array x which is of
type float, then

void MY_FUNCTION(float x[], float *var)
{
/* Process */
.
.
.
*var=result
}

Here, the variable name var is a pointer to the result which is passed through the
function as indicated in the parenthesis. To address this variable the & is used.
Thus, to use this function in a main program, we use

MY_FUNCTION(x, &var)

For example, C has an intrinsic function scanf which resides in the standard I/O
library (stdio.h) and allows data to be input from the keyboard. Suppose it is required
to input a value from the keyboard which is of decimal integer type and assign it to
the variable var, then we may use

scanf("%d",&var);

Two dimensional arrays can be addressed using pointers in a similar way, e.g.

void MATRIX(float *a[], float *b[])

passes the two-dimensional arrays a and b to the void function matrix.

12.1. ABOUT C 375

12.1.14 Internal Functions and Libraries

In addition to the basic facilities discussed so far, C compilers offers a range of intrin-
sic functions. This facility has expanded rapidly over the years to provide functions
that are compatible with other languages and beyond. The functions are assigned
to different libraries. The most common of these libraries are stdio (standard in-
put/output) which provides functions for inputting and outputting standard data
from standard I/O facilities such as the keyboard for example and the math library
math which contain functions for computing mathematical operations such as a co-
sine and sine for example. These libraries of functions are .h functions and need to
be included at the very beginning of a program or subprogram using the hash include
statement, e.g.

#include<stdio.h> /* Standard input/output library */
#include<io.h> /* Input/output library */
#include<math.h> /* Maths library */

The hash can also be used to define variables that are global to a main or subprogram.
For example

#define N 256

sets the value of N to 256. The decimal integer N can then be used throughout the
program with a value of 256.

12.1.15 Prototyping

Prototyping involves stating the name and type of any functions that another function
is to use for data processing. The compiler needs to be informed a priori of the
functions that a module is going to use. This is done be copying the function names
together with their parameter lists prior to defining the the module. For example,
suppose a void function called PROCESS has been designed that is dependent on
two other void functions F1 and F2 and that all three operate on a serial stream of
floating point data of size n. PROCESS is then prototyped with respect to F1 and
F2 as follows:

#define<math.h>
#define<io.h>
...

void F1(float x[], int n);
void F2(float x[], int n);

void PROCESS(float x[], int n)
{

...

376 CHAPTER 12. MODULAR PROGRAMMING IN C

F1(float x[], int n);

...

F2(float x[], int n);

...

}

As the number of functions increases, it is good practice to list them in a header
file which can then be specified at the beginning of a module. In the example given
above, we have

#define<math.h>
#define<io.h>
...

#include "modules.h"

void PROCESS(float x[], int n)
{

...

F1(float x[], int n);

...

F2(float x[], int n);

...

}

where the file modules.h is composed of the following:

void F1(float x[], int n);
void F2(float x[], int n);

...

12.2. MODULAR AND STRUCTURED PROGRAMMING IN C 377

12.1.16 Advantages and Disadvantages of C

Advantages

• C is a well structured language; in general, it forces inexperienced programmers
to produce relatively well structured code although it is still possible to produce
‘spaghetti programs’ with uncontrolled use of the goto statement for example.

• C allows access to many of the features associated with an operating system
during run time (particularly Unix or Linux).

• There is good data typing facilities.

• The run time structure of a C program is dynamic.

Disadvantages

• The semantic structure of the C language is not ideal for translation of complex
algebraic equations and algorithms used in engineering when compared to a
language such as Fortran.

• Execution of load modules produced by many C compilers are not as efficient as
some languages particularly when it comes to floating point arithmetic. On the
other hand, C can be used effectively to drive DSP chips which are essentially
floating point accelerators for developing real time DSP systems.

• C does not provide (especially with some of the older compilers) as many useful
intrinsic functions as some other languages for number and character manipu-
lation.

For all the disadvantages C may have, its widespread use, facilities and rapid develop-
ment over-ride any minor irritations that the language might legitimately be criticized
for. For modular and structured programming, the C programming language is ideal.

12.2 Modular and Structured Programming in C

One of the principle advantages of the original C programming language was its run
time memory management facilities. A programming language that does not provide
this feature actively hinders modular programming especially on computers with low
memory capacity and operating systems which can only address a low RAM (i.e.
early PC/DOS systems). In fact, it may be argued, that memory management more
than any other feature, led to the instant popularity of C in the early 1980s with
regard to the growing use of microcomputing for engineering in which, especially in

378 CHAPTER 12. MODULAR PROGRAMMING IN C

the early years when the standard operating system (i.e. MS and DR DOS) had a
640K memory threshold.

To emphasize this important point, it is worth taking a look at the principles
of memory management with regard to modular programming by taking a specific
example which is common to many cases and is particularly important in DSP where
efficient array processing is essential.

12.2.1 Array Processing

In C, an array is declared as:

type array[wordlength];

For example, the code

float a[10];
int k[20];

declares and array of type float with 10 words of memory and an array of type int with
20 words of memory. It is important to note that by default, the compiler assumes
that an array that has been given n words of memory is of the form a[0], [1], a[2], ...,
a[n-1] and not a[1], a[2], ..., a[n] so that when we process arrays using a for loop for
example, the counter is from 0 to n-1 and not from 1 to n, e.g. to initialize an array
of size n, we perform the following:

float array[n];
for (i=0; i< n; i++) array[i]=0.0;

If it is desired to loop from 1 to n, then n+1 words of memory must be assigned, e.g.

float array[n+1];
for (i=1; i <= n; i++) array[i]=0.0;

In this case, the element

array[0]

is not used. This feature can lead to some difficulties in designing C code that reflects
the conventional use of indices for defining vectors and matrices. Typically, we define
a vector as x ∈ Rn which is taken to represent the set of elements x1, x2, ..., xn and
not x0, x2, ..., xn−1 as in part II of this book. Providing consistency is preserved, the
default array assignment of C can and should be used. Array processing which is
based on processing the array elements from 1 to n instead of from 0 to n-1 requires
that arrays of size n+1 are specified a priori. In this case, a useful tip is to initialize
the first element of the array, i.e. set x[0]=0.

12.2. MODULAR AND STRUCTURED PROGRAMMING IN C 379

12.2.2 Dynamic Memory Allocation

Consider the following void function which undertakes a general ‘process’:

void PROCESS(float x[], int n)
{

/* Declare internal workspace arrays */

float y[1000], z[1000];

/* Do processing */

...

}

Suppose this subprogram is just one of a number of modules contained in a library;
it inputs an array x of type float and of size n. It performs some process on x and
outputs the result by over-writing x. The integer variable n is a control parameter
which remains unaltered on output. The arrays y and z are internal workspace each
with 1000 words of memory. This internal workspace is typically required to carry
out the process on x. It is usual to set an upper limit on the work space so that
the subprogram can be used to process arbitrary size arrays up to and including
the number of words allocated to the workspace that is internal to the subprogram.
Hence, in this subprogram n≤1000. There are two problems with this:

(i) If we wanted to process an array x with more than 1000 elements, we would have
to edit the subprogram to change the memory allocated to the internal workspace
accordingly.

(ii) If the input to this subprogram contains less than 1000 data points (n=500 for
example), then the memory allocated to the internal workspace is in excess of that
required, wasting RAM which, on a small PC, may be in short supply.

There is an obvious solution to this problem which is to input the arrays y and z
together with x, thus:

void PROCESS(float x[], float y[], float z[], int n)
{

/* Do processing. */

...

}

This solution requires the user of this subprogram to know details about its construc-
tion; in particular, the work space required. The user must pass arrays through the

380 CHAPTER 12. MODULAR PROGRAMMING IN C

subprogram call:

int n;
n=1000;
float x[n],y[n],z[n];
...

PROCESS(x,y,z,n);
...

So what’s the problem? At first sight there does not appear to be a problem as
such, until the discussion above is seen in the context of a library containing many
modules. When a library is completed, the user should not want or need to know
how a specific module actually works, only that a call to a certain subprogram will
perform a specific function. This of course, includes the internal workspace required
to carry out that function on arrays of arbitrary size. Although the above solution
will work, it involves the user having to know the internal work space required for
a subprogram a priori. When the user is designing a program consisting of calls to
many different subprograms stored in a given library, this can become very tedious
and in a sense, defeats the point of modular programming. On the other hand, if the
former method is used (where the internal workspace is declared with an upper limit
on the word space required), then the total memory needed to implement an entire
library of such modules can become extreme, in the knowledge that this memory may
not necessarily be required!

With respect to the arguments above, the whole problem can be overcome if we
could write

void PROCESS(float x[], int n)
...

/* Declare internal workspace. */

float y[n], z[n];

...

}

In this case, the size of n would completely control the memory allocation required
to run this subprogram. Indeed, the value of n could possibly be input during the
run time of a program which called this subprogram; an example of dynamic memory
allocation. Many early compilers did not have this facility. For example, until the
release of Fortran 90, no FORTRAN compiler provided dynamic memory allocation.

The discussion above has been presented to illustrate the meaning of a ‘static’
programming language with ‘poor’ memory management. It also demonstrates one

12.3. MODULARITY 381

of the principal reasons why modular programming ideally requires dynamic memory
management if RAM is to be utilized efficiently.

In C, the solution above can be implemented but not using the code as written.
Instead, we need to make use of the memory allocation function malloc or calloc:.

void PROCESS(float x[], int n)
...

/* Declare internal workspace. */

y = (float *) calloc(n, sizeof(float));
z = (float *) calloc(n, sizeof(float));
...

/* Do processing. */
...

/* Free memory allocated to internal arrays. */

free(y);
free(z);
}

In this example, calloc assigns n words of memory (using the function sizeof) to arrays
y and z which are of type float. After processing the input array with the use of these
internal arrays, the function free, removes the memory that has been allocated. The
function malloc operates in a similar way, the difference being, that after the arrays
have been created, they are not initialized so that the internal arrays could take on
spurious values. Thus, the use of malloc should always be coupled with a for loop to
set the internal array(s) to zero, i.e.

y = (float *) malloc(n*sizeof(float));
for(i=0; i<n; i++)
y[i]=0.0;

The function calloc initializes the arrays automatically and is therefore recommended.
Note, that if arrays are processed using for loops for example from 1 to n instead of
from 0 to n-1, then calloc must be used to assign n+1 words of memory.

12.3 Modularity

In modular programming, the principal issues that govern the system ‘lifecycle’ can
be quantified as follows:

Requirement analysis

⇓

382 CHAPTER 12. MODULAR PROGRAMMING IN C

Design

⇓

Module specification

⇓

Module design

⇓

Module Coding

⇓

Module Unit Testing

⇓

System Test

⇓

Maintenance

There are three important questions concerned with modular programming in general:

• How big should a module be?

• How complex is the module?

• How can we minimize interactions between modules?

12.4 Module Size

Clearly, the smaller the module, the easier it should be to comprehend. On the
other hand, if each module is too small, the system can become overwhelmed by
their proliferation. Hence, low complexity in terms of the number of statements per
module increases the complexity of the number of levels. A common view point is
that a module should occupy no more than a page of text (40 - 50 lines of code).
An extreme view point is that a module should normally take up about seven lines
or less. This viewpoint is based on psychological research which indicates that the
human brain is only capable of comprehending seven things (as a complete set) at
once. Other factors to consider in judging the length of a module are:

(i) A large number of smaller modules gives rise to slower programs because of the
increased overhead of subprogram linkage.

(ii) A library composed of many small modules leads to confusing ‘bitty’ structures.

12.4. MODULE SIZE 383

(iii) The logic of a module should be self-contained (and self-evident); at no time
should we need to comprehend two of more modules simultaneously.

(iv) Editing a module should be self-consistent and not necessarily lead to the modi-
fication of other modules.

Complexity of a Module

In the days when CPU and RAM acted as stringent constraints, it was usual for
programmers to work hard to make their programs as efficient as possible. Nowadays,
the emphasis is to reduce the development time of programs and ease the burden of
maintenance, i.e. to write programs that are clear and simple, and therefore easy
to check, understand and modify. In considering the complexity of a module, there
can be a conflict between whether it is more important for a program to be easy to
understand or whether it is more important for it to run quickly, which may involve the
introduction of complex coding features. The speed of a program is not so critically
related to features such as subprogram linkage but more to its structure, form and
iteration schemes (for loops). As a rule of thumb, programs spend most of the time
(∼50%) executing a small fraction (∼10%) of the code and it is the optimization of
these small parts that leads to minimum run times.

Arguments for Simplicity

Finding a simple solution may not necessarily be easy. A simple program is more
likely to work quickly and then go on working after it is put into practice. Further,
locating a bug in a simple program or modifying it to meet a changed specification
is made easier if the program design is easy to follow, rather than riddled with clever
but incomprehensible tricks.

Complexity

Complexity is not just the number of lines associated with a module but involves:

• Comprehensibility
For the purpose of design, checking, testing and maintenance, it should be
possible to understand individual modules independently of others.

• Changeability
If various design decisions are changed, such as a file structure, changes should
be confined to as few modules as possible (preferably one).

• Independent development
The interfaces between modules should be as simple as possible. Interfaces
should therefore, be by means of calls on subprograms rather than by means of
access to shared data and file structures.

• Number of decisions
The number of if..then..else type statements which lead to a transfer of control.

384 CHAPTER 12. MODULAR PROGRAMMING IN C

The last factor in the complexity of a module is the basis for the so cal complexity
measure (McCabe T J, ‘A complexity measure’, IEEE Transactions of Software En-
gineering, Vol. SE-2, No. 4, 1976). This complexity measure is based on the assertion
that module complexity does not depend on the number of statements in the module
but on the decision structure of the module. To calculate the cyclometric complexity
of a program, one counts the number of predicates and add one. For example, the
line

if((i > j) && (n > m)) then

has a cyclometric complexity of 2. The complexity of a module may also refer to
its computational complexity which describes whether problems and algorithms are
feasible in terms of their usage of computer time and space.

Coupling of Modules

Coupling describes the way in which individual modules affect each other. The most
important forms of coupling are:

(i) Procedure calls with a small number of data parameters.

(ii) Passing a serial stream of data from one module to another.

These are the weakest and best forms of module coupling. Another form of coupling
which is sometimes useful involves a procedure call with a switch as a parameter.
This is where a module is passed an indicator telling the procedure which action to
take from amongst a number of available actions. This indicator is sometimes called
a switch. For example, consider the following procedure for a general purpose I/O
(read/write) procedure.

IO(switch, array, length);

The parameter ‘switch’ could have values 0 and 1 or ‘r’ and ‘w’ that specify whether
the operation is a read or write respectively. This single module could replace two
individual modules such as:

READ(array, length);

and

WRITE(array, length);

The function IO is a single multi-purpose module. The functions READ and WRITE
eliminate a parameter from the interaction and at the same time create well-defined
modules, each with a specific function.

12.4. MODULE SIZE 385

Cohesion

Cohesion describes the nature of the interactions within a software module. The pro-
grammer should aim at functional cohesion, in which every operation in the module
contributes toward the performance of a single well-defined task giving ‘high-cohesion’.
Sequential cohesion can be useful where the operations in a module collaborate in
modifying a piece of data. Typically, such a module accepts data from one mod-
ule, modifies them, and passes them on to another module. Coupling and cohesion
provide a qualitative analysis of modularity. A general rule of thumb for modular
programming is:

Strong coupling and weak cohesion are bad.

Weak coupling and strong cohesion are good.

Shared Modules

In many cases, the functionality of a specific block of code in a particular module may
be better assigned to another subprogram for reasons of clarity, structure and form.
If the block in question is specific to the functionality of a module alone and has no
further use ‘outside’ this module, then it is generally better to write the subprogram
in a form that is internal to the module itself. In some cases, many of the modules
which constitute a library may require a common process to be performed in order to
execute their functionality. In this case, a module which performs this process should
be designed beforehand so that it can be shared by other modules. For example,
consider the case when a common prompt is required by two function F1 and F2.

void F1(float x[], int n)
{
...

/* Prompt user for name of data file. */

PROMPT;
...

}

void F2(float y[], int n)
{

...

/* Prompt user for name of data file. */

PROMPT;
...

386 CHAPTER 12. MODULAR PROGRAMMING IN C

}

POMPT()
{
/* FUNCTION: Prompts user for name of data file. */

printf("Input name of data file\n");
}

In this example, at a given point in the code, functions F1 and F2 require the user
to input the name of a file. The user must be prompted for this name which in
this example is done by calling the function PROMPT. Both subprograms share this
module.

Sharing modules is an important consideration in building a library. It is common
to undertake this task using a bottom-up design strategy. In this approach, we con-
sider the computer/compiler to provide features that can be considered to be basic
‘primitives’ to our software solution. We then add a ‘layer’ of software that enhances
the basic computer/compiler features to make them look more convenient and appro-
priate for the system problem we wish to solve. This creates a more powerful abstract
machine, built ‘on top’ of the basic environment provided. The process is repeated by
designing and building other, higher-level layers until we have constructed a system
that matches the problem well. Modules that are used in more than one place should
not arise from a top-down design process, but from a bottom-up approach.

12.5 Structured Programming

The basic idea behind structured programming is that any program, however complex,
should be written in such a way that it can be read by a human who starts at the
beginning and follows it through from top to bottom (and left to right). One of the
principal views of structured programming is that programs should be built from
three components:

• sequences which are normally written in the order in which the statements are
to be executed;

• selections, e.g. if...then...else;

• repetitions, e.g. do ... enddo.

The consequences of the application of this principal are that:

(i) Each component has only one entry and exit.

(ii) None of the constructs consist of more than three ‘features’.

(iii) The goto statement is obsolete.

12.5. STRUCTURED PROGRAMMING 387

Programs whose design is based on a rigorous application of this principal have a log-
ical and well structured form. A fundamental feature of structured program concerns
arguments related ton the goto statement.

Arguments Against the Goto Statement

• They are unnecessary and any program written using a goto statement can be
transformed into an equivalent program that uses only the structured constructs.

• Experimental evidence suggests that a structured program (without goto state-
ments) can be understood by another programmer more rapidly than a non-
structured program.

• Goto statements do not convey the meaning of a block of code as clearly as a
structured construct; the goto statement has a lack of ‘expressive power’.

• Goto statements lead to difficulties in finding out where you came from in a
program.

• Goto statements require that a program must be read ‘backwards’ or by ‘skip-
ping forwards’.

• The goto statement leads to difficulty in proving the correctness of a program.

Arguments for the Goto Statement

• Goto statements have use in exceptional circumstances.

• They are sometimes necessary to make a program perform well.

• It is sometime ‘natural’ to use goto statements.

The main goal of structured programming is to yield programs with optimum clarity.
In this sense, the cons of the goto statement outweigh the pros. By way of an example,
consider the following block of C code which is designed to find whether the integer
number 2 is present in a serial stream of 10 integers (held in the integer array n).

i=1;
flag1: continue;

if(n[i]==2) goto flag2;
if(i==10) goto flag3;

i=i+1;

388 CHAPTER 12. MODULAR PROGRAMMING IN C

goto flag1;

flag2: printf("found number 2\n");
goto flag4;

flag3: printf("not found number 2\n");
goto flag4;

flag4: end;

An equivalent structured program is:

k=0;
for(i=1; i<=10; i++)

{
if(n[i] == 2)k=1;
}

if(k == 1) printf("found number 2\n");
if(k == 0) printf("not found number 2\n");

As an example of the logical use of the goto statement, consider the following block
of C code consisting of three modules written as void functions which process a serial
stream of data held in array x and whose performance (determined by a function
EVALUATOR which analyses x in some way) depends on the value of a user specified
parameter param.

start: printf("Input value of param\n");
...

PROCESS_1(x,n,param);
PROCESS_2(x,n,param);
PROCESS_3(x,n,param);
...

EVALUATOR(x,output);
if(output==’bad’)
{
printf("Process data again (y/n)?");
scanf("%s", &answer);
if(answer==’y’)goto start;
}

Reading and Writing Data to and from a File

By way of an example, we consider two functions for writing and reading floating
point data to and from files that are named (with no more than 16 characters long)

12.5. STRUCTURED PROGRAMMING 389

and accessed in run time. This is a standard necessary requirement. Each program
that follows has been designed to be self explanatory and uses standard C functions for
specifying, opening and closing a data file, namely gets, fopen and fclose respectively.
The functions for writing and reading the data to and from a file are fprintf and fscanf
respectively.

#include <io.h>
#include <stdio.h>

void WRITE(float s[], int n)
{

char filename[16];
FILE *fp;
int i;

/* FUNCTION: Writes data of type float to a named file. */

/* Prompt user to input name of data file. */

puts("Input name of file to write data>");
gets(filename);

/* Open file. */

if ((fp = fopen(filew, "w")) == NULL)
{
printf("error\n");
return;
}

/* Send message to use ’writing data ...’ */

printf("WRITING DATA ...");

/* Write array s to data file. */

for (i=0; i<n; i++)
fprintf(fp,"%f\n",s[i]);

/* Close the file. */

fclose(fp);
}

#include <io.h>

390 CHAPTER 12. MODULAR PROGRAMMING IN C

#include <stdio.h>

void READ(float s[], int n)
{

char filename[16];
int i;
FILE *fp;

/* FUNCTION: Read data of type float from a named file. */

/* Prompt user to input name of data file. */

puts("Input name of file\n");
gets(filename);

/* Open file. */

if ((fp = fopen(filename,"r")) == NULL)
{
printf("error in reading file\n");
exit(1);
}

/* Send message to use ’READING DATA ...’ */

printf("READING DATA ...");

/* Read in array s from data file. */

for (i=0; i<n; i++)
fscanf(fp,"%f",&s[i]);

/* Close the file. */

fclose(fp);

}

12.6 Modular Programming using Borland Turbo

C++

The principle components of a typical computer can be summarized as follows:

12.6. MODULAR PROGRAMMING USING BORLAND TURBO C++ 391

Input/Output Central Internal
(Terminal, ⇐⇒ Processing ⇐⇒ Memory
Hard Disc Unit (RAM)

etc.) (CPU)

The central processing unit performs basic operations. Internal Memory (Random
Access Memory or RAM) holds the program specifying operations to be performed
and information or data upon which these operations are to act. Input/Output devices
are those through which the algorithm and the data are fed into the memory and
through which the computer communicates the results of the activities.

12.6.1 Speed and Memory

Speed

The CPU of a typical micro computer can perform the order of 109 operations a
second. For example a 1GHz machine will perform 109 (typical Pentium III Intel
CPU) Boolean operations each second which are carried out in series on a so called
‘von Neumann’ machine. The speed of operations can be dramatically increased by
using parallel processors. However, producing parallel architectures is not trivial and
the speed at which serial processors improve in performance has often out-paced that
of parallel processing and its applications to engineering problems. Random access
memory (RAM) is one of the primary characteristics of a computer. Memory capacity
and access speed vary widely according to the storage medium used. The larger the
RAM, the larger the number of bits of data that can be stored without having to
read/write to an I/O device, e.g. hard disc.

Virtual Memory System (VMS)

The basic idea of a VMS is to increase the memory capacity of a computer by utilizing
disc space automatically, i.e.

RAM + Disc space = Virtual Memory

Every time a segment of data is transferred from RAM to disc or disc to RAM, a ‘page
fault’ is generated which takes a finite period of time. This approach to increasing
processor memory was first pioneered by Digital Equipment Corporation but it is now
a feature of nearly all computers. One aspect of programming is to minimize page
faults.

Minimising Page Faults

There are a number of ways of minimizing page faults but one of the most important
features associated with the type of programming required for DSP is ensuring that
nested loops are constructed in the correct order. Iteration forms an important part of
all aspects of programming particularly in engineering. Hence, optimising the speed
at which iterative processes are executed is very important. A common mistake is
nesting loops in an order that is incompatible with the compiler being used. With 2D

392 CHAPTER 12. MODULAR PROGRAMMING IN C

array processing for example, it is necessary to process both the rows and columns. In
a serial machine, the data is not actually stored as a 2D array but as vector. Depending
on the nature of the compiler, this vector is made up either of row segments or column
segments. The way in which the compiler assembles the vector determines the order
of the process. With C programming, the rule of thumb is to process the rows first
and then the columns, e.g.

for(i=0; i < n; i++)
{
for(j=0; j < n; j++)

a[i][j]=0.0;
}

12.6.2 Compiling and Linking

A typical session will involve the following:

• Write a module (typically a void function).

• Compile the module.

• Design a test unit and compile it.

• Link the test unit with the module.

• Run the program and inspect the output for a given input.

All C programs have the extension .c, e.g. main.c, test.c etc. Assuming that the user
is using a command line approach (rather than a visual interface), the command for
compiling a function called process.c say with Borland Turbo C++ is tcc -c process.c
which outputs a process.obj file providing there are no fatal errors. It is at this point
that syntactical errors are to be corrected. For those who are new to C programming,
a standard mistake is to miss out a semi-colon ; at the end of a statement for example.
Typically, the module is a processor and although it may compile perfectly, no diagno-
sis of its functionality will have been undertaken. Suppose that we have now designed
a test function or unit called tprocess.c say, which inputs data that is processed by
the function process.c and outputs the result (assumed to be alpha-numerical). After
compiling the test unit, we can then link the test unit with the module using the
command tcc tprocess.obj process.obj or alternatively using the source code files tcc
tprocess.c process.c. This produces an executable file tprocess.exe which can be run
by just typing the name (with CR).

12.6.3 Developing an Object Library

The typical components of a program are:

12.6. MODULAR PROGRAMMING USING BORLAND TURBO C++ 393

• Main Program

• User Interface

• Data Input

• Data Processing

• Data Output

In the programming practice adopted here, all programs should be designed around
sequences of sub-processes or subprograms - preferably void function modules; hence
the term ‘modular programming’. Subroutines can of course be part of a main
program, e.g.

main()

/* program main.c */

{
float x[512];
...
PROCESS_1(x);
PROCESS_2(x);
...
}

void PROCESS_1(float x[])
{
...
}

void PROCESS_2(float x[])
{
...
}

In this case, the modules form part of the same source code file. In such a case, using
Borland Turbo C++, application of the command tcc main.c will provide an exe-
cutable file main.exe. However, in modular programming, it is far more appropriate
to design the functions as separate files, in which the name of the of the function is re-
flected by the name of the file containing the source code (in upper case or otherwise).
Each subprogram or module must then be compiled separately. For example, suppose
program test.c introduces processes undertaken by modules proc1.c and proc2.c which
are external to test.c. In this case, we compile and link to produce an executable file
test.exe using the command tcc test.c proc1.c proc2.c. Here, all the files are taken to
exist in the same directory.

394 CHAPTER 12. MODULAR PROGRAMMING IN C

12.6.4 Object Libraries

The basic idea of an object library is to establish a special directory in which all
modules required by a main program are stored and compiled. Instead of linking to
subprograms separately, we link to an ‘object library’ in which compiled subroutines
(i.e. object files) are known to exist. To accomplish this using Borland Turbo C++,
we use the command tlib olname +mod1 +mod2 +mod3 ... where olname is the
preferred name of the object library (which is produced with extension .lib) and mod1,
mod2,... are the objects, i.e. mod1.obj, mod2.obj,.... Linking a main program that
uses all, or a subset of these modules is then simple using the command tcc main.c
olname.lib. To generate a list of the objects from which the library is composed,
the command tlib olname.lib, olname.lst can be used, the file olname.lst can then be
inspected as required. Removal of an object mod4 say from the library is undertaken
using the command tlib olname -mod4. Further variations are of course available in
the appropriate compiler documentation.

Ideally, the main program should essentially be dominated by a sequence of func-
tions. It is a good practice to make the name of the directory in which the modules
are placed the same as the name of object library. In addition to the object li-
brary(s) developed by the programmer, it may be necessary to link with specialist
object libraries provided by the compiler. For example, Borland Turbo C++ pro-
vides a graphics library which must be linked to when graphics functions are used,
i.e. graphics.lib.

12.6.5 Practical Applications

The practice of modular programming applies to software development for research
programs, software development and the generation of commercial software packages.
In each case, we study how to break the problem down into a set of essential processes,
e.g. reading data, writing data, displaying data, graphical output, computational
operations etc. Each process becomes a module which is tested and made ‘bug proof’.
When satisfied with the ‘condition’ and ‘performance’ of a function or module, it
is added to the appropriate library. When the library is finished, main programs
can be written which concentrate on the user interface. The principles of modular
programming are essential for research. Once a library is established, ideas can be
tested by just calling different processing routines. If a new process is required, then
it can be written as a module and added to the appropriate library. It is upon this
basis that the problems are presented in Part IV of this book.

A number of low to high level processes can be designed in the form of a function.
Such subprograms can be collected together in a file to serve as an object library. User
created libraries of this type are very useful and can greatly simplify programming.
Instead of labouring to add a new feature to some old program, one simply calls on
one of the appropriate subprograms in the library, and the desired facility appears.
The principal advantage of subprogram libraries lies in the fact that they cultivate
highly modular programming which is the basis of nearly all modern programming
techniques. This involves nothing more than coupling together several well-developed,
carefully tested and debugged modules. When a new feature is required, it can be
developed and then added to the library. The mechanics of creating and maintaining
a library varies from system to system. However, in general, subprograms can be

12.7. ON STYLE AND PRESENTATION 395

compiled in isolation and subsequently stored in a library. Once such a library exists,
you no longer need to append the source versions of the subprograms to your main
program. Instead, you simply allow the library to be associated with your compiled
main programs at run time.

12.7 On Style and Presentation

Style and presentation are particularly important features of good programming.
Some useful tips are:

(i) Provide a header to all modules giving information on all aspects of the program
or subprogram including the author, date, function of program, list of variables, I/O
arrays and parameters, a modification history and so on.

(ii) Comment each functional block of a program with a description of what the
process is, aiming at a comment to code ratio of (at least) 2:1.

(iii) Use comment lines to breakup blocks of source code.

(iv) Indent the source code so that important features can easily be read.

The following is an example of a header for a subprogram:

void EXAMPLE(float x[], float y[], int n)

/**

FUNCTION: Provides an example of the type of
header that should be used when
writing a subprogram function.

AUTHOR: DATE:

MODIFICATION HISTORY:

Date Author Reason

**

PARAMETERS

Input: x - input array of type float
n - size of array of type int

Output: y - output array of type float

GLOBAL VARIABLES:

396 CHAPTER 12. MODULAR PROGRAMMING IN C

LOCAL VARIABLES:

INTERNAL FUNCTIONS:

EXTERNAL FUNCTIONS:

OBJECT LIBRARIES REQUIRED:

**/

Discussion

The use of extended variable and parameter names can lead to a significant increase
in the perceived complexity of the code. Moreover, if long variable and parameter
names are used, more errors can be made in typing them out when designing the code
and/or correcting it. In general, it is a good idea to let the code reflect as much as
possible the notation used in the mathematical development of the algorithm that is
to be coded. For example, suppose that we are processing a two dimensional array
which is based on some matrix algebra related to a matrix A = (aij) as used in the
mathematical notation. In such a case, the code should be based on the application
of

a[i][j]

rather than something like

array_value [column_element] [row_element]

which is unnecessary and cumbersome but unfortunately typical of the coding un-
dertaken by computer scientists who have not undertaken a rigorous course in linear
algebra for example and have an aversion to certain subjects that underpin computer
science (mathematics for example). Using variables names that are long, even with
the best intentions, tends to yield code that is dense and sometimes off-putting. Using
notation in developing code that is as close as possible to that used in the development
of a mathematical algorithm yields a certain expressive power. Some programmers
like to use an underscore at the end of a variable, e.g.

variable_name_

This idea has value when undertaking a search in an editor for example, by searching
for all elements of the code that end with an underscore. While of value in editing
large modules, if the size of a module is kept to minimum length (as is should be),
this feature becomes redundant.

Another important features of good coding practice is to space the code out. The
principle is similar to that of designing a document. If the document looks ‘crowded’

12.8. SUMMARY OF IMPORTANT RESULTS 397

and dense, then it is more difficult to scan visually; in addition, it is visually off-
putting which may lead to fatigue and irritation of the reader (but not necessarily in
that order). Clearly, with a document of this type (i.e. this book), limits have to be
placed on the number of pages for reasons of expense, ‘page space’ being at a premium.
However, code that is stored in a file is not space limited as with hardcopies. Many
excellent CASE tools exist to aid the programmer in the task of producing quality
coded products but at the end of the day, it is the programmers hand that does the
writing - the moving figure writes and have writ moves on. Ultimately, there is a
large amount of artistry associated with programming and software engineering in
general, but it is always worth remembering that like other engineering disciplines
and products, there is certain truth to the comment that ...if it looks good, it will
work good. The art of programming is based on the principle of keeping it simple, on
the understanding that it is simple and is only made complicated by human beings,
some of whom like to hide behind complexity for reasons of personal security. Further,
some software engineers, particularly those in management positions, can be likened
to geese in that they like to hiss allot. Some geese hiss even if there is nothing to hiss
at; it make them feel important.

Other Useful Tips

(i) Remember to declare correctly the size of any internal workspace required (dy-
namically or otherwise).

(ii) Always initialize internal parameters and arrays.

(iii) Nest loops in the correct order.

(iv) Free any memory allocated during run time, i.e. clear the stack.

12.8 Summary of Important Results

Modules in C
A function specified by

FUNCTION_NAME(input)

in which the output (of type int, float or char) is specified by the function name or a
void function given by

void FUNCTION_NAME(input,output)

where both the input an output data is specified by variables and/or arrays defined
in the parenthesis.

Dynamic Memory Allocation
The allocation of memory during run time, typically to arrays that are internal to a
module.

398 CHAPTER 12. MODULAR PROGRAMMING IN C

Module Complexity
The comprehensibility, changeability, independent development and transfer of control
of a module.

Cyclometric Complexity Measure of a Module
The number of predicate or if..then..else type statements in a module plus 1.

Coupling of Modules
Describes the way in which individual modules affect each other; the most important
forms of coupling being: (i) procedure calls with a small number of data parameters;
(ii) passing a serial stream of data from one module to another; (iii) application of a
switch to identify a specific processing path.

Cohesion of Modules
Describes the nature of the interactions within a module in which every operation in
the module contributes toward the performance of a single well-defined task (high-
cohesion) or where the operations in a module collaborate in modifying a piece of
data (sequential cohesion).

Coupling and Cohesion of Modules
Strong coupling and weak cohesion are bad; weak coupling and strong cohesion are
good.

Test Unit
A program designed specifically to test the functionality of a module in terms of the
expected and actual processing of test data.

12.9 Further Reading

• Kernighan B W and Ritchie D M, The C Programming Language, Prentice-Hall,
1978.

• Farmer M, The Intensive C Course, Chartwell-Bratt, 1988.

• Johnsonbaugh R and Kalin M, Applications Programming in ANSI C, Macmil-
lan, 1990.

• Jaeschke R, The Dictionary of Standard C, McGraw-Hill, 1991.

• Perry G, C++ by Example, Que Programming Series, 1992.

• Deiss W, it Turbo C++ Step by Step, Abacus, 1992.

12.10. PROBLEMS 399

• Hanley J R, Koffman E B and Friedman F L, Problem Solving and Program
Design in C, Addison-Wesley, 1993.

• Weiss M A, Data Structures and Algorithms in C++, Benjamin/Cummings,
1994.

• Lippman S B, C++ Primer, Addison-Wesley, 1995.

• Bramer B and Bramer S, C++ for Engineers, Arnold, 1995.

• Bramer B and Bramer S, C for Engineers, Arnold, 1997.

12.10 Problems

12.1 Write a C void function which inputs an array of positive floating point numbers
and outputs the average value, the maximum value and the minimum value of the
array. Test this function by writing a test unit to input ten numbers from the keyboard
and output the results to the VDU.

12.2 A method of writing a portable random number generator is to use the iteration

xn+1 = axnmod(P)

where x0 is given (the seed). For given values of r and P , the sequence of numbers
generated via this iteration are uniformly distributed (i.e. satisfies a rectangular
distribution) so that the chance of any number occurring in a given range is the same
as that of all the others. Write a void function to compute a sequence of n random
numbers for a given seed with

a = 75 = 16807 and P = 231 − 1 = 2147483647.

Use integer arithmetic to evaluate the sequence but scale the results so that the output
consists of floating point numbers between 0 and 1. Test the output of the function
for different seeds using an appropriate test unit.

12.3 Write a function to compute the histogram of an array of n positive integer num-
bers for a range of values m say. Test your program by inputting a set of numbers
from the keyboard and studying the output. Use your algorithm to study the ran-
dom numbers generated by the random number generator discussed in the previous
question. Apply a range to the output to specify the number of bins the histogram
will have. Do the random numbers approximately satisfy a uniform distribution?

12.4 The discrete Fourier transform (DFT) of series ofN complex numbers x0, x1, ..., xN−1

is given by

yn =
1
N

N−1∑
k=0

xk exp(−i2πkn/N)

400 CHAPTER 12. MODULAR PROGRAMMING IN C

for n = 0, 1, ..., N − 1 where yn is complex. Write a function to return the real and
imaginary parts of yn given the real and imaginary parts of xk of length N .

The inverse transform

xk =
N−1∑
n=0

yn exp(i2πkn/N)

for k = 0, 1, ..., N − 1 should convert the complex array yn of length N containing all
the results y0, y1, ..., yN−1 back into the numbers xk (with rounding and truncation
errors). Write a function to do this given the complex array yn of length N . Test
these functions by taking the DFT of the array (1,1,1,1,0,0,0,0) - the real part of xn

- and then reconstruct it using the inverse transform.

12.5 An example of a technique for smoothing data to reduce the effect of random
error is to apply a moving average filter of the type

gi =
fi−1 + fi + fi+1

3

Write a void function to implement this algorithm which inputs data of size n and
outputs the results of applying this filter. Assume that the initial and end conditions
are f0 = 0 and fn+1 = 0 respectively. Design an appropriate test unit to validate the
process.

12.6 An iterative technique for solving a set of linear equations Ax = b known as
Jacobi’s method leads to the result

xk+1
i =

1
aii

⎛⎜⎜⎝bi − n∑
j=1
j 	=i

aijx
k
j

⎞⎟⎟⎠
where x0

i = bi/aii and aii > 0∀i. Write a function to implement this method of
solution which inputs the matrix A, the data b and its size n and the maximum
number of iterations required and outputs the solution vector x. The method is
convergent in cases where the matrix is diagonally dominant, i.e.

aii >

n∑
j=1
j 	=i

aij .

Hence, test the function using a 3 × 3 example which is diagonally dominant with a
known solution and study the rate of convergence of the solution.

12.7 Another iterative technique known as the Gauss-Seidel method updates the ele-
ments of the solution vector as the iteration proceeds using the result

xk+1
i =

1
aii

⎛⎝bi − i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j

⎞⎠

12.10. PROBLEMS 401

where x0
i = bi/aii and aii > 0∀i. Write a function to implement this method of

solution using the same I/O and test procedure as described in the previous question.

12.8 The Newton-Raphson method is a technique for finding an approximate root of
a function f(x), i.e. a value for x that makes f(x) approximately zero. To use this
method, one starts with an estimate x0 of the root. Successive approximations are
then generated via the formula

xi+1 = xi − f(xi)
f ′(xi)

where f ′ is the derivative of f . The ‘stopping criterion’ can be when the difference
between the last two approximations is a small fraction of the last approximation
or until the computer calculates some preset number of approximations. Using this
method, write a void function which inputs the initial root approximation and the
error bound required and outputs the value of the root. Note, that the void function
will require two function subprograms for f(x) and f ′(x) which must be supplied by
the user. Test your module by finding a root of the equation

x3 − 2x2 − 5x+ 6

whose roots are (3,-2,1).

12.9 Use the Newton-Raphson technique to derive a formula to compute the nth root of
a number and write a function to implement this algorithm which inputs the number
whose root is required, its initial approximation and the error bound required. Test
your algorithm by comparing the output with known roots of numbers (e.g. square
root of 4, cube root of 9 etc.)

12.10 Suppose we are given a set of data points (x1, x2, ..., xn) at which the data
values are [f(x1), f(x2), ..., f(xn)]. We want to fit a straight line of the form a0 +a1xi

with coefficients a0 and a1 chosen to minimize the error function

e =
n∑

i=1

[(a0 + a1xi)− f(xi)]2.

This error function is a minimum when

∂e

∂a0
= 0 and

∂e

∂a1
= 0.

These conditions provide a linear least squares solution for a1 and a0 given by

a1 =

n∑
i=1

(xi − x̄)(fi − f̄)

n∑
i=1

(xi − x̄)2

and
a0 = f̄ − a1x̄

402 CHAPTER 12. MODULAR PROGRAMMING IN C

where fi ≡ f(xi) and x̄ and f̄ are the average values of xi and fi respectively. Write a
function that reads in values of xi and fi and outputs the coefficients a0 and a1. Test
the module by inputting data obtained for given values of a0 and a1 and examining
the values computed via this method.

Part IV

DSP: Methods, Algorithms
and Building a Library

403

Chapter 13

Digital Filters and the FFT

Many DSP algorithms can be classified in terms of a (digital) filter and there are two
important classes of digital filter used in DSP:

(i) convolution-type filters;

(ii) Fourier based filters.

Convolution filters are non-recursive filters. They are linear processes which operate
on the data directly; they are real space filters. Fourier filters operate on data obtained
by computing the Discrete Fourier Transform of a signal. This is accomplished using
the Fast Fourier Transform algorithm.

13.1 Digital Filters

Real Space Filters

Real space filters are based on some form of ‘moving window’ principle. A sample of
data about a given element of the signal is processed giving (typically) one output
value. The window is then moved on to the next element of the signal and the process
repeated. A common real space filter is the Finite Impulse Response or FIR filter.
This is a non-recursive filter, a discrete convolution operation of the form

si =
∑

j

pi−jfj

where fi is the input, si is the output and pi is the ‘kernel’ of the filter.

Fourier Space Filters

Fourier space filters are usually multiplicative operations which operate on the Dis-
crete Fourier Transform (DFT) of the signal. If Si, Pi and Fi are taken to denote the
DFT’s of si, pi and fi respectively, then, using the discrete convolution theorem, in

404

13.1. DIGITAL FILTERS 405

Fourier space,
si =

∑
j

pi−jfj

transforms to
Si = PiFi.

If pi is composed of just a few elements, then the discrete convolution can be computed
directly. However, if pi is composed of many elements then it is numerically more
efficient to use a Fast Fourier Transform (FFT) and perform the filtering operation
in Fourier space. A Fourier space filter is just one type (although a fundamentally
important type) of transform space filter where the transform is chosen according to
the properties of the input data and the desired result of the output. Examples of
such transforms are given in Chapter 5.

Inverse Problems

Many problems associated with the processing of digital signals are related to what
is generally referred to as inverse problems. Consider the case when

si =
∑

j

pi−jfj .

This discrete convolution can be written in the form (see Chapter 16)

s = P f

where P is a matrix whose elements are the components of the kernel pi arranged in
an appropriate order. A common inverse problem encountered in DSP is: ‘given si

and pi compute fi’. This inverse problem is called deconvolution. Since a convolution
can be written in terms of a matrix equation, the solution to this problem can be
compounded in terms of the solution to a set of linear simultaneous equations which
can be undertaken using methods discussed in Part II of this book. However, if we
express the same problem in Fourier space, then we have

Si = PiFi

and the problem now becomes: ‘given Si and Pi find Fi’. In this case, the solution
appears trivial since

Fi =
Si

Pi

where 1/Pi is known as the ‘inverse filter’. However, such approaches to solving this
problem lead to ill-conditioned results especially when the data (Pi and/or Fi) is
noisy and methods of regularization are needed to develop robust solutions. This is
the Fourier space equivalent problem of solving the system of linear equations P f = s
when they are ill-conditioned (see Chapter 8) in real space.

Another approach is to use the logarithm to convert the multiplicative process
PiFi into an additive one, i.e.

logSi = logPi + logFi

406 CHAPTER 13. DIGITAL FILTERS AND THE FFT

and attempt to solve for Fi using the result that

Fi = exp[log Si − logPi]

but again, problems can occur in the computation of these functions when the data
is noisy.

All aspects of Fourier transform based filtering require the efficient computation
of a discrete Fourier transform and in the following section the Fast Fourier transform
is discussed.

13.2 The Fast Fourier Transform

The Fast Fourier Transform or FFT is an algorithm for computing the Discrete Fourier
Transform with less additions and multiplications. The DFT (in standard form) of
an N -point vector is given by

Fm =
∑

n

fn exp(−2πinm/N)

where ∑
n

≡
N−1∑
n=0

.

How much computation is involved in computing the DFT of N points? If we write

WN = exp(−2πi/N)

then
Fm =

∑
n

Wnm
N fn.

This result is a matrix equation which can be written in the form⎛⎜⎜⎜⎝
F0

F1

...
FN−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
W 00

N W 01
N . . . W

0(N−1)
N

W 10
N W 11

N ... W
1(N−1)
N

...
...

. . .
...

W
(N−1)0
N W

(N−1)1
N . . . W

(N−1)(N−1)
N

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

f0
f1
...

f(N−1)

⎞⎟⎟⎟⎠ .

In this form, we see that the DFT is essentially computed by multiplying an N -point
vector fn by a matrix of coefficients given by a (complex) constant WN to the power
of nm. This requires N ×N multiplications Thus, for example, to compute the DFT
of 1000 points requires 106 multiplications!

13.2.1 Basic Ideas

By applying a simple but very elegant trick, a N -point DFT can be written in terms
of two N

2 -point DFT’s. The FFT algorithm is based on repeating this trick again

13.2. THE FAST FOURIER TRANSFORM 407

and again until a single point DFT is obtained. The basic idea is compounded in the
following result:

N−1∑
n=0

fn exp(−2πinm/N)

=
(N/2)−1∑

n=0

f2n exp[−2πi(2n)m/N] +
(N/2)−1∑

n=0

f2n+1 exp[−2πi(2n+ 1)m/N]

=
(N/2)−1∑

n=0

f2n exp[−2πinm/(N/2)]+exp(−2πim/N)
(N/2)−1∑

n=0

f2n+1 exp[−2πinm/(N/2)]

=
(N/2)−1∑

n=0

f2nW
nm
N/2 +Wm

N

(N/2)−1∑
n=0

f2n+1W
nm
N/2.

Fundamental Property

The result above leads to the fundamental property:

DFT of a N-point array
= DFT of even components + Wm

N × DFT of odd components.

Using the subscripts e and o to represent odd and even components respectively, we
can write this result in the form

Fm = F e
m +Wm

N F o
m

The important thing to note here, is that the evaluation of F e
m and F o

m is over N/2
points, the N/2 even components and the N/2 odd components of the original N -
point array. To compute F e

m and F o
m we only need half the number of multiplications

that are required to compute Fm.

Repeating the Trick: The Successive Doubling Method

Because the form of the expressions for F e
m and F o

m are identical to the form of the
original N -point DFT, we can repeat the idea and decompose F e

m and F o
m into even

and odd parts producing a total four N
4 -point DFT’s as illustrated below.

Fm

⇓
F e

m + Wm
N F o

m

⇓ ⇓ ⇓
F ee

m +Wm
N/2F

eo
m + Wm

N ×(F oe
m +Wm

N/2F
oo
m)

We can continue subdividing the data into odd and even components until we get
down to the DFT of a single point. However, because the data is subdivided into odd

408 CHAPTER 13. DIGITAL FILTERS AND THE FFT

and even components of equal length, we require an initial array of size N = 2k, k =
1, 2, 3, 4, ... Computing the DFT in this way reduces the number of multiplications
needed to the order of N logN which, for even moderate values of N is considerably
smaller than N2.

Example

Consider the 2 point FFT with data (f0, f1). Then

Fm =
1∑

n=0

fnW
nm
2 = W 0

1 f0 +Wm
2 W 0

1 f1 = f0 + exp(iπm)f1

so that
F0 = f0 + f1

and
F1 = f0 + exp(iπ)f1 = f0 − f1.

Now consider the 4 point FFT operating on the data (f0, f1, f2, f3). Here,

Fm =
3∑

n=0

fnW
nm
4 =

1∑
n=0

f2nW
nm
2 +Wm

4

1∑
n=0

f2n+1W
nm
2 = f0+Wm

2 f2+Wm
4 (f1+Wm

2 f3).

Thus,
F0 = f0 + f1 + f2 + f3,

F1 = f0 + f2W2 + f1W4 + f3W4W2,

F2 = f0 + f2W
2
2 + f1W

2
4 + f3W

2
4W

2
2

and
F3 = f0 + f2W

3
2 + f1W

3
4 + f3W

3
4W

3
2 .

Further, certain values of Wm
N are simple, for example,

W 0
2 = 1, W 1

2 = −1, W 0
4 = 1, W 1

4 , W 2
4 = −1, W 3

4 = −i.
Also, if we let k = n+N/2, then

exp
(

2πik
N

)
= exp

(
2πi(n+N/2)

N

)
= exp

(
2πin
N

)
exp(πi) = − exp

(
2πin
N

)
and thus,

W
(n+N/2)
N = −Wn

N .

13.2.2 Bit Reversal

Consider the 8-point array

f0, f1, f2, f3, f4, f5, f6, f7

and the decomposition of this array into even and odd components as given below.

13.2. THE FAST FOURIER TRANSFORM 409

Even arguments Odd arguments
f0, f2, f4, f6 f1, f3, f5, f7

Even Odd Even Odd
f0, f4 f2, f6 f1, f5 f3, f7

To use the FFT algorithm, the input array must first be expressed in the form

f0, f4, f2, f6, f1, f5, f3, f7.

The general procedure for re-ordering an input array of this type follows a simple
bit-reversal rule where the position of an element of the original array fi is expressed
in binary form. The bits are then reversed to obtain the position of this element in
the re-ordered array as illustrated below.

Original Original Bit-reversed Re-ordered
Argument Array Argument Array

000 f0 000 f0
001 f1 100 f4
010 f2 010 f2
011 f3 110 f6
100 f4 001 f1
101 f5 101 f5
110 f6 011 f3
111 f7 111 f7

If the FFT algorithm is applied to an array in its natural order, then the output is
bit-reversed. Bit reversal can be applied either before of after the computations com-
mence. The effect of applying this method is to reduce the number of multiplications
from O(N2) to O(N logN) which for relatively small array sizes considerably reduces
the time taken to perform a DFT.

The method discussed above depends on using array sizes of 2N and is therefore
a base-2 algorithm. It is natural to ask, why this method cannot be extended, i.e.
instead of decomposing the original array into two arrays (based on the odd and
even components of the original) why not decompose it into three or four arrays
and repeat the process accordingly leading to base-3 and base-4 algorithms. The
problem with this approach is that, although it can lead to slightly less operations,
the reordering of the data required to establish an appropriate output is significantly
more complicated than bit reversal. The extra effort that is required to establish a
re-ordering algorithm tends to outweigh the reduction in the processing time from
adopting a base-3 or base-4 approach.

13.2.3 The FFT in C

The following code is a C (void) function called FFT1D (FFT in one-dimension or
1D) which computes the DFT of a complex input with real and imaginary parts using

410 CHAPTER 13. DIGITAL FILTERS AND THE FFT

the method described above. In this case, the arrays are taken to run from 1 to n are
are re-ordered on both input and output so that the DFT appears in optical forms
in which the DC or zero frequency component occurs a n/2 + 1 where n is the size
of the array. The algorithm performs either a forward or an inverse DFT using the
switch sign. If sign=-1, then the forward DFT is computed and if sign=1, then the
inverse DFT is computed.

#include <math.h>

void FFT1D(float a[], float b[], int n, int sign)
{

int l,l1,l2,j,jj,i,ii,k,nh,nm;
float *cr, *ci;
float den,p,q;
float ur,ui,vr,vi,wr,wi,urtemp;
double pi,x;

/***/

/* FUNCTION: This function computes the DFT of a complex array whose
real and imaginary parts are a and b respectively using
the successive doubling method.

NOTES: The function returns the real (a) and imaginary (b) parts
of the DFT.

The size of the arrays n must be an int power of 2.

Zero frequency occurs at 1+n/2.

By convention, the forward Fourier transform is obtained
when sign=-1 and the inverse Fourier transform is obtained
when sign=1.

If input is purely real then the imaginary part
(i.e. array b) must be set to be a null vector.

PARAMETERS

Input: a - real part of signal/spectrum
b - imaginary part of signal/spectrum
n - size of signal

Output: a - real part of spectrum/signal
b - imaginary part of spectrum/signal

EXTERNAL MODULES: None

13.2. THE FAST FOURIER TRANSFORM 411

INTERNAL MODULES: None */

/***/

/* Allocate n+1 words of memory to internal arrays. */

cr = (float *) calloc(n+1, sizeof(float));
ci = (float *) calloc(n+1, sizeof(float));

/* Compute scaling parameter (den) */

if (sign < 0)
den=1.0;

else
den=n;

/* Setup constants required for computation. */

pi = 4.0 * atan(1.0);
p = n;
q = log(p) / log(2.0);
k = q;
nh = n * 0.5;
nm = n-1;

/* Generate switched arrays - switch positive/negative
half spaces to negative/positive half spaces respectively. */

for (i=nh+1, j=1; i<=n; i++, j++)
{
cr[j] = a[i];
ci[j] = b[i];
}

for (i=1; i<=nh; i++, j++)
{
cr[j] = a[i];
ci[j] = b[i];
}

/* Reorder data, i.e. perform ’bit-reversal’. */

for (i=1, j=1; i<=nm; i++)
{
if (i < j)
{

412 CHAPTER 13. DIGITAL FILTERS AND THE FFT

vr = cr[j];
vi = ci[j];
cr[j] = cr[i];
ci[j] = ci[i];
cr[i] = vr;
ci[i] = vi;
}

jj = nh;
while (jj < j)
{
j -= jj;
jj = jj * 0.5;
}

j += jj;
}

/* Do fast transform computations. */

for (l=1; l<=k; l++)
{
l1 = ldexp(1.0, l);
x = (2 * pi * (double) sign) / l1;
wr = cos(x);
wi = sin(x);
l2 = l1 * 0.5;
ur = 1.0;
ui = 0.0;

for (j=1; j<=l2; j++)
{

for (i=j; i<=n; i+=l1)
{
ii = i + l2;
vr = (cr[ii] * ur) - (ci[ii] * ui);
vi = (cr[ii] * ui) + (ci[ii] * ur);
cr[ii] = cr[i] - vr;
ci[ii] = ci[i] - vi;
cr[i] = cr[i] + vr;
ci[i] = ci[i] + vi;
}

urtemp = ur;
ur = (ur * wr) - (ui * wi);
ui = (urtemp * wi) + (ui * wr);

13.3. DATA WINDOWING 413

}
}

/* Scale */

for (i=1; i<=n; i++)
{
cr[i] = cr[i] / den;
ci[i] = ci[i] / den;
}

/* Reverse half-spaces - write out data in ’optical form’. */

for (i=nh+1, j=1; i<=n; i++, j++)
{
a[j] = cr[i];
b[j] = ci[i];
}

for (i=1; i<=nh; i++, j++)
{
a[j] = cr[i];
b[j] = ci[i];
}

/* Free space from work arrays. */

free(cr);
free(ci);

}

13.3 Data Windowing

Unlike the Fourier transform which is expressed in terms of an infinite integral, the
DFT involves computing with a discrete array of finite extent. Thus, it is important
to assess the difference between the DFT transform of a function and its theoretical
Fourier transform. Computing the DFT of a digital signal with N samples is equiv-
alent to multiplying an infinite run of sampled data by a ‘window function’ which
is zero except during the total sampling time NΔt and is unity during that time.
Consider the following optical form of the DFT

Fm =
(N/2)−1∑
n=−N/2

fn exp(−i2πnm/N).

414 CHAPTER 13. DIGITAL FILTERS AND THE FFT

When an N -point DFT is computed, the data are ‘windowed’ by a square window
function. To identify the ‘effect’ of computing an N -point DFT, consider

Fm ∼
N/2∫

−N/2

f(t) exp(−iωmt)dt =

∞∫
−∞

f(t)w(t) exp(−iωmt)dt

where

w(t) =

{
1, | t |≤ N/2;
0, | t |> N/2.

Using the product theorem we can write

Fm ∼ N

2π

∞∫
−∞

F (ωm − ω)sinc(ωN/2)dω

where

sinc(ωN/2) =
sin(ωN/2)
ωN/2

.

Thus, a sample of the discrete spectrum Fm obtained by taking the DFT of a N -point
signal is not given by F (ωm) but by F (ωm) convolved with a ‘sinc’ function. Note,
that

Fm → F (ωm) as N →∞
since

lim
N→∞

N

2π
sinc(ωN/2) = δ(ω)

and
∞∫

−∞
F (ωm − ω)δ(ω)dω = F (ωm).

Each sample Fm is an approximation to F (ωm) which depends on the influence of
the ‘sinc’ function associated with one sample ‘bin’ on the next sample ‘bin’. The
‘sinc’ function ‘leaks’ from one bin to the next producing errors in the values of the
neighbouring spectral components. The reason for this ‘leakage’ is that the square
window (i.e. the tophat function) turns on and off so rapidly that its Fourier transform
(i.e. the sinc function) has substantial components at high frequencies. To remedy
this situation, we can multiply the input data fn by a window function wn that
changes more gradually from zero to a maximum and then back to zero as n goes
from −N/2 to N/2. Many windows exist for this purpose. The difference lies in trade-
off’s between the ‘narrowness’ and ‘peakedness’ of the ‘spectral leakage function’ (i.e.
the amplitude spectrum) of the window function.

Some Examples of Windows

For n = 0, 1, ..., N − 1 we have:

13.3. DATA WINDOWING 415

1. The Parzan window

wn = 1−
∣∣∣∣n− 1

2N
1
2N

∣∣∣∣
2. The Welch window

wn = 1−
(
n− 1

2N
1
2N

)2

3. The Hanning window (Cosine taper)

wn =
1
2

[
1− cos

(
2πn
N

)]

4. The Hamming window

wn = 0.54− 0.46 cos
(

2πn
N

)

5. The von Hann window (Raised cosine)

wn =
1
2

[
1 + cos

(
π(n− 1

2N)
1
2N

)]

6. The generalized von Hann window

wn = b + 2a cos
(
π(n− 1

2N)
1
2N

)
; 2a+ b = 1

7. The Kaiser window

wn =

I0

[
α

√
1−

(
(n− 1

2 N)
1
2 N

)2
]

I0

where I0 is the modified Bessel function of the first kind and α is a constant. Windows
of this type (and many others) are of significant value when the size of the arrays
are relatively small. The larger the array that is used to represent a signal, the
less the spectral leakage and hence, the less significant the requirement of applying
an appropriate window becomes. Data windowing was particularly important in the
days when the size of an array that could be stored and processed was relatively small
and hence, text books in this field that date from the 1960s and 1970s (particularly
those concerned with the application of microprocessors) tend to make a ‘big deal’
over the ‘theory of windows’.

416 CHAPTER 13. DIGITAL FILTERS AND THE FFT

13.4 Computing with the FFT

Computing with the FFT involves a basic principle which is that the FFT can be used
to implement digital algorithms derived from some theoretical result which is itself
based on Fourier theory, provided the data is adequately sampled (to avoid aliasing)
and appropriate windows are used (as required) to minimize spectral leakage.

The FFT provides a complex spectrum with real and imaginary arrays ai and
bi respectively. From the output of the FFT we can construct a number of useful
functions required for spectral analysis:

(i) The discrete amplitude spectrum given by
√
a2

i + b2i .

(ii) The discrete power spectrum a2
i + b2i .

(iii) The discrete phase spectrum tan−1(bi/ai)± 2πn.

The dynamic range of the amplitude and power spectra is often very low especially
at high frequencies. Analysis of the spectrum can be enhanced using the logarithmic
function and generating an output given by

log
√
a2

i + b2i

or
log(a2

i + b2i).

It practice, it is typical to add 1 to a2
i + b2i to prevent a singularity occurring if ai

and bi are equal to zero for a particular value of i. This also ensures that the output
is greater than or equal to zero. If a logarithm to base 10 or log10 is used, the scale
of the spectrum is measured in decibels (dB) where one decibel is equal to one tenth
of a logarithmic unit. This scale is often used by engineers for spectral analysis and
originates from the legacy of acoustic signal analysis.

13.5 Discrete Convolution and Correlation

To convolve two discrete arrays pi and fi of equal length using an FFT we use the
convolution theorem and consider the result

si = pi ⊗ fi

⇓
Si = PiFi

⇓
si = Re[IDFT(Si)]

where Si, Pi and Fi are the DFT’s of si, pi and fi respectively computed using the
FFT and IDFT denotes the inverse DFT also computed using the FFT. A typical
program will involve the following steps:

1. Input the real arrays p and f.

13.5. DISCRETE CONVOLUTION AND CORRELATION 417

2. Set the imaginary parts associated with p, f and s (denoted by pi, fi and si say) to
zero.

3. Compute the DFT’s of f and p using the FFT.

4. Do complex multiplication:

s=p×f-pi×fi,

si=p×fi+f×pi.

5. Compute the inverse DFT using the FFT.

6. Write out s.

Using pseudo code, the algorithm for convolution using an FFT is:

for i=1 to n; do:
fr(i)=signal_1(i)
fi(i)=0.
pr(i)=signal_2(i)
pi(i)=0.

enddo
forward_fft(fr,fi)
forward_fft(pr,pi)

for i=1 to n; do:
sr(i)=fr(i)*pr(i)-fi(i)*pi(i)
si(i)=fr(i)*pi(i)+pr(i)*fi(i)

enddo

inverse_fft(sr,si)

Discrete Correlation

To correlate two real discrete arrays pi and fi of equal length using an FFT we use
the correlation theorem and consider the result

si = pi 	 fi

⇓
Si = P ∗

i Fi

⇓
si = Re[IDFT(Si)]

where Si, Pi and Fi are the DFT’s of si, pi and fi respectively computed using the
FFT. Thus, a typical program will involve the following steps:

418 CHAPTER 13. DIGITAL FILTERS AND THE FFT

1. Input the real arrays p and f.

2. Set the imaginary parts associated with p, f and s (denoted by pi, fi and si say) to
zero.

3. Compute the DFT’s of f and p using the FFT.

4. Do complex multiplication:

s=p×f+pi×fi,

si=p×fi-f×pi.

5. Compute the inverse DFT using the FFT.

6. Write out s.

Using pseudo code, the algorithm for correlation using an FFT is:

for i=1 to n; do:
fr(i)=signal_1(i)
fi(i)=0.
pr(i)=signal_2(i)
pi(i)=0.

enddo

forward_fft(fr,fi)
forward_fft(pr,pi)

for i=1 to n; do:
sr(i)=fr(i)*pr(i)+fi(i)*pi(i)
si(i)=fr(i)*pi(i)-pr(i)*fi(i)

enddo

inverse_fft(sr,si)

13.6 Computing the Analytic Signal

The Argand diagram representation provides us with a complex representation of the
analytic signal given by

s(t) = A(t) exp[iθ(t)] = A(t) cos θ(t) + iA(t) sin θ(t)

where A(t) are the amplitude modulations and θ(t) is the instantaneous phase. Writ-
ing s(t) in the form

s(t) = f(t) + iq(t)

it is shown in Chapter 5 that q(t) - the quadrature signal - is given by the Hilbert
transform of f(t). Being able to compute the analytic signal provides us with the

13.6. COMPUTING THE ANALYTIC SIGNAL 419

signal attributes, i.e. the amplitude modulation, the frequency modulations and the
instantaneous phase (see Chapter 5). The analytic signal s(t) is related to f(t) by

s(t) =
1
π

∞∫
0

F (ω) exp(iωt)dω

and s(t) is characterized by a single side-band spectrum whose real and imaginary
parts are f(t) and q(t) respectively. We can write this result as

s(t) =
1
2π

∞∫
−∞

2F (ω)U(ω) exp(iωt)dω

where

U(ω) =

{
1, ω ≥ 0;
0, ω < 0.

Thus, to compute the Hilbert transform of a discrete function fi say where i =
1, 2, ..., N we can apply the follow procedure:

1. Take the DFT of fi to get Fi.

2. Set Fi to zero for all negative frequencies.

3. Compute the inverse DFT of Fi.

Then, on output, the real part of the inverse DFT is fi and the imaginary part of the
inverse DFT is qi. In practice, the DFT can be computed using a FFT. Thus, using
pseudo code, the FFT algorithm for computing the Hilbert transform is (noting that
the DC level occurs at n/2 + 1)

for i=1 to n; do:
sreal(i)=signal(i)
simaginary(i)=0.

enddo
forward_fft(sreal,simaginary)

for i=1 to n/2; do:
sreal(i)=0.
sreal(i+n/2)=2.*sreal(i+n/2)
simaginary(i)=0.
simaginary(i+n/2)=2.*simaginary(i+n/2)

enddo

inverse_fft(sreal,simaginary)

for i=1 to n; do:
signal=sreal(i)

420 CHAPTER 13. DIGITAL FILTERS AND THE FFT

hilbert_transform(i)=simaginary(i)
enddo

13.7 Summary of Important Results

Principle of the (base-2) FFT

DFT of N-point array = DFT of even components + Wm
N × DFT of odd components.

Bit Reversal
Reversal of the binary number representation of the position of an element in an array
which is used to reorder the data before repeated application of the principle above.

FFT C Function

void FFT1D(float a[], float b[], int n, int sign)

where a and b are the real and imaginary parts respective, n is the array size (an
integer power of 2) and sign is a switch to control the computation of the forward
DFT (sign=-1) or inverse DFT (sign=1).

Approximation to F (ωm)

Fm ∼ N

2π
F (ωm − ω)⊗ sinc(ωN/2),

Fm → F (ωm) as N →∞.

Data Windows
Functions with edge tapers that reduce the spectral leakage generated by the sinc
function.

13.8 Further Reading

• Brigham E O, The Fast Fourier Transform and its Applications, Prentice-Hall,
1988.

• Bareman A and Yates W, Digital Signal Processing Design, Pitman, 1988.

• Van den Enden A W M and Verhoeckx N A M, Discrete Time Signal Processing,
Prentice-Hall, 1989.

• INMOS Limited, Digital Signal Processing, Prentice Hall, 1989

13.9. PROGRAMMING PROBLEMS 421

• Press W H, Teukolsky S A, Vetterling W T and Flannery B P, Numerical Recipes
in C, Cambridge University Press, 1994.

13.9 Programming Problems

In the questions that follow, the functions required should be void functions written
in ANSI C. They should be compiled, tested and then added to a digital signal
processing object library dsplib.lib say. In each case, a simple I/O test procedure
should be written; the I/O being studied graphically using the graphics function
gsignal discussed in Appendix D (or other graphics facilities as appropriate) working
with arrays of size 64, 128, 256 or 512. Each array should be processed using elements
running from 1 to n, i.e. using vectors x ∈ Rn. This requires, where necessary, n+1
words of memory to be assigned.

Each function should be self-contained within the context of the DSP algorithm
to be coded. The problems given are in two sections; the first is concerned with the
generation of different digital signals and the second section is concerned with using
the FFT algorithm to undertake a variety of computations relating to the material
covered in this chapter. In each case, n (which is of type integer) is the size of the
array.

13.9.1 Digital Signal Generation

13.1 Write a function to compute two spikes of unit amplitude and arbitrary width
(apart) which are at the center of the output array.

void SPIKES(float s[], int n, int w)

where s is the output and w is the width.

13.2 Write a function to compute a tophat function of arbitrary width.

void TOPHAT(float s[], int n, int w)

where s is the output and w is the width of tophat which is placed at the center of
the array.

13.3 Write a function to compute a triangle function of unit amplitude and arbitrary
(base) width.

void TRIANGLE(float s[], int n, int w)

where s is the output and w is the width of the base.

13.4 Write a function to compute a Gaussian function of arbitrary width (standard
deviation).

void GAUSSIAN(float s[], int n, int w)

422 CHAPTER 13. DIGITAL FILTERS AND THE FFT

where s is the output and w is the half width of function at 1/e.

13.5 Write a function to compute a cosine function with an arbitrary number of
periods.

void COSINE(float s[], int n, int p)

where s is the output and p is the number of periods.

13.6 Write a function to compute a sine function with an arbitrary number of periods.

void SINE(float s[], int n, int p)

where s is the output and p is the number of periods.

13.9.2 Computing with the FFT

13.7 Write a program to compute the DFT of the output of the functions in questions
13.1-13.6 above using the function FFT1D provided and plot the real and imaginary
parts. Remember to initialize the imaginary part - set it to zero - before using FFT1D.
Also, compute the inverse DFT of the results and study the real and imaginary parts.
Note that the imaginary array is not full of zeros (as theoretically it should be), but
filled with relatively small values due to the numerical effects of working with arrays
of finite length.

13.8 Write a function to compute the amplitude spectrum of a signal using FFT1D.

void AMPSPEC(float s[], float a[], int n)}

where s is the input signal and a is the amplitude spectrum (output).

13.9 Write a function to compute the power spectrum of a signal using FFT1D.

void POWSPEC(float s[], float p[], int n)

where s is the signal (input) and p is the power spectrum (output).

Compute the discrete amplitude and power spectra of the functions generated in
questions 13.1-13.6 using functions AMPSPEC and POWSPEC respectively using a
linear and then a logarithmic scale.

13.10 Write a function to scale a signal of arbitrary polarity so that its upper bound
(in modulus) is a.

void SCALE(float s[], int n, float a)

where s is the input/output and a is the upper bound.

13.11 Write functions to compute the Parzan, Welch, Hanning and Hamming windows
where w is the output:

13.9. PROGRAMMING PROBLEMS 423

void PARZEN(float w[], int n)

void WELCH(float w[], int n)

void HANNING(float w[],int n)

void HAMMING(float w[], int n)

Study the frequency response of these filters by computing their amplitude spectra
on a logarithmic scale.

13.12 Write a function to differentiate a signal using FFT1D and the filter obtained
from Fourier analysis.

void DIF(float s[], int n)

where s is the input/output. Test this function by computing the gradient of the
tophat function using function TOPHAT. Explain the results.

13.13 Write a function to convolve two real (one-dimensional) arrays using FFT1D.

void CONVOLVE(float f[], float p[], float s[], int n)

where f is the input, p is the IRF and s is the output signal. Test your algorithm
by convolving two spikes with a Gaussian using functions SPIKES and GAUSSIAN
respectively. Observe the effect of varying the width of the Gaussian.

13.14 Write a function to cross-correlate two digital signals using FFT1D.

void CROSCOR(float f[], float p[], float s[], int n)

where f is an input signal, p is an input signal and s is the output. Test your algorithm
by correlating two sine waves and then a sine wave with a cosine wave (with equal
periodicity).

13.15 Write a function to compute the autocorrelation function of a signal using
FFT1D.

void AUTOCOR(float f[], float s[], int n)

where f is the input signal and s is the output. Test your algorithm by autocorrelating
a signal consisting of two spikes of unit amplitude and then a tophat function. Explain
the results.

13.16 Write a function to filter a given input with an arbitrary real filter.

void FILTER(float s[], float f[], int n)

424 CHAPTER 13. DIGITAL FILTERS AND THE FFT

where s is the input/output and f is the filter which is real. Use this algorithm together
with function TOPHAT to lowpass filter a signal consisting of a cosine wave. Study
the effect in varying the bandwidth of the filter.

13.17 Write a function to generate the analytic signal.

void ANASIG(float f[], float q[], int n)

where f is the real part (input/output) and q is the imaginary or ‘quadrature’ com-
ponent (output).

13.18 Write a function to compute the Hilbert transform of an input using function
ANASIG.

void HILBERT(float s[], int n)

where s is the input/output. Test your algorithm by computing the Hilbert transform
of a sine function. Remember that the Hilbert transform of a sine function is a cosine
function. Hence, the output should be compounded in a 90o phase shift.

13.19 Use function ANASIG to compute the amplitude envelope of a signal.

void AMPENV(float s[], float a[], int n)

where s is the input signal and a is the amplitude envelope. Use this function to com-
pute the amplitude envelope of a sine and cosine wave. Study the effect of increasing
the number of periods on the amplitude envelope. Explain the results observed.

13.20 Using FFT1D and the principle of ‘sinc interpolation’ (see Chapter 4), write a
function to interpolate an input from 2k to 2l where l > k and k and l are integers.

void SINCINT(float x[], int n, float y[], int m)

where x is the input signal, n is the array size of the input, y is the interpolated output
signal and m is the array size of the output. Test your algorithm by interpolating a
sine function from 128 to 256 data points.

Further Exercises

In addition to the exercises given above, the reader should use the software developed
to investigate the properties of the Fourier transform (as discussed in Chapter 4). For
example:

• the shifting property, i.e. shift the spectrum of a sine wave for example and
observe the output;

• the product theorem, i.e. multiply a sine wave with itself and study its spectrum.

13.9. PROGRAMMING PROBLEMS 425

The purpose here, is to observe the characteristics of the Fourier transform and its
properties that were derived theoretically in Chapter 4 and for the reader to satisfy
him/her self that these properties are reflected in the computations performed by the
FFT algorithm. However, it should be understood that the numerical output will
always have features that are a product of using discrete arrays of finite length.

Chapter 14

Frequency Domain Filtering
with Noise

Digital filtering in the frequency domain is the basis for an important range of filters.
This mode of filtering relies on extensive use of the FFT and without the FFT, this
type of filtering would be very time consuming to implement. Fourier based filters
usually have a relatively simple algebraic form. They change the ‘shape’ of the input
spectrum via a multiplicative process of the type:

Output spectrum = Filter × Input spectrum

Filters of this type characterize the frequency response of a system to a given input.
The algebraic form of the filter usually originates from the solution (with appropriate
conditions and approximations) to a particular type of problem.

14.1 Highpass, Lowpass and Bandpass Filters

An operation which changes the distribution of the Fourier components of a function
(via a multiplicative process) may be defined as a (Fourier) filtering operation. Thus,
in an operation of the form

Si = PiFi

Pi may be referred to as a filter and Si can be considered to be a filtered version of
Fi. In general, Fourier filters fall into one of three classes:

(i) lowpass filters;

(ii) highpass filters;

(iii) bandpass filters.

A lowpass filter is one which suppresses or attenuates the high frequency components
of a spectrum while ‘passing’ the low frequencies within a specified range. A highpass
filter does exactly the opposite to a lowpass filter; it attenuates the low frequency
components of a spectrum while ‘passing’ the high frequencies within a specified

426

14.2. THE INVERSE FILTER 427

range. A bandpass filter only allows those frequencies within a certain band to pass
through. In this sense, lowpass and highpass filters are just special types of bandpass
filters. Many signals can be modelled in terms of some bandpass filter modifying
the distribution of the complex Fourier components associated with an information
source. Data processing is then required to restore the out-of-band frequencies in
order to recover the complex spectrum of the source. This requires a good estimate
of the original bandpass filter.

14.2 The Inverse Filter

The inverse filter is a straightforward approach to deconvolving the equation

si = pi ⊗ fi + ni.

In the absence of any useful information about the noise ni, we may ignore it under
the assumption that its total contribution to the signal si is small. We can then set
about inverting the reduced equation

si = pi ⊗ fi.

The basic approach to solving this problem is to process the data si in Fourier space.
Using the convolution theorem, we have

Si = PiFi.

Re-arranging and taking the inverse DFT, denoted by IDFT, we get

fi = IDFT
(
Si

Pi

)
= IDFT

(
P ∗

i Si

| Pi |2
)
.

The function 1/Pi is known as the inverse filter.

Criterion for the Inverse Filter

The criterion for the inverse filter is that the mean square of the noise is a minimum.
In other words, fi is chosen in such a way that the mean square error

e = ‖ni‖2 = ‖si − pi ⊗ fi‖2

is a minimum. Using the orthogonality principle (see Chapter 8), this error is a
minimum when

[si − pi ⊗ fi]	 p∗i (x) = 0

and through the correlation and convolution theorems, in Fourier space, this equation
becomes

[Si − PiFi]P ∗
i = 0.

Solving for Fi, we obtain the same result as before, namely,

Fi =
P ∗

i

| Pi |2Si.

428 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

Computational problems

In principle, the inverse filter provides an exact solution to the problem when ni ap-
proaches zero. However, in practice this solution is fraught with difficulties. First, the
inverse filter is invariably a singular function due to zeros occurring in | Pi |. Equally
bad is the fact that even if the inverse filter is not singular, it is usually ill-conditioned.
This is where the magnitude of Pi goes to zero so quickly as i increases that 1/ | Pi |2
rapidly acquires extremely large values. The effect of this ill-conditioning is typically
to amplify the noisy high frequency components of Si. This can lead to a reconstruc-
tion for fi which is dominated by the noise in si. The inverse filter can therefore
only be used when: (i) the inverse filter is nonsingular; (ii) the signal to noise ratio
of the data is very small. Such conditions are rare. The computational problems as-
sociated with the inverse filter can be avoided by implementing a variety of different
filters whose individual properties and characteristics are suited to certain types of
experimental data.

14.3 The Wiener Filter

The Wiener filter is a minimum mean square filter (i.e. it is based on application of the
least squares principle). This filter is commonly used for signal and image restoration
in the presence of additive noise. It is named after the American mathematician
Norbert Wiener who was among the first to discuss its properties. The problem (and
consequent solution) can be formulated using either continuous or discrete functions.
Here, the latter approach is taken which is consistent with the analysis of digital
signals. The problem is as follows: Let si be a digital signal consisting of N real
numbers i = 0, 1, ..., N − 1 formed by a time invariant stationary process of the type

si =
∑

j

pi−jfj + ni

where ∑
j

≡
N−1∑
j=0

.

Find an estimate for fi of the form

f̂i =
∑

j

qjsi−j .

Clearly, the problem is to find qi. Wiener’s solution to this problem is based on
utilizing the ‘least squares principle’.

14.3.1 The Least Squares Principle

Application of the least squares principle to this class of problem is based on finding
a solution for qi such that

e = ‖fi − f̂i‖22 ≡
N−1∑
i=0

(fi − f̂i)2

14.3. THE WIENER FILTER 429

is a minimum. Under the condition that the noise is signal independent, i.e.∑
j

nj−ifj = 0 and
∑

j

fj−inj = 0,

the DFT of qi is given by

Qi =
P ∗

i

| Pi |2 + |Ni|2
|Fi|2

where Fi, Pi and Ni are the DFT’s of fi, pi and ni respectively. Here, Qi is known
as the ‘Wiener Filter’ and using the convolution theorem we can write the required
solution as

f̂i = IDFT (QiSi)

where Si is the DFT of si, IDFT is taken to denote the inverse DFT and since the
data si is real, only the real part of the output is taken.

14.3.2 Derivation of the Wiener Filter

The function e defines an ‘error’ in the sense that the closer f̂i is to fi, the smaller
the error becomes. The error is a function of qi and hence is a minimum when

∂

∂qk
e(qj) = 0 ∀k.

Differentiating, we get (as discussed in Chapter 8)

N−1∑
i=0

⎛⎝fi −
∑

j

qjsi−j

⎞⎠ si−k = 0.

We now use the convolution and correlation theorems to write the above equation in
the form

FiS
∗
i = QiSiS

∗
i

giving

Qi =
S∗

i Fi

| Si |2
where Fi, Si and Qi and the DFT’s of fi, si and qi respectively. This function can be
written in terms of Pi and Ni (the DFT’s of pi and ni respectively) since

si =
∑

j

pi−jfj + ni

which transforms to
Si = PiFi +Ni

via the convolution theorem. This gives

S∗
i Fi = (P ∗

i F
∗
i +N∗

i)Fi = P ∗
i | Fi |2 +N∗

i Fi.

430 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

Now,

| Si |2= SiS
∗
i = (PiFi +Ni)(P ∗

i F
∗
i +N∗

i) =| Pi |2| Fi |2 + | Ni |2 +PiFiN
∗
i +NiP

∗
i F

∗
i

and

Qi =
P ∗

i | Fi |2 +N∗
i Fi

| Pi |2| Fi |2 + | Ni |2 +PiFiN∗
i +NiP ∗

i F
∗
i

.

14.3.3 Signal Independent Noise

If we assume that the noise is signal independent, then we can say that to a good
approximation, there is no correlation between the signal (in particular, the input fi)
and the noise and visa versa. This statement is compounded mathematically by the
conditions ∑

j

nj−ifj = 0 and
∑

j

fj−inj = 0.

Using the correlation theorem, these conditions can be written in the form

N∗
i Fi = 0 and F ∗

i Ni = 0.

These conditions allow us to drop the cross terms in the expression for Qi leaving us
with the result

Qi =
P ∗

i | Fi |2
| Pi |2| Fi |2 + | Ni |2

or after rearranging

Qi =
P ∗

i

| Pi |2 + |Ni|2
|Fi|2

.

14.3.4 Properties of the Wiener Filter

As the noise goes to zero (i.e. as | Ni |2→ 0) the Wiener filter reduces to the ‘inverse
filter’ for the system, i.e.

P ∗
i

| Pi |2 .

Hence, with minimal noise, the Wiener filter behaves like the inverse filter. As the
power spectrum of the input goes to zero (i.e. as | Fi |2→ 0), the Wiener filter
has zero gain. This solves problems concerning the behaviour of the filter as | Pi |2
approaches zero. In other words, the filter is ‘well conditioned’. Note that the quotient
| Fi |2 / | Ni |2 is a measure of the Signal-to-Noise Ratio (SNR).

14.3.5 Practical Implementation

The Wiener filter is given by

Qi =
P ∗

i

| Pi |2 + |Ni|2
|Fi|2

.

14.3. THE WIENER FILTER 431

Clearly, the main problem with this filter is that in practice, accurate estimates of
| Ni |2 and | Fi |2 are usually not available. The practical implementation of the
Wiener filter usually involves having to make an approximation of the type

Qi ∼ P ∗
i

| Pi |2 +Γ

where Γ is a suitable constant. The value of Γ ideally reflects knowledge on the SNR
of the data, i.e.

Γ ∼ 1
(SNR)2

.

In practice, it is not uncommon for a user to apply the Wiener filter over a range of
different value of SNR and then choose a restoration f̂i which is optimum in the sense
that it is a good approximation to the users a priori knowledge on the expected form
of the impulse response function.

14.3.6 FFT Algorithm for the Wiener Filter

Clearly, the Wiener filter has a relative simple algebraic form. The main source of
CPU time is the computation of the DFT’s. In practice this is done by restricting
the data to be of size 2k and using a FFT. Using pseudo code, the algorithm for the
Wiener filter is:

snr=snr*snr
constant=1/snr

for i=1, 2, ..., n; do:
sr(i)=signal(i)
si(i)=0.
pr(i)=IRF(i)
pi(i)=0.

enddo
forward_fft(sr,si)
forward_fft(pr,pi)

for i=1, 2, ..., n; do:
denominator=pr(i)*pr(i)+pi(i)*pi(i)+constant

fr(i)=pr(i)*sr(i)+pi(i)*si(i)
fi(i)=pr(i)*si(i)-pi(i)*sr(i)
fr(i)=fr(i)/denominator
fi(i)=fi(i)/denominator

enddo
inverse_fft(fr,fi)

for i=1, 2, ..., n; do:
hatf(i)=fr(i)

enddo

432 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

The Wiener filter is one of the most robust filters for solving problems of this kind,
restoring signals in the presence of additive noise. It can be used with data of single
or dual polarity and for 1D or 2D signal processing problems which are the result of
linear time invariant processes and non-causal. A loop can be introduced allowing
the user to change the value of SNR or to sweep through a range of values of SNR on
an interactive basis. This is known as ‘interactive restoration’.

0 200 400 600
0

0.2

0.4

0.6

0.8

1

0 200 400 600
0

0.2

0.4

0.6

0.8

1

0 200 400 600
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600
−5

0

5

10

15

20
x 10

−3

Figure 14.1: Example of a Wiener filter restoration (bottom right) of a noisy signal
(bottom left) generated by the convolution of an input consisting of two spikes (top
left) with a Gaussian IRF (top right). The simulation and restoration of the signal
given in this example is accomplished using the MATLAB function WIENER(50,5,1).

An example of the Wiener filter in action is given in Figure 14.1 using the MAT-
LAB code provided below. In this example, the input signal is assumed to be zero
except for two components which are unit spikes or Kronecker delta’s spaced apart
by as user defined amount. The reason for using such a function as an input, is that
it is ideal for testing the filtering operation in terms of the resolution obtained in
the same way that two point sources can be used for evaluating the resolution of an
imaging system for example. This type of test input can be considered in terms of a
two impulses which need to be recovered from the effects of a system characterized
by a known IRF which ‘smears’ the impulses together. Further, we can consider such

14.3. THE WIENER FILTER 433

an input to be a binary stream with two non-zero elements in which the task is their
optimal recovery from an output with additive (Gaussian) noise.

function WIENER(sigma,snr_signal,snr_filter)
%Input:
% sigma - standard deviation of Gaussian IRF
% snr_signal - signal-to-noise ratio of signal
% snr_filter - signal-to-noise ratio for computing Wiener filter
%
n=512; %Set size of array (arbitrary)
nn=1+n/2; %Set mid point of array
m=64; %Set width of spikes

%Compute input function (two spikes of width m centered
%at the mid point of the array).
mm=m/2;
for i=1:n

f(i)=0.0;
end

f(nn-mm)=1.0;
f(nn+mm)=1.0;

%Plot result
figure(1);
subplot(2,2,1), plot(f);

%Compute the IRF - a unit Gaussian distribution
for i=1:n

x=i-nn;
p(i)=exp(-(x.*x)/(sigma*sigma));

end

%Plot result
subplot(2,2,2), plot(p);

%Convolve f with p using the convolution theorem and normalize to unity.
f=fft(f); p=fft(p);

f=p.*f;
f=ifft(f); f=fftshift(f); f=real(f);

f=f./max(f); %N.B. No check on case when f=0.

%Compute random Gaussian noise field and normalize to unity.
noise=randn(1,n);
noise=noise./max(noise);

%Compute signal with signal-to-noise ratio defined by snr_signal.
s=f+noise./snr_signal;

434 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

%Plot result
subplot(2,2,3), plot(s);

%Restore signal using Wiener filter.

%Transform signal into Fourier space.
s=fft(s);

%Compute Wiener filter.
gamma=1/(snr_filter).^2;
rest=(conj(p).*s)./((abs(p).*abs(p))+gamma);
rest=ifft(rec); rest=fftshift(rest); rest=real(rest);

%Plot result
subplot(2,2,4), plot(rest);

Note that the signal-to-noise ratio of the input signal is not necessarily the same as
that used for regularization in the Wiener filter. As the noise increases, a larger value
of SNR (as used for the Wiener filter) is required but this in turn leads to more ringing
in the restoration. The ideal restoration, is one that provides optimum resolution of
the input signal with minimum ringing. This leads to a method of automation by
searching for a restoration in which the optimum result is that for which the ratio∑

i

| grad of f̂i |∑
i

zeros in f̂i

is a maximum. This is the ratio of the cumulative gradient of the output (which is a
measure of the resolution of the restoration) to the number of zero crossings (which
is a measure of the amount of ringing generated by the Wiener filter).

14.3.7 Estimation of the Signal-to-Noise Power Ratio

From the algebraic form of the Wiener Filter derived above, it is clear that this
particular filter depends on: (i) the functional form of the Fourier transform of the
Impulse Response Function (the Transfer Function) Pi that is used; (ii) the functional
form of | Ni |2 / | Fi |2. The IRF of the system can usually be found by literally
recording the effect a system has on a single impulse as an input which leaves us
with the problem of estimating the signal-to-noise power ratio | Fi |2 / | Ni |2. This
problem can be solved if one has access to two successive recordings under identical
conditions as shall now be shown.

Consider two digital signals denoted by si and s′i of the same object function fi

recorded using the same IRF pi (i.e. the system) but at different times and hence
with different noise fields ni and n′

i. Here, it can be assumed that the statistics of the
noise fields are the same. These signals are given by

si = pi ⊗ fi + ni

14.4. POWER SPECTRUM EQUALIZATION 435

and
s′i = pi ⊗ fi + n′

i

respectively where the noise functions are uncorrelated and signal independent, i.e.
we can impose the conditions

ni 	 n′
i = 0, fi 	 ni = 0, ni 	 fi = 0, fi 	 n′

i = 0, n′
i 	 fi = 0.

We now proceed to compute the autocorrelation function of si given by

ci = si 	 si.

Using the correlation theorem we get

Ci = SiS
∗
i = (PiFi +Ni)(PiFi +Ni)∗ =| Pi |2| Fi |2 + | Ni |2

where Ci is the DFT of ci. Next, we correlate si with s′i giving the cross-correlation
function

c′i = si 	 s′i.
Using the correlation theorem again, we have

C′
i =| Pi |2| Fi |2 +PiFiN

′∗
i +NiP

∗
i F

∗
i +NiN

′∗
i =| Pi |2| Fi |2

The noise-to-signal ratio can now be obtained by dividing Ci by C′
i giving

Ci

C′
i

= 1 +
| Ni |2

| Pi |2| Fi |2

and re-arranging, we obtain the result

| Ni |2
| Fi |2 =

(
Ci

C′
i

− 1
)
| Pi |2 .

Note that both Ci and C′
i can be obtained from the available data si and s′i. Sub-

stituting this result into the formula for Qi, we obtain an expression for the Wiener
filter in terms of Ci and C′

i given by

Qi =
P ∗

i

| Pi |2
C′

i

Ci
.

The approach given above, represents one of the most common methods for computing
the signal-to-noise ratio of a system.

14.4 Power Spectrum Equalization

As the name implies, the Power Spectrum Equalization (PSE) filter is based on finding
an estimate f̂i whose power spectrum is equal to the power spectrum of the desired
function fi. The estimate f̂i is obtained by employing the criterion

| Fi |2=| F̂i |2

436 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

together with the linear convolution model

f̂i = qi ⊗ si.

Like the Wiener filter, the PSE filter also assumes that the noise is signal independent.
Since

F̂i = QiSi = Qi(PiFi +Ni)

and given that N∗
i Fi = 0 and F ∗

i Ni = 0, we have

| F̂i |2= F̂iF̂
∗
i =| Qi |2 (| Pi |2| Fi |2 + | Ni |2).

The PSE criterion can therefore be written as

| Fi |2=| Qi |2 (| Pi |2| Fi |2 + | Ni |2).

Solving for | Qi |, f̂i is then given by

f̂i = IDFT(| Qi | Si)

where | Qi | is the PSE filter given by

| Qi |=
(

1
| Pi |2 + | Ni |2 / | Fi |2

)1/2

.

Like the Wiener filter, in the absence of accurate estimates for | Fi |2 / | Ni |2, we
approximate the PSE filter by

| Qi |�
(

1
| Pi |2 +Γ

)1/2

where

Γ =
1

(SNR)2
.

Note that the criterion used to derive this filter can be written in the form∑
i

(| Fi |2 − | F̂i |2) = 0

or using Parseval’s theorem ∑
i

(| fi |2 − | f̂i |2) = 0

which should be compared to that for the Wiener filter, i.e.

minimise
∑

i

| fi − f̂i |2 .

14.5. THE MATCHED FILTER 437

14.5 The Matched Filter

The matched filter is a result of finding a solution to the following problem: Given
that

si =
∑

j

pi−jfj + ni,

find an estimate for the Impulse Response Function (IRF) given by

f̂i =
∑

j

qjsi−j

where

r =
|∑

i

QiPi |2∑
i

| Ni |2| Qi |2

is a maximum. The ratio defining r is a measure of the signal-to-noise ratio. In this
sense, the matched filter maximizes the signal-to-noise ratio of the output. Assum-
ing that the noise ni has a ‘white’ or uniform power spectrum, the filter Qi which
maximizes the SNR defined by r is given by

Qi = P ∗
i

and the required solution is therefore

f̂i = IDFT(P ∗
i Si).

Using the correlation theorem, we then have

f̂i =
∑

j

pj−isj .

The matched filter is therefore based on correlating the signal si with the IRF pi.
This filter is frequently used in systems that employ linear frequency modulated (FM)
pulses - ‘chirped pulses’ - which will be discussed later.

14.5.1 Derivation of the Matched Filter

With the problem specified as above, the matched filter is essentially a ‘by-product’
of the ‘Schwarz inequality’, i.e.∣∣∣∣∣∑

i

QiPi

∣∣∣∣∣
2

≤
∑

i

| Qi |2
∑

i

| Pi |2

as discussed in Chapter 8. The principal trick is to write

QiPi =| Ni | Qi × Pi

| Ni |

438 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

so that the above inequality becomes∣∣∣∣∣∑
i

QiPi

∣∣∣∣∣
2

=

∣∣∣∣∣∑
i

| Ni | Qi
Pi

| Ni |

∣∣∣∣∣
2

≤
∑

i

| Ni |2| Qi |2
∑

i

| Pi |2
| Ni |2 .

From this result, using the definition of r given above, we see that

r ≤
∑

i

| Pi |2
| Ni |2 .

Now, if r is to be a maximum, then we want

r =
∑

i

| Pi |2
| Ni |2

or ∣∣∣∣∣∑
i

| Ni | Qi
Pi

| Ni |

∣∣∣∣∣
2

=
∑

i

| Ni |2| Qi |2
∑

i

| Pi |2
| Ni |2 .

But this is only true if

| Ni | Qi =
P ∗

i

| Ni |
and hence, r is a maximum when

Qi =
P ∗

i

| Ni |2 .

14.5.2 White Noise Condition

If the noise ni is white noise, then its power spectrum | Ni |2 is uniformly distributed.
In particular, under the condition

| Ni |2= 1 ∀i = 0, 1, ..., N − 1

then
Qi = P ∗

i .

14.5.3 FFT Algorithm for the Matched Filter

Using pseudo code, the algorithm for the matched filter is

for i=1 to n; do:
sr(i)=signal(i)
si(i)=0.
pr(i)=IRF(i)
pi(i)=0.

enddo

forward_fft(sr,si)

14.5. THE MATCHED FILTER 439

forward_fft(pr,pi)

for i=1 to n; do:
fr(i)=pr(i)*sr(i)+pi(i)*si(i)
fi(i)=pr(i)*si(i)-pi(i)*sr(i)

enddo
inverse_fft(fr,fi)

for i=1 to n; do:
hatf(i)=fr(i)

enddo

14.5.4 Deconvolution of Frequency Modulated Signals

The matched filter is frequently used in systems that utilize linear frequency mod-
ulated (FM) pulses. IRF’s of this type are known as chirped pulses. Examples of
where this particular type of pulse is used include real and synthetic aperture radar,
active sonar and some forms of seismic prospecting for example. Interestingly, some
mammals (dolphins, whales and bats for example) use frequency modulation for com-
munication and detection. The reason for this is the unique properties that FM IRFs
provide in terms of the quality of extracting information from signals with very low
signal-to-noise ratios and the simplicity of the process that is required to do this (i.e.
correlation). The invention and use of FM IRFs for man made communications and
imaging systems dates back to the early 1960s (the application of FM to radar for
example); mother nature appears to have ‘discovered’ the idea some time ago.

Linear FM Pulses

The linear FM pulse is given (in complex form) by

p(t) = exp(−iαt2), | t |≤ T/2

where α is a constant and T is the length of the pulse. The phase of this pulse is αt2

and the instantaneous frequency is given by

d

dt
(αt2) = 2αt

which varies linearly with t. Hence, the frequency modulations are linear which is
why the pulse is referred to as a linear FM pulse. In this case, the signal that is
recorded is given by (neglecting additive noise)

s(t) = exp(−iαt2)⊗ f(t).

Matched filtering, we have

f̂(t) = exp(iαt2)	 exp(−iαt2)⊗ f(t).

Evaluating the correlation integral,

exp(iαt2)	 exp(−iαt2) =

T/2∫
−T/2

exp[iα(t+ τ)2] exp(−iατ2)dτ

440 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

= exp(iαt2)

T/2∫
−T/2

exp(2iατt)dτ

and computing the integral over τ , we have

exp(iαt2)	 exp(−iαt2) = T exp(iαt2) sinc(αT t)

and hence
f̂(t) = T exp(iαt2) sinc(αT t)⊗ f(t).

In some systems, the length of the linear FM pulse is relatively long. In such cases,

cos(αt2) sinc(αT t) � sinc(αT t)

and
sin(αt2) sinc(αT t) � 0

and so
f̂(t) � T sinc(αT t)⊗ f(t).

Now, in Fourier space, this last equation can be written as

F̂ (ω) =

{
π
αF (ω), | ω |≤ αT ;
0, otherwise.

The estimate f̂ is therefore a band limited estimate of f whose bandwidth is deter-
mined by the product of the chirping parameter α with the length of the pulse T .
An example of the matched filter in action is given in Figure 14.2 obtained using the
MATLAB code given below. Here, two spikes have been convolved with a linear FM
chirp whose width or pulse length T is significantly greater than that of the input
signal. The output signal has been generated using an SNR of 1 and it is remarkable
that such an excellent restoration of the input is recovered using a relatively simple
operation for processing data that has been so badly distorted by additive noise. The
remarkable ability for the matched filter to accurately recover information from lin-
ear FM type signals with very low SNRs leads naturally to consider its use for covert
information embedding. This is the subject of the case study that follows which in-
vestigates the use of chirp coding for covertly watermarking digital signals for the
purpose of signal authentication.

function MATCH(T,snr)

%Input:
% T - width of chirp IRF
% snr - signa-to-noise ratio of signal
%
n=512; %Set size of array (arbitrary)
nn=1+n/2; %Set mid point of array

%Compute input function (two spikes of width m centered

14.5. THE MATCHED FILTER 441

%at the mid point of the array.
m=10; %Set width of the spikes (arbitrary)
for i=1:n

f(i)=0.0; %Initialize input
p(i)=0.0; %Initialize IRF

end
f(nn-m)=1.0;
f(nn+m)=1.0;

%Plot result
figure(1);
subplot(2,2,1), plot(f);

%Compute the (real) IRF, i.e. the linear FM chirp using a
%sine function. (N.B. Could also use a cosine function.)
m=T/2;
k=1;
for i=1:m

p(nn-m+i)=sin(2*pi*(k-1)*(k-1)/n);
k=k+1;

end

%Plot result
subplot(2,2,2), plot(p);

%Convolve f with p using the convolution theorem and normalize to unity.
f=fft(f); p=fft(p);

f=p.*f;
f=ifft(f); f=fftshift(f); f=real(f);

f=f./max(f); %N.B. No check on case when f=0.

%Compute random Gaussian noise field and normalize to unity.
noise=randn(1,n);
noise=noise./max(noise);

%Compute signal with signal-to-noise ratio defined by snr.
s=f+noise./snr;

%Plot result
subplot(2,2,3), plot(s);

%Restore signal using Matched filter.

%Transform to Fourier space.
s=fft(s);

%Compute Matched filter.

442 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

rest=conj(p).*s;
rest=ifft(rest); rest=fftshift(rest); rest=real(rest);

%Plot result
subplot(2,2,4), plot(rest);

0 200 400 600
0

0.2

0.4

0.6

0.8

1

0 200 400 600
−1

−0.5

0

0.5

1

0 200 400 600
−1.5

−1

−0.5

0

0.5

1

1.5

0 200 400 600
−10

0

10

20

30

40

Figure 14.2: Example of a matched filter in action (bottom right) by recovering
information from a noisy signal (bottom left) generated by the convolution of an
input consisting of two spikes (top left) with a linear FM chirp IRF (top right). The
simulation and restoration of the signal given in this example is accomplished using
the MATLAB function MATCH(256,1).

14.6 Case Study: Watermarking using Chirp Cod-
ing

In this case study1, we discusses a new approach to ‘watermarking’ digital signals using
linear frequency modulated ‘chirp coding’. The principle underlying this approach is

1Based on research undertaken by the author with collaboration from Dr O Farooq and Dr S
Datta, Applied Signal Processing Group, Loughborough University.

14.6. CASE STUDY: WATERMARKING USING CHIRP CODING 443

based on the use of a matched filter to provide a reconstruction of a chirped code that
is uniquely robust, i.e. in the case of very low signal-to-noise ratios.

Chirp coding for authenticating data is generic in the sense that it can be used
for a range of data types and applications (the authentication of speech and audio
signals for example). The theoretical and computational aspects of the matched filter
and the properties of a chirp are briefly revisited to provide the essential background
to the method. Signal code generating schemes are then addressed and details of the
coding and decoding techniques considered.

14.6.1 Introduction

Methods of watermarking digital data have applications in a wide range of areas.
Digital watermarking of images has been researched for many years in order to achieve
methods which provide both anti-counterfeiting and authentication facilities. One of
the principle equations that underpins this technology is based on the ‘fundamental
model’ for a signal which is given by

s = P̂ f + n

where f is the information content for the signal (the watermark), P̂ is some linear
operator, n is the noise and s is the output signal. This equation is usually taken
to describe a stationary process in which the noise n is characterized by stationary
statistics (i.e. the probability density function of n is invariant of time). In the field
of cryptology, the operation P̂ f is referred to as the processes of ‘diffusion’ and the
process of adding noise (i.e. P̂ f + n) is referred to as the process of ‘confusion’.
In cryptography and steganography (the process of hiding secret information in im-
ages) the principal ‘art’ is to develop methods in which the processes of diffusion and
confusion are maximized, an important criterion being that the output s should be
dominated by the noise n which in turn should ideally be characterized by a maximum
entropy2 (a uniform statistical distribution).

Digital watermarking and steganography can be considered to form part of the
same field of study, namely, cryptology. Being able to recover f from s provides a
way of authenticating the signal. If, in addition, it is possible to determine that a
copy of s has been made leading to some form of data degradation and/or corruption
that can be conveyed through an appropriate analysis of f , then a scheme can be
developed that provides a check on: (i) the authenticity of the data s; (ii) its fidelity.

Formally, the recovery of f from s is based on the inverse process

f = P̂−1(s− n)

where P̂−1 is the inverse operator. Clearly, this requires the field n to be known a
priori. If this field has been generated by a pseudo random number generator for
example, then the seed used to generate this field must be known a priori in order
to recover the data f . In this case, the seed represents the private key required to
recover f . However, in principle, n can be any field that is considered appropriate for
confusing the information P̂ f including a pre-selected signal. Further, if the process
of confusion is undertaken in which the signal-to-noise ratio is set to be very low (i.e.

2A measure of the lack of information on the exact state of a system - see Chapter 15

444 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

‖n‖ >> ‖P̂ f‖), then the watermark f can be hidden covertly in the data n provided
the inverse process P̂−1 is well defined and computationally stable. In this case, it
is clear that the host signal n must be known in order to recover the watermark f
leading to a private watermarking scheme in which the field n represents a key. This
field can of course be (lossless) compressed and encrypted as required. In addition,
the operator P̂ (and its inverse P̂−1) can be key dependent. The value of this operator
key dependency relies on the nature and properties of the operator that is used and
whether it is compounded in an algorithm that is required to be in the public domain
for example.

Another approach is to consider the case in which the field n is unknown and to
consider the problem of extracting the watermark f in the absence of this field. In
this case, the reconstruction is based on the result

f = P̂−1s+m

where
m = −P̂−1n.

Now, if a process P̂ is available in which ‖P̂−1s‖ >> ‖m‖, then an approximate
(noisy) reconstruction of f can be obtained in which the noise m is determined by
the original signal-to-noise ratio of the data s and hence, the level of covertness of
the diffused watermark P̂ f . In this case, it may be possible to post-process the
reconstruction (de-noising for example) and recover a relatively high-fidelity version
of the watermark, i.e.

f ∼ P̂−1s.

This approach (if available) does not rely on a private key (assuming P̂ is not key
dependent). The ability to recover the watermark only requires knowledge of the
operator P̂ (and its inverse) and post-processing options as required. The problem
here is to find an operator that is able to recover the watermark effectively in the
presence of the field n. Ideally, we require an operator P̂ with properties such that
P̂−1n→ 0.

In this application, the operator is based on a chirp function, specifically, a linear
Frequency Modulated (FM) chirp of the (complex) type exp(−iαt2) where α is the
chirp parameter and t is the independent variable. This function is then convolved
with f . The inverse process is undertaken by correlating with the (complex) conjugate
of the chirp exp(iαt2). This provides a reconstruction for f in the presence of the
field n that is accurate and robust with very low signal-to-noise ratios. Further, we
consider a watermark based on a coding scheme in which the field n is the input.
The watermark f is therefore n-dependent. This allows an authentication scheme
to be developed in which the watermark is generated from the field in which it is
to be hidden. Authentication of the watermarked data is then based on comparing
the code generated from s = P̂ f + n and that reconstructed by processing s when
‖P̂ f‖ << ‖n‖. This is an example of a self-generated coding scheme which avoids
the use, distribution and application of reference codes. Here, the coding scheme is
based on the application of Daubechies wavelets. There are numerous applications
of this technique in areas such as telecommunications and speech recognition where
authentication is mandatory. For example, the method can readily be applied to audio
data with no detectable differences in the audio quality of the data. The watermark

14.6. CASE STUDY: WATERMARKING USING CHIRP CODING 445

code is able to be recovered accurately and changes relatively significantly if the data
is distorted through cropping, filtering, noise or a compression system for example.
Thus, it provides a way making a signal tamper proof.

14.6.2 Matched Filter Reconstruction

Given that
s(t) = exp(−iαt2)⊗ f(t) + n(t),

after matched filtering, we obtain the estimate

f̂(t) � T sinc(αT t)⊗ f(t) + exp(iαt2)	 n(t).

The correlation function produced by the correlation of exp(iαt) with n(t) will in
general be relatively low in amplitude since n(t) will not normally have features that
match those of a chirp. Thus, it is reasonable to assume that

‖T sinc(αT t)⊗ f(t)‖ >> ‖ exp(iαt2)	 n(t)‖
and that in practice, f̂ is a band-limited reconstruction of f with high SNR. Thus, the
process of using chirp signals with matched filtering for the purpose of reconstructing
the input in the presence of additive noise provides a relatively simple and computa-
tionally reliable method of ‘diffusing’ and reconstructing information encoded in the
input function f . This is the underlying principle behind the method of watermarking
described here.

14.6.3 The Fresnel Transform

Ignoring scaling, we can define the Fresnel transform as

s(x, y) = exp[−iα(x2 + y2)]⊗⊗f(x, y).

This result is just a 2D version of the ‘chirp transform’ discussed earlier. The re-
construction of f from s follows the same principles and can be accomplished using
a correlation of s with the function exp[iα(x2 + y2)]. This result leads directly to
a method of digital image watermarking using the Fresnel transform to ‘diffuse’ the
watermark f . In particular, reverting to the operator notation used previously, our
Fresnel transform based watermarking model becomes

s(x, y) = P̂ f(x, y) + n(x, y)

where the operator P̂ is given by

P̂ = exp[−iα(x2 + y2)]⊗⊗
and the inverse operator is given by

P̂−1 = exp[iα(x2 + y2)]		 .

Note that ⊗⊗ denotes 2D convolution and 		 denotes 2D correlation. Also, in
practice, only values ≥ 0 can be used for application to digital images so that we
must consider a function of the normalized form (1+exp[iα(x2 +y2)])/2 for example.

446 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

A covert watermarking procedure involves the addition of a (diffused) watermark
to a host image with a very low watermark-to-signal ratio, i.e.

‖P̂ f(x, y)‖ << ‖n(x, y)‖.
Recovery of the watermark is then based on the result

f(x, y) = P̂−1[s(x, y)− n(x, y)].

14.6.4 Chirp Coding, Decoding and Watermarking

We now return to the issue of watermarking using chirp functions. The basic model
for the watermarked signal (which is real) is

s(t) = chirp(t)⊗ f(t) + n(t)

where
chirp(t) = sin(αt2).

We consider the field n(t) to be some pre-defined signal to which a watermark is to be
‘added’ to generate s(t). In principle, any watermark described by the function f(t)
can be used. On the other hand, for the purpose of authentication, we require two
criterion: (i) f(t) should represent a code which can be reconstructed accurately and
robustly; (ii) the watermark code should be sensitive (and ideally ultra-sensitive) to
any degradation in the field n(t) due to lossy compression, cropping or highpass and
lowpass filtering for example. To satisfy condition (i), it is reasonable to consider f(t)
to represent a bit stream, i.e. to consider the discretized version of f(t) - the vector
fi - to be composed of a set of elements with values 0 or 1 and only 0 or 1. This
binary code can of course be based on a key or set of keys which, when reconstructed,
is compared to the key(s) for the purpose of authenticating the data. However, this
requires the distribution of such keys (public and/or private). Instead, we consider
the case where a binary sequence is generated from the field n(t). There are a number
of approaches that can be considered based on the spectral characteristics of n(t) for
example. These are discussed later on, in which binary sequences are produced from
the application of wavelet decomposition.

Chirp Coding

Given that a binary sequence has been generated from n(t), we now consider the
method of chirp coding. The purpose of chirp coding is to ‘diffuse’ each bit over a
range of compact support T . However, it is necessary to differentiate between 0 and
1 in the sequences. The simplest way to achieve this is to change the polarity of the
chirp. Thus, for 1 we apply the chirp sin(αt2), t ∈ T and for 0 we apply the chirp
-sin(αt2), t ∈ T where T is the chirp length. The chirps are then concatenated to
produce a contiguous stream of data, i.e. a signal composed of ±chirps. Thus, the
binary sequence 010 for example is transformed to the signal

s(t) =

⎧⎪⎨⎪⎩
−chirp(t), t ∈ [0, T);
+chirp(t), t ∈ [T, 2T);
−chirp(t), t ∈ [2T, 3T).

14.6. CASE STUDY: WATERMARKING USING CHIRP CODING 447

The period over which the chirp is applied depends on the length of the signal to
which the watermark is to be applied and the length of the binary sequence. In the
example given above, the length of the signal is taken to be 3T . In practice, care
must be taken over the chirping parameter α that is applied for a period T in order
to avoid aliasing and in some cases it is of value to apply a logarithmic sweep instead
of a linear sweep. The instantaneous frequency of a logarithmic chirp is given by

ψ(t) = ψ0 + 10at

where
a =

1
T

log10(ψ1 − psi0)
ψ0 is the initial frequency and ψ1 is the final frequency at time T . In this case, the
final frequency should be greater than the initial frequency.

Decoding

Decoding or reconstruction of the binary sequence requires the application of a cor-
relator using the function chirp(t), t ∈ [0, T). This produces a correlation function
that is either -1 or +1 depending upon whether −chirp(t) or +chirp(t) has been ap-
plied respectively. For example, after correlating the chirp coded sequence 010 given
above, the correlation function c(t)becomes

c(t) =

⎧⎪⎨⎪⎩
−1, t ∈ [0, T);
+1, t ∈ [T, 2T);
−1, t ∈ [2T, 3T).

from which the original sequence 010 is easily inferred, the change in sign of the cor-
relation function identifying a bit change (from 0 to 1 or from 1 to 0). Note that in
practice the correlation function may not be exactly 1 or -1 when reconstruction is
undertaken and the binary sequence is effectively recovered by searching the correla-
tion function for changes in sign. The chirp used to recover the watermark must of
course have the same parameters (inclusive of its length) as those used to generate
the chirp coded sequence. These parameters can be used to define part of a private
key.

Watermarking

The watermarking process is based on adding the chirp coded data to the signal
n(t). Let the chirp coded signal be given by the function h(t), then the watermarking
process is described by the equation

s(t) = a

[
bh(t)
‖h(t)‖∞ +

n(t)
‖n(t)‖∞

]
and the coefficients a > 0 and 0 < b < 1 determine the amplitude and the SNR of s
where

a = ‖n(t)‖∞.

448 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

The coefficient a is required to provide a watermarked signal whose amplitude is com-
patible with the original signal n. The value of b is adjusted to provide an output that
is acceptable in the application to be considered and to provide a robust reconstruc-
tion of the binary sequence by correlating s(t) with chirp(t), t ∈ [0, T). To improve
the robustness of the reconstruction, the value of b can be increased, but this has to
be off-set with regard to the perceptual quality of the output, i.e. the perturbation
of n by h should be as small as possible.

14.6.5 Code Generation

In the previous section, the method of chirp coding a binary sequence and water-
marking the signal n(t) has been discussed where it is assumed that the sequence
is generated from this same signal. In this section, the details of this method are
presented. The problem is to convert the salient characteristics of the signal n(t)
into a sequence of bits that is relatively short and conveys information on the signal
that is unique to its overall properties. In principle, there are a number of ways of
undertaking this. For example, in practice, the digital signal ni, which will normally
be composed of an array of floating point numbers, could be expressed in binary form
and each element concatenated to form a contiguous bit stream. However, the length
of the code (i.e. the total number of bits in the stream) will tend to be large leading to
high computational costs in terms of the application of chirp coding/decoding. What
is required, is a process that yields a relatively short binary sequence (when compared
with the original signal) that reflects the important properties of the signal in its en-
tirety. Two approaches are considered here: (i) power spectral density decomposition
and (ii) wavelet decomposition.

Power Spectral Density Decomposition
Let N(ω) be the Fourier transform n(t) and define the Power Spectrum P (ω) as

P (ω) =| N(ω) |2 .

An important property of the binary sequence is that it should describe the spectral
characteristics of the signal in its entirety. Thus, if for example, the binary sequence
is based on just the low frequency components of the signal, then any distortion of
the high frequencies components will not affect the watermark and the signal will be
authenticated. Hence, we consider the case where the power spectrum is decomposed
into N components, i.e.

P1(ω) = P (ω), ω ∈ [0,Ω1);

P2(ω) = P (ω), ω ∈ [Ω1,Ω2);

...

PN (ω) = P (ω), ω ∈ [ΩN−1,ΩN).

Note that it is assumed that the signal n(t) is band-limited with a bandwidth of ΩN .
The set of the functions P1, P2, ..., PN now reflect the complete spectral charac-

teristics of the signal n(t). Since each of these functions represents a unique part of
the spectrum, we can consider a single measure as an identifier or tag. A natural

14.6. CASE STUDY: WATERMARKING USING CHIRP CODING 449

measure to consider is the energy which is given by the integral of the functions over
their frequency range. In particular, we consider the energy values in terms of their
contribution to the spectrum as a percentage, i.e.

E1 =
100
E

Ω1∫
0

P1(ω)dω,

E2 =
100
E

Ω2∫
Ω1

P2(ω)dω,

...

EN =
100
E

ΩN∫
ΩN−1

PN (ω)dω,

where

E =

ΩN∫
0

P (ω)dω.

Code generation is then based on the following steps:

(i) Rounding to the nearest integer the (floating point) values of Ei to decimal integer
form:

ei = round(Ei), ∀i.

(ii) Decimal integer to binary string conversion:

bi = binary(ei).

(iii) Concatenation of the binary string array bi to a binary sequence:

fj = cat(bi).

The watermark fj is then chirp coded as discussed previously.

Wavelet Decomposition
The wavelet transform is discussed in Chapter 5 and is defined by

Ŵ [f(t)] = FL(t) =
∫
f(τ)wL(t, τ)dτ

where

wL(t, τ) =
1√| L |w

(
t− τ
L

)
.

The wavelet transformation is essentially a convolution transform in which w(t) is the
convolution kernel but with a factor L introduced. The introduction of this factor

450 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

provides dilation and translation properties into the convolution integral (which is
now a function of L) that gives it the ability to analyse signals in a multi-resolution
role.

The code generating method is based on computing the energies of the wavelet
transformation over N levels. Thus, the signal f(t) is decomposed into wavelet space
to yield the following set of functions:

FL1(τ), FL2(τ), ... FLN (τ).

The (percentage) energies of these functions are then computed, i.e.

E1 =
100
E

∫
| FL1(τ) |2 dτ,

E2 =
100
E

∫
| FL1(τ) |2 dτ,

...

EN =
100
E

∫
| FLN (τ) |2 dτ,

where

E =
N∑

i=1

Ei.

The method of computing the binary sequence for chirp coding from these energy
values follows that described in the method of power spectral decomposition. Clearly,
whether applying the power spectral decomposition method or wavelet decomposition,
the computations are undertaken in digital form using a DFT and a DWT (Discrete
Wavelet Transform) respectively.

14.6.6 MATLAB Application Programs

Two prototype MATLAB programs have been developed to implement the water-
marking method discussed. The coding process reads in a named file, applies the
watermark to the data using wavelet decomposition and writes out a new file using
the same file format. The Decoding process reads a named file (assumed to contain
the watermark or otherwise), recovers the code from the watermarked data and then
recovers the (same or otherwise) code from the watermark. The coding program
displays the decimal integer and binary codes for analysis. The decoding program
displays the decimal integer streams generated by the wavelet analysis of the input
signal and the stream obtained by processing the signal to extract the watermark
code or otherwise. This process also provides an error measure based on the result

e =

∑
i

| xi − yi |∑
i

| xi + yi |

where xi and yi are the decimal integer arrays obtained from the input signal and
the watermark (or otherwise). In the application considered here, the watermarking

14.6. CASE STUDY: WATERMARKING USING CHIRP CODING 451

method has been applied to audio (.wav) files in order to test the method on data
which requires that the watermark does not affect the fidelity of the output (i.e.
audio quality). Only a specified segment of the data is extracted for watermarking
which is equivalent to applying and off-set to the data. The segment can be user
defined and if required, form the basis for a (private) key system. In this application,
the watermarked segment has been ‘hard-wired’ and represents a public key. The
wavelets used are Daubechies wavelets computed using the MATLAB wavelet toolbox.
However, in principle, any wavelet can be used for this process and the actual wavelet
used yields another feature that can form part of the private key required to extract
the watermark.

Coding Process

The coding process is compounded in the following basic steps:

Step 1: Read a .wav file.

Step 2: Extract a section of a single vector of the data (note that a .wav contains
stereo data, i.e. two vectors).

Step 3: Apply wavelet decomposition using Daubechies wavelets with 7 levels. Note
that in addition to wavelet decomposition, the approximation coefficients for the
input signal are computed to provide a measure on the global effect of introducing
the watermark into the signal. Thus, 8 decomposition vectors in total are generated.

Step 4: Compute the (percentage) ‘energy values’.

Step 5: Round to the nearest integer and convert to binary form.

Step 6: Concatenate both the decimal and binary integer arrays.

Step 7: Chirp code the binary sequence.

Step 8: Scale the output and add to the original input signal.

Step 9: Re-scale the watermarked signal.

Step 10: Write to a file.

In the MATLAB code that follows, the above procedure has been implemented where
the parameters for segmenting and processing data of a specific size have been ‘hard
wired’.

%read .wav audio file
[au2,fs,nbit]=wavread(’wavefil’);

%clear screen
clc

%Set data size (arbitrary) to be watermarked (assumed to be less than
or equal to data in file).

452 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

data_size=1500150;

%Extract single set of data composed of 1500150 (arbitrary) elements.
au1=au2(1:data_size,1);

%Set scaling factor.
div_fac=270;

%Set data segment origin.
data_seg=300031;

%Extract segment of data from data_seg to data_size and
%compute the maximum value.
au=au1(data_seg:data_size,1);
au_max1=max(au1(data_seg:data_size,1));

%Apply wavelet decomposition using Daubechies (4) wavelets with 7 levels.
[ca cl]=wavedec(au(:,1),7,’db4’);

%Compute the approximation coefficients at level 7.
appco=appcoef(ca,cl,’db4’,7);

%Determine coefficients at each level.
detco7=detcoef(ca,cl,7);
detco6=detcoef(ca,cl,6);
detco5=detcoef(ca,cl,5);
detco4=detcoef(ca,cl,4);
detco3=detcoef(ca,cl,3);
detco2=detcoef(ca,cl,2);
detco1=detcoef(ca,cl,1);

%Compute the energy for each set of coefficients.
ene_appco=sum(appco.^2);
ene_detco7=sum(detco7.^2);
ene_detco6=sum(detco6.^2);
ene_detco5=sum(detco5.^2);
ene_detco4=sum(detco4.^2);
ene_detco3=sum(detco3.^2);
ene_detco2=sum(detco2.^2);
ene_detco1=sum(detco1.^2);

%Compute the total enegy of all the coefficients.
tot_ene=round(ene_detco7+ene_detco6+ene_detco5+ene_detco4...

+ene_detco3+ene_detco2+ene_detco1);

%Round towards nearest integer the percentage energy of each set.
pene_hp7=round(ene_detco7*100/tot_ene);

14.6. CASE STUDY: WATERMARKING USING CHIRP CODING 453

pene_hp6=round(ene_detco6*100/tot_ene);
pene_hp5=round(ene_detco5*100/tot_ene);
pene_hp4=round(ene_detco4*100/tot_ene);
pene_hp3=round(ene_detco3*100/tot_ene);
pene_hp2=round(ene_detco2*100/tot_ene);
pene_hp1=round(ene_detco1*100/tot_ene);

%Do decimal integer to binary conversion with at least 17 bits.
tot_ene_bin=dec2bin(tot_ene,31);
f7=dec2bin(pene_hp7,17);
f6=dec2bin(pene_hp6,17);
f5=dec2bin(pene_hp5,17);
f4=dec2bin(pene_hp4,17);
f3=dec2bin(pene_hp3,17);
f2=dec2bin(pene_hp2,17);
f1=dec2bin(pene_hp1,17);

%Concatenate the arrays f1, f2, ... along dimension 2 to
%produce binary sequence - the watermark wmark.
wmark=cat(2,tot_ene_bin,f7,f6,f5,f4,f3,f2,f1);

%Concatenate decimal integer array.
per_ce=cat(2,tot_ene,pene_hp7,pene_hp6,pene_hp5,...

pene_hp4,pene_hp3,pene_hp2,pene_hp1);

%Write out decimal integer and binary codes.
d_string=per_ce
b_string=wmark

%Assign -1 to a 0 bit and 1 for 1 bit.
for j=1:150

if str2num(wmark(j))==0
x(j)=-1;

else
x(j)=1;

end
end

%Initialize and compute chirp function using a log sweep.
t=0:1/44100:10000/44100;
y=chirp(t,00,10000/44100,100,’log’);

%Compute +chirp for 1 and -chirp for 0, scale by div_fac and concatenate.
znew=0;
for j=1:150

z=x(j)*y/div_fac;

454 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

znew=cat(2,znew,z);
end

%Compute length of znew and watermark signal.
znew=znew(2:length(znew));
wmark_sig=znew’+au1;

%Compute power of watermark and power of signal.
w_mark_pow=(sum(znew.^2));
sig_pow=(sum(au1.^2));

%Rescale watermarked signal.
wmark_sig1=wmark_sig*au_max1/max(wmark_sig);

%Concatenate and write to file.
wmark_sig=cat(2,wmark_sig1,au2(1:data_size,2));
wavwrite(wmark_sig,fs,nbit,’wm_wavefile’);

Decoding process

The decoding process is as follows:

Step 1: Steps 1-6 in the coding processes are repeated.

Step 2: Correlate the data with a chirp identical to that used for chirp coding.

Step 3: Extract the binary sequence.

Step 4: Convert from binary to decimal.

Step 5: Display the original and reconstructed decimal sequence.

Step 6: Display the error.

%Clear variables and functions from memory.
clear

%Read watermarked file and clear screen.
[au,fs, nbit]=wavread(’wm_wavefile’);
clc

%Set parameters for data processing.
data_size=1500150;
data_seg=300031;

%Extract data.
au1=au(data_seg:data_size,1);

14.6. CASE STUDY: WATERMARKING USING CHIRP CODING 455

%Do wavelet decomposition.
[ca cl]=wavedec(au1,7,’db4’);

%Extract wavelet coefficients.
appco=appcoef(ca,cl,’db4’,7);
detco7=detcoef(ca,cl,7);
detco6=detcoef(ca,cl,6);
detco5=detcoef(ca,cl,5);
detco4=detcoef(ca,cl,4);
detco3=detcoef(ca,cl,3);
detco2=detcoef(ca,cl,2);
detco1=detcoef(ca,cl,1);

%Compute energy of wavelet coefficients.
ene_appco=sum(appco.^2);
ene_detco7=sum(detco7.^2);
ene_detco6=sum(detco6.^2);
ene_detco5=sum(detco5.^2);
ene_detco4=sum(detco4.^2);
ene_detco3=sum(detco3.^2);
ene_detco2=sum(detco2.^2);
ene_detco1=sum(detco1.^2);

%Compute total energy factor.
tot_ene=round(ene_detco7+ene_detco6+ene_detco5+ene_detco4...

+ene_detco3+ene_detco2+ene_detco1);

%Express energy values as percentage of total.
%energy and round to nearest integer.
pene_hp7=round(ene_detco7*100/tot_ene);
pene_hp6=round(ene_detco6*100/tot_ene);
pene_hp5=round(ene_detco5*100/tot_ene);
pene_hp4=round(ene_detco4*100/tot_ene);
pene_hp3=round(ene_detco3*100/tot_ene);
pene_hp2=round(ene_detco2*100/tot_ene);
pene_hp1=round(ene_detco1*100/tot_ene);
per_ene=cat(2,tot_ene,pene_hp7,pene_hp6,pene_hp5,...

pene_hp4,pene_hp3,pene_hp2,pene_hp1);

%Output original decimal integer code obtained from
%signal via wavelet decomposition.
original_d_string=per_ene;
original_d_string
orig=original_d_string;

%Compute chirp function.

456 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

t=0:1/44100:10000/44100;
y=chirp(t,00,10000/44100,100,’log’);

%Correlate input signal with chirp and recover sign.
for i=1:150

yzcorr=xcorr(au(10000*(i-1)+1:10000*i),y,0);

r(i)=sign(yzcorr);
end

%Recover bit stream.
for i=1:150
if r(i)==-1

recov(i)=0;
else

recov(i)=1;
end

end

%Convert from number to sring.
recov=(num2str(recov,-8));

%Covert from binary to decimal and concatenate.
rec_ene_dist=cat(2,bin2dec(recov(1:31)),bin2dec(recov(32:48)),...
bin2dec(recov(49:65)),bin2dec(recov(66:82)),bin2dec(recov(83:99)),...
bin2dec(recov(100:116)),bin2dec(recov(117:133)),bin2dec(recov(134:150)));

%Write out reconstructed decimal integer stream recoverd from watermark.
reconstructed_d_string=rec_ene_dist;
reconstructed_d_string
rec=reconstructed_d_string;

%Write out error between reconsructed and original watermark code.
error=sum(abs(rec-orig))/sum(abs(rec+orig))

14.6.7 Discussion

In a practical application of this method for authenticating audio files, for example,
a threshold can be applied to the error value. If and only if the error lies below this
threshold is the data taken to be authentic.

The prototype MATLAB programs provided have been developed to explore the
applications of the method for different signals and systems of interest to the user.
Note that in the decoding program, the correlation process is carried out using a
spatial cross-correlation scheme (using the MATLAB function xcorr), i.e. the water-
mark is recovered using the process chirp(t) 	 s(t) instead of the Fourier equivalent
CHIRP∗(ω)S(ω) where CHIRP and S are the Fourier transforms of chirp and s re-
spectively (in digital form of course). This is due to the fact that the ‘length’ of the

14.7. CONSTRAINED DECONVOLUTION 457

chirp function is significantly less than that of the signal. Application of a spatial
correlator therefore provides greater computational efficiency.

The method of digital watermarking discussed here makes specific use of the chirp
function. This function is unique in terms of its properties for reconstructing infor-
mation (via application of the Matched Filter) that has been ‘diffused’ through the
convolution process, i.e. the watermark extracted is, in theory, an exact band-limited
version of the original watermark as defined in the presence of significant additive
noise, in this case, the signal into which the watermark is ‘embedded’. The method
has a close relationship with the Fresnel transform and can be used for digital image
watermarking in an entirely equivalent way. The approach considered here allows a
code to be generated directly from the input signal and that same code used to water-
mark the signal. The code used to watermark the signal is therefore self-generating.
Reconstruction of the code only requires a correlation process with the watermarked
signal to be undertaken. This means that the signal can be authenticated without
access to an external reference code. In other words, the method can be seen as a
way of authenticating data by extracting a code (the watermark) within a code (the
signal).

Audio data watermarking schemes rely on the imperfections of the human audio
system. They exploit the fact that the human auditory system is insensitive to small
amplitude changes, either in the time or frequency domains, as well as insertion of
low amplitude time domain echo’s. Spread spectrum techniques augment a low am-
plitude spreading sequence which can be detected via correlation techniques. Usually,
embedding is performed in high amplitude portions of the signal, either in the time
or frequency domains. A common pitfall for both types of watermarking systems is
their intolerance to detector de-synchronization and deficiency of adequate methods
to address this problem during the decoding process. Although other applications
are possible, chirp coding provides a new and novel technique for fragile audio water-
marking. In this case, the watermarked signal does not change the perceptual quality
of the signal. In order to make the watermark inaudible, the chirp generated is of
very low frequency and amplitude. Using audio files with sampling frequencies of
over 1000Hz, a logarithmic chirp can be generated in the frequency band of 1-100Hz.
Since the human ear has low sensitivity in this band, the embedded watermark will
not be perceptible. Depending upon the band and amplitude of the chirp, the signal-
to-watermark ratio can be in excess of 40dB. Various forms of attack can be applied
which change the distribution of the percentage sub-band energies originally present
in the signal including filtering (both low pass and high pass), cropping and lossy
compression (MP3 compression) with both constant and variable bit rates. In each
case, the signal and/or the watermark is distorted enough to register the fact that
the data has been tampered with. Further, chirp based watermarks are difficult to
remove from the signal since the initial and the final frequency is at the discretion of
the user and its position in the data stream can be varied through application of an
offset, all such parameters being combined to form a private key.

14.7 Constrained Deconvolution

Constrained deconvolution provides a filter which gives the user additional control over
the deconvolution process. This method is based on minimising a linear operation on

458 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

the object fi of the form gi ⊗ fi subject to some other constraint. Using the least
squares approach, we find an estimate for fi by minimizing ‖gi ⊗ fi‖2 subject to the
constraint

‖si − pi ⊗ fi‖2 = ‖ni‖2.
Using this result, we can write

‖gi ⊗ fi‖2 = ‖gi ⊗ fi‖2 + λ(‖si − pi ⊗ fi‖2 − ‖ni‖2)

because the quantity inside the brackets on the right hand side is zero. The constant
λ is called the Lagrange multiplier. Using the orthogonality principle, ‖gi ⊗ fi‖2 is a
minimum when

(gi ⊗ fi)	 g∗i − λ(si − pi ⊗ fi)	 p∗i = 0.

In Fourier space, this equation becomes

| Gi |2 Fi − λ(SiP
∗
i − | Pi |2 Fi) = 0

and solving for Fi, we get

Fi =
SiP

∗
i

| Pi |2 +γ | Gi |2
where γ is the reciprocal of the Lagrange multiplier (= 1/λ). Hence, the constrained
least squares filter is given by

P ∗
i

| Pi |2 +γ | Gi |2 .

The constrained deconvolution filter allows the user to change G to suite a particular
application. This filter can be thought of as a generalization of the other filters; thus,
if γ = 0 then the inverse filter is obtained; if γ = 1 and | Gi |2=| Ni |2 / | Fi |2 then
the Wiener is obtained and if γ = 1 and | Gi |2=| Ni |2 − | Pi |2 then the matched
filter is obtained.

14.8 Homomorphic Filtering

The homomorphic filter employs the properties of the logarithm to write the equation

Si = PiFi

in the form
lnSi = lnPi + lnFi.

In this case, the object function fi can be recovered using the result

fi = IDFT[exp(lnSi − lnPi)].

This type of operation is known as homomorphic filtering. In practice, deconvolution
by homomorphic processing replaces the problems associated with computing the
inverse filter 1/Pi with computing the logarithm of a complex function (i.e. computing

14.9. NOISE 459

the functions lnSi and lnPi). By writing the complex spectra Si and Pi in terms of
their amplitude and phase spectra, we get

Si = AS
i exp(iθS

i)

and
Pi = AP

i exp(iθP
i)

where AS
i and AP

i are the amplitude spectra of Si and Pi respectively and θS
i and θP

i

are the phase spectra of Si and Pi respectively. Using these results, we can write

fi = Re{IDFT[exp(lnAS
i − lnAP

i) cos(θS
i − θP

i) + i exp(lnAS
i − lnAP

i) sin(θS
i − θP

i)]}
Homomorphic filtering occurs very naturally in the processing of speech signals and
it is closely related to the interpretation of such signals via the Cepstrum as discussed
in Chapter 5 (see Cepstral transform).

14.9 Noise

The term noise n(t) has been mentioned in this and some previous chapters without a
proper discussion of its physical nature or how to simulate it. This is now addressed.

Noise plays a central role in all aspects of signal processing and the simulation
of noise and noisy signals has a long an important history. The simulation of noise
is vitally important in testing the robustness of a digital signal processing algorithm
especially when the algorithm is based on some method that has been designed to
overcome the ill-conditioned nature of a ‘naive approach’. The study of noise and
methods of generating it are given at this point because in this chapter, and some of
the chapters that follow, the addition of noise to data is required in a number of the
programming exercises that are set in order to study the robustness or otherwise of
a given algorithm. The noise term is usually an additive one and the noisy signal is
typically modelled as

s(t) = p(t)⊗ f(t) + n(t).

Now, s is the combination of two terms, one deterministic (i.e. p ⊗ f) and one
stochastic (i.e. n). This is the basic noise model for a signal which is the most
common type. However, it is worth stating that is some cases, the noise can be
multiplicative instead of additive or could even be a combination of both. From
here on, the noise model considered is additive alone. The noise of a signal is a
combination of effects due to a whole range of unwanted disturbances and interference.
In practice, noise is multifaceted and very much application dependent and models are
therefore constructed which are based on the design of a suitable probability density
function for the noise which is statistically compatible with the data. In general,
noise accounts for all the non-ideal effects that may occur in a system. Typically, in
order to measure the noise of a system (assumed to be a time invariant linear system),
data can be collected on the output of the system in the case when there is no input.
From the measured data, a histogram can be generated and its statistical properties
measured and modelled as required. These statistical parameters can then be used as
required for processing the signal generated by an input using, for example, Bayesian
estimation methods which are discussed in Chapter 16.

460 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

14.10 Noise Types

In the equation
s(t) = p(t)⊗ f(t) + n(t),

the addition of the stochastic term n as representing all non-deterministic effects in an
otherwise ideal system is extremely naive. Depending on the specific application, this
term can also represent the error associated with the approximation of a process to the
form p⊗ f in addition to the inevitable electronic noise types and ‘jitter’ associated
with the process of data acquisition. An illustration of this is discussed below.

14.10.1 Multiple Scattering Effects

In active, pulse-echo type systems, the term p⊗ f is taken to represent the first order
reflection or back-scattering components where it is assumed that multiple scattering,
which is sometimes referred to as reverberation, is insignificant. However, in some
cases, the high order components can be significant but in an additive context. To
show this, consider the wave equation(

∂2

∂x2
+ k2

)
u(x, t) = −k2f(x)u(x, k)

where u is the wavefield, f(x) describes the inhomogeneity associated with a layered
medium and k = ω/c0 where ω is the angular frequency and c0 is the (constant)
wavespeed (see the Case Study given in Chapter 4 for an example of the derivation
of this result and the Green’s function solution that follows). The Green’s function
solution to this equation at a point x0 along x is given by

u(x0, k) = u0(x0, k) + k2

∫
g(x | x0, k)f(x)u(x, k)dx

where
g(x | x0, k) =

i

2k
exp(ik | x− x0 |).

Now, the first order solution to this equation is given by

u(x0, k) = u0(x0, k) + k2

∫
g(x | x0, k)f(x)u0(x, k)dx

where u0 is the solution to (
∂2

∂x2
+ k2

)
u0(x, k) = 0

namely, the incident field u(x, k) = P (k) exp(ikx) where P is the spectrum of an
emitted pulse. This approximation, i.e. the Born approximation, leads directly to the
asymptotic result in which the reflected signal generated by a pulse of p(t) at normal
incidence to the layer media is given by p(t)⊗ f(t) where

f(t) =
1
2
d

dt
f(τ/2).

14.10. NOISE TYPES 461

However, this approximation can be considered to be just the first order solution of
the iterative process

un+1(x0, k) = u0(x0, k) + k2

∫
g(x | x0, k)f(x)un(x, k)dx.

If we now write this equation in the form

un+1(x, k) = u0(x0, k) + k2g(| x |, k)⊗ f(x)un(x, k)

then we have

un+1 = u0 + k2g ⊗ fu0 + k4g ⊗ f(g ⊗ fu0) + k6g ⊗ f(g ⊗ f(g ⊗ fu0)) + ...

...+ k2ng ⊗ f(g ⊗ f(g ⊗ f(...(g ⊗ fu0)))).

Physically, this equation describes the wavefield in terms of the sum of the incident
field and the first order scattered field (single scattering) and then the second order
scattered field (double scattering) and so on. If we now collect all the terms of order
k4 and above, then the reflected field (to nth order is given by)

r(x, k) = un+1(x, k) = k2g ⊗ fu0 + n(x, k)

where n is given by

n(x, k) = k4g ⊗ f(g ⊗ fu0) + k6g ⊗ f(g ⊗ f(g ⊗ fu0)) + ...

...+ k2ng ⊗ f(g ⊗ f(g ⊗ f(...(g ⊗ fu0)))).

Observe that the reflected field is given by the sum of two terms. The first term
provides us with the classic convolution model for a signal. The second term has
an analogy with the additive noise term that has so far been introduced in a rather
arbitrary or phenomenological manner. However, in this case, this ‘noise term’ is the
result of a physical process which represents the reverberation of the wavefield due to
multiple scattering events under the condition that

‖k2g ⊗ fu0 + n‖ < ‖u0‖
where

‖f(x)‖ ≡
(∫

| f(x) |2 dx
) 1

2

which provides the condition for convergence of the solution. In many physical sys-
tems, the higher order scattering events may be relatively weak or else an experiment
can be made which enhances the first order effect, by combining a number of record-
ings of the same interaction for example and adding the data together. Nevertheless,
the principle point to be emphasized here is that in defining a model of the type

s(t) = p(t)⊗ f(t) + n(t)

for a signal s obtained from some pulse-echo type system, the term p⊗ f is a descrip-
tion of a physical process in which weak interactions occur, and that in addition to
electronic noise, the term n can include physical effects due to multiple scattering.

462 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

14.10.2 Beam Profile Effects

In the previous section, we have seen that in the term p ⊗ f , the impulse response
function p evolves from considering the incidence of a pulse with spectrum P (ω).
However, it is also assumed that this pulse travels along a pencil line beam, i.e. the
incident field is given by P (k) exp(ikx). In practice, pencil line beams are very rare.
The emission of any radiation field from a single point is invariably accompanied by
a divergence of that field and a pencil line beam approximation is very inadequate.
Moreover, some types of emissions are characterized by field patterns that are the
result of diffraction effects leading to ‘side lobes’. Thus, features may occur in a
signal that are the result of the interaction of a part of the incident wavefield that
has diverged due to the presence of side lobes, a physical process that is certainly not
included in a one-dimensional model. In general, the application of a one-dimensional
model for computing a scattered wavefield is very limited since any signal (i.e. a one
dimensional time trace) recorded at some point in space is ultimately the result of
fully three dimensional interactions.

Many attempts have and continue to be made in accurately modelling fully three
dimensional interactions which take into account relatively complete models for the
incident field and allow for multiple interactions. However, such models inevitably
lead to more and more complex results which are often difficult to quantify and in-
compatible with the methods developed to process signals in practice. As in many
aspects of mathematical physics, a point can be reached were deterministic modelling
based on fundamental physics leads to the development of results that are intractable
and in such cases, it is of greater practical value to investigate the problem using
stochastic models. Thus, the principle associated with the model s = p ⊗ f + n is
based on assuming that the first order effects are compounded in the term p⊗ f and
that all other physical effects due to geometry, field patterns, multiple interactions
together with electronic noise are described by an additive noise term, i.e. the sto-
chastic function n(t). Attempts are then made to accurately model the probability
distribution function of n which in turn leads to the design of specific random number
generators for simulating n.

14.11 Pseudo Random Number Generation

Random number generators are not random because they do not have to be. Most
simple applications, such as computer games for example, need very few random
numbers. Nevertheless, use of a poor random number generator can lead to strange
correlations and unpredictable results which are compounded in terms of spurious
correlations. These must be avoided at all costs.

The problem is that a random number generator does not produce a random
sequence. In general, random number generators do not necessarily produce anything
that looks even remotely like the random sequences produced in nature. However,
with some careful tuning, they can be made to approximate such sequences. Of course,
it is impossible to produce something truly random on a computer. As John von
Neumann states, ‘Anyone who considers arithmetical methods of producing random
digits is, of course, in a state of sin’. Computers are deterministic, stuff goes in at
one end, completely predictable operations occur inside, and different stuff comes out

14.11. PSEUDO RANDOM NUMBER GENERATION 463

the other end, a principle that includes a notion that is fundamental to DSP and
computing in general, namely, ‘rubbish in given rubbish out’. Put the same data into
two identical computers, and the same data comes out of both of them (most of the
time!).

A computer can only be in a finite number of states (a large finite number, but a
finite number nonetheless), and the data that comes out will always be a deterministic
function of the data that went in and the computer’s current state. This means that
any random number generator on a computer (at least, on a finite-state machine) is,
by definition, periodic. Anything that is periodic is, by definition, predictable and
can not therefore be random. A true random number generator requires some random
input; a computer can not provide this.

14.11.1 Pseudo Random Sequences

The best a computer can produce is a pseudo random sequence generator. Many
attempts have been made to define a pseudo random sequence formally and in this
section, a general overview is given of these attempts. A pseudo random sequence is
one that looks random. The sequence’s period should be long enough so that a finite
sequence of reasonable length - that is, one that is actually used - is not periodic.
If for example, a billion random bits is required, then a random sequence generator
should not be chosen that repeats after only sixteen thousand bits. These relatively
short non-periodic sequences should be as indistinguishable as possible from random
sequences. For example, they should have about the same number of ones and zeros,
about half the runs (sequences of the same bit) should be of length one, one quarter
of length two, one eighth of length three, and so on. In addition, they should not be
compressible. The distribution of run lengths for zeros and ones should be the same.
These properties can be empirically measured and then compared with statistical
expectations.

A sequence generator is pseudo random if it has the following properties: It looks
random, which means that it passes all the statistical tests of randomness that we
can find. Considerable effort has gone into producing good pseudo random sequences
on a computer. Discussions of generators abound in the literature, along with various
tests of randomness. All of these generators are periodic (there is no exception);
but with potential periods of 2256 bits and higher, they can be used for the largest
applications. The problem with all pseudo random sequences is the correlations that
result from their inevitable periodicity. Every pseudo random sequence generator will
produce them if they are use extensively. A non periodic pseudo random sequence
must have the following property: it is unpredictable. It must be computationally
non-feasible to predict what the next random bit will be, given complete knowledge
of the algorithm or hardware generating the sequence and all of the previous bits in
the stream.

14.11.2 Real Random Sequences

Is there such a thing as randomness? What is a random sequence? How do you know
if a sequence is random? Is for example ‘101110100’ more random than ‘101010101’?
Quantum mechanics tells us that there is honest-to-goodness randomness in the real

464 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

world but can we preserve that randomness in the deterministic world of computer
chips and finite-state machines? Philosophy aside, a sequence generator is really
random if it has the following additional property: It cannot be reliably reproduced.
If the sequence generator is run twice with the exact same input (at least as exact as
computationally possible), then the sequences are completely unrelated; their cross
correlation function is effectively zero. This property is not usually possible to produce
on a finite state machine and for some applications of random number sequences, is
not desirable, as in cryptography for example. Thus, we refer to those processes that
produce number streams which look random (and passes appropriate statistical tests)
and are unpredictable as Pseudo Random Number Generators (PRNG).

14.11.3 Pseudo Random Number Generators

The performance of many DSP algorithms depends on the degree of noise present
in the signal and because many types of DSP algorithms are sensitive to noise, it is
important to test their behaviour in the presence of noise. This is usually done by
synthesizing noise signals which is accomplished using pseudo random number gen-
erators. Random numbers are not numbers generated by a random process but are
numbers generated by a completely deterministic arithmetic process. The resulting
set of numbers may have various statistical properties which together are called ran-
domness. A typical mechanism for generating random numbers is via the iterative
process defined by

xn+1 = (axn + b)modP, n ≥ 0

which produces an integer number stream in the range [0, P] and is known as the
Linear Congruential Method (LCM). Here, the modular function mod operates in
such a way as to output the remainder from the division of axn + b by P , e.g.

23mod7 = 2 and 6mod8 = 6.

By convention amod0 = a and amodb has the same sign as b. The reason for using
modular arithmetic is because modular based functions tend to behave more errati-
cally than conventional functions. For example consider the function y = 2x and the
function y = 2xmod13 for example. The table below illustrates the difference between
the output of these two function.

x 1 2 3 4 5 6 7 8
2x 2 4 8 16 32 64 128 256
2xmod13 2 4 8 3 6 12 11 9

This approach to creating random sequences was first introduced by D H Lehmer in
1949. The values of the parameters are constrained as follows: 0 < a < P , 0 ≤ b < P
and 0 ≤ x0 < P . The essential point to understand when employing this method,
is that not all values of the four parameters (a, b, x0 and P) produce sequences that
pass all the tests for randomness. Further, all such generators eventually repeat
themselves cyclically, the length of this cycle (the period) being at most P . When
b = 0 the algorithm is faster and referred to as the multiplicity congruential method
and many authors refer to mixed congruential methods when b �= 0.

14.11. PSEUDO RANDOM NUMBER GENERATION 465

An initial value or ‘seed’ x0 is repeatedly multiplied by a and added to b, each
product being reduced by modulo P . The element x0 is commonly referred to as the
seed. For example, suppose we let a = 13, b = 0, P = 100 and x0 = 1; we will then
generate the following sequence of two digit numbers

1, 13, 69, 97, 61, 93, 09, 17, 21, 73, 49, 37, 81, 53, 89, 57, 41, ...

For certain choices of a and P , the resulting sequence x0, x1, x2, ... is fairly evenly
distributed over (0, P) and contains the expected number of upward and downward
double runs (e.g. 13, 69, 97) and triple runs (e.g. 9,17,21,73) and agrees with other
predictions of probability theory. The values of a and P can vary and good choices are
required to obtain runs that are statistically acceptable and have long cycle lengths,
i.e. produce a long stream of numbers before the stream is repeated. For example,
suppose we choose a = 7, b = 12, P = 30 and x0 = 0, then the following sequence
is generated

0, 12, 16, 4, 10, 22, 16, 4, 10, 22, 16, 4, ...

Here, after the first three digits, the sequence repeats the digits 4, 10, 22, 16; the
‘cycle length’ of the number generator is very short. To improve the cycle length,
the value of P should be a prime number whose ‘size’ is close to that of the word
length of the computer. The reason for using a prime number is that it is divisible by
only 1 or itself. Hence, the modulo operation will always produce an output which is
distinct from one element to the next. Many prime numbers are of the form 2n − 1
where n is an integer (Mersenne prime numbers and not for any value of n). A typical
example of a Mersenne prime number is given by 231 − 1 = 2147483648. Values of
the multiplier a vary considerable from one application to the next and include values
such as 75 or 77 for example.

For long periods, P must be large. The other factor to be considered in choosing
P is the speed of the algorithm. Computing the next number in the sequence requires
division by P and hence a convenient choice is the word size of the computer. Perhaps
the most subtle reasoning involves the choice of the multiplier a such that a cycle of
period of maximum length is obtained. However, a long period is not the sole criterion
that must be satisfied. For example, a = b = 1, gives a sequence which has a maximum
period P but is anything but random. It is always possible to obtain the maximum
period but a satisfactory sequence is not always attained. When P is the product of
distinct primes only a = 1 will produce a full period, but when P is divisible by a
high power of some prime, there is considerable latitude in the choice of a.

There are a few other important rules for optimising the performance of a random
number generator using the linear congruential method in terms of developing sensible
choices for a, b and P , these include:

• b is relatively prime to P .

• a− 1 is a multiple of every prime dividing P .

• a− 1 is a multiple of 4 if P is a multiple of 4.

These conditions allow a linear sequence to have a period of length P .

466 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

Pseudo random number generators are often designed to produce a floating point
number stream in the range [0, 1]. This can be achieved by normalising the integer
stream after the random integer stream has been computed. A typical example of a
random number generator is given below using pseudo code.

x(1)=seed
a=7^5
P=2^31-1

for i=1 to n-1; do:
x(i+1)=(a*x(i))mod(P)

enddo

max=0.
for i=1 to n-1; do:

if x(i) > max, then max=x(i)
enddo

for i=1 to n-1; do:
x(i)=x(i)/max

enddo

Here, the first loop computes the random integer stream using the LCM, the second
loop computes the maximum value of the array and the third loop nomalizes it so that
on output, the random number stream consists of floating point numbers (to single
or double precision) between 0 and 1 inclusively. The seed is typically a relatively
long integer which is determined by the user. The exact value of the seed should
not change the statistics of the output, but it will change the numerical values of the
output array. These values can only be reproduced using the same seed, i.e. such
pseudo random number generators do not satisfy the property that their outputs
cannot be reliably reproduced.

The output of such a generator is good enough for many simulation type applica-
tions. There are a few simple guidelines to follow when using such random number
generators:

(i) Make sure that the program calls the generator’s initialization routine before it
calls the generator.

(ii) Use initial values that are ‘somewhat random’, i.e. have a good mixture of bits.
For example 2731774 and 10293082 are ‘safer’ than 1 or 4096 (or some other power
of two).

(iii) Note that two similar seeds (e.g. 23612 and 23613) may produce sequences that
are correlated. Thus, for example, avoid initialising generators on different processors
or different runs by just using the processor number or the run numbers as the seed.

A typical C function for computing uniform random noise in the range 0 to 1 is given
below.

14.11. PSEUDO RANDOM NUMBER GENERATION 467

#include<math.h>

void UNOISE(float s[], int n, long int seed)
{
long int i,x,a,P;
float max, temp;

a=16807; /* 7^5 */
P=2147483647; /* Mersenne prime number 2^{31}-1 */

x=seed; /* Assign initial value */
/* Do computation */
for(i=1; i<=n; i++)

{
x=(a*x)%P;

s[i]=(float)x;
}

/* Compute maximum number */
max=0.0;

for(i=1; i<=n; i++)
{
temp=s[i];

if(fabs(temp) > max)
{
max=fabs(temp);

}
}

/* Normalize output */
for(i=1; i<=n; i++) s[i]=fabs(s[i])/max;

}

In addition to the standard linear congruential generator discussed so far, a number
of ‘variations on a theme’ can be considered such as the iteration

xi = (a1x
2
i−1 + a2xi−1 + a3)modP

or
xi = (a1x

3
i−1 + a2x

2
i−1 + a3xi−1 + a4)modP

and so on where an are predefined (integer) numbers and P is a prime.

14.11.4 Shuffling

A relatively simple method that further randomizes the output of a PRNG is to shuffle
the values with a temporary storage. We first initialize an array xi, i = 1, 2, ..., N
with random numbers from the random number generator given above for example.

468 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

The last integer random number computed xN is then set to M say. To create the
next random sequence yi, we apply the following process:

for i=1 to N, do:
j=1+int(N*M)
y(i)=x(j)
M=x(i)

enddo

14.12 Additive Generators

An alternative solution to random number generation which creates very long cycles of
values is based on additive generators. A typical algorithm commences by initialising
an array xi with random numbers (not all of which are even) so that we can consider
the initial state of the generator to be x1, x2, x3, We then apply

xi = (xi−a + xi−b + ...+ xi−m)mod2n

where a, b, ...,m and n are assigned integers. An example of this PRNG is the ‘Fish
generator’ given by

xi = (xi−55 + xi−24)mod232.

This approach to pseudo random number generation is fast as no multiplication op-
erations (e.g. axi) are required. The period of the sequence of random numbers is
also very large and of the order of 2f (255 − 1) where 0 ≤ f ≤ n.

A further example is the linear feedback shift register given by

xn = (c1xn−1 + c2xn−2 + cmxn−m)mod2k

which, for specific values of c1, c2, ...cm has a cycle length of 2k.

14.12.1 Pseudo Random Number Generators and Cryptog-
raphy

In cryptography, pseudo random number generation plays a central role as does mod-
ular arithmetic in general. One of the principal goals in cryptography is to design
random number generators that provide outputs (random number streams) where no
element can be predicted from the preceding elements given complete knowledge of the
algorithm. Another important feature is to produce generators that have long cycle
lengths. A further useful feature, is to ensure that the Entropy of the random num-
ber sequence is a maximum, i.e. that the histogram of the number stream is uniform.
Finally, the use of modular arithmetic in the development of encryption algorithms
tends to provide functions which are not invertible. They are one-way functions that
can only be used to reproduce a specific (random) sequence of numbers from the same
initial condition.

The basic idea in cryptography is to covert a plaintext file to a cyphertext file using
a key that is used as a seed for the PRNG. A plaintext file is converted to a stream of
integer numbers using ASCII (American Standard Code for Information Interchange)

14.12. ADDITIVE GENERATORS 469

conversion. For example, suppose we wish to encrypt the authors surname Blackledge
for which the ASCII3 decimal integer stream or vector is

f = (66, 108, 97, 99, 107, 108, 101, 100, 103, 101).

Suppose we now use the linear congruential PRNG defined by

ni+1 = animodP

where a = 13, P = 131 and let the seed be 250659, i.e. n0 = 250659. The output of
this iteration is

n = (73, 32, 23, 37, 88, 96, 69, 111, 2, 26).

If we now add the two vectors together, we can generate the cypher stream

c = f + n = (139, 140, 120, 136, 195, 204, 170, 211, 105, 127).

Clearly, provided the recipient of this number stream has access to the same algorithm
(including the values of the parameters a and P) and crucially to the same seed, the
vector n can be regenerated and f obtained from c by subtracting n from c. This
process can of course be accomplished using binary streams where the binary stream
representation of the plaintext fb and that of the random stream nb say are used to
generate the cypher binary stream cb via the process

cb = nb ⊕ fb

where ⊕ denotes the XOR operation. Restoration of the plaintext is then accom-
plished via the operation

fb = nb ⊕ cb = nb ⊕ nb ⊕ fb.

Clearly, the process above is just an example of digital signal processing in which
the information contained in a signal f (i.e. the plaintext) is ‘scrambled’ by intro-
ducing additive noise. Here, the seed plays the part of a key that it utilized for the
process of encryption and decryption; a form of encryption that is commonly known
as symmetric encryption in which the key is a private key known only to the sender
and recipient of the encrypted message. Given that the algorithm used to generate
the random number stream is publically available (together with the parameters it
uses which are typically ‘hard-wired’ in order to provide a random field pattern with a
long cycle length), the problem is how to securely exchange the key to the recipient of
the encrypted message so that decryption can take place. If the key is particular to a
specific communication and is used once and once only for this communication (other
communications being encrypted using other keys), then the processes is known as a
one-time pad, because the key is only used once. Simple though it is, this process is
not open to attack. In other words, no form of cryptanalysis will provide a way of
decyphering the encrypted message. The problem is how to exchange the keys in a
way that is secure and thus, solutions to the key exchange problem are paramount
in symmetric encryption. A well known historical example of this problem involved

3Any code can be used.

470 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

the distribution of the keys used to initialize the Enigma cypher used by the German
forces during the Second World War. The Enigma machine (which was named after
Sir Edward Elgar’s composition, the ‘Enigma Variations’) was essentially an electro-
mechanical PRNG in which the the seed was specified using a plug board and a set of
three (and later four) rotors whose initial positions could be changed. These settings
were effectively equivalent to a password or a private key as used today. For a period
of time and using a very simplistic and rather exaggerated explanation, the German
land forces sometimes communicated the password used on a particular day (and at
a set time) by radio transmission using standard Morse code. This transmission was
sometimes repeated in order to give the recipient(s) multiple opportunity to receive
the key(s) accurately. Worse still, in some rare but important cases, the passwords
were composed of simple names (of some of the politicians at the time for example).
Thus, in many cases, a simple password consisting of a well known name was transmit-
ted a number of times sequentially leading to near perfect temporal correlation of the
initial transmission. This was a phenomenally irresponsible way of using the Enigma
system. In today’s environment, it is like choosing a password for your personal com-
puter which is a simple and possibly well known name (of the your boss for example)
that is easily remembered, shouting it out a number of times to your colleagues in an
open plan office and then wondering why everyone seems to know something about
your private parts! In this sense, the ability for the British war time intelligence
services to decypher the German land forces communications is self-evident. The use
of Enigma by the German naval forces (in particular, the U-boat fleet) was far more
secure in that the password used from one day to the next was based on a code book
provided to the users prior to departure from base. Thus, no transmission of the daily
passwords was required and, if not for a lucky break, in which one of these code books
was recovered in tact by a British destroyer (HMS Bulldog) from a damaged U-boat,
breaking the Enigma naval transmissions under their time variant code-book protocol
would have been effectively impossible. Although the Enigma story has many facets
to those discussed here, a careful study of this historically intriguing technology re-
veals that the breaking of Enigma had as much to do with German stupidity and
some bad luck as it did with British intelligence coupled with some good luck. Thus
is the reality of how random events (or lucky breaks to some) of the past can effect
the outcome of the future!

The discussion above has been used by way of an example to highlight the problem
of exchanging keys when applying a symmetric encryption scheme. It also provides
an example of how, in addition to developing the technology for encryption, it is im-
perative to develop appropriate protocols and procedures for using it effectively with
the aim of reducing inevitable human error, one of the underlying principles being the
elimination of any form of temporal correlation. Another fundamental principle which
has been demonstrated time and again throughout the history of cryptology is that
although improvements in methods and technology are to be welcomed, information
security is ultimately to do with cultivating the ‘right state of mind’ and that part of
this state should include a healthy respect for the enemy.

In cryptography, the design of specialized random number generators with ideal-
ized properties forms the basis of many of the techniques that are applied to the area
of information technology security. There are many such PRNGs available for this

14.12. ADDITIVE GENERATORS 471

purpose such as the Blum, Blum, Shub generator given by

xi+1 = x2
i mod(pq)

where p and q are two prime numbers whose product forms the so called Blum integer,
the Blum-Mercali generator

xi+1 = qximodp

where q is a prime and p is an odd prime and the RSA (Rivest, Shamir and Adleman)
generator given by

xi+1 = xe
i mod(pq)

where e is a relative prime of p − 1 and q − 1. The latter PRNG is the basis for
public/private or asymmetric encryption methods and is fundamental to all PKI
(Public Key Infrastructure) systems and was first developed in the early 1970s. Here,
the public key is given by the number e and the product pq which are unique to a
given recipient and in the public domain (like an individuals telephone number). This
public key is then used to encrypt a message transformed into a decimal integer array
Mi say using the one-way function

Ci = M e
i mod(pq).

The recipient is then able to decrypt the cyphetext Ci with knowledge of p and q
which represent the private key. This is done by solving the equation

de = mod[(p− 1)(q − 1)]

for d and then using the result

Mi = Cd
i mod(pq).

In this way, the sender and receiver do not have to exchange a key before encryp-
tion/decryption can take place and such systems, in effect solve the key exchange
problem associated with symmetric cyphers. However, a symmetric cypher is still sys-
tematically more secure as the RSA algorithm can in principle be broken by searching
through different combinations of the product pq and hence (p− 1)(q− 1) given that:
(i) there is a limit to the number of primes that are available and able to be stored
on a standard computer such as a 32-bit PC for example; (ii) knowledge of the fact
that e (which is known) is a relative prime of p− 1 and q− 1 which provides a search
domain.

14.12.2 Gaussian Random Number Generation

The generation of Gaussian random numbers which are taken to conform to the
distribution

P (y) =
1√

2πσ2
exp

(
− y2

2σ2

)
where σ is the standard deviation, is important in the analysis of real signals because
many signals are characterized by additive noise that is Gaussian or normally distrib-
uted. The method is based on the Box-Muller transform which, in effect, transforms

472 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

uniformly distributed deviates into Gaussian distributed deviates. The basic idea is
to first create two uniform deviates x1 and x2 say on (0, 1). Now, assume that we wish
to create two values y1 and y2 which conform to the Gaussian probability distribution
function

P (y) =
1√
2π

exp
(
−y

2

2

)
which has a zero mean and a standard deviation of 1. We can then consider a
relationship between x1, x2, y1 and y2 of the form

y1 =
√
−2 lnx1 cos(2πx2) and y2 =

√
−2 lnx1 sin(2πx2)

or equivalently

x1 = exp
[
−1

2
(y2

1 + y2
2)
]

and x2 =
1
2π

tan−1 y2
y1
.

Further, suppose we let

sin(2πx2) =
v1
R

and cos(2πx2) =
v2
R
.

Then R2 = v2
1 + v2

2 and if we set x1 = R2, then we obtain the result that

y1 = v1

√
−2 ln r
r

and y2 = v2

√
−2 ln r
r

where r = R2. Here, v1 and v2 are uniform deviates on (0, 1) such that r ≤ 1.
Note that if we compute the joint probability distribution of y1 and y2, then

p(y1, y2)dy1dy2 = p(x1, x2)
∣∣∣∣∂(x1, x2)
∂(y1, y2

∣∣∣∣ dy1dy2
where the Jacobian determinant is given by∣∣∣∣∂(x1, x2)

∂(y1, y2

∣∣∣∣ =

∣∣∣∣∣ ∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣ = −
[

1√
2π

exp
(
−y

2
1

2

)][
1√
2π

exp
(
−y

2
2

2

)]
which shows that y1 and y2 are independent and that the method creates two Gaussian
deviates from two uniformly random deviates as required. Thus, an algorithm for
implementing this method is as follows:

repeat
v1=RAND()
v2=RAND()
r = v2

1 + v2
2

until r ≤ 1

y1 = v1

√
−2 ln r

r

y2 = v2

√
−2 ln r

r

14.12. ADDITIVE GENERATORS 473

where the function RAND() is taken to output a uniform random deviate using the
linear congruential method discussed earlier.

The following C code provides a function GNOISE that outputs a Gaussian ran-
dom field using the method discussed above. The process generates two arrays of
uniform deviates (with different seeds) using the function UNOISE and feeds these
deviates as pairs into the Box-Muller transform.

#include<math.h>

void UNOISE(float s[], int n, long int seed);

void GNOISE(float s[], int n, long int seed)

/* FUNCTION: Generates an n size array s of Gaussian distributed */
/* noise with zero mean and a standard deviation of 1. */

{
int i, k, nn;
float r, fac, v1, v2, *x1, *x2;

/*Allocate internal work space.*/
x1 = (float *) calloc(n+1, sizeof(float));
x2 = (float *) calloc(n+1, sizeof(float));

nn=n/2;
UNOISE(x1,nn,seed);/*Generate uniform deviates.*/
seed=seed+3565365; /*Add randomly chosen integer to seed.*/
UNOISE(x2,nn,seed);/*Generate new set of uniform deviates.*/

k=0;
for(i=1; i<=nn; i++)
{
v1 = 2.0 * x1[i] - 1.0; /* -1 < v1 < 1 */
v2 = 2.0 * x2[i] - 1.0; /* -1 < v2 < 1 */

r = pow(v1, 2) + pow(v2, 2);
r = r/2;/* r<=1 */

/* Apply the Box-Muller transform */

fac=sqrt((double) -2.0 * log(r)/r);

/*Write to output array.*/
s[k]=v1*fac;
s[k+1]=v2*fac;
k=k+2;
}

474 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

}

14.13 Chaos

Chaos is often associated with noise in that it is taken to represent a field which is
unpredictable. Although this is the case, a signal generated by a chaotic system gen-
erally has more structure if analysed in an appropriate way. Moreover, this structure
often exhibits features that are similar at different scales which leads to a natural
connection between the behaviour of chaotic systems, the signals they produce and
fractal or self-affine signals which is the subject of Chapter 17. Thus, chaotic signals
are not the same as noisy signals either in terms of their behaviour or the way in
which they are simulated. Chaotic signals are typically the product of a iteration of
the form xn+1 = f(xn) where the function f is some nonlinear map which depends
on a single or a set of parameters. The chaotic behaviour of xn depends critically of
the value of the parameter(s). The iteration process may not necessarily be a single
nonlinear mapping but consist of a set of nonlinear coupled equations of the form

x
(1)
n+1 = f1(x(1)

n , x(2)
n , ..., x(N)

n),

x
(2)
n+1 = f2(x(1)

n , x(2)
n , ..., x(N)

n),

...

x
(N)
n+1 = fN(x(1)

n , x(2)
n , ..., x(N)

n)

where the functions f1, f2, ..., fN may be nonlinear or otherwise. In turn, such a
coupled system can be the result of many different physical models covering a wide
range of applications in science and engineering.

It is opportune at this point to consider a well known example. Suppose there is a
fixed population of N individuals living on an island (with no one leaving or entering)
and a fatal disease (for which there is no cure) is introduced, which is spread through
personal contact causing an epidemic due to a promiscuous life style for example. The
rate of growth of the disease will normally be proportional to the number of carriers
c say. Suppose we let x = c/N be the proportion of individuals with the disease so
that 100x is the percentage of the population with the disease. Then, the equation
describing the rate of growth of the disease is

dx

dt
= kx

whose solution is
x(t) = x0 exp(kt)

where x0 is the proportion or the population carrying the disease at t = 0 (i.e. when
the disease first ‘strikes’) and k is a constant of proportionality defining the growth
rate. The problem with this conventional growth rate model, is that when x = 1,
there can be no further growth of the disease because the island population no longer
exists and so we must impose the condition that 0 < x(t) ≤ 1, ∀t. Alternatively,
suppose we include the fact that the rate of growth must also be proportional to the

14.13. CHAOS 475

number of individuals 1 − x who do not become carriers, due to isolation of their
activities and/or genetic disposition for example. Then, our rate equation becomes

dx

dt
= kx(1 − x)

and if x = 1, the epidemic is extinguished. This equation can be used to model a
range of situations similar to that introduced above associated with predator-prey
type processes. (In the example given above, the prey is the human and the predator
could be a virus or bacterium for example.) Finite differencing over a time interval
Δt, we have

xn+1 − xn

Δt
= kxn(1− xn)

or
xn+1 = xn + kΔtxn(1− xn)

or
xn+1 = rxn(1− xn)

where r = 1 + kΔt. This is a simple quadratic iterator known as the logistic map
and has a range of characteristics depending on the value of r. This is illustrated
in Figure 14.3 which shows the output (just 30 elements) from this iterator for r =
1, r = 2, r = 3 and r = 4 for an initial value of 0.1.4

Figure 14.3: Output (30 elements) of the logistic map for values of r = 1 (top left),
r = 2 (top right), r = 3 (bottom left) and r = 4 (bottom right) and an initial value
of 0.1.

4The initial value, which is taken to be any value between 0 and 1, changes the signature of the
output but not its characteristics.

476 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

For r = 1 and r = 2, convergent behaviour takes place; for r = 3 the output is
oscillatory and for r = 4 the behaviour is chaotic. The transition from monotonic
convergence to oscillatory behaviour is known as a bifurcation and is better illustrated
using a so called Fiegenbaum map or diagram which is a plot of the output of the
iterator in terms of the values produced (after iterating enough times to produce a
consistent output) for different values of r. An example of this for the logistic map
is given in Figure 14.4 for 0 < r ≤ 4 and shows convergent behaviour for values of r
from 0 to approximately 3, bifurcations for values of r between approximately 3 and
just beyond 3.5 and then a region of chaotic behaviour, achieving ‘full chaos’ at r = 4
where the output consists of values between 0 and 1.

Figure 14.4: Feigenbaum diagram of the logistic map for 0 < r < 4 and 0 < x < 1.

However, closer inspection of this data representation reveals repeating patterns, an
example being given in Figure 14.5 which gives a Fiegenbaum diagram of the output
for values of r between 3.840 and 3.855 and values of x between 0.44 and 0.52.

Figure 14.5: Feigenbaum diagram of the logistic map for 3.840 < r < 3.855 and
0.44 < x < 0.52.

14.13. CHAOS 477

As before, we observe a region of convergence, bifurcation and then chaos. Moreover,
from Figure 14.5 we observe another region of this map (for values of r around 3.854) in
which this same behaviour occurs. The interesting feature about this map is that the
convergence→bifurcation→chaos characteristics are repeated albeit at smaller scales.
In other words, there is a similarity of behaviour at smaller scales, i.e. the pattern
of behaviour is self-similar or ‘fractal’. Moreover, all this comes from a remarkably
simple iterator, i.e. the map x→ rx(1 − x).

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

Figure 14.6: Complex plane diagram and phase portrait of the chaotic field generated
by the logistic map for 100 iterations (top left and bottom left respectively) and those
of a random Gaussian noise field (top right and bottom right respectively).

Another feature of a chaotic signal which can be used as an analysis tool, is based
on its characterization in the complex plane (via application of the Hilbert transform)
and as a ‘phase portrait’ (e.g. a plot of xn+1 against xn) which reveals structures not
associated with noise. Figure 14.6 shows a plot of these data representations for the
logistic map (for r = 4) which should be compared to those associated with a random
Gaussian noise field which is also provided. Figure 14.7 shows plots of the distribution

478 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

of the principal phases associated with the fields given in Figure 14.6.5 The phase
distributions for the chaotic field have specific characteristics showing that the phase
of the chaotic field are not uniformly distributed unlike those of a Gaussian noise field
which are uniformly distributed. The phase distribution of a phase map is a useful
method of quantifying a chaotic signal as it typically provides an unambiguous and
unique signature which is specific to a given chaotic process.

In addition to the logistic map, which has been used here to introduce chaos,
there are a wide variety of other maps which yield signals that exhibit the same
basic properties as the logistic map (convergence→bifurcation→chaos) with similar
structures at different scales at specific regions of the Feigenbaum diagram.

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Figure 14.7: Frequency distribution (using 10 bins) of the principal phase of the fields
given in Figure 14.6 for 1000 iterations

Examples, include the following:

Linear functions

The sawtooth map
xn+1 = 5xnmod4.

5The principle phase is given by tan−1(Ĥ(xn)/xn) where Ĥ denotes the Hilbert transform for
the complex plane map and tan−1(xn/xn+1) for the phase portrait where −π ≤ tan−1(xn) ≤ π.

14.13. CHAOS 479

The tent map
xn+1 = r(1− | 2xn − 1 |).

The generalized tent map

xn+1 = r(1− | 2xn − 1 |m), m = 1, 2, 3, ...

Nonlinear functions

The sin map
xn+1 =| sin(πrxn+1 | .

The tangent feedback map

xn+1 = rxn[1− tan(1/2x
n
)].

The logarithmic feedback map

xn+1 = rxn − n[1− log(1 + xn)].

Further, there are a number of ‘variations on a theme’ that are of value, an example
being the ‘delayed logistic map’

xn+1 = rxn(1− xn−1)

which arises in certain problems to population dynamics. Moreover, coupled iterative
maps occur from the development of physical models leading to nonlinear coupled
differential equations, a famous and historically important example being the Lorenz
equations given by

dx1

dt
= a(x2 − x1),

dx2

dt
= (b − x3)x1 − x2,

dx3

dt
= x1x2 − cx3

where a, b and c are constants. These equations were originally derived by Lorenz
from the fluid equations of motion (the Navier Stokes equation, the equation for
thermal conductivity and the continuity equation) used to model heat convection in
the atmosphere and were studied in an attempt to explore the transition to turbulence
where a fluid layer in a gravitational field is heated from below. Finite differencing,
these equations become

x
(n+1)
1 = x

(n)
1 + Δta(x(n)

2 − x(n)
1),

x
(n+1)
2 = x

(n)
2 + Δt[(b− x(n)

3)x(n)
1 − x(n)

2],
x

(n+1)
3 = x

(n)
3 + Δt[x(n)

1 x
(n)
2 − cx(n)

3].

For specific values of a, b and c (e.g. a = 10, b = 28 and c = 8/3) and a step length
Δt, the digital signals x(n)

1 , x
(n)
2 and x

(n)
3 exhibit chaotic behaviour which can be

analysed quantitatively in the three dimension phase space (x1, x2, x3) or variations
on this theme, e.g. a three dimensional plot with axes (x1 +x2, x3, x1−x3) or as a two

480 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

dimensional projection with axes (x1 +x2, x3) an example of which is shown in Figure
14.8. Here, we see that the path is confined to two domains which are connected. The
path is attracted to one domain and then to another but this connection (the point
at which the path changes form one domain to the next) occurs in quite an intricate
manner - an example of a ‘strange attractor’.

Figure 14.8: Two dimensional phase space analysis of the Lorenz equations illustrating
the ‘strange attractor’.

As with the simple iterative maps discussed previously, there are a number of non-
linear differential equations (coupled or otherwise) that exhibit chaos whose behaviour
can be quantified using an appropriate phase space. These in include:

The Rössler equations

dx1

dt
= −x2 − x3,

dx2

dt
= x3 + ax2,

dx3

dt
= b+ x3(x1 + c).

The Hénon-Heiles equations

dx1

dt
= px,

dpx

dt
= −x− 2xy;

dx2

dt
= py,

dpy

dt
= −y − x2 + y2.

The Hill’s equations
d2

dt2
u(t) + ω2(t)u(t) = 0,

a special case being the Mathieu equation where

ω2(t) = ω2
0(1 + λ cosωt),

ω0 and λ being constants.

The Duffing Oscillator

dx

dt
= v,

dv

dt
= av + x+ bx3 + cos t

14.13. CHAOS 481

where a and b are constants.

In each case, the chaotic nature of the output to these systems depends on the values
of the constants.

14.13.1 The Lyapunov Exponent and Dimension

For iterative processes where stable convergent behaviour is expected, an output
that is characterised by exponential growth can, for example, be taken to be due
to unacceptable numerical instability. However, some algorithms are intrinsically
unstable and do not, for example, converge to a specific value. Such algorithms include
those that are based on physical models that exhibit chaos. A characteristic that can
help to quantify the characteristics of such algorithms is the Lyapunov exponent
which, in turn, can be taken to be a measure of the systems ‘chaoticity’.

Consider the iterative system

fn+1 = F (fn) = f + εn

where εn is a perturbation to the value of f at an iterate n which is independent of
the value of f0. If the system converges to f as n → ∞ then εn → 0 as n → ∞
and the system is stable. If this is not the case, then the system may be divergent
or chaotic. Suppose we model εn in terms of an exponential growth (σ > 0) or decay
(σ < 0) so that

εn+1 = c exp(nσ)

where c is an arbitrary constant. Then ε1 = c, ε2 = ε1 exp(σ), ε3 = ε1 exp(2σ) =
ε2 exp(σ) and thus, in general, we can write

εn+1 = εn exp(σ).

Noting that

ln
(
εn+1

εn

)
= σ

we can write
N∑

n=1

ln
(
εn+1

εn

)
= Nσ.

Thus, we can define σ as

σ = lim
N→∞

1
N

N∑
n=1

ln
(
εn+1

εn

)
.

The constant σ is known as the Lyapunov exponent. Since we can write

σ = lim
N→∞

1
N

N∑
n=1

(ln εn+1 − ln εn)

and noting that (using forward differencing)

d

dx
ln ε � ln εn+1 − ln εn

δx
= ln εn+1 − ln εn, δx = 1

482 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

we see that σ is, in effect, given by the mean value of the derivatives of the natural
logarithm of ε. Note that, if the value of σ is negative, then the iteration is stable
and will approach f since we can expect that as N → ∞, εn+1/εn < 1 and, thus,
ln(εn+1/εn) < 0. If σ is positive, then the iteration will not converge to f but will
diverge or, depending on the characteristics of the mapping function F , will exhibit
chaotic behaviour. The Lyapunov exponent is a parameter that is a characterization
of the ‘chaoticity’ of the signal fn. In particular, if we compute σN using N elements
of the signal fn and then compute σM using M elements of the same signal, we can
define the Lyapunov dimension as

DL =

{
1− σN

σM
, σM > σN ;

1− σM

σN
, σM < σN .

where

σN = lim
N→∞

1
N

N∑
n=1

ln
∣∣∣∣ εn+1

εn

∣∣∣∣ .
14.14 Case Study: Cryptography using Chaos

The use of deterministic chaos6 for encrypting data follows the same basic approach as
that discussed earlier with regard to the application of modular based pseudo random
number generation. Pseudo chaotic numbers are in principle, ideal for cryptography
because they produce number streams that are ultra-sensitive to the initial value (the
key). However, instead of using iterative based maps using modular arithmetic with
integer operations, here, we require the application of principally nonlinear maps us-
ing floating point arithmetic. Thus, the first drawback concerning the application of
deterministic chaos for encryption concerns the processing speed, i.e. pseudo random
number generators (PRNGs) generate integer streams using integer arithmetic where
as pseudo chaotic number generators (PCNGs) produce floating point streams using
floating point arithmetic. Another drawback of chaos based cryptography is that the
cycle length (i.e. the period over which the number stream repeats itself) is relatively
short when compared to the cycle length available using conventional PRNGs (e.g.
additive generators). Thus, compared with conventional approaches, the application
of deterministic chaos has (at least) two distinct disadvantages. However, providing
the application of chaos in this field has some valuable advantages, the computational
overheads can be enhanced through the use of appropriate real time DSP units (essen-
tially, high performance floating point accelerators). Moreover, the lower cycle lengths
can be overcome by designing block cyphers which is where an iterator produces a
cypher stream only over a block of data whose length is significantly less than that
of the cycle length of the iterator, each block being encrypted using a different key
and/or algorithm. So are there any advantages to using deterministic chaos? One
advantage is compounded in Figure 14.9 which qualitatively illustrates complexity
as a function of information showing regions associated with ordered, random and
chaotic fields. Imagine that an algorithm can output a number stream which can be
ordered, chaotic or random. In the case of an ordered number stream (those gener-
ated from a discretized piecewise continuous functions for example), the complexity

6Based on the research of Dr N Ptitsyn, a former research student of the author.

14.14. CASE STUDY: CRYPTOGRAPHY USING CHAOS 483

of the field is clearly low. Moreover, the information and specifically the informa-
tion Entropy (the lack of information we have about the exact state of the number
stream) is low as is the information content that can be conveyed by such a number
stream. A random number stream (taken to have a uniform distribution for example)
will provide a sequence from which, under ideal circumstances, it is not possible to
predict any number in the sequence from the previous values. All we can say is that
the probability of any number occurring between a specified range is equally likely.
In this case, the information entropy is high. However, the complexity of the field, in
terms its erratic transitions from one type of localized behaviour to another, is low.

Figure 14.9: Qualitative comparison of ordered, random and chaotic fields in terms
of their complexity and information content.

Thus, in comparison to a random field, a chaotic field is high in complexity but its
information entropy, while naturally higher than an ordered field is lower than that
of a random field, e.g. chaotic fields which exhibit uniform number distributions are
rare.

From the discussion above, the application of deterministic chaos to encryption
has a number of disadvantages relative to the application of PRNGs. However, the
increased level of complexity can be used to provide complexity driven block cyphers.
One method of approach is to use well known maps and modify them to extend the
region of chaos. For example, the Matthews cypher is a modification of the logistic
map to

xn+1 = (1 + r)
(

1 +
1
r

)r

xn(1 − xn)r, r ∈ (0, 4].

The effect of this generalization is seen in Figure 14.10 which shows the Feigenbaum
diagram for values of r between 1 and 4. Compared to the conventional logistic map
xn+1 = rxn(1−xn), r ∈ (0, 4] which yields full chaos at r = 4, the chaotic behaviour
of the Matthews map is clearly more extensive providing full chaos for the majority
(but not all) of values of r between approximately 0.5 and 4. In the conventional case,
the key is the value of x0 (the initial condition). In addition, because there is a wide

484 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

range of chaotic behaviour for the Matthews map, the value of r itself can be used as
a primary or secondary key.

The approach to using deterministic chaos for encryption has to date, been based
on using conventional and other well known chaotic models of the type discussed above
with modifications such as the Matthew map as required. However, in cryptography,
the physical model from which a chaotic map has been derived is not important; only
the fact that the map provides a cypher that is ‘good’ at scrambling the plaintext.
This point leads to an approach which exploits two basic features of chaotic maps:
(i) they increase the complexity of the cypher; (ii) there are an unlimited number of
maps of the form xn+1 = f(xn) that can be literally ‘invented’ and then tested for
chaoticity to produce a data base of algorithms.

Figure 14.10: Feigenbaum map of the Matthews cypher

14.14.1 Block Cyphers using Deterministic Chaos

The low cycle lengths that are inherent in chaotic maps leads naturally to consider
their application to block cyphers. However, instead of using a single algorithm to
encrypt data over a series of blocks using different (block) keys, here we can use
different algorithms, i.e. chaotic maps. Two maps can be used to generate the
length of each block and the maps that are used to encrypt the plaintext over each
block. Thus, suppose we have designed a data base consisting of 100 chaotic maps say
consisting of iterative functions f1, f2, f3, ..., f100, each of which generates a floating
point number steam through the operation

xn+1 = fm(xn, p1, p2, ...)

where the parameters p1, p2, ... are pre-set or ‘hard-wired’ to produce chaos for any
initial value x0 ∈ (0, 1) say. An ‘algorithm selection key’ is then introduced in which
two algorithms (or the same algorithm) are chosen to ‘drive’ the block cypher - f50
and f29 say, the session key in this case being (50, 29). Here, we shall consider the case
where map f50 determines the algorithm selection and map f29 determines the block

14.14. CASE STUDY: CRYPTOGRAPHY USING CHAOS 485

size. Map f50 is then initiated with the key 0.26735625 say and map f29 with the key
0.65376301 say. The output from these maps (floating point number streams) are then
normalized, multiplied by 100 and 1000 respectively for example and then rounded to
produce integer streams with values ranging from 0 to 100 and 0 to 1000 respectively.
Let us suppose that the first few values of these integer streams are 28, 58, 3, 61 and
202, 38, 785, 426. The block encryption starts by using map 28 to encrypt 202 elements
of the plaintext using the key 0.78654876 say. The second block of 38 elements is then
encrypted using map 58 (the initial value being the last floating point value produced
by algorithm 28) and the third block of 785 elements is encrypted using algorithm 3
(the initial value being the last floating point value produced by algorithm 58) and
so on. The process continues until the plaintext has been fully encrypted with the
‘session key’ (50,29,0.26735625,0.65376301,0.78654876).

14.14.2 Encrypting Processes

The encryption can be undertaken using a binary representation of the plaintext and
applying an XOR operation using a binary representation of the cypher stream. This
can be constructed using a variety of ways. For example, one could extract the last
significant bits from the floating point format of xn for example. Another approach,
is to divide the floating point range of the cypher into two compact regions and apply
a suitable threshold. For example, suppose that the output xn from a map operating
over a given block consists of floating point value between 0 and 1, then, with the
application of a threshold of 0.5, we can consider generating the bit stream

b(xn) =

{
1, xn ∈ (0.5, 1];
0, xn ∈ [0, 0.5).

However, in applying such a scheme, we are assuming that the distribution of xn is
uniform an this is rarely the case with chaotic maps. Figure 14.11 shows the PDF for
the logistic map xn+1 = 4xn(1 − xn) which reveals a non-uniform distribution with
a bias for floating point number approach 0 and 1. However, the mid range (i.e. for
xn ∈ [0.3, 0.7]) is relatively flat indicating that the probability for the occurrence of
different numbers generated by the logistic map in the mid range is the same. In order
to apply the threshold partitioning method discussed above in a way that provides an
output that is uniformly distributed for a any chaotic map, it is necessary to introduce
appropriate conditions and modify the above to the form

b(xn) =

⎧⎪⎨⎪⎩
1, xn ∈ [T, T + Δ+);
0, xn ∈ [T −Δ−, T);
−1, otherwise.

where T is the threshold and Δ+ and Δ− are those values which characterize (to a
good approximation) a uniform distribution. For example, in the case of the logistic
map T = 0.5 and Δ+ = Δ− = 0.2. This aspect of the application of deterministic
chaos to cryptography, together with the search for a parameter or set of parameters
that provides full chaos for an ‘invented’ map, determines the overall suitability of the
function that has been ‘invented’ for this application. The ‘filtering’ of a chaotic field
to generate a uniformly distributed output is equivalent to maximizing the entropy

486 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

of the cypher stream (i.e. generating a cypher stream with a uniform PDF) which is
an essential condition in cryptography.

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

Figure 14.11: Probability density function (with 100 bins) of the output from the
logistic map for 10000 iterations.

In terms of cryptanalysis and attack, the multi-algorithmic approach to designing a
block cypher discussed here introduces a new ‘dimension’ to the attack problem. The
conventional problem associated with an attack on a symmetric cypher is to search
for the private key(s) given knowledge of the algorithm. Here, the problem is to
search not only for the session key(s), but the algorithms they ‘drive’. One over-
riding issue concerning cryptology in general, is that algorithm secrecy is weak. In
other words, a cryptographic system should not rely of the secrecy of its algorithms
and all such algorithms should be openly published.7. The system described here is
multi-algorithmic, relying on many different chaotic maps to scramble the data. Here,
publication of the algorithms can be done in the knowledge that many more maps can
be invented as required (subject to appropriate conditions in terms of generating a
fully chaotic field with a uniform PDF) by a programmer, or possibly with appropriate
‘training’ of a digital computer.

14.14.3 Key Exchange and Authentication

The process of ‘scrambling’ data using PCNGs or PRNGs is just one aspect of cryp-
tography. The other major aspects are (i) key exchange; (ii) authentication. Without
developing secure ways of transferring the keys from sender to receiver, there is little

7Except for some algorithms developed by certain federal government agencies. Perhaps they
have something to hide!

14.14. CASE STUDY: CRYPTOGRAPHY USING CHAOS 487

virtue in developing sophisticated methods of ‘scrambling’. Further, the ability for a
receiver to decrypt a transmission can lead to a false sense of confidence with regard to
its content and authentication of a decrypted message is often necessary, particularly
when a system is being attacked through the promotion of disinformation for example
by searching for a crib, i.e. forcing an encrypted communication whose plaintext in
known to have certain key words, phases or quotations for example.

With regard to chaotic block cyphers, one can apply the RSA algorithm discussed
earlier, not to encrypt the plaintext, but to encrypt the sessions keys and the algo-
rithm data base. With regard to authentication of a message, one approach is to
use a key that is plaintext dependent for which the chirp coding approach discussed
in the previous case study can be used (with appropriate modifications). Further,
application of chirp coding can be used to transfer a plaintext key in the cypher text,
a key that is one of those used to encrypt/decrypt the data, but in contributing to the
decryption, provides an authentication of the original plaintext. In effect, provided
that appropriate protocols and procedures have been introduced, this approach, not
only provides a method of authentication but does so, using a one time pad.

The history and development of encryption is a fascinating subject in its own
right and this case study can only provide a brief glimpse into some of the methods
employed (using deterministic chaos or otherwise). However, there are some basic
concepts that are easy to grasp and sometimes tend to get lost in the detail. The
first of these is that the recipient of any encrypted message must have some form of
a priori knowledge on the method (the algorithm for example) and the operational
conditions (the public and/or private keys) used to encrypt a message. Otherwise,
the recipient is in no better a ‘state of preparation’ than the potential attacker. The
idea is to keep this a priori information to the bare minimum but in such a way
that it is super critical to the decryption process. Another important reality is that
in an attack, if the information transmitted is not decyphered in good time, then it
is typically redundant. Coupled with the fact that an attack usually has to focus
on a particular approach (a specific algorithm for example), one way to enhance the
security of a communications channel is to continually change the encryption algo-
rithm and/or process offered by the technology currently available. This is one of
the most interesting challenges for state control over the ‘information society’. The
point here, is that as more and more members of the primarily younger generation
become increasingly IT literate, it is inevitable that a larger body of perfectly able
minds will become aware of the fact that cryptology is not as difficult as some may
like to make out. Indeed, the average graduate of today has the ability to write an
encryption system which although relatively simple, possibly trivial and ill-informed,
can, by the very nature of its non-compliance to international standards, provide sur-
prisingly good security. A problem then occurs with the control of information when
increasingly more individuals, groups, companies, agencies and nation states decide
that they can ‘go it alone’ and do it themselves. While each home grown encryption
system may be relatively weak compared to those that have had expert development
over many years, have been well financed and been tested against the very best of
attack strategies, the proliferation of such systems is itself a source of significant diffi-
culty for any authority whose role is to accurately monitor communications traffic in
a way that is timely and cost effective. This explains why there have been a number
of recent attempts by certain western governments to control the use and exploitation

488 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

of new encryption methods in the commercial sector. It also explains why there is so
much made of international encryption standards in terms of both public perception
and free market exploitation. There is nothing a government and other controlling
authorities like better than to preside over a situation in which everybody else is con-
fidently reliant for their information security on products that have been created or
cultivated, inspected, tested and of course broken by the very authorities that encour-
age their use; a use that is covertly ‘diffused’ into the ‘information society’ through
various legitimate business ventures coupled with all the usual commercial sophisti-
cation and investment portfolios. The proliferation of stand alone encryption systems
that are designed and used by informed individuals is not only possible but inevitable,
an inevitability that is guided by the principle that if you want to know what you
are eating then you should cook it yourself. Given time, security issues of this type
are likely to become the single most important agenda for future government policy
on information technology, especially when such systems have been ‘home spun’ by
those who have learned to fully respect that they should, in the words of Shakespeare,
‘Neither a borrower, nor a lender be’.8

14.15 Summary of Important Results

Given that
si = pi ⊗ fi + ni

and
f̂i = qi ⊗ si

we have:

Inverse Filter
Qi =

P ∗
i

| Pi |2
where Pi is the DFT of the impulse response function. The criterion is that ‖ni‖22 is
a minimum.

Wiener Filter
Qi =

P ∗
i

| Pi |2 + |Fi|2
|Ni|2

where Fi and Ni are the DFT’s of the input or object function and noise respectively.
The criterion is that

‖fi − f̂i‖22
is a minimum and that

ni 	 fi = 0, and fi 	 ni = 0.

Power Spectrum Equalization Filter

| Qi |=
(

1
| Pi |2 + | Ni |2 / | Fi |2

)1/2

8From William Shakespeare’s play, Hamlet

14.15. SUMMARY OF IMPORTANT RESULTS 489

The criterion is that
| Fi |2=| F̂i |2

and that
ni 	 fi = 0, and fi 	 ni = 0.

Matched Filter
Qi =

P ∗
i

| Ni |2
The criterion is that

|∑
i

QiPi |2∑
i

| Ni |2| Qi |2

is a maximum.

Constrained Filter
Qi =

P ∗
i

| Pi |2 +γ | Gi |2
where Gi is the constraining filter and γ is the reciprocal of the Lagrange multiplier.
The criterion is that

‖g ⊗ f‖22
is a minimum.

Noise-to-Signal Power Spectrum Ratio

| Ni |2
| Fi |2 =

(
Ci

C′
i

− 1
)
| Pi |2

where Ci is the auto-correlation function of the signal

si = pi ⊗ fi + ni

and C′
i is the cross-correlation function of si with the signal

s′i = pi ⊗ fi + n′
i.

Noisy Signal Model
s(t) = p(t)⊗ f(t) + n(t)

where n(t) is the noise which is taken to obey a certain probability density function
f , i.e.

Pr[n(t)] = f(n).

Basic PRNG (using the linear congruential method)

xi+1 = aximodP

490 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

where for example a = 77 and P = 231−1 (a Mersenne prime number) and the output
conforms to a uniform distribution over (0, P).

Seed or Key The initial value x0.

Basic Properties

(i) The output of a PRNG looks random (in the sense that it will produce an output
that conforms to a known distribution) and has a cycle length determined by P .

(ii) Given complete knowledge of the PRNG algorithm (other than the seed) and all
data from x0 to xn, the value xn+1 is not predictable.

Additive Generators

xi = (xi−a + xi−b + ...+ xi−m)mod2k

Linear Feedback Shift Register

xi = (c1xi−1 + c2xi−2 + ...+ cmxi−m)mod2k

Pseudo Chaotic Number Generators

xn+1 = f(xn, p1, p2, ...)

where f is typically (but not always) a nonlinear function with parameters p1, p2, ...
of specific (chaos generating) values.

14.16 Further Reading

• Jazinski A, Stochastic Processes and Filtering Theory, Academic Press, 1970.

• Robinon E A and Silvia M T, Digital Signal Processing and Time Series Analy-
sis, Holden-Day, 1978.

• Kailath T, Lectures on Kalman and Wiener Filtering Theory, Springer, 1981.

• Mortensen R E, Random Signals and Systems, Wiley, 1987.

• Bateman A and Yates W, Digital Signal Processing Design, Pitman, 1988.

• Van Den Enden A W M and Verhoeckx N A M, Discrete Time Signal Processing,
Prentice-Hall, 1989.

14.17. PROGRAMMING PROBLEMS 491

• Inmos Limited, Digital Signal Processing, Prentice-Hall, 1989.

• Brown R G and Hwang P Y C, Introduction to Random Signals and Applied
Kalman Filtering, Wiley, 1992.

• Press W H, Teukolsky S A, Vetterling W T and Flannery, B P, Numerical
Recipes in C, Cambridge University Press, 1994

• Korsch H J and Jodl H J, Chaos: A Program Collection for the PC, Springer,
1994.

• Woolfson M M and Pert G J, An Introduction to Computer Simulation, Oxford
University Press, 1999.

14.17 Programming Problems

In the questions that follow, the functions required should be void functions written
in ANSI C. They should be compiled, tested and then added to a digital signal
processing object library dsplib.lib say. In each case, a simple I/O test procedure
should be written, the I/O being studied by plotting the signal at appropriate points
in the process working with arrays of size 64, 128, 256 or 512 samples. Each function
should be self-contained within the context of the DSP algorithm to be coded. In each
case, n (which is of type integer) is the size of the array which should be processed
from 1 to n.

14.1 Write a function to filter a signal using an ideal lowpass filter.

function ILF(float s[], int n, int bw)

where f is the I/O and bw is the bandwidth

14.2 Write a function to filter a signal using a Gaussian lowpass filter.

function GLF(float s[], int n, int bw)

where s is the I/O and bw is the bandwidth

14.3 Write a function to filter a signal using a Butterworth lowpass filter.

function BLF(float s[], int n, int bw, int ord)}

where s is the I/O, bw is the bandwidth and ord is the order of the filter.

14.4 Write functions to filter a signal using high pass versions of the filters discussed
in questions 14.1-14.3 above.

492 CHAPTER 14. FREQUENCY DOMAIN FILTERING WITH NOISE

function IHF(float s[], int n, int bw)
function GHF(float s[], int n, int bw)
function BHF(float s[], int n, int bw)

14.5 A random fractal signal is a statistically self-affine signal which is characterized
by a transfer function of the form (iω)−q, ω �= 0 where q ∈ (0, 1) is the Fourier
dimension (as discussed further in Chapter 17). Thus, a random fractal signal can
be generated by filtering white noise. Using the Gaussian random number generator
GNOISE, write a function to generate a random fractal signal.

function FRACTAL(float s[], int n, int seed, long float q)

where s is the output (the fractal signal), seed is the random number generators initial
value and q is the Fourier dimension.

14.6 Write a function to process (restore) a signal using the Wiener filter.

function WIENER(float s[], float p[], float f[], int n, long float snr)

where s is the digital signal (input), p is the IRF (input), f is the restored signal
(output) and snr is the signal-to-noise ratio.

14.7 Using the functions SPIKES, GAUSSIAN and CONVOLVE designed in Chapter
13 (programming problems) and working with array sizes of 128, convolve two spikes
of width 10 with a Gaussian of arbitrary width. Adjust the width of the Gaussian
to give an output where the location of the spikes is just visible. Use the function
WIENER to recover the object function f (i.e. the two spikes) using a range of values
for snr (e.g. 1 < snr < 100). Repeat this process using two spikes of unit amplitude
but opposite polarity.

14.8 Repeat question 14.7 above using function GNOISE to add random Gaussian
noise to the output (after convolution with the Gaussian) with a variable signal-to-
noise ratio defined as

snr =
‖pi ⊗ fi‖∞
‖ni‖∞

One way of doing this is to first rescale pi ⊗ fi and ni so that both arrays have an
upper bound (in modulus) of 1 and then construct the signal si via the equation

si = (pi ⊗ fi)× snr + ni

or alternatively
si = pi ⊗ fi + ni/snr; snr > 0.

14.9 Write a function to match filter a given input using FFT1D under the assumption
that the noise is white (power spectrum is unity over the bandwidth of the signal).

function MATFIL(float s[], float p[], float f[], int n)

14.17. PROGRAMMING PROBLEMS 493

where s is the input signal, p is the IRF (input) and f is the matched filtered output.

14.10 Working with 512 arrays use functions SPIKES and CONVOLVE to convolve
two spikes of width 30 with a linear FM instrument function (‘chirped sinusoid’) of
the form

pi = sin(2πi2/N); i = 0, 1, ...N − 1

where N is the width of the pulse (≤ 128). Use function MATFIL to recover the
two spikes and study the effect of changing the width of the instrument function (i.e.
changing the value of N). Investigate the application of the matched filter using
additive Gaussian noise as discussed with regard to application of the Wiener filter
(i.e. Question 14.8).

Chapter 15

Statistics, Entropy and
Extrapolation

The processes discussed so far (i.e. in the previous chapter) have not taken into
account the statistical nature of the signal and in particular, the statistics of the (ad-
ditive) noise. To do this, another type of approach needs to be considered which is
based on Bayesian estimation. Bayesian estimation allows digital filters to be con-
structed whose performance is determined by various (statistical) parameters which
can be determined (approximately) from the statistics of the data. After discussing
Bayesian methods, this chapter covers the principles associated with using the en-
tropy as a criterion for extracting information from noise and finally, studies the
problem of extrapolating a bandlimited spectrum which occurs when we are required
to deconvolve data whose impulse response function is a sinc.

15.1 Bayes Rule

Suppose we toss a coin, observe whether we get heads or tails, and then repeat this
process a number of times. As the number of trials increases, we expect that the
number of times heads or tails occurs is half that of the number of trials. In other
words, the probability of getting heads is 1/2 and the probability of getting tails is also
1/2. Similarly, if a cubic dice with six faces is thrown repeatedly, then the probability
of it landing on any one particular face is 1/6. In general, if an experiment is repeated
N times and an event A occurs n times, then the probability of this event P (A) is
defined as

P (A) = lim
N→∞

(n
N

)
.

The probability is the relative frequency of an event as the number of trials tends to
infinity. However, in practice, only a finite number of trials can be conducted and we
therefore define the (experimental) probability of an event A as

P (A) =
n

N

494

15.1. BAYES RULE 495

where N is assumed to be large. Nevertheless, the results that follow are only strictly
valid under the limiting condition that N →∞, just as, for example, a delta sequence
Sn(t) is only strictly valid under the condition that

lim
n→∞

∞∫
−∞

Sn(t)f(t)dt =

∞∫
−∞

δ(t)f(t)dt = f(0).

Suppose we have two coins which we label C1 and C2. We toss both coins si-
multaneously N times and record the number of times C1 is heads, the number of
times C2 is heads and the number of times C1 and C2 are heads together. What is
the probability that C1 and C2 are heads together ? Clearly, if m is the number of
times out of N trials that heads occurs simultaneously, then the probability of such
an event must be given by

P (C1 heads and C2 heads) =
m

N
.

This is known as the joint probability of C1 being heads when C2 is heads. In general,
if two events A and B are possible and m is the number of times both events occur
simultaneously, then the joint probability is given by

P (A and B) =
m

N
.

Now suppose we setup an experiment in which two events A and B can occur. We
conduct N trials and record the number of times A occurs (which is n) and the
number of times A and B occur simultaneously (which is m). In this case, the joint
probability may written as

P (A and B) =
m

N
=
m

n
× n

N

Now, the quotient n/N is the probability P (A) that event A occurs. The quotient
m/n is the probability that events A and B occur simultaneously given that event A
has already occurred. The latter probability is known as the conditional probability
and is written as

P (B | A) =
m

n

where the symbol B | A means B ‘given’ A. Hence, the joint probability can be
written as

P (A and B) = P (A)P (B | A).

Suppose we undertake an identical experiment but this time we record the number
of times p that event B occurs and the number of times q that event B occurs
simultaneously with event A. In this case, the joint probability of events B and A
occurring together is given by

P (B and A) =
q

N
=
q

p
× p

N
.

The quotient p/N is the probability P (B) that event B occurs and the quotient q/p is
the probability of getting events B and A occurring simultaneously given that event

496 CHAPTER 15. STATISTICS, ENTROPY AND EXTRAPOLATION

B has already occurred. The latter probability is just the probability of getting A
‘given’ B, i.e.

P (A | B) =
q

p
.

Hence, we have
P (B and A) = P (B)P (A | B).

Now, the probability of getting A and B occurring simultaneously is exactly the same
as getting B and A occurring simultaneously, i.e.

P (A and B) = P (B and A).

By using the definition of these joint probabilities in terms of the conditional proba-
bilities we arrive at the following formula:

P (A)P (B | A) = P (B)P (A | B)

or alternatively

P (B | A) =
P (B)P (A | B)

P (A)
.

This result is known as Bayes rule. It relates the conditional probability of ‘B given
A’ to that of ‘A given B’.

15.1.1 Bayesian Estimation

In signal analysis, Bayes rule is written in the form

P (f | s) =
P (f)P (s | f)

P (s)

where f is the information we want to recover from the signal which is assumed (as
usual) to be the result of a time invariant stationary process and given by

s = p⊗ f + n

where p is the impulse response function and n is the noise. This result is the basis
for a class of filters which are known collectively as Bayesian estimators. In simple
terms, Bayesian estimation attempts to recover f in such a way that the probability of
getting f given s is a maximum. In practice, this is done by assuming that P (f) and
P (s | f) obey certain statistical distributions which are consistent with the experiment
in which s is measured. In other words, models are chosen for P (f) and P (s | f) and
then f is computed at the point where P (f | s) reaches its maximum value. This
occurs when

∂

∂f
P (f | s) = 0.

The function P is the Probability Density Functions or PDF. The PDF P (f | s) is
called the a posteriori PDF. Since the logarithm of a PDF varies monotonically with
that PDF, the a posteriori PDF is also a maximum when

∂

∂f
lnP (f | s) = 0.

15.1. BAYES RULE 497

Using Bayes rule, we can write this equation as

∂

∂f
lnP (s | f) +

∂

∂f
lnP (f) = 0.

Because the solution to this equation for f maximizes the a posteriori PDF, this
method is known as the maximum a posteriori or MAP method.

15.1.2 Some Simple Examples of Bayesian Estimation

Suppose we measure a single sample s (one real number) in an experiment where it
is known a priori that

s = f + n

where n is noise (a random number). Suppose that it is also known a priori that the
noise is determined by a zero mean Gaussian distribution of the form

P (n) =
1√

2πσ2
n

exp(−n2/2σ2
n)

where σn is the standard deviation of the noise. The probability of measuring s given
f - the conditional probability P (s | f) - is determined by the noise since

n = s− f

and we can therefore write

P (s | f) =
1√

2πσ2
n

exp[−(s− f)2/2σ2
n].

To find the MAP estimate, the PDF for f must also be known. Suppose that f also
has a zero-mean Gaussian distribution of the form

P (f) =
1√

2πσ2
f

exp(−f2/2σ2
f).

Then,
∂

∂f
lnP (s | f) +

∂

∂f
lnP (f) =

(s− f)
σ2

n

− f

σ2
f

= 0.

Solving this equation for f gives

f =
sΓ2

1 + Γ2

where Γ is the signal-to-noise ratio defined by

Γ =
σf

σn
.

Note that as σn → 0, f → s which must be true since s = f + n and n has a zero-
mean Gaussian distribution. Also note that the solution we acquire for f is entirely

498 CHAPTER 15. STATISTICS, ENTROPY AND EXTRAPOLATION

dependent on the prior information we have on the PDF for f . A different PDF
produces an entirely different solution. To illustrate this, let us suppose that f obeys
a Rayleigh distribution of the form

P (f) =

{
f
σ2

f
exp(−f2/2σ2

f), f ≥ 0;

0, f < 0.

In this case,
∂

∂f
lnP (f) =

1
f
− f

σ2
f

and we get (still assuming that the noise obeys the same zero-mean Gaussian distri-
bution)

(s− f)
σ2

n

+
1
f
− f

σ2
f

= 0.

This equation is quadratic in f and its solution is

f =
sΓ2

2(1 + Γ2)

[
1±

√
1 +

4σ2
n

s2Γ2

(
1 +

1
Γ2

)]
.

The solution for f which maximizes the value of P (f | s) can then be written in the
form

f =
s

2a

(
1 +

√
1 +

4aσ2
n

s2

)
where

a = 1 +
1
Γ2
.

Note that if
2σn

√
a

s
<< 1

then
f � s

a

which is identical to the MAP estimate obtained earlier where it was assumed that f
was Gaussian distributed.

15.1.3 The Maximum Likelihood Estimation

From the previous example, it is clear that the MAP estimate is only as good as the
prior information on the statistical behaviour of f - the object for which we seek a
solution. When P (f) is broadly distributed compared with P (s | f), we can apply a
further approximation. In particular, if P (f) is roughly constant, then ∂ lnP/∂f is
close to zero and therefore

∂

∂f
lnP (f | s) � ∂

∂f
lnP (s | f).

15.1. BAYES RULE 499

In this case, the a posteriori PDF is a maximum when

∂

∂f
lnP (s | f) = 0.

The estimate for f that is obtained by solving this equation for f is called the maxi-
mum likelihood or ML estimate. To obtain this estimate, only prior knowledge on the
statistical fluctuations of the conditional probability is required. If, as in the previous
example, we assume that the noise is a zero-mean Gaussian distribution, then the ML
estimate is given by

f = s.

Note that this is the same as the MAP estimate when the standard deviation of the
noise is zero.

ML .v. MAP Estimations

The basic difference between the MAP and ML estimates is that the ML estimate
ignores prior information about the statistical fluctuations of the object f . ML es-
timation only requires a model for the statistical fluctuations of the noise. For this
reason, the ML estimate is usually easier to compute. It is also the estimate to use
in cases where there is a complete lack of knowledge about the statistical behaviour
of the object. To further illustrate the difference between the MAP and ML estimate
and as prelude to their use in signal analysis, consider the case where we measure N
samples of a real signal si in the presence of additive noise ni which is the result of
transmitting a known signal fi modified by a random amplitude factor a, the samples
of the signal being given by

si = afi + ni; i = 1, 2, ..., N.

The problem is to find an estimate for a. To solve problems of this type, using
Bayesian estimation, we need to introduce multi-dimensional probability theory. In
this case, the PDF is a function of not just one number s but the set of numbers
s1, s2, ..., sN , i.e. a vector space. To emphasize this, we use the vector notation

P (s) ≡ P (s1, s2, s3, ..., sN).

The ML estimate is given by solving the equation

∂

∂a
lnP (s | a) = 0

for a where
P (s | a) ≡ P (s1, s2, ..., sN | a).

Let us assume that the noise is described by a zero-mean Gaussian distribution of the
form

P (n) ≡ P (n1, n2, ..., nN) =
1√

2πσ2
n

exp

(
− 1

2σ2
n

N∑
i=1

n2
i

)
.

500 CHAPTER 15. STATISTICS, ENTROPY AND EXTRAPOLATION

The conditional probability is then given by

P (s | a) =
1√

2πσ2
n

exp

(
− 1

2σ2
n

N∑
i=1

(si − afi)2
)

and
∂

∂a
lnP (s | a) =

1
σ2

n

N∑
i=1

(si − afi)fi = 0.

Solving this last equation for a we obtain the ML estimate

a =

N∑
i=1

sifi

N∑
i=1

f2
i

.

The MAP estimate is obtained by solving the equation

∂

∂a
lnP (s | a) +

∂

∂a
lnP (a) = 0

for a. Using the same distribution for the conditional PDF, let us assume that a has
a zero-mean Gaussian distribution of the form

P (a) =
1√
2πσ2

a

exp(−a2/2σ2
a)

where σ2
a is the standard deviation of a. In this case,

∂

∂a
lnP (a) = − a

σ2
a

and hence, the MAP estimate is obtained by solving the equation

∂

∂a
lnP (s | a) +

∂

∂a
lnP (a) =

1
σ2

n

N∑
i=1

(si − afi)fi − a

σ2
a

= 0

for a. The solution to this equation is given by

a =

σ2
a

σ2
n

N∑
i=1

sifi

1 + σ2
a

σ2
n

N∑
i=1

f2
i

.

Note that if σa >> σn, then,

a �

N∑
i=1

sifi

N∑
i=1

f2
i

which is the same as the ML estimate.

15.2. THE MAXIMUM LIKELIHOOD METHOD 501

15.2 The Maximum Likelihood Method

The maximum likelihood method uses the principles of Bayesian estimation discussed
above to design deconvolution algorithms or filters. The problem is as follows (where
all discrete functions are assumed to be real): Given the digital signal

si =
∑

j

pi−jfj + ni,

find an estimate for fi when pi is known together with the statistics for ni. The ML
estimate for fi is determined by solving the equation

∂

∂fk
lnP (s1, s2, .., sN | f1, f2, ..., fN) = 0.

As before, the algebraic form of the estimate depends upon the model that is chosen
for the PDF. Assume that the noise has a zero-mean Gaussian distribution. In this
case, the conditional PDF is given by

P (s | f) =
1√

2πσ2
n

exp

⎛⎝− 1
2σ2

n

∑
i

(si −
∑

j

pi−jfj)2

⎞⎠
where σn is the standard deviation of the noise. Substituting this result into the
previous equation and differentiating, we get (see Chapter 8 - the orthogonality prin-
ciple)

1
σ2

n

∑
i

⎛⎝si −
∑

j

pi−jfj

⎞⎠ pi−k = 0

or ∑
i

sipi−k =
∑

i

⎛⎝∑
j

pi−jfj

⎞⎠ pi−k.

Using the appropriate symbols, we may write this equation in the form

sn 	 pn = (pn ⊗ fn)	 pn

where 	 and ⊗ denote the correlation and convolution sums respectively. The ML
estimate is obtained by solving the equation above for fn. This can be done by
transforming it into Fourier space. Using the correlation and convolution theorems,
in Fourier space this equation becomes

SmP
∗
m = (PmFm)P ∗

m

and thus

fn = IDFT(Fm) = IDFT
(
SmP

∗
m

| Pm |2
)

where IDFT denotes the inverse DFT. Thus, for Gaussian statistics, the ML filter is
given by

ML filter =
P ∗

m

| Pm |2
which is identical to the inverse filter.

502 CHAPTER 15. STATISTICS, ENTROPY AND EXTRAPOLATION

15.3 Maximum a Posteriori Method

This method is based on computing fi such that

∂

∂fk
lnP (s1, s2, ..., sn | f1, f2, ..., fn) +

∂

∂fk
lnP (f1, f2, ..., fn) = 0.

Consider the following models for the PDF’s:

(i) Zero-mean Gaussian statistics for the noise,

P (s | f) =
1√

2πσ2
n

exp

⎛⎝− 1
2σ2

n

∑
i

| si −
∑

j

pi−jfj |2
⎞⎠ .

(ii) Zero-mean Gaussian distribution for the object

P (f) =
1√

2πσ2
f

exp

(
− 1

2σ2
f

∑
i

| fi |2
)

where for generality, we also assume that the data may be complex. By substituting
these expressions for P (s | f) and P (f) into the equation above, we obtain (using the
orthogonality principle)

1
σ2

n

∑
i

⎛⎝si −
∑

j

pi−jfj

⎞⎠ p∗i−k −
1
σ2

f

fk = 0.

Rearranging, we may write this result in the form

sn 	 p∗n =
σ2

n

σ2
f

fn + (pn ⊗ fn)	 p∗n.

In Fourier space, this equation becomes

SmP
∗
m =

1
Γ2
Fm+ | Pm |2 Fm.

The MAP filter for Gaussian statistics is therefore given by

MAP filter =
P ∗

m

| Pm |2 +1/Γ2

where
Γ =

σf

σn

which defines the signal-to-noise ratio. Note that this filter is the same as the Weiner
filter under the assumption that the power spectra of the noise and object are constant.
Also, note that

MAP filter → ML filter as σn → 0.

15.4. THE MAXIMUM ENTROPY METHOD 503

The algebraic form of this filter is based on the assumption that the noise is Gaussian.
For PDF’s of other forms, the computation of the filter can become more complicated.
Note that in practice, the value of σn can be obtained by recording the output of a
system with no input. The output is then noise driven and a histogram can be com-
puted from this output noisefield from which an estimate of σn can be computed
using a least squares fit to the function exp(−n2/2σ2

n) for example. Bayesian estima-
tion is a very useful approach for the extraction of ‘signals from noise’ when accurate
statistical information on the signal and noise are available and has a wide range of
applications other than those that have been focused on here. However, the method
often leads to estimates that are idealized ‘middle of the road’ solutions and there is
some truth to the observation that with Bayesian statistics, one sees a horse, thinks
of a donkey and ends up with a mule!

15.4 The Maximum Entropy Method

The entropy of a system describes its disorder; it is a measure of the lack of information
about the exact state of a system. Information is a measure of order, a universal
measure applicable to any structure or any system. It quantifies the instructions
that are needed to produce a certain organisation. There are several ways in which
one can quantify information but a specially convenient one is in terms of binary
choices. In general, we compute the information inherent in any given arrangement
from the number of choices we must make to arrive at that particular arrangement
among all possible ones. Intuitively, the more arrangements that are possible, the
more information that is required to achieve a particular arrangement.

15.4.1 Information and Entropy

Consider a simple linear array such as a deck of eight cards which contains the ace of
diamonds for example and where we are allowed to ask a series of sequential questions
as to where in the array the card is. The first question we could ask is in which half
of the array does the card occur which reduces the number of cards to four. The
second question is in which half of the remaining four cards is the ace of diamonds
to be found leaving just two cards and the final question is which card is it. Each
successive question is the same but applied to successive subdivisions of the deck
and in this way we obtain the result in three steps regardless of where the card
happens to be in the deck. Each question is a binary choice and in this example, 3 is
the minimum number of binary choices which represents the amount of information
required to locate the card in a particular arrangement. This is the same as taking
the binary logarithm of the number of possibilities, since log2 8 = 3. Another way of
appreciating this result, is to consider a binary representation of the array of cards,
i.e. 000,001,010,011,100,101,110,111, which requires three digits or bits to describe
any one card. If the deck contained 16 cards, the information would be 4 bits and if
it contained 32 cards, the information would be 5 bits and so on. Thus, in general,
for any number of possibilities N , the information I for specifying a member in such
a linear array, is given by

I = − log2N = log2

1
N

504 CHAPTER 15. STATISTICS, ENTROPY AND EXTRAPOLATION

where the negative sign is introduced to denote that information has to be acquired
in order to make the correct choice, i.e. I is negative for all values of N larger than 1.
We can now generalize further by considering the case where the number of choices
N are subdivided into subsets of uniform size ni. In this case, the information needed
to specify the membership of a subset is given not by N but by N/ni and hence, the
information is given by

Ii = log2 pi

where pi = ni/N which is the proportion of the subsets. Finally, if we consider the
most general case, where the subsets are nonuniform in size, then the information
will no longer be the same for all subsets. In this case, we can consider the mean
information given by

I =
∑

i

pi log2 pi

which is the Shannon entropy measure established in his classic works on information
theory in the 1940s. Information, as defined here, is a dimensionless quantity. How-
ever, its partner entity in physics has a dimension called ‘Entropy’ which was first
introduced by Ludwig Boltzmann as a measure of the dispersal of energy, in a sense,
a measure of disorder, just as information is a measure of order. In fact, Boltmann’s
entropy concept has the same mathematical roots as Shannon’s information concept
in terms of computing the probabilities of sorting objects into bins (a set of N into
subsets of size ni) and in statistical mechanics the entropy is defined as

E = −k
∑

i

pi ln pi

where k is Boltzmann’s constant (=3.2983×10−24Calories/oC). Shannon’s and Bolt-
mann’s equations are similar. E and I have opposite signs, but otherwise differ only
by their scaling factors and they convert to one another by E = −(k ln 2)I. Thus, an
entropy unit is equal to −k ln 2 of a bit. In Boltzmann’s equation, the probabilities
pi refer to internal energy levels. In Shannon’s equations pi are not a priori assigned
such specific roles and the expression can be applied to any physical system to provide
a measure of order. Thus, information becomes a concept equivalent to entropy and
any system can be described in terms of one or the other. An increase in entropy
implies a decrease of information and vise versa. This gives rise to the fundamental
conservation law:

The sum of (macroscopic) information change and entropy change in a given system
is zero.

In signal analysis, the entropy of a signal is a measure of the lack of information about
the exact information content of the signal, i.e. the precise value of fi for a given i.
Thus, noisy signals have a larger entropy. The general definition for the entropy of a
system E is

E = −
∑

i

pi ln pi

where pi is the probability that the system is in a state i. The negative sign is
introduced because the probability is a value between 0 and 1 and therefore, ln pi is
a value between 0 and −∞, but the Entropy is by definition, a positive value.

15.4. THE MAXIMUM ENTROPY METHOD 505

Maximum entropy deconvolution is based on modelling the entropy of the infor-
mation input or the object function fi. A reconstruction for fi is found such that

E = −
∑

i

fi ln fi

is a maximum which requires that fi > 0∀i. Note that the function x lnx has a single
local minimum value between 0 and 1 whereas the function −x lnx has a single local
maximum value. It is a matter of convention as to whether a criteria of the type

E =
∑

i

fi ln fi

or
E = −

∑
i

fi ln fi

is used leading to (strictly speaking) a minimum or maximum entropy criterion respec-
tively. In some ways, the term ‘maximum entropy’ is misleading because it implies
that we are attempting to recover information from noise with minimum information
content and the term ‘minimum entropy’ conveys a method that is more consistent
with the philosophy of what is being attempted, i.e. to recover useful and unam-
biguous information from a signal whose information content has been distorted by
(additive) noise. For example, suppose we input a binary stream into some time
invariant linear system, where f = (...010011011011101...). Then, the input has an
entropy of zero since 0 ln 0 = 0 and 1 ln 1 = 0. We can expect the output of such a
system to generate floating point values (via the convolution process) which are then
perturbed through additive noise. The output si = pi ⊗ fi + ni (where it is assumed
that si > 0∀i) will therefore have an entropy that is greater than 0. Clearly, as the
magnitude of the noise increases, so, the value of the entropy increases leading to
greater loss of information on the exact state of the input (in terms of fi, for some
value of i being 0 or 1). With the deconvolution process, we ideally want to recover
the input without any bit-errors. In such a hypothetical case, the entropy of the
restoration would be zero just as a least squares error would be. However, just as we
can seek a solution in which the least squares error is a minimum, so we can attempt
a solution in which the entropy is a minimum in the case when we define it as

E =
∑

i

fi ln fi

or a maximum in the case when we define the entropy as

E = −
∑

i

fi ln fi.

15.4.2 Maximum Entropy Deconvolution

Given the signal equation
si = pi ⊗ fi + ni

506 CHAPTER 15. STATISTICS, ENTROPY AND EXTRAPOLATION

we find fi such that the entropy E, defined by

E = −
∑

i

fi ln fi

is a maximum. Note that because the ln function enters in to this argument, the
maximum entropy method must be restricted to cases where fi is real and positive.
Hence, the method can not be applied to an original (dual-polarity) signal but to its
amplitude modulations for example.

From the signal equation, we can write

si −
∑

j

pi−jfj = ni

where we have written the (digital) convolution operation out in full. Squaring both
sides and summing over i, we can write

∑
i

⎛⎝si −
∑

j

pi−jfj

⎞⎠2

−
∑

i

n2
i = 0.

Now, this equation holds for any constant λ (the Lagrange multiplier) which is a
multiple of the left hand side. We can therefore write the equation for E as

E = −
∑

i

fi ln fi − λ

⎡⎢⎣∑
i

⎛⎝si −
∑

j

pj−ifj

⎞⎠2

−
∑

i

n2
i

⎤⎥⎦
because the second term on the right hand side is zero anyway (for all values of λ).
Given this equation, our problem is to find fi such that the entropy E is a maximum,
i.e.

∂E

∂fk
= 0 ∀k.

Differentiating and switching to the notation for 1D convolution⊗ and 1D correlation
	, we find that E is a maximum when

−1− ln fi + 2λ(si 	 pi − pi ⊗ fi 	 pi) = 0

or, after rearranging,

fi = exp[−1 + 2λ(si 	 pi − pi ⊗ fi 	 pi)].

This equation is transcendental in fi and as such, requires that fi is evaluated itera-
tively, i.e.

fn+1
i = exp[−1 + 2λ(si 	 pi − pi ⊗ fn

i 	 pi)], n = 1, 2, ..., N.

The rate of convergence of this solution is determined by the value of the Lagrange
multiplier given an initial estimate of fi, (i.e. f0

i) in a way that is analogous to the
use of a relaxation parameter for solving the equation x = Mx + c iteratively (see
Chapter 9).

15.4. THE MAXIMUM ENTROPY METHOD 507

15.4.3 Linearization

The iterative nature of this nonlinear estimation method may be undesirable, primar-
ily because it is time consuming and may require many iterations before a solution
is achieved with a desired tolerance. The MEM can be linearized by retaining the
first two terms (i.e. the linear terms) in the series representation of the exponential
function leaving us with the following equation

fi = 2λ(si 	 pi − pi ⊗ fi 	 pi).

Using the convolution and correlation theorems, in Fourier space, this equation be-
comes

Fi = 2λSiP
∗
i − 2λ | Pi |2 Fi

which after rearranging gives

Fi =
SiP

∗
i

| Pi |2 + 1
2λ

.

Thus, we can define a linearized maximum entropy filter of the form

P ∗
i

| Pi |2 + 1
2λ

.

Note that this filter is very similar to the Wiener filter. The only difference is that the
Wiener filter is regularized by a constant determined by the SNR of the data whereas
this filter is regularized by a constant determined by the Lagrange multiplier.

15.4.4 The Cross Entropy Method

The cross entropy or Patterson entropy as it is sometimes referred to, uses a criterion
in which the entropy measure

E = −
∑

i

fi ln
(
fi

wi

)
is maximized where wi is some weighting function based on any available a priori
information of the structure of fi. If the computation described earlier is re-worked
using this definition of the cross entropy, then we obtain the result

fi = wi exp[−1 + 2λ(si 	 pi − pi ⊗ fi 	 pi)].

The cross entropy method has a synergy with the Wilkinson test in statistics in
which a discrete PDF or histogram Pi say of a stochastic field pi is tested against a
histogram Qi representative of a stochastic field qi. A standard test to quantify how
close the stochastic behaviour of pi is to qi (the null-hypothesis test) is to use the
Chi-squared test in which we compute

χ2 =
∑

i

(
Pi −Qi

Qi

)2

.

The Wilkinson test uses the metric

E = −
∑

i

Pi ln
(
Pi

Qi

)
.

508 CHAPTER 15. STATISTICS, ENTROPY AND EXTRAPOLATION

15.5 Spectral Extrapolation

The effect of deconvolving a signal is to recover the information it contains by com-
pensating for the effect of the instrument function or Impulse Response Function
(IRF). The resolution of the information obtained by this process is determined by
the bandwidth of the data which in turn, is controlled by the finite frequency response
of the system and is a characteristic of the Transfer Function (the Fourier transform
of the IRF). Spectral extrapolation is a process which attempts to overcome the lim-
ited resolving power of an instrument by designing algorithms which extrapolate the
complex spectrum of the information from a finite sample of data.

Bandlimited Functions

A bandlimited function is a function whose spectral bandwidth is finite and nearly
all real signals of practical significance are bandlimited functions. The bandwidth
determines the resolution of a signal. This leads one to consider the problem of how the
bandwidth and hence the resolution of the signal, can be increased synthetically. In
other words, how can we extrapolate the spectrum of a bandlimited function from an
incomplete sample. Solutions to this type of problem are important in signal analysis
when a resolution is required that is not a characteristic of the signal provided and is
difficult or even impossible to achieve experimentally. The type of resolution obtained
by extrapolating the spectrum of a bandlimited function is sometimes referred to as
super resolution.

Formulation of the Problem

The basic problem is an inverse problem. In its simplest form, it is concerned with
the inversion of the integral equation

s(t) =

∞∫
−∞

f(τ)
sin[Ω(t− τ)]

(t− τ) dτ

for f where Ω determines the bandwidth of the signal s and hence the resolution of
f . The equation above is a convolution over the interval [−∞,∞]. Hence, we may
view our problem (i.e. the super resolution problem) in terms of deconvolving s to
recover the object f in the special case when the IRF is a sinc function.

Eigenfunction Solution

In practice, signals have a finite duration and so

f(t) = 0, | t |> T.

In this case, we can restrict the convolution integral to the interval [−T, T] and model
the signal as

s(t) =

T∫
−T

f(τ)
sin[Ω(t− τ)]

(t− τ) dτ.

15.5. SPECTRAL EXTRAPOLATION 509

The object function f(t) can be expressed in the following form

f(t) =
∞∑

n=0

λ−1
n

⎡⎣ T∫
−T

s(τ)φn(τ)dτ

⎤⎦ φn(t)

where the eigenfunctions φn are the prolate spheroidal wave functions given by the
solution to the equation

T∫
−T

φn(τ)
sin[Ω(t− τ)]
π(t− τ) dτ = λnφn(t)

and λn are the associated eigenvalues. Like other theoretical inverse solutions, this
solution is extremely sensitive to errors in measuring s (i.e. experimental noise). It
is therefore often difficult to achieve a stable solution using this method with real
signals.

Solution by Analytic Continuation

Using the convolution theorem, we can write our equation in Fourier space as

S(ω) = H(ω)F (ω), | ω |≤ ∞

where

H(ω) =

{
1
2 , | ω |≤ Ω;
0, | ω |> Ω.

or alternatively

S(ω) =

{
1
2F (ω), | ω |≤ Ω;
0, otherwise.

Here, S and F are the Fourier transforms of s and f respectively. In this form, our
problem is to recover F (ω) for all values of ω from S(ω). Because f has finite support,
its spectrum is analytic and can therefore, in principle, be analytically continued
beyond [−Ω,Ω] to provide higher resolution. This can be done by computing the
Taylor series for F , i.e.

F (ω) =
∞∑

n=0

F (n)(0)
ωn

n!
,

The derivatives F (n) of F at ω = 0 can be determined from the finite segment F (ω),
| ω |≤ Ω which is equal to S. Hence, we can write

F (ω) =
∞∑

n=0

S(n)(0)
ωn

n!

This method of extrapolation is known as analytic continuation. Once again, although
of theoretical interest, in practice, this method is fraught with problems. First, it
not possible to evaluate S(n)(0) accurately when the signal is noisy. Secondly, the

510 CHAPTER 15. STATISTICS, ENTROPY AND EXTRAPOLATION

truncation of the Taylor series (which is necessary in practice) yields large errors for
large ω, and since knowledge of F (ω) is required for all values of ω, errors of this kind
are unacceptable. Thus, in practice, analytic continuation fails even in the presence
of small amounts of noise.

Re-evaluation of the Problem

There are two important features of the equation

s(t) =

T∫
−T

f(τ)
sin[Ω(t− τ)]

(t− τ) dτ

and therefore its inversion, which in practice are entirely unsuitable: (i) It is assumed
that the signal s can be measured without any experimental error; (ii) it is assumed
that all the functions are continuous. In practice, we are usually provided with a
digital signal which is a discrete set of real or complex numbers. From this digital
signal, we can generate discrete Fourier data (via the discrete Fourier transform).
These data are related to s via the transform

Sn ≡ S(ωn) =

T∫
−T

s(t) exp(−iωnt)dt, | ωn |≤ Ω.

They are a set of N numbers and define the bandlimited signal

sBL(t) =
N/2−1∑

n=−N/2

Sn exp(iωnt).

This signal may be complex, real and of alternating or fixed polarity depending on
the type of experiment that is conducted. In each case, the problem is to reconstruct
the object f from N spectral samples in the presence of additive noise n.

Ill-posed Problems

There is no exact, unique or even correct solution to the type of problem that has
been presented here. In other words, it is simply not possible to derive a solution
as such for f from Sn, only an estimate for it. There are two reasons for this: (i)
the exact value of the noise n at t is not known, only (at best) the probability of n
having a particular value at t; (ii) even in the absence of noise, this type of problem
is ‘ill-posed’. A problem is well posed, if the solution:

(i) exists;

(ii) is unique;

(iii) depends continuously on the data.

If a problem violates any of these conditions, then it is ill-posed. It is condition
(iii) that causes the main problem with digital signals. The finite nature of the data

15.6. THE GERCHBERG-PAPOULIS METHOD 511

means that there are many permissible solutions to the problem. As a consequence,
we are faced with the problem of having to select one particular reconstruction. To
overcome this inherent ambiguity, prior knowledge must be used to reduce the class
of allowed solutions. For this reason, the use of prior information in the treatment
of ill-posed problems of this nature is essential. In addition to prior information,
the discrete nature of the data forces one to employ mathematical models for f . In
principle, a wide variety of different models can be used which accounts for the range
and diversity of algorithms that have been designed to cope with problems of this
kind. Since all such algorithms attempt to solve the same basic problem, attention
should focus on designs which are simple to implement and compute, data adaptive
and reliable in the presence of noise of a varying dynamic range. Models for the
object and conditions for the reconstruction should be utilized which are amenable to
modification as knowledge about the object improves. This provides the opportunity
to design an algorithm that is characterized by criteria and/or conditions for the
reconstruction which is best suited to a particular application.

15.6 The Gerchberg-Papoulis Method

Given the equation

Sn ≡ S(ωn) =

T∫
−T

s(t) exp(−iωnt)dt, | ωn |≤ Ω,

our problem is to solve for f given the data Sn. We start by considering a linear
polynomial model for f(t) of the following form,

f(t) =
∑

n

An exp(iknt)

where ∑
n

≡
N/2−1∑

n=−N/2

.

This model for f is just a complex Fourier series (with kn = n). In order to compute
f , the coefficients An (which are complex numbers) must be known. Given the model
above, our problem is reduced to finding a method of computing An. How this is done
depends on the criterion for the reconstruction that is chosen. The choice depends on
a number of factors, such as the nature of the data, the complexity of the resulting
algorithm and its computational cost. Here, we consider a least squares approach.
The application of this approach for spectral extrapolation is known as the Gerchberg-
Papoulis method. In this case, An are chosen in such a way that the mean square
error

e =

T∫
−T

| s(t)− f(t) |2 dt

512 CHAPTER 15. STATISTICS, ENTROPY AND EXTRAPOLATION

is a minimum. Substituting the equation

f(t) =
∑

n

An exp(iωnt)

into the above equation and differentiating with respect to Am we get (using the
orthogonality principle)

∂e

∂Am
= −

T∫
−T

(
s−

∑
n

An exp(iωnt)

)
exp(−iωmt)dt = 0.

Note that the above result is obtained using (see Chapter 8)

∂e

∂Re[Am]
= 0;

∂e

∂Im[Am]
= 0.

Interchanging the order of integration and summation, we obtain the following equa-
tion

T∫
−T

s(t) exp(−iωmt)dt =
∑

n

An

T∫
−T

exp[−i(ωm − ωn)t]dt.

The left hand side of this equation is just the discrete Fourier data that is provided
S(ωn) and the integral on the right hand side of this equation gives a sinc function,

T∫
−T

exp[−i(ωm − ωn)t]dt = 2T sinc[(ωm − ωn)T]

By solving the equation

S(ωn) = 2T
∑

n

Ansinc[T (ωm − ωn)]

for An, the object function f(t) can be obtained.

15.7 Application of Weighting Functions

The solution above is a least squares approximation for f(t). To compute An from
S(ωn), the value of T (the support of the object) needs to be known. We can therefore
write f(t) in the closed form,

f(t) = w(t)
∑

n

An exp(iωnt)

where we have introduced the weighting function

w(t) =

{
1, | t |≤ T ;
0, | t |> T.

15.7. APPLICATION OF WEIGHTING FUNCTIONS 513

This function is a simple form of a priori information. In this case, it is information
about the finite extent of the object. The algebraic form of equation

f(t) = w(t)
∑

n

An exp(iωnt)

suggests that the function w(t) is used to incorporate more general prior knowledge
about the object. Consider the case where we are given the data S(ωn) defined by
the equation

Sn ≡ S(ωn) =

T∫
−T

s(t) exp(−iωnt)dt, | ωn |≤ T

together with some form of prior knowledge on the structure of f(t) that can be used
to construct a suitable weighting function w(t). The weighting function can be used
to compute f(t) as follows:

f(t) = w(t)
∑

n

An exp(iωnt).

Substituting this equation into

e =

T∫
−T

| s(t)− f(t) |2 dt

we find that the error is a minimum when
T∫

−T

s(t)w(t) exp(−iωmt)dt =
∑

n

An

T∫
−T

[w(t)]2 exp[−i(ωm − ωn)t]dt.

Here, a problem occurs which is that for arbitrary functions w (which is what we must
assume if different types of a priori information are to be incorporated), the integral
on the left hand side of the above equation is not the same as the data provided S(ωn).
In other words, the equation above cannot be solved from the available data; it is not
‘data consistent’. A way of overcoming this difficulty is to modify the expression for
the mean square error function and introduce the following ‘inverse weighted’ form,

e =

T∫
−T

| s(t)− f(t) |2 1
w(t)

dt.

This is a weighted Hilbert space, designed to provide data consistency. It is a minimum
when

T∫
−T

s(t) exp(−iωmt)dt =
∑

n

An

T∫
−T

w(t) exp[−i(ωm − ωn)t]dt.

Here, the data on the left hand side of the above equation is equal to S(ωn). We
therefore have a data consistent equation of the form

S(ωm) =
∑

n

AnW (ωm − ωn)

514 CHAPTER 15. STATISTICS, ENTROPY AND EXTRAPOLATION

where

W (ωm) =

T∫
−T

w(t) exp(−iωmt)dt, | ωm |≤ Ω.

This method provides a solution which allows arbitrary weighting functions w(t) con-
taining additional prior information on the structure of f to be introduced. The
method can be summarized as follows:

1. Given the data S(ωn), construct a weighting function w(t) that is obtained from
a priori knowledge on the structure of f(t).

2. Compute W (ωn) from w(t).

3. Solve the equation ∑
n

AnW (ωm − ωn) = S(ωm)

to obtain the coefficients An.

4. Compute the estimate w(t)
∑
n
An exp(iωnt).

This algorithm is based on minimizing the inverse weighted mean square error function
given by

e =

T∫
−T

| s(t)− f(t) |2 1
w(t)

dt.

Note that the algebraic form of this error indicates that w should be greater than
zero to avoid singularities occurring in 1/w. Also note that when

w(t) = 1, | t |≤ T

the former least squares (Gerchberg-Papoulis method) estimate is obtained.

Practical Considerations

In practice, the data S(ωn) is obtained by taking the discrete Fourier transform of
some band limited signal sBL(t). The data W (ωn) is obtained by computing the
discrete Fourier transform of w(t) and reducing the bandwidth of the spectrum so
that it is the same as S(ωn). We then solve∑

n

AnW (ωm − ωn) = S(ωm)

for An. This equation is just a discrete convolution in Fourier space, i.e.

S(ωn) = A(ωn)⊗W (ωn)

where ⊗ denotes the convolution sum. Hence, using the product theorem, we can
write (ignoring scaling)

sBL(t) = a(t)wBL(t)

15.8. BURG’S MAXIMUM ENTROPY METHOD 515

where sBL and wBL are bandlimited estimates of s(t) and w(t) respectively given by

sBL(t) =
∑

n

S(ωn) exp(iωnt),

wBL(t) =
∑

n

W (ωn) exp(iωnt)

and
a(t) =

∑
n

A(ωn) exp(iωnt).

Using the (weighted) model for f(t) we have

f(t) = w(t)
∑

n

An exp(iωnt) ≡ w(t)
∑

n

A(ωn) exp(iωnt) = w(t)a(t)

and hence, the minimum mean square estimate of f can be written as

f(t) =
w(t)
wBL(t)

sBL(t).

From this equation, it is easy to compute f given sBL and w. All that is required is
a DFT to obtain wBL from w which can be computed using an FFT.

15.8 Burg’s Maximum Entropy Method

The application of a maximum entropy criterion for solving the spectral extrapolation
problem is usually attributed to a research thesis by J P Burg published in 1975 at
Stanford University, USA. This technique is sometimes called the ‘all poles’ method
because of the nature of the estimation model used. It is a method which is often
associated with the reconstruction of a power spectrum but can in fact be applied
to any problem involving the reconstruction of signals from band limited data. The
problem is, given

Fn ≡ F (kn) =

T∫
−T

f(t) exp(−iωnt)dt

where | ωn |≤ Ω (the bandwidth), recover f(t). This problem is equivalent to extrap-
olating the data Fn beyond the bandwidth Ω. Suppose we consider a model for f(t)
given by

f(t) =
1

|∑
n
Anφn(t) |2

where

φn(t) = exp(−iωnt) and
∑

n

≡
N−1∑
n=0

.

516 CHAPTER 15. STATISTICS, ENTROPY AND EXTRAPOLATION

Further, let us consider a criterion for computing An that is based on maximising the
Entropy of the signal E defined by

E =

T∫
−T

ln f(t)dt

which requires us to impose the condition f(t) > 0 ∀ t. Now, the Entropy measure
E(Am) is a maximum when

∂E

∂Am
= 0 for m > 0.

Using the model for f(t), the entropy can be written in the form

E = −
T∫

−T

ln |
∑

n

Anφn(t) |2 dt.

Differentiating, we get

∂E

∂Am
= − ∂

∂Am

T∫
−T

ln |
∑

n

Anφn(t) |2 dt

= −
T∫

−T

1
|∑

n
Anφn(t) |2

∂

∂Am
|
∑

n

Anφn(t) |2 dt

=

T∫
−T

f(t)
∑

n

Anφn(t)φ∗n(t)dt = 0

or with φn(t) = exp(−iωnt),

∑
n

An

T∫
−T

f(t) exp[−i(ωn − ωm)t]dt = 0

or ∑
n

AnF (ωn − ωm) = 0, m > 0.

where F (ωn) is the data given. This is a data consistent result if in the case when
m = 0, we use the normalization condition:∑

n

AnF (ωn − ωm) = 1, m = 0.

We are then required to solve the following system of equations:

∑
n

AnFn−m =

{
1, m = 0;
0, m > 0.

15.9. SUMMARY OF IMPORTANT RESULTS 517

In matrix form, this system can be written as:⎛⎜⎜⎜⎜⎜⎝
F0 F1 F2 . . . FN−1

F−1 F0 F1 . . . FN−2

F−2 F−1 F0 . . . FN−3

...
...

...
. . .

...
F1−N F2−N F3−N . . . F0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
A0

A1

A2

...
AN−1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
0
0
...
0

⎞⎟⎟⎟⎟⎟⎠ .

The characteristic matrix is a Toeplitz matrix and by solving this system of equations
for An we can compute f(t) using

f(t) =
1

|∑
n
An exp(−iωnt) |2 .

15.9 Summary of Important Results

Bayes Rule
P (A)P (B | A) = P (B)P (A | B)

where P (A) and P (B) are the probabilities that eventsA andB will occur respectively
and P (B | A) and P (A | B) are the conditional probability of B given A and the
conditional probability of A given B respectively.

Bayesian Estimation (for a linear time invariant system with additive noise
Given that

s = p⊗ f + n,

find f such that

P (f | s) =
P (s | f)P (f)

P (s)
.

Maximum a Posteriori Estimation
Given that

s = p⊗ f + n,

find f such that
∂

∂f
lnP (s | f) +

∂

∂f
lnP (f) = 0.

Maximum Likelihood Estimation
Given that

s = p⊗ f + n,

find f such that
∂

∂f
lnP (s | f) = 0.

518 CHAPTER 15. STATISTICS, ENTROPY AND EXTRAPOLATION

Maximum Entropy Estimation
Given that

si = pi ⊗ fi + ni,

find fi such that the entropy E, defined by

E = −
∑

i

fi ln fi

is a maximum where fi > 0, ∀i.

Spectral Extrapolation of Bandlimited Signals
Given the bandlimited signal (with a bandwidth of 2Ω)

sBL(t) = sinc(Ωt)⊗ f(t) + n(t), | t |≤ T

where n(t) is bandlimited noise (with the same bandwidth), find an estimate for f(t).
The problem is equivalent to, given

Sn ≡ S(ωn) =

T∫
−T

s(t) exp(−iωnt)dt

where
s(t) = f(t) + n(t)

and
| ωn |≤ Ω,

estimate f(t).

Gerchberg-Papoulis Method

f(t) =
∑

n

An exp(iknt)

where An is given by solving the equation

S(ωn) = 2TAn ⊗ sinc[T (ωm − ωn)]

for An and is based on minimizing

e(An) = ‖s(t)− f(t)‖22.

Weighted Gerchberg-Papoulis Method

f(t) =
w(t)
wBL

sBL(t)

where w (weighting function) is a priori information on the functional characteristics
of f andwBL is the bandlimited a priori information (bandlimited weighting function).
The solution is based on a linear polynomial model of the form

f(t) = w(t)
∑

n

An exp(iωnt)

15.10. FURTHER READING 519

and computing An by minimizing the inverse weighted mean square error

e(An) = ‖ | s(t)− f(t) | /
√
w(t)‖22

where Re[w(t)] > 0, ∀t.

(Burg’s) Maximum Entropy Method

f(t) =
1

|
N−1∑
n=0

An exp(−iωnt) |2

where An are computed subject to the maximum entropy criterion in which the En-
tropy is defined by

E =

T∫
−T

ln f(t)dt, f(t) > 0 ∀ t,

and given by solving
N−1∑
n=0

AnFn−m =

{
1, m = 0;
0, m > 0;

where

Fn ≡ F (ωn) =

T∫
−T

f(t) exp(−iωnt)dt.

15.10 Further Reading

• Blackman R B and Yukey J W, The Measurement of Power Spectra, Dover,
1958.

• Papoulis A, Probability, Random Variables and Stochastic Processes, McGraw-
Hill, 1965.

• Van Trees H L, PDetection, Estimation and Modulation Theory, Wiley, 1968.

• Burg J P, Maximum Entropy Spectral Analysis, PhD Thesis, Stanford CA, Stan-
ford University, 1975.

• Papoulis A, Signal Analysis, McGraw-Hill, 1977.

• Erickson G J and Smith C R (Eds.), Maximum Entropy and Bayesian Methods
in Science and Engineering, Kluwer Academic Publishers, 1988.

520 CHAPTER 15. STATISTICS, ENTROPY AND EXTRAPOLATION

• Oppenheim A V (Ed.), Applications of Digital Signal Processing, Prentice-Hall,
1978.

• Buck B B and Macaulay V A (Eds.), Maximum Entropy in Action, Clarendon
Press, 1992.

• Lee P M, Bayesian Statistics, Arnold, 1997.

15.11 Problems

15.1 Given the data Sn which is taken to be a discrete bandlimited spectrum of the
signal

s(t) = f(t) + n(t)

where n is the noise, obtain an ML estimate for the object function f of the form

f(t) = w(t)
∑

n

An exp(iωnt)

based on the finding the coefficients An subject to the condition that

∂

∂Am
lnP (s | f) = 0

where

P (n) =
1√

2πσ2
n

exp

⎛⎝− 1
2σ2

n

T∫
−T

| n(t) |2
w(t)

dt

⎞⎠ .

15.2 Obtain an ML estimate based on question 15.1 above in which the noise is taken
to obey a Rayleigh distribution given by

P (n) =
1
σ2

n

T/2∫
−T/2

| n(t) | dt exp

⎛⎜⎝− 1
2σ2

n

T/2∫
−T/2

| n(t) |2
w(t)

dt

⎞⎟⎠
where s(t) ≥ 0 and real.

15.3 Consider the case in which

P (s | f) =
1√

2πσ2
n

exp

⎛⎝− 1
2σ2

n

T∫
−T

| n(t) |2 1
w(t)

dt

⎞⎠
and

P (f) =
1√

2πσ2
f

exp

⎛⎝− 1
2σ2

f

T∫
−T

| f(t)− f̄(t) |2 1
w(t)

dt

⎞⎠

15.11. PROBLEMS 521

where f̄ is the average value of f at a point t. Find a MAP estimate for the object
function f(t) given by

f(t) = w(t)
∑

n

An exp(iωnt)

where
s(t) = f(t) + n(t)

and when the data Sn is bandlimited.

15.4 Given that s(t) = f(t) + n(t) ≥ 0∀t and is a real valued function, find a MAP
estimate for f(t) when

P (s | f) =
1√

2πσ2
n

exp

⎛⎝− 1
2σ2

n

T∫
−T

| n(t) |2 1
w(t)

dt

⎞⎠
and

P (f) =
1
σ2

f

T∫
−T

f(t)dt exp

⎛⎝− 1
2σ2

f

T∫
−T

[f(t)]2
1

w(t)
dt

⎞⎠
where

f(t) = w(t)
∑

n

An exp(iωnt)

and the data provided is a bandlimited discrete spectrum of s(t) given by Sn.

15.5 Given the data Sn which is assumed to be a bandlimited spectrum obtained from
the signal

s(t) = f(t) + n(t),

derive a solution for f(t) where

f(t) = w(t)
∑

n

An exp(iωnt)

by finding the coefficients An that maximize the entropy of the amplitude spectrum
given by

E =
∑

n

| An | ln | An | .

By linearising your solution, obtain an approximate form for f(t).

15.6 Suppose we consider a model for f(t) of the form

f(t) = w(t) exp

[∑
n

An exp(iωnt)

]
which is to be used to reconstruct f from the bandlimited data Sn obtained from
a signal s(t) = f(t) + n(t). Design a suitable Hilbert space (i.e. an expression for
the error function) which yields a data consistent result in order to evaluate the
coefficients An and hence obtain a closed form solution for f(t).

Chapter 16

Digital Filtering in the Time
Domain

Time domain filtering is based on processing the ‘real space’ data of a signal rather
than its associated ‘Fourier space’ data. There are a wide range of filters of this type
but in general they nearly all fall in to one of two classes:

(i) non-recursive filters;

(ii) recursive filters.

16.1 The FIR Filter

The finite impulse response or FIR filter is one of the most elementary but widely
used filters. An impulse response function is simply the output of the filter when an
impulse is applied as input as illustrated below.

Input −→ System −→ Output
δ(t) −→ p(t) −→ s(t)

If the system is a linear time invariant system then we have,

s(t) =
∫
p(τ − t)δ(τ)dτ = p(t)

and p is referred to the impulse response function. In digital form, the impulse
response function is finite and given by

sj =
∑

i

pj−iδi = pj

where we consider the case when ∑
i

≡
N∑

i=−N

522

16.1. THE FIR FILTER 523

and δi is the Kronecker delta function. For an arbitrary input fi, the filtering opera-
tion is

sj =
∑

i

pj−ifi

which models the response of an input to the finite impulse response function and
hence the name, FIR filter. Filters of this type have at most 2N + 1 non-zero coeffi-
cients.

The FIR Filter for Discrete Convolution

The discrete convolution operation (the convolution sum) can be written in the form
(since the convolution process is commutative)

sj =
N∑

i=−N

pifj−i.

To illustration the nature of this process, consider the case when pi and fi are vectors
with just 3 elements, i.e.

p = (p−1, p0, p1)T ,

f = (f−1, f0, f1)T ,

and where
f−2 = 0, and f2 = 0.

Then,

for j = −1 :

s−1 =
1∑

i=−1

pif−1−i = p−1f0 + p0f−1 + p1f−2 = p−1f0 + p0f−1,

for j = 0 :

s0 =
1∑

i=−1

pif−i = p−1f1 + p0f0 + p1f−1,

for j = 1 :

s1 =
1∑

i=−1

pif1−i = p−1f2 + p0f1 + p1f0 = p0f1 + p1f0.

Clearly, this result can be written in matrix form as⎛⎝ s−1

s0
s1

⎞⎠ =

⎛⎝ f0 f−1 0
f1 f0 f−1

0 f1 f0

⎞⎠⎛⎝ p−1

p0

p1

⎞⎠ .

524 CHAPTER 16. DIGITAL FILTERING IN THE TIME DOMAIN

Now consider the convolution sum defined as

sj =
N∑

i=−N

pj−ifi.

With
p = (p−1, p0, p1)T , p−2 = p2 = 0

and
f = (f−1, f0, f1)T

we have

for j = −1 :

s−1 =
1∑

i=−1

p−1−ifi = p0f−1 + p−1f0 + p−2f1 = p0f−1 + p−1f0,

for j = 0 :

s0 =
1∑

i=−1

p−ifi = p1f−1 + p0f0 + p−1f1,

for j = 1 :

s1 =
1∑

i=−1

p1−ifi = p2f−1 + p1f0 + p0f1 = p1f0 + p0f1.

In matrix form, this result becomes⎛⎝ s−1

s0
s1

⎞⎠ =

⎛⎝ p0 p−1 0
p1 p0 p−1

0 p1 p0

⎞⎠⎛⎝ f−1

f0
f1

⎞⎠
Note that⎛⎝ p0 p−1 0

p1 p0 p−1

0 p1 p0

⎞⎠⎛⎝ f−1

f0
f1

⎞⎠ =

⎛⎝ f0 f−1 0
f1 f0 f−1

0 f1 f0

⎞⎠⎛⎝ p−1

p0

p1

⎞⎠
and that in general

N∑
i=−N

pifj−i =
N∑

i=−N

pj−ifi

which confirms that the discrete convolution sum is commutative. However, the
latter definition of a convolution sum is better to work with because it ensures that
the matrix is filled with elements relating to the impulse response function pi, i.e.

s = P f .

16.1. THE FIR FILTER 525

Clearly, if f is an (2N +1)th order vector and p contains just three elements say, then
the convolution sum can be written in the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s−N

...
s−1

s0
s1
...
sN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .
p1 p0 p−1

p1 p0 p−1

p1 p0 p−1

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f−N

...
f−1

f0
f1
...
fN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here, P is a tridiagonal matrix. In general, the bandwidth of the matrix is determined
by the number of elements of the impulse response function. Note that the inverse
process (i.e. deconvolving s given P to compute f) can be solved in this case by using
an algorithm for solving tridiagonal systems of equations (see Chapter 7).

Useful Visualization of the Discrete Convolution Process

Another way of interpreting the discrete convolution process which is useful visually
is in terms of the of two streams of numbers sliding along each other where at each
location in the stream, the appropriate numbers are multiplied and the results added
together. In terms of the matrix above we have:

...
f−4

f−3

f−2

f−1

f0
f1
f2
f3
f4
...

p1

p0 (= s−2)
p−1

p1

p0 (= s3)
p−1

In general, if

f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f−N

...
f−1

f0
f1
...
fN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p−N

...
p−1

p0

p1

...
pN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

526 CHAPTER 16. DIGITAL FILTERING IN THE TIME DOMAIN

then
...
f−4

f−3

f−2

f−1

f0
f1
f2
f3
f4
...

...
p1

p0 (= s−1)
p−1

...

Note that the order of the elements of p is reversed with respect to f .

On Notation and Jargon

The vector p is sometimes called the Kernel, a term taken from the ‘Kernel’ of an
integral equation of the type

s(t) =
∫
K(t, τ)f(τ)dτ

where K is the Kernel. Visualising a discrete convolution in the form discussed above
leads to p being referred to as a ‘window’ since we can think of this process in terms
of looking at the data fi through a window of coefficients pi. As we slide the stream
of coefficients pi along the data fi, we see the data in the form of the output si which
is the running weighted average of the original data fi. Because the window moves
over the data it is often referred to as a ‘moving window’.

16.2 The FIR Filter and Discrete Correlation

The discrete correlation operation (the correlation sum) can be written in the form

sj =
N∑

i=−N

pifi−j .

Compared with the convolution sum, the subscript on f is reversed (i.e. fj−i becomes
fi−j). Consider the case, when pi and fi are vectors with just 3 elements:

p = (p−1, p0, p1)T ,

f = (f−1, f0, f1)T , f−2 = f2 = 0.

For j = −1 :

s−1 =
1∑

i=−1

pifi+1 = p−1f0 + p0f1 + p1f2 = p−1f0 + p0f1,

16.2. THE FIR FILTER AND DISCRETE CORRELATION 527

for j = 0 :

s0 =
1∑

i=−1

pifi = p−1f−1 + p0f0 + p1f1,

for j = 1 :

s1 =
1∑

i=−1

pifi−1 = p−1f−2 + p0f−1 + p1f0 = p0f−1 + p1f0.

This result can be written in matrix form as⎛⎝ s1
s0
s1

⎞⎠ =

⎛⎝ f0 f1 0
f−1 f0 f1
0 f−1 f0

⎞⎠⎛⎝ p−1

p0

p1

⎞⎠ .

Now consider the correlation sum defined as

sj =
N∑

i=−N

pi−jfi.

With
p = (p−1, p0, p1)T , p−2 = p2 = 0

and
f = (f−1, f0, f1)T

we have

for j = −1 :

s−1 =
1∑

i=−1

pi+1fi = p0f−1 + p1f0 + p2f1 = p0f−1 + p1f0,

for j = 0 :

s0 =
1∑

i=−1

pifi = p−1f−1 + p0f0 + p1f1,

for j = 1 :

s1 =
1∑

i=−1

pi−1fi = p−2f−1 + p−1f0 + p0f1 = p−1f0 + p0f1.

and in matrix form, the result becomes⎛⎝ s−1

s0
s1

⎞⎠ =

⎛⎝ p0 p1 0
p−1 p0 p1

0 p−1 p0

⎞⎠⎛⎝ f−1

f0
f1

⎞⎠ .

528 CHAPTER 16. DIGITAL FILTERING IN THE TIME DOMAIN

Note that⎛⎝ p0 p1 0
p−1 p0 p1

0 p−1 p0

⎞⎠⎛⎝ f−1

f0
f1

⎞⎠ �=
⎛⎝ f0 f1 0

f−1 f0 f1
0 f−1 f0

⎞⎠⎛⎝ p−1

p0

p1

⎞⎠
and in general

N∑
i=−N

pifi−j �=
N∑

i=−N

pi−jfi

illustrating that unlike the convolution sum, the correlation sum is not commutative.
As with the discrete convolution sum, the latter definition of a correlation sum is
better to work with because it ensures that the matrix is filled with elements relating
to the impulse response function pi so that we can write

s = P f .

If f is an (2N + 1)th order vector and p contains just three elements say, then the
correlation sum can be written in the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s−N

...
s−1

s0
s1
...
sN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .
p−1 p0 p1

p−1 p0 p1

p−1 p0 p1

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f−N

...
f−1

f0
f1
...
fN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Useful Visualization of the Discrete Correlation Process

A useful way of visualising the discrete correlation process is in terms of the of two
streams of numbers sliding along each other where at each location in the stream, the
appropriate numbers are multiplied and the results added together. In terms of the
matrix equation above we have:

...
f−4

f−3

f−2

f−1

f0
f1
f2
f3
f4
...

p−1

p0 (= s−2)
p1

p−1

p0 (= s3)
p1

16.3. COMPUTING THE FIR FILTER 529

In general, if

f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f−N

...
f−1

f0
f1
...
fN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p−N

...
p−1

p0

p1

...
pN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
then

...
f−4

f−3

f−2

f−1

f0
f1
f2
f3
f4
...

...
p−1

p0 (= s0)
p1

...

Note that unlike convolution, the order of the elements of p is preserved with respect to
f . If the impulse response function is symmetric, then the convolution and correlation
sums are identical (for real data). The jargon associated with the discrete convolution
process is also used in the case of discrete correlation. Correlation is also sometimes
used in the context of matched filtering (see Chapter 14 - the ‘Matched Filter’).

16.3 Computing the FIR filter

A problem arises in computing the FIR filter (convolution or correlation) at the ends
of the array fi. For example, if p is a 5× 1 kernel, then at the end of the data stream
we have

...
fN−3 p−2

fN−2 p−1

fN−1 p0

fN p1

p2

530 CHAPTER 16. DIGITAL FILTERING IN THE TIME DOMAIN

In the computation of sN−1 there is no number associated with the data fi with which
to multiply p2. Similarly, in the computation of sN we have

...
fN−3

fN−2 p−2

fN−1 p−1

fN p0

p1

p2

Here, there are no numbers associated with the array fi with which to multiply p1 and
p2. The same situation occurs at the other end of the array fi. Hence, at both ends of
the data, the moving window ‘runs out’ of data for computing the convolution sum.
There are a number of ways of solving this problem including zero padding, endpoint
extension and rapping.

Zero Padding

Zero padding assumes that the data is zero beyond the ends of the array, i.e.

f±N±1 = f±N±2 = f±N±2 = ... = 0.

This method was applied in the previous sections to introduce the FIR filter.

Endpoint Extension

Endpoint extension assumes that the data beyond the ends of the array takes on the
value of the end points of the array, i.e. the extrapolated data is equal in value to
end points:

fN+1 = fN+2 = fN+3 = ... = fN

and
f−N−1 = f−N−2 = f−N−3 = ... = f−N .

This method is sometimes known as the ‘constant continuation method’.

Rapping

The rapping technique assumes that the array is rapped back on itself so that

fN+1 = f−N ; fN+2 = f−N+1; fN+3 = f−N+2; etc.

and
f−N−1 = fN ; f−N−2 = fN−1; f−N−3 = fN−2; etc.

These methods are used in different circumstances but the endpoint extension tech-
nique is probably one of the most widely used.

16.3. COMPUTING THE FIR FILTER 531

16.3.1 Moving Window Filters

The FIR filter is just one example of a moving window filter in which the computa-
tional process is a convolution. There are a range of filters that can be designed in
which various processes are repeatedly applied to the windowed data.

The Moving Average Filter

The moving average filter computes the average value of a set of samples within a
predetermined window.

Example For a 3× 1 window:

...
fi

fi+1

fi+2

fi+3

fi+4

...

si+1 = (fi + fi+1 + fi+2)/3
si+2 = (fi+1 + fi+2 + fi+3)/3
si+3 = (fi+2 + fi+3 + fi+4)/3

As the window moves over the data, the average of the samples ‘seen’ within the
window is computed, hence the term ‘moving average filter’. In mathematical terms,
we can express this type of processing in the form

si =
1
M

∑
j∈w(i)

fj

where w(i) is the window located at i over which the average of the data samples is
computed and M is the total number of samples in w. Note that the moving average
filter is just an FIR of the form

si =
N∑

i=−N

pj−ifi

with
p =

1
M

(1, 1, 1, ..., 1)

so for a 3× 1 kernel

p =
1
3
(1, 1, 1)

and for a 5× 1 kernel

p =
1
5
(1, 1, 1, 1, 1).

This filter can be used to smooth a signal, a feature which can be taken to include
the reduction of noise. Note that this filter is in effect, the convolution of an input
with a tophat function; the spectral response is therefore a sinc function.

532 CHAPTER 16. DIGITAL FILTERING IN THE TIME DOMAIN

The Median Filter

The median filter moves a window (of arbitrary but usually odd size) over the data
computing the median of the samples defined within the window at each stage. The
median m of a set of numbers is such that half the numbers in the set are less than m
and half are greater thanm. For example, if we consider the set (3, 4, 10, 21, 22, 48, 57),
then m = 21. There are a number of ways to compute the median of an arbitrary set
of numbers. One way is to reorder the numbers in ascending values.

Example (1,6,2,4,7,3,9)−→(1,2,3,4,6,7,9) giving m = 4. The reordering of the num-
bers in this way can be accomplished using a ‘bubble sort’ where the maximum values
of the array (in decreasing order) are computed and relocated in a number of succes-
sive passes.

The Moving Average .v. the Median Filter

Both filters can be used to reduce noise in a signal. Noise reduction algorithms aim
to reduce noise while attempting to preserve the information content of a signal. In
this sense, because the moving average filter ‘smooths’ the data, the median filter is
a superior noise reducing filter for the removal of isolated noise spikes. Note that
unlike the moving average filter, the median filter is not a convolution process and
the spectral response can not be computed via the convolution theorem.

Other Statistical Filters

Having introduced the process above, it should be clear to the reader that a range
of filters can be introduced using the moving window principle. The type of filter
reflects the process that is being undertaken. Thus, the mean, variance and other
moments can by computed where the rth moment of the signal si whose histogram is
Pi ≡ P (xj), j = 1, 2, 3, ..., N formed from N bins is given by1

Mr =
N∑

j=1

(xj −M)rP (xj)

where M is the mean. In addition, the median and mode filters can be computed
using the same approach, the mode being defined as that value which occurs most
often (i.e. has the greatest probability of occurring) or

mode = ‖Pi‖∞.
Other statistical parameters include the skewness, one such measure being defined by

Skewness =
M3

M
3
2

and the Kurtosis based on the common measure

Kurtosis =
M4

M2
2

.

1Note the the second moment M2 is the variance.

16.3. COMPUTING THE FIR FILTER 533

Moreover, if the signal has statistical and/or spectral characteristics that change, it is
often informative to investigate such variations especially when the signal is stochas-
tically non-stationary. For example, suppose that the input is a discrete stochastic
signal si that is Gamma-distributed, i.e. ignoring scaling, its histogram is given by

P (xi) = xα
i exp(−βxi)

where α and β are time variant. Then, by computing α and β on a moving window
basis, the signals αi and βi can be used to analyse the non-stationary behaviour of
the data. The computation undertaken at each position of the window along the
data stream in this example can be based on a least squares fit, where α and β are
computed such that

e(α, β) = ‖ lnDi − lnPi‖22
is a minimum where Di ≡ D(xi), i = 1, 2, 3, ..., N is the histogram of the input data
formed fromN bins. Clearly, the size of the window has to provide data that produces
a statistically significant result. As a final example, consider a random fractal signal
with variations in the Fourier dimension q and whose power spectrum is modelled by2

P̂i =
c

| xi |2q

where c is a constant. By utilising the error function

e(q, c) = ‖ lnPi − ln P̂i‖22
and minimizing it with respect to q and c, an expression for q (and c) can be obtained
that is then used to compute q on a moving window basis to yield the signal qi where
i is the position of the window.

16.3.2 Interpolation using the FIR Filter

Discrete convolution can be used effectively to interpolate a function. For example,
suppose we want to linearly interpolate a function fi from N data points to 2N where
the computation of a point between fi+1 and fi is given by

fi +
fi+1 − fi

2
=
fi+1 − fi

2
.

This process is equivalent to implementing the following:

• Given the initial array (f1, f2, f3, ..., fN) of size N , construct the array gi =
(0, f1, 0, f2, 0, f3, 0, ..., fN , 0) which is of size 2N + 1 and is zero padded.

• Convolve gi with the kernel 1
2 (1, 0, 1).

2As discussed further in Chapter 17.

534 CHAPTER 16. DIGITAL FILTERING IN THE TIME DOMAIN

16.3.3 The FIR Filter and the FFT

The implementation of the FIR filter directly is computationally advantageous when
the size of the kernel is small compared to the data stream. For a kernel of size M
say and a data stream of size N , the number of multiplications are N ×M . When M
approaches N and the number of multiplication approach N2, it is computationally
more efficient to implement the FFT algorithm to perform the convolution operation
(where the number of multiplications is approximately equal toN log2N). To perform
this operation, the kernel is required to be zero padded. In other words, the signal is
padded out with zeros (on both sides) until the size of the array is equal to the size
of the data stream to which the convolution operation is to be applied.

16.4 The IIR Filter

The FIR filter is based on the model

si = pi ⊗ fi.

It represents a system in which an input fi is modified (via the a convolution process)
by some system characterized by pi to produce an output si. In such a process, there
is no feedback of the output to the input. Suppose that we want to model a feedback
system where the output is fed back into the input. Now, let the original input fi give
an output s(1)i = pi ⊗ fi in the usual way. Feeding this output back into the input,
the next input becomes fi + s

(1)
i giving an output

s
(2)
i = pi ⊗ (fi + s

(1)
i) = pi ⊗ fi + pi ⊗ s(1)i = pi ⊗ fi + pi ⊗ pi ⊗ fi.

Similarly, we can write

s
(3)
i = pi ⊗ (fi + s

(2)
i) = pi ⊗ fi + pi ⊗ s(2)i = pi ⊗ fi + pi ⊗ pi ⊗ fi + pi ⊗ pi ⊗ pi ⊗ fi

so that in general, for n = 1, 2, ...

s
(n)
i = pi ⊗ fi + pi ⊗ s(n−1)

i

where s(0)i = 0. Now, the term pi ⊗ fi is just a FIR filter describing how the input
fi is modified by the impulse response function pi. The second term introduces the
feedback process. Suppose we consider a filter qi say, which allows us to write the
iterative process

s
(n)
i = pi ⊗ s(n−1)

i

in terms of the recursive process

si = qi ⊗ si.

On the basis of the above, it is then valid to consider a general linear filter of the form

si = pi ⊗ fi + qi ⊗ si.

16.5. NON-STATIONARY PROBLEMS 535

Now, if qi = 0, then the FIR filter is obtained which is non-recursive. However, if
qi �= 0, then the filter is recursive and is known as an Infinite Impulse Response or
IIR filter. Unlike the computation of the FIR filter, in this case, we need to reserve
space for the modified values of si as the computation proceeds; we cannot simply
over write them into si directly. The filter must be calculated recursively and thus,
there is no way of applying the filter to a single segment of a signal and IIR filters are
said to be only suitable for infinite signals (hence the name). Note that the length
of the data stream associated with the computation of the first and second terms of
the IIR filter does not have to be same. Also note that in Fourier space, this result
becomes

Si = PiFi +QiSi

or
Si = RiFi

where
Ri =

Pi

1−Qi

which is rational requiring that Qi �= 1 ∀i.

16.5 Non-Stationary Problems

The principal model for a signal, i.e.

s = p⊗ f + n

assumes that the ‘system’ is time invariant and that the process is stationary. The
term non-stationary is used in a number of circumstances and needs to be defined
carefully whenever the term is used. Here, a non-stationary process refers to the case
when:

(i) the noise statistics change with time;

(ii) the impulse response function changes with time;

(iii) both (i) and (ii) above apply.

We have already briefly mentioned the use of statistical type filters coupled with the
moving window principle for the analysis of signals with time variant statistics which
applies to the analysis of systems conforming to point (i) above. In this section, we
focus on the case when the impulse response function is time variant. The essen-
tial point to understand is that when p changes with time, the convolution process
becomes

s(t) =
∫
p(t− τ, t)f(τ)dτ

rather that just

s(t) =
∫
p(t− τ)f(τ)dτ

for which there is no equivalent convolution theorem. Thus, the application of this
theorem for transforming in and out of Fourier space in order to develop the Fourier

536 CHAPTER 16. DIGITAL FILTERING IN THE TIME DOMAIN

filters discussed in Chapters 13, 14 and 15 no longer holds; however, the convolution
process itself does. By way of an illustration consider the case where we convolve a
data stream f1, f2, f3, ..., fN with a 3× 1 kernel

p = (1 + i, 2 + i, 1 + i)

Using the moving window principle, with zero padding we have

s1 = f1,
s2 = 2f1 + 3f2 + 2f3,
s3 = 3f2 + 4f3 + 3f4,

...

In terms of a matrix representation, we have⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1
s2
s3
s4
...

sN−1

sN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 2
3 4 3

4 7 4
. . .

N 1 +N + 1 N
2 +N 1 +N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
f2
f3
f4
...

fN−1

fN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This matrix is tridiagonal but with elements that increase monotonically from the
top-left to the bottom-right of the matrix. To deconvolve the signal s, this system
of equations needs to be solved directly using the algorithms discussed in Chapter 7.
The example above illustrates the case when the kernel is time variant with regard to
the values of its elements but the size of the kernel remains the same (in this case, a
3× 1 vector). Another case is when the size of the kernel changes. To illustrate this,
consider the kernel

p = 1, p ∈ Ri.

Here, the kernel is a unit vector which linearly increases in size (i.e. the number of
elements in the vector space). With zero padding, the matrix representation of this
process becomes⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1
s2
s3
s4
...

sN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
1 1
1 1 1
1 1 1 1

. . .
1 1 1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
f2
f3
f4
...

fN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here, the characteristic matrix is lower diagonal and the solution for fi is trivial and
given by

fi = si − si−1 ≡ pi ⊗ si

where
pi = (1,−1).

16.6. SUMMARY OF IMPORTANT RESULTS 537

Note that si is the discrete integral of fi and fi is the discrete differential (forward
difference) of si.

There are many other simple examples that can be used to illustrate the process
of non-stationary convolution, but the essential issue, is that to undertake the in-
verse process, appropriate methods of solving the associated matrix equations are
required and the deconvolution problem must be approach is real space. Note that
as the bandwidth (the size of the vector space) of the kernel changes, so does the
bandwidth of the matrix. Further, for non-stationary processes, where the kernel is
relatively small compared to the data, the characteristic matrix is sparse and thus,
iterative techniques become appropriate for the general case (i.e. assuming that the
characteristic matrix is not symmetric positive definite for example).

16.6 Summary of Important Results

The FIR Filter

For an input digital signal fi, the output of an FIR filter si is given by

si = pi ⊗ fi ≡
N−1∑
j=0

pi−jfj

for the convolution FIR filter and

si = pi 	 fi ≡
N−1∑
j=0

pj−ifj

for the correlation FIR filter where pi is the FIR filter or kernel.

The FIR filter and the Matrix Equation

If f is an input vector with N elements and s is an output vector with N , elements
then the FIR filter can be written in the form

s = P f

where P is an N ×N matrix whose elements are composed from the kernel p.

Zero Padding

Computing the FIR filter by padding the input data with zeros.

End Point Extension

Computing the FIR filter by padding the input data with the values of the first and
last elements of the data.

538 CHAPTER 16. DIGITAL FILTERING IN THE TIME DOMAIN

FIR filtering using an FFT

Computing the FIR filter by zero padding the kernel to the array size of the input
data and using the convolution theorem to employ an FFT.

Computational Efficiency

For kernels that are small compared to the input, the FIR filter is efficiently computed
by direct application. For kernels whose arrays are of similar size to the input data,
the FIR is computed most efficiently by application of the FFT.

Moving Window Filtering

Filtering the input data by application of some process applied to a sample of data
over a window that moves along the input data one element at a time.

The IIR filter

A recursive filter of the form

si = pi ⊗ fi + qi ⊗ si

Non-stationary or Time Variant Processes

The process whereby the statistics of the noise changes with time and/or the con-
volution kernel changes (in value and/or array size) as the moving window process
evolves, e.g.

si =
∑

j

pi−j [i]fj.

Note there is no general convolution theorem for this case. However, non-stationary
convolution processes can still be written in matrix form

s = P f .

Deconvolution problems associated with this process must then be undertaken in real
space using appropriate computational methods in linear algebra. Non-stationary
processes in signal analysis are very important simply because signals rarely behave
in the same way over time and time invariant linear systems analysis is limited in its
general application. Thus, developing non-stationary models for systems and signals is
becoming more and more important. This theme is developed further in the following
chapter which studies random fractal signals and the development of non-stationary
or multi-fractal models.

16.7. FURTHER READING 539

16.7 Further Reading

• Rabiner L and Gold B, Theory and Applications of Digital Signal Processing,
Prentice-Hall, 1975.

• Tretter S, Introduction to Discrete Time Signal Processing, Wiley, 1976.

• Oppenheim A and Shafer R, Digital Signal Processing, Prentice-Hall, 1975.

• Robinson E and Silvia M, Digital Foundations of Time Series Analysis, Holden-
Day, 1979.

• Candy J V, Signal Processing: The Model Based Approach, McGraw-Hill, 1986.

• Skelton R E, Dynamic Systems Control, Wiley, 1988.

16.8 Programming Problems

In the questions that follow, the functions required should be void functions written in
ANSI C. They should be compiled, tested and then added to a digital signal processing
object library dsplib.lib. In each case, a simple I/O test procedure should be written;
the I/O being studied graphically using the graphics routine provided and discussed
in Appendix B working with arrays of size 64, 128, 256 or 512 samples with array
processing from 1 to n where n (which is of type int) is the size of the array. Each
function should be self-contained within the context of the process. For opt = 0,
apply zero padding and for opt = 1, apply end point extension.

16.1 Write a subroutine to perform a discrete convolution of two digital signals - an
FIR (convolution) filter.

function FIRCON(float f[], float p[], float s[], int n, int w, int opt)

where f is the input signal, p is the FIR (convolution) filter, s is the output and w is
the size of the kernel.

Test your function by applying a kernel of the form (1,-1) to a tophat function. The
result should be two spikes of opposite polarity - equivalent to applying a forward
differencing scheme to compute the digital gradient of a signal.

16.2 Write a function to perform a discrete correlation of two digital signals - an FIR
(correlation) filter.

function FIRCOR(float f[], float p[], float s[], int n, int w, int opt)

540 CHAPTER 16. DIGITAL FILTERING IN THE TIME DOMAIN

where f is the input signal, p is the FIR filter, s is the output and w is the the size of
the kernel. Test your routine by autocorrelating a tophat function - the result should
be a triangle.

16.3 Write a function to filter a signal using the moving average principle.

function MAVFIL(float s[], int n, int w, int opt)

where s is the input/filtered output and w is the size of the window.

16.4 Write a function to filter a signal using a median filter.

function MEDFIL(float s[], int n, int w)

where s is the input/filtered output and w is the size of the window which is odd, i.e.
w=3,5,7...

16.5 Compare the difference in performance between the moving average and median
filters by adding random Gaussian noise to a sine wave for example and filtering the
result with a range of window sizes. Add some isolated noise spikes of unit value (i.e.
Kronecker delta functions) to the signal and compare the output produced by the two
filters. The noise spikes can be produced by thresholding the Gaussian noise, i.e.

spikesi =

{
1, gi > T ;
0, gi ≤ T.

where gi is the Gaussian noise, post-processed so that ‖gi‖∞ = 1 and 0 < T < 1 is a
user defined threshold which determines the density of the noise spikes.

Chapter 17

Random Fractal Signals

Many signals observed in nature are random fractals. Random fractals are signals
that exhibit the same statistics at different scales. In other words, they are signals
whose frequency distribution (Probability Distribution Function or PDF) has the
same ‘shape’ irrespective of the scale over which they are observed. Thus, random
fractal signals are (statistically) self-similar; they ‘look the same’ (in a stochastic
sense) at different scales.

We can define this property as follows: Suppose that s(t) is a statistically self-
similar stochastic field with a PDF denoted by Pr[s(t)], then, if λ is a scaling para-
meter,

λPr[s(t)] = Pr[s(λt)].

Here, the PDF of the signal s(λt) observed over a scale of λ is a scaled down version
of the PDF of s(t) (i.e. the PDF of s(t) is multiplied by λ). More generally, random
fractal signals are statistically self-affine, conforming to the property

λqPr[s(t)] = Pr[s(λt)], q > 0.

Such signals are characterized by power spectra whose frequency distribution is pro-
portional to 1/ωq where ω is the (angular) frequency and q > 0 is the ‘Fourier Dimen-
sion’ (a value that is simply related to the ‘Fractal Dimension’ and is discussed later
on in this chapter). In cases where the signal is governed by a stationary process, the
value of q is constant. However, when the process is non-stationary and (random)
fractal, the value of q may change. Such signals are common; they are examples of
multi-fractal behaviour and finding a theoretical basis for modelling and interpreting
such signals is important in many areas of science and engineering.

In addition to the random fractal geometry of signals, there are a number of natural
signals that can be considered to be the result of a chaotic process (time invariant or
otherwise). Such systems can often be modelled in terms of deterministic chaos which
is itself based on a variety of (typically iterative) models obtained from some nonlinear
equation or system of equations. An important aspect of chaotic signals is that when
the data as analysed in an appropriate way (in an appropriate phase space or using
a so called Feigenbaum diagram - see Chapter 14), self-affine structures are observed.
In this sense, there is a close connection between nonlinear (chaotic) systems1 and

1Not all nonlinear systems exhibit chaos.

541

542 CHAPTER 17. RANDOM FRACTAL SIGNALS

fractal geometry; the geometric interpretation and characteristics of chaotic signals is
typically undertaken in terms of their fractal geometry in an analogous approach to
the way in which the interpretation and characteristics of linear signals is undertaken
in terms of Euclidean geometry (e.g. plotting a graph!).

In this chapter, the principles of fractal geometry are applied to fractal signal
synthesis and analysis using an approach in which fractional calculus plays a central
role. In particular, a non-stationary approach to simulating fractal signals is devel-
oped. Two case studies are provided which discuss the application of this approach
to covert communications and financial time series analysis.

17.1 Introduction

Developing mathematical models to simulate and analyse noise has an important role
in digital signal processing. Computer generated noise is routinely used to test the
robustness of different types of algorithms (e.g. algorithms whose principal goal is to
extract information from noise). Further, noise generators are used for data encryp-
tion and to enhance or amplify signals through the process of ‘stochastic resonance’,
e.g. the correlation of noise with noise for information extraction

Accurate statistical models for noise (e.g. the PDF or the Characteristic Function,
i.e. the Fourier transform of the PDF) are particularly important in signal restora-
tion using Bayesian estimation (see Chapter 15), for signal reconstruction and in the
segmentation of coherent images in which ‘speckle’ (arguably a special type of noise,
i.e. coherent Gaussian noise, which, to a first approximation, is Gamma distributed)
is a prominent feature. The noise characteristics of a given system often dictate the
type of filters that are used to process and analyse the data. Noise simulation is
also important in the synthesis of signals and images used in computer graphics and
computer animation systems in which fractal noise has a special place.

The application of fractal geometry for modelling naturally occurring signals is
well known. This is due to the fact that the ‘statistics’ and spectral characteristics of
Random Scaling Fractals (RSFs) are consistent with many objects found in nature,
a characteristic that is compounded in the term ‘statistical self-affinity’. This term
refers to random processes whose statistics are scale invariant. A RSF signal is one
whose PDF remains the same irrespective of the scale over which the signal is sampled.
Thus, as we zoom into a RSF signal, although the time signature changes, the PDF
of the signal remains the same (a scaled down version of the ‘original’) and a concept
that is aptly compounded in the Chinese proverb: ‘In every way one can see the shape
of the sea’. There is another presumably Chinese proverb concerning this theme that
aptly describes human beings that exhibit self-affine personalities, namely, ‘He who
goes to work with hole in pocket, feel cocky all day’.

Many signals found in nature are statistically self-affine. For example, speech
signals tend to exhibit the characteristics of RSFs as do other signals such as finan-
cial time series, seismic signals and music (irrespective of the culture from which it
has been derived). The incredible range of vastly different systems which exhibit
random fractal behaviour is leading the scientific community to consider statistical
self-affinity to be a universal law, a law that is particularly evident in systems which
are undergoing a phase transition.

17.1. INTRODUCTION 543

In a stable state, the behaviour of the elements from which a system is composed
depends primarily on their local neighbours and the statistics of the system is not
self-affine. In a critical state, the elements become connected, propagating ‘order’
throughout the system in the sense that the statistical characteristics of the system
are self-affine with ‘system wide’ correlations. This is more to do with the connectivity
of the elements than the elements themselves. (Critical states can of course be stable
in the dynamical sense.) Moreover, critical states appear to be governed by the power
law

System(size) ∝ 1
sizeq

where q > 0 is a non-integer. Here, the term ‘System’ is a generic term representative
of some definable parameter that can be measured experimentally over different scales
of a certain ‘size’. This power law is the principal ‘signature’ that the system is
behaving in a statistically self-affine way. There are a wide variety of examples which
demonstrate this power law. For example, the growth rate of companies tends to
diminishes with size, irrespective of the type of business being conducted; typical US
companies are characterized by q ∈ [0.7, 0.9]. This also applies to the death rate of
companies, i.e. those that are forced into liquidation. The frequency of the creation
and extinction of species (as revealed through a growing number of fossil records) is
starting to indicate that the pattern of fitness for survival is statistically self-affine.
The distribution of base pairs in DNA is statistically self-affine, i.e. the frequency
of occurrence of Adenine-Thymine and Cytosine-Guanine in a DNA molecule is the
same at different scales. DNA is in effect, a self-affine bit stream.

The power law given above which governs so many of natures signals and systems
is a universal law. However, to date, there is no general mechanism or deeper un-
derstanding through which this law can be derived. It is like Newton’s universal law
of gravitation in which two bodies exert a force upon each other which is inversely
proportional to the square of the distance between them and, like Newton’s law (and
other universal physical laws), although complex in its action, it is beautifully simple
in its pattern. Thus, in introducing this power law, it is worth reflecting on Newton’s
response to criticism over his theory of gravitation: ‘... I have told you how it works,
not why’.

Conventional RSF models are based on stationary processes in which the ‘statis-
tics’ of the signal are invariant of time. However, many signals exhibit non-stationary
behaviour. In addition, many signals exhibit episodes which are rare but extreme
(sudden changes in amplitude and/or frequency), events which are statistically in-
consistent with the ‘normal’ behaviour of the signal. These episodes include so-called
Lévy flights in cases when the statistics of a signal conform to that of a Lévy dis-
tribution; a power-law distribution of the type 1/x1+q, 0 < q < 2 that is used to
investigate the ‘strange kinetics’ of systems undergoing phase transitions including
hot plasmas, super-fluids, super-conducting materials and economic systems.

In this chapter, a model is developed which attempts to unify these features of
stochasticism using a phenomenological approach. The model is based on a modifica-
tion to the stochastic diffusion equation in which a fractional temporal derivative to
an order q(t) is introduced. By considering a model for the PDF of q(t), a solution is
derived which allows a stochastic field to be computed that is fractal, non-stationary
and where the likelihood of events called ‘Brownian flights’ (effects which are analo-

544 CHAPTER 17. RANDOM FRACTAL SIGNALS

gous to Lévy-type flights) can be altered via the PDF. The following section gives a
brief overview of the different aspects of stochasticism which form the background to
the postulation and analysis of this model.

17.2 Stochastic Modelling Revisited

There are two principal criteria used to define the characteristics of a stochastic field:

(i) The PDF or the Characteristic Function (i.e. the Fourier transform of the PDF).

(ii) The Power Spectral Density Function (PSDF).

The PSDF is the function that describes the envelope or shape of the power spectrum
of the field and is related to the autocorrelation function of a signal through the au-
tocorrelation theorem. In this sense, the PSDF is a measure of the time correlations
of a signal. For example, zero-mean white Gaussian noise is a stochastic field char-
acterized by a PSDF that is effectively constant over all frequencies and has a PDF
with a Gaussian profile whose mean is zero.

Stochastic fields can of course be characterized using transforms other than the
Fourier transform (from which the PSDF is obtained). However, the conventional
PDF-PSDF approach serves many purposes in stochastic signals theory.

There are two conventional approaches to simulating a stochastic field. The first of
these is based on predicting the PDF (or the Characteristic Function) theoretically (if
possible). A pseudo random number generator is then designed whose output provides
a discrete stochastic field that is characteristic of the predicted PDF. For example,
a Gaussian pseudo random number generator can be designed using the Box-Muller
transformation operating on uniform deviates (see Chapter 14). The second approach
is based on considering the PSDF of a signal which, like the PDF, is ideally derived
theoretically. The stochastic field is then typically simulated by filtering white noise.
Many stochastic fields observed in nature have two fundamental properties:

(i) the PSDF is determined by irrational power laws, i.e. 1/ | ω |q noise where ω is
the (angular) frequency and q > 0;

(ii) the field is statistical self-affine.

(iii) the PDF is Lévy-type distributed.

What is a good stochastic model?

A ‘good’ stochastic model is one that accurately predicts both the PDF and the PSDF
of the data. It should take into account the fact that in general, stochastic processes
are non-stationary. In addition, it should, if appropriate, include behaviour that is
characteristic of fractal walks and be able to produce rare but extreme events in which
large deviations from the norm occur - effects that might be considered analogous to,
but not necessarily formally related to Lévy flights. Note that although we refer to
Lévy flights and/or distributions, such references should be taken to be qualitative in
nature and are being used only in terms of introducing an analogy to a strictly well

17.2. STOCHASTIC MODELLING REVISITED 545

defined process or term (i.e. Lévy flight or Lévy distribution respectively) which can
yield analogous or similar effects. Note there is no connection between the theoretical
prediction and/or the experimental determination of the PDF and the PSDF, i.e.
there is no direct relationship between the characteristics of the Fourier transform of
a stochastic field and the Fourier transform of the PDF of the same field - one cannot
compute directly the PDF of a stochastic field from its PSDF or the PSDF from its
PDF.

Lévy Flights and Distributions

Named after the French mathematician Paul Lévy (1886-1971), Lévy flights are ran-
dom walks whose distribution has infinite moments. The statistics of (conventional)
physical systems are usually concerned with stochastic fields that have PDFs where
(at least) the first two moments (the mean and variance) are well defined and finite.
Lévy statistics is concerned with statistical systems where all the moments (starting
with the mean) are infinite.

Many distributions exist where the mean and variance are finite but are not repre-
sentative of the process, e.g. the tail of the distribution is significant, where rare but
extreme events occur. These distributions include Lévy distributions. Lévy’s origi-
nal approach2 (which was developed in the late 1930s) to deriving such distributions
is based on the following question: Under what circumstances does the distribution
associated with a random walk of a few steps look the same as the distribution after
many steps (except for scaling)? This question is effectively the same as asking under
what circumstances do we obtain a random walk that is statistically self-affine. For
a 1D random walk, the characteristic function P (k) of such a distribution p(x) was
first shown by Lévy to be given by (for symmetric distributions only)

P (k) = exp(−a | k |q), 0 < q < 2

where a is a (positive) constant. If q = 0,

p(x) =
1
2π

∞∫
−∞

exp(−a) exp(ikx)dk = exp(−a)δ(x)

and the distribution is concentrated solely at the origin as described by the delta
function δ(x). When q = 1, the Cauchy distribution

p(x) =
1
2π

∞∫
−∞

exp(−a | k |) exp(ikx)dk =
1
π

a

a2 + x2

is obtained and when q = 2, p(x) is characterized by the Gaussian distribution

p(x) =
1
2π

∞∫
−∞

exp(−ak2) exp(ikx)dk =
1
2π

√
π

a
exp[−x2/(4a)],

2P Lévy was the research supervisor of B Mandelbrot, the ‘inventor’ of ‘fractal geometry’

546 CHAPTER 17. RANDOM FRACTAL SIGNALS

whose first and second moments are finite. The Cauchy distribution has a relatively
long tail compared with the Gaussian distribution and a stochastic field described by
a Cauchy distribution is likely to have more extreme variations when compared to
a Gaussian distributed field. For values of q between 0 and 2, Lévy’s characteristic
function corresponds to a PDF of the form

p(x) ∼ 1
x1+q

for | x |>> 1. For q ≥ 2, the second moment of this distribution exists and the
sums of large numbers of independent trials are Gaussian. For example, if the result
were a random walk with a step length distribution governed by this PDF, then the
result would be normal (Gaussian) diffusion, or Brownian motion. For q < 2 the
second moment of this PDF (the mean square), diverges and the characteristic scale
of the walk is lost. This type of random walk is called a fractal walk, or a Lev́y
flight. Figure 17.1 shows 10,000 steps for such a walk with q = 1.5. The statistics
of the walk conform to a Lévy distribution rather than a Gaussian. In this way,
Lévy distributions are a generalization of Gaussian distributions that include infinite
variance and therefore fractal scaling behaviour. Lévy distributions offer a better
description of random fields with long PDF tails although infinite variance is not
always observed (or the variance is very slow to converge).

Figure 17.1: A Lévy flight with p(x) ∝ x−1.5

17.3. FRACTIONAL CALCULUS 547

17.3 Fractional Calculus

In a famous letter from l’Hospital to Leibnitz written in 1695, l’Hospital asked the
following question: ‘Given that dnf/dtn exists for all integer n, what if n be 1

2 ’.
The reply from Leibnitz was all the more interesting: ‘It will lead to a paradox ...
From this paradox, one day useful consequences will be drawn’. Fractional calculus
has been studied for many years by some of the great names of mathematics since
the development of (integer) calculus in the late seventeenth century. Relatively few
papers and books exist on such a naturally important subject. However, a study of
the works in this area of mathematics clearly show that the ideas used to define a
fractional differential and a fractional integral are based on definitions which are in
effect, little more than generalizations of results obtained using integer calculus. The
classical fractional integral operators are the Riemann-Liouville transform

Îqf(t) =
1

Γ(q)

t∫
−∞

f(τ)
(t− τ)1−q

dτ, q > 0

and the Weyl transform

Îqf(t) =
1

Γ(q)

∞∫
t

f(τ)
(t− τ)1−q

dτ, q > 0

where

Γ(q) =

∞∫
0

tq−1 exp(−t)dt.

For integer values of q (i.e. when q = n where n is a non-negative integer), the
Riemann-Liouville transform reduces to the standard Riemann integral. This trans-
form is just a (causal) convolution of the function f(t) with tq−1/Γ(q). For fractional
differentiation, we can perform a fractional integration of appropriate order and then
differentiate to an appropriate integer order. The reason for this is that direct frac-
tional differentiation can lead to divergent integrals. Thus, the fractional differential
operator D̂q for q > 0 is given by

D̂qf(t) ≡ dq

dtq
f(t) =

dn

dtn
[În−qf(t)].

Another (conventional) approach to defining a fractional differential operator is based
on using the formula for nth order differentiation (obtained by considering the defi-
nitions for the first, second, third etc. differentials using backward differencing) and
then generalising the formula by replacing n with q. This approach provides us with
the result

D̂qf(t) = lim
N→∞

⎡⎣(t/N)−q

Γ(−q)
N−1∑
j=0

Γ(j − q)
Γ(j + 1)

f

(
t− j t

N

)⎤⎦ .

548 CHAPTER 17. RANDOM FRACTAL SIGNALS

A review of this result shows that for q = 1, this is a point process but for other
values it is not, i.e. the evaluation of a fractional differential operator depends on the
history of the function in question. Thus, unlike an integer differential operator, a
fractional differential operator has ‘memory’. Although the memory of this process
fades, it does not do so quickly enough to allow truncation of the series in order to
retain acceptable accuracy. The concept of memory association can also be seen from
the result

D̂qf(t) =
dn

dtn
[În−qf(t)]

where

Îq−nf(t) =
1

Γ(n− q)

t∫
−∞

f(τ)
(t− τ)1+q−n

dτ, n− q > 0

in which the value of Îq−nf(t) at a point t depends on the behaviour of f(t) from
−∞ to t via a convolution with the kernel tn−q/Γ(q). The convolution process is of
course dependent on the history of the function f(t) for a given kernel and thus, in
this context, we can consider a fractional derivative defined via the result above to
have memory.

17.3.1 The Laplace Transform and the Half Integrator

It informative at this point to consider the application of the Laplace transform to
identify an ideal integrator and then a half integrator. The Laplace transform is given
by (see Chapter 5)

L̂[f(t)] ≡ F (p) =

∞∫
0

f(t) exp(−pt)dt

and from this result we can derive the transform of a derivative given by

L̂[f ′(t)] = pF (p)− f(0)

and the transform of an integral given by

L̂

⎡⎣ t∫
0

f(τ)dτ

⎤⎦ =
1
p
F (p).

Now, suppose we have a standard time invariant linear system whose input is f(t)
and whose output is given by

s(t) = f(t)⊗ g(t)

where the convolution is causal, i.e.

s(t) =

t∫
0

f(τ)g(t− τ)dτ.

17.3. FRACTIONAL CALCULUS 549

Suppose we let

g(t) = H(t) =

{
1, t > 0;
0, t < 0.

Then, G(p) = 1/p and the system becomes an ideal integrator:

s(t) = f(t)⊗H(t) =

t∫
0

f(t− τ)dτ =

t∫
0

f(τ)dτ.

Now, consider the case when we have a time invariant linear system with an impulse
response function by given by

g(t) =
H(t)√
t

=

{
| t |−1/2, t > 0;
0, t < 0.

The output of this system is f ⊗ g and the output of such a system with input f ⊗ g
is f ⊗ g ⊗ g. Now

g(t)⊗ g(t) =

t∫
0

dτ√
τ
√
t− τ =

√
t∫

0

2xdx
x
√
t− x2

= 2
[
sin−1

(
x√
t

)]√t

0

= π.

Hence,
H(t)√
πt
⊗ H(t)√

πt
= H(t)

and the system defined by the impulse response function H(t)/
√
πt represents a ‘half-

integrator’ with a Laplace transform given by

L̂

[
H(t)√
πt

]
=

1√
p
.

This result provides an approach to working with fractional integrators and/or differ-
entiators using the Laplace transform. Fractional differential and integral operators
can be defined and used in a similar manner to those associated with conventional or
integer order calculus and we now provide an overview of such operators.

17.3.2 Operators of Integer Order

The following operators are all well-defined, at least with respect to all test functions
u(t) say which are (i) infinitely differentiable and (ii) of compact support (i.e. vanish
outside some finite interval).

Integral Operator:

Îu(t) ≡ Î1u(t) =

t∫
−∞

u(τ)dτ.

Differential Operator:
D̂u(t) ≡ D̂1u(t) = u′(t).

550 CHAPTER 17. RANDOM FRACTAL SIGNALS

Identify Operator:
Î0u(t) = u(t) = D̂0u(t).

Now,

Î[D̂u](t) =

t∫
−∞

u′(τ)dτ = u(t)

and

D̂[Îu](t) =
d

dt

t∫
−∞

u(τ)dτ = u(t)

so that
Î1D̂1 = D̂1Î1 = Î0.

For n (integer) order:

Înu(t) =

t∫
−∞

dτn−1...

τ2∫
−∞

dτ1

τ1∫
−∞

u(τ)dτ,

D̂nu(t) = u(n)(t)

and
În[D̂nu](t) = u(t) = D̂n[Înu](t).

17.3.3 Convolution Representation

Consider the function

tq−1
+ (t) ≡| t |q−1 H(t) =

{
| t |q−1, t > 0;
0, t < 0.

which, for any q > 0 defines a function that is locally integrable. We can then define
an integral of order n in terms of a convolution as

Înu(t) =
(
u⊗ 1

(n− 1)!
tn−1
+

)
(t) =

1
(n− 1)!

t∫
−∞

(t− τ)n−1u(τ)dτ

=
1

(n− 1)!

t∫
−∞

τn−1u(t− τ)dτ

In particular,

Î1u(t) = (u ⊗H)(t) =

t∫
−∞

u(τ)dτ.

17.3. FRACTIONAL CALCULUS 551

These are classical (absolutely convergent) integrals and the identity operator admits
a formal convolution representation, using the delta function, i.e.

Î0u(t) =

∞∫
−∞

δ(τ)u(t − τ)dτ

where
δ(t) = D̂H(t).

Similarly,

D̂nu(t) ≡ Î−nu(t) =

∞∫
−∞

δ(n)(τ)u(t− τ)dτ = u(n)(t).

On the basis of the material discussed above, we can now formally extend the
integral operator to fractional order and consider the operator

Îqu(t) =
1

Γ(q)

∞∫
−∞

u(τ)tq−1
+ (t− τ)dτ =

1
Γ(q)

t∫
−∞

u(τ)tq−1
+ (t− τ)dτ

where

Γ(q) =

∞∫
0

tq−1 exp(−t)dt, q > 0

with the fundamental property that

Γ(q + 1) = qΓ(q).

Here, Iq is an operator representing a time invariant linear system with impulse
response function tq−1

+ (t) and transfer function 1/pq. For the cascade connection of
Iq1 and Iq2 we have

Îq1 [Îq2u(t)] = Îq1+q2u(t).

This classical convolution integral representation holds for all real q > 0 (and formally
for q = 0, with the delta function playing the role of an impulse function and with a
transfer function equal to the constant 1).

17.3.4 Fractional Differentiation

For 0 < q < 1, if we define the (Riemann-Liouville) derivative of order q as

D̂qu(t) ≡ d

dt
[Î1−qu](t) =

1
Γ(1 − q)

d

dt

t∫
−∞

(t− τ)−qu(τ)dτ,

then,

D̂qu(t) =
1

Γ(1− q)

t∫
−∞

(t− τ)−qu′(τ)dτ ≡ Î1−qu′(t).

552 CHAPTER 17. RANDOM FRACTAL SIGNALS

Hence,
Îq[D̂qu] = Îq[Î1−qu′] = Î1u′ = u

and D̂q is the formal inverse of the operator Îq. Given any q > 0, we can always write
λ = n− 1 + q and then define

D̂λu(t) =
1

Γ(1− q)
dn

dtn

t∫
−∞

u(τ)(t − τ)−qdτ.

Dq is an operator representing a time invariant linear system consisting of a cascade
combination of an ideal differentiator and a fractional integrator of order 1− q. For
Dλ we replace the single ideal differentiator by n such that

D̂0u(t) =
1

Γ(1)
d

dt

t∫
−∞

u(τ)dτ = u(t) ≡
∞∫

−∞
u(τ)δ(t − τ)dτ

and

D̂nu(t) =
1

Γ(1)
dn+1

dtn+1

t∫
−∞

u(τ)dτ = u(n)(t) ≡
∞∫

−∞
u(τ)δ(n)(t− τ)dτ.

In addition to the conventional and classical definitions of fractional derivatives
and integrals, more general definitions have recently been developed including the
Erdélyi-Kober operators, hypergeometric operators and operators involving other spe-
cial functions such as the Maijer G-function and the Fox H-function. Moreover, all
such operators leading to a fractional integral of the Riemann-Liouville type and the
Weyl type would appear (through induction) to have the general forms

Îqf(t) = tq−1

t∫
−∞

Φ
(τ
t

)
τ−qf(τ)dτ

and

Îqf(t) = t−q

∞∫
t

Φ
(
t

τ

)
τq−1f(τ)dτ

respectively, where the kernel Φ is an arbitrary continuous function so that the in-
tegrals above make sense in sufficiently large functional spaces. Although there are
a number of approaches that can be used to define a fractional differential/integral,
there is one particular definition, which in terms of its ‘ease of use’ and wide ranging
applications, is of significant value and is based on the Fourier transform, i.e.

dq

dtq
f(t) =

1
2π

∞∫
−∞

(iω)qF (ω) exp(iωt)dω, −∞ < q <∞

where F (ω) is the Fourier transform of f(t). When q = 1, 2, 3..., this definition reduces
to a well known result that is trivial to derive in which for example, the ‘filter’ iω

17.3. FRACTIONAL CALCULUS 553

(for the case when q = 1) is referred to as a ‘differentiator’. When q < 0, we have
a definition for the fractional integral where, in the case of q = −1 for example, the
filter (iω)−1 is an ‘integrator’. When q = 0 we just have f(t) expressed in terms of its
Fourier transform F (ω). This Fourier based definition of a fractional derivative can
be extended further to include a definition for a ‘fractional Laplacean’ ∇q where for
n dimensions

∇q ≡ − 1
(2π)n

∫
dnkkq exp(ik · r), k =| k |

are r is an n-dimensional vector. This is the fractional Riesz operator. It is designed
to provide a result that is compatible with the case of q = 2 for n > 1, i.e. ∇2 ⇐⇒
−k2 (which is the reason for introducing the negative sign). Another equally valid
generalization is

∇q ≡ 1
(2π)n

∫
dnk(ik)q exp(ik · r), k =| k |

which introduces a q dependent phase factor of πq/2 into the operator.
In general terms, although it is possible to compute fractional integral and differ-

ential operators using the results discussed above, neither a fractional differential (or
a fractional integral) operator appear to have a geometric and/or physical interpreta-
tion unlike an integer differential, which can be considered to be a map of the gradient
of a piecewise continuous function (for which a picture can be drawn at any point
by zooming into the function and arguing that over a small enough portion of the
function, a straight line can be considered which has a definable gradient). However,
when generalized functions are introduced, the concept of definable gradients requires
attention and generalized functions such as the delta function δ(t) are only defined
properly in terms of the role they play in certain transforms, e.g. the sampling prop-
erty of the delta function. There have been some attempts to develop a geometric
interpretation of a fractional differential and/or integral operator. In the few pub-
lished works that consider this problem, relationships have been explored between
fractional calculus and fractal geometry using a few specific examples and in some
cases, it has been concluded that no direct relationship between fractional calculus
and fractal geometry has yet been established. Thus, the establishment of a proper
geometrical interpretation of a fractional derivative is still ‘up for grabs’ and we arrive
at a rather fundamental and open question: Is there a geometrical representation of
a fractional derivative? If not, can one prove that a graphical representation of a
fractional derivative does not exist? The general consensus of opinion is that there
is no simple geometrical interpretation of a derivative of fractional order and that if
there is, then as Virginia Kiryakova concludes in her book on ‘Generalized Fractional
Calculus and Applications’, ‘... it is likely to be found in our fractal world’. An
approach to quantifying the relationship between a fractal object and fractional cal-
culus is through a parametric approach. Consider a fractal object with a well defined
Fourier dimension which is composed of an infinite set of points in the plane defined
by the coordinates functions [x(t), y(t)] where t ∈ [0, 1]. This parametric representa-
tion of the fractal consists of the independent signals x(t) and y(t). If the spectra of
x(t) and y(t) are characterized by a PSDF of the type (iω)−q then, by inference, they
are signals that can be represented in terms of the Riemann-Liouville or fractional
integral transform. Thus, through the geometrical parametrization of deterministic

554 CHAPTER 17. RANDOM FRACTAL SIGNALS

fractal objects we can represent such objects in terms of a signal or set of signals
which have self-affine properties that can be expressed via a fractional integral. In
principle, the signal obtained should have a Fourier dimension that is independent of
the parametrization that is applied (uniform, chord length, arc length etc.).

17.3.5 Fractional Dynamics

Mathematical modelling using (time dependent) fractional Partial Differential Equa-
tions (PDEs) is generally known as fractional dynamics. A number of works have
shown a close relationship between fractional diffusion equations of the type (where
p is the space-time dependent PDF and τ is the generalized diffusivity)

∇2p− τ ∂
q

∂tq
p = 0, 0 < q ≤ 1

and

∇qp− τ
∂

∂t
p = 0, 0 < q ≤ 2

and continuous time random walks with either temporal or spatial scale invariance
(fractal walks). Fractional diffusion equations of this type have been shown to produce
a framework for the description of anomalous diffusion phenomena and Lévy-type
behaviour. In addition, certain classes of fractional differential equations are known
to yield Lévy-type distributions. For example, the normalized one-sided Lévy-type
PDF

p(x) =
aq

Γ(q)
exp(−a/x)

x1+q
, a > 0, x > 0

is a solution of the fractional integral equation

x2qp(x) = aq Î−qp(x)

where

Î−qp(x) =
1

Γ(q)

x∫
0

p(y)
(x − y)1−q

dy, q > 0.

Another example involves the solution to the anomalous diffusion equation

∇qp− τ ∂
∂t
p = 0, 0 < q ≤ 2.

Fourier transforming this equation and using the fractional Riesz operator defined
previously, we have

∂

∂t
P (k, t) = −1

τ
kqP (k, t)

which has the general solution

P (k, t) = exp(−t | k |q /τ), t > 0.

17.3. FRACTIONAL CALCULUS 555

Comparing this result with

P (k) = exp(−a | k |q), 0 < q ≤ 2

we recognise the characteristic function of a Lévy distribution with a = t/τ . This
analysis can be extended further by considering a fractal based generalization of the
Fokker-Planck-Kolmogorov (FPK) equation

∂q

∂tq
p(x, t) =

∂β

∂xβ
[s(x)p(x, t)]

where s is an arbitrary function and 0 < q ≤ 1, 0 < β ≤ 2. This equation is referred
to as the fractal FPK equation; the standard FPK equation is of course recovered for
q = 1 and β = 2. The characteristic function associated with p(x, t) is given by

P (k, t) = exp(−akβtq)

where a is a constant which again, defines a Lévy distribution. Finally, d-dimensional
fractional master equations of the type (for example)

∂q

∂tq
p(r, t) =

∑
s

w(r − s)p(s, t), 0 < q ≤ 1

can be used to model non-equilibrium phase transitions where p denotes the proba-
bility of finding the diffusing entity at a position r ∈ Rd at time t (assuming that it
was at the origin r = 0 at time t = 0) and w are the fractional transition rates which
measure the propensity for a displacement r in units of 1/(time)q. These equations
conform to the general theory of continuous time random walks and provide models
for random walks of fractal time.

A study of the work on fractional dynamics reveals that the fractional PDEs
proposed are being solved through application of the Fourier based definition of a
fractional differential operator. One could therefore argue that such equations are
being ‘invented’ to yield a desired result in Fourier space (e.g. the characteristic
function for a Lévy distribution). Moreover, definitions of fractional derivatives are
being considered in such a way that they lead to self-consistent results for the integer
case (e.g. the Riesz definition of a fractional Laplacean). In this sense, taking well
known PDEs and ‘fractionalising’ them in such a way that a Fourier transform yields
the desired result might justifiably be considered as an example of phenomenology at
its worst. It is clearly more desirable to derive a PDE from basic principles (based
on the known physical laws) and then solve the equation using appropriate solution
methods (some of which are based on certain integral transforms including the Fourier
transform). On the other hand, there are a number of important PDEs whose form
is based on postulation alone and cannot be derived or proved but nevertheless yield
remarkably accurate models for the behaviour of a physical system informed by ex-
periment, e.g. the Schrödinger equation and the Dirac field equations. However, the
measurable quantity is not always that for which a solution can be derived. Referring
to the following table,

556 CHAPTER 17. RANDOM FRACTAL SIGNALS

Name Basic operator Solution variable Experimental
measurable

Diffusion equation ∇2 − ∂
∂t u(r, t) u(r, t)

Schrödinger equation ∇2 + i ∂
∂t u(r, t) | u(r, t) |2

Wave equation ∇2 − ∂2

∂t2 u(r, t) u(r, t) or | u(r, t) |2

we note that the diffusion and wave equations can be derived rigorously from a range
of fundamental physical laws (Fourier’s law of thermal conduction, conservation of
mass, conservation of momentum, the continuity equation, Newton’s laws of motion,
Maxwell’s equations and so on) but that Schrödinger’s equation is phenomenologi-
cal. Further, although we can solve Schrödinger’s equation for the field variable, the
probability wave u, we can only ever measure | u |2 (the probability of the occur
r and time t). This feature is analogous to the approach that follows, where the
phenomenological operator3

∇2 − ∂q(t)

∂tq(t)

is introduced and solved for the non-stationary variable u(r, t) where only Pr[u(r, t)]
can be measured experimentally (Pr[u(r, t)] denotes the space-time PDF of u).

17.4 Non-stationary Fractional Dynamic Model

A common theme associated with the fractional dynamic models discussed in the
previous section is that they describe stationary random processes in terms of solutions
to a PDE. Here, we postulate a PDE whose characteristics incorporate behaviour that
describes non-stationary fractal walks and Lévy-type flights in terms of a solution to
the stochastic field itself rather than its PDF. Also, as will be discussed later, within
the context of the solution proposed, these so called Lévy-type flights are actually the
result of randomly introducing Brownian noise over a short period of time into an
otherwise non-stationary fractal signal. In this sense, they have nothing to do with
Lévy flights as such, but produce results that may be considered to be analogous to
them. We call these effects ‘Brownian transients’ which have longer time correlations
than fractal noise.

Suppose we consider an inhomogeneous fractal diffusion equation of the form[
∂2

∂x2
− τ ∂

q

∂tq

]
u(x, t) = F (x, t), 0 < q ≤ 1

where τ is a constant, F is a stochastic source term with some PDF and u is the
stochastic field whose solution we require. When q = 1 we obtain the diffusion
equation but in general, a solution to this equation will provide stationary temporal
fractal walks - random walks of fractal time. One way of introducing a (first order)
non-stationary process is to consider a source term of the form F [x, t, α(x), β(t)] where
α and β are arbitrary functions. For example, suppose that we write F in separable
form F (x, t) = f(x)n(t) and that n(t) is a random variable of time with a normal or

3First postulated by Dr S Mikhailov, a former research student of the author

17.4. NON-STATIONARY FRACTIONAL DYNAMIC MODEL 557

Gaussian PDF given by

Pr[n(t)] =
1

σ
√

2π
exp[−(μ− n)2/2σ2], −∞ < n <∞

where μ and σ are the mean and standard deviation respectively. By letting μ and/or
σ be functions of t, we can introduce time variations in the mean and/or standard
deviation respectively. In this case, varying the mean will cause the range of n(t)
to change with time and varying the standard deviation will change the variance
of n(t) with time. Note that in this case, the form of the distribution of the field
remains the same, it is a time varying Gaussian field. A more general statement of a
non-stationary stochastic process is one in which the distribution itself changes with
time.

Another way of introducing non-stationarity is through q by letting it become a
function of time t. Suppose that in addition to this, we extend the range of q to
include the values 0 and 2 so that 0 ≤ q ≤ 2. This idea immediately leads us to an
interesting consequence because with q in this range, we can choose q = 1 to yield the
(stochastic) diffusion equation but also choose q = 2 to obtain an entirely different
equation, namely, the (stochastic) wave equation. Choosing (quite arbitrarily) q to be
in this range, leads to control over the basic physical characteristics of the equation
so that we can define a static mode when q = 0, a diffusive mode when q = 1 and a
propagative mode when q = 2. In this case, non-stationarity is introduced through the
use of a time varying fractional derivative whose values modify the physical ‘essence’
of the equation. Since the range of q has been chosen arbitrarily, we generalize further
and consider the equation[

∂2

∂x2
− τq(t) ∂

q(t)

∂tq(t)

]
u(x, t) = F (x, t), −∞ < q(t) <∞, ∀t.

Now, when q = 0 ∀t, the time dependent behaviour is determined by the source
function alone; when q = 1 ∀t, u describes a diffusive process where τ is the ‘diffusivity’
(the inverse of the coefficient of diffusion); when q = 2 we have a propagative process
where τ is the ‘slowness’ (the inverse of the wave speed). The latter process should
be expected to ‘propagate information’ more rapidly than a diffusive process leading
to transients or ‘flights’ of some type. We refer to q as the Fourier dimension which,
for a fractal signal, is related to the conventional definition of the fractal (i.e. the
‘Similarity’, ‘Minkowksi’ or ‘Box Counting’) dimension D by

q =
5− 2D

2
1 < D < 2.

How Should we Choose q(t)?

Since q(t) ‘drives’ the non-stationary behaviour of u, the way in which we model q(t)
is crucial. It is arguable that the changes in the statistical characteristics of u which
lead to its non-stationary behaviour should in themselves be random. Thus, suppose
that we let the Fourier dimension at a time t be chosen randomly, a randomness
that is determined by some PDF. In this case, the non-stationary characteristics of
u will be determined by the PDF (and associated parameters) alone. Also, since q is

558 CHAPTER 17. RANDOM FRACTAL SIGNALS

a dimension, we can consider our model to be based on the ‘statistics of dimension’.
There are a variety of PDFs that can be applied which will in turn effect the range
of q. By varying the exact nature of the distribution considered, we can ‘drive’ the
non-stationary behaviour of u in different ways. For example, suppose we consider a
system which is assumed to be primarily diffusive; then a ‘normal’ PDF of the type

Pr[q(t)] =
1

σ
√

2π
exp[−(q − 1)2/2σ2], −∞ < q <∞

will ensure that u is entirely diffusive when σ → 0. However, as σ is increased in value,
the likelihood of q = 2 (and q = 0) becomes larger. In other words, the standard
deviation provides control over the likelihood of the process becoming propagative. If
for example, we consider a Gamma distribution given by

Pr[q(t)] =
1
βα

1
Γ(α)

qα−1 exp(−q/β), q ≥ 0

where α > 0 and β > 0, then q lies in the positive half space alone with mean and
variance given by

μ = αβ and σ2 = αβ2

respectively. PDFs could also be considered which are of compact support such as
the Beta distribution given by

Pr[q(t)] =
Γ(α+ β)
Γ(α)Γ(β)

qα−1(1− q)β−1, 0 < q < 1

where α and β are positive constants. Here, the mean and variance are

μ =
α

α+ β
and σ2 =

αβ

(α+ β)2(α + β + 1)

respectively and for α > 1 and β > 1 there is a unique mode given by

mode ≡ Pr[q(t)]max =
α− 1

α+ β + 2
.

Irrespective of the type of distribution that is considered, the equation[
∂2

∂x2
− τq(t) ∂

q(t)

∂tq(t)

]
u(x, t) = F (x, t), −∞ < q(t) <∞, ∀t

poses a fundamental problem which is how to define and work with the term

∂q(t)

∂tq(t)
u(x, t).

Given the result (for constant q)

∂q

∂tq
u(x, t) =

1
2π

∞∫
−∞

(iω)qU(x, ω) exp(iωt)dω, −∞ < q <∞

17.5. GREEN’S FUNCTION SOLUTION 559

we might generalize as follows:

∂q(t)

∂tq(t)
u(x, t) =

1
2π

∞∫
−∞

(iω)q(t)U(x, ω) exp(iωt)dω.

However, if we consider the case where the Fourier dimension is a relatively slowly
varying function of t, then we can legitimately consider q(t) to be composed of a
sequence of different states qi = q(ti). This approach allows us to develop a stationary
solution for a fixed q over a fixed period of time. Non-stationary behaviour can then
be introduced by using the same solution for different values or ‘quanta’ qi over fixed
(or varying) periods of time and concatenating the solutions for all qi.

17.5 Green’s Function Solution

We consider a Green’s function solution to the equation[
∂2

∂x2
− τq(t) ∂

q(t)

∂tq(t)

]
u(x, t) = F (x, t), −∞ < q(t) <∞, ∀t

for constant q when F (x, t) = f(x)n(t) where f(x) and n(t) are both stochastic
functions. Applying a separation of variables here is not strictly necessary. However,
it yields a solution in which the terms affecting the temporal behaviour of u(x, t) are
clearly identifiable. Thus, we require a general solution to the equation(

∂2

∂x2
− τq ∂

q

∂tq

)
u(x, t) = f(x)n(t).

Let

u(x, t) =
1
2π

∞∫
−∞

U(x, ω) exp(iωt)dω, and n(t) =
1
2π

∞∫
−∞

N(ω) exp(iωt)dω.

Then, using the result

∂q

∂tq
u(x, t) =

1
2π

∞∫
−∞

U(x, ω)(iω)q exp(iωt)dω

this fractional PDE transforms to(
∂2

∂x2
+ Ω2

q

)
U(x, ω) = f(x)N(ω)

where we shall take

Ωq = i(iωτ)
q
2

and ignore the case for Ωq = −i(iωτ) q
2 . Defining the Green’s function g to be the

solution of

560 CHAPTER 17. RANDOM FRACTAL SIGNALS

(
∂2

∂x2
+ Ω2

q

)
g(x | x0, ω) = δ(x− x0)

where δ is the delta function, we obtain the following solution:

U(x0, ω) = N(ω)

∞∫
−∞

g(x | x0, k)f(x)dx

where

g(X,ω) = − 1
2π

∞∫
−∞

exp(iuX)
(u + Ωq)(u − Ωq)

du, X =| x− x0 | .

The contour integral ∮
C

exp(izX)
(z + Ωq)(z − Ωq)

dz

has complex poles at z = ±Ωq which are q dependent (varying from ±i when q = 0,
through to ±i(iωτ)1/2 when q = 1 and on to ∓ωτ when q = 2 for example). For
any value of q, we can compute this contour integral using the residue theorem. By
choosing the z plane for −∞ < x <∞ and i0 ≤ iy < i∞ where z = x+ iy we obtain
(through application of a semi-circular contour C and Cauchy’s residue theorem)

g(x | x0, k) =
i

2Ωq
exp(iΩq | x− x0 |)

under the assumption that Ωq is finite. This result reduces to conventional solutions
for cases when q = 1 (diffusion equation) and q = 2 (wave equation) as shall now be
shown.

Wave Equation Solution

When q = 2, the Green’s function defined above provides a solution for the outgoing
Green’s function. Thus, with Ω2 = −ωτ , we have

U(x0, ω) =
N(ω)
2iωτ

∞∫
−∞

exp(−iωτ | x− x0 |)f(x)dx

and Fourier inverting we get

u(x0, t) =
1
2τ

∞∫
−∞

dxf(x)
1
2π

∞∫
−∞

N(ω)
iω

exp(−iωτ | x− x0 |) exp(iωt)dω

=
1
2τ

∞∫
−∞

dxf(x)

t∫
−∞

n(t− τ | x− x0 |)dt

17.5. GREEN’S FUNCTION SOLUTION 561

which describes the propagation of a wave travelling at velocity 1/τ subject to varia-
tions in space and time as defined by f(x) and n(t) respectively. For example, when
f and n are both delta functions,

u(x0, t) =
1
2τ
H(t− τ | x− x0 |)

where H is the Heaviside step function defined by

H(y) =

{
1, y > 0;
0, y < 0.

This is a d’Alembertian type solution to the wave equation where the wavefront occurs
at t = τ | x− x0 | in the causal case.

Diffusion Equation Solution

When q = 1 and Ω1 = i
√
iωτ ,

u(x0, t) =
1
2

∞∫
−∞

dxf(x)
1
2π

∞∫
−∞

exp(−√iωτ | x− x0 |)√
iωτ

N(ω) exp(iωt)dω.

For p = iω, we can write this result in terms of a Bromwich integral (i.e. an inverse
Laplace transform) and using the convolution theorem for Laplace transforms with
the result

c+i∞∫
c−i∞

exp(−a√p)√
p

exp(pt)dp =
1√
πt

exp[−a2/(4t)],

we obtain

u(x0, t) =
1

2
√
τ

∞∫
−∞

dxf(x)

t∫
0

exp[−τ(x0 − x)2/(4t0)]√
πt0

n(t− t0)dt0.

Now, if for example, we consider the case when n is a delta function, the result reduces
to

u(x0, t) =
1

2
√
πτt

∞∫
−∞

f(x)H(t) exp[−τ(x0 − x)2/(4t)]dx, t→∞

which describes classical diffusion in terms of the convolution of an initial source f(x)
(introduced at time t = 0) with a Gaussian function.

General Series Solution

The evaluation of u(x0, t) via direct Fourier inversion for arbitrary values of q is not
possible due to the irrational nature of the exponential function exp(iΩq | x − x0 |)
with respect to ω. To obtain a general solution, we use the series representation of
the exponential function and write

562 CHAPTER 17. RANDOM FRACTAL SIGNALS

U(x0, ω) =
iM0N(ω)

2Ωq

[
1 +

∞∑
m=1

(iΩq)m

m!
Mm(x0)
M0

]
where

Mm(x0) =

∞∫
−∞

f(x) | x− x0 |m dx.

We can now Fourier invert term by term to develop a series solution. This requires
us to consider three distinct cases.

Case 1: q = 0

Evaluation of u(x0, t) in this case is trivial since

U(x0, ω) =
M(x0)

2
N(ω) or u(x0, t) =

M(x0)
2

n(t)

where

M(x0) =

∞∫
−∞

exp(− | x− x0 |)f(x)dx.

Case 2: q > 0

Fourier inverting, the first term in this series becomes

1
2π

∞∫
−∞

iN(ω)M0

2Ωq
exp(iωt)dω =

M0

2τ
q
2

1
2π

∞∫
−∞

N(ω)
(iω)

q
2

exp(iωt)dω

=
M0

2τ
q
2

1
Γ(q/2)

t∫
0

n(ξ)
(t− ξ)1−(q/2)

dξ, Re[q] > 0.

The second term is

−M1

2
1
2π

∞∫
−∞

N(ω) exp(iωt)dω = −M1

2
n(t).

The third term is

− iM2

2.2!
1
2π

∞∫
−∞

N(ω)i(iωτ)
q
2 exp(iωt)dω =

M2τ
q
2

2.2!
d

q
2

dt
q
2
n(t)

and the fourth and fifth terms become

17.5. GREEN’S FUNCTION SOLUTION 563

M3

2.3!
1
2π

∞∫
−∞

N(ω)i2(iωτ)q exp(iωt)dω = −M3τ
q

2.3!
dq

dtq
n(t)

and

i
M4

2.4!
1
2π

∞∫
−∞

N(ω)i3(iωτ)
3q
2 exp(iωt)dω =

M4τ
3q
2

2.4!
d

3q
2

dt
3q
2

n(t)

respectively with similar results for all other terms. Thus, through induction, we can
write u(x0, t) as a series of the form

u(x0, t) =
M0(x0)
2τq/2

1
Γ(q/2)

t∫
0

n(ξ)
(t− ξ)1−(q/2)

dξ − M1(x0)
2

n(t) +

1
2

∞∑
k=1

(−1)k+1

(k + 1)!
Mk+1(x0)τkq/2 d

kq/2

dtkq/2
n(t).

Observe that the first term involves a fractional integral, the second term is composed
of the source function n(t) alone (apart from scaling) and the third term is an infinite
series composed of fractional differentials of increasing order kq/2. Also note that the
first term is scaled by a factor involving τ−q/2 whereas the third term is scaled by a
factor that includes τkq/2.

Case 3: q < 0

In this case, the first term becomes

1
2π

∞∫
−∞

iN(ω)M0

2Ωq
exp(iωt)dω =

M0

2
τ

q
2

1
2π

∞∫
−∞

N(ω)(iω)
q
2 exp(iωt)dω

=
M0

2
τ

q
2
d

q
2

dt
q
2
n(t).

The second term is the same is in the previous case (for q > 0) and the third term is

− iM2

2.2!
1
2π

∞∫
−∞

N(ω)i
(iωτ)

q
2

exp(iωt)dω =
M2

2.2!
1
τq/2

1
Γ(q/2)

t∫
0

n(ξ)
(t− ξ)1−(q/2)

dξ.

Evaluating the other terms, by induction we obtain

u(x0, t) =
M0(x0)τq/2

2
dq/2

dtq/2
n(t)− M1(x0)

2
n(t) +

1
2

∞∑
k=1

(−1)k+1

(k + 1)!
Mk+1(x0)
τkq/2

1
Γ(kq/2)

t∫
0

n(ξ)
(t− ξ)1−(kq/2)

dξ

564 CHAPTER 17. RANDOM FRACTAL SIGNALS

where q ≡| q |, q < 0. Here, the solution is composed of three terms: a fractional
differential, the source term and an infinite series of fractional integrals of order kq/2.
Thus, the roles of fractional differentiation and fractional integration are reversed as
q changes from being greater than to less than zero. N.B. all fractional differential
operators associated with the equations above and hence forth should be considered
in terms of the definition for a fractional differential given by

D̂qf(t) =
dn

dtn
[În−qf(t)], n− q > 0.

Asymptotic Forms for f(x) = δ(x)

We consider a special case in which the source function f(x) is an impulse so that

Mm(x0) =

∞∫
−∞

δ(x) | x− x0 |m dx =| x0 |m .

This result immediately suggests a study of the asymptotic solution

u(t) = lim
x0→0

u(x0, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2τq/2
1

Γ(q/2)

t∫
0

n(ξ)
(t−ξ)1−(q/2) dξ, q > 0;

n(t)
2 , q = 0;

τq/2

2
dq/2

dtq/2n(t), q < 0.

The solution for the time variations of the stochastic field u for q > 0 are then given
by a fractional integral alone and for q < 0 by a fractional differential alone. In
particular, for q > 0, we see that the solution is based on a causal convolution. Thus
in t-space

u(t) =
1

2τq/2Γ(q/2)
1

t1−q/2
⊗ n(t), q > 0

where ⊗ denotes (causal) convolution and in ω-space

U(ω) =
N(ω)

2τq/2(iω)q/2
.

This result is the conventional fractal noise model. The table below quantifies the
results for different values of q with conventional name associations. Note that u has
the following fundamental property (for q > 0):

λq/2Pr[u(t)] = Pr[u(λt)].

This property describes the statistical self-affinity of u. Thus, the asymptotic solution
considered here, yields a result that describes a RSF signal characterized by a PSDF
of the form 1/ | ω |q which is a measure of the time correlations in the signal.

17.6. DIGITAL ALGORITHMS 565

q-value t-space ω-space (PSDF) Name

q = 0 1
2n(t) 1

4 White noise
q = 1 1

2
√

τΓ(1/2)
1√
t
⊗ n(t) 1

4τ |ω| Pink noise

q = 2 1
2τΓ(1)

t∫
0

n(t)dt 1
4τ2ω2 Brown noise

q > 2 1
2τq/2Γ(q/2)

t(q/2)−1 ⊗ n(t) 1
4τq|ω|q Black noise

Table 17.1: Noise characteristics for different values of q. (Note that Γ(1/2) =
√
π

and Γ(1) = 1.)

Other Asymptotic Forms

Another interesting asymptotic form is

u(x0, t) =
M0(x0)
2τq/2

1
Γ(q/2)

t∫
0

n(ξ)
(t− ξ)1−(q/2)

dξ − M1(x0)
2

n(t), τ → 0.

Here, the solution is the sum of fractal noise and white noise. By relaxing the condition
τ → 0 we can consider the approximation

u(x0, t) � M0(x0)
2τq/2

1
Γ(q/2)

t∫
0

n(ξ)
(t− ξ)1−(q/2)

dξ −

M1(x0)
2

n(t) +
M2(x0)

2.2!
τq/2 d

q/2

dtq/2
n(t), τ << 1

in which the solution is expressed in terms of the sum of fractal noise, white noise
and the fractional differentiation of white noise.

17.6 Digital Algorithms

There are two principal algorithms that are required to investigate the results given
in the previous section using a digital computer. The first of these concerns the
computation of discrete fractal noise uj given q which is as follows:

(i) Compute a pseudo random zero mean (Gaussian) distributed array nj , j =
0, 1, ..., N − 1.

(ii) Compute the Discrete Fourier Transform (DFT) of nj giving Nj using a Fast
Fourier Transform (FFT).

(iii) Filter Nj with 1/(iωj)q/2.

(iv) Inverse DFT the result using a FFT to give uj (real part).

566 CHAPTER 17. RANDOM FRACTAL SIGNALS

The second algorithm is an inversion algorithm. Given the digital algorithm de-
scribed above, the inverse problem can be defined as given uj compute q. A suitable
approach to solving this problem, which is consistent with the algorithm given above
is to estimate q from the power spectrum of uj whose expected form (considering the
positive half space only and excluding the DC component which is singular) is

P̂j =
A

ωq
j

; j = 1, 2, ..., (N/2)− 1

where A is a constant. Here, we assume that the FFT provides data in ‘standard
form’ and that the DC or zero frequency component occurs at j = 0. If we now
consider the error function

e(A, q) = ‖ lnPj − lnP̂j‖22
where Pj is the power spectrum of uj, then the solution of the equations (least squares
method)

∂e

∂q
= 0;

∂e

∂A
= 0

gives

q =

(
N
2 − 1

) (N/2)−1∑
j=1

[(lnPj)(lnωj)]−
(

(N/2)−1∑
j=1

lnωj

)(
(N/2)−1∑

j=1

lnPj

)
(

(N/2)−1∑
j=1

lnωj

)2

− (N
2 − 1

) (N/2)−1∑
j=1

(lnωj)2

and

A = exp

⎛⎜⎜⎜⎝
(N/2)−1∑

j=1

lnPj + q
(N/2)−1∑

j=1

lnωj

N
2 − 1

⎞⎟⎟⎟⎠ .

The algorithm required to implement this inverse solution is as follows:

(i) Compute the power spectrum Pj of the fractal noise uj using an FFT.

(ii) Extract the positive half space data (excluding the DC term).

(iii) Compute q

This algorithm (which is commonly known as the Power Spectrum Method) provides
a reconstruction for q which is (on average) accurate to 2 decimal places for N ≥ 64.

17.7 Non-stationary Algorithm

The results considered so far have been based on the assumption that the Fourier
dimension is constant. We have considered the case of q(t) having discrete states

17.7. NON-STATIONARY ALGORITHM 567

qi = q(ti) assuming that q(t) is a slowly varying function. In this case, the solutions
and algorithms discussed so far are valid for any qi, i = 0, 1, 2, ...,M − 1 over a
window of time Δti say, which is taken to be composed of N − 1 elements. A non-
stationary signal can therefore be generated by computing M − 1 signals each of
size N − 1 and concatenating the results to form a contiguous stream of data of size
(M − 1)× (N − 1) to give uj. A further generalization can be made by choosing Δti
randomly. An interesting approach to this is based on letting Δti be a fractal signal
so that the stochastic behaviour of uj is governed by fractal time.

Following the ideas discussed in the section on ‘how should we choose q(t)?’, qi
can be taken to be a discrete random variable which is chosen to conform to a discrete
PDF or histogram. For example, we can consider the ‘normal’ distribution given by

Pr[q(t)] =
1

σ
√

2π
exp[−(q − 1)2/2σ2], −∞ < q <∞ ∀ t.

Here, the distribution is symmetric about q = 1; pink noise characterising a diffusive
process.

Continuity Condition

The short time integration of white noise that occurs when q = 2 can lead to a
significant change in the range of values of uj. This type of behaviour is called a
Brownian transient. A time series generated for different values of q may be composed
of Brownian transients that ‘look like’ spikes. These spikes may be of arbitrary
polarity given that n(t) is zero-mean white Gaussian noise. An example of this is
given in Figure 17.2 where a fractal signal has been simulated using two values of
q, namely, 1 (for points 1 to 500 and 516 to 1000) and 2 (for points 501 to 515).
The complex plane map obtained through application of the Hilbert transform is also
given for comparison illustrating the concentration of the stochastic field over one
center of this plane. Suppose we wish to simulate a non-stationary signal whose mean
value changes from time to time. One way of doing this is to let the mean value vary
according to the amplitude obtained at the end of a transient (where q changes from
one value to the next). This provides continuity in the mean value from one transient
to another. An example of this is given in Figure 17.3 for the same stochastic field
illustrated in Figure 17.2. The effect of the continuity condition is to simulate a
multi-fractal signal with a much broader distribution where Brownian transients in
particular, change the mean value over a short period of time. This is compounded
in the complex plane representation of the signal which now shows two centers of
activity with a transitory path (Brownian transient) between them.

The effect of introducing this is further illustrated in Figures 17.4 to 17.8. Here
q is chosen from a Gaussian distribution with a mean of 1 and the standard devia-
tion increased from 0 to 4 in steps of 1 providing multi-random-fractal non-stationary
signals with increasingly transient behaviour and consequently, broader distributions.
The positions at which these transients occur together with their directions and am-
plitudes are entirely arbitrary and ‘driven’ by the Gaussian pseudo random number
generators used to compute nj and qi which in turn depends on the seeds used to
initiate these generators. Moreover, the likelihood of generating a Brownian tran-
sient is determined by the standard deviation of qi alone. This provides a method of

568 CHAPTER 17. RANDOM FRACTAL SIGNALS

modelling non-stationary fractal signals as found in a wide variety of areas such as in
economic time series, biomedical signal analysis etc.

0 100 200 300 400 500 600 700 800 900 1000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 17.2: Non-stationary fractal signal (top) and complex plane map (bottom) for
q = 1 and q = 2.

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 17.3: Non-stationary fractal signal (top) and complex plane map (bottom) for
q = 1 and q = 2 with application of the continuity condition.

17.7. NON-STATIONARY ALGORITHM 569

Figure 17.4: Mono-fractal signal (top) for σ = 0 (entirely diffusive with qi = 1, ∀i)
and histogram (bottom).

Figure 17.5: Multi-fractal signal (top) for σ = 1 and histogram (bottom).

570 CHAPTER 17. RANDOM FRACTAL SIGNALS

Figure 17.6: Multi-fractal signal (top) for σ = 2 and histogram (bottom).

Figure 17.7: Multi-fractal signal (top) for σ = 3 and histogram (bottom).

17.7. NON-STATIONARY ALGORITHM 571

Figure 17.8: Multi-fractal signal (top) for σ = 4 and histogram (bottom).

Inverse Solution

The inverse solution is based on computing the variable Fourier dimension and then
an appropriate time variant (or otherwise) statistic from it. For example, in the case
of a time variant Gaussian distributed Fourier dimension, we compute the standard
deviation using a moving window. In this case, for a given input signal si say, the
Fourier dimension function qi is computed using a moving window in which the power
spectrum method is applied to the windowed data to produce a single value of the
Fourier dimension for the window at position i. Having computed qi, the moving
window principle is again invoked in which the windowed data is used to compute
the standard deviation of the Fourier dimension under the assumption that the dis-
tribution of these values is Gaussian. In each case, the data are used to construct a
histogram of qi and a least squares fit to a Gaussian function obtained from which the
standard deviation is then computed. This produces the variable standard deviation
function σi which provides a measure of the non-stationary nature of the original
signal in terms of its propensity for propagative behaviour (i.e. Brownian transients).

Applications

There are a wide variety of applications. For example, in medicine, there are a number
of biomedical signals that can and should be analysed using multi-Fourier dimensional

572 CHAPTER 17. RANDOM FRACTAL SIGNALS

analysis. An interesting example concerns the behaviour of the heart rate prior to the
on set of a heart attack. It is well known that the heart rate (measured in terms of the
number of beats per minute fi where i counts the minutes) is not constant but varies
from one minute to the next. In other words, the heart rate signal fi does not have
a constant amplitude and if it is generated over a long enough period of time, starts
to exhibit multi-fractal characteristics.4 For a healthy condition, the computation of
qi from fi yields a signal with a narrow (Gaussian) distribution and a well defined
mean value and variance (of the type given in Figure 17.4). However, the behaviour
of qi becomes significantly more erratic (leading to a broadening of a typically non-
Gaussian distribution similar to the type given in Figure 17.8 for example) prior to
the onset of a heart attack. More importantly, this characteristic is observable up to
24 hours before the heart attack starts!

Another example includes the use of multi-fractal statistics for developing a finan-
cial volatility index. It tuns out, that although the distribution of financial time series
are not Gaussian, the Fourier dimensions of such time series are Gaussian distributed.
Moreover, these Gaussian statistics are not time invariant, i.e. the standard devia-
tion is a variable. Now, if the standard deviation increases then, based on the model
considered here, there is an increased likelihood for either propagative behaviour
(Brownian transients when q = 2) or white noise behaviour (when q = 0) indicative
of the possibility of greater volatility of the time series. Thus, by monitoring the
standard deviation of the Gaussian distributed Fourier dimension associated with a
macro-economic time series, a measure can be introduced that attempts to predict
market volatility. Finally, a method of covert communications can be consider based
on the application of a process called fractal modulation which is discussed in further
detail in the following case study.

17.8 General Stochastic Model

For a time invariant linear system, the power law | ω |−q is consistent with statistically
self-affine noise which is the basic model used so far. Many signals do have a high
frequency decay for which the fractal model is appropriate but the overall spectrum
may have characteristics for which a | ω |−q power law is not appropriate. In such
cases, it is often possible to apply a spectral partitioning algorithm which attempts to
extract the most appropriate part of the spectrum for which this power law applies.

There are of course a range of PSDF models that can be considered. One process
of interest is the Bermann process where

P (ω) =
A | ω |2g

(ω2
0 + ω2)

which is a generalization of the Ornstein-Uhlenbeck process where

P (ω) =
Aω

(ω2
0 + ω2)

and stems from an attempt to overcome the difficulties of the non-differentiability
associated with a Wiener process. Here, A is a constant, g > 0 and ω0 is a constant

4Principal source: American Journal of Cardiology, from 1999 onwards.

17.9. CASE STUDY: FRACTAL MODULATION 573

frequency. Clearly, we can consider a further generalization and consider the PSDF

P (ω) =
A | ω |2g

(ω2
0 + ω2)q

.

This PSDF represents a more general fractal-type process and is less restrictive par-
ticularly with regard to the low frequency characteristics.

17.9 Case Study: Fractal Modulation

Embedding information in data whose properties and characteristics resemble those of
the background noise of a transmission system is of particular interest in covert digital
communications. In this case study5, we explore a method of coding bit streams by
modulating the fractal dimension of a fractal noise generator. Techniques for recon-
structing the bit streams (i.e. solving the inverse problem) in the presence of additive
noise (assumed to be introduced during the transmission phase) are then considered.
This form of ‘embedding information in noise’ is of value in the transmission of infor-
mation in situations when a communications link requires an extra level of security
or when an increase in communications traffic needs to be hidden in a covert sense
by coupling an increase in the background noise of a given area with appropriate
disinformation (e.g. increased sun spot activity). Alternatively, the method can be
considered to be just another layer of covert technology used for military commu-
nications in general. In principle, the method we develop here can be applied to
any communications system and in the following section, a brief overview of existing
techniques is discussed.

17.9.1 Secure Digital Communications

A digital communications systems is one that is based on transmitting and receiving
bit streams. The basic processes involved are as follows: (i) a digital signal is obtained
from sampling an analogue signal derived from some speech and/or video system; (ii)
this signal (floating point stream) is converted into a binary signal consisting of 0s
and 1s (bit stream); (iii) the bit stream is then modulated and transmitted; (iv)
at reception, the transmitted signal is demodulated to recover the transmitted bit
stream; (v) the (floating point) digital signal is reconstructed. Digital to analogue
conversion may then be required depending on the type of technology being used.

In the case of sensitive information, an additional step is required between stages
(ii) and (iii) above where the bit stream is coded according to some classified algo-
rithm. Appropriate decoding is then introduced between stages (iv) and (v) with
suitable pre-processing to reduce the effects of transmission noise for example which
introduces bit errors. The bit stream coding algorithm is typically based on a pseudo
random number generator or nonlinear maps in chaotic regions of their phase spaces
(chaotic number generation). The modulation technique is typically either Frequency
Modulation or Phase Modulation. Frequency modulation involves assigning a specific
frequency to each 0 in the bit stream and another higher (or lower) frequency to each
1 in the stream. The difference between the two frequencies is minimized to provide

5Based on the research of Dr S Mikhailov, a former research student of the author

574 CHAPTER 17. RANDOM FRACTAL SIGNALS

space for other channels within the available bandwidth. Phase modulation involves
assigning a phase value (0, π/2, π, 3π/2) to one of four possible combinations that
occur in a bit stream (i.e. 00, 11, 01 or 10).

Scrambling methods can be introduced before binarization. A conventional ap-
proach to this is to distort the digital signal by adding random numbers to the out-
of-band components of its spectrum. The original signal is then recovered by lowpass
filtering. This approach requires an enhanced bandwidth but is effective in the sense
that the signal can be recovered from data with a relatively low signal-to-noise ra-
tio. ‘Spread spectrum’ or ‘frequency hopping’ is used to spread the transmitted (e.g.
frequency modulated) information over many different frequencies. Although spread
spectrum communications use more bandwidth than necessary, by doing so, each com-
munications system avoids interference with another because the transmissions are at
such minimal power, with only spurts of data at any one frequency. The emitted
signals are so weak that they are almost imperceptible above background noise. This
feature results in an added benefit of spread spectrum which is that eaves-dropping
on a transmission is very difficult and in general, only the intended receiver may
ever known that a transmission is taking place, the frequency hopping sequence be-
ing known only to the intended party. Direct sequencing, in which the transmitted
information is mixed with a coded signal, is based on transmitting each bit of data
at several different frequencies simultaneously, with both the transmitter and receiver
synchronized to the same coded sequence. More sophisticated spread spectrum tech-
niques include hybrid ones that leverage the best features of frequency hopping and
direct sequencing as well as other ways to code data. These methods are particularly
resistant to jamming, noise and multipath anomalies, a frequency dependent effect
in which the signal is reflected from objects in urban and/or rural environments and
from different atmospheric layers, introducing delays in the transmission that can
confuse any unauthorized reception of the transmission.

The purpose of Fractal Modulation is to try and make a bit stream ‘look like’
transmission noise (assumed to be fractal). The technique considered here focuses on
the design of algorithms which encode a bit stream in terms of two fractal dimensions
that can be combined to produce a fractal signal characteristic of transmission noise.
Ultimately, fractal modulation can be considered to be an alternative to frequency
modulation although requiring a significantly greater bandwidth for its operation.
However, fractal modulation could relatively easily be used as an additional pre-
processing security measure before transmission. The fractal modulated signal would
then be binarized and the new bit stream fed into a conventional frequency modu-
lated digital communications system albeit with a considerably reduced information
throughput for a given bit rate. The problem is as follows: given an arbitrary binary
code, convert it into a non-stationary fractal signal by modulating the fractal dimen-
sion in such a way that the original binary code can be recovered in the presence of
additive noise with minimal bit errors.

In terms of the theory discussed earlier, we consider a model of the type[
∂2

∂x2
− τq(t) ∂

q(t)

∂tq(t)

]
u(x, t) = −δ(x)n(t), q > 0, x→ 0

where q(t) is assigned two states, namely q1 and q2 (which correspond to 0 and 1 in
a bit stream respectively) for a fixed period of time. The forward problem (fractal

17.9. CASE STUDY: FRACTAL MODULATION 575

modulation) is then defined as: given q(t) compute u(t) ≡ u(0, t). The inverse problem
(fractal demodulation) is defined as: given u(t) compute q(t).

17.9.2 Fractal Modulation and Demodulation

Instead of working in terms of the Fourier dimension q, we shall consider the fractal
dimension given by

D =
5− 2q

2
where D ∈ (1, 2). The technique is outlined below:

(i) For a given bit stream, allocate Dmin to bit=0 and Dmax to bit=1.

(ii) Compute a fractal signal of length N for each bit in the stream.

(iii) Concatenate the results to produce a contiguous stream of fractal noise.

The total number of samples can be increased through N (the number of samples per
fractal) and/or increasing the number of fractals per bit. This results in improved
estimates of the fractal dimensions leading to a more accurate reconstruction. Fractal
demodulation is achieved by computing the fractal dimensions via the power spec-
trum method using a conventional moving window to provide the fractal dimension
signature Di, i = 0, 1, 2, The bit stream is then obtained from the following
algorithm:

If Di ≤ Δ then bit =0;

If Di > Δ then bit =1;

where
Δ = Dmin +

1
2
(Dmax −Dmin).

The principal criteria for the optimization of this modulation/demodulation technique
is to minimize (Dmax−Dmin) subject to accurate reconstructions forDi in the presence
of (real) transmission noise with options on:

(i) fractal size - the number of samples used to compute a fractal signal;

(ii) fractals per bit - the number of fractal signals used to represent one bit;

(iii) Dmin (the fractal dimension for bit=0) and Dmax (the fractal dimension for
bit=1);

(iv) addition of Gaussian noise before reconstruction for a given SNR.

Option (iv) is based on the result compounded in the asymptotic model where the
signal is taken to be the sum of fractal noise and white Gaussian noise.

An example of a fractal modulated signal is given in Figure 17.9 in which the
binary code 0....1....0.... has been considered in order to illustrate the basic principle.

576 CHAPTER 17. RANDOM FRACTAL SIGNALS

Figure 17.9: Fractal modulation of the code 0...1...0... for one fractal per bit.

Figure 17.10: Fractal modulation of the code 0...1...0... for three fractals per bit.

17.9. CASE STUDY: FRACTAL MODULATION 577

Figure 17.11: Fractal modulation of a random bit stream without additive noise.

Figure 17.12: Fractal modulation of a random bit stream with 10% additive noise.

578 CHAPTER 17. RANDOM FRACTAL SIGNALS

This figure shows the original binary code (top window) the (clipped) fractal signal
(middle window) and the fractal dimension signature Di (lower window - dotted
line) using 1 fractal per bit, 64 samples per fractal for a ‘Low dimension’ (Dmin)
and a ‘Hi dimension’ (Dmax) of 1.1 and 1.9 respectively. The reconstructed code is
superimposed on the original code (top window - dotted line) and the original and
estimated codes are displayed on the right hand side. In this example, there is a
2% bit error. By increasing the number of fractals per bit so that the bit stream is
represented by an increased number of samples, greater accuracy can be achieved.
This is shown in Figure 17.10 where for 3 fractals/bit there are no bit errors. In
this example, each bit is represented by concatenating 3 fractal signals each with 64
samples. The reconstruction is based on a moving window of size 64. In Figures 17.9
and 17.10, the change in signal texture from 0 to 1 and from 1 to 0 is relatively clear
because (Dmin, Dmax) = (1.1, 1.9). By reducing the difference in fractal dimension,
the textural changes across the signal can be reduced. This is shown in Figure 17.11
for (Dmin, Dmax) = (1.6, 1.9) and a random 64 bit pattern where there is 1 bit in
error. Figure 17.12 shows the same result but with 10% white Gaussian noise added
to the fractal modulated signal before demodulation. Note that the bit errors have
not been increased as a result of adding 10% noise.

Discussion

Fractal modulation is a technique which attempts to embed a bit stream in fractal
noise by modulating the fractal dimension. The errors associated with recovering a bit
stream are critically dependent on the SNR. The reconstruction algorithm provides
relatively low bit error rates with a relatively high level of noise, provided the difference
in fractal dimension is not too small and that many fractals per bit are used. In any
application, the parameter settings would have to optimized with respect to a given
transmission environment.

17.10 Case Study: Financial Signal Processing

In addition to the use of digital signal processing for a wide variety of applications
ranging from medicine to mobile communications, DSP has started to play an in-
creasing role in Computer Aided Financial Engineering6. In this extended final case
study, we explore the background to financial signal processing. By discussing many
of the conventional approaches to market analysis and the reasoning behind these ap-
proaches, we develop a Multi-fractal Market Hypothesis based on the application of
the non-stationary fractional dynamical model discussed earlier in this chapter. After
a short introduction, we investigate market analysis based on the ‘Efficient Market
Hypothesis’ leading to Black-Scholes analysis. The ‘Fractal Market Hypothesis’ is
then considered using a form of data analysis based on the work of Hurst. Finally, a
multi-fractal market hypothesis’ is introduced together with some example results.

6Grateful acknowledgement is due to Dr M London, a former research student of the author and
whose research forms the basis for this case study.

17.11. INTRODUCTION 579

17.11 Introduction

The application of statistical techniques for analysing time series and the financial
markets in general is a well established practice. These practices include time series
analysis and prediction using a wide range of stochastic modelling methods and the
use of certain partial differential equations for describing financial systems (e.g. the
Black-Scholes equation for financial derivatives). A seemingly inexhaustible range of
statistical parameters are being developed to provide an increasingly complex port-
folio of financial measures. The financial markets are a rich source of complex data.
Changing every second or less, their behaviour is difficult to predict often leaving
economists and politicians alike, baffled at events such as the crash of 15th October
1987 which lead to the recession of the late 1980s and early 1990s. This event is shown
in Figure 17.13 which is the time series for the New York Average from 1980 to 1989.

Figure 17.13: The New York Average or NYA from 1980-89, showing the crash of
late 1987, the NYA being given as a function of the number of days with the crash
occurring around the 2000 mark.

Attempts to develop stochastic models for financial time series (which are just digital
signals or ‘tick data’) can be traced back to the late eighteenth century when Louis
Bachelier, who studies under Henri Poincaré (one of the first mathematicians to dis-
cuss the principles of chaotic dynamics) in Paris, proposed that fluctuations in the
prices of stocks and shares could be viewed in terms of random walks. Bachelier’s
model (like many of those that have been developed since) failed to predict extreme
behaviour in financial signals because of its assumption that such signals conform to
Gaussian processes.

A good stochastic financial model should ideally consider all the observable be-
haviour of the financial system it is attempting to model. It should therefore be
able to provide some predictions on the immediate future behaviour of the system
within an appropriate confidence level. Predicting the markets has become (for obvi-
ous reasons) one of the most important problems in financial engineering. Although

580 CHAPTER 17. RANDOM FRACTAL SIGNALS

in principle, it might be possible to model the behaviour of each individual agent
operating in a financial market, the uncertainty principle should always be respected
in that one can never be sure of obtaining all the necessary information required on
the agents themselves and their modus operandi. This principle plays an increasingly
important role as the scale of the financial system for which a model is required in-
creases. Thus, while quasi-deterministic models can be of value in the understanding
of micro-economic systems (with fixed or fuzzy ‘operational conditions’ for example),
in an ever increasing global economy (in which the operational conditions associated
with the fiscal policies of a given nation state are increasingly open), we can take
advantage of the scale of the system to describe its behaviour in terms of functions
of random variables. However, many economists, who like to believe that agents are
rational and try to optimize their utility function (essentially, a trade off between
profit and risk), are reluctant to accept a stochastic approach to modelling the mar-
kets claiming that it is ‘an insult to the intelligence of the market(s)’. In trying to
develop a stochastic financial model based on a macro-economy, it is still important to
respect the fact that the so called global economy is actually currently controlled by
three major trading centres (i.e. Tokyo, London and New York, the largest of which,
in terms of the full complement of financial services offered is London). Politicians
are also generally reluctant to accept a stochastic approach to financial modelling and
forecasting. The idea that statistical self-affinity may by a universal law, and that the
evolution of an economy and society in general could be the result of one enormous
and continuing phase transition does little to add confidence to the worth and ‘power
spectrum’ of politics (until politics itself is considered in the same light!). Neverthe-
less, since the early 1990s, fractal market analysis has been developed and used to
study a wide range of financial time series. This includes different fractal measures
such as the Hurst dimension, the Lyapunov exponent, the correlation dimension and
multi-fractals. Ultimately, an economy depends on the confidence of those from which
it is composed and although governments (and/or central or federal banks) have a
variety of control parameters (interest rates being amongst the most important) with
which to adjust the pace of economic growth or otherwise, there is no consensus on
how to control and accurately define the term confidence.

17.12 The Efficient Market Hypothesis

The unpredictable (stochastic) nature of financial time series or signals is well known
and the values of the major indices such as the FTSE (Financial Times Stock Ex-
change) in the UK, the Dow Jones in the US and the Nikkei Dow in Japan are
frequently quoted. The most interesting and important aspects which can affect the
global economy in a dramatic and short term way are apparently unpredictable and
sudden markets crashes such as the one that took place on the 15th October 1987.
In this section, we provide an extensive case study which builds up to the applica-
tion of the fractional dynamic model discussed earlier in this chapter for multi-fractal
financial analysis.

A principal aim of investors is to attempt to obtain information that can provide
some confidence in the immediate future of the stock markets based on patterns of
the past. One of the principle components of this aim is based on the observation
that there are ‘waves within waves’ and events with events that appear to permeate

17.12. THE EFFICIENT MARKET HYPOTHESIS 581

financial signals when studied with sufficient detail and imagination. It is these re-
peating patterns that occupy both the financial investor and the systems modeller
alike and it is clear that although economies have undergone many changes in the last
one hundred years, the dynamics of market data have not changed considerably. For
example, Figure 17.14 shows the build up to two different crashes, the one of 1987
given previously and that of 1997. The similarity in behaviour of these two signals
is remarkable and is indicative of the quest to understand economic signals in terms
of some universal phenomenon from which appropriate (macro) economic models can
be generated.

Figure 17.14: The build up to the financial crashes of 1987 and 1997.

Random walk or Martingale models, which embody the notions of the so called
Efficient Market Hypothesis (EMH) and successful arbitraging, have been the most
popular models of financial time series since the work of Bachelier in 1900. The Black-
Scholes model (for which Scholes won a Nobel prize in economics) for valuing options
is based on this approach and although Black-Scholes analysis is deterministic (one
of the first approaches to achieve a determinism result), it is still based on the EMH.
However, it has long been known that financial time series do not follow random
walks. The shortcomings of the EMH model include: failure of the independence and
Gaussian distribution of increments assumption, clustering, apparent non-stationarity
and failure to explain momentous financial events such as crashes. These limitations
have prompted a new class of methods for investigating time series obtained from
a range of disciplines. For example, Re-scaled Range Analysis (RSRA), originally
inspired by the work of Hurst on the Nile river discharges has turned out to be a
powerful tool for revealing some well disguised properties of stochastic time series such
as persistence, characterized by non-periodic cycles. Non-periodic cycles correspond
to trends that persist for irregular periods but with some statistical regularity often
caused by non-linear dynamical systems and chaos. RSRA is particularly valuable

582 CHAPTER 17. RANDOM FRACTAL SIGNALS

because of its robustness in the presence of noise. Ralph Elliott first reported the
fractal properties of financial data in 1938. Elliott was the first to observed that
segments of financial time series data of different sizes could be scaled in such a way,
that they were statistically the same producing so called Elliot waves. Many different
random fractal type models for price variation have been developed over the past
decade based on iterated function/dynamic systems. These models capture many
properties of the time series but are not based on any underlying causal theory.

In economies, the distribution of stock returns and anomalies like market crashes
emerge as a result of considerable complex interaction. In the analysis of financial
time series, it is inevitable that assumptions need to be made to make the derivation
of a model possible. This is the most vulnerable stage of the process. Over simplifying
assumptions lead to unrealistic models. There are two main approaches to financial
modelling: The first approach is to look at the statistics of market data and to
derive a model based on an educated guess of the mechanics of market dynamics.
The model can then be tested using real data. The idea is that this process of trial
and error helps to develop the right theory of market dynamics. The alternative
is to ‘reduce’ the problem and try to formulate a microscopic model such that the
desired behaviour ‘emerges’, again, by guessing agents’ strategic rules. This offers
a natural framework for interpretation; the problem is that this knowledge may not
help to make statements about the future unless some methods for describing the
behaviour can be derived from it. Although individual elements of a system cannot
be modelled with any certainty, global behaviour can sometimes be modelled in a
statistical sense provided the system is complex enough in terms of its network of
interconnection and interacting components. In complex systems, the elements adapt
to the world -the aggregate pattern- they co-create. As the components react, the
aggregate changes, as the aggregate changes the components react anew. Barring
the reaching of some asymptotic state or equilibrium, complex systems keep evolving,
producing seemingly stochastic or chaotic behaviour. Such systems arise naturally in
the economy. Economic agents, be they banks, firms, or investors, continually adjust
their market strategies to the macroscopic economy which their collective market
strategies create. It is important to appreciate at this point, that there is an added
layer of complexity within the economic community: Unlike many physical systems,
economic elements (human agents) react with strategy and foresight (some of the
time) by considering the implications of their actions although it is not certain whether
this fact changes the resulting behaviour.

What do complex systems have to do with fractals? The property of feedback is
the very essence of both economic/complex systems and chaotic dynamical systems
that produce fractal structures. The link between dynamical systems, chaos and the
economy is an important one because it is dynamical systems that illustrate that
local randomness and global determinism can co-exist. Complex systems can be split
into two categories: equilibrium and non-equilibrium. Equilibrium complex systems,
undergoing a phase transition, can lead to ‘critical states’ that often exhibit fractal
structures. A simple example is the heating of ferromagnets. As the temperature
rises, the atomic spins in the magnetic field gain energy and begin to change in
direction. When the temperature reaches some critical value, the spins form a random
vector field with mean zero and a phase transition occurs in which the magnetic field
averages to zero. The statistics of this random field are scale invariant or fractal. Non-

17.13. MARKET ANALYSIS 583

equilibrium complex systems or ‘driven’ systems give rise to ‘self organised critical
states’, an example is the growing of sand piles. If sand is continuously supplied from
above, the sand starts to pile up. Eventually, little avalanches will occur as the sand
pile inevitably spreads outwards under the force of gravity. The temporal and spatial
statistics of these avalanches are scale invariant.

Financial markets can be considered to be non-equilibrium systems because they
are constantly driven by transactions that occur as the result of new fundamental in-
formation about firms and businesses. They are complex systems because the market
also responds to itself in a highly non-linear fashion, and would carry on doing so
(at least for some time) in the absence of new information. This is where confusion
commonly arises. The ‘price change field’ is highly non-linear and very sensitive to
exogenous shocks and it is highly probable that all shocks have a long term affect.
Market transactions generally occur globally at the rate of hundreds of thousands
per second. It is the frequency and nature of these transactions that dictate stock
market indices, just as it is the frequency and nature of the sand particles that dic-
tates the statistics of the avalanches in a sand pile. These are all examples of random
scaling fractals. Further, they are example of systems that often conform to Lévy
distributions discussed earlier in this chapter.

17.13 Market Analysis

In 1900, Louis Bachelier concluded that the price of a commodity today is the best
estimate of its price in the future. The random behaviour of commodity prices was
again noted by Working in 1934 in an analysis of time series data. Kendall (1953)
attempted to find periodic cycles in indices of security and commodity prices but did
not find any. Prices appeared to be yesterday’s price plus some random change and
he suggested that price changes were independent and that prices apparently followed
random walks. The majority of financial research seemed to agree; asset price changes
are random and independent, so prices follow random walks. Thus, the first model of
price variation was just the sum of independent random numbers often referred to as
Brownian motion (BM) after Robert Brown (1828) who studied the erratic movement
of a small particle suspended in a fluid.

Some time later, it was noticed that the size of price movements depends on the
size of the price itself. The model was revised to include this proportionality effect,
and so a new model was developed that stated that the log price changes should be
Gaussian distributed. This behaviour can be described mathematically by a model
of the form

dS

S
= σdX + μdt

where S is the price at time t, μ is a drift term which reflects the average rate of
growth of the asset, σ is the volatility and dX is a sample from a normal distribution.
In other words, the relative price change of an asset is equal to some random element
plus some underlying trend component. More precisely, this model is a lognormal
random walk. The Brownian motion model has the following important properties:

1. Statistical stationarity of price increments. Samples of Brownian motion taken

584 CHAPTER 17. RANDOM FRACTAL SIGNALS

over equal time increments can be superimposed onto each other in a statistical
sense.

2. Scaling of price. Samples of Brownian motion corresponding to different time
increments can be suitably re-scaled such that they too, can be superimposed
onto each other in a statistical sense.

3. Independence of price changes.

Why should prices follow Gaussian random walks? It is often stated that as-
set prices should follow random walks because of the Efficient Market Hypothesis
(EMH). The EMH states that the current price of an asset fully reflects all available
information relevant to it and that new information is immediately incorporated into
the price. Thus, in an efficient market, the modelling of asset prices is really about
modelling the arrival of new information. New information must be independent
and random, otherwise it would been anticipated and would not be new. The EMH
implies independent price increments but why should they be Gaussian distributed?
The Gaussian PDF is chosen because most price movements are presumed to be an
aggregation of smaller ones, and sums of independent random contributions have a
Gaussian PDF.

The arrival of new information actually sends ‘shocks’ through the market as
people react to it and then to each other’s reactions. The EMH assumes that there
is a rational (sensible) and unique way to use the available information and that all
agents possess this knowledge. Moreover, the EMH assumes that this chain reaction
happens instantaneously. In an efficient market, only the revelation of some dramatic
information can cause a crash, yet post-mortem analysis of crashes typically fail to
(convincingly) tell us what this information must have been.

In order to understand the nature of an economy, as with any other signal, one
needs to be clear about what assumptions are being made in order to develop suitable
models and have some way to test them. We need to consider what is happening at
the microscopic level as well as the macroscopic level on which we observe financial
time series, which are often averages of composites of many fundamental economic
variables. It is therefore necessary to introduce some of the approaches and issues
associated with financial engineering which is given in the following sections.

17.13.1 Risk .v. Return: Arbitrage

For many years, investment advisers focused on returns with the occasional caveat
‘subject to risk’. Modern Portfolio Theory (MPT) teaches that there is a trade off
between risk and return. Nearly all finance theory assumes the existence of risk-free
investment, e.g. the return from depositing money in a sound financial institute or
investing in equities. In order to gain more profit, the investor must accept greater
risk. Why should this be so? Suppose the opportunity exists to make a guaranteed
return greater than that from a conventional bank deposit say; then, no (rational)
investor would invest any money with the bank. Furthermore, if he/she could also
borrow money at less than the return on the alternative investment, then the investor
would borrow as much money as possible to invest in the higher yielding opportunity.
In response to the pressure of supply and demand, the banks would raise their interest
rates. This would attract money for investment with the bank and reduce the profit

17.13. MARKET ANALYSIS 585

made by investors who have money borrowed from the bank. (Of course, if such
opportunities did arise, the banks would probably be the first to invest our savings in
them.) There is elasticity in the argument because of various friction factors such as
transaction costs, differences in borrowing and lending rates, liquidity laws etc., but
on the whole, the principle is sound because the market is saturated with arbitrageurs
whose purpose is to seek out and exploit irregularities or miss-pricing.

The concept of successful arbitraging is of great importance in finance. Often
loosely stated as, ‘there’s no such thing as a free lunch’, it means that, in practice,
one cannot ever make an instantaneously risk-free profit. More precisely, such oppor-
tunities cannot exist for a significant length of time before prices move to eliminate
them.

17.13.2 Financial Derivatives

As markets have grown and evolved, new trading contracts have emerged which use
various tricks to manipulate risk. Derivatives are deals, the value of which is derived
from (although not the same as) some underlying asset or interest rate. There are
many kinds of derivatives traded on the markets today. These special deals really just
increase the number of moves that players of the economy have available to ensure
that the better players have more chance of winning. For example, anyone who has
played naughts and crosses a few times will know that once a certain level has been
reached every game should be a draw. Chess, on the other hand, is a different matter.
To illustrate some of the implications of the introduction of derivatives to the financial
markets we consider the most simple and common derivative, namely, the option.

Options

An option is the right (but not the obligation) to buy (call) or sell (put) a financial
instrument (such as a stock or currency, known as the ‘underlying’) at an agreed date
in the future and at an agreed price, called the strike price. For example, consider
an investor who ‘speculates’ that the value of a stock, XYZ, will rise. The investor
could buy shares in XYZ, and if appropriate, sell them later at a higher price to make
money. Alternatively, the investor might buy a call option, the right to buy an XYZ
share at a later date. If the asset is worth more than the strike price on expiry, the
holder will be content to exercise the option, immediately sell the stock at the higher
price and generate an automatic profit from the difference. The catch is, that if the
price is less, the holder must accept the loss of the premium paid for the option (which
must be paid for at the opening of the contract). Denoting C to be the value of a call
option, S the asset price and E to be the strike price, the option is worth

C(S, t) = max(S − E, 0).

Conversely, suppose the investor speculates that XYZ shares are going to fall,
then the investor can sell shares or buy puts. If the investor speculates by selling
shares that he/she does not own (which in certain circumstances is perfectly legal
in many markets), then he/she is selling ‘short’ and will profit from a fall in XYZ
shares. (The opposite of a short position is a ‘long’ position.) The principal question
is then, how much should one pay for an option? Clearly, if the value of the asset

586 CHAPTER 17. RANDOM FRACTAL SIGNALS

rises so does the value of a call option and vice versa for put options. But how do
we quantify exactly how much this gamble is worth? In previous times (prior to the
Black-Scholes model which is discussed later) options were bought and sold for the
value that individual traders thought they ought to have. The strike prices of these
options were usually the ‘forward price’, which is just the current price adjusted for
interest-rate effects. The value of options rises in active or volatile markets because
options are more likely to pay out large amounts of money when they expire if market
moves have been large. That is, potential gains are higher, but loss is always limited
to the cost of the premium. This gain through successful ‘speculation’ is not the only
role options play.

Hedging

Suppose an investor already owns XYZ shares as a long-term investment, then he/she
may wish to insure against a temporary fall in the share price by buying puts as well.
Clearly, the investor would not want to liquidate the XYZ holdings only to buy
them back again later, possibly at a higher price if the estimate of the share price is
wrong, and certainly having incurred some transaction costs on the two deals. If a
temporary fall occurs, the investor has the right to sell his/her holdings for a higher
than market price. The investor can then immediately buy them back for less, in
this way generating a profit and long-term investment then resumes. If the investor is
wrong and a temporary fall does not occur, then the premium is lost for the option but
at least the stock is retained, which has continued to rise in value. Furthermore, since
the value of a put option rises when the underlying asset value falls, what happens to
a portfolio containing both assets and puts? The answer depends on the ratio. There
must exist a ratio at which a small unpredictable movement in the asset does not
result in any unpredictable movement in the portfolio. This ratio is instantaneously
risk free. The reduction of risk by taking advantage of correlations between the option
price and the underlying price is called ‘hedging’. If a market maker can sell an option
and hedge away all the risk for the rest of the options life, then a risk free profit is
guaranteed.

Why write options? Options are usually sold by banks to companies to protect
themselves against adverse movements in the underlying price, in the same way as
holders do. In fact, writers of options are no different to holders, they expect to
make a profit by taking a view of the market. The writers of calls are effectively
taking a short position in the underlying behaviour of the markets. Known as ‘bears’,
these agents believe the price will fall and are therefore also potential customers for
puts. The agents taking the opposite view are called ‘bulls’. There is a near balance
of bears and bulls because if everyone expected the value of a particular asset to
do the same thing, then its market price would stabilise (if a reasonable price were
agreed on) or diverge (if everyone thought it would rise). Clearly, the psychology and
dynamics (which must go hand in hand) of the bear/bull cycle play an important role
in financial analysis.

The risk associated with individual securities can be hedged through diversifica-
tion and/or various other ways of taking advantage of correlations between different
derivatives of the same underlying asset. However, not all risk can be removed by
diversification. To some extent, the fortunes of all companies move with the economy.

17.13. MARKET ANALYSIS 587

Changes in the money supply, interest rates, exchange rates, taxation, the prices of
commodities, government spending and overseas economies tend to affect all compa-
nies in one way or another. This remaining risk is generally referred to as market
risk.

17.13.3 Black-Scholes Analysis

The value of an option can be thought of as a function of the underlying asset price
S (a random variable) and time t denoted by V (S, t). Here, V can denote a call or a
put; indeed, V can be the value of a whole portfolio or different options although for
simplicity we can think of it as a simple call or put. Any derivative security whose
value depends only on the current value S at time t and which is paid for up front,
satisfies the Black-Sholes equation given by

∂V

∂t
+

1
2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

where σ is the volatility and r is the risk. As with other partial differential equations,
an equation of this form may have many solutions. The value of an option should
be unique; otherwise, again, arbitrage possibilities would arise. Therefore, to identify
the appropriate solution, appropriate initial, final and boundary conditions need to be
imposed. Take for example, a call; here the final condition comes from the arbitrage
argument. At t = T

C(S, t) = max(S − E, 0).

The spatial or asset-price boundary conditions, applied at S = 0 and S → ∞ come
from the following reasoning: If S is ever zero then dS is zero and will therefore never
change. Thus, we have

C(0, t) = 0.

As the asset price increases it becomes more and more likely that the option will be
exercised, thus we have

C(S, t) ∝ S, S →∞.
Observe, that the Black-Sholes equation has a similarity to the diffusion equation
but with extra terms. An appropriate way to solve this equation is to transform it
into the diffusion equation for which the solution is well known and with appropriate
transformations gives the Black-Scholes formula

C(S, t) = SN(d1)− Eer(T−t)N(d2)

where

d1 =
log(S/E) + (r + 1

2σ
2)(T − t)

σ
√
T − t ,

d2 =
log(S/E) + (r − 1

2σ
2)(T − t)

σ
√
T − t

and N is the cumulative normal distribution defined by

N(d1) =
1√
2π

d1∫
−∞

e
1
2 s2
ds.

588 CHAPTER 17. RANDOM FRACTAL SIGNALS

The conceptual leap of the Black-Scholes model is to say that traders are not
estimating the future price, but are guessing about how volatile the market may be
in the future. The volatility is mathematically defined and it is assumed that the
distribution of these moves is lognormal. The model therefore allows banks to define
a fair value of an option, because it assumes that the forward price is the mean of
the distribution of future market prices and that the volatility is known. Figure 17.15
illustrates an example of the Black-Sholes analysis of the price of a call option as a
function of S, at 4 time intervals approaching expiry.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

S

V
(S

,t)

T−t=1.5

T−t=0

T−t=1

T−t=0.5

Figure 17.15: The Black-Scholes value of a call option as a function of S at 4 successive
time intervals T − t approaching expiry E = 5.

The simple and robust way of valuing options using Black-Scholes analysis has rapidly
gained in popularity and has universal applications. The Black-Scholes volatility and
the price of an option are now so closely linked into the markets that the price of
an option is usually quoted in option volatilities or ‘vols’, which are displayed on
traders’ screens across the world. Nevertheless, the majority of methods (particularly
Black-Scholes analysis) used by economic agents are based on random walk models
that assume independent and Gaussian distributed price changes.

A theory of modern portfolio management, like any theory, is only valuable if we
can be sure that it truly reflects reality for which tests are required. The follow-
ing section investigates empirically the properties of real financial data as observed
macroscopically in the form of financial time indices.

17.13. MARKET ANALYSIS 589

17.13.4 Macro-Economic Models

The modern portfolio rationalization of the random walk hypothesis introduced in the
previous section is ultimately based on the EMH. Figure 17.16 shows the de-trended
log price increments6 of the New York Average (NYA) from 1960-89 (top) and the
EMH’s proposed random walk Gaussian increments (below). Both sets have been
normalized and the EMH signal plotted using an offset of -5 for comparison. It is
clear, that there is a significant difference between the two stochastic signals. This
simple comparison indicates a failure of the statistical independence assumption using
for the EMH.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−6

−5

−4

−3

−2

−1

0

1

2

3
x 10

−3

EMH

Reality

Figure 17.16: Real data (top) versus the random walk hypothesis (bottom) with mean
displaced to -5 for comparative display purposes.

In general, when faced with a multidimensional process of unknown origin, it
is usual to select an independent process such as Brownian motion as a working
hypothesis. If analysis shows that a prediction is difficult, the hypothesis is accepted.
Brownian motion is elegant because statistics and probabilities can be estimated with
great accuracy. However, using traditional statistics to model the markets assumes
that they are games of chance. For this reason, investment in securities is often
equated with gambling. In most games of chance, many degrees of freedom are
employed to ensure that outcomes are random. Take a simple dice, a coin, a roulette
wheel etc. No matter how hard you may try, it is physically impossible to master your
roll or throw such that you can control outcomes. There are too many non-repeatable
elements (speeds, angles and so on) and non-linearly compounding errors involved.

6Removal of the long term exponential growth trend by taking the logarithm and then differen-
tiating the data (using finite differencing).

590 CHAPTER 17. RANDOM FRACTAL SIGNALS

Although these systems have a limited number of degrees of freedom, each outcome
is independent of the previous one. However, there are some games of chance that
involve memory. Take Blackjack for example, also known as ‘21’. Two cards are
dealt to each player and the object is to get as close as possible to 21 by twisting
(taking another card) or sticking. If you go ‘bust’ (over 21) you lose; the winner is
the player that sticks closest to 21. Here, memory is introduced because the cards
are not replaced once they are taken. By keeping track of the cards used, one can
assess the shifting probabilities as play progresses. This game illustrates that not all
gambling is governed by Gaussian statistics. There are processes that have long-term
memory, even though they are probabilistic in the short term. This leads directly to
the question, does the economy have memory? A system has memory if what happens
today will affect what happens in the future. We can test for memory effects by testing
for correlations in the data. If the system today has no affect on the system at any
future time, then the data produced by the system will be independently distributed
and there will be no correlations. Now, the Auto-Correlation Function (ACF), which
describes the expected correlations between time periods t apart, is defined by (see
Chapter 4)

A(t) = 〈X(τ)X(τ − t)〉 ≡
∫ ∞

−∞
X(τ)X(τ − t)dτ.

Since prices themselves, like Brownian motion, are a non-stationary process, there is
no ACF as such. However, if we calculate the ACF of the price increments, which are
Gaussian by null hypothesis, then we can observe how much of what happens today
is correlated with what happens in the future. This can be undertaken using the
Power Spectral Density Function (PSDF), the Fourier transform of the autocorrelation
function, i.e.

P (ω) = F̂1〈X(τ)X(τ − t)〉 ≡
∫ ∞

−∞
〈X(τ)X(τ − t)〉 exp(−iωt)dt

where F̂1 denotes the Fourier Transform operator. The PSDF tells us the amplitude
distribution of the correlation function from which we can estimate the time span
of the memory effects. This also offers a convenient way to calculate the correlation
function (by taking the inverse Fourier transform of the PSDF). If the PSDF has
more power at low frequencies, then there are long time correlations and therefore
long-term memory effects. Inversely, if there is greater power at the high frequency
end of the spectrum, then there are short-term time correlations and evidence of
short-term memory. According to traditional theory, the economy has no memory
and there will therefore be no correlations, except for today with itself. We should
therefore expect a PSDF that is effectively constant as would result from a delta
function autocorrelation function i.e. if

〈X(τ)X(τ − t)〉 = δ(t)

then
P (ω) =

∫ ∞

−∞
δ(t) exp(−iωt)dt = 1.

The PSDFs and ACFs of log price changes and the absolute log price changes of
the NYA are shown in Figure 17.17.

17.13. MARKET ANALYSIS 591

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

x 10
−3

0 1000 2000 3000 4000

−3

−2

−1

0

1

2

x 10
−5

0 1000 2000 3000 4000

0

0.5

1

1.5

2

2.5
x 10

−3

1000 2000 3000 4000
1

1.1

1.2

1.3

1.4
x 10

−4

Figure 17.17: PSDF (left) and ACF (right) of log price movements (top) and absolute
log price movements (bottom) as a function of days.

The PSDF of the data is not constant; there is evidence of a power law at the low
frequency end and rogue spikes (or groups of spikes) at the higher frequency end of
the spectrum. This power law is even more pronounced in the PSDF of the absolute
log price increments, indicating that there is additional correlation in the signs of the
data. If we denote q to be the parameter of this power law then we can consider a
simple power law of the form

P (ω) ∝ 1/ωq

to describe the power law feature which is the principal signature for a random fractal
signal. The ACF of the Log Price Increments (LPI) appears featureless, indicating
that the excess of low frequency power within the signal (as described by PSDF)
has a fairly subtle affect on the correlation function. The ACF of the absolute LPI,
however, contains some interesting features. It shows that there are high short range
correlations followed by a rapid decline up to approximately 100 days, followed by a
steadier decline up to about 600 days when the correlations start to develop again,
peaking at about 2225 days. The system governing the magnitudes of the log price
movements seems to have a better long-term memory than it should. The data used in
this analysis contains 8337 price movements. Thus, a spike in the PSDF at frequency
ω is based on the values of 8337/ω data points, and since most of this power is at the
low frequency end (more points), it is improbable that these results have occurred by
coincidence.

To investigate short-term correlations we can carry out a simple experiment that
involves evaluating the average length of a run of either larger than or smaller than
average price increments. The question we are asking is: are below average (negative)

592 CHAPTER 17. RANDOM FRACTAL SIGNALS

and above average (positive) log price changes distributed randomly or do they come
in ‘bursts’. Given that there is a fixed probability of continuing a run of either above or
below average increments, the probability of a run of length r of successive occurrences
of p is, Pr(r) = pr(1 − p) and the expected run length is E(r) = p/(1 − p). If the
data were independently distributed then we expect p = 0.5 and E(r) = 1. If the
data were negatively correlated, E(r) < 1 and if the data were positively correlated
E(r) > 1. In the data set for NYA r̄ = 1.2695 for LPI and r̄ = 1.3027 for the absolute
LPI, where r̄ denotes the average run length. Assuming that the bias for large and
small movements is the same, this makes the probability of a run continuing equal to
p = 0.565 and p = 0.5657 respectively. This can be tested for significance under the
independence null hypothesis and the assumption of Gaussian error in measuring the
means. The probability of observing r̄ = 1.3 is p < 1× 10−16. Therefore it is highly
improbable that this data originates from an independent distribution and we can
conclude that the correlations are significant. Modelling ‘trends’ in this way assumes
that the PDF for trend ‘innings’ in the real data follows the same distribution as
Pr(r), as it does.

0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 17.18: Distribution of trend innings of the NYA compared with Pr(r) = pr(1−
p) (smooth line) for p = 0.565.

Figure 17.18 shows the distribution of ‘runs’ for the NYA along with the the-
oretical distribution, characterized by r̄ = 1.3. Correlations in (log) price changes
invalidates the independence assumption of the EMH. It does not necessarily inval-
idate the Gaussian distribution of price changes. Figure 17.19 shows the frequency
distribution of daily and 5-daily New York Average (NYA) returns from 1960 to 1999.
The two return distributions are virtually the same, implying self-affine behaviour.
They are also uni-modal. There are two main features in which the distribution of
returns differs from the Gaussian: A high peak at the mean and longer tails. Ninety

17.13. MARKET ANALYSIS 593

nine percent of a normal distribution is contained within the main six standard de-
viations. The distribution of returns takes a lot longer to converge to zero. Even at
four standard deviations from the mean, there are as many observations as there are
at two.

−5 0 5

x 10
−4

0

200

400

600

800

1000

1200

1400

1600

1800

−2 −1 0 1 2

x 10
−3

0

50

100

150

200

250

300

350

Figure 17.19: PDF of daily (left) and 5-daily (right) returns of the NYA stock market
index along with the Gaussian distribution (dashed-line) for comparison.

The long tails are an important feature of this distribution. It is from the distri-
bution of returns that we measure risk. Risk is often referred to as the, ‘one in six’
rule which refers to the Gaussian property that approximately 4/6 of all outcomes
lie within one standard deviation of the expected outcome and there is therefore a
one in six chance of a very good (upside potential) or very bad (downside risk) out-
come. In reality, the risk of large events occurring is much higher than the normal
distribution implies. As we measure still larger events, the gap between theory and
reality becomes even more pronounced. This risk is virtually identical in all the in-
vestment horizons investigated. We can quantify the tails deviation from a normal
distribution using kurtosis - long tails being referred to as excess kurtosis (see Chap-
ter 16) since the kurtosis is zero for the normal distribution and typically between 2
and 50 for daily returns and even higher for intraday data. A number of statistical
models have been suggested to account for excess kurtosis including Mandelbrot’s
Stable Paretian hypothesis, the mixture of distributions hypothesis and models based
on conditional heteroskedasticity which refers to the condition where residual vari-
ance is non-constant. In general, market data exhibits generalized autoregressive
heteroskedasticity which means that there are periods of persistent high volatility
followed randomly by periods of persistent low volatility.

Another basic assumption that comes with the normal distribution involves the

594 CHAPTER 17. RANDOM FRACTAL SIGNALS

scaling of volatility known as the term structure of volatility. Typically, we use the
standard deviation of returns to measure volatility. For independent or ‘white noise’
processes, standard deviations scale according to the square root of time. For example,
we can ‘annualize’ the standard deviation of monthly returns by multiplying it by the
square root of 12. Figure 17.20 shows the NYA volatility term structure (1989-1990)
along with the theoretical scaling line. Volatility grows linearly at a faster rate than
the square root of time up until about 1000 days or 4 years, it then slows down
dramatically. If we use volatility as a measure of risk, investors incur more risk than
is implied by the normal distribution for investment horizons of less than 4 years.
However, investors incur increasingly less risk for investment horizons of greater than
4 years. This verifies what is known intuitively, namely, that long-term investors incur
less risk than short-term investors.

1 1.5 2 2.5 3 3.5 4
0.5

1

1.5

2

log10(t)

lo
g1

0(
R

/S
)

Term structure of Volatility, NYA daily return

Figure 17.20: Term structure of volatility of the NYA, along with theoretical scaling
line (dashed line).

If a financial walk (in the random walk sense) scales according to the power law,〈
d

dt
logu(t)

〉
∝ tH

where u(t) denotes price movements for time t, then the walk is self-affine because
the distribution of steps must look the same at different scales. For a non-constant
PSDF, this shows that the phases of the different frequency components that make
up the PSDF are randomized. The fact that data scales with a consistent power law
up to 1000 days reveals that there is self-affinity in market return data, but only over
a certain range.

17.13. MARKET ANALYSIS 595

17.13.5 Fractal Time Series and Rescaled Range Analysis

A time series is fractal if the data exhibits statistical self-affinity and has no character-
istic scale and the results of the previous section have verified that there is self-affinity
in market data. The data has no characteristic scale if it has a PDF with an infinite
second moment. The data may have an infinite first moment as well; in this case, the
data would have no stable mean either. One way to test the financial data for the
existence of these moments is to plot them sequentially over increasing time periods
to see if they converge. Figure 17.21 shows that the first moment, the mean, is sta-
ble, but that the second moment, the mean square, is not settled. It converges and
then suddenly jumps, as a Lévy flight with an infinite mean square would do. It is
interesting to observe that although the variance is not stable, the jumps occur with
some statistical regularity.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−2

0

2

4

6
x 10

−3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

2

4

6

8
x 10

−5

Figure 17.21: The first and second moments (top and bottom) of the NYA plotted
sequentially.

Rescaled Range Analysis: Measuring Memory

H E Hurst (1900-1978) was an English civil engineer who built dams and worked on
the Nile river dam project. He studied the Nile so extensively that some Egyptians
reportedly nicknamed him ‘the father of the Nile.’ The Nile river posed an interesting
problem for Hurst as a hydrologist. When designing a dam, hydrologists need to
estimate the necessary storage capacity of the resulting reservoir. An influx of water
occurs through various natural sources (rainfall, river overflows etc.) and a regulated
amount needed to be released for primarily agricultural purposes. The storage ca-
pacity of a reservoir is based on the net water flow. Hydrologists usually begin by

596 CHAPTER 17. RANDOM FRACTAL SIGNALS

assuming that the water influx is random, a perfectly reasonable assumption when
dealing with a complex ecosystem. Hurst, however, had studied the 847-year record
that the Egyptians had kept of the Nile river overflows, from 622 to 1469. Hurst
noticed that large overflows tended to be followed by large overflows until abruptly,
the system would then change to low overflows, which also tended to be followed by
low overflows. There seemed to be cycles, but with no predictable period. Stan-
dard statistical analysis revealed no significant correlations between observations, so
Hurst developed his own methodology. Hurst was aware of Einstein’s (1905) work on
Brownian motion (the erratic path followed by a particle suspended in a fluid) who
observed that the distance the particle covers increased with the square root of time,
i.e.

R =
√
t

where R is the range covered, and t is time. This is the same scaling property as
discussed earlier in the context of volatility. It results, again, from the fact that
increments are identically and independently distributed random variables. Hurst’s
idea was to use this property to test the Nile River’s overflows for randomness. In
short, his method was as follows: Begin with a time series xi (with i = 1, 2, ..., n)
which in Hurst’s case was annual discharges of the Nile River. (For markets it might
be the daily changes in the price of a stock index.) Next, create the adjusted series,
yi = xi − x̄ (where x̄ is the mean of xi). Cumulate this time series to give

Yi =
i∑

j=1

yj

such that the start and end of the series are both zero and there is some curve in
between. (The final value, Yn has to be zero because the mean is zero.) Then, define
the range to be the maximum minus the minimum value of this time series,

Rn = max(Y)−min(Y).

This adjusted range, Rn is the distance the systems travels for the time index n,
i.e. the distance covered by a random walker if the data set yi were the set of steps.
If we set n = t we can apply Einstein’s equation provided that the time series xi

is independent for increasing values of n. However, Einstein’s equation only applies
to series that are in Brownian motion. Hurst’s contribution was to generalize this
equation to

(R/S)n = cnH

where S is the standard deviation for the same n observations and c is a constant.
We define a Hurst process to be a process with a (fairly) constant H value and the
R/S is referred to as the ‘rescaled range’ because it has zero mean and is expressed in
terms of local standard deviations. In general, the R/S value increases according to a
power law value equal to H known as the Hurst exponent. This scaling law behaviour
is the first connection between Hurst processes and fractal geometry.

Rescaling the adjusted range was a major innovation. Hurst originally performed
this operation to enable him to compare diverse phenomenon. Rescaling, fortunately,
also allows us to compare time periods many years apart in financial time series. As
discussed previously, it is the relative price change and not the change itself that is

17.13. MARKET ANALYSIS 597

of interest. Due to inflationary growth, prices themselves are a significantly higher
today than in the past, and although relative price changes may be similar, actual
price changes and therefore volatility (standard deviation of returns) are significantly
higher. Measuring in standard deviations (units of volatility) allows us to minimize
this problem. Rescaled range analysis can also describe time series that have no
characteristic scale, another characteristic of fractals. By considering the logarithmic
version of Hurst’s equation, i.e.

log(R/S)n = log(c) +H log(n)

it is clear that the Hurst exponent can be estimated by plotting log(R/S) against
the log(n) and solving for the gradient with a least squares fit. If the system were
independently distributed, then H = 0.5. Hurst found that the exponent for the Nile
River was H = 0.91, i.e. the rescaled range increases at a faster rate than the square
root of time. This meant that the system was covering more distance than a random
process would, and therefore the annual discharges of the Nile had to be correlated.

It is important to appreciate that this method makes no prior assumptions about
any underlying distributions, it simply tells us how the system is scaling with respect
to time. So how do we interpret the Hurst exponent? We know that H = 0.5
is consistent with an independently distributed system. The range 0.5 < H ≤ 1,
implies a persistent time series, and a persistent time series is characterized by positive
correlations. Theoretically, what happens today will ultimately have a lasting effect
on the future. The range 0 < H ≤ 0.5 indicates anti-persistence which means that
the time series covers less ground than a random process. In other words, there are
negative correlations. For a system to cover less distance, it must reverse itself more
often than a random process.

The Joker Effect

After this discovery, Hurst analysed all the data he could including rainfall, sunspots,
mud sediments, tree rings and others. In all cases, Hurst found H to be greater than
0.5. He was intrigued that H often took a value of about 0.7 and Hurst suspected
that some universal phenomenon was taking place. He carried out some experiments
using numbered cards. The values of the cards were chosen to simulate a PDF with
finite moments, i.e. 0,±1,±3,±5,±7and± 9. He first verified that the time series
generated by summing the shuffled cards gave H = 0.5. To simulate a bias random
walk, he carried out the following steps.

1. Shuffle the deck and cut it once, noting the number, say n.

2. Replace the card and re-shuffle the deck.

3. Deal out 2 hands of 26 cards, A and B.

4. Replace the lowest n cards of deck B with the highest n cards of deck A, thus
biasing deck B to the level n.

5. Place a joker in deck B and shuffle.

6. Use deck B as a time series generator until the joker is cut, then create a new
biased hand.

598 CHAPTER 17. RANDOM FRACTAL SIGNALS

Hurst did 1000 trials of 100 hands and calculated H = 0.72. We can think of the
process as follows: we first bias each hand, which is determined by a random cut of the
pack; then, we generate the time series itself, which is another series of random cuts;
then, the joker appears, which again occurs at random. Despite all of these random
events H = 0.72 would always appear. This is called the ‘joker effect’. The joker
effect, as illustrated above, describes a tendency for data of a certain magnitude to
be followed by more data of approximately the same magnitude, but only for a fixed
and random length of time. A natural example of this phenomenon is in weather
systems. Good weather and bad weather tend to come in waves or cycles (as in
a heat wave for example). This does not mean that weather is periodic, which it
is clearly not. We use the term ‘non-periodic cycle’ to describe cycles of this kind
(with no fixed period). Thus, if markets are Hurst processes, they exhibit trends
that persist until the economic equivalent of the joker comes along to change that
bias in magnitude and/or direction. In other words rescaled range analysis can, along
with the PDF and PSDF, help to describe a stochastic time series that contains
within it, many different short-lived trends or biases (both in size and direction). The
process continues in this way giving a constant Hurst exponent, sometimes with flat
episodes that correspond to the average periods of the non-periodic cycles, depending
on the distribution of actual periods. Figure 17.22 shows RSRA performed on a
synthetic data set characterized by an expected length of a trend of 100 days, or
p(xi > x̄ | xi−1 > x̄) = 100/101 = 0.9901. In this case, the RSRA results give no
visual indication of what the average run length is. The Hurst exponent, however is
a direct representation of the amount of persistence in the data, which is related to p
and E(r).

1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5
R/S Analysis

log10(t)

lo
g1

0(
R

/S
)

H=0.944142

Figure 17.22: Rescaled range analysis on synthesized data with E(r) = 100

17.13. MARKET ANALYSIS 599

The following is a step by step methodology for applying R/S analysis to stock
market data. Note that the AR(1) notation used below stands for auto regressive
process with single daily linear dependence. Thus, taking AR(1) residuals of a signal
is equivalent to plotting the signals one day out of phase and taking the day to day
linear dependence out of the data.

1. Prepare the data Pt. Take AR(1) residuals of log ratios. The log ratios ac-
count for the fact that price changes are relative, i.e. depend on price. The
AR(1) residuals remove any linear dependence, serial correlation, or short-term
memory which can bias the analysis.

Vt = log(Pt/Pt−1)

Xt = Vt − (c+mVt−1)

The AR(1) residuals are taken to eliminate any linear dependency.

2. Divide this time series (of length N) up into A sub-periods, such that the first
and last value of time series are included i.e. A × n = N . Label each sub-
period Ia with a = 1, 2, 3, ..., A. Label each element in Ia with Xk,a where
k = 1, 2, 3, ..., n. For each I of length n, calculate the mean

ea = (1/n)
k∑

i=1

Nk,a

3. Calculate the time series of accumulated departures from the mean for each sub
interval.

Yk,a =
k∑

i=1

(Ni,a − ea)

4. Define the range as
RIa = max(Yk,a)−min(Yk,a)

where 1 ≤ k ≤ n.

5. Define the sample standard deviation for each sub-period as

SIa =

√√√√ 1
n

n∑
k=1

(Nk,a − ea)
2

6. Each range, RIa is now normalized by dividing by its corresponding SIa . There-
fore the re-scaled range for each Ia is equal to RIa/SIa . From step 2 above, we
have A contiguous sub-periods of length n. Therefore the average R/S value
for each length n is defined as

(R/S)n =
1
A

A∑
a=1

(RIa/SIa)

600 CHAPTER 17. RANDOM FRACTAL SIGNALS

1 2 3 4
0.5

1

1.5

2

log10(t)

lo
g1

0(
R

/S
)

H=0.544818

RSRA for daily return

1 1.5 2 2.5 3

0.5

1

1.5

log10(t)

lo
g1

0(
R

/S
)

H=0.573904

5−daily return

1 1.5 2 2.5 3
0.5

1

1.5

log10(t)

lo
g1

0(
R

/S
)

H=0.581829

10−daily return

1 1.5 2 2.5
0.4

0.6

0.8

1

1.2

1.4

log10(t)

lo
g1

0(
R

/S
)

H=0.589652

20−daily return

Figure 17.23: Rescaled Range Analysis results for the NYA 1960-89.

7. The length n is then increased until there are only two sub-periods, i.e. n =
N/2. We then perform a least squares regression on log(n) as the independent
variable and log(R/S) as the dependent variable. The slope of the equation is
the estimate of the Hurst exponent, H .

The R/S analysis results for the NYA (1960-1998) for daily, 5-daily, 10-daily and
20-daily returns are shown in Figure 17.23. The Hurst exponent is 0.54 ≤ H ≤ 0.59,
from daily to 20-daily returns indicating that the data set is persistent, at least up
to 1000 trading days. At this point the scaling behaviour appears to slow down. The
(R/S)n values show a systematic deviation from the line of best fit which is plotted
in the Figures. From the daily return results this appears to be at about 1000 days.
The 5-daily, 10-day and 20-day return results appear to agree a value of about 630
days. This is also where the correlation function starts to increase. This deviation is
more pronounced the lower the frequency with which the data is sampled. The results
show that there are certain non-periodic cycles that persist for up to 1000 days which
contribute to the persistence in the data, and after these are used up, the data (the
walker) slows down. These observations can be summarized as follows: The market
reacts to information, and the way it reacts is not very different from the way it
reacts previously, even though the information is different. Therefore the underlying
dynamics and the statistics of the market have not changed. This is especially true of
fractal statistics. (The ‘fractal statistics’ referred to are the fractal dimension and the
Hurst exponent.) The results clearly imply that there is an inconsistency between the

17.14. MODELLING FINANCIAL DATA 601

behaviour of real financial data and the EMH lognormal random walk model which
is compounded in the following points:

1. The PSDF of log price changes is not constant. Therefore price changes are not
independent.

2. The PDF of log price changes are not Gaussian, they have a sharper peak at
the mean and longer tails.

In addition, the following properties are evident:

1. Asset price movements are self-affine, at least up to 1000 days.

2. The first moment of the PDF is finite but the second moment is infinite (or at
least very slow to converge).

3. If stock market data is viewed as a random walk then the walk scales faster than
the square root of the time up until approximately 1000 days and then slows
down.

4. Large price movements tend to be followed by large movements and vice versa,
although signs of increments are uncorrelated. Thus volatility comes in bursts.
These cycles are referred to as non-periodic as they have randomly distributed
periods.

Hurst devised a method for analysing data which does not require a Gaussian as-
sumption about the underlying distribution and in particular, does not require the
distribution to have finite moments. This method can reveal subtle scaling properties
including non-periodic cycles in the data that spectral analysis alone cannot find.

17.14 Modelling Financial Data

In general, the unveiling of a new phenomenon either results from a strong theoretical
reasoning or from compelling experimental evidence. In econometrics, the process
that creates our time series has many component parts, or degrees of freedom, and
the interaction of those components is so complex that a deterministic description
is simply not possible. As in all complex systems theory, we restrict ourselves to
modelling the statistics of data rather than the data itself. This means that we model
the data with stochastic models.

When creating models of complex systems there is a trade off between simplify-
ing and deriving the statistics we want to compare with reality, and simulating the
behaviour and letting the statistics emerge, as they do in real life. It may be hard to
learn from the latter approach (i.e. creating an artificial market) for the same reasons
that it is hard to learn by looking at real markets. On the other hand, there is a
danger of making incorrect assumptions and thus failing to capture certain emergent
traits when adopting the former method. We need both approaches; at least for the
time being. We need the simulation approach to investigate the affect of various
traders’ behavioural rules on the global statistics of the market; this approach has

602 CHAPTER 17. RANDOM FRACTAL SIGNALS

the added benefit of a natural interpretation. We also need the derivation approach
to understand exactly how the amalgamation of certain rules leads to these statistics.

So what makes a good stochastic model? A good stochastic model is one that
accurately predicts the statistics we observe in reality, and one that is based upon
some sensible rationale. Thus, the model should not only describe the data, but also
help us to explain and understand the system. It can still, however, be advantageous
to have an accurate and/or predictive model without understanding it’s origins, i.e. a
phenomenological model. Economists often feel insulted by a stochastic approach to
financial modelling; they believe all of their decisions are rational and well founded.
However, the Black-Scholes model, which has to date played such an important role
(because it has no random variable), assumes a stochastic model of financial time
series anyway, namely, the lognormal random walk.

One cause of correlations in market price changes (and volatility) is mimetic be-
haviour, known as herding. In general, market crashes happen when large numbers
of agents place sell orders simultaneously creating an imbalance to the extent that
market makers are unable to absorb the other side without lowering prices substan-
tially. What is interesting is that most of these agents do not communicate with each
other, nor do they take orders from a leader. In fact, most of the time they are in
disagreement, and submit roughly the same amount of buy and sell orders. This is
a healthy non-crash situation; it is a diffusive process. The key question is thus: by
what mechanism do they suddenly manage to organise a coordinated sell-off? When
constructing a comprehensive model of financial time series we need to make the
following distinction regarding the nature of a crash:

1. Are crashes exceptions to the model? Do we need one model to describe stable
behaviour and another for when the things become unstable? In which case,
when should we switch? There should be some critical point; indeed, we would
not be able to distinguish a crash from a negative price increment if there were
not.

2. Can crashes be represented by a model with a (one) price increment PDF with
an infinite second moment? This Lévy style method allows seemingly dispro-
portionate large price movements to occur with (statistically) controllable fre-
quency.

3. Are they critical points analogous to phase transitions in nature? If so, are there
any warning signs prior to a crash?

4. Are they model-able at all? That is, do crashes occur because of unforeseeable
circumstances like political news and news related to actual firms and busi-
nesses?

One explanation for crashes involves a replacement for the efficient market hypoth-
esis, by the Fractal Market Hypothesis (FMH). The FMH proposes the following:

1. The market is stable when it consists of investors covering a large number of
investment horizons. This ensures that there is ample liquidity for traders.

2. Information is more related to market sentiment and technical factors in the
short term than in the long term. As investment horizons increase, longer term
fundamental information dominates.

17.14. MODELLING FINANCIAL DATA 603

3. If an event occurs that puts the validity of fundamental information in ques-
tion, long-term investors either withdraw completely or invest on shorter terms.
When the overall investment horizon of the market shrinks to a uniform level,
the market becomes unstable.

4. Prices reflect a combination of short-term technical and long-term fundamental
valuation. Thus, short-term price movements are likely to be more volatile than
long-term trades. Short-term trends are more likely to be the result of crowd
behaviour.

5. If a security has no tie to the economic cycle, then there will be no long-term
trend and short-term technical information will dominate.

Unlike the EMH, the FMH says that information is valued according to the investment
horizon of the investor. Because the different investment horizons value information
differently, the diffusion of information will also be uneven. Unlike most complex
physical systems, the agents of the economy, and perhaps to some extent the economy
itself, have an extra ingredient, an extra degree of complexity. This ingredient is
consciousness.

17.14.1 Psychology and the Bear/Bull Cycle

An economy is ultimately driven by people (economic agents) and the principal com-
ponent of this drive, is their expectation of others. When economic agent’s expec-
tations induce actions that aggregatively create a world that validates them as pre-
dictions, they are in equilibrium, and are called ‘rational expectations’. Rational
expectations are useful in demonstrating logical equilibrium outcomes and analysing
their consequences. In the real world, however, they break down very easily. If some
agents lack the resources to arrive at a posited outcome or if they logically arrive at
different conclusions (as they might in a pattern recognition problem) or if there is
more than one rational expectations equilibrium with no means to decide on which
is preferable, then some agents may deviate in their expectations. Moreover, if some
deviate, the world that is created may change so that others should logically predict
something different and deviate too.

There have been various games made up to illustrate this problem. A well known
example is the ‘El Farol bar’ problem: One hundred people must decide independently
whether to show up at a particular bar. If a person expects that more than say 60
will attend, then they will stay at home to avoid the crowd; otherwise that person
will attend. If all believe that few will go, then all will go; if all believe many will
go, then no one will go. By simulating this game allowing agents access to historical
data and by giving them a simple genetic algorithm to decide how to use this data,
one can illustrate how stochastic/chaotic time series can emerge.

Trading crowds are made up of bulls and bears. A bullish crowd is one that will try
to force prices up and a bearish crowd is one that will try to push prices down. The
size of each crowd must remain roughly the same, but the members are continually
swapping. When the price is going up, the bullish crowd are dominating and when
the price is going down, the bearish crowd are dominating. Within a full cycle, the

604 CHAPTER 17. RANDOM FRACTAL SIGNALS

bullish crowd will dominate, then there will be a period of co-existence, and finally
the bearish crowd will dominate. This means that between any two given points
in time there will be a successful crowd and an unsuccessful one. Members of the
successful crowd will be motivated by greed and will feel pleasure from their success;
they will feel integrated with like-minded investors. On the other hand, members
of the unsuccessful crowd will feel fear and displeasure, and feel divorced from the
other members of the same crowd. Eventually, the members of the unsuccessful crowd
desert to the successful crowd and thus the cycle continues.

17.14.2 The Multi-Fractal Market Hypothesis

Crashes are the result of price corrections due to trend chasing strategies and/or
external news. Markets are efficient but the EMH fails, mostly due to the break down
of rational expectations and although psychology undoubtedly plays a role in market
analysis, its extent is undetermined. The multi-fractal model is based on the fact that
econometric data has fractal properties and is concerned with the variable diffusion
of information. This is related to the fractional dynamic equation introduced earlier
in this chapter, i.e. (

∂2

∂x2
− τq(t) ∂

q(t)

∂tq(t)

)
u(x, t) = F (x, t)

and its asymptotic solution u(0, t) which is compounded in the following points:

1. The PDF of log market movements has an infinite or very slow-to-converge
second moment.

2. The economy can be thought of as a non-equilibrium self-organised system that
is normally and healthily in a critical state, and that crashes occur when some-
how this criticality is temporarily disturbed.

3. Prices oscillate around fundamentals (due to the bear/bull cycle) which are
themselves dictated by people’s speculation on what they should be.

4. These oscillations propagate through supply/information chains.

5. The level of diffusion/propagation through the information chain varies with
time.

Point (5) is the fundamental basis for the model above. By introducing a Fourier
dimension that is a function of time q(t) which is itself taken to be a stochastic
function, we are able to model multi-fractal signals (signals with variations in q) in
terms of both a quasi-diffusive and quasi-propagative behaviour.

17.14. MODELLING FINANCIAL DATA 605

Figure 17.24: A realisation of ui, with 10 different q values (indicated by +) in
qi ∈ (0, 2) and reconstruction of qi using the power spectrum method (darker line).

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

50

100

150

200

250

300

350

Figure 17.25: A Gaussian distribution (least squares) fit to the histogram of q values
of the NYA.

Figure 17.24 shows how the value of q affects the characteristics of the signal. The
signal is a concatenation of 10 smaller signals, each of 100 elements and a unique
Fourier dimension, qi ∈ (0, 2). Each slice of the signal is scaled by dividing through
by the sample variance of the signal. Without this scaling, signals with a high q value
would have significantly less magnitude. The rationale here is that signals with the
same Black-Scholes volatility can behave very differently - the sums of squares can

606 CHAPTER 17. RANDOM FRACTAL SIGNALS

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−10

−8

−6

−4

−2

0

2

4
x 10

−3

Figure 17.26: Synthetic stock market price moves (top) .v. the NYA (bottom) real
data with mean displaced to -5 for comparative display purposes.

add up in many different ways. The idea is that the model will capture this different
kind of volatility. The inversion algorithm (based on the power spectrum method
discussed earlier in this chapter) estimates the q-values relatively accurately.

Given this model together with the simulation presented, the principal question
is how does q(t) behave for real data? There are two ways to approach this: (i)
compute the Fourier dimension from the data ui directly; (ii) compute the dimension
from the de-trended log price increments, i.e. ln(ui+1/ui). Taking the latter case, qi
values have been evaluated over a sample of real data (NYA) using a window of size
30 and revealing the Fourier dimensions to be normally distributed with μ = 0.35
and σ = 0.4, as shown in Figure 17.25. This is an interesting result; it shows that
the deviations from the random walk model, as measured by the Fourier dimension,
are governed by a Gaussian PDF. It also shows that on average there is much less
high frequency content in the log price movements than the random walk model. It
is opportune at this point to employ the ‘joker effect’ discussed earlier. Suppose we
define trends with particular values of q. A problem here is that due to the necessity
of a moving window method for computing qi, we obtain a very smeared picture
of how q is behaving on a day to day basis - we cannot measure run lengths of q
values. Thus, we ideally need higher frequency data to successfully calculate the
day-to-day behaviour of q. We do know, however, that there exists some probability,
p(xi > x̄ | xi−1 > x̄) > 0.5 that accounts for the persistence in the data. Since q
controls these correlations we can postulate a distribution for the length of stay for a
particular value of q based on Pr(r) = pr(1 − p) as described earlier.

17.14. MODELLING FINANCIAL DATA 607

Figure 17.26 shows synthesized stock market price movements with normally dis-
tributed Fourier dimensions that persist for random periods defined by the afore-
mentioned binomial style distribution with R̄ = 1.3 and p = 0.565. The market
movements of the NYA are shown for comparison. The average run length of the
synthetic signal is approximately the same as the NYA daily returns, as is the Hurst
exponent and the distribution of Fourier dimensions. The PDF and the power law
property of the PSDF as shown in Figure 17.27. Comparing these results with Figure
17.17, the PSDF and ACF are similar, although the ACF of the synthesized data
does not capture the increase in correlations observed in the real absolute log price
movements.

Clearly, compared with the EMH, these results - based on a Multi-fractal Mar-
ket Hypothesis - are encouraging and lead naturally to consider the non-stationary
behaviour of the Fourier dimension for a financial index and a possible association
of a particular range of qi with the behaviour of the index. Figure 17.28 shows the
behaviour of the Fourier dimension (the q-signature) for the NYA at the time of the
crash of October 1987. Here, the q-signature has been superimposed on the log price
increments or price moves. Observe, that q is almost zero over the period of the
crash with relative small deviations, indicating that during periods of exceptionally
high volatility the price moves behave more like white noise than when the volatility
is low; the value of qi is below the mean. Also, the variation of the q-signature is
minimal over this period. Most important of all, is that it has a downward trend
prior to the event.

Discussion

The material discussed has been based on the asymptotic solution to the fractional
dynamic model proposed for price variation. In accordance with the definitions of the
model, this is equivalent to observing market price movements very close (in terms
of connectivity) to the source of information affecting them. The general solution
suggests that prices further ‘down the line’ are of the same form but with additional
amounts of higher frequency noise. Thus, although the economy is totally connected
(to maintain consistency), noise can induce price movements that are far apart in a
chain that is virtually unconnected. The proposed model for price variation accurately
mimics the PDF, the power law property of the PSDF, the Hurst exponent and the
‘runs’ statistic observed in real financial markets. A new market measure, q-signature,
describing the ‘diffusivity’ of new information is the core of the model. Crashes
happen when price increments become uncorrelated. The parameter q-signature can
be estimated from market data with a ‘least squares fit’ thus providing a new risk
analysis tool.

There are some properties of the financial time series, however, that the model does
not capture. The first over-sight of the model is the long-range time correlations that
occur over approximately 1000 days, or 4 years. As Figure 17.27 illustrates, the model
gets the right power law for the PSDF, but does not capture the strange increase in
the correlation function at about 600 days in the real data as shown in Figure 17.17.
Further, the model does not capture the fact that market price movements only scale
persistently up to 1000 days, the synthetic data scales persistently indefinitely. An
interesting extension of the model would be to apply spatial reflecting bounds to the

608 CHAPTER 17. RANDOM FRACTAL SIGNALS

field u(x, t) and numerically evaluate the solution to the model. In this way we would
not need to drive the field with noise at each time interval, the movements would
continue indefinitely. However, the model does provide clarity with regard to the
following important points:

1. Market data is not normally distributed but its q-signature or variable Fourier
dimension is.

2. By filtering the Fourier spectrum of white noise (as described) over finite inter-
vals (thus causing trends) and allowing them to persist for random periods of
time (joker effect), one can create a synthesized financial time series possessing
many of the right statistics.

3. Price movements are better described by the conventional (Gaussian) random
walk models when the volatility is very high.

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

−1000 0 1000 2000 3000 4000

−2

−1

0

1

2

3

x 10
−5

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5
x 10

−3

−1000 0 1000 2000 3000 4000
1.1

1.15

1.2

1.25

1.3

1.35

x 10
−4

Figure 17.27: PSDF (left) and ACF (right) of synthetic price increments (top) and
absolute price increments (bottom).

17.15. SUMMARY OF IMPORTANT RESULTS 609

Figure 17.28: q-signature (darker line) of NYA price movements (lighter line) around
the time of the 1987 crash.

17.15 Summary of Important Results

Universal Power Law

System(size) ∝ 1
sizeq , q > 0

Random Fractal Signal Model

f(t) =
1
2π

∫ ∞

−∞

N(ω)
(iω)q

exp(iωt)dω =
1

Γ(q)

t∫
0

n(τ)
(t− τ)1−q

dτ, q > 0

where n(t) is white noise whose Fourier transform is N(ω).

Power Spectrum of a Random Fractal

P (ω) =
A

| ω |2q

where A is a constant.

Fractal Dimension D of a Random Fractal Signal

D =
5− 2q

2
, 1 < D < 2

610 CHAPTER 17. RANDOM FRACTAL SIGNALS

Lévy Distributions

Distributions with a characteristic function given by (symmetric case)

P (k) = exp(−a | k |q), 0 < q < 2

and a PDF given by

p(x) ∼ 1
x1+q

, | x |>> 1

Non-stationary Fractal Model(
∂2

∂x2
− τq(t) ∂

q(t)

∂tq(t)

)
u(x, t) = F (x, t)

where F (x, t) is a stochastic source function and −∞ < q(t) <∞ is a random variable,
the Fourier dimension.

General Solution

For F (x, t) = f(x)n(t),

u(x0, t) =
M0(x0)
2τq/2

1
Γ(q/2)

t∫
0

n(ξ)
(t− ξ)1−(q/2)

dξ − M1(x0)
2

n(t) +

1
2

∞∑
k=1

(−1)k+1

(k + 1)!
Mk+1(x0)τkq/2 d

kq/2

dtkq/2
n(t), q > 0;

u(x0, t) =
M(x0)

2
n(t), q = 0;

u(x0, t) =
M0(x0)τq/2

2
dq/2

dtq/2
n(t)− M1(x0)

2
n(t) +

1
2

∞∑
k=1

(−1)k+1

(k + 1)!
Mk+1(x0)
τkq/2

1
Γ(kq/2)

t∫
0

n(ξ)
(t− ξ)1−(kq/2)

dξ , q < 0;

where
Mm(x0) =

∫ ∞

−∞
f(x) | x− x0 |m dx.

Asymptotic Solution

For f(x) = δ(x),

u(t) = lim
x0→0

u(x0, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2τq/2
1

Γ(q/2)

t∫
0

n(ξ)
(t−ξ)1−(q/2) dξ, q > 0;

n(t)
2 , q = 0;

τq/2

2
dq/2

dtq/2n(t), q < 0.

17.16. FURTHER READING 611

17.16 Further Reading

• Oldham K B and Spanier J, The Fractional Calculus, Academic Press, 1974.

• Mandelbrot B B, The Fractal Geometry of Nature, Freeman, 1983.

• Barnsley M F and Demko S G (Eds.), Chaotic Dynamics and Fractals, Academic
Press, 1986.

• E R Pike and L A Lugiato (Eds.), Chaos, Noise and Fractals, IoP Publishing
(Malvern Physics Series), 1987.

• Peitgen H O, Jürgens H and Saupe D, Chaos and Fractals: New Frontiers of
Science, Springer, 1992.

• Miller K S and Ross B, An Introduction to the Fractional Calculus and Fractional
Differential Equations, Wiley, 1993.

• Kiryakova V, Generalized Fractional Calculus and Applications, Longman, 1994.

• Peters E E, Fractal Market Analysis, Wiley, 1994.

• Turner M J, Blackledge J M and Andrews P A, Fractals Geometry in Digital
Imaging, Academic Press, 1998.

• Blackledge J M, Evans A K and Turner M J (Eds.), Fractal Geometry: Math-
ematical Methods, Algorithms and Applications, Horwood Publishing Series in
Mathematics and Applications, 2002.

• Barnsley M F, Saupe D and Vrscay E R, Fractals in Multimedia, Springer (The
IMA Volumes in Mathematics and its Applications), 2002.

17.17 Problems

17.1 Design a void function in ANSI C to synthesize a random fractal signal s with
an array size of n and fractal dimension 1 < D < 2:

void RFS(float s [], int n, float D)

612 CHAPTER 17. RANDOM FRACTAL SIGNALS

Use uniform random deviates to compute the Fourier phase and Gaussian random
deviate to compute the Fourier amplitude of the fractal using the functions discussed
in Chapter 14.

17.2 Design a function using ANSI C that returns the fractal dimension of a signal
s of size n under the assumption that the signal is a time invariant random fractal
using the power spectrum method:

function FD(float s[], int n)

17.3 Using the result that

β∫
α

exp(ikx)(x − α)λ−1φ(x)dx = −AN (k)

where φ is N times differentiable and

AN (k) =
N−1∑
n=0

Γ(n+ λ)
n!

eiπ(n+λ−2)/2φ(n)(α)k−n−λ exp(ikα)

show that ∫ ∞

−∞
exp(ikx) exp(− | k |q)dk ∼ 1

x1+q

for | x |>> 1 by taking the case when 0 < q < 1 and 1 < q < 2 and using integration
by parts.

17.4 Show that the maximum value of the PSDF given by

P (ω) =
| ω |g

(ω2
0 + ω2)q

is
Pmax ≡ P (ωmax) = ω

2(g−q)
0

gg

qq
(q − g)q−g.

Derive an expression for the output signal s(t) obtained when the input is white noise
when a system whose PSDF is given by the above is linear and time invariant. What
is the scaling relationship for this case?

Summary

This book has been designed to provide the reader with a comprehensive account of
the mathematical models, computational techniques and a programming approach to
Digital Signal Processing. Many of the numerical methods required for DSP form part
of the ‘art’ of numerical computing in general. However, there are specific techniques
which focus on DSP alone. Many of these relate to the discretization of certain integral
transforms and the design of fast algorithms to transform a digital signal into some
transformation space (where useful operations and analysis can be performed) and
back again.

A central and reoccurring theme is the signal model equation

s(t) = p(t)⊗ f(t) + n(t)

and the following inverse problem: given digital data on s(t), p(t) and Pr[n(t)], find an
estimate for f(t). A number of different approaches to solving this problem have been
presented ranging from the application of the least squares method (the Wiener filter)
for example to the use of Bayesian statistics which provides methods for incorporating
knowledge on the probability density functions of f(t) and n(t), i.e. Pr[f(t)] and
Pr[n(t)] respectively.

The convolution equation given above is a fundamental model. It can be used to
model both stationary and non-stationary systems, causal and non-causal problems,
an important and fundamental difference being, that in the latter case (the non-
stationary case), there is no equivalent convolution theorem. In both cases, and
in digital form, where the functions f(t), p(t) and s(t) are the vectors f ,p and s
respectively, we can write the operation s = p⊗ f as

P f = s

where P is the characteristic matrix formed from p. This yields a linear system
of algebraic equations whose solution is required in the case when the system is
inhomogeneous, i.e.

s = P f + n.

There are many ways to derive this convolution model depending on the ‘physics’
of the signal generating system. The convolution operation emerges in a number of
diverse areas: in physics, biology, statistics, information theory, etc. In information
theory for example, the underlying principle is that any source of information (man-
made or otherwise) tends to become ‘diffused’ through the act of measuring it with
some instrument, an instrument that is inevitably subject to distortion by noise,

613

614 SUMMARY

the process of ‘diffusion’ being compounded in the convolution of the information
input with the instrument function (the impulse response function). In encryption
for example, the goal is to maximize the level of diffusion and distortion or complexity
(i.e. to maximize the entropy) of the information input in such a way that only the
recipient of a transmitted message can recover the input.

Convolution is the basic operation generated by using a Green’s function to solve
problems that are concerned with the ‘physics’ of the propagation and interaction
of wavefields with matter. This is usually specified by some inhomogeneous wave
equation whose most general solution involves a convolution with the appropriate
Green’s function. There are a wide range of signal generating systems that are based
on detecting wavefields using an appropriate instrument in both passive and active
modes. All such systems are related, in one form or another, to the ‘physics’ of
waves and vibrations and through the Green’s function, to the convolution integral
and convolution-type operations. This is how we are able to connect the physics of
a system to a model that many electrical engineers for example may tend to take for
granted.

Another feature that has been a dominant theme of this book is the modelling of
noise n(t). The physical processes by which noise is generated are variable and wide
ranging. Noise can sometimes be interpreted in terms of the multiple interactions that
occur in pulse-echo type imaging systems, effects that can be minimized by averaging
over many recordings to give a good approximation to the primary field. Electronic
noise is present in all types of instrumentation and detectors and can be a dominant
feature in highly sensitive instrumentation. A special type of noise known as ‘speckle’
is a dominant feature of imaging systems that record coherent signals such as radar.
Noise can also feature in terms of spurious results that are the result of the geometry
of a system being inconsistent with a one-dimensional model.

The statistical modelling of noise and the analysis of signals using these ‘statistics’
is fundamental to DSP. In developing an interpretation of a signal, it is often useful
to attempt to design some deterministic model if possible. However, as a system
becomes more and more complex, determinism often has to be sacrificed in place
of the development of appropriate stochastic models from fundamental (i.e. random
walk type) principles. An emergent feature of such models involves the application
of fractal geometry for interpreting random signals that exhibit self-affine statistics,
a feature that is common in an increasingly wide range signals. Statistical signal
analysis is based on the interpretation of a signal in terms of a set of statistical
parameters using the moving window principle discussed in Chapter 16. The fractal
dimension discussed in Chapter 17 can be considered to form part of such a set.

In addition to the theoretical aspects of DSP, this book has attempted to help the
reader design appropriate software and also to become acquainted with the numerical
methods that from the basis for the design of such software. There is often a large ‘gap’
between the theoretical aspects of a subject and the engineering solutions. Filling this
‘gap’ is often the most difficult part of the ‘learning curve’ and requires the engineer
to come to terms with a diverse range of subjects. DSP requires a unique blend of
physics, mathematics, statistics, computing and electronics and a book of this type can
only ever provide a brief glimpse of the way in which these subjects combine to solve
problems in DSP. Thus, many important new approaches, transformation methods,
filters, etc., have been omitted or not covered in sufficient detail, in particular, the

SUMMARY 615

applications of important subjects such as fuzzy logic and artificial neural networks to
DSP. However, it is hoped that the reader will be able to approach new aspects of this
subject and develop new and original ideas with a greater degree of understanding
and confidence as a result of studying this book. If so, then its composition and
publication have been worth while. Further, the principles of signal processing can
be extended to the analysis and processing of digital images. This is the subject of
a companion volume entitled Imaging and Image Processing by the author, which
covers aspects of electromagnetic and acoustic field theory for modelling optical and
acoustic images and investigates conventional and novel methods of image processing
and pattern recognition.

Appendix A

Solutions to Problems

A.1 Part I

A.1.1 Solutions to Problems Given in Chapter 1

1.1

(i)
1 + i

2− i =
(

1 + i

2− i
)(

2 + i

2 + i

)
=

1
5
(1 + 3i) =

1
5

+
3
5
i.

(ii)
1
i5

=
1
i5
i

i
=

i

i6
=

i

(
√−1)6

=
i

(−1)3
= −i.

(iii)
(2− 3i)2 = −5− 12i.

Thus,
4− 5i

(2 − 3i)2
=

5i− 4
5 + 12i

=
(

5i− 4
5 + 12i

)(
5− 12i
5− 12i

)
=

40
160

+ i
73
169

.

(iv)

(1 + 2i)(1 + 3i)(3 + i)
1− 3i

=
(1 + 2i)(1 + 3i)(3 + i)(1 + 3i)

(1 − 3i)(1 + 3i)
=

(5i− 5)
10

10i = −5− 5i.

(v) (
−1

2
+ i

√
3

2

)(
−1

2
+ i

√
3

2

)
=

1
4
− i
√

3
4
− i
√

3
4
− 3

4
= −1

2
− i
√

3
2
.

1.2 In each case, consider the real part to be a number along the real (horizontal)
axis and the imaginary part to along the imaginary (vertical axis). The complex

616

A.1. PART I 617

number forms a point with coordinates (x, iy) in the same way that a value of a two
dimensional function forms a point on an (x, y) plane.

1.3
(z1 + z2)∗ = [(x1 + iy1) + (x2 + iy2)]∗

= [(x1 − iy1) + (x2 − iy2)] = [(x1 + iy1)∗ + (x2 + iy2)∗] = z∗1 + z∗2 .

(z1z2)∗ = [(x1 + iy1)(x2 + iy2)]∗

= [(x1 − iy1)(x2 − iy2)] = [(x1 + iy1)∗(x2 + iy2)∗] = z∗1z
∗
2 .

Note, that in general (∑
i

zi

)∗
=
∑

i

z∗i ;

(∏
i

zi

)∗
=
∏

i

z∗i .

1.4 Note, that z = a + ib = Aeiθ where A =
√
a2 + b2 ≡ modz or | z |, θ =

tan−1(b/a) ≡ argz.

(i) z = 1− i3; | z |= 4, argz = tan−1(−√3/2) = −π/3.

(ii) eiπ/2+
√

2eiπ/4 = cos(π/2)+i sin(π/2)+
√

2 cos(π/4)+i
√

2 sin(π/4) = i+
√

2 1√
2
+

i
√

2√
2

= i+ 1 + i = 1 + 2i. Hence | z |= √5 and argz = tan−1 2.

(iii) Noting that eiπ/4 = cos(π/4) + i sin(π/4) = 1/
√

2 + i/
√

2, we can write 1 + i =√
2eiπ/4. Hence, (1+i)eiπ/6 =

√
2eiπ/4eiπ/6 =

√
2ei5π/12 and | z |= √

2, argz = 5π/12.

(iv) z1z2 = 2eiπ/53eiπ/3 = 6ei8π/15. Hence | z1z2 |= 6, arg(z1z2) = 8π/15.

(v) z1/z2 = (2eiπ/5)/(3eiπ/3) = (2/3)eiπ/5e−π/3 = (2/3)e−i2π/15. Thus, | z1/z2 |=
2/3, arg(z1/z2) = −2π/15.

1.5 (i) Noting that, from De Moivre’s theorem,

exp(iπ) = cos(π) + i sin(π) = −1

the result (Eulers equation) follows. Note that the equation exp(iπ)+1 = 0 is like no
other equation in mathematics because it provides a link between the most important
numbers and constants in all mathematics, i.e. 0, 1, e and π!

(ii) Noting that
exp(iπ/2) = cos(π/2) + i sin(π/2) = i

the result follows.

(iii)
ii = [exp(iπ/2)]i = exp(i2π/2) = exp(−π/2) = 1/

√
eπ

(iv)
i1/i = [exp(iπ/2)]1/i = exp(π/2) =

√
eπ

618 APPENDIX A. SOLUTIONS TO PROBLEMS

(v) The result follows from (iii) and (iv) above.

1.6

C + iS =
∫
eax cos(bx)dx + i

∫
eax sin(bx)dx =

∫
eax[cos(bx) + i sin(bx)]dx

=
∫
eaxeibxdx =

∫
e(a+ib)xdx =

e(a+ib)x

a+ ib

ignoring the constant of integration. We now write the result in terms of real and
imaginary parts, thus:

C + iS =
a− ib
a2 + b2

eax[cos(bx) + i sin(bx)]

=
eax

a2 + b2
[a cos(bx) + b sin(bx)] + i

eax

a2 + b2
[a sin(bx)− b cos(bx)].

Hence,

C =
∫
eax cos(bx)dx =

aax

a2 + b2
[a cos(bx) + b sin(bx)]

and
S =

∫
eax sin(bx)dx =

aax

a2 + b2
[a sin(bx)− b cos(bx)].

1.7 Equating real and imaginary parts of the equation

r exp(iθ)− 1 = R exp(iα),

we have
r cos θ − 1 = R cosα

and
r sin θ = R sinα.

Thus,

sinα =
r sin θ
R

=⇒ cosα =

√
R2 − r2 sin2 θ

R

and therefore

r cos θ − 1 =

√
R2 − r2 sin2 θ

R
.

Taking squares,
r2 cos2 θ − 2r cos θ + 1 = R2 − r2 sin2 θ

and solving for R gives
R =

√
1 + r2 − 2r cos θ .

Hence,

Re[ln(z − 1)] = lnR =
1
2

ln(1 − r2 − 2r cos θ).

A.1. PART I 619

1.8 Consider a rectangle with a path composed of four elements: Γ1 along the real
axis from x = −R to x = R, Γ2 from x = R to R + ia/2, Γ3 from R + ia/2 through
ia/2 to −R+ ia/2 and finally Γ4 from −R+ ia/2 to x = −R. From Cauchy’s theorem∮

C

e−z2
dz =

∫
Γ1

e−z2
dz +

∫
Γ2

e−z2
dz +

∫
Γ3

ez2
dz +

∫
Γ4

ez2
dz = 0.

Hence,

R∫
−R

e−x2
dx+

a/2∫
0

e−(R+iy)2 idy +

−R∫
R

e−(x+ia/2)2dx+

0∫
a/2

e−(−R+iy)2idy = 0

or

R∫
−R

e−x2
dx+

a/2∫
0

e−R2
e2iyRey2

idy −
R∫

−R

e−x2
e−iaxea2/4dx−

a/2∫
0

e−R2
e2iRyey2

idy = 0.

Now, as R→∞, e−R2 → 0. Thus,

∞∫
−∞

e−x2
dx =

∞∫
−∞

e−x2
e−iaxaa2/4dx = ea2/4

⎛⎝ ∞∫
−∞

e−x2
cos(ax)dx − i

∞∫
−∞

e−x2
sin(ax)dx

⎞⎠ .

Equating real and imaginary parts, we get

ea2/4

∞∫
−∞

e−x2
cos(ax)dx =

∞∫
−∞

e−x2
dx =

√
π

and

ea2/4

∞∫
−∞

e−x2
sin(ax)dx = 0.

Hence,
∞∫
0

e−x2
cos(ax)dx =

√
π

2
e−a2/4.

1.9 (i) For a path described by x2 + 2y2 = 4, the contour C is an ellipse which pases
through the point (−2, 2) on the real axis and (−i√2, i

√
2) on the imaginary axis.

Now,∮
C

z3 − z + 2
z − 1

=
∮
C

[
z(z2 − 1)
z − 1

+
2

z − 1

]
dz =

∮
C

[
z(z − 1)(z + 1)

z − 1
+

2
z − 1

]
dz

=
∮
C

z2dz +
∮
C

zdz + 2
∮
C

1
z − 1

dz = 0 + 0 + 2(2πi) = 4πi

620 APPENDIX A. SOLUTIONS TO PROBLEMS

since the last integral has a simple pole at 1 which is inside the contour. For the case
when the contour C is a circle described by the equation x2 + y2 = 1/

√
2, the pole is

outside the contour and therefore the contour integral is zero.

(ii)∮
C

3z2 − 2z + 1
(z2 + 1)(z − 1)

dz =
∮

C

[
1

z + i
+

1
z − i +

1
z − 1

]
dz =

∮
C

dz

z + i
+
∮
C

dz

z − i+
∮
C

dz

z − 1
.

The contour described by the circle x2 +y2 = 4 has points (−2, 2) on the real axis and
(−2i, 2i) on the imaginary axis. Now the contour integral above has simple poles at
z = −i, z = i and z = 1 which are all within the contour C. Thus, each of the three
contour integrals above is given by 2πi and the contour integral given is therefore
given by 6πi.

1.10 Consider a semi-circle made-up of two elements, a path C1 along the real axis
from −R to R and a circumference C2 with a radius R going through the point iR
on the imaginary axis. Then∮
C1+C2

dz

z2 + 2z + 2
=
∫
C1

dz

z2 + 2z + 2
+
∫
C2

dz

z2 + 2z + 2
=

R∫
−R

dx

x2 + 2x+ 2
+
∫
C2

dz

z2 + 2z + 2
.

Now ∫
C2

dz

z2 + 2z + 2
=

π∫
0

Rieiθdθ

R2e2iθ + 2Reiθ + 2
→ 0 as R→∞

and therefore ∞∫
−∞

dx

x2 + 2x+ 2
=
∮
C

dz

z2 + 2z + 2

where C is a large semi-circle, and has simple poles at z = −1 ± i. One pole at
z = −1 + i exists inside the contour described above and has a residue given by

lim
z→−1+i

[
1

z − (−1− i)
]

=
1
2i
.

Thus, by Cauchy’s residue theorem∮
= 2πi× 1

2i
= π

and ∞∫
−∞

dx

x2 + 2x+ 2
= π.

1.11 Let z = eiθ, then dz = ieiθdθ = izdθ and dθ = dz/iz. Also

sin θ =
eiθ − e−θ

2i
=

1
2i

(
z − 1

z

)

A.1. PART I 621

and hence,
2π∫
0

dθ

2 + sin θ
=
∮
C

dz/iz

2 + (z − 1/z)/2i
=
∮

2dz
z2 + 4iz − 1

.

Simple poles exist at i(−2±√3) but only the pole at −2i+ i
√

3 exist inside a contour
which can be taken to be a circle in the complex plane with a radius of 1. The residue
at z = i(−2 +

√
3) is given by

lim
z→−2i+i

√
3

(
1

z + 2i+ i
√

3

)
=

1
i2
√

3
.

Hence, by Cauchy’s theorem, the integral is

2× 2πi× 1
i2
√

3
=

2π√
3
.

1.12 Consider the function eiz/(1 + z2) and a contour composed of a semi-circle of
radius R with an element C1 from −R to R along the real axis and a circumference
C2 passing through the point iR on the imaginary axis. Then,∮

C

eiz

1 + z2
dz =

∫
C1

eiz

1 + z2
dz +

∫
C2

eiz

1 + z2
dz

=

R∫
−R

eix

1 + x2
dx +

π∫
0

exp(iReiθ)
1 +R2e2iθ

Rieiθdθ.

Now, the second (complex) integral on the RHS above goes to zero as R → ∞ and
thus, we can write

∞∫
−∞

eix

1 + x2
dx =

∮
C

eiz

1 + z2
dz

where simple poles exist at z = ±i. Only the pole at z = i is inside the contour
described above and the residue at z = i is given by

lim
z→i

(
eiz

z + i

)
=
e−1

2i
.

Hence, by Cauchy’s residue theorem, the integral is

2πi× e−1

2i
=
π

e
=

∞∫
−∞

cosx+ i sinx
1 + x2

dx

whose imaginary component is zero, leaving the result that
∞∫

−∞

cosxdx
1 + x2

=
π

e
.

622 APPENDIX A. SOLUTIONS TO PROBLEMS

A.1.2 Solutions to Problems Given in Chapter 2

General remark: In proving relationships that involve the δ-function, it must be
understood that the relationships only have a proper ‘meaning’ when expressed as an
integrand in the basic sampling property of the δ-function, i.e.

∞∫
−∞

f(t)δ(t− a)dt = f(a).

2.1 ∞∫
−∞

f(t)δ(t− a)dt = f(a)

and ∞∫
−∞

f(a)δ(t− a)dt = f(a)

∞∫
−∞

δ(t− a)dt = f(a)

by the normalization condition

∞∫
−∞

δ(t− a) = 1.

Hence,
f(t)δ(t− a) = f(a)δ(t− a).

2.2 ∞∫
−∞

tδ(t)f(t)dt = [tf(t)]t=0 = 0 ≡
∞∫

−∞
0f(t)dt

.˙ . tδ(t) = 0.

2.3
∞∫

−∞
δ(a− t)f(t)dt =

−∞∫
∞

δ[τ − (−a)]f(−τ)(−dτ)

where τ = −t. Hence,

∞∫
−∞

δ(a− t)dt =

∞∫
−∞

δ[τ − (−a)]f(−τ)dτ = f [−(−a)] =

∞∫
−∞

δ(t− a)f(t)dt.

.˙. δ(a− t) = δ(t− a).
From the above result, we note that with a = 0, we get δ(−t) = δ(t) and so the
δ-function behaves as an even function.

A.1. PART I 623

2.4 Let

I =

∞∫
−∞

δ(at)f(t)dt.

Consider the case when a > 0; y =| a | t, dτ =| a | dt and

I =
1
| a |

∞∫
−∞

δ(τ)f
(

τ

| a |
)
dτ =

1
| a |f(0) =

∞∫
−∞

[
1
| a |δ(t)

]
f(t)dt.

.˙. δ(at) =
1
| a |δ(t), a > 0, a �= 0

Now consider the case when a < 0; τ = − | a | t, dτ = − | a | dt so that

I =
1
| a |

−∞∫
∞

δ(τ)f
(
− τ

| a |
)

(−dτ) =
1
| a |

∞∫
−∞

δ(τ)f
(
− τ

| a |
)
dτ

=
1
| a |f(0) =

∞∫
−∞

[
1
| a |δ(τ)

]
f(τ)dτ.

.˙. δ(at) =
1
| a |δ(t); a < 0, a �= 0.

2.5 Using the result (fδ)′ = f ′δ + fδ′ we have

∞∫
−∞

f(t)δ′(t)dt =

∞∫
−∞

(fδ)′dt−
∞∫

−∞
δf ′dt = [fδ]∞−∞ − f ′(0) = −f ′(0)

since δ(t) = 0∀t except at t = 0.

2.6 Observe that
δ(t2 − a2) = δ[(t− a)(t+ a)].

Since δ(t) = 0 unless t = 0, it follows that δ(t2 − a2) = 0 except at the point where
t = ±a. Hence, we can write

∞∫
−∞

δ(t2 − a2)f(t)dt =

−a+ε∫
−a−ε

δ[(t+ a)(t− a)]f(t)dt+

a+ε∫
a−ε

δ[(t+ a)(t− a)]f(t)dt, a > 0

where 0 < ε < 2a and ε is arbitrarily small. Now, in the neighborhood of t = −a, the
factor t− a may be replaced by −2a. Then,

−a+ε∫
−a−ε

δ[(t+ a)(t− a)]f(t)dt =

−a+ε∫
−a−ε

δ[(−2a)(t+ a)]f(t)dt =

∞∫
−∞

1
2a
δ(t+ a)f(t)dt

624 APPENDIX A. SOLUTIONS TO PROBLEMS

since δ(−t) = δ(t) and δ(at) = δ(t)/a, a > 0. N.B. The infinite limits can be used
again because δ(t+ a) = 0 except at t = −a. In a similar manner,

a+ε∫
a−ε

δ[(t+ a)(t− a)]f(t)dt =

∞∫
−∞

1
2a
δ(t− a)f(t)dt, a > 0.

Hence,

δ(t2 − a2) =
1
2a

[δ(t− a) + δ(t+ a)].

Note, that this result breaks down for a = 0 and there is apparently no way of
interpreting the expression δ(t2).

2.7 δ(sin t) = 0 except at the points where sin t = 0 which occurs when ever t = nπ
where n = 0,±1,±2,±3, ...,±∞.

.˙.

∞∫
−∞

δ(sin t)f(t)dt =
∞∑

n=−∞

∞∫
−∞

δ(t− nπ)f(t)dt =

∞∫
−∞

∞∑
n=−∞

δ(t− nπ)f(t)dt

and

δ(sin t) =
∞∑

n=−∞
δ(t− nπ).

Similarly,

δ(cos t) =
∞∑

n=−∞
δ
(
t− nπ

2

)
.

2.8 ∞∫
−∞

δ(t)e−iωtdt = e−iω0 = 1

and by inversion

δ(t) =
1
2π

∞∫
−∞

eiωtdω.

Now
cos t =

1
2
(eit + e−it),

.˙.

∞∫
−∞

e−iωt cos tdt =
1
2

⎡⎣ ∞∫
−∞

eit(1−ω)dt+

∞∫
−∞

e−it(1+ω)dt

⎤⎦
= πδ(1 + ω) + δ[−(1 + ω)] = π[δ(1 − ω) + δ(1 + ω)]

Similarly,

sin t =
1
2i

(eit − e−it),

A.1. PART I 625

.˙.

∞∫
−∞

e−iωt sin tdt =
1
2i

⎡⎣ ∞∫
−∞

eit(1−ω)dt−
∞∫

−∞
e−it(1+ω)dt

⎤⎦
= −iπδ(1− ω)− δ(1 + ω) = iπ[δ(1 + ω)− δ(1 − ω)].

2.9 Substituting and differentiating, we have

1
2π

∞∫
−∞

(−u2 + k2)g(u, k) exp(iuX)du = − 1
2π

∞∫
−∞

exp(iuX)du

from which it follows that
g(u, k) =

1
u2 − k2

.

Hence

g(X, k) =
1
2π

∞∫
−∞

exp(iuX)
u2 − k2

du =
1
2π

∞∫
−∞

exp(iuX)
(u− k)(u + k)

du

and the problem is reduced to that of evaluating the above integral and in particular,
the contour integral

I =
∮
C

eizX

(z − k)(z + k)
dz.

This integral has two real roots z = ±k. Thus, we can consider a contour composed
of a semicircle of radius R so that

I =

R∫
−R

eiuX

(u− k)(u + k)
du+

∫
S

eizX

(z − k)(z + k)
dz

where S is the path defining the circumference of the semicircle. Now, the pole at
z = k is given by

lim
z→k

[
(z − k)eizX

(z + k)(z − k)
]

=
1
2k
eikX

and the pole at z = −k is given by

lim
z→−k

[
(z + k)eizX

(z + k)(z − k)
]

= − 1
2k
e−ikX .

Hence, from Cauchy’s residue theorem,

I =
∮
C

eizX

(z − k)(z + k)
dz = 2πi

(
1
2k
eikX − 1

2k
e−ikX

)
= −2π

sin(kX)
k

.

With z = Reiθ, the integral over the path S is∫
S

eiXR cos θe−XR sin θ

(Reiθ + k)(Reiθ − k)e
iθ(dR+ iRdθ) −→ 0 as R −→∞.

626 APPENDIX A. SOLUTIONS TO PROBLEMS

Thus we can write ∞∫
−∞

eiuX

(u− k)(u+ k)
du = −2π

sin(kX)
k

and we obtain the result,

g(x | x0, k) = − sin(k | x− x0 |)
k

.

This expression for the Green’s function characterizes the propagation of both left and
right travelling waves (associated with the poles at u = k and u = −k respectively).
Thus, if we want the Green’s function for left travelling waves alone (equivalent to
computing the integral for the pole at u = k alone) for example, then we obtain

g(x | x0, k) =
i

2k
exp(ik | x− x0 |).

2.10 The Green’s function solution to this equation is given by (as shown in Chapter
2)

u(x0, k) =

∞∫
−∞

f(x)g(x | x0, k)dx

where, from question 2.9, the Green’s function is given by

g(x | x0, k) = − sin(k | x− x0 |)
k

=
i exp(ik | x− x0 |)

2k
− i exp(−ik | x− x0 |)

2k
.

The two exponential terms above represent left and right travalling wave respectively.
If we consider the case for left travelling waves, then the Green’s function solution
becomes

u(x0, k) =
i

2k

∞∫
−∞

f(x)eik|x−x0|dx.

Now, as x0 −→∞, the asymptotic solution is

u(x0, k) =
i

2k
eikx0

∞∫
−∞

f(x)e−ikxdx

which is characterized by the Fourier transform of f(x). In obtaining this result, and
at the risk of being pedantic, note that

| x− x0 |=
√

(x− x0) =
√
x2 − 2xx0 + x2

0 = x0

(
1− 2x

x0
+
x2

x2
0

) 1
2

= x0

(
1− x

x0
+

x2

2x2
0

+ ...

)
via a binomial expansion. Now if x0 −→∞ then x/x0 −→ 0∀x ∈ (−∞,∞) and hence

| x− x0 |−→ x0 − x, x0 −→∞.

A.1. PART I 627

A.1.3 Solutions to Problems Given in Chapter 3

3.1 (i)
π∫

−π

cos(nt) sin(nt)dt =
1
2
[sin(k + n) + sin(k − n)t]dt

=
1
2

([
−cos(k + n)t

k + n

]π

−π

+
[
−cos(k − n)

k − n
]π

−π

)
=

1
2

[
− 1
k + n

−
(
− 1
k + n

)]
= 0∀n, k.

(ii)
π∫

−π

sin(nt) sin(kt)dt =
1
2
[cos(n− k)− cos(n+ k)t]dt

=
1
2

([
sin(n− k)t
n− k

]π

−π

−
[
− sin(n+ k)

n+ k

]π

−π

)
= 0, n �= k.

If n = k, then

π∫
−π

sin(nt) sin(kt)dt =
1
2

⎛⎝ π∫
−π

[1− cos(2nt)]dt

⎞⎠ =
1
2

(
[t]π−π −

[
1
2n

sin(2nt)
]π

−π

)
= π.

.˙.

π∫
−π

sin(nt) sin(kt)dt =

{
0, n �= k;
π, n = k.

3.2 Sketches are left to the reader.

3.3 The Fourier series representation of this (periodic) function is

f(t) =
a0

2
+

∞∑
n=1

[an cos(nt) + bn sin(nt)]

where

a0 =
1
π

π∫
−π

f(t)dt =
1
π

0∫
−π

0dt+
1
π

π∫
0

tdt =
1
π

[
t2

2

]π

0

=
π

2

an =
π

π∫
−π

f(t) cos(nt)dt =
1
π

π∫
0

t cos(nt)dt

=
1
π

[
t sin(nt)

n
+

cos(nt)
n2

]π

0

=
1
π

[
cos(nπ
n2 − 1

n2

]
=

1
π

1
n2

[(−1)n − 1]

and

bn =
1
π

π∫
−π

f(t) sin(nt)dt =
1
π

π∫
0

t sin(nt)dt =
1
π

[
− t cos(nt)

n
+

sin(nt)
n2

]π

0

628 APPENDIX A. SOLUTIONS TO PROBLEMS

= −cos(nπ)
n

= − (−1)n

n
.

.˙. f(t) =
π

4
+

1
π

∞∑
n=1

1
n2

[(−1)n − 1] cos(nt)−
∞∑

n=1

(−1)n

n
sin(nt)

=
π

4
− 2
π

(
cos t
12

+
cos(3t)

32
+ ...

)
+
(

sin t
1
− sin(2t)

2
+

sin(3t)
3

− ...
)
.

Finally, since f(0) = 0, we have

0 =
π

4
− 2
π

(
1 +

1
32

+
1
52

+ ...

)
.

Rearranging,
π2

8
= 1 +

1
32

+
1
52

+ ...

3.4 The Fourier sine series for the function π − t, 0 ≤ t ≤ π is

∞∑
n=1

bn sin(nt)

where

bn =
2
π

π∫
0

(π − t) sin(nt)dt =
2
π

[
−π cos(nt)

n
+
t cos(nt)

n
− sin(nt)

n2

]π

0

=
2
π

π

n
=

2
n

.˙. π − t =
∞∑

n=1

2
n

sin(nt), 0 ≤ t ≤ π.

The Fourier cosine series for this function is

a0

2
+

∞∑
n=1

an cos(nt)

where

a0 =
2
π

π∫
0

(π − t)dt =
2
π

[
πt− x2

2

]π

0

= π

and

an =
2
π

π∫
0

(π − t) cos(nt)dt

=
2
π

[
π sin(nt)

n
− t sin(nt)

n
− cos(nt)

n2

]π

0

=
2
π

1
n2

[1− (−1)n].

.˙. π − t =
π

2
+

2
π

∞∑
n=1

[1− (−1)n]
n2

cos(nt), 0 ≤ t ≤ π.

A.1. PART I 629

3.5 The Fourier sine series for cos t, 0 ≤ t ≤ π, is

∞∑
n=1

bn sin(nt)

where

bn =
2
π

π∫
0

cos t sin(nt)dt =
2
π

π∫
0

1
2
[sin(1 + n)t+ sin(n− 1)t]dt

=
1
π

[
−cos(1 + n)t

1 + n
− cos(n− 1)t

n− 1

]π

0

=
1
π

([
− (−1)n+1

1 + n
− (−1)n+1

n− 1

]
−
[
− 1

1 + n
− 1
n− 1

])
=

1
π

[
1 + (−1)n

n+ 1
+

1 + (−1)n

n− 1

]
=

1
π

2n[1 + (−1)n]
n2 − 1

.

Hence, we obtain the result

cos t =
2
π

∞∑
n=1

[1 + (−1)n]
n

n2 − 1
sin(nt).

3.6

x =
∞∑

n=1

bn sin(nt)

since f(t) = t is an odd function [i.e. f(−t) = −f(t)] and

bn =
2
π

π∫
0

t sin(nt)dt =
2
π

⎛⎝[− t

n
cos(nt)

]π

0

+

π∫
0

cos(nt)
n

dt

⎞⎠
= − 2

n
cos(nπ) =

2
n

(−1)n+1.

.˙. t =
∞∑

n=1

2
n

(−1)n+1 sin(nt)

and

F (ω) =

∞∫
−∞

te−iωtdt =
∞∑

n=1

2
n

(−1)n+1

∞∫
−∞

sin(nt)e−iωtdt

2πi
∞∑

n=1

(−1)n+1

n
[δ(k + n)− δ(k − n)].

3.7 f(t) =| t | is an even function and

f(t) =
a0

2
+

∞∑
n=1

an cos(nt),

630 APPENDIX A. SOLUTIONS TO PROBLEMS

an =
2
π

π∫
0

t cos(nt)dt =

{
2
π

1
n2 [(−1)n − 1], n �= 0;

π, n = 0.

.˙. f(t) =
π

2
+

2
π

∞∑
n=1

1
n2

[(−1)n − 1] cos(nt).

Now,

F (ω) =
π

2

∞∫
−∞

e−iωtdt+
2
π

∞∑
n=1

1
n2

[(−1)n − 1]

∞∫
−∞

cos(nt)e−iωtdt

= π2δ(ω) + 2
∞∑

n=1

1
n2

[(−1)n − 1][δ(k − n) + δ(k + n)].

3.8 f(t) = t2 is even and so

f(t) =
a0

2
+

∞∑
n=1

an cos(nt)

where

an =
2
π

π∫
0

t2 cos(nt)dt =

{
4

n2 (−1)n, n �= 0;
2π2

3 , n = 0.

Thus,

f(t) =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nt)

and

F (ω) =
π3

3

∞∫
−∞

e−iωtdt+ 4
∞∑

n=1

(−1)n

n2

∞∫
−∞

cos(nt)e−iωtdt

=
2π3

3
(ω) + 4π

∞∑
n=1

(−1)n

n2
[δ(k − n) + δ(k + n)].

Also, since f(0) = 0, we have

0 =
π2

3
+ 4

(
−1 +

1
22
− 1

33
+

1
42
− ...

)
or after rearranging

π2

12
= 1− 1

22
+

1
32
− 1

42
+ ...

A.1. PART I 631

A.1.4 Solutions to Problems Given in Chapter 4

4.1 For ω �= 0,

∞∫
−∞

f(t)e−iωtdt =

a∫
−a

te−iωtdt = i
d

dω

a∫
−a

e−iωtdt = i
d

dω

[
− 1
iω
e−iωt

]a

−a

= 2i
d

dω

[
sin(ωa)
ω

]
= 2i

[
a
cos(ωa)

ω
− sin(ωa)

ω2

]
=

2ia
ω

[
cos(ωa)− sin(ωa)

ωa

]
.

For ω = 0,
∞∫

−∞
f(t)e−iωtdt =

a∫
−a

tdt =
[
t2

2

]a

−a

= 0.

4.2
∞∫

−∞
comb(t)e−iωtdt =

∞∫
−∞

n∑
j=1

δ(t− tj)e−iωtdt =
n∑

j=1

∞∫
−∞

δ(t− tj)e−iωtdt =
n∑

j=1

e−iωtj

using the sampling property of the δ-function.

4.3 ∞∫
−∞

f(t)e−iωtdt =

a∫
−a

(
1− | t |

a

)
e−iωtdt

=

a∫
0

(
1− | t |

a

)
e−iωtdt+

0∫
−a

(
1− | t |

a

)
e−iωtdt

=

a∫
0

(
1− t

a

)
e−iωtdt−

a∫
0

(
1− | t |

a

)
e−iωtdt

=

a∫
0

(
1− x

a

)
e−iωtdt+

a∫
0

(
1− t

a

)
eiωtdt

= 2
∫ a

0

(
1− t

a

)
cos(ωt)dt = 2

a∫
0

cos(ωt)dt− 2
a

a∫
0

t cos(ωt)dt

=
2
ω

[sin(ωt)]a0 −
2
a

[
t
sin(ωt)
ω

+
cos(kt)
ω2

]a

0

=
2
ω

sin(ωa− 2
a

[
a
sin(ωa)
ω

+
cos(ωa)
ω2

− 1
ω2

]
=

2
ω2a

[1− cos(ωa)] =
4a
ω2a2

sin2(ωa/2) = asinc2(ωa/2).

632 APPENDIX A. SOLUTIONS TO PROBLEMS

If ω = 0, then
∞∫

−∞
f(t)e−iωtdt = 2

a∫
0

(1− t/a)dt = a.

.˙. F̂1f(t) =

{
asinc2(ωa/2), ω �= 0;
a, ω = 0

Inverse Fourier transforming, we have

1
2π

∞∫
−∞

a
sin2(ωa/2)
ωa/2

eiωtdω = 1− | t |
a
, | t |≤ a.

Let ωa/2 = y, then dω = 2dy/a and

1− | t |
a

=
1
2π

∞∫
−∞

a
sin2 y

y2
eiωt 2

a
dy =

1
π

∞∫
−∞

sin2 y

y2
eiωtdy.

Now, with t = 0,

1 =
1
π

∞∫
−∞

sin2 y

y2
dy

or ∞∫
−∞

sin2 t

t2
dt = π.

4.4 ∞∫
−∞

f(t)e−iωtdt =

a∫
−a

1
2a
e−iωtdt

=
1
2a

1
−iω

[
e−iωt

]a
−a

=
1
ωa

eiωa − e−iωa

2
=

sin(ωa)
ωa

.

For ω = 0,
∞∫

−∞
f(t)e−iωtdt =

a∫
−a

1
2a
dt =

1
2a

[a− (−a)] = 1

.˙. F (ω) =

{
sin(ωa)

ωa , ω �= 0;
1, ω = 0.

from which it follows that
lim
a→0

[F (ω)] = 1,

i.e.

1 = lim
a→0

a∫
−a

1
2a
e−iωtdt =

∞∫
−∞

δ(t)e−iωtdt.

A.1. PART I 633

Hence,
∞∫

−∞
δ(t)e−iωtdt = 1

and by inversion

δ(t) =
1
2π

∞∫
−∞

eiωtdω.

4.5 ∞∫
−∞

e−|t|e−iωtdt = lim
a→∞

a∫
−a

e−|t|e−iωtdt

= lim
a→∞

⎛⎝ a∫
0

e−|t|e−iωtdt+

0∫
−a

e−|t|e−iωtdt

⎞⎠

= lim
a→∞

⎛⎝ a∫
0

e−te−iωtdt+

a∫
0

e−|t|e−iωtdt

⎞⎠

= lim
a→∞

⎛⎝ a∫
0

e−te−iωtdt+

a∫
0

e−teiωtdt

⎞⎠

= lim
a→∞

⎛⎝ a∫
0

e−t(1+iω)dt+

a∫
0

e−t(1−iω)dt

⎞⎠
= lim

a→∞

[−1
1 + iω

(e−ae−iωa − 1)− 1
1− iω (e−aeiωa − 1)

]
=

1
1 + iω

+
1

1− iω =
2

1 + ω2
.

Hence,

1
2π

∞∫
−∞

2
1 + ω2

eiωtdω = e−|t|

and with t = 1, we get
∞∫

−∞

eiω

1 + ω2
dω =

π

e
.

Equating real and imaginary parts, the imaginary part is zero the the real part is

∞∫
−∞

cos t
1 + t2

dt =
π

e
.

634 APPENDIX A. SOLUTIONS TO PROBLEMS

4.6 ∞∫
−∞

f(t)e−iωtdt =

a∫
−a

1
−iω

[
e−iωt

]a
−a

= 2
sin(ωa)
ω

.

From the product theorem

f(t)f(t) ⇐⇒ 1
2π
F (ω)⊗ F (ω).

Hence, we can write

a∫
−a

e−ixtdt =
1
2π

∞∫
−∞

2 sin(x− ω)a
ω

2 sin(ωa)
ω

dω.

With x = 0, we then get

2
π

∞∫
−∞

sin(−ωa) sin(ωa)
ω2

dω =

a∫
−a

dt = 2a.

Writing t = ωa, we obtain
∞∫

−∞

sin(−t) sin t
t2

dt = π

but sin(−t) sin t is an even function,

∞∫
−∞

sin2 t

t2
= π

or ∞∫
0

sin2 t

t2
dt =

π

2
.

4.7

f(t)⊗ eiωt =

∞∫
−∞

f(t− τ)eiωτdτ =

∞∫
−∞

f(τ)eiω(t−τ)dτ

= eiωt

∞∫
−∞

f(τ)e−iωτdτ = eiωtF (ω).

Suppose that f(t) = g(t)⊗ h(t), then,

F (ω)eiωt = f(t)⊗ eiωt

= g(t)⊗ h(t)⊗ eiωt = g(t)⊗H(ω)eiωt = G(ω)H(ω)eiωt.

A.1. PART I 635

Hence, F (ω) = G(ω)H(ω) or

g(t)⊗ h(t) ⇐⇒ G(ω)H(ω).

4.8

f(t)⊗ eiαt2 =

∞∫
−∞

f(τ)eiα(t−τ)2dτ

=

∞∫
−∞

f(τ)eiαt2e−2iαtτ eiατ2

dτ = eiαt2
∞∫

−∞
f(τ)eiατ2

e−2iατtdτ.

Now, eiατ2 � 1 + iατ2, ατ2 << 1. Hence, provided α is small enough, we can write

f(t)⊗ eiαt2 − eiαt2

⎡⎣ ∞∫
−∞

f(τ)e−2iαtτdτ +

∞∫
−∞

f(τ)iατ2e−2iαtτdτ

⎤⎦
= eiαt2 [F (2αt)− iαF ′′(2αt)]

since
F ′′(u)⇐⇒ −y2f(y)

where u = 2ατ .

4.9
f ′(t)⇐⇒ iωF (ω).

.˙. f ′(t)⊗ 1
πt
⇐⇒ iωF (ω)[−isgn(ω)] = ωsgn(ω)F (ω).

But ωsgn(ω) =| ω |,
.˙. f ′(t)⊗ 1

πt
⇐⇒| ω | F (ω).

Also,

− 1
πt2

=
d

dt

1
πt

and
d

dt

1
πt
⇐⇒ iω[−isgn(ω)] = ωsgn(ω),

. ˙. − 1
πt2

⇐⇒| ω |
Further,

− 1
πt
⊗ 1
πt
⇐⇒ −[−isgn(ω)][−isgn(ω)] = [sgn(ω)]2 = 1∀ω.

Now,
F̂−1

1 [sgn(ω)]2 = F̂−1
1 (1) = δ(t)

and hence,

− 1
πt
⊗ 1
πt

= δ(t).

636 APPENDIX A. SOLUTIONS TO PROBLEMS

4.10 Let
fn =

1
N

∑
m

Fm exp(2πinm/N)

and
gn =

1
N

∑
m

Gm exp(2πinm/N).

Then, ∑
n

fngn+m =
1
N2

∑
n

∑
k

Fk exp(2πikn/N)
∑

�

G� exp[2πi�(n+m)/N]

=
1
N

∑
k

Fk

∑
�

G� exp(2πi�m/N)
1
N

∑
n

exp[2πin(k + �)/N]

=
1
N

∑
k

Fk

∑
�

G� exp(2πi�m/N)δk(−�) =
1
N

∑
k

FkGk exp(−2πikm/N)

=
1
N

∑
k

FkG−k exp(2πikm/N) =
1
N

∑
k

FkG
∗
k exp(−2πikm/N)

Also, ∑
n

fngn exp(−2/N)

=
∑

n

exp(−2πinm/N)
1
N

∑
k

Gk exp(2πikn/N)
1
N

∑
�

F� exp(2πi�n/N)

=
1
N

∑
k

∑
�

F�Gk
1
N

∑
n

exp(2πin(k + �−m)/N)

=
1
N

∑
k

∑
�

F�Gk
1
N

∑
n

exp(2πin[k − (m− �)]

=
1
N

∑
k

∑
�

F�Gkδk(m−�) =
1
N

∑
�

F�Gm−�.

4.11 The Green’s function solution to this equation is

u(x, k) = u0 + k2g(| x |, k)⊗ f(x)u(x, k)

where g is the solution to(
∂2

∂x2
+ k2

)
g(| x− x0 |, k) = δ(x − x0).

Now,
q ⊗ (u− u0) = k2q ⊗ g ⊗ fu

and if we let
q ⊗ g = s

A.1. PART I 637

where s is the ‘ramp function’ as defined, then

∂2

∂x2
(q ⊗ g) = q ⊗ ∂2

∂x2
g = δ(x − x0).

But
∂2

∂x2
g = δ(x − x0)− k2g

and therefore
q = δ(x− x0) + k2s.

Hence,
∂2

∂x2
[q ⊗ (u − u0)] = k2 ∂

2

∂x2
(q ⊗ g)⊗ fu = k2fu

or
∂2

∂x2

[
(u− u0) + k2s⊗ (u − u0)

]
= k2fu

giving

f(x) =
1

u(x, k)

(
∂2

∂x2
(s(x) ⊗ [u(x, k)− u0(x, k)] +

1
k2

[u(x, k)− u0(x, k)])
)

provided | u(x, k) |> 0.

A.1.5 Solutions to Problems Given in Chapter 5

5.1
L̂ cosh(at) = L̂

1
2
(eat + e−at)

=
1
2
L̂eat +

1
2
L̂e−at =

1
2

(
1

p− a +
1

p+ a

)
=

p

p2 − a2
, p >| a | .

L̂teat =

∞∫
0

e−pteattdt =

∞∫
0

e−(p−a)ttdt =
1

(p− a)2 , p > a.

L̂x−1/2 =
∫
0

e−ptt−1/2dt.

Let pt = u2, then dt = 2udu/p and

L̂x−1/2 =

∞∫
0

e−u2
√

p

u2

2u
p
du =

2√
p

∞∫
0

e−u2
du =

2
p

√
π

2
=
√
π

p
, p > 0.

L̂δ(t− a) =

∞∫
0

e−ptδ(t− a)dt = e−at, a > 0.

638 APPENDIX A. SOLUTIONS TO PROBLEMS

5.2

J0(at) =
∞∑

n=0

(−1)n

(n!)2

(
at

2

)2n

= 1− a2t2

22
+
a4t4

2242
− a6t6

624222
+ ...

.˙. L̂J0(at) = L̂1− L̂a
2x2

22
+ L̂

a4t4

2242
− L̂ a6t6

624222
+ ...

1
p
− a2

22

2!
p3

+
a4

2242

4!
p5
− 1

224262

6!
p7

+ ...

=
1
p

(
1− a2

2
1
p2

+ a2 1× 3
2× 4

1
p4
− a2 1× 3× 5

2× 4× 6
1
p6

+ ...

)

=
1
p

(
1 +

a2

p2

)−1/2

=
1√

p2 + a2
.

5.3 Taking the Laplace transform and using the convolution theorem, we obtain

ŷ(x) = f̂(x) + L̂

x∫
0

g(x− u)y(u)du = L̂f(x) + L̂g(x)L̂y(x).

Rearranging,
[1− L̂g(x)]L̂y(x) = L̂f(x).

.˙. L̂y(x) =
L̂f(x)

1− L̂g(x)
Now, if

y(x) = sin(3x) +

x∫
0

sin(x− u)y(u)du

then

L̂y(x) =
L̂ sin(3x)
1− L̂ sinx

=
3

p2+9

1− 1
p2+1

=
3

p2 + 9
+

3
p2(p2 + 9)

and

y(x) = L̂−1

[
3

p2 + 32

]
+ L̂−1

[
1

3p2
− 1

3(p2 + 32)

]
= sin(3x) +

x

3
− 1

9
sin(3x) =

x

3
+

8
9

sin(3x)

5.4 Taking Laplace transforms, we obtain

p2Y (p)− y′(0)− py(0) + 4Y (p) = F (p)

and with y′(0) = 1 and y(0) = 1, we get

(p2 + 4)Y (p) = 1 + p+ F (p)

A.1. PART I 639

or
Y (p) =

2
2(p2 + 22

+
p

p2 + 22
+

1
2

2
p2 + 22

F (p).

Hence,

y(x) = L̂−1Y (p) =
1
2

sin(2x) + cos(2x) +
1
2

x∫
0

f(x− y) sin(2y)dy.

5.5 This integral equation is characterised by a causal convolution. Thus, taking
Laplace transforms, we get

Φ(p) = L̂[x]− L̂
⎡⎣ x∫

0

(t− x)φ(t)dt

⎤⎦ .

L̂[x] =

∞∫
0

xe−pxdx =
[
−x
p
e−px

]∞
0

+

∞∫
0

1
p
e−pxdx =

[
− 1
p2
e−px

]∞
0

=
1
p2
.

Also,

L̂

⎡⎣ x∫
0

(t− x)φ(t)dt

⎤⎦ = L̂[x]L̂[φ(x)] =
1
p2

Φ(p).

.˙. Φ(p) +
1
p2

Φ(p) =
1
p2

or
Φ(p) =

1
p2 + 1

.

Inverting, we have φ(x) = sinx.

5.6 Taking the sine transform, i.e.

F (k) =
2
π

∞∫
0

f(x) sin(kx)dx

we obtain
−k2U(k, t) +

2
π
ku(0, t) =

∂

∂t
U(k, t).

The solution to this equation is

U(k, t) = Ae−k2t +
2
πk

where A is a constant of integration. Now,

U(k, 0) =
∫ ∞

0

u(x, 0) sin(kx)dx = 0

640 APPENDIX A. SOLUTIONS TO PROBLEMS

and putting t = 0, we find that A = −2/(πk). Hence,

U(k, t) =
2
πk

(
1− e−k2t

)
and therefore (taking the inverse sine transform),

u(x, t) =
2
π

∞∫
0

1
k

(
1− e−k2t

)
sin(kx)dk

5.7 The z-transform is

Ẑ[sin(kωT)] = F (z) =
∞∑

k=0

[sin(kωT)]z−k =
∞∑

k=0

(
eikωT − e−ikωT

2i

)
z−k.

Now, using the result
Ẑ[(eiωT)k] =

z

z − eiωT
, | z |> 1

we have

Ẑ[sin(kωT)] =
z sin(ωT)

(z − eiωT)(z − e−iωT)
=

z sin(ωT)
z2 − 2z cos(ωT) + 1

, | z |> 1.

Similarly,

Ẑ[cos(ωkT)] = Ẑ

(
eiωkT + e−iωkT

2

)
=

1
2

(
z

z − eiωT
+

z

z − e−iωT

)

=
z[z − cos(ωT)]

z2 − 2z cos(ωT) + 1
, | z |> 1.

5.8 Taking the z-transform and noting that

Ẑ[f(k + n) = znF (z)−
n−1∑
j=0

f(j)zn−j , k ≥ −n

we get
(z2 + a1z + a2)C(z)− c(0)z2 − c(1)z − a1c(0)z

= (b0z2 + b1z + b2)R(z)− b0r(0)z2 − b0r(1)z − b1r(0)z

or

C(z) =
b0z

2 + b1z + b2
z2 + a1z + a2

R(z) +
z2[c(0)− b0r(0)] + z[c(1) + a1c(0)− b1r(0)− b0r(1)]

z2 + a1z + a2

Also,
for k = −2 : c(0) = b0r(0);
for k = −1 : c(1) + a1c(0) = b0r(1) + b1r(0)

A.1. PART I 641

and the result reduces to

C(z) =
b0z

2 + b1z + b2
z2 + a1z + a2

R(z)

or

H(z) =
C(z)
R(z)

=
b0z

2 + b1z + b2
z2 + a1z + a2

.

For the general case, taking the z-transform of each term and using the shifting
theorem we have

C(z) + a1z
−1C(z) + ...+ anz

−nC(z) = b0R(z) + b1z
−1R(z) + ...+ bnz

−nR(z)

so that

H(z) =
C(z)
R(z)

=
b0 + b1z

−1 + ...+ bnz
−n

1 + a1z−1 + ...+ anz−n
.

5.9 The proof of this result is based on the application of the convolution theorem.
The Fourier transform of f(t) is given by

F (ω) =

∞∫
−∞

f(t) exp(−iωt)dt =

1/2∫
−1/2

exp(−iωt)dt = sinc(ω/2).

Thus,
f(t)↔ sinc(ω/2)

and from the convolution theorem in follows that

g(t) =
N∏

n=1

⊗ fn(t) ↔ sincN(ω/2).

Using the series expansion of the sine function for an arbitrary constant α,

sinc(αω) =
1
αω

(
αω − 1

3!
(αω)3 +

1
5!

(αω)5 − 1
7!

(αω)7 + . . .

)

= 1− 1
3!

(αω)2 +
1
5!

(αω)4 − 1
7!

(αω)6 + . . .

The N th power of sinc(αω) can be written in terms of a binomial expansion giving

sincN (αω) =
(

1− 1
3!

(αω)2 +
1
5!

(αω)4 − 1
7!

(αω)6 + . . .

)N

= 1−N
(

1
3!

(αω)2 − 1
5!

(αω)4 +
1
7!

(αω)6 − . . .
)

+
N(N − 1)

2!

(
1
3!

(αω)2 − 1
5!

(αω)4 +
1
7!

(αω)6 − . . .
)2

642 APPENDIX A. SOLUTIONS TO PROBLEMS

−N(N − 1)(N − 2)
3!

(
1
3!

(αω)2 − 1
5!

(αω)4 +
1
7!

(αω)6 − . . .
)3

+ . . .

= 1−N α2ω2

3!
+N

α4ω4

5!
− kα

6ω6

7!
− . . .+ N(N − 1)

2!

(
α4ω4

(3!)2
− 2

α6ω6

3!5!
+ . . .

)
−N(N − 1)(N − 2)

3!

(
α6ω6

(3!)3
+ . . .

)
= 1− N

3!
α2ω2 +

(
N

5!
α4 +

N(N − 1)
2!(3!)2

α4

)
ω4

−
(
N

7!
α6 +

N(N − 1)
3!5!

α6 +
N(N − 1)(N − 2)

3!(3!)3
α6

)
ω6 + . . .

Now the series representation of the exponential (for an arbitrary positive constant
c) is

exp(−cω2) = 1− cω2 +
1
2!
c2ω4 − 1

3!
c3ω6 + . . .

Equating terms involving ω2, ω4 and ω6 it is clear that (evaluating the factorials),

c =
1
6
Nα2,

1
2
c2 =

(
1

120
N +

1
72
N(N − 1)

)
α4

or

c2 =
(

1
36
N2 − 1

90
N

)
α4,

and
1
6
c3 =

(
1

5040
N +

1
720

N(N − 1) +
1

1296
N(N − 1)(N − 2)

)
α6

or

c3 =
(

1
216

N3 − 1
1080

N2 +
1

2835
N

)
α6.

Thus, by deduction, we can conclude that

Cn =
(

1
6
N

)n

α2n +O(Nn−1α2n).

Now, for large N , the first terms in the equation above dominates to give the following
approximation for the constant c,

c � 1
6
kα2.

We have therefore shown that the N th power of the sinc(α) function approximates to
a Gaussian function (for large N), i.e.

sincN (α) � exp
(

1
6
Nα2ω2

)
.

A.1. PART I 643

Thus, if α = 1
2 , then

g(t)↔ exp
(
− 1

24
Nω2

)
approximately. The final part of the proof is therefore to Fourier invert the function
exp(−Nω2/24), i.e. to compute the integral

I =
1
2π

∞∫
−∞

exp
(
− 1

24
Nω2

)
exp(iωt)dω.

Now,

I =
1
2π

∞∫
−∞

e
−
��√

N
24 ω−

√
24
N

it
2

�2− 6t2
N

�
dω =

1
π

√
6
N

e−
6t2
N

∞+it
√

6
N∫

−∞+it
√

6
N

e−z2
dz

after making the substitution

z =

√
N

6
ω

2
− it

√
6
N
.

By Cauchy’s theorem

I =
1
π

√
6
N

e−
6t2
N

∞∫
−∞

e−z2
dz =

√
6
πN

e−
6t2
N

where we have use the result
∞∫

−∞
exp(−z2)dz =

√
π.

Thus, we can write

g(t) =
N∏

n=1

⊗ fn(t) �
√

6
πN

exp(−6t2/ω)

for large k which completes the proof.

5.10 (i) The Fourier transform is given by

W (ω) =

∞∫
−∞

w(t) exp(−iωt)dt

=
1
π

1
4

∞∫
−∞

exp[−i(ω − ω0)t] exp(−t2/2)dt =
1
π

1
4

√
π

1/2
exp[−(ω − ω0)2/(4(1/2))]

644 APPENDIX A. SOLUTIONS TO PROBLEMS

= π
1
4
√

2 exp[−(ω − ω0)2/2].

(ii) The power spectrum is given by

| W (ω) |2= 2π
1
2 exp[−(ω − ω0)2]

and the central frequency ωc can be defined as

ωc =|W |2max

giving
ωc = ω0,

i.e. the central frequency is given by the characteristics frequency of the Morlet
wavelet.

(iii) To rationalise how the Morlet wavelet picks out such a discontinuity, we follow
the wavelet of arbitrary scale as it traverses the discontinuity, the effect of the wavelet
location on the transform being discussed for different locations on the wavelet func-
tion.

Location A (away from the discontinuity). The wavelet and the constant signal of
amplitude a combine to give near-zero values of the integral for the wavelet transform

FL(t) =
1√
L

∞∫
−∞

f(t)w
(
τ − t
L

)
dτ

with
w(t) = π− 1

4 exp(iω0t− t2/2)

The wavelet function must be zero mean (the admissibility condition) and, as it is
a localised function, the wavelet becomes approximately zero at relatively short dis-
tances from its centre. Hence the wavelet transform effectively becomes a convolution
of the wavelet with a constant valued signal producing a zero value.

Location B (the signal discontinuity coincides with the right zero value of the main
wavelet lobe). The left-hand lobes of the wavelet produce a contribution to the wavelet
transform; the right-hand lobes also produce a contribution to the wavelet transform.
These contributions have the same modulus but different signs and thus, the main
lobe of the wavelet produces a significant positive value for the transform at this
location.

Location C (the signal discontinuity coincides with the wavelet centre). The right and
left halves of the wavelet contribute to a zero value of the wavelet transform.

Location D (the signal discontinuity coincides with the left zero value of the main
wavelet lobe; this location is similar to B). As the wavelet further traverses the dis-
continuity, the left hand lobes of the signal produce a contribution to the wavelet
transform; the right hand lobes of the signal produces a contribution to the wavelet
transform. These contributions have the same modulus, but different signs. This

A.1. PART I 645

time, however, the main lobe of the wavelet coincides with the negative constant am-
plitude signal and hence the wavelet transform produces a significant negative value
at this location.

Location E (much later than the discontinuity; this location is similar to location A.
The wavelet and signal combine to give near-zero values of the wavelet transform.

As the Morlet wavelet traverses the discontinuity, there are first positive and then
negative values returned by the wavelet transform. However, these values are localized
in the vicinity of the discontinuity.

5.11 (i) Consider the Wigner-Ville transform of just two complex sinusoids which can
be written in the form

F12(ω, t) =

∞∫
−∞

{a1 exp[−iω1(t− τ/2)] + a2 exp[−iω2(t− τ/2)]}

.{a1 exp[iω1(t+ τ/2) + a2 exp[iω2(t+ τ/2)]} exp(−iωτ)dτ

= a2
1

∞∫
−∞

exp[−iω1(t− τ/2)] exp[iω1(t+ τ/2)] exp(−iωτ)dτ

+a2
2

∞∫
−∞

exp[−iω2(t− τ/2)] exp[iω2(t+ τ/2)] exp(−iωτ)dτ

2a1a2 cos(ω2 − ω1)t

∞∫
−∞

exp[i(ω1 + ω2)τ/2] exp(−iωτ)dτ.

The first and second terms of the above equation are the auto terms, i.e. the Wigner-
Ville transform of the first and second sinusoids respectively; the third term is the
cross-term. Using the integral representation of a delta function we can write

F12(ω, t) = a2
1δ(ω − ω1) + a2

2δ(ω − ω2) + 2a1a2 cos[(ω2 − ω1)t]δ[ω − (ω1 − ω2)]

and, by induction, for the four sinusoidal components, the Wigner-Ville transform
becomes

F1234(ω, t) =
4∑

n=1

anδ(ω − ωn) + 2
∑
n,m

anam cos[(ωm − ωn)t]δ[ω − (ωn + ωm)]

where n,m = 1, 2, 3, 4;m �= n. Each cross-term is located at the frequency (ωn +ωm)
and oscillates at frequency (ωm − ωn).

(ii) the Wigner-Ville transform can be interpreted as the Fourier transform of an
instantaneous auto-correlation function c(t, τ) of a (complex) signal, i.e.

c(t, τ) = s∗(t− τ/2)s(t+ τ/2)

where s(t) is the analytic signal (time history) and τ is the time delay.

646 APPENDIX A. SOLUTIONS TO PROBLEMS

A.1.6 Supplementary Problems to Part I

I.1 (i) By considering the limit of a periodic train of rectangular pulses, or otherwise,
show that

F̂1

[∞∑
n=−∞

δ(t− nT)

]
=

1
T

∞∑
n=−∞

exp(inω0t)

where T > 0 and ω0 ≡ 2π/T .

(ii) Let f(t) be a bounded continuous function which is absolutely integrable over
(−∞,∞). If f̃(ω) denotes the Fourier transform of f(t) show that,

F̂1

[∞∑
n=−∞

f(nT)δ(t− nT)

]
=

1
T

∞∑
n=−∞

f̃(ω − nω0)

and hence derive the sampling theorem for the case when f̃(ω) vanishes identically
outside (−ωs, ωs), where ωs < ω0/2.

(iii) Show that the Sampling Expansion remains valid if the Fourier transform f̃(ω)
of part (ii) above contains delta functions, but fails if f̃(ω) contains the derivative of
a delta function.

I.2 (i) The classical Gamma Function Γ can be defined by

Γ(λ) =

∞∫
0

xλ−1 exp(−x)dx

where λ > 0. Confirm that the integral defining Γ does converge for all such values
of λ, and show that Γ(λ+ 1) = λΓ(λ). Find Γ(1/2) and Γ(3/2).

(ii) Find the Laplace transform of the function u(t)t−α, where α > −1, and use your
result to show that

L̂[u(t) log | t |] = −1
s
(γ + log s)

where

γ = −Γ′(1) = −
∞∫
0

exp(−x) log(x)dx

(iii) Solve the integral equation

t∫
0

y(τ)
t− τ dτ =

1
4
t2(2 log t− 3); t > 0

Note: you may assume the result
∞∫

−∞
exp(−x2)dx =

√
π

A.1. PART I 647

I.3 (i) Let k(x) be a non-negative integrable function such that
∞∫

−∞
k(x)dx = K

Prove that, if f(x) is any function bounded and continuous on (−∞,∞), then

lim
n→∞

∞∫
−∞

f(x)nk(nx)dx = Kf(0)

(ii) Find the limits, in the distributional sense, of each of the following:

(a)

lim
n→∞

(
sin2(nx)
nx2

)
(b)

lim
n→∞[sin(n!x)]

I.4 (i) If φ(t) is a continuously differentiable function then formally we can write

δ[φ(t)] =
1

φ′(t)

(
d

dt
u[φ(t)]

)
where u denotes the Heaviside unit step function and δ is the Dirac delta function.
Show that this is meaningful provided that φ(t) has only simple zeros.

Illustrate the use of this formula by expressing δ(sin t) as a periodic infinite sum of
translated delta functions.

(ii) If φ(t) = sin | t | show that the formula of part (i) can still be used to derive an
equivalent expression for δ(sin | t |) as an infinite sum of translated delta functions,
and find that expression.

(iii) Find the (one-sided) Laplace transform of each of the following: δ(sin t), δ(sin | t |)
and | sin t |

I.5 (i) Let

f(t) =
1

(a2 + t2)
where a > 0. By direct evaluation of the Fourier integral, show that

f̃(ω) =
π

a
exp(−a | ω |).

(ii) If a function f(t) and its (classical) Fourier transform f̃(ω) are both absolutely
integrable functions over (−∞,+∞) then the Poisson summation formula holds:

∞∑
−∞

f(m) =
∞∑

n=−∞
f̃(2πn).

648 APPENDIX A. SOLUTIONS TO PROBLEMS

Use this formula to show that
∞∑

n=−∞

1
a2 + n2

=
π

a
coth(πa).

(iii) Let

φ(t) =
1
d
[u(t+ d/2)− u(t− d/2)]

where u(t) is the Heaviside unit step function, and 0 < d < T . By expanding the
periodic extension

φT (t) =
∞∑

n=−∞
φ(t− nT)

as a Fourier series and allowing d→ 0, show that
∞∑

n=−∞
δ(t− nT) � 1

T

∞∑
n=−∞

exp(in2πt/T).

(iv) Use the result of (iii) above to find the generalized Fourier Transform of
∞∑

n=−∞
δ(t− nT)

and confirm that this satisfies the distributional definition of the transform of a tem-
pered distribution by applying the Poisson summation formula.

I.6 (i) The Bessel Function J0(t) can be defined as the inverse Fourier transform of
the function

2u(1− ω2)/
√

1− ω2

where u denotes the Heaviside unit step function. Confirm that, with this definition,
J0(t) does satisfy Bessel’s equation of order 0,

y′′(x) +
1
x
y′ + y(x) = 0.

(ii) Given that

Jn(x) =
∞∑

k=0

(−1)k

(k!)(n+ k)!

(x
2

)n+2k

for each positive integer n, and that J−n(x) = (−1)nJn(x), show that

exp
[
x

2

(
t− 1

t

)]
=

∞∑
n=−∞

tnJn(x).

(iii) Use the result of part (ii) to obtain the following (Fourier series) expansion

cos(x sin θ) = J0(x) + 2
∞∑

n=1

J2n(x) cos(2nθ).

A.1. PART I 649

Find a corresponding Fourier series expansion for sin(x sin θ).

I.7 (a) By considering a path parallel to the x-axis and then a path parallel to the
y-axis in the complex z-plane of the function f(z) = u + iv, show that if f(z) is
assumed to be differentiable at z = x + iy then f(z) satisfies the Cauchy-Riemann
equations:

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
.

Explain the meaning of the term ‘analytic function’ and determine whether or not
the functions z2 and exp(−z2) are analytic.

(b) Green’s theorem in the plane states that if S is a closed region in the xy plane
bounded by a simple closed curve C and if P and Q are continuous functions of x
and y having continuous derivatives in S, then∮

C

(Pdx+Qdy) =
∫
S

∫ (
∂Q

∂x
− ∂P

∂y

)
dxdy.

Use this theorem together with the Cauchy-Riemann equations defined above to show
that if f(z) is an analytic function, then∮

C

f(z)dz = 0 (Cauchy′s Theorem).

(c) By integrating exp(−z2) around a rectangle whose sides are x = R, x = −R, y = 0
and y = b/2

√
a and then letting R→∞ use Cauchy’s theorem to show that

∞∫
−∞

exp(−ax2) exp(−ibx)dx =
√
π

a
exp(−b2/4a),

noting that
∞∫

−∞
exp(−x2)dx =

√
π.

I.8 (a) Sketch the periodic function

f(x) =| x |, −π ≤ x ≤ π; f(x+ 2π) = f(x)

and derive its Fourier series representation. Use the result to show that

π2

8
= 1 +

1
32

+
1
52

+ ...

(b) State and prove the convolution theorem for Fourier transforms

650 APPENDIX A. SOLUTIONS TO PROBLEMS

Using this theorem or otherwise, obtain a formal solution of the Fredholm equation
of the second kind

g(x) = f(x) + λ

∞∫
−∞

h(x− y)g(y)dy

where g is the unknown function, specifying the condition on the function h for the
solution to be valid.

(c) Prove the result

L̂

[
d

dx
f(x)

]
= pF (p)− f(0)

where L̂ is the Laplace transform operator and F (p) is the Laplace transform of f(x).

Use this result to solve the equation

df

dx
+ f = exp(−ax); f(0) = 1.

I.9 (a) If f(z) is analytic in a simply connected region R and C is a contour that lies
within R and encloses a point z0, show that∮

C

f(z)
z − z0 dz = 2πif(z0).

(b) By expanding f(z) about a point z0 as

f(z) = a0 + a1(z − z0) + a2(z − z0)2 + ...+ an(z − z0)n

=
b1

z − z0 +
b2

(z − z0) + ...+
bn

(z − z0)n

using Cauchy’s theorem to show that∮
f(z)dz = 2πib1.

Also, prove by induction, that for an n-order pole, b1 is given by

b1 =
1

(n− 1)!
limz→z0

d(n−1)

dz(n−1)
[(z − z0)nf(z)].

(c) By integrating around a suitable semicircle, use Cauchy’s residue theorem to show
that

∞∫
0

cos(mx)
x2 + 1

dx =
π

2
e−m; m > 0.

A.1. PART I 651

I.10 (a) Sketch the periodic wave form described by the function

f(x) =

{
0, −1 < x < 0;
1, 0 < x < 1;

f(x+ 2) = f(x).

By computing the Fourier coefficients of this function, derive its Fourier series repre-
sentation

Prove Parseval’s identity for the Fourier series of a function f(x) over [−�, �] given by

1
�

�∫
−�

[f(x)]2dx =
a2
0

2
+

∞∑
n=1

(a2
n + b2n)

where the integral is taken to exist and a0, an and bn are the Fourier coefficients.

(c) The Gamma function is defined for all α > 0 by

Γ(α) =

∞∫
0

e−xxα−1dx.

(i) Prove that Γ(α+ 1) = αΓ(α) and that Γ(n+ 1) = n! for any positive integer n.

(ii) Show that

L̂[xα] =
Γ(α + 1)
pα+1

∀α > 0

and hence derive the value of Γ
(

1
2

)
, noting that

∞∫
0

e−y2
dy =

√
π

2
.

I.11 (a) Explain the meaning of the phrase ‘the function f(z) is analytic in the region
R of the complex plane’.

Show that, if z = x+ iy, then

Im
(

1
z

)
= − y

x2 + y2

and find Re[z−1]. Hence or otherwise, show that z−1 is analytic in every region R
which does not contain the origin in its interior or on its boundary.

(b) If C is a circle with centre z0 and radius r on the complex plane, then we can
define an integral In as

In =
∮
C

1
(z − z0)n

dz

652 APPENDIX A. SOLUTIONS TO PROBLEMS

where n is an integer.

(i) Prove that I1 = 2πi and state the value of In for n �= 1.

(ii) If g(z) has a singularity at z0 but at no other point on or inside C, deduce from
the above result that ∮

C

g(z)dz = 2πib1

where b1 is the residue of g(z) at the point z = z0.

(c) The function f(z) is defined as

f(z) =
exp(iπz/6)
z2 + 4z + 5

.

(i) Find the poles of f(z) and show their positions in the complex plane.

(ii) Use Cauchy’s residue theorem to integrate f(z) around a semi-circular contour of
radius R and use the result to evaluate the indefinite integrals

∞∫
−∞

cos(πx/6)
x2 + 4x+ 5

dx

and ∞∫
−∞

sin(πx/6)
x2 + 4x+ 5

dx.

I.12 Let the functions f1(t), f2(t), f3(t) be all periodic with period 2π which are de-
fined, for −π < t < π as follows:

f1(t) = t; f2(t) = t2; f3(t) =
1
3
(t3 − π2t).

(a) Sketch the graph of y = f1(t) and its periodic extension and show that f1(t) can
be represented by the Fourier series

f3(t) = 2
(

sin t− sin(2t)
2

+
sin(3t)

3
− sin(4t)

4
+ ...

)
(b) Sketch the graph of y = f2(t), showing its periodic extension, and use the series
for f1(t) (or otherwise) to show that the Fourier series for the function f2(t) is

f3(t) =
π2

3
− 4

(
cos t− cos(2t)

22
+

cos(3t)
32

− cos(4t)
42

+ ...

)
(c) For any function f(t), defined on the interval (−π, π), which can be expressed as
a Fourier series

f(t) =
a0

2
+

∞∑
n=1

an cos(nt) +
∞∑

n=1

bn sin(nt)

A.1. PART I 653

Parseval’s identity states that

a0

2
+

∞∑
n=1

(a2
n + b2n) =

1
π

π∫
−π

| f(t) |2 dt

Use Parseval’s identity on the Fourier series for f2(t) to show that

π4

90
= 1 +

1
24

+
1
34

+
1
44

+
1
54

+ ...

(d) (i) Use the series for f2(t) to obtain the Fourier series for f3(t). Why can we
expect the constant term in this series to be zero?

(ii) Choose an appropriate value for t at which to evaluate f3(t) and its Fourier series
in order to show that

π3

32
= 1− 1

33
+

1
53
− 1

73
+ ...

I.13 (a) The z-transform of the causal sequence {xn}, n = 0, 1, 2, 3, ... is defined as

Ẑ{xn} = X(z) =
∞∑

n=0

xn

zn

Use this definition to show that

Ẑ{an} =
z

z − a
where a is a constant and state the region of convergence for this transform. Hence
find Ẑ{2n exp(iπn/2)}, giving the region of convergence and deduce that, for real
values of z,

Ẑ
{

2n cos
(nπ

2

)}
=

z2

z2 + 4
, Ẑ

{
2n sin

(nπ
2

)}
=

2z
z2 + 4

(b) Using the definition given above for the z-transform of a causal sequence, show
that

Ẑ{xn−m} =
X(z)
zm

where m is a positive integer.

(c) The circuit diagram given below represents a system into which signal pulses {xn}
are fed at unit time intervals, so that t = n, and the resulting output is the sequence
{yn}. The processes denoted by D̂ each cause a delay of one time unit and the
‘feedback gain’ multiplies the pulse passing through it by 4. The process Ŝ represents
the summation of the signals meeting at this junction, being subtracted.

→ xn → Ŝ → rn → D̂ → un → D̂ → yn →
↑ ↓

← ×4 ← ←

654 APPENDIX A. SOLUTIONS TO PROBLEMS

(i) Show that yn satisfies the difference equation

yn+2 + 4yn = xn.

(ii) If the input xn consists of a single impulse of size 2 at time t = 0 so that the
sequence {xn} = {2, 0, 0, 0, 0, ...}, write down the value of Ẑ{xn}. If it is also known
that y0 = 1 and y1 = 4, use the z-transform to solve the difference equation.

(iii) Check that the solution to (ii) above gives correct values of y0 and y1 and use
your solution to find the value of y7.

I.14 (a) A bandlimited function f(t) has Fourier transform F (ω) given by

F (ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 + ω, −2 ≤ ω ≤ −1;
1, −1 ≤ ω ≤ 1;
2− ω, 1 ≤ ω ≤ 2;
0 otherwise.

Using Fourier inversion, show that f(t) can be expressed as

f(t) =
1
π

⎛⎝ 1∫
0

cos(ωt)dω +

2∫
1

(2− ω) cos(ωt)dω

⎞⎠
and hence show that

f(t) =
1
πt2

[cos t− cos(2t)].

(b) Using the definition of the Fourier transform, show that

F̂1[cos(ω0t)] = π[δ(ω − ω0) + δ(ω − ω0)].

(c) If f(t) is the function whose spectrum F (ω) is defined in part (a) above, fined
the effect on F (ω) of modulating f(t) with cos(8t) and sketch the resulting graph of
F̂1[f(t) cos(8t)]. Briefly outline the process of demodulation designed to recover the
original spectrum F (ω) and hence f(t).

I.15 (a) (i) By considering the effect of the delta function δ(−t) on a function f(t)
in the sampling integral, show that δ(t) behaves as an even function. State the
corresponding result for δ′(t).

(ii) Evaluate the integral

∞∫
−∞

et

t
[δ(3− t)− δ′(3 − t)]dt

(b)

A.1. PART I 655

(i) State the relationship between the unit step function U(t) and δ(t).

(ii) Sketch the graph of the function U(t− t2) and express the function as the sum or
difference of two unit step functions of the form U(at+ b). Hence show that

δ(t− t2) = δ(t) + δ(t− 1)

and use the result to evaluate the integral

∞∫
−∞

cos
(
πt

3

)
δ(t− t2)dt

(c) The comb function combT (t) consists of an infinite series of delta functions at
equally spaced intervals T of t and it can therefore be expressed as

combT (t) =
∞∑

n=−∞
δ(t− nT)

Its Fourier transform is given by

F̂1[combT (t)] =
2π
T

∞∑
n=−∞

δ

(
ω − 2nπ

T

)

(i) A comb function is used to sample the function g(t) = cos t at intervals of π/6,
the sampled function being denoted by gs(t). Explain how this is done and show the
sampled points on a sketched graph of cos t in the range 0 ≤ t ≤ 2π.

(ii) Use the product theorem to show that F̂1[gs(t)] is a periodic function in ω-space
consisting of pairs of delta functions and state the period of the transform. Illustrate
this transform by a sketched graph.

I.16 (a) Explain the meaning of the statement, ‘the function f(z) is analytic ate the
point z0 in the complex plane’.

Use the Cauchy-Riemann equations to show that the function f(z) = z2+iz is analytic
at all points in the complex plane.

(b) State Cauchy’s theorem and use it to prove that if C is a circle, with centre z0,
entirely contained within a simple closed contour Γ, and f(z) is a function which is
analytic in the region between C and Γ and on the boundaries, then∮

Γ

f(z)dz =
∮
C

f(z)dz.

In this case, state the value of the integrals if C is a circle, with centre 2, and

f(z) =
1

(z − 2)3
+

1
z − 2

656 APPENDIX A. SOLUTIONS TO PROBLEMS

(c) Write down the general form of the principal part of the Laurent expansion of a
function g(z) about the point z0 when z0 is: (i) a simple pole; (ii) a double pole.

The function
g(z) =

1
(z2 + 1)2(z2 + 4)

has a double pole and a simple pole in the upper half of the complex plane. Find each
of these poles, and show that the residue of g(z) at this double pole is −i/36. Find
the residue of g(z) at the simple pole.

By integrating the function g(z) around an appropriate large semi-circular contour,
show that ∞∫

−∞

dx

(x2 + 1)2(x2 + 4)
=
π

9

I.17 The periodic function f1(t) is defined on the interval −π < t < π as

f1(t) =

{
0, −π < t < 0;
t, 0 ≤ t < π

and
f1(t+ 2π) = f1(t)

(i) Sketch the graph of y = f1(t) over the interval −3π < t < 3π and show that the
Fourier series which represents f1(t) can be written as

f1(t) =
π

4
− 2
π

(
cos t+

cos(3t)
32

+
cos(5t)

52
+ ...

)

+
(

sin t− sin(2t)
2

+
sin(3t)

3
− sin(4t)

4
+ ...

)
(ii) By evaluating f1(t) and its Fourier series at a suitable value of t, show that

π

4
= 1− 1

3
+

1
5
− 1

7
+ ...

(iii) The function f2(t) is given by

f2(t) =

{
t, −π < t < 0
0 0 ≤ t < π

and
f1(t+ 2π) = f1(t)

Use the Fourier series for f1(t) to show that

f1(t) =
π

4
+

2
π

(
cos t+

cos(3t)
32

+
cos(5t)

52
+ ...

)

A.1. PART I 657

−
(

sin t+
sin(2t)

2
+

sin(3t)
3

+
sin(4t)

4
+ ...

)
(iv) A third period function f3(t) is defined as f3(t) = t for −π < t < π, the period
again being 2π. Using part of the calculation already carried out in part (i) above,
as appropriate, obtain the Fourier series for f3(t).

(v) For any function f(t), defined on the interval (−π, π), which can be expressed as
a Fourier series with the usual notation, Parseval’s identity states that

a2
0

2
+

∞∑
n=1

(a2
n + b2n) =

1
π

π∫
−π

| f(t) |2 dt

Use Parseval’s identity on each of the series representing f3(t) and f1(t) to show that

π4

96
= 1 +

1
34

+
1
54

+
1
74

+ ...

[N.B. cos[n(t− π)] = (−1)n cos(nt) and sin[n(t− π)] = (−1)n sin(nt)]

I.18 (a) The z-transform of the causal sequence {xn}, n = 0, 1, 2, 3, ... is defined as

Ẑ{xn} = X(z) =
∞∑

n=0

xn

zn

(i) Using this definition, show that the z-transform of the sequence {1,−1, 1,−1, 1, ...}
is z/(z + 1) and state the region of convergence.

(ii) Find the z-transform of the sequence {0,−1,−3, 4,−5, ...} and deduce that

Ẑ{1,−2, 3,−4, 5,−6, ...}=
z2

(z + 1)2

(b) The circuit diagram below represents a system into which signal pulses {xn} are fed
at unit time intervals, so that t = n, and the resulting output is the sequence {yn}.
The D̂ processes cause a delay of one time unit; the ‘feedback’ processes multiply
the pulse passing through it by 4 and 5 respectively. The process Ŝ represents the
summation of the signals meeting at this junction.

← ×4
↓ ↑

→ xn → Ŝ → rn → D̂ → un → D̂ → yn →
↑ ↓

← ×5 ← ←

(i) Show that yn satisfies the difference equation

yn+2 − 4yn+1 − 5yn = xn.

658 APPENDIX A. SOLUTIONS TO PROBLEMS

Use z-transforms to solve the equation for yn when {xn} = {6(−1)n}, given that
y0 = 0 and y1 = 2 and use your solution to check the given initial values y0 and y1.

(c) The output sequence {vn} of a linear system is given by the convolution of the
input sequence {un} and the impulse response sequence {hn}, so that

un ⊗ hn = vn

If the output {vn} is found to be {(−1)n} and {hn} is known to be {1, 1, 0, 0, 0, 0, ...},
use the convolution theorem for the z-transform to find U(z) where U(z) = Ẑ{un}
and hence find the input sequence {un}.
(d) For a time invariant linear filter to be stable, the poles of its transfer function
must lie in a unit circle. Use this result together with the z-transform to determine
for what values of a the filter, governed by the difference equation below, is stable.

gn = fn + 2fn−1 + agn−1 + 0.75gn−2

I.19 (a) (i) Assuming that the sampling property of the delta function δ(t − t0) is
known, use formal integration by parts on the integral

T∫
−T

f(t)δ′(t− t0)dt

where T and t0 are constant, T > 0 and −T < t0 < T , to obtain the sampling
property for the derived delta function δ′(t− t0), i.e.

∞∫
−∞

f(t)δ′(t− t0)dt = −f ′(t0)

If δ′(t0 − t) replaces δ′(t − t0) in this integral, what is the effect on the result and
why?

(ii) Evaluate the integral

∞∫
−∞

t2 sin
(
πt

2

)
[δ(t− 3) + δ′(4− t)]dt

(b) (i) State the relationship between δ(t− t0) and U(t− t0), where U(t) is the unit
step function.

(ii) Show that U(t3 − t) can be expressed as a linear combination of the three step
functions U(t+ 1), U(t), U(t− 1) and hence show that

δ(t3 − t) =
δ(t+ 1)

2
+ δ(t) +

δ(t− 1)
2

A.1. PART I 659

(iii) Use this result to show that F̂1[δ(t3 − t)] = 1 + cosω, where F̂1 is the Fourier
transform operator.

(iv) If H(ω) is the top-hat function

H(ω) =

{
1, −π < ω < π;
0, otherwise

sketch the graph of the product

P (ω) = (1 + cosω)H(ω)

and use the convolution theorem to show that

F̂−1
1 [P (ω)] = sin(πt)

(
2
t
− 1
t− 1

− 1
t+ 1

)
[N.B. F̂−1

1 [H(ω)] = 2 sin(πt)/t]

I.20 (a) The Fourier transform of Y (ω) of a function y(t) is known to be

Y (ω) = exp(−2 | ω |) =

{
exp(2ω), ω < 0;
exp(−2ω), ω > 0.

(i) Invert this transform to show that

y(t) =
2

π(t2 + 4)

(ii) By taking the Fourier transform of y(t), deduce that

∞∫
−∞

dt

t2 + 4
=
π

4

and evaluate the integral
∞∫

−∞

cos(3t)
t2 + 4

dt

(b) The comb function is defined as

combT (t) =
∞∑

n=−∞
δ(t− nT)

(i) Given an analogue signal f(t), explain how the comb function is used to obtain a
sampled version g(t) of the signal, sampling being taken at equally spaced intervals
T .

660 APPENDIX A. SOLUTIONS TO PROBLEMS

(ii) Given that the comb function can be expressed as a complex Fourier series as

1
T

∞∑
n=−∞

exp
(
i2πnt
T

)
,

show that the Fourier transform of combT can be expressed as

F̂1[combT] =
2π
T

∞∑
n=−∞

δ

(
ω − 2πn

T

)

(iii) If F (ω) and G(ω) are respectively the Fourier transforms of f(t) and g(t), use
the product theorem to show that

G(ω) =
1
T

∞∑
n=−∞

F

(
ω − 2πn

T

)

(iv) f(t) is a bandlimited function whose spectrum F (ω) is defined by

F (ω) =

{
1
|ω| , | ω |≤ Ω;

0, otherwise.

Sketch the graph of G(ω) to illustrate the case in which T has been chosen at the
ideal (Nyquist) frequency and use your graph to obtain the relationship between T
and Ω.

I.21 (a) Consider the z-transform

X(z) = 4z2 + 2 + 3−1, 0 <| z |<∞
Determine the inverse transform of X(z).

(b) Prove that

xn ⊗ un−m =
n−m∑

k=−∞
xk

where

un =

{
1, n ≥ 0;
0, n < 0

and that if
xn ↔ X(z)

then
nxn ↔ −z d

dz
X(z)

(c) Compute yn = xn ⊗ hn where

xn = anun and hn = bnun

A.2. PART II 661

noting that a and b could have the same value. Hint: use the relationship(
1

1− az−1

)2

=
z2

a

d

dz

(
1

1− az−1

)

I.22 Consider a linear time invariant system that is characterised by the difference
equation

yn − 3
4
yn−1 +

1
8
yn−2 = 2xn

(a) Using the DFT, determine the frequency response and impulse response of the
system.

(b) Determine:

(i) whether the system is causal;

(ii) whether the system is stable.

(c) Consider an input to the system given by

xn =
(

1
4

)n

un

where

un =

{
1, n ≥ 0;
0, n < 0.

Use the DFT to determine the output of the system.

A.2 Part II

A.2.1 Solutions to Problems Given in Chapter 6

6.1 (i) The solution is x = (adjAb)/detA and the equations are linearly dependent if
(adj)b = 0 and detA = 0. Using Cramers rule:

x =
1
| A |

∣∣∣∣∣∣
1 1 1
2 −2 1
−3 1 −2

∣∣∣∣∣∣ = 0, y =
1
| A |

∣∣∣∣∣∣
−2 1 1
1 2 1
1 −3 −2

∣∣∣∣∣∣ = 0,

z =
1
| A |

∣∣∣∣∣∣
1 1 1
2 −2 1
−3 1 −2

∣∣∣∣∣∣ = 0.

Also,

| A |=
∣∣∣∣∣∣
−2 1 1
1 −2 1
1 1 −2

∣∣∣∣∣∣ = 0

662 APPENDIX A. SOLUTIONS TO PROBLEMS

Therefore, the equations are linearly dependent. Note, that the sum of the first and
second equations are equal to the negation of the third equation so that in reality,
there are only two equations for three unknowns, namely

x− 2y + z = 2, x+ y − 2z = −3.

Subtracting the second from the first of these equations, we have−3y+3z = 5, .˙. y =
z − 5/3 and x = z − 4/3. Hence, if we let z = λ where λ is any constant, then the
infinity of solutions is given by

x = λ− 4
3
, y = λ− 5

3
, z = λ.

(ii) A non-trivial solution to a homogeneous system of linear equations exists when
detA = 0, i.e. when ∣∣∣∣∣∣

1 5 3
5 1 −k
1 2 k

∣∣∣∣∣∣ = 27(1− k) = 0, .˙. k = 1.

The equations are linearly dependent since

8
3
× Eq. (3)− 1

3
× Eq. (2) = Eq. (1).

Therefore there are only two equations for three unknowns. Taking the second and
third equations with k = 1, we get y = −2x, z = 3x. Let x = −λ where λ is any
constant parameter, then the infinity of solutions becomes x = −λ, y = 2λ, z =
−3λ.

6.2 (i) The equations given can be written in the form

(1− λ)x1 + 2x2 + x3 = 0,
2x1 + (1− λ)x2 + x3 = 0,
x1 + x2 + (2− λ)x3 = 0.

The set of homogeneous equations will have non-trivial solutions provided that,∣∣∣∣∣∣
1− λ 2 1

2 1− λ 1
1 1 2− λ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
4− λ 4− λ 4− λ

2 1− λ 1
1 1 2− λ

∣∣∣∣∣∣ = 0,

i.e.

(4− λ)

∣∣∣∣∣∣
1 1 1
2 1− λ 1
1 1 2− λ

∣∣∣∣∣∣ = (4− λ)(λ − 1)(λ+ 1) = 0.

Hence, the only possible values of λ are 4, 1 and -1. With λ = 1 the equations become

2x2 + x3 = 0,
2x1 + x3 = 0,

x1 + x2 + x3 = 0,

A.2. PART II 663

which has a general solution given by

x1 = x2 = −1
2
x3.

(ii) The set of equations can be written in the form

x1 − x2 + 2x3 − x4 = 1,
x2 − x3 − 2x4 = 0,

3x3 + 2x4 = 0.

Thus, if x4 = λ (an arbitrary constant) then x3 − 2λ/3, x2 = 4λ/3 and x1 =
1 + 11λ/3.

(iii) The system of equations given is equivalent to the system

x1 + 2x2 − 3x3 = 0,
−5x2 + 8x3 = 0,
5x2 − 8x3 = 0.

If x3 = λ then x2 = 8λ/5 and x1 = −λ/5. Hence, x2
1+x

2
2+x

2
3 = λ2(1/25+64/25+1) =

18λ2/5. A solution which also satisfies x2
1 + x2

2 + x2
3 = 1 will be obtained if we put

λ = ± 1
3

√
5/2.

6.3
δ = −0.02; x = −151, y = 100;
δ = −0.01; No solution;
δ = −0; x = 153, y = −100;
δ = −0.01; x = 77, y = −50;
δ = −0.02; x = 51 2

3 , y = −33 1
3 .

6.4 For over-determined systems Ax = b, the least squares method is based on com-
puting a solution vector x such that ‖Ax− b‖22 is a minimum. In this case,

e = ‖Ax− b‖22 =
3∑

i=1

(ai1x1 + ai2x2 − bi)2.

Here, e is a function of xi; i = 1, 2 and is therefore a minimum when

∂e

∂xi
= 0, i = 1, 2.

Thus,

∂

∂x1
e(x1, x2) = 2

3∑
i=1

ai1(ai1 + ai2 − bi) = 0,

∂

∂x2
e(x1, x2) = 2

3∑
i=1

ai2(ai1x1 + ai2x2 − bi) = 0.

664 APPENDIX A. SOLUTIONS TO PROBLEMS

From these equations, we get

a11(a11x1 + a12x2 − b1) + a21(a21x1a22x2 − b2) + a31(a31x1 + a32x2 − b3) = 0

and

a12(a11x1 + a12x2 − b1) + a22(a21x1a22x2 − b2) + a32(a31x1 + a32x2 − b3) = 0.

From the first set of equation given, we have

2(2x+ 3y − 8) + 3(3x− y − 1) + (x+ y − 4) = 0,
3(2x+ 3y − 8)− (3x− y − 1) + (x+ y − 4) = 0,

or, after collecting terms,
14x+ 4y = 23,
4x+ 11y = 27.

Using Cramers rule: ∣∣∣∣ 23 4
24 11

∣∣∣∣∣∣∣∣ 23 4
24 11

∣∣∣∣ =
145
138

;

∣∣∣∣ 14 23
4 27

∣∣∣∣∣∣∣∣ 14 4
4 11

∣∣∣∣ =
286
138

.

From the second set of equations, we get

(x − y − 2) + (x+ y − 4) + 2(2x+ y − 8) = 0,
−(x− y − 2) + (x+ y − 4)− (2x+ y − 8) = 0,

or
3x+ y = 11,
2x+ 3y = 10,

and using Cramers rule: ∣∣∣∣ 11 1
10 3

∣∣∣∣∣∣∣∣ 3 1
2 3

∣∣∣∣ =
23
7

;

∣∣∣∣ 3 11
2 10

∣∣∣∣∣∣∣∣ 3 1
2 3

∣∣∣∣ =
8
7
.

In the first set of equations, the ‘residuals’ are given by

r1 = 2× 145
138

+ 3× 286
138

− 8 =
44
138

; r2 = 3× 145
138

− 286
138

− 1 =
11
138

and
r3 =

145
138

+
286
138

− 4 = −121
138

.

Now,

RMS error =
(
r21 + r22 + r23

3

) 1
2

=
(

16698
57132

) 1
2

=
(

2783
9522

) 1
2

.

A.2. PART II 665

In the second system of equations, the residuals are:

r1 =
23
7
− 8

7
− 2 =

1
7
; r2 =

23
7

+
8
7
− 4 =

3
7

and
r3 = 2× 23

7
+

8
7
− 8 = −2

7
.

.˙. RMS error =
(

14
147

) 1
2

=

√
2
21
.

where RMS stands for Root Mean Square.

A.2.2 Solutions to Problems Given in Chapter 7

7.1 Using the appropriate augmented matrix, we have⎛⎜⎜⎝
1 −1 0 0 | 1
0 1 0 1 | −1
1 0 −1 0 | 2
1 1 1 1 | 1

⎞⎟⎟⎠ −→
R3 −R1

R4 −R1

⎛⎜⎜⎝
1 −1 0 0 | 1
0 1 0 1 | −1
0 1 −1 0 | 1
0 2 1 1 | 0

⎞⎟⎟⎠ −→

R3 −R2

R4 − 2R2

⎛⎜⎜⎝
1 −1 0 0 | 1
0 1 0 1 | −1
0 0 −1 −1 | 2
0 0 1 −1 | 2

⎞⎟⎟⎠ −→

R4 +R3

⎛⎜⎜⎝
1 −1 0 0 | 1
0 1 0 1 | −1
0 0 −1 −1 | 2
0 0 0 −2 | 4

⎞⎟⎟⎠
Back-substituting,

−2x4 = 4, =⇒ x4 = −2;
−x3 − x4 = 2, =⇒ x3 = 0;
x2 + x4 = −1, =⇒ x2 = 1;
x1 − x2 = 1, =⇒ x1 = 2.

7.2 (i) With natural pivoting:⎛⎝ 1 2 −1 | −3
3 7 2 | 1
4 −2 1 | −2

⎞⎠ −→ R2 − 3R1

R3 − 4R1

⎛⎝ 1 2 −1 | −3
0 1 5 | 10
0 −10 5 | 10

⎞⎠ −→

R3 + 10R2

⎛⎝ 1 2 −1 | −3
0 1 5 | 10
0 0 55 | 110

⎞⎠ .

666 APPENDIX A. SOLUTIONS TO PROBLEMS

Back-substituting:

55x3 = 110, =⇒ x3 = 2;
x2 − 10 = 10, =⇒ x2 = 0;
x1 − 2 = −3, =⇒ x1 = −1.

(ii) Partial pivoting:⎛⎝ 1 2 −1 | −3
3 7 2 | 1
4 −2 1 | −2

⎞⎠ −→ Interchange
R3&R1

⎛⎝ 4 −2 1 | −2
3 7 2 | 1
1 2 −1 | −3

⎞⎠ −→

R2 − 3
4R1,×4

R3 − 1
4R1,×4

⎛⎝ 4 −2 1 | −2
0 34 5 | 10
0 10 −5 | −10

⎞⎠ −→

R3 − 10
34R2,×7

⎛⎝ 4 −2 1 | −2
0 34 5 | 10
0 0 −110 | −220

⎞⎠ .

Back-substituting:

−110x3 = −220, =⇒ x3 = 2;
34x2 + 10 = 10, =⇒ x2 = 0;
4x1 + 2 = −2, =⇒ x1 = −1.

7.3 (i) With natural pivoting⎛⎜⎜⎝
1 3 2 −4 | 10
−2 1 4 1 | 11
1 −2 −3 2 | −9
3 −3 −5 −2 | −17

⎞⎟⎟⎠ −→ R2 + 2R1

R3 −R1

R3 − 3R1

⎛⎜⎜⎝
1 3 2 −4 | 10
0 7 8 −7 | 31
0 −5 −5 6 | −19
0 −12 −11 10 | −47

⎞⎟⎟⎠ −→

R3 + 5
7R1,×7

R4 + 12
7 R2,×7

⎛⎜⎜⎝
1 3 2 −4 | 10
0 7 8 −7 | 31
0 0 5 7 | 22
0 0 19 −14 | 43

⎞⎟⎟⎠ −→

R4 − 19
5 R3,×5

⎛⎜⎜⎝
1 3 2 −4 | 10
0 7 8 −7 | 31
0 0 5 7 | 22
) 0 0 −203 | −203

⎞⎟⎟⎠ .

Back-substitution gives the solution vector (2, 2, 3, 1)T .

(ii) Using partial pivoting (pivot given in bold face)⎛⎜⎜⎝
1 3 2 −4 | 10
−2 1 4 1 | 11
1 −2 −3 2 | −9
3 −3 −5 −2 | −17

⎞⎟⎟⎠ −→

A.2. PART II 667

R1

↑
↓
R4

⎛⎜⎜⎝
3 −3 −5 −2 | −17
−2 1 4 1 | 11
1 −2 −3 2 | −9
1 3 2 −4 | 10

⎞⎟⎟⎠ −→

R2 + 2
3R1,×3

R3 − 1
3R1,×3

R4 − 1
3R1,×3

⎛⎜⎜⎝
3 −3 −5 −2 | −17
0 −3 2 −1 | −1
0 −3 −4 8 | −10
0 12 11 −10 | 47

⎞⎟⎟⎠ −→

R2

!
R4

⎛⎜⎜⎝
3 −3 −5 −2 | −17
0 12 11 −10 | 47
0 −3 −4 8 | | − 10
0 −3 2 −1 | −1

⎞⎟⎟⎠ −→

R3 + 3
12R2,×12

R4 + 3
12R2,×12

⎛⎜⎜⎝
3 −3 −5 −2 | −17
0 12 11 −10 | 47
0 0 −15 66 | 21
0 0 57 −42 | 129

⎞⎟⎟⎠ −→

R3

!
R4

⎛⎜⎜⎝
3 −3 −5 −2 | −17
0 12 11 −10 | 47
0 0 57 −42 | 129
0 0 −15 66 | 21

⎞⎟⎟⎠ −→

R4 + 15
57R3,×57

⎛⎜⎜⎝
3 −3 −5 −2 | −17
0 12 11 −10 | 47
0 0 57 −42 | 129
0 0 0 3132 | 3132

⎞⎟⎟⎠ .

Back substitution gives the solution vector (2, 2, 3, 1)T .

(iii) With full pivoting (pivot given in bold face):⎛⎜⎜⎝
1 3 2 −4 | 10
−2 1 4 1 | 11
1 −2 −3 2 | −9
3 −3 −5 −2 | −17

⎞⎟⎟⎠ −→

R1

↑
↓
R4

⎛⎜⎜⎝
3 −3 −5 −2 | −17
−2 1 4 1 | 11
1 −2 −3 2 | −9
1 3 2 −4 | 10

⎞⎟⎟⎠ −→

R2 + 4
5R1,×5

R3 − 3
5r1,×5

R4 + 2
5R1,×5

⎛⎜⎜⎝
3 −3 −5 −2 | −17
2 −7 0 −3 | −13
−4 −1 0 16 | 6
11 9 0 −24 | 16

⎞⎟⎟⎠ −→

668 APPENDIX A. SOLUTIONS TO PROBLEMS

R2

!
R4

⎛⎜⎜⎝
3 −3 −5 −2 | −17
11 9 0 −24 | 16
−4 −1 0 16 | 6
2 −7 0 −3 | −13

⎞⎟⎟⎠ −→

R3 + 16
24R2,×24

R4 − 3
24R2,×24

⎛⎜⎜⎝
3 −3 −5 −2 | −17
11 9 0 −24 | 16
80 120 0 0 | 400
15 −195 0 0 | −360

⎞⎟⎟⎠ −→

R3

!
R4

⎛⎜⎜⎝
3 −3 −5 −2 | −17
11 9 0 −24 | 16
15 −195 0 0 | −360
80 120 0 0 | 400

⎞⎟⎟⎠ −→

R4 + 120
195R3

⎛⎜⎜⎝
3 −3 −5 −2 | −17
11 9 0 −24 | 16
15 −195 0 0 | −360

17400 0 0 0 | 34800

⎞⎟⎟⎠ .

Back-substituting yields the solution vector (2, 2, 1, 3)T .

7.4 (i) ⎛⎝ 3 2 −1 | 1 0 0
1 −1 2 | 0 1 0
2 1 1 | 0 0 1

⎞⎠ −→

R2 − 1
3R1,×3

R3 − 2
3R1,×3

⎛⎝ 3 2 −1 | 1 0 0
0 −5 7 | −1 3 0
0 −1 5 | −2 0 3

⎞⎠ −→

R3 − 1
5R2,×5

⎛⎝ 3 2 −1 | 1 0 0
0 −5 7 | −1 3 0
0 0 18 | −9 −3 15

⎞⎠ −→

R1 + 2
5R2,×5

⎛⎝ 15 0 9 | 3 6 0
0 −5 7 | −1 3 0
0 0 18 | −9 −3 15

⎞⎠ −→

R1 − 9
18R3,×2

R2 − 7
18R3,×6

⎛⎝ 30 0 0 | 15 15 −15
0 −30 0 | 15 25 −35
0 0 18 | −9 −3 15

⎞⎠ −→

1/30
−R2/30
R3/30

⎛⎝ 1 0 0 | 1/2 1/2 −1/2
0 1 0 | −1/2 −5/6 7/6
0 0 1 | −1/2 −1/6 5/6

⎞⎠ .

(ii) ⎛⎝ 1 1/2 1/3 | 1 0 0
1/2 1/3 1/4 | 0 1 0
1/3 1/4 1/5 | 0 0 1

⎞⎠ −→

A.2. PART II 669

R2 − 1
2R1,×12

R3 − 1
3R1,×12

⎛⎝ 1 1/2 1/3 | 1 0 0
0 1 1 | −6 12 0
0 1 48/45 | −4 0 12

⎞⎠ −→

R3 −R2,× 1
12

⎛⎝ 1 1/2 1/3 | 1 0 0
0 1 1 | −6 12 0
0 0 1/180 | 1/6 −1 1

⎞⎠ −→

R1 + 180
3 R3

R2 − 180R3

⎛⎝ 1 1/2 0 | −9 60 −60
0 1 0 | −36 192 −180
0 0 1/180 | 1/6 −1 1

⎞⎠ −→

R1 − 1
2R2

R3 × 100

⎛⎝ 1 0 0 | 9 −36 30
0 1 0 | −36 192 −180
0 0 18 | 30 −180 180

⎞⎠ .

.˙. A−1 =

⎛⎝ 9 −36 30
−36 192 −180
30 −180 180

⎞⎠ .

Observe that the inverse matrix is symmetric as is the original matrix. Also, observe
that relative small values in A start to produce relatively large numbers in A−1, a
characteristic of Hilbert matrices.

7.5 ⎛⎜⎜⎝
1 2 0 1 | 1 0 0 0
−1 −1 1 0 | 0 1 0 0
2 3 0 0 | 0 0 1 0
1 4 −1 5 | 0 0 0 1

⎞⎟⎟⎠ −→

R2 +R1

R3 − 2R1

R4 −R1

⎛⎜⎜⎝
1 2 0 1 | 1 0 0 0
0 1 1 1 | 1 1 0 0
0 −1 0 −2 | −2 0 1 0
0 2 −1 −4 | −1 0 0 1

⎞⎟⎟⎠ −→

R3 +R2

R4 − 2R2

⎛⎜⎜⎝
1 2 0 1 | 1 0 0 0
0 1 1 1 | 1 1 0 0
0 0 1 −1 | −1 1 1 0
0 0 −3 2 | −3 −2 0 1

⎞⎟⎟⎠ −→

R4 + 3R2,×(−1)

⎛⎜⎜⎝
1 2 0 1 | 1 0 0 0
0 1 1 1 | 1 1 0 0
0 0 1 −1 | −1 1 1 0
0 0 0 1 | 6 −1 −3 −1

⎞⎟⎟⎠ −→

R1 −R4

R2 −R4

R3 +R4

⎛⎜⎜⎝
1 2 0 1 | −5 1 3 1
0 1 1 0 | −5 2 3 1
0 0 1 1 | 5 0 −2 −1
0 0 0 1 | 6 −1 −3 −1

⎞⎟⎟⎠ −→

R2 −R3

⎛⎜⎜⎝
1 2 0 0 | −5 1 3 1
0 1 0 0 | −10 2 5 2
0 0 1 0 | 5 0 −2 −1
0 0 0 1 | 6 −1 −3 −1

⎞⎟⎟⎠ −→

670 APPENDIX A. SOLUTIONS TO PROBLEMS

R1 − 2R2

⎛⎜⎜⎝
1 0 0 0 | 15 −3 −7 −3
0 1 0 0 | −10 2 5 2
0 0 1 0 | 5 0 −2 −1
0 0 0 1 | 6 −1 −3 −1

⎞⎟⎟⎠ = [I|A−1].

Check that AA−1 = I, i.e.⎛⎜⎜⎝
1 2 0 1
−1 −1 1 0
2 3 0 0
1 4 −1 5

⎞⎟⎟⎠
⎛⎜⎜⎝

15 −3 −7 −3
−10 2 5 2
5 0 −2 −1
6 −1 −3 −1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .

The solution to the linear equations given is⎛⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
15 −3 −7 −3
−10 2 5 2
5 0 −2 −1
6 −1 −3 −1

⎞⎟⎟⎠
⎛⎜⎜⎝

2
1
5
0

⎞⎟⎟⎠ .

In cases when Axi = bi, i = 1, 2, ..., n it becomes convenient (i.e. computationally
efficient) to compute A−1 using Jordan’s method. A−1 can then be used repeatedly
to obtain the solutions x1,x2, ...,xn, i.e.

xi = A−1b, i = 1, 2, ..., n.

7.6

A = LU1 =

⎛⎝ 2 1 −3
1 −2 −1
1 1 1

⎞⎠ =

⎛⎝ �11 0 0
�21 �22 0
�[31 �32 �33

⎞⎠⎛⎝ 1 u12 u13

0 1 u23

0 0 1

⎞⎠

=

⎛⎝ 2 0 0
1 −5/2 0
1 1/2 13/5

⎞⎠⎛⎝ 1 1/2 −3/2
0 1 −1/5
0 0 1

⎞⎠ .

Solve Ly = b by forward substitution:⎛⎝ 2 0 0
1 −5/2 0
1 1/2 13/5

⎞⎠⎛⎝ y1
y2
y3

⎞⎠ =

⎛⎝ −5
−6
6

⎞⎠ =⇒ y =

⎛⎝ −5/2
7/2
3

⎞⎠ .

Solving U1x = y by back-substitution,⎛⎝ 1 1/2 −3/2
0 1 −1/5
0 0 1

⎞⎠⎛⎝ x1

x2

x3

⎞⎠ =

⎛⎝ −5/2
7/5
3

⎞⎠ =⇒ y =

⎛⎝ 1
2
3

⎞⎠ .

7.7

A = CCT =

⎛⎝ c11 0 0
c21 c22 0
c31 c32 c33

⎞⎠⎛⎝ c11 c21 c31
0 c22 c32
0 0 c33

⎞⎠

A.2. PART II 671

=

⎛⎜⎜⎝
√

2 0 0

− 1√
2

√
3
2 0

0 −
√

2
3

√
4
3

⎞⎟⎟⎠
⎛⎜⎜⎝
√

2 − 1√
2

0

0
√

3
2 −

√
2
3

0 0
√

4
3

⎞⎟⎟⎠
using exact arithmetic. Solving Cy = b by forward substitution,⎛⎜⎜⎝

√
2 0 0

− 1√
2

√
3
2 0

0 −
√

2
3

√
4
3

⎞⎟⎟⎠
⎛⎝ y1

y2
y3

⎞⎠ =

⎛⎝ 1
0
1

⎞⎠ =⇒ y =

⎛⎝ 1/
√

2
1
2

√
2/3

4
3

√
3/4

⎞⎠ .

Solving CT x = y by back-substitution,⎛⎜⎜⎝
√

2 − 1√
2

0

0
√

3
2 −

√
2
3

0 0
√

4
3

⎞⎟⎟⎠
⎛⎝ x1

x2

x3

⎞⎠ =

⎛⎝ 1/
√

2
1
2

√
2/3

4
3

√
3/4

⎞⎠ =⇒ x =

⎛⎝ 1
1
1

⎞⎠ .

7.8
A = L1U

where

L1 =

⎛⎜⎜⎝
1 0 0 0
− 1

2 1 0 0
0 − 2

3 1 0
0 0 − 3

4 1

⎞⎟⎟⎠ , and U =

⎛⎜⎜⎝
2 −1 0 0
0 3

2 −1 0
0 0 4

3 −1
0 0 0 5

4

⎞⎟⎟⎠ .

Solving L1y = b we have y = (1, 5/2, 14/3, 15/2)T and solving Ux = y we get
x = (4, 7, 8, 6)T .

7.9

A =

⎛⎜⎜⎝
√

2 0 0 0
−1/

√
2

√
3/2 0 0

0 −√2/3
√

4/3 0
0 0 −√3/4

√
5/4

⎞⎟⎟⎠
⎛⎜⎜⎝
√

2 −1/
√

2 0 0
0

√
3/2 −√2/3 0

0 0
√

4/3 −√3/4
0 0 0

√
5/4

⎞⎟⎟⎠ .

Solving Cy = b gives

y =

(
1√
2
,
5
2

√
2
3
,
14
3

√
3
4
,
30
4

√
4
3

)T

.

Solving for CT x = y for x gives x = (4, 7, 8, 6)T .

7.10 Either the Crout or Doolittle method may be used. Using the latter, we get

A = L1U =

⎛⎜⎜⎝
1 0 0 0
2 1 0 0
−1 3 1 0
2 −1 3

4 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 2 −3 1
0 1 2 4
0 0 4 20
0 0 0 2

⎞⎟⎟⎠ .

Solving L1y = (−4,−1, 53,−8)T gives y = (−4, 7, 28, 2)T and solving Ux = y gives
x = (3,−1, 2, 1)T .

672 APPENDIX A. SOLUTIONS TO PROBLEMS

A.2.3 Solutions to Problems Given in Chapter 8

8.1 Using Jordan’s method for matrix inversion,⎛⎝ 1 3 1 | 1 0 0
2 5 −3 | 0 1 0
−1 −1 8 | 0 0 1

⎞⎠ −→ R2 − 2R1

R3 + R1

⎛⎝ 1 3 1 | 1 0 0
0 −1 −5 | −2 1 0
0 2 9 | 1 0 1

⎞⎠ −→

R3 + 2R2

⎛⎝ 1 3 1 | 1 0 0
0 −1 −5 | −2 1 0
0 0 −1 | −3 2 1

⎞⎠ −→

R2 − 5R3

R1 +R3

⎛⎝ 1 3 0 | −2 2 1
0 −1 0 | 13 −9 −5
0 0 −1 | −3 2 1

⎞⎠ −→

R1 + 3R2

R2 × (−1)
R3 × (−1)

⎛⎝ 1 0 0 | 37 −25 −14
0 1 0 | −13 9 5
0 0 1 | 3 −2 −1

⎞⎠ .

Now
‖A‖1 =| 1 | + | −3 | + | 8 |= 12

and
‖A‖∞ =| −1 | + | −1 | +8(=| 2 | + | 5 | + | −3 |) = 10.

Similarly, ‖A−1‖1 = 53 and ‖A−1‖∞ = 76. Hence, for the �1 norm cond(A) =
12×53 = 636 and for the �∞ norm cond(A) = 10×76 = 760. Solving Ax = (1,−3, 8)T

by Gaussian elimination, we have⎛⎝ 1 3 1 | 1
2 5 −3 | −3
−1 −1 8 | 8

⎞⎠ −→ R2 − 2R1

R3 −R1

⎛⎝ 1 3 1 | 1
0 −1 −5 | −5
0 2 9 | 9

⎞⎠ −→

R3 + 2R2

⎛⎝ 1 3 1 | 1
0 −1 −5 | −5
0 0 −1 | −1

⎞⎠ .

Back-substitution gives x = (0, 0, 1)T . For b→ b + δb we have⎛⎝ 1 3 1 | 1.01
2 5 −3 | −3
−1 −1 8 | 8

⎞⎠ GE
→

⎛⎝ 1 3 1 | 1.01
0 1 5 | 5.02
0 0 1 | 1.03

⎞⎠
BS
→ x =

⎛⎝ 0.37
−0.13
1.03

⎞⎠ .

From the previous results: ‖δx‖ = 0.53, ‖δb‖ = 0.01, ‖x‖ = 1 and ‖b‖ = 12 for the
�1 norm. Hence,

‖δx‖
‖x‖ = 0.53,

‖δb‖
‖b‖ =

0.01
12

A.2. PART II 673

and

cond(A)
‖δb‖
‖b‖ = 636× 0.01

12
= 0.53.

.˙.
‖δx‖
‖x‖ = cond(A)

‖δb‖
‖b‖

for the �1 norm.

8.2 Working to 2 decimal places only, L1U factorisation gives⎛⎝ 3.1 1.3 2.4
2.0 4.1 1.2
1.1 −2.8 1.1

⎞⎠ =

⎛⎝ 1 0 0
0.65 1 0
0.35 −0.99 1

⎞⎠⎛⎝ 3.10 1.30 2.40
0 3.2 −0.36
0 0 −0.14

⎞⎠ .

Solving L1y = (4.4, 6.1,−1.7)T gives y = (4.40, 3.24,−0.03)T . Solving Ux0 = y gives
x0 = (0.84, 1.01, 0.21)T . N.B. Compared to the exact solution (1, 1, 0)T sizable errors
are present. The residuals are given by r0 = b−Ax0,

.˙. r0 =

⎛⎝ 4.4
6.1
−1.7

⎞⎠−
⎛⎝ 3.1 1.3 2.4

2.0 4.1 1.2
1.1 −2.8 1.1

⎞⎠⎛⎝ 0.84
1.01
0.21

⎞⎠ =

⎛⎝ −0.0210
0.0270
−0.0270

⎞⎠
working to 4 decimal places. We then solve L1Uz0 = r0. Solving L1y = r0 gives y =
(−0.0210, 0.0407, 0.0207)T. Solving Uz0 = y gives z0 = (0.1093,−0.0038,−0.1479)T.
The improved solution is then given by

x1 = x0 + z0 =

⎛⎝ 0.9493
1.0062
0.0621

⎞⎠ .

8.3 The residual vector r associated with the approximate solution x̂ to Ax = b is
given by r = b − Ax̂. Also 0 = b − Ax, hence r = A(x − x̂) or (x − x̂) = A−1r.
Taking norms,

‖x− x̂‖ = ‖A−1r‖ ≤ ‖A−1‖‖r‖.
Dividing through by ‖x‖ gives

‖x− x̂‖
‖x‖ ≤ ‖A−1‖

‖x‖ ‖r‖ ≤ ‖A−1‖‖A‖ ‖r‖‖b‖
since ‖x‖ ≥ ‖b‖/‖A‖. Hence,

‖x− x̂‖
‖x‖ ≤ cond(A)

‖r‖
‖b‖

where cond(A) = ‖A−1‖‖A‖.
8.4 Using the identity B−1 −A−1 = A−1(A−B)B−1 and taking norms, we have

‖B−1 −A−1‖ = ‖A−1(A−B)B−1‖ ≤ ‖A−1‖‖A−B‖‖B−1‖.

674 APPENDIX A. SOLUTIONS TO PROBLEMS

.˙. ‖A‖‖B−1 −A−1‖ ≤ ‖A‖‖A−1‖‖A−B‖‖B−1‖
or

cond(A) ≥ ‖B−1 −A−1‖‖A‖
‖A−B‖‖B−1‖ .

8.5 Using the identity (I +A)−1(I +A) = I, we have

(I +A)−1I + (I +A)−1A = I

or
(I +A)−1I = I − (I +A)−1A.

Taking norms,

‖(I +A)−1‖ = ‖I − (I +A)−1A‖ ≤ ‖I‖+ ‖(I +A)−1‖‖A‖.
Thus, provided ‖A‖ < 1,

‖(I +A)−1‖ ≤ 1
1− ‖A‖ .

8.6 Let

e(aj) = ‖x− x̂‖22 =
n∑

i=1

⎛⎝xi− n∑
j=1

yi−jaj

⎞⎠2

.

Now, e(aj) is a minimum when

∂e

∂ak
= 0 ∀ 1 ≤ k ≤ n.

Differentiating, we have

∂e

∂ak
=

∂

∂ak

n∑
i=1

⎛⎝xi −
n∑

j=1

yi−jaj

⎞⎠2

= 2
n∑

i=1

⎛⎝xi −
n∑

j=1

yi−jaj

⎞⎠ yi−k = 0.

Hence
n∑

i=1

(xi − x̂i) yi−k = 0.

8.7 Find an initial solution to L1Ux = b working to 6 digit accuracy:

Ly =

⎛⎜⎜⎝
1 0 0 0

0.25 1 7
0.50 0.46 1 0
−0.50 0.77 0.33 1

⎞⎟⎟⎠y =

⎛⎜⎜⎝
5
6
7
8

⎞⎟⎟⎠ −→ y =

⎛⎜⎜⎝
5.0
4.75
2.315

6.07855

⎞⎟⎟⎠ .

Ux0 =

⎛⎜⎜⎝
4 3 1 2
0 3.3 2.7 0.50
0 0 4.2 −0.25
0 0 0 8.7

⎞⎟⎟⎠x0 =

⎛⎜⎜⎝
5.0
4.75
2.315

6.07855

⎞⎟⎟⎠ −→ x0 =

⎛⎜⎜⎝
0.11607
0.84853
0.59278
0.69868

⎞⎟⎟⎠ .

A.2. PART II 675

Compute the residual vector r0:

r0 =

⎛⎜⎜⎝
5
6
7
8

⎞⎟⎟⎠−
⎛⎜⎜⎝

4 3 1 2
1 4 3 1
2 3 6 1
−2 1 3 8

⎞⎟⎟⎠
⎛⎜⎜⎝

0.11607
0.84853
0.59278
0.69868

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−0.00001
0.01279
−0.03309
0.01583

⎞⎟⎟⎠ .

Solving L1Uz0 = r0 gives

z0 =

⎛⎜⎜⎝
−0.00707
0.01103
−0.000915
0.00217

⎞⎟⎟⎠ .

.˙. x1 = z0 + x0 =

⎛⎜⎜⎝
0.10900
0.85956
0.58363
0.70085

⎞⎟⎟⎠ .

Compute the residual vector r1 = b−Ax1, which gives

r1 =

⎛⎜⎜⎝
−0.00001
0.00102
0.00069
0.00075

⎞⎟⎟⎠ .

Solving L1Uz1, we have

z1 =

⎛⎜⎜⎝
0.00026
0.00024
0.00006
0.00013

⎞⎟⎟⎠ .

.˙. x2 = z1 + x1 =

⎛⎜⎜⎝
0.10926
0.85980
0.58369
0.70098

⎞⎟⎟⎠ .

Comparing x2 with x1 we see that x1 has 4 digit accuracy (i.e. the first 4 digits of
x1 are the same as x2). Hence, x2 should have at least 5 digit ac Rounding off, we
obtain the solution

x =

⎛⎜⎜⎝
0.109
0.860
0.584
0.701

⎞⎟⎟⎠ .

8.8 For Cholesky factorization A = CCT ,

⎛⎜⎜⎝
4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
2 0 0 0
1
2

√
15
4 0 0

0
√

4
15

√
56
15 0

0 0
√

15
56

√
97
56

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
2 1

2 0 0

0
√

15
4

√
4
15 0

0 0
√

56
15

√
15
56

0 0 0
√

97
56

⎞⎟⎟⎟⎟⎟⎠

676 APPENDIX A. SOLUTIONS TO PROBLEMS

=

⎛⎜⎜⎝
2.00 0.00 0.00 0.00
0.50 1.94 0.00 0.00
0.00 0.52 1.93 0.00
0.00 0.00 0.52 1.32

⎞⎟⎟⎠
⎛⎜⎜⎝

2.00 0.50 0.00 0.00
0.00 1.94 0.52 0.00
0.00 0.00 1.93 0.52
0.00 0.00 0.00 1.32

⎞⎟⎟⎠
working to 2 decimal places only. Solving (working with six digits)

CCT x0 = (5, 6, 7, 8)T

gives
x0 = (0.97060, 1.11762, 0.53898, 3.70583)T.

The residual is

r0 = (5, 6, 7, 8)T −Ax0 = (−0.00002, 0.01994, 0.02063, 0.04936)T, ‖r0‖∞ = 0.04936.

Solving
CCT z0 = r0

gives
z0 = (−0.00152, 0.00607,−0.00289, 0.02596)T ,

x1 = (0.96908, 1.12369, 0.53609, 3.73179)T

and
r1 = (−0.00001, 0.00007, 0.00016, 0.00033)T, ‖r1‖∞ = 0.00033.

Solving
CCT z1 = r1

gives
z1 = (−8.0× 10−6, 0.00002,−7.0× 10−6, 0.00016)T ,

x2 = (0.96907, 1.12371, 0.53608, 3.73195)T.

Now
‖r2‖∞ < 10−4

and hence, the solution, correct to four decimal places is

x = (0.691, 1.1237, 0.5361, 3.7320)T .

8.9 Doolittle factorization gives

A =

⎛⎜⎜⎝
10 5 3.3 0
5 3.3 2.5 2

3.3 2.5 4 1.7
0 2 1.7 6.5

⎞⎟⎟⎠ � CCT

where

C =

⎛⎜⎜⎝
3.16 1.58 1.04 0
0 0.9 0.95 2.22
0 0 1.42 −0.29
0 0 0 1.22

⎞⎟⎟⎠ .

A.2. PART II 677

The initial solution to Ax = (10, 8, 6, 4)T is x0 = (−3.8910.24− 0.71 − 2.35)T with
r0 = (0.043, 0.122, 0.072, 0.002)T and ‖r0‖∞ = 0.133. Subsequent iterations give:

x1 = (−4.2050, 10.9230,−0.7788,−2.5410)T , ‖r1‖∞ = 0.0081;
x2 = (−4.2255, 10.9679,−0.7834,−2.5545)T , ‖r2‖∞ = 0.00083;
x3 = (−4.2268, 10.9709,−0.7837,−2.5553)T , ‖r3‖∞ = 0.00013;
x4 = (−4.2269, 10.9711,−0.7837,−2.5554)T , ‖r4‖∞ < 10−4.

A.2.4 Solutions to Problems Given in Chapter 9

9.1 (i) The iteration equations are:

x
(k+1)
1 = 1

2 (1 + x
(k)
2),

x
(k+1)
2 = 1

2 (x(k+1)
1 + x

(k)
3),

x
(k+1)
3 = 1

2 (x(k+1)
2 + x

(k)
4 ,

x
(k+1)
4 = 1

2x
(k)
3 .

With x
(0)
1 = x

(0)
2 = x

(0)
3 = x

(0)
4 = 0, after 11 iterations x(11)

1 = 0.79, x
(11)
2 =

0.59, x
(11)
3 = 0.39, x

(11)
4 = 0.20. The exact solution to this system is x = (0.8, 0.6, 0.4, 0.2)T .

(ii) x = (0.29, 0.85, 0.33, 3.84)T correct to two decimal places. Jacobi iteration takes
13 iterations and Gauss-Seidel iteration takes 8 iterations to produce this result.

9.2 The characteristic matrix

A =

⎛⎝ 5 2 −1
1 6 −3
2 1 4

⎞⎠
is diagonally dominant since

R1 : | 5 |>| 2 | + | −1 |,
R2 : | 6 |>| 1 | + | −3 |,
R3 : | 4 |>| 2 | + | 1 | .

The Jacobi iteration matrix is given by MJ = −D−1(L + U). Now,

A = L+D + U =

⎛⎝ 0 0 0
1 0 0
2 1 0

⎞⎠+

⎛⎝ 5 0 0
0 6 0
0 0 4

⎞⎠+

⎛⎝ 0 2 −1
0 0 −3
0 0 0

⎞⎠ .

.˙. MJ = −
⎛⎝ 1/5 0 0

0 1/6 0
0 0 1/4

⎞⎠⎛⎝ 0 2 −1
1 0 −3
2 1 0

⎞⎠ = −
⎛⎝ 0 2/5 −1/5

1/6 0 −1/2
1/2 1/4 0

⎞⎠ .

The Gauss-Seidel iteration matrix is given by GG = −(D + L)−1U . Now

(D + L) =

⎛⎝ 5 0 0
1 6 0
2 1 4

⎞⎠

678 APPENDIX A. SOLUTIONS TO PROBLEMS

and using Jordan’s method,⎛⎝ 5 0 0 | 1 0 0
1 6 0 | 0 1 0
2 1 4 | 0 0 1

⎞⎠ −→ R2 − 1
5R1

R3 − 2
5R1

⎛⎝ 5 0 0 | 1 0 0
1 6 0 | −1/5 1 0
0 1 4 | −2/5 0 1

⎞⎠ −→

R3 − 1
6R2

⎛⎝ 5 0 0 | 1 0 0
0 6 0 | −1/5 1 0
0 0 4 | −11/30 −1/6 1

⎞⎠ −→

R1/5
R2/6
R3/4

⎛⎝ 1 0 0 | 1/5 0 0
0 1 0 | −130 1/6 0
0 0 1 | −11/120 −1/24 1/4

⎞⎠ .

Checking the result to see if AA−1 = I,⎛⎝ 5 0 0
1 6 0
2 1 4

⎞⎠⎛⎝ 1/5 0 0
−130 1/6 0
−11/120 −1/24 1/4

⎞⎠ =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠
and

MG = −
⎛⎝ 1/5 0 0

−130 1/6 0
−11/120 −1/24 1/4

⎞⎠⎛⎝ 0 2 −1
0 0 −3
0 0 0

⎞⎠ = −
⎛⎝ 0 2/5 −/51

0 −1/15 −7/5
0 −11/60 13/60

⎞⎠ .

Using Jacobi iteration:

x
(k+1)
1 = 1

5 (6− 2x(k)
2 + x

(k)
3),

x
(k+1)
2 = 1

6 (4− x(k)
1 + 3x(k)

3),
x

(k+1)
3 = 1

4 (7− 2x(k)
1 + x

(k)
2).

For Gauss-Seidel iteration:

x
(k+1)
1 = 1

5 (6− 2x(k)
2 + x

(k)
3),

x
(k+1)
2 = 1

6 (4− x(k+1)
1 + 3x(k)

3),
x

(k+1)
3 = 1

4 (7− 2x(k+1)
1 + x

(k+1)
2).

Jacobi iteration converges after 10 iterations giving

x = (0.997626, 0.997577, 0.998863)T .

Gauss-Seidel iteration converges after 6 iterations giving

x = (1.003129, 1.001435, 0.998077)T .

Observation of the iterative behaviour of the solution using either Jacobi or Gauss-
Seidel shows that the solution oscillates and hence, under relaxation should be used.
The set of iterative equations becomes

x
(k+1)
1 = x

(k)
1 + ω

5 (6 − 2x(k)
2 + x

(k)
3 − 5x(k)

1),
x

(k+1)
2 = x

(k)
2 + ω

6 (4 − x(k+1)
1 + 3x(k)

3 − 6x(k)
2),

x
(k+1)
3 = x

(k)
3 + ω

4 (7 − 2x(k+1)
1 + x

(k+1)
2 − 4x(k)

3).

A.2. PART II 679

With a relaxation parameter set to 0.9, we obtain

x = (1.005832, 0.994650, 0.997903)T

after 5 iterations. The rate of convergence using SUR compared to the Gauss-Seidel
method is not significantly improved.

9.3 Gauss-Seidel iteration converges in 48 iterations and is monotonic. SOR converges
in 14 iterations. The characteristic matrix A of this system of equations is not diago-
nally dominant. Therefore, Gauss-Seidel iteration tends to converge slowly. In cases
of this type, considerable improvement in the rate of convergence can be achieved
using SOR. When A is highly diagonally dominant, the difference in the convergence
rates between Gauss-Seidel and SOR is not significant as demonstrated in question
9.2.

9.4

System Jacobi Gauss-Seidel
(a) Converges in Converges in

8 iterations 6 iterations

(b) Diverges Converges in
9 iterations

(c) Converges in Diverges
4 iterations

9.5 (a) For Jacobi iteration,

D =

⎛⎜⎜⎝
−4 0 0 0
0 −4 0 0
0 0 −4 0
0 0 0 −4

⎞⎟⎟⎠ , D−1 =

⎛⎜⎜⎝
1/4 0 0 0
0 1/4 0 0
0 0 1/4 0
0 0 0 1/4

⎞⎟⎟⎠ ,

L+U =

⎛⎜⎜⎝
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎞⎟⎟⎠ , .˙. MJ = −D−1(L+U) =

⎛⎜⎜⎝
0 1/4 0 0

1/4 0 1/4 0
0 1/4 0 1/4
0 0 1/4 0

⎞⎟⎟⎠ .

The characteristic equation |MJ − Iλ |= 0 is then∣∣∣∣∣∣∣∣
−λ 1/4 0 0
1/4 −λ 1/4 0
0 1/4 −λ 1/4
0 0 1/4 −λ

∣∣∣∣∣∣∣∣ = −λ
∣∣∣∣∣∣
−λ 1/4 0
1/4 −λ 1/4
0 1/4 −λ

∣∣∣∣∣∣− 1
4

∣∣∣∣∣∣
1/4 1/4 0
0 −λ 1/4
0 1/4 −λ

∣∣∣∣∣∣ = 0

or

−λ
[
−λ

(
λ2 − 1

16

)
+

λ

16

]
− 1

4

[
1
4

(
λ2 − 1

16

)]
= 256λ4 − 48λ2 + 1 = 0

680 APPENDIX A. SOLUTIONS TO PROBLEMS

or with x = λ2

256x2 − 48x+ 1 = 0

whose solution is

x =
48±√482 − 4× 256

2× 256
= 0.1636, 0.0239.

.˙. λ = ±0.4045,±0.1546

and
ρ(MJ) = max | λ |= 0.4045.

For Gauss-Seidel iteration

L+D =

⎛⎜⎜⎝
−4 0 0 0
1 −4 0 0
0 1 −4 0
0 0 1 −4

⎞⎟⎟⎠
and ⎛⎜⎜⎝

−4 0 0 0 |71 0 0 0
1 −4 0 0 | 0 1 0 0
0 1 −4 0 | 0 0 1 0
0 0 1 −4 | 0 0 0 1

⎞⎟⎟⎠ −→

R2 +R1/4
R3 +R2/4
R4 +R3/4

⎛⎜⎜⎝
−4 0 0 0 | 1 0 0 0
0 −4 0 0 | 1/4 1 0 0
0 0 −4 0 | 1/16 1/4 1 0
0 0 0 −4 | 1/64 1/16 1/4 1

⎞⎟⎟⎠ −→

Ri ×
(− 1

4

)
i = 1, 2, 3, 4

⎛⎜⎜⎝
1 0 0 0 | −1/4 0 0 0
0 1 0 0 | −1/16 −1/4 0 0
0 0 1 0 | −1/64 −1/16 −1/4 0
0 0 0 1 | −1/256 −1/64 −1/16 −1/4

⎞⎟⎟⎠
using Jordan’s method and

−(D + L)−1U =

⎛⎜⎜⎝
0 1/4 0 0
0 1/16 1/4 0
0 1/64 1/16 1/4
0 1/256 1/64 1/16

⎞⎟⎟⎠ .

The characteristic equation |MG − Iλ| = 0 is∣∣∣∣∣∣∣∣
−λ 1/4 0 0
0 1/16− λ 1/4 0
0 1/64 1/16− λ 1/4
0 1/256 1/64 1/16− λ

∣∣∣∣∣∣∣∣ = −λ
∣∣∣∣∣∣

1/16− λ 1/4 0
1/64 1/16− λ 1/4
1/256 1/64 1/16− λ

∣∣∣∣∣∣ = 0

or
256λ4 − 483 + λ2 = 0.

A.2. PART II 681

Now, two eigenvalues are 0 and the other two eigenvalues are obtained by solving

256λ2 − 48λ+ 1 = 0

giving λ = 0.1636, 0.0239.

.˙. ρ(MG) = max | λ |= 0.1636.

ρ(MJ) and ρ(MG) are both less than 1. Hence system (a) will converge for both Jacobi
and Gauss-Seidel iteration. Also, note that ρ(MG) = [ρ(MJ)]2 which implies that
Gauss-Seidel iteration will converge approximately twice as fast as Jacobi iteration.

(b) For the Jacobi method,

D =

⎛⎝ 2 0 0
0 2 0
0 0 2

⎞⎠ , .˙ . D−1 =

⎛⎝ 1/2 0 0
0 1/2 0
0 0 1/2

⎞⎠ .

L+ U =

⎛⎝ 0 1 1
1 0 1
1 1 0

⎞⎠ . .˙. MJ = −D−1(L + U) =

⎛⎝ 0 −1/2 −1/2
−1/2 0 −1/2
−1/2 −1/2 0

⎞⎠ .

Hence,

|MJ − Iλ| =
∣∣∣∣∣∣
−λ −1/2 −1/2
−1/2 −λ −1/2
−1/2 −1/2 −λ

∣∣∣∣∣∣ = 0

or

−λ
(
λ2 − 1

4

)
+

1
2

(
λ

2
− 1

4

)
− 1

2

(
1
4
− λ

2

)
= −λ

(
λ2 − 1

4

)
+
(
λ

2
− 1

4

)

= λ

[(
λ− 1

2

)(
λ+

1
2

)]
− 1

2

(
λ− 1

2

)
=
(
λ− 1

2

)[
λ

(
λ+

1
2

)
− 1

2

]
= 0.

.˙. λ =
1
2

or 2λ2 + λ− 1 = 0,

giving

λ =
−1±√1 + 8

4
=

1
2
, −1.

Hence,
ρ(MJ) = 1.

For Gauss-Seidel iteration,

D + L =

⎛⎝ 2 0 0
1 2 0
1 1 2

⎞⎠ , (D + L)−1 =

⎛⎝ 1/2 0 0
−1/4 1/2 0
−1/8 −1/4 1/2

⎞⎠ ,

U =

⎛⎝ 0 1 1
0 0 1
0 0 0

⎞⎠ , −(D + L)−1U =

⎛⎝ 0 −1/2 −1/2
0 1/4 −1/4
0 1/8 −1/8

⎞⎠ .

682 APPENDIX A. SOLUTIONS TO PROBLEMS

|MG − Iλ |= −λ
∣∣∣∣ 1/4− λ −1/4

1/8 −1/8− λ

∣∣∣∣ = −λ(λ2 − λ/8) = 0.

.˙. λ = 0 or
1
8
� 0.125.

Hence,
ρ(MG) = 0.125.

These results illustrate that the Jacobi method applied to system (b) will diverge but
that the Gauss-Seidel method will converge.

(c)

D−1 =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ , U + L =

⎛⎝ 0 2 −2
1 0 1
2 2 0

⎞⎠ .

.˙. −D−1(L+ U) = −
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠⎛⎝ 0 2 −2
1 0 1
2 2 0

⎞⎠ =

⎛⎝ 0 −2 2
−1 0 −1
−2 −2 0

⎞⎠ .

Now,

|MJ − Iλ |=
∣∣∣∣∣∣
−λ −2 2
−1 −λ −1
−2 −2 −λ

∣∣∣∣∣∣ = −λ3 + 4λ− 4λ = 0.

.˙ . ρ(MJ) = 0.

Further,

D + L =

⎛⎝ 1 0 0
1 1 0
2 2 1

⎞⎠ , (D + L)−1 =

⎛⎝ 1 0 0
−1 1 0
0 −2 1

⎞⎠ .

Hence,

MG = −(D + L)−1U =

⎛⎝ 0 −2 2
0 2 −3
0 0 2

⎞⎠ .

Now,

|MG − Iλ |=
∣∣∣∣∣∣
−λ −2 2
0 2− λ −3
0 0 2− λ

∣∣∣∣∣∣ = 0.

=⇒ λ(2− λ)2 = 0.

Thus, λ = 0, 2 and
ρ(MG) = 2.

System (c) will therefore converge using Jacobi’s method but diverges with Gauss-
Seidel iteration.

9.6 Only system (a) is diagonally dominant because

| aii |>
4∑

j=1
j 	=i

| aij | .

A.2. PART II 683

In system (b),

| aii |=
3∑

j=1
j 	=i

| aij |

and in system (c),

| aii |<
3∑

j=1
j 	=i

| aij | .

Diagonal dominance is not a necessary condition for convergence because from the
results of question 9.4, we observe that convergence occurs when Jacobi iteration
is applied to system (c) and when Gauss-Seidel iteration is applied to system (b).
Diagonal dominance is a sufficient not a necessary condition. The necessary condition
for convergence is that the spectral radius of the iteration matrix is less than 1.

9.7 Let λi be the eigenvalues obtained by solving | A − Iλi |= 0 and vi be the
associated eigenvectors obtained by solving (A− Iλi)vi = 0. Taking norms, we have

‖Avi‖ = ‖λivi‖ =| λi | ‖vi‖.

.˙. | λi |= ‖Avi‖
‖vi‖ ≤ ‖A‖ ∀i.

Now, the spectral radius is given by

ρ(A) = max
i
| λi |

and hence
ρ ≤ ‖A‖.

9.8 The conjugate directions are v1 = (1, 0, 0)T , v2 = (0, 1, 1)T , v3 = (7,−12, 9)T

obtained by taking an arbitrary form for v1 and then obtaining v2 and v3 from use
of the condition

vT
i Avj = 0, i �= j.

To solve Ax = b where b = (4, 6, 4)T , we use

x =
3∑

i=1

(
vT

i b
vT

i Avi

)
vi.

Now,
Av1 = (3, 1,−1)T , Av2 = (0, 3, 4)T , Av3 = (0,−8, 8)T .

.˙. x =
4
3

(
1
0

)
+

10
7

⎛⎝ 0
1
1

⎞⎠− 8
168

⎛⎝ 7
−12
9

⎞⎠ =

⎛⎝ 1
2
1

⎞⎠ .

684 APPENDIX A. SOLUTIONS TO PROBLEMS

9.9

A =

⎛⎝ 2 1 0
1 3 −1
0 −1 2

⎞⎠ , b =

⎛⎝ 4
4
4

⎞⎠ , x0 = 0.

r0 =

⎛⎝ 4
4
4

⎞⎠ = v0,

Av0 =

⎛⎝ 12
12
4

⎞⎠ ,

α0 = vT
0 r0

vT
0 Av0

= 48
112 = 3

7 ,

x1 = x0 + α0v0 = 1
7

⎛⎝ 12
12
12

⎞⎠ ,

r1 = r0 − α0Av0 =

⎛⎝ 4
4
4

⎞⎠− 1
7

⎛⎝ 36
36
12

⎞⎠ = 8
7

⎛⎝ −1
−1
2

⎞⎠ ,

β0 = rT
1 r1

rT
0 r0

= 8
72 ,

v1 = r1 + β0v0 = 8
7

⎛⎝ −1
−1
2

⎞⎠+ 8
72

⎛⎝ 4
4
4

⎞⎠ = 8
72

⎛⎝ −3
−3
18

⎞⎠ ,

Av1 = 8
72

⎛⎝ −9
−30
39

⎞⎠ ,

α1 = vT
1 r1

vT
1 v1

= 14
39 ,

x2 = x1 + α1v1 = 1
7

⎛⎝ 12
12
12

⎞⎠+ 14
39 × 8

72

⎛⎝ −3
−3
18

⎞⎠ = 1
13

⎛⎝ 20
20
36

⎞⎠ ,

r2 = r1 − α1Av1 = 8
7

⎛⎝ −1
−1
2

⎞⎠− 14
39 × 8

72

⎛⎝ −9
−30
39

⎞⎠ = 8
13

⎛⎝ −1
1
0

⎞⎠ ,

β1 = rT
2 r2

rT
1 r1

= 7
3×132 ,

v2 = r2 + β1v1 = 8
13

⎛⎝ −1
1
0

⎞⎠+ 72

3×132 × 8
72

⎛⎝ −3
−3
18

⎞⎠ = 8
132

⎛⎝ −14
12
6

⎞⎠ ,

Av2 = 8
132

⎛⎝ −16
16
0

⎞⎠ ,

α2 = vT
2 r2

vT
2 Av2

= 13
16 ,

x3 = x2 + α2v2 = 1
13

⎛⎝ 20
20
36

⎞⎠+ 8
132 × 13

16

⎛⎝ −14
12
6

⎞⎠ = 1
13

⎛⎝ 13
26
39

⎞⎠ ,

r3 = r2 − α2Av2 = 8
13

⎛⎝ −1
1
0

⎞⎠− 13
16 × 8

132

⎛⎝ −16
16
0

⎞⎠ =

⎛⎝ 0
0
0

⎞⎠ .

A.2. PART II 685

A.2.5 Solutions to Problems Given in Chapter 10

10.1 With x0 = (1, 1)T we have

Scaling
Ax0 = A(1, 1)T = (3, 6)T , (0.5, 1)T ;
A2x0 = A(0.5, 1)T = (0.5, 7)T , (0.0714, 1)T ;
A3x0 = A(0.0714, 1)T = (−1.6430, 7.8572)T , (−0.2091, 1)T ;
A4x0 = A(−0.2091, 1)T = (−3.0455, 8.4182)T , (−0.3618, 1)T ;
A5x0 = A(−0.3018, 1)T = (−3.8090, 8.7236)T , (−0.4366, 1)T ;
A6x0 = A(−0.4366, 1)T = (−4.1830, 8.8732)T , (−0.4714, 1)T ;
A7x0 = A(−0.4714, 1)T = (−4.3570, 8.9428)T , (−0.4872, 1)T .

Taking x1 � (−0.49, 1) we get

λ1 =
(Ax1)Tx1

xT
1 x1

=
11.1605
1.2401

= 8.99.

10.2

P =

⎛⎜⎜⎝
1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

⎞⎟⎟⎠ , P−1 =

⎛⎜⎜⎝
1 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

⎞⎟⎟⎠ .

.˙. B = P−1AP =

⎛⎜⎜⎝
4 −2 −3 1
0 1 0 0
0 0 2 0
0 0 0 3

⎞⎟⎟⎠ .

The deflated matrix is ⎛⎝ 1 0 0
0 2 0
0 0 3

⎞⎠
whose eigenvalues are trivial to find and given by 1, 2 and 3 with associated eigen-
vectors (1, 0, 0)T , (0, 1, 0)T and (0, 0, 1)T respectively. We now compute the first
element β1 of the eigenvectors of B using the formula

β1 =

4∑
j=2

bijβj

μ− 4
.

Thus,
μ = 1 : β1 = (−2)×1

1−4 = 2
3 ;

μ = 2 : β1 = (−3)×1
2−4 = 3

2 ;
μ = 3 : β1 = 1×1

3−4 = −1.

Hence, the eigenvectors of B are (2/3, 1, 0, 0)T , (3/2, 0, 1, 0)T , (−1, 0, 0, 1)T . Now,
βi = P−1xi where βi and xi are eigenvectors of B and A respectively. Hence, if

686 APPENDIX A. SOLUTIONS TO PROBLEMS

x1 = (1, 1, 1, 1)T , then

x2 = Pβ2 = (2/3, 5/3, 2/3, 2/3)T ;
x3 = Pβ3 = (3/2, 3/2, 5/2, 3/2)T ;
x4 = Pβ4 = (−1,−1,−1, 0)T .

Thus, the eigenvalues of A are 4, 1, 2 and 3 with associated eigenvectors (1, 1, 1, 1)T ,
(2, 5, 2, 2)T , (3, 3, 5, 2)T and (1, 1, 1, 0)T respectively.

10.3 With s ≡ sin θ and c ≡ cos θ,

P =

⎛⎝ c 0 s
0 1 0
−s 0 c

⎞⎠ , PT =

⎛⎝ c 0 −s
0 1 0
s 0 c

⎞⎠ ,

AP =

⎛⎝ 5 0 1
0 −3 0.1
1 0.1 2

⎞⎠⎛⎝ c 0 s
0 1 0
−s 0 c

⎞⎠ =

⎛⎝ 5c− s 0 5s+ c
−0.1s −3 0.1c
c− 2s 0.1 s+ 2c

⎞⎠ ,

PTAP =

⎛⎝ 5c2 + 2s2 − 2sc −0.1s c2 − s2 + 3sc
−0.1s −3 0.1c

c2 − s2 + 3sc 0.1c 5s2 + 2c2 + 2sc

⎞⎠ .

For (1, 3) and (3, 1) entries to be zero, we require that c2 − s2 = −3sc, i.e.

cos2 θ − sin2 θ = −3 sin θ cos θ

or
cos(2θ) = −3

2
sin(2θ)

giving

θ = −1
tan−1

(
2
3

)
.

The approximate eigenvalues are then 5.3028, 1.6972 and −3 with approximate
eigenvectors (0.9571, 0, 0.2898)T , (−0.2898, 0, 0.9571)T and (0, 1, 0)T .

10.4

PTAP =

⎛⎜⎜⎝
2c2 − 4sc+ 6s2 0.1(c− s) −4sc+ 2(c2 − s2) 0.1c− 0.05s

0.1(c− s) 3 0.1(c+ s) 0.2
−4sc+ 2(c2 − s2) 0.1(c+ s) 2s2 + 4sc+ 6c2 0.1s+ 0.05c

0.1c− 0.05s 0.2 0.1s+ 0.05c 1

⎞⎟⎟⎠ .

Using the formula

θ =
1
2

tan−1

(
2apq

aqq − app

)
,

which creates zeros in the pq and qp positions, we have

θ =
1
2

tan−1

(
2× 2
6− 2

)
=

1
2

tan−1 1 =
π

8

A.2. PART II 687

and
−4 sin θ cos θ + 2(cos2 θ − sin2 θ) = 0.

Working to two decimal places, this value of θ gives

PTAP =

⎛⎜⎜⎝
1.17 0.05 0 0.07
0.05 3 0.13 0.20
0 0.13 6.83 0.08

0.07 0.20 0.08 1.00

⎞⎟⎟⎠ .

Now, using Gerschgorin’s first theorem, the intervals in which the four eigenvalues of
PTAP lie are [1.05, 1.29], [2.62, 3.38], [6.62, 7.04] and [0.65, 1.35]. All eigenvalues
are therefore positive. The determinant of a matrix is equal to the product of its
eigenvalues. Thus, if the eigenvalues are all positive, then | A |�= 0 and A is therefore
nonsingular.

10.5 The eigenvalue equation is
Ax = λx

where
x = (x1, x2, ..., xi−1, xi, xi+1, ..., xn)T .

Suppose that xi is the largest element (in magnitude) of the eigenvector x. We can
the re-scale this eigenvector and write it as

x = (x1, x2, ..., xi−1, 1, xi+1, ..., xn)T .

Equating the ith component of Ax and λx, we have
n∑

j=1

aijxj = λxi = λ

since xi = 1. Hence,

| λ− aii |=
∣∣∣∣∣∣

n∑
j=1

aijxj − aii

∣∣∣∣∣∣ =
n∑

j=1
j 	=i

| aij |≤
n∑

j=1
j 	=i

| aij || xj |≤
n∑

j=1
j 	=i

| aij |

using the triangle inequality and the fact that | xj |≤ 1. The graphic interpretation
of this result is based on considering aii to be a value on the real axis of the complex
plane which is the origin of a circle with radius

n∑
j=1
j 	=i

| aii | .

The eigenvalue then lies somewhere in the complex plane that lies inside or on the
boundary of this circle.

10.6 From Gerschgorin’s (first) theorem, the intervals in which the eigenvalues lie are
[−1, 3], [−6, 4], [−1, 13] and [−7, 1]. The Sturm sequence is

fn+1(λ = (dn+1 − λ)fn(λ− c2nfn−1(λ), f0(λ) = 1∀λ

688 APPENDIX A. SOLUTIONS TO PROBLEMS

where dn are the diagonal elements and cn are the of-diagonal elements. To find the
number of eigenvalues which lie in the interval [1, 2], we compute the Sturm sequence
and find the number of agreements in sign for the case when λ = 1 and when λ = 2.
Thus,

for λ = 1:
f0(1) = 1,
f1(1) = d1 − 1 = 1− 1 = 0,
f2(1) = (d2 − 1)f1(1)− c21f0(1),

= (−1− 1)× 0− 22 × 1 = −4,
f3(1) = (d3 − 1)f2(1)− c22f1(1)

= (6− 1)× (−4)− 32 × 0 = −20,
f4(1) = (d4 − 1)f3(1)− c23f2(1)

= (−3− 1)× (−20)− 42 × (−4)
= 80 + 64 = 144.

The signs of the terms are + − − − +. There are two agreements in sign and
therefore two eigenvalues > 1.

For λ = 2:
f0(2) = 1,
f1(2) = d1 − 2 = −1,
f2(2) = (d2 − 1)f1(2)− c21f0(2)

= (−1− 2)× (−1)− 22 × 1 = −1,
f3(2) = (d3 − 2)f2(2)− c22f1(2)

= (6− 2)× (−1)− 32 × (−1) = 5,
f4(2) = (d4 − 2)f3(2)− c23f2(2)

= (−3− 2)× 5− 42 × (−1)
= −25 + 16 = −9.

The signs of the terms are + − − + −. There is 1 agreement in sign and therefore
one eigenvalue > 1. Now, since there are four eigenvalues all together, 2 eigenvalues
> 1 and 1 eigenvalue > 2, then only 1 eigenvalue lies in the interval [1, 2].

10.7 From Gerschgorin’s theorem, the eigenvalues of

A =

⎛⎝ 2 1 0
1 −1 −1
0 −1 2

⎞⎠
lie in the intervals [1, 3], [−3, 1] and [1, 3]. Hence, the range in which all the eigen-
values lie is [−3, 3], i.e. [-‖A‖∞, ‖A‖∞]. The Sturm sequence for A is

f0(λ) = 1, f1(λ) = 2−λ, f2(λ) = (−1−λ)f1(λ)−f0(λ), f3(λ) = (2−λ)f2(λ)−f1(λ).

We now find the eigenvalues in the interval [1, 3].

Bisecting, λ = 2 and

f0(2) = 1, f1(2) = 0, f2(2) = −1, f3(2) = 0; s(2) = 1 =⇒ λ3 ∈ [2, 3].

Now, f3(2) = 0; hence λ2 = 2(exactly) where s(λ) denotes the number of agreements
in sign.

A.2. PART II 689

Bisecting, λ = 2.5 and

f0(2.5) = 1, f1(2.5) = −0.5, f2(2.5) = 0.75, f3(2.5) = 0.125,

s(2.5) = 1,=⇒ λ3 ∈ [2.5, 3] =⇒ λ3 = 2.75± 0.25.

Bisecting, λ = 2.75 and

f0(2.75) = 1, f1(2.75) = −0.75, f2(2.75) = 1.81, f3(2.75) = −0.61,

s(2.75) = 0 =⇒ λ3 /∈ [2.75, 3] =⇒ λ3 ∈ [2.5, 2.75] or λ3 = 2.625± 0.125.

We now find the remaining eigenvalue in the interval [−3, 1]

Bisecting, λ = −1 and

f0(−1) = 1, f1(−1) = 3, f2(−1) = −1, f3(−1) = −6,

s(−1) = 2 =⇒ λ1 ∈ [−3,−1].

Bisecting, λ = −2 and

f0(−2) = 1, f1(−2) = 4, f2(−2) = 3, f3(−2) = 8,

s(−2) = 3 =⇒ λ1 ∈ [−2,−1].

Bisecting, λ = −1.5 and

f0(−1.5) = 1, f1(−1.5) = 3.5, f2(−1.5) = 0.75, f3(−1.5) = −0.88,

s(−1.5) = 2 =⇒ λ1 ∈ [−2,−1.5].

Bisecting, λ = −1.75 and

f0(−1.75) = 1, f1(−1.75) = 3.75, f2(−1.75) = 1.81, f3(−1.75) = 3.04,

s(λ) = 3 =⇒ λ1 ∈ [−2,−1.75].

Hence,
λ1 = −1.875± 0.125.

10.8 Q = I − 2wwT . Taking the transpose of this equation, we have

QT = [I − 2(wwT)]T

= IT − 2(wwT)T

= I − 2(wT)TwT

= I − 2wwT = Q

where we have used the matrix properties,

(A+B)T = AT +BT ,

(AB)T

and
(AT)T = A.

690 APPENDIX A. SOLUTIONS TO PROBLEMS

Hence, Q is symmetric. Also

QTQ = Q2 = (I − 2wwT)(I − 2wwT)
= I − 4wwT + 4w(wT w)wT

= I − 4wwT + 4wwT (since wT w = 1
= I.

Thus, Q is orthogonal. Since Householder’s matrix is given by Q = I − 2wwT we
can write Qx = ke as

(I − 2wwT)x = ke

or
x− 2(wwT)x = ke.

Rearranging,
2w(wT x) = x− ke.

Let u = x− ke, then
2e(wT x) = u

or w = αu where
α =

1
2(wTx)

.

Now,
wTw = α2uTu = 1.

. ˙. α2 =
1

uTu
.

Hence,

w =
1

uTu
u

and

Q = I − 2wwT = I − 2uuT

uTu
where

u = x− ke.
Note, to find k, we first take the transpose of Qx = ke giving

xTQT = keT .

Then
xTQTQx = k2eTe

but since QTQ = I and eTe = 1,

xTx = k2.

. ˙. k = ±(xTx)
1
2

A.2. PART II 691

10.9 Householder’s matrix is given by

Q = I − 2uuT

uTu

where u = x− ke, k = ±(xT x)
1
2 and e is given by the first column of I. This matrix

satisfies the equation (see Question 10.8)

Qx = ke.

The Householder matrix Q1 which satisfies

Q1x1 = k1e1

where x1 = (2, 1, 2)T and e1 = (1, 0, 0)T can be computed thus:

(i) Compute k1;
k1 = ±(22 + 12 + 22)

1
2 = ±3 = −3,

since the first term of x1 is positive. (Note, the sign of k is chosen to be opposite to
the sign of the first element of x).

(ii) Compute u1;

u1 =

⎛⎝ 2
1
2

⎞⎠− (−3)

⎛⎝ 1
0
0

⎞⎠ =

⎛⎝ 2
1
2

⎞⎠+

⎛⎝ 3
0
0

⎞⎠ =

⎛⎝ 5
1
2

⎞⎠ .

(iii) Compute uT
1 u;

uT
1 u = (5, 1, 2)

⎛⎝ 5
1
2

⎞⎠ = 30

Hence,

Q1 =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠− 2
30

⎛⎝ 5
1
2

⎞⎠ (5, 1, 2) =
1
15

⎛⎝ −10 −5 −10
−5 14 −2
−10 −2 11

⎞⎠ .

Similarly, the Householder matrix Q2 which satisfies

Q2x2 = k2e2

where x2 = (−3,−1)T and k2 = (1, 0)T is computed thus:

(i)
k2 = [(−3)2 + (−1)2]

1
2 = ±

√
10 =

√
10

since the first element of x2 is negative.

(ii)

u2 =
(−3
−1

)
−
√

10
(

1
0

)
=
(−3−√10

−1

)
.

692 APPENDIX A. SOLUTIONS TO PROBLEMS

(iii)

uT
2 u2 = (−3−√10,−1)

(−3−√10
−1

)
= 20 + 6

√
10.

Hence,

Q2 =
(

1 0
0 1

)
− 1

10 + 3
√

10

(−3−√10
−1

)
(−3−

√
10,−1)

=
1

10 + 2
√

10

(−(9 + 3
√

10) −(3 +
√

10)
−(3 +

√
10) (9 + 3

√
10)

)
.

Working to 4 decimal places, reduction to tridiagonal form gives⎛⎜⎜⎝
3.0000 −3.0000 0.0000 0.0000
−3.0000 4.0000 3.1623 0.0000
0.0000 3.1623 2.0000 1.0000
0.0000 0.0000 1.0000 −2.0000

⎞⎟⎟⎠ .

10.10

A =

⎛⎝ 1 4 2
−1 2 0
1 3 −1

⎞⎠
Step 1: Create a zero in the (2, 1) entry using

P1 =

⎛⎝ c s 0
−s c 0
0 0 1

⎞⎠
with

θ = − tan−1

(
a
(1)
21

a
(1)
11

)
= − tan−1

(
−1

1

)
where c ≡ cos θ and s ≡ sin θ giving

PT
1 A =

⎛⎝ 1.4142 1.4142 1.4142
0 4.2436 1.4142

1.0000 3.0000 −1.0000

⎞⎠
working to four decimal place accuracy.

Step 2: Create a zero in the (3, 1) position using

P2 =

⎛⎝ c 0 s
0 1 0
−s 0 c

⎞⎠
with

θ = − tan−1

(
1.0000
1.4142

)

A.2. PART II 693

giving

PT
2 (PT

1 A) =

⎛⎝ 1.7321 2.8868 0.5774
0 4.2426 1.4142
0 1.6330 −1.6330

⎞⎠ .

Step 3: Create a zero in the (3, 2) position using

P3 =

⎛⎝ 1 0 0
0 c s
0 −s c

⎞⎠
with

θ = − tan−1

(
1.6330
4.2426

)
giving

R = PT
3 (PT

2 P
T
1 A) =

⎛⎝ 1.7321 2.8868 0.5774
0 4.5461 0.7332
0 0 −2.0320

⎞⎠ .

Then,
Q = P1P2P3

=

⎛⎝ 0.7071 0.7071 0
−0.7071 0.7071 0

0 0 1

⎞⎠⎛⎝ 0.8165 0 −0.5774
0 1 0

0.5774 0 0.8165

⎞⎠⎛⎝ 1 0 0
0 0.9332 −0.3592
0 0.3592 0.9332

⎞⎠
=

⎛⎝ 0.5774 0.5133 −0.6350
−0.5774 0.8066 0.1270
0.5774 0.2933 0.7620

⎞⎠
The orthogonal (QR) decomposition of the matrix is therefore given by⎛⎝ 0.5774 0.5133 −0.6350

−0.5774 0.8066 0.1270
0.5774 0.2933 0.7620

⎞⎠⎛⎝ 1.7321 2.8868 0.5774
0 4.5461 0.7332
0 0 −2.0320

⎞⎠ .

A.2.6 Supplementary Problems to Part II

II.1 (i) Consider the following over-determined system⎛⎜⎜⎜⎝
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x1

x2

...
xn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
b1
b2
...
bm

⎞⎟⎟⎟⎠ , m > n.

Show that the solution to this system which minimizes ‖Ax − b‖22 is obtained by
solving the equations

m∑
i=1

aik

⎛⎝ n∑
j=1

aijxj − bi
⎞⎠ = 0, k = 1, 2, ..., n

694 APPENDIX A. SOLUTIONS TO PROBLEMS

for xj . Using this result, show that the optimum solution to the equations

x1 + x2 + x3 = 1

x1 + 2x2 + 3x3 = 2

3x1 + 2x2 − 2x3 = 3

x1 + x2 + 2x3 = 4

is obtained by solving the system⎛⎝ 6 5 0
2 2 1
0 5 18

⎞⎠⎛⎝ x1

x2

x3

⎞⎠ =

⎛⎝ 8
3
9

⎞⎠ .

(ii) Use Jordan’s method with natural pivoting and exact arithmetic to obtain the
inverse of the characteristic matrix of the system above. Hence, compute the condition
numbers of this system for the �1 norm and the �∞ norm and find exact solutions for
x1, x2 and x3.

II.2 (i) Prove that:

(a) The eigenvalues of a matrix are preserved under a similarity transform A →
P−1AP .

(b) If an n×n matrix A has n linearly independent eigenvectors xi; i = 1, 2, ..., n and
n distinct eigenvalues λi; i = 1, 2, ..., n, then

diag(λ1λ2...λn) = X−1AX

where
X = (x1x2...xn).

(ii) (a) Derive the Sturm sequence for the matrix⎛⎜⎜⎝
1 1 0 0
1 4 1 0
0 1 8 1
0 0 1 12

⎞⎟⎟⎠ .

(b) Use Gerschgorin’s theorem to find the intervals in which the eigenvalues lie and
hence compute the largest eigenvalue of this matrix with an error less than 0.25.

II.3. (a) Show that, for non-singular A and any vector/matrix norm (denoted by
‖ ‖):
(i) if Q = A−1PA, then

1
k(A)

‖Qi‖ ≤ ‖P i‖ ≤ k(A)‖Qi‖

A.2. PART II 695

for any positive integer i;

(ii) if Ax = b and A(x + e) = b + r, then

1
k(A)

‖r‖
‖b‖ ≤

‖e‖
‖x‖ ≤ k(A)

‖r‖
‖b‖

where k(A) is the condition number.

(b) Explain Crout’s method for solving a linear system of equations. Given that

A =

⎛⎝ 6 2 0
2 5 1
0 5 18

⎞⎠ �
⎛⎝ 6.0 0.0 0.0

2.0 4.4 0.0
0.0 5.0 17.0

⎞⎠⎛⎝ 1.0 0.3 0.0
0.0 1.0 0.2
0.0 0.0 1.0

⎞⎠
use Crout’s method together with iterative improvement to find a solution to

Ax = b

when b = (8.0, 9.0, 10.0)T correct to three decimal places.

II.4 (a) If Ax = λx where ‖x‖∞=1, show that

| λ− aii |≤
n∑

j=1
j 	=i

| aij | (Gerschgorin′s Theorem)

Use this result to find the intervals containing the eigenvalues of the matrix⎛⎜⎜⎝
1 1 0 0
1 5 1 0
0 1 10 1
0 0 1 15

⎞⎟⎟⎠
(b) Explain Jacobi’s method for computing the eigenvalues and eigenvectors of a
symmetric matrix. Working to four decimal places only, use Jacobi’s method to
compute the eigenpairs of the matrix(

1 2
2 4

)

II.5 (a) Suggest appropriate methods for solving the system of linear equationsAx = b
in each of the following cases:

(i) A is a dense symmetric positive definite n× n real matrix.

(ii) A is a real n× n symmetric matrix which is known to be indefinite.

696 APPENDIX A. SOLUTIONS TO PROBLEMS

(iii) A is a dense real n× n matrix and the equations are possibly ill-conditioned.

(iv) A is a large sparse symmetric positive definite matrix.

Give reasons for your choice and explain any one method in detail.

(b) If ‖x‖ is a norm on Rn, define the induced norm ‖A‖ and condition number k(A)
of a non-singular n× n matrix A.

Prove that

‖A‖∞ = max
i

n∑
j=1

| aij | .

If Ax = b and A(x + δx) = b + δb prove that

‖δx‖
‖x‖ ≤ k(A)

‖δb‖
‖b‖

where k(A) is the condition number. If

A =

⎛⎝ 1 3 1
2 7 1
−1 −2 −1

⎞⎠
find values of b and δb such that the above inequality attains its upper bound using
‖x‖∞.

II.6 (a) A is an n× n matrix and ‖A‖ is any matrix norm. If A has real eigenvalues
λ1, λ2, ..., λn, prove that

1
‖A−1‖ ≤| λi |≤ ‖A‖ for 1 ≤ i ≤ n.

(b) The equations ⎛⎜⎜⎝
4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2

⎞⎟⎟⎠
⎛⎜⎜⎝

x1

x2

x3

x4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2
4
6
8

⎞⎟⎟⎠
are to be solved by the Gauss-Seidel iteration method. Find the iteration matrix M
which occurs in this process and show that M has a spectral radius of less than 0.33.
Use this result to estimate the number of iterations required to find a solution to
the set of equations above to an accuracy of 3 decimal places. Use the Gauss-Seidel
method to solve these equations to 3 decimal place accuracy.

II.7 (a) Define the condition number of a (square) matrix A and explain how it can
be used to assess the stability of the solution to a system of the type Ax = b.

(b)

A.2. PART II 697

(i) Using the result
B−1 −A−1 = A−1(A−B)B−1

prove that

χ(A) ≥ ‖B−1 −A−1‖ ‖A‖
‖A−B‖ ‖B−1‖

where A and B are matrices of the same order and χ(A) is the condition number of
the matrix A.

(ii) Using the result
(I +A)−1(I +A) = I

prove that

‖(I +A)−1‖ ≤ 1
1− ‖A‖ , ‖A‖ < 1.

(c) State and prove the Cayley-Hamilton theorem and then use it to compute the
inverse of the matrix ⎛⎝ 1 2 −1

1 0 1
1 2 2

⎞⎠
What are the computational problems associated with the applications of this method
for computing the inverses of large matrices.

II.8 An iteration formula for solving the linear system

Ax = b

has the form
x(k+1) = Mx(k) + c

where A is a real square matrix, M is the associated iteration matrix and k it the
iteration number.

(a) If e(k) is the error vector associated with the kth iteration, show that for global
convergence, i.e.

lim
k→∞

e(k) = 0

then
‖M‖ < 1.

(b) Consider the following linear system⎛⎝ 10 1 0
1 10 1
0 1 10

⎞⎠⎛⎝ x1

x2

x3

⎞⎠ =

⎛⎝ 12
24
32

⎞⎠ .

(i) Find an expression for the Gauss-Seidel iteration matrix of this system.

(ii) Use the power method to compute the spectral radius of this iteration matrix.

698 APPENDIX A. SOLUTIONS TO PROBLEMS

(c) Write down the Gauss-Seidel iteration formulae for the system of equations given
above and hence obtain solutions for x1, x2 and x3 correct to 2 decimal places.

II.9 The modes of vibration setup on a string of length L fixed at both ends can be
described by the homogeneous wave equation

d2f

dx2
+ k2f = 0

subject to the end conditions f(0) = 0; f(L) = 0. Here, f is the displacement (wave
amplitude) and k defines the spatial frequency of the modes.

(a) Derive an analytical solution to this problem in terms of the eigenvalues and
eigenfunctions and explain its physical significance.

(b) Using a centre differencing scheme, in which the second derivative is replaced with
[f(x+ Δx)− 2f(x)+ f(x−Δx)]/(Δx)2, show that if the problem is discretized, then
the wave equation given above can be written in the form

Af = λf .

(c)

(i) Write down the characteristic matrix A in the case when the string is divided up
into 4 elements and then derive the Sturm sequence for this matrix.

(ii) State Gerschgorin’s theorem and use it to find the intervals in which the eigen-
values of this matrix lie. Hence or otherwise, use the Sturm sequence derived above
to compute the largest eigenvalue of the matrix with an error of less than 0.25.

II.10 (a) By eliminating the subdiagonal component using Gaussian elimination, solve
the tridiagonal system of equations given by

Ax = (1 2 3 2 1)T

where

A =

⎛⎜⎜⎜⎜⎝
1 2 0 0 0
1 1 2 0 0
0 1 2 1 0
0 0 1 1 1
0 0 0 1 2

⎞⎟⎟⎟⎟⎠ .

(b) Consider the following tridiagonal system of equations

d1x1 + c1x2 = b1,
a1x1 + a2x2 + c2x3 = b2,
a2x2 + d3x3 + c3x4 = b3,

...
an−2x2 + dn−1xn−1 + cn−1xn = bn−1,

an−1xn−1 + dnxn = bn.

A.2. PART II 699

By choosing the elements (di) as the pivots, derive an algorithm to compute the
solution xi to this system of equations.

II.11 A set of data points (xi, yi); (i = 1, 2, ..., n) is given to which a polynomial fit
of degree m < n is required. Consider the weighted least square error

e(a0, a1, a2, ..., am) =
n∑

i=1

wi(yi − ŷi)2

where ŷi is the polynomial given by

ŷi = a0 + a1xi + a2x
2
i + ...+ amx

2
i

and wi, i = 1, 2, ..., n are given weights.

(a) By minimizing the error e given above, show that the coefficients ai, i = 1, 2, ...,m
can be found by solving the system of equations given by

a0

n∑
i=1

wi + a1

n∑
i=1

wixi + ...+ am

n∑
i=1

wix
m
i =

n∑
i=1

wiyi,

a0

n∑
i=1

wixi + a1

n∑
i=1

wix
2
i + ...+ am

n∑
i=1

wix
m+1
i =

n∑
i=1

wixiyi,

...

a0

n∑
i=1

wix
m
i + a1

n∑
i=1

wix
m+1
i + ...+ am

n∑
i=1

wix
2m
i =

n∑
i=1

wix
m
i yi.

(b) Consider the following data,

xi : −5 −3 1 3 4 6 8
yi : 18 7 0 7 16 50 67
wi : 1 1 1 1 20 1 1

Write down the normal system of equations for a quadratic weighted least squares
solution to this data. By evaluating the summations, show that the coefficients (ai)
associated with this method of approximation are given by the solution to a 3×3
system of linear equations which are positive definite symmetric.

(c) Use an appropriate decomposition method to compute the required solution and
produce a sketch comparing the data with the polynomial fit.

II.12 (a) Prove that if the matrix X = (x1,x2, ...,xn) is constructed where xi are
linearly independent eigenvectors of the eigensystem Axi = λixi then

X−1AX = D ≡ diag(λ1, λ2, ..., λn).

(b) Show that if the characteristic matrix A of the eigensystem is perturbed by δA,
then

‖Q−1X−1δAX‖ > 1

700 APPENDIX A. SOLUTIONS TO PROBLEMS

where Q = D − λ′I; λ′ being an eigenvalue of A+ δA. Use this result to show that

| λ′ − λi |< K‖δA‖
where

K = min(‖X−1‖ ‖X‖).
Comment on the significance of the number K.

(c) Use the power method to find one of the eigenvectors and associated eigenvalue
of the matrix ⎛⎝ 1 0 0

0 1 2
0 2 1

⎞⎠ .

II.13 (a) By writing the real square matrix A as

A = L+D + U

where L, D and U are strictly lower triangular, diagonal and upper triangular matrices
respectively, show that the successive-over-relaxation iteration formula for solving the
linear system Ax = b is given by

x(n+1) = Mωx(n) + c

where
Mω = (D + ωL)−1[(1− ω)D − ωU],

c = (D + ωL)−1ωb

and ω is the relaxation parameter.

Using the power method, compute the spectral radius of M1 when

A =

⎛⎝ 4 −1 0
−1 4 −1
0 −1 4

⎞⎠
and state whether or not convergence will occur in this case.

(b) By centre differencing Poisson’s equation(
∂2

∂x2
+

∂2

∂y2

)
u(x, y) = f(x, y)

where
∂2

∂x2
u(x, y)→ u(x+ Δx, y)− 2u(x, y) + u(x−Δx, y)

(Δx)2

derive a SOR iteration formula which could be used directly (with appropriate bound-
ary conditions), to solve this equation for u in two dimensions on a Cartesian mesh
(x = iΔ, y = jΔ) where Δ is the step length.

A.2. PART II 701

II.14 (a) If λi and vi are respectively an eigenvalue and the corresponding eigenvector
of a n× n matrix A, write down the relationship between A, λi and vi.

Show that vi is also an eigenvector of the matrix A + kI, where k is constant, and
that the corresponding eigenvalue is λi + k.

(b) The eigenvectors of the matrix A, given as

A =

⎛⎝ 20 −5 −15
−3 −2 3
26 −6 −21

⎞⎠
are known to be v1 = (1, 0, 1)T , v2 = (0, 3,−1)T , v3 = (−1, 1,−2)T .

Use this information to find the eigenvalues of A and check your values against the
trace of the matrix.

(c) A system of first order linear differential equations is given as

dx1

dt
= 20x1 − 5x2 − 15x3

dx2

dt
= −3x1 − 2x2 + 3x3

dx3

dt
= 26x1 − 6x2 − 21x3

or
dx
dt

= Ax

where x = (x1, x2, x3)T .

If X is the matrix whose columns are the eigenvectors of A, show that the substitution
x = Xy results in a simple system of differential equations and hence, find the general
solution of the given system.

(d) (i) Explain briefly why the Power Method for the numerical computation of eigen-
values will not converge to a correct solution for the matrix A defined in part (b)
above.

(ii) Perform three iterations of the Power Method with scaling on the matrix (A +
4I), taking (1, 1, 1)T as the initial vector x0 to find an approximate eigenvalue and
associated eigenvector of (A+ 4I).

(iii) Explain with reference to part (a) above how this approach can lead to finding
an eigenpair of A. Comment of your result as compared with the exact values already
known from part (b).

II.15 (i) Define the characteristic equation of a square matrix A and state the Caley-
Hamilton Theorem for A.

702 APPENDIX A. SOLUTIONS TO PROBLEMS

If

A =

⎛⎝ 2 0 3
1 2 −4
4 1 3

⎞⎠
show that the characteristic equation for A is

−1− 8λ+ 7λ2 − λ3 = 0

Write down the equation given by the Caley-Hamilton Theorem for the matrix A and
use this equation to find A−1.

What are the practical disadvantages of using this method to find an inverse matrix?

(ii) Use Jordan’s method to show that if M is the n× n matrix

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 m3 1 0
0 m4 0 1 . . . 0
...

...
...

. . .
0 mn 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
then

M−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 −m3 1 0
0 −m4 0 1 . . . 0
...

...
...

. . .
0 −mn 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(iii) The product P−1BP , where P is any non-singular matrix, is a similarity trans-
form of the matrix B. If the eigenpairs of B are denoted by (vi, λi), by considering
the product (P−1BP)(P−1vi), show that P−1BP has the same eigenvalues as B with
corresponding eigenvectors P−1vi.

Show that if

M =

⎛⎝ 1 0 0
0 1 0
0 4 1

⎞⎠
is used as a transformation matrix P for a similarity transform of the matrix A given
in part (i) above, the resulting transformed matrix A1 = M−1AM has only one
non-zero subdiagonal row, i.e. is upper Hessenberg form.

(iv) Outline briefly the way in which similarity transforms are often used in numerical
methods to obtain the eigenvalues of a matrix. State why an orthogonal matrix is
particularly useful to use as a transformation matrix giving an example of one such
orthogonal matrix.

A.3. PART III 703

II.16 (i) If X is a non-singular n × n matrix whose columns are the eigenvectors of
the n× n matrix A, prove that

X−1AX = D

where D is a diagonal matrix. What are the diagonal elements of D and what condi-
tion must the eigenvectors satisfy for X to be non-singular?

(ii) The Power method is used to find the dominant eigenvalue and associated eigen-
vector of a matrix. Describe the method and discuss cases in which it may not be
successful. On what does the rate of convergence chiefly depend?

The matrix A is given as

A =

⎛⎝ 49 42 6
−24 −17 −6
−24 −21 −2

⎞⎠
Using x0 = (1, 1, 1)T as the starting vector, perform two iterations of the Power
Method, with scaling, to obtain an approximation to the dominant eigenvalue of A
and the associated eigenvector giving all values involved correct to one decimal place.

(iii) A system of second order linear differential equations is given as

d2x1

dt2
= −49x1 − 42x2 − 6x3

d2x2

dt2
= 24x1 + 17x2 + 6x3

d2x3

dt2
= 24x1 + 21x2 + 2x3

or
d2x
dt2

= −Ax

where x = (x1, x2, x3)T .

If the other two eigenvalues and eigenvectors of A are respectively 1, 4 and (−1, 1, 1)T ,
(2,−2,−1)T , show how the transformation x = Xy, where X is the matrix composed
of the eigenvectors of A, makes use of the result derived in (i) above to decouple the
equations. Hence find the general solution of the differential equations.

A.3 Part III

A.3.1 Solution to Problems Given in Chapter 11

11.1 8 = 23 and 0.25 = 2−2. Hence 8.25 in binary for is 1000.01.

Decimal Binary

8 1000
2 0010
5 0101

704 APPENDIX A. SOLUTIONS TO PROBLEMS

In BCD form 8.25 is 1000.00100101.

11.2 Fixed point storage of binary numbers involves defining the binary point of a
word at a fixed location. For example, if binary numbers are stored using a 16 bit
word where the binary point is taken to occur between the 8th and 9th entries, then
only 8 bits can be allocated to the binary number before and after the binary point.
Example:

Decimal Binary Fixed point storage

8.25 1000.01 0000100001000000
5.75 101.11 0000010111000000

Floating point representation uses a Mantissa/Exponent technique to normalize the
binary point thus:

Decimal Binary Normalised Floating Point

8.25 1000.01 0.100001×1001

5.75 101.11 0.10111×100011

In a 16 bit word in which the Mantissa and Exponent are distinguished between
the 12th and 13th entries respectively, the Normalized Floating Point representations
above are

1000010000000100

and
1011100000000011

respectively.

With fixed point storage, a problem occurs if the binary number becomes so large
that the number of bits required to represent it exceeds the word length - giving an
arithmetic ‘overflow’. Floating point representation of the type described above allows
much larger numbers to be stored using the same size word length. Also because the
first column is always 1, this can be ignored in the representation providing further
storage space - the principal of VAX/VMS systems.

11.3 The three basic constructs of a structured program are:

• Sequences - program statements executed in the order in which they appear.

• Selections - actions to be taken according to the conditions that exist at partic-
ular stages in execution (e.g. if-then-else statements).

• Repetitions - the repeated execution of the same basic statement (e.g. do-loops
and for-loops).

Structured programs are programs designed using the three constructs listed above.
Rigorous application of this principle leads to programs with a logical well structured

A.3. PART III 705

form in which the goto statement is obsolete. Goto statements allow the unconditional
transfer of control from one point in a program to another. Unconstrained use of goto
statements can therefore lead to a program having a complex network of data flow
which is difficult for the reader to follow.

11.4

Arguments against the goto statement:

• They are unnecessary - any program written using a goto statement can be
transformed into an equivalent program that uses only the structured constructs.

• Structured programs (without goto statements) can be understood by another
programmer more rapidly than a non-structured program.

• Goto statements do not convey the meaning of a block of code as clearly as a
structured construct - the goto statement has a lack of ‘expressive power’.

• Goto statements may require that a program is read ‘backwards’.

• The goto statement leads to difficulty in proving the correctness of a program.

Arguments for the goto statement:

• Goto statements have use in exceptional circumstances.

• They are sometimes necessary to make a program perform well.

• It is sometimes ‘natural’ to use goto statements.

The main goal of structured programming is to yield programs with optimum clarity.
In this sense, the arguments against the goto statement outweigh the arguments for
the goto statement.

11.5

i:=start
loop:

IF array(i)=x then
k=1

endIF

IF i=end then
k=0

endIF
i:=i+1

IF k=0 then

706 APPENDIX A. SOLUTIONS TO PROBLEMS

write ’not Found’
action1

endIF

IF k=1 then
write ’Found’
action2

endIF
end

The program above is structured - it follows logically from one line to the next.
However, it has more conditional selections (i.e. if..then statements) giving it a higher
cyclometric complexity measure than the first program; the measure for the non-
structured program is 3 whereas the measure for the structured program if 5.

11.6 System design is crucially dependent on the so called system life cycle whose
principal steps are as follows:

Specification =⇒ Design =⇒ Testing =⇒ Software Maintenance

Within the context of the above, the stages of this life-cycle are discussed below.

Specification

Specification is concerned with the formulation of software requirements in terms of:

• functions;

• operational constraints;

• external system behaviour;

• support environment;

• hardware on which software is to perform.

Design

Design deals with the realisation of code on the target system. This activity is depen-
dent upon individual skill, attention to detail, knowledge of how best to use available
tools and management organisation.

Testing

Testing involves:

A.3. PART III 707

• exercising the program using data which is similar to the real thing;

• observing the outputs;

• inferring program errors or inadequacies from anomalies in the output.

This can only be achieved through the establishment of a suitable design strategy
which:

(i) tests to see if the individual components meet their requirements;

(ii) ensures that the integrated system functions perform correctly.

In practice, testing a module is done using a set of carefully selected ‘test data’.
Testing may be conducted by executing the program on the computer or by simulating
its execution by a manual paper exercise called a ‘dry run’. There are two basic types
of testing:

• Functional testing or black box testing which is based upon typical, extreme and
invalid data values that are representative of those covered by the specification.

• Logical testing or white box testing which is based upon examining the internal
structure of the program and selecting data which gives rise to the alternative
cases of control flow, e.g. both paths through an if..then..else.

Functional testing is used at the final stage of programming as a basis for accepting
or rejecting the system.

Software Maintenance and Defect Amplification

Upon completion of the implementation stage, the software is typically transferred
to operations staff where it must be maintained. Problems associated with software
maintenance can invariably be traced to deficiencies in the way the software was
designed and developed. A lack of control and discipline in the early stages of the
software life-cycle nearly always translates into problems in the last stage. This leads
to ‘defect amplification’ which refers to the following phenomenon: During any phase
of software development, errors may be generated. Errors that are not removed will
be passed through to the next phase. Some of the errors that are passed through will
have more significant ramifications on the next and/or subsequent phases.

11.7 An important aspect of the software life-cycle is that it is dynamic. In other
words, as the software is designed, coded, tested etc., any or all of the requirements
(from specification to software maintenance) will invariably change and cycle back to
one or all of the previous stages. This feature of software engineering is known as
‘Bersoff’s law of system engineering’ which states:

‘No matter where you are in the system life cycle, the system will change, and the
desire to change it will persist throughout the life cycle’.

708 APPENDIX A. SOLUTIONS TO PROBLEMS

11.8 There are a variety of acceptable solutions to questions of this type but the
solution provided should at least cover the following elements.

Functional Description of System

Functions (top level):

1. Input to system from sensors and buttons.

2. Processing of input data.

3. Output to activate responses or to update control data.

Tasks:

There are two types of tasks (at the highest level);

1. Button tasks

2. Activation tasks.

Button tasks; uses Button Sequence

Task Input Output

1 Adjust sensor levels Adjusted sensor level updated sensor levels
2 Select response list Selected response list updated response list
3 Set mode [ON/OFF] mode (on,off)
4 Inactivate Inactivate reset (to ‘off’)

Button Tasks are handled by a Button Task Manager subsystem that:

• Receives a Button Sequence

• Updates Control Data for detailed Button Tasks

Activation tasks

Task Input Output
Activate Environmental Between 0 (or 1)

conditions and three responses
activation mode = ‘ON’

Activation Tasks are handled by an activation task manager subsystem using the
following logic:

while (system mode = ’ON’) do:

if((a given environmental condition)
>=(respective sensor level)

A.3. PART III 709

and (sensor not yet activated))
then

BEGIN
activation mode := ’ON’
execute activation response for response list data;

END

A.3.2 Solutions to Problems Given in Chapter 12

The C code provided here is not optimum. For example, it is not optimally structured
and the commenting is rather sparse in order to minimize the number lines of code
and reduce the length of the book. The code provided here aims to give the reader a
‘first taste’ of the software solutions to the problems specified which can be improved
further and adapted to the ‘tastes’ of the programmer. Also, note that the .h libraries
such as math.h and stdio.h have not been included and most lines of code defining a
given function should include

#include<stdio.h>
#include<math.h>

for example. The name of each function is Qn where n is the number of the question.
Where appropriate, the module is followed directly by a test unit for validating (or
otherwise) the output of the module.

12.1

void Q1(float x[], float *xav, float *xmax, float *xmin, int n)
{
float sum,max,min;
int i;
/* Compute average value */

sum=0.0;
for(i=0; i<n; i++) sum=sum+x[i];

*xav=sum/(float)n;
/* Compute maximum value */
max=0.;
for(i=0; i<n; i++)

{
if(x[i] > max)max=x[i];

}
*xmax=max;

/* Compute minimum value */
min=max;

for(i=0; i<n; i++)
{
if(x[i] < min)min=x[i];

710 APPENDIX A. SOLUTIONS TO PROBLEMS

}
*xmin=min;

}

Test unit

main()
{
float x[10],xav,xmax,xmin;
int i,n;

printf("How many numbers (<=10)?\n");
scanf("%d",&n);

puts("Input numbers");

for(i=0; i<n; i++) scanf("%f",&x[i]);

Q1(x,&xav,&xmax,&xmin,n);

printf("Average value = %f\n",xav);
printf("Maximum value = %f\n",xmax);
printf("Minimum value = %f\n",xmin);

}

12.2

void Q2(float x[], int n, int seed)
{
long int i,ix,r,p;
double max;

/* Set parameter values */
r=16807;

p=2147483647;
/* Start computation */

ix=seed;
for(i=0; i<n; i++)

{
ix=r*ix;
ix=ix-(ix/p)*p; /* Equivalent to ix=ix%p in C */
if(ix < 0) ix=p+ix;
x[i]=ix;
}

/* Normalize output */
max=0.0;

for(i=0; i<n; i++) if(x[i] > max) max=x[i];
for(i=0; i<n; i++) x[i]=x[i]/max;

}

A.3. PART III 711

Test unit

main()
{
float x[100];
int n=100,i,seed;

puts("Input seed");
scanf("%d",&seed);

Q2(x,n,seed);

for(i=0; i<n; i++) printf("%f\n",x[i]);
}

12.3

void Q3(int x[], int h[], int n, int m)
{
int i,k;

for(i=0; i<m; i++) h[i]=0; /* Initialize histogram */
k=0;
/* Compute histogram */
for(i=0; i<n; i++)
{
k=x[i];
h[k]=h[k]+1;
}

}

Test unit

main()
{
int x[100],h[100],r,seed;
float y[100];
int i,n;

puts("Input number of values required (<100)");
scanf("%d",&n);

puts("Input range of values");
scanf("%d",&r);

printf("Input %d numbers between 0 and %d\n",n,r);
for(i=0; i<n; i++) scanf("%d",&x[i]);

712 APPENDIX A. SOLUTIONS TO PROBLEMS

Q3(x,h,n,r);

puts("Histogram is");
for(i=0; i<r; i++)printf("%d\n",h[i]);

puts("Input number of random values required (<100)");
scanf("%d",&n);

puts("Input range of values");
scanf("%d",&r);

puts(" ");

seed=12345;
Q2(y,n,seed);

for(i=0; i<n; i++)x[i]=(int)((float)r*y[i]);
for(i=0; i<n; i++)printf("%d\n",x[i]);

Q3(x,h,n,r);

puts("Histogram of random numbers is");
for(i=0; i<r; i++)printf("%d\n",h[i]);
}

12.4

void Q4(float xr[], float xi[], float yr[], float yi[], int n, int sign)
{
float pi,con;
float sumr,sumi,fac;
double atan(),cos(),sin();
int i,j;

/* Compute constants */
pi=4.0*atan((double) 1.0);
con=2.0*pi/(float)n;

/* Start computation */
for(i=0; i<n; i++)

{
/* Initialize */

sumr=0.0;
sumi=0.0;
for(j=0; j<n; j++)

{
fac=con*(float)i*(float)j;
sumr=sumr+xr[j]*cos(fac)-isgn*xi[j]*sin(fac);
sumi=sumi+xi[j]*cos(fac)+isgn*xr[j]*sin(fac);

A.3. PART III 713

}
/* Normalize output according to whether a forward (sign=-1)

or and inverse transform (sign=+1) is required */
if(sign < 0)
{

yr[i]=sumr/(float)n;
yi[i]=sumi/(float)n;
}

if(sign > 0)
{

yr[i]=sumr;
yi[i]=sumi;
}

}
}

Test unit

#define m 10
main()
{
float xr[m],xi[m],yr[m],yi[m];
int i,n,isgn;

puts("Input size of array (<=10)");
scanf("%d",&n);

puts("Input number (real part,imaginary part)");
for(i=0; i<n; i++) scanf("%f %f",&xr[i],&xi[i]);

isgn=-1;

Q4(xr,xi,yr,yi,n,isgn);

puts("Complex DFT is");
for(i=0; i<n; i++)

{
printf("%f %f\n",yr[i],yi[i]);
xr[i]=yr[i];
xi[i]=yi[i];
}

isgn=1;

Q4(xr,xi,yr,yi,n,isgn);

714 APPENDIX A. SOLUTIONS TO PROBLEMS

puts("Complex inverse DFT is");
for(i=0; i<n; i++)printf("%f %f\n",yr[i],yi[i]);

}

12.5

void Q5(float f[],float g[],int n)
{
int i;

/* Start computation */
for(i=2; i<=n-1; i++) g[i]=(f[i-1]+f[i]+f[i+1])/3.0;

/* Set end conditions */
g[1]=(f[1]+f[2])/3.0;
g[n]=(f[n]+f[n-1])/3.0;
}

Test unit

#define n 3
main()
{
float f[n],g[n];
int i;

puts("Input data");
for(i=1; i<=n; i++) scanf("%f",&f[i]);

Q5(f,g,n);

puts("Filtered data is");
for(i=1; i<=n; i++) printf("%f\n",g[i]);
exit(0);
}

12.6

void Q6(float *a[], float b[], float x[], int n, int maxit)
{
int i,j,k;
float sum;
/* Compute the initial solution. */

for(i=0; i<n; i++) x[i]=b[i]/a[i][i];
/* Start the iteration process. */
for(k=1; k<=maxit; k++)

A.3. PART III 715

{
for(i=0; i<n; i++)

{
sum=b[i];

for(j=0; j<n; j++)
{
if(j != i)
sum=sum-a[i][j]*x[j];

}
x[i]=sum/a[i][i];
}

}
}

Test unit

#define n 3
main()
{
float a[n][n],b[n],x[n];
float *aa[n];
int i,maxit;

puts("Input characteristic matrix of system");
puts(" ");

puts("First row");
for(i=0; i<n; i++) scanf("%f",&a[0][i]);

puts("Second row");
for(i=0; i<n; i++) scanf("%f",&a[1][i]);

puts("Third row");
for(i=0; i<n; i++){scanf("%f",&a[2][i]);aa[i]=a[i];}

puts(" ");
puts("Input data");
for(i=0; i<n; i++) scanf("%f",&b[i]);

puts(" ");
puts("Input number of iterations");
scanf("%d",&maxit);

puts(" ");

Q6(aa,b,x,n,maxit);

716 APPENDIX A. SOLUTIONS TO PROBLEMS

puts(" ");
puts("Solution is");

for(i=0; i<n; i++) printf("%f ",x[i]);
}

12.7

void Q7(float *a[], float b[], float x[], int n, int maxit)
{
float sum;
int i,j,k;
/* Compute the initial solution. */
for(i=0; i<n; i++)x[i]=b[i]/a[i][i];
/* Start the iteration process. */
for(k=1; k<=maxit; k++)

{
for(i=0; i<n; i++)

{
sum=b[i];

for(j=0; j<i; j++)sum=sum-a[i][j]*x[j];
for(j=i+1; j<n; j++)sum=sum-a[i][j]*x[j];

x[i]=sum/a[i][i];
}

}
}

Test unit

As in Question 12.7.

12.8

void Q8(float a, float *root, int n)
int n;
{
float fnum(),fden();
float val;
x = (float *) calloc(n, sizeof(float)); /* Internal workspace */
int i;

x[0]=a; /* Initialize using first approximation to root */
/* Do computation */
for(i=0; i<n; i++)

{
val=x[i];

A.3. PART III 717

x[i+1]=x[i]-fnum(val)/fden(val);
*root=x[i];

}
}

/* Internal functions for polynomial x^3-2x^2-5x+6 */

float fnum(x)
float x;
{
float y;

/* Define polynomial using parenthesis (not powers) */
y=6.0-x*(5.0+x*(2.0-x));

return(y);
}

float fden(x)
float x;
{
float y;

y=-5.0-x*(4.0-3.0*x);
return(y);
}

Test unit

main()
{
float a,x;
int n;

puts("Input initial approximation to root");
scanf("%f",&a);

puts("Input number of iterations required (<=100)");
scanf("%d",&n);

Q8(a,&x,n);

puts(" ");
printf("Approximate value of root is %f",x);
}

12.9

void Q9(float approx, float a, float p, float *root, int n)
{

718 APPENDIX A. SOLUTIONS TO PROBLEMS

float x;
int i;
x = (float *) calloc(n, sizeof(float)); /* Internal workspace */
double pow();

/* Take first approximation */
x[0]=approx;

/* Do computations */
for(i=0; i<n; i++)

{
x[i+1]=(1/p)*((p-1)*x[i]+a/(pow((double)x[i],(double) p-1)));

}
/* Output result */

*root=x[i];
}

Test unit

main()
{
float a,x,p,ap;
int n;

puts("Input number whose nth root is required");
scanf("%f",&a);

puts("Input n-th root required");
scanf("%f",&p);

puts("Input initial approximation to nth root");
scanf("%f",&ap);

puts("Input number of iterations required (<=100)");
scanf("%d",&n);

Q9(ap,a,p,&x,n);

printf("Root %f of %f is %f",p,a,x);
}

12.10

void Q10(float x[], float f[], int n, float a0, float a1)
{
float sumx,sumf,sumt,sumb;
float avx,avf;
int i;
/* Compute average of x and f. */
sumx=0.0;

A.3. PART III 719

sumf=0.0;
for(i=0; i<n; i++)

{
sumx=sumx+x[i];
sumf=sumf+f[i];

}
avx=sumx/(float)n;
avf=sumf/(float)n;
/* Compute a1. */
sumt=0.0;
sumb=0.0;

for(i=0; i<n; i++)
{

sumt=sumt+(x[i]-avx)*(f[i]-avf);
sumb=sumb+(x[i]-avx)*(x[i]-avx);

}
/* Compute a1 and a0. */
*a1=sumt/sumb;
*a0=avf-*a1*avx;
}

Test unit

#define n 10
main()
{
float x[n],f[n];
float a0,a1,b0,b1;
int i;

puts("Input a0 and a1");
scanf("%f %f",&a0,&a1);

puts("Values of x(i) and f(i) are");
for(i=1; i<=n; i++)
{
x[i]=(float)i/(float)n;
f[i]=a0+a1*x[i];

printf("%f %f\n",x[i],f[i]);
}

Q10(x,f,n,&b0,&b1);

put(" ");
puts("Input parameters a0 and a1 are");
printf("%f %f",a0,a1);

720 APPENDIX A. SOLUTIONS TO PROBLEMS

puts(" ");
puts("Calculated values of a0 and a1 are");
printf("%f %f",b0,b1);

}

A.3.3 Supplementary Problems to Part III

III.1 Discuss the use of the following storage facilities:

• Main memory.

• Paging memory.

• Data base storage.

• Archival storage.

III.2 A serial stream of 1000 integer numbers ranging from 1 to 100 inclusive is to
be analysed by counting the number times a particular integer occurs in the stream.
The output of this analysis is to be an array containing a record of the number of
times each integer has occurred.

• Write a logic flow diagram for this process.

• Write down an appropriate Pseudo code for the program.

• Write an appropriate subprogram which inputs the data and then outputs the
result using ANSI C or else a programming language of your choice maximizing were
possible algorithm efficiency.

III.3 Discuss some of the factors important in choosing a programming language.

III.4 The following pseudo-coded program has been designed to find the largest ele-
ment and average value of a 3 × 3 matrix (2D array) of real positive numbers input
from the keyboard and to write out the results on the screen during run time.

* Input data. *

write ’Input first row of data’
read a(1,1),a(1,2),a(1,3)

write ’Input second row of data’
read a(2,1),a(2,2),a(2,3)

write ’Input third row of data’
read a(3,1),a(3,2),a(3,3)

* Find the maximum value of the data. *

A.3. PART III 721

max_val=0.0

for j=1 to 3, do
for i=1 to 3, do
if a(j,i) > max_val then max_val=a(j,i)
enddo

enddo

* Find the average value of the data. *

for j=1 to 3, do
for i=1 to 3, do

sum=sum+a(j,i)
enddo

enddo

av=sum/9

* Write out results. *

print: ’Maximum value of matrix is’ max_val
print: ’Average value of matrix is’ av

The program is to be executed on a VMS machine. Although this code will compile,
run and for certain data types even provide the correct answers, there are a number
of features which collectively constitute (very) poor programming. What are they?

Rewrite the program using similar pseudo coding correctly in modular form using
appropriate subprograms as appropriate to:

• Minimize the number of page faults.

• Provide the user with the option of repeating the program during run time.

• Provide the user with the option of inputting the data from a named disc file.

Convert the pseudo code into ANSI C code maximizing the efficiency of the code
where possible.

Compute the McCabe cyclometric complexity of your program and compare it with
the program given above. Comment on your result.

III.5 (a) Discuss the principles of modular programming; include statements on the
following:

(i) Module size.

(ii) Complexity.

722 APPENDIX A. SOLUTIONS TO PROBLEMS

(iii) Coupling.

(iv) Cohesion.

(b) The following pseudo-coded function computes the factorial of a positive integer
number n.

function factorial(input: n)
if n = 0 then factorial=1

i=1
for j=1 to n, do
i=j*i

factorial=i

(i) Write a literal translation of this function in C.

(ii) Write a C function to compute the factorial of a number using recursion.

(c) The void function strcpy(s,t) is to copy a character string s to string t. Write two
versions of this C function to execute this process using

(i) Arrays.

(ii) Pointers.

III.6 Write a structured function in C to search an integer array a[i] for a integer
number num. If the number is found the function should write out the sentence ‘num
found’ and return a value of 1; if the number is not found, the function should write
out the sentence ‘num not found’ and return a value of 0. The inputs to the function
should include the integer array, the length of the array and the integer number being
searched for.

III.7 Chebyshev’s method for computing the solution to a set of linear simultaneous
equations of the form

n∑
j=1

aijxj = bi

is compounded in the iteration

x
(k+1)
i = x

(k)
i +

ω

aii

⎛⎝bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j − aiix

(k)
i

⎞⎠
where ω is the relaxation parameter and x(1)

i = bi/aii.

An independent and self consistent module is required to apply this method of solu-
tion. The module should input the following:

• the characteristic matrix of the system aij ;

A.3. PART III 723

• the data bi;

• the size of the system to be solved n;

• the number of iterations required;

• the value of ω;

The module should output the solution xi at the end of the process.

Error checks on the computations and checks on the validity of the input are not
required but the module is to be written in structured form.

(i) Write an outline and then a detailed program flow chart for the module.

(ii) Write down appropriate pseudo code for the module.

(iv) Write an appropriate (void) function for the module using C provide suitably
well commented code with optimum algorithm efficiency.

III.8 (a) Briefly describe how a software requirement specification can be developed
into a good structured design, paying particular attention to the desirable attributes
of the modules.

(b) The following pseudo code described a program designed to count positive and
negative numbers, and calculate the mean of the positive inputs. It stops if the input
value is zero, or the positive sum exceeds 1000.

BEGIN
plus=0
minus=0
total=0

loop: READ(number)
IF number=0 THEN GOTO output
IF number>0 THEN GOTO positive

negative: minus=minus+1
GOTO loop

positive: plus=plus+1
total=total+number
IF total<=1000 THEN GOTO loop

output: mean=total/plus
WRITE(plus,minus,mean)

END

(i) Draw a control flow diagram for the pseudo code above.

(ii) Describe why it is non-structured and produce a structured version of the program
in a control flow diagram and pseudo code form.

724 APPENDIX A. SOLUTIONS TO PROBLEMS

III.9 (a) Discuss some of the principal features (other than syntax) of C; include
statements on the following:

(i) Layout.

(ii) Header files.

(iii) Structure.

(iv) Libraries.

(v) Pointers.

(b) The following pseudo-coded module has been designed to smooth data to reduce
the effect of random error using a simple 3-element moving average filter of the type

Yi =
1
3
(Xi−1 +Xi +Xi+1); i = 1, 2, ..., n

subject to the end conditions X0 = X1 and Xn+1 = Xn.

function movav(x,n)
float x(100) *Input array with 100 words of memory*
float y(100) !Internal workspace
integer n !size of I/O array (<=100)

* Compute filter *
for i=2 to n-1 do

y(i)=(x(i-1)+x(i)+x(i+1))/3.0
enddo

* Impose end conditions *
y(1)=(x(1)+x(1)+x(2))/3.0
y(n)=(x(n)+x(n)+x(n-1))/3.0

* Return result *
for i=1 to n, do

x(i)=y(i)
enddo

The module has been designed to return the output by overwriting the input array. In
order to achieve this, internal workspace is required which has been given a maximum
array size of 100 words.

(i) What is the basic problem with the general purpose application of this module.

(ii) Write a literal translation of this module in C using static arrays but employing
pointers where appropriate.

(iii) Re-work your C translation to incorporate dynamic memory allocation where
appropriate. Comment on the differences between your translation and the original

A.3. PART III 725

pseudo code given above with regard to the function being one of many modules
forming an object library.

III.10 A simple but effective method of performing numerical integration i to use
the trapezoidal rule for finding the area under a curve which is compounded in the
formula

xn∫
x0

f(x)dx � h

(
f(x0)

2
+ f(x1) + f(x2) + ...+ f(xn−1) +

f(xn)
2

)

were for N trapezoids of equal length,

h =
xn − x0

N
.

This method is to be used to evaluate the Fresnel integral

I(x) =

x∫
0

cos
(
πy2

2

)
dy.

In independent and self consistent function is required to evaluate this integral using
the trapezoidal rule which should input the following:

• The value of x.

• The number of trapezoids N .

The function should return the value of the integral I.

Error checks on the computations and checks on the validity of the I/O data are not
required but the function is to be written in a structured form.

(i) Write an outline and then a detailed flow chart for this function.

(ii) Write appropriate pseudo code for the function.

(iii) Write appropriate C code for the function which is well commented with optimized
algorithm efficiency.

(iv) Explain why the choice ofN for a given value of x can critically affect the accuracy
of the result.

III.10 (i) Explain what ‘defect amplification’ in software projects is and how software
reviews can reduce both the problem and development costs.

(ii) Briefly explain the concept upon which Halstead’s methods of determining soft-
ware complexity are based and list the direct and calculated metrics.

(iii) List and describe in detail the different types of black box testing methods.

726 APPENDIX A. SOLUTIONS TO PROBLEMS

III.11 (i) In your own words, explain Bersoff’s ‘Law of System Engineering’. Why is
it true? How does it affect software engineering paradigms, in particular, software
configuration management.

(ii) Explain and compare ‘configuration management audit’ and ‘formal technical
review’ for software projects. Would it be reasonable to combine them? Explain why.

(iii) List and discuss in detail the major types of software maintenance activities.

III.12 The bubble sort is a method of sorting an array of numbers into increasing
values. The basic algorithm (for an array of size n and type float) is as follows:

START:
for i:=1 to n-1; do:

for j:=1 to n-i; do:

* Check if x(j) is greater than x(j+1);
if true then exchange positions, i.e.

x(j) becomes x(j+1)
and
x(j+1) becomes x(j) *

if x(j) > x(j+1)
then

temp=x(j)
x(j)=x(j+1)
x(j+1)=temp

endif
enddo
enddo

(i) Design a C void function to implement this algorithm

void SORT(float x[], int n)

where x is the array and n is the array size.

(ii) Design an appropriate test unit to evaluate the function SORT.

(iii) Use the bubble sort algorithm to design a void function for computing the median
of an array of numbers of odd size (i.e. an array of size 3, 5, 7, ...)

void MEDIAN(float x[], int n, int xmed}

where x is the input array of size n and xmed is the median value of the array that is
output by this function.

A.3. PART III 727

Note that the median m of a set of numbers is such that half the numbers in the
set are less than m and half of the numbers are greater than m, e.g. given the set
1, 6, 2, 4, 7, 3, 9, then

(1, 6, 2, 4, 7, 3, 9)→ bubble sort→ (1, 2, 3, 4, 6, 7, 9)

and m = 4.

(iv) Design an appropriate test unit to evaluate the function MEDIAN.

III.13 For relatively small systems of linear equations, a method of solution is to use
Cramers rule. In particular for a 3× 3 system of equations

a11x1 + a12x2 + a13x3 = b1

a21x2 + a22x2 + a23x3 = b2

a31x3 + a32x2 + a33x3 = b3

the solution is

x1 =
1
| A |

∣∣∣∣∣∣
b1 a12 a13

b2 a22 a23

b3 a23 a33

∣∣∣∣∣∣ , x2 =
1
| A |

∣∣∣∣∣∣
a11 b1 a13

a21 b2 a23

a31 b3 a33

∣∣∣∣∣∣ , x3 =
1
| A |

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣
where

| A |=
∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a21

∣∣∣∣ a12 a13

a32 a33

∣∣∣∣ a31

∣∣∣∣ a12 a13

a22 a23

∣∣∣∣
and ∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21

(i) Design a module (void function) to compute the solution vector x1, x2, x3) using
Cramers rule for a 3× 3 system of linear equations.

(ii) Design a test unit to validate the module checking the output with an appropriate
‘dry run’.

(iii) Design a module (void function) to interpolate three points (xi, pi); i = 1, 2, 3
using a quadratic polynomial

p(x) = a0 + a1x+ a2x
2

The function should input the values of the points (xi, pi); i = 1, 2, 3 and output a
user defined number of values xi and pi for values of xi between user defined lower
and upper limits, the solutions for a0, a1 and a3 being obtained using Cramers rule.

(iv) Check the output of the interpolation module by designing an appropriate test
unit and implementing a suitable ‘dry run’ and then compute the trajectory of a
projectile which is known to pass through the following points:

728 APPENDIX A. SOLUTIONS TO PROBLEMS

Position (m) Height (m)
3030 2418
5835 3365
8293 2872

III.14 The Matthews cypher (Matthews, R, 1989, On the Derivation of a Chaotic
Encryption Algorithm, Cryptologia No. 13, pp. 29-42) is a modification of the logistic
mapping

xn+1 = rxn(1− xn), r ∈ (0, 4]

to

xn+1 = (1 + r)
(

1 +
1
r

)
xn(1 − xn)r, r ∈ (0, 4]

which produces chaotic behaviour for a greater range of values of r. The output xn

is critically determined by the exact values of the initial condition x0 ∈ (0, 1) and
the value of r ∈ (1, 4]. These values can be used as two keys to design a chaotic
encryption engine based on a substitution cypher of the type

cypher = information+ confusion

where the confusion field is given by xn. In practice, this can be implemented using
binary versions of the data and the XOR operation, i.e.

Ci = Ii ⊕Xi

where, in binary form, Ci is the ‘cyphertext’, Ii is the ‘plaintext’ and Xi is the ‘cypher
stream’.

(i) Design a module (void function) to generate a Matthews cypher for r = 4 which
inputs the size of the array n required and the key x0 and outputs a stream of numbers
of type float:

void MATTHEWS(float x[], int n, float key)

Inspect the output of this function and compute the Lyapunov dimension (see Chapter
14) for different keys x0 ∈ (0, 1) using an appropriate function.

(ii) Design a main program that reads a plaintext file (in binary) specified during
run-time and outputs the cyphertext to a file (in binary) specified during run time:

void ENCRYPT(float key)

(iii) Design a main program that reads a cyphertext file (in binary) specified during
run-time and outputs the plaintext to a file (in binary) specified during run time:

void DECRYPT(float key)

(iv) Re-engineer the software to produce a single program that can both encrypt and
decrypt using an appropriate switch:

void ED(float key, char option)

A.3. PART III 729

III.15 (a) Pearson’s coefficient is a statistic that measures the correlation between two
data sets xi, i = 1, 2, ..., N and yi, i = 1, 2, ..., N . If the data xi change as the data
yi change, then the two are correlated. Pearson’s correlation coefficient r is given by
the formula

r =

N∑
i=1

(xi − x̄)(yi − ȳ)√
N∑

i=1

(xi − x̄)2
√

N∑
i=1

(yi − ȳ)2

where x̄ is the mean (average) of the data xi and ȳ is the mean of the data yi.

(i) Write a function to compute the average of an array of N values according to the
following prototype:

double average(double a[], int N);

(ii) Write a function to input the data set from the keyboard for calculating Pearson’s
coefficient according to the following prototype:

void InputData(double x[], double y[], int N);

(iii) Using the function in (i) above, write a function to calculate Pearson’s coefficient
according to the prototype:

double pearson(double x[], double y[], int N);

(iv) Using the functions (i), (ii) and (iii) above, write a main function that calculates
Pearson’s coefficient from a set of 10 data values, (xi)10i=1 and (yi)10i=1 and outputs the
result on the screen.

(b) (i) Write a second version of the function InputData that reads the data from a
file according to the following prototype:

void InputData(double x[], double y[], FILE* f, int N);

where it is assumed that the file has been opened in the calling function.

(ii) Using the fact that stdin is a FILE pointer for the keyboard, modify you main
program in Part (a)-(iv) to use the new InputData function. The main function
should prompt the user as to whether they would like to input the data from the
keyboard or from a file and if a file is selected, it should accept the name and open it
for reading before calling the InputData function.

(iii) Indicate on another version of main what modifications you would make to the
version of main from (ii) above of the memory for the array xi and yi is to be allocated
dynamically with the size determined by the user.

III.16 (i) Describe the following derived types in C:

730 APPENDIX A. SOLUTIONS TO PROBLEMS

double* b[5];
int (*a)[3];
void (* f)(double);
int* (* g[5])(double);

(ii) Explain what is meant by the following terms:

• pass by value;

• pass by reference.

(iii) The following function computes the equation of the straight line y = mx + c
joining the two points (x1, y1), (x2, y2):

int line(float x1, float y1, float x2, float y2, float m, float c)
{

if (fabs(x1-x2)<1.0E-6) return -1;
else {

m=(y2-y1)/(x2-x1);
return 0;
}

}

The corresponding test unit for this function is:

void main()
{

float X1, X2, Y1, Y2;
float M, C;

printf("input X1, Y1, X2, Y2\n");
scanf("%f %f %f %f",&X1, &Y1, &X2, &Y2);
if (line(X1,X2,Y1,Y2,M,C) == -1){

printf("Cannot compute equation, exiting...\n");
exit(1);

}else {
printf("Equation is Y=%fX + %f\n",M,C);
exit(0);

}
}

Explain why this program will not return the correct results for m and c to the main
function.

(iv) Rewrite the function lineand make the necessary modification to the main func-
tion so that the program executes correctly.

A.4. PART IV 731

A.4 Part IV

The software solutions provided here are not ideal and have been condensed to reduce
space. Where appropriate, commentary is provided mainly to explain the next line or
lines of code that occur. Each module should have an appropriate header of the type
discussed toward the end of Chapter 12 which explains the function of the module,
I/O data and parameters, internal variables, the origin of the algorithm (as required)
with appropriate references etc. Also, the style of the coding can be significantly
improved upon by spacing it out, thereby making it easier to read and comprehend.
The reader should consider these points if he/she is interested in reproducing the
software provided here. The improvement of the code provided here is given as an
exercise to the reader who wishes to make use of it.

A.4.1 Solutions to Problems Given in Chapter 13

13.1

void SPIKES(float s[], int n, int w)
{

int nn, mm;

/*Determine mid point of array and position of spikes. */
nn=1+(n/2);
mm=1+(w/2);

/* Initialize signal array s. */
for(i=1; i<=n; i++)s[i]=0.0;

/* Compute two spike signal nw units appart. */
s[nn-mm] =1.0;
s[nn-mm+w]=1.0;

}

13.2

void TOPHAT(float s[], int n, int w)
{

int nn,mm,i;

/* Determine mid point of array and position of sides of tophat.*/
nn=1+(n/2);
mm=1+(w/2);

/* Initialize signal array s and generate tophat signal of width w.*/
for(i=1; i<=n; i++)s[i]=0.0;

732 APPENDIX A. SOLUTIONS TO PROBLEMS

for(i=nn-mm+1; i<nn+mm; i++)s[i]=1.0;
}

13.3

void TRIANGLE(float s[], int n, int w)
{

int nn,mm,i;
float l1,l2;

/*Determine mid point of array and position of base.*/
nn=1+(n/2);
mm=1+(w/2);

/*Initialize signal array s.*/
for(i=1; i<=n; i++)s[i]=0.0;

/* Generate left side (size l=mm) of triangle signal.*/
l2=1.0/(l1=mm);
for (i=1; i<=l1-1; i++)
{
s[nn-i]=1.0-i*l2;
}

/*Generate center of triangle signal. */
s[nn]=1.0;

/*Generate right side (size l=nw-mm) of triangle signal. */
l2=1.0/(l1=nw-mm);
for (i=1; i<=l1-1; i++)
{
s[nn+i]=1.0-i*l2;
}

}

13.4

#include<math.h>

void GAUSSIAN(float s[], int n, int w)
{

int nn, i;
float x, sigma;

/*Determine mid point of array.* /

A.4. PART IV 733

nn=1+(n/2);

/*Generate Gaussian signal.*/
sigma=(float)w;
for(i=1; i<=n; i++)
{
x=(float)(i-nn);
s[i]=exp(-(x*x)/(sigma*sigma));
}

}

13.5

#include<math.h>

void COSINE(float s[], int n, int p)
{

int nn, i;
float pi, scale;

/*Determine mid point of array, value of pi, and scale factor.*/
nn=1+(n/2);
pi=4.0*atan(1.0);
scale=p*pi/(nn-1);

/*Create p periods of cosine.*/
for(i=1; i<=n; i++)s[i]=cos(scale*(i-nn));

}

13.6

#include<math.h>

void SINE(float s[], int n, int p)
{

int nn, i;
float pi, scale;

/*Determine mid point of array, value of pi, and scale factor.*/
nn = 1+(n/2);
pi = 4.0*atan(1.0);
scale=p*pi/(nn-1);

/*Create p periods of sine wave.*/
for(i=1; i<=0; i++) s[i]=sin(scale*(i-nn));

}

734 APPENDIX A. SOLUTIONS TO PROBLEMS

13.7 The following program is an example of the code that can be used to investigate
the application of FFT1D using the cosine wave generator (i.e. Question 13.6) for
example.

#include <stdio.h>
#include <math.h>
#define n 128

int main(void)
{
char ans;
int i, p, sgn;
float sr[n+1],si[n+1];

start: printf("input no. of periods\n");
scanf("%d",&p);

COSINE(sr,n,p);
gopen();
gsignal(sr,n,1);

for(i=1; i<=n; i++) si[i]=0.0;

sgn=-1;/*To compute forward FFT*/
FFT1D(sr,si,n,sgn);
/*Good practice to use this form rather than
FFT1D(sr,si,n,-1) especially in a test unit*/

gsignal(sr,n,1);
gsignal(si,n,1);

sgn=1;/*To compute inverse FFT*/
FFT1D(sr,si,n,sgn);
gsignal(sr,n,1);
gsignal(si,n,1);

printf("again?<y>\n");
scanf("%s",&ans);
if(ans==’y’)goto start;
else
gclose();
return 0;
}

13.8

A.4. PART IV 735

#include <math.h>

void AMPSPEC(float s[], float a[], int n)
{

int i;
float *si;

/*Allocate space for work arrays.*/
si = (float *) calloc(n+1, sizeof(float));

/*Initialize real and imaginary working arrays for the signal.*/
for (i=0; i<n; i++)
{
a[i]=s[i];
si[i]=0.0;
}

/*Compute the DFT of signal s (=a).*/
FFT1D(a, si, n, -1);

/*Calculate the amplitude spectrum of the signal.*/
for (i=1; i<=n; i++)
{
a[i] = sqrt(a[i]*a[i]+si[i]*si[i]);
}

/*Free space from work arrays.*/
free(si);

}

13.9

#include <math.h>

void POWSPEC(float s[], float p[], int n)
{

int i;
float *si;

/*Allocate space for work arrays.*/
si = (float *) calloc(n+1, sizeof(float));

/*Initialize real and imaginary working arrays for the signal.*/
for (i=1; i<=n; i++)
{
p[i] = s[i];

736 APPENDIX A. SOLUTIONS TO PROBLEMS

si[i] = 0.0;
}

/*Compute the DFT of s.*/
FFT1D(p, si, n, -1);

/*Calculate the power spectrum of the signal.*/
for (i=1; i<=n; i++)
{
p[i] = p[i]*p[i]+si[i]*si[i];
}

/*Free space from work arrays.*/
free(si);

}

The following code provides the power spectrum of a tophat function using the module
TOPHAT for an array of size 256. Similar code can be used to investigate other signals
as required.

#include <math.h>
#define n 256

int main(void)
{
char ans;
int w;
float f[n+1], s[n+1];

start: printf("Input width of tophat function\n");
scanf("%d",&w);

TOPHAT(f,n,w);
gopen();
gsignal(f,n,1);

POWSPEC(s,p,n);
gsignal(s,n,1);

for(i=1; i<=n; i++)s[i]=log(1+s[i]);
gsignal(s,n,1)

printf("again?<y>\n");
scanf("%s",&ans);
if(ans==’y’)goto start;
else
gclose();

A.4. PART IV 737

return 0;
}

13.10

#include <math.h>

void SCALE(float s[], int n, long float a)
{

int i;
float max, temp;

/*Search the array for the largest entry */
max=0.0;
for(i=1; i<=n; i++)

{
temp=fabs(s[i]);
if(temp > max)
{
max=temp;

}
}

/*Scale the array by max - equivalent to using a uniform norm */
if(max != 0)

{
max =1.0/max;
for(i=1; i<=n; i++)

{
s[i]=s[i]*max*a;
}

}
}

13.11

#include <math.h>

static float VALUE(int i);
static int nn;

void PARZEN(float w[], int n)
{

int i;

738 APPENDIX A. SOLUTIONS TO PROBLEMS

/*Determine mid point of array.*/
nn=1+(n/2);

/*Generate Parzen Window taking into account the symmetry.*/

w[1]=VALUE(1);
for (i=2; i<=nn-1; i++)
{
w[i] =VALUE(i);
w[n-i+2]=w[i];
}

w[nn]=VALUE(nn);
}

/*Internal function to determine function value.*/

static float VALUE(int i)
{

return(1 - fabs((i-nn)/(nn-1.0)));
}

/***/

#include <math.h>

static float VALUE(int i);
static int nn;

void WELCH(float w[], int n)
{

int i;

/*Determine mid point of array.*/
nn=1+(n/2);

/*Generate Welch Window taking into account the symmetry.*/
w[1]=VALUE(1);
for (i=2; i<=nn-1; i++)
{
w[i] =VALUE(i);
w[n-i+2]=w[i];
}

w[nn]=VALUE(nn);
}

A.4. PART IV 739

/*Internal function to determine value*/

static float VALUE(int i)
{

return(1.0 - pow((i-nn)/(nn-1), 2));
}

/***/

void HANNING(float w[], int n)
{

int i;

/* Generate one period of a cosine signal.*/
COSINE(w,n,1);

/*Generate Hanning Window using the cosine signal from above.*/

for(i=1; i<=n; i++)
{
w[i]=0.5+0.5*w[i];
}

}

/***/

void HAMMING(float w[], int n)
{

int i;

/*Generate one period of a cosine signal.*/
COSINE(w,n,1);

/*Generate Hamming Window using the cosine signal from above.*/

for(i=1; i<=n; i++)
{
w[i]=0.54+0.46*w[i];
}

}

13.12

void DIF(float s[], int n)
{

int nn, i;

740 APPENDIX A. SOLUTIONS TO PROBLEMS

float *si, temp;

/*Allocate space for work arrays.*/
si = (float *) calloc(n+1, sizeof(float));

/*Determine mid point of array.*/
nn=1+(n/2);

/*Initialize imaginary working arrays for the signal.*/
for(i=1; i<=n; i++)si[i]=0.0;

/*Compute the Discrete Fourier Transform of signal*/
FFT1D(s,si,n,-1);

/*Multiply spectrum by Fourier filter for a differential*/
for(i=1; i<=n; i++)

{
temp = s[i]*(i-nn);
s[i] = -1.0*si[i]*(i-nn);
si[i] = temp;
}

/*Compute the Inverse DFT signal s.*/
FFT1D(s,si,n,1);

/*Free space from work arrays.*/
free(si);

}

The output from this module produces ringing - the Gibbs effect. This is due to the
discontinuity (at high frequency values) associated with the frequency ‘ramp’ that is
applied to compute the differential.

13.13

void CONVOLVE(float f[], float p[], float s[], int n)
{

int i;
float *fr, *fi, *pr, *pi, *si;

/*Allocate space for internal work arrays.*/

fr = (float *) calloc(n+1, sizeof(float));
fi = (float *) calloc(n+1, sizeof(float));

pr = (float *) calloc(n+1, sizeof(float));
pi = (float *) calloc(n+1, sizeof(float));

A.4. PART IV 741

si = (float *) calloc(n+1, sizeof(float));

/*Initialize real and imaginary working arrays*/

for(i=1; i<=n; i++)
{
fr[i] = f[i];
fi[i] = 0.0;

pr[i] = p[i];
pi[i] = 0.0;
}

/*Compute the DFT of signals f and p.*/
FFT1D(fr,fi,n,-1);
FFT1D(pr,pi,n,-1);

/*Compute the product of the complex Fourier transforms*/
for(i=1; i<=n; i++)
{
s[i] = (fr[i] * pr[i]) - (fi[i] * pi[i]);
si[i] = (fr[i] * pi[i]) + (pr[i] * fi[i]);
}

/*Compute the inverse DFT*/
FFT1D(s,si,n,1);

/*Free internal memory assigned to internal arrays.*/
free(fr);
free(fi);

free(pr);
free(pi);

free(si);
}

The following test unit prompts the user to input the standard deviation of the
Gaussian function and convolves it with two spikes 32 elements apart. Each signal is
displayed using gsignal for analysis.

#include <stdio.h>
#define n 512

void main(void)

742 APPENDIX A. SOLUTIONS TO PROBLEMS

{

char ans;
int i,w;

float s1[n+1],s2[n+1],s3[n+1];

start: printf("input width (standard deviation) of Gaussian\n");
scanf("%d",&w);

GAUSSIAN(s1,n,w);
gopen();
gsignal(s1,n,1);

SPIKES(s2,n,32);
gsignal(s2,n,1);

CONVOLVE(s1,s2,s3,n);
gsignal(s3,n,1);

printf("again?<y>\n");
scanf("%s",&ans);
if(ans==’y’)goto start;
else
exit(0);
}

13.14

void CROSCOR(float f[], float p[], float s[], int n)
{

int i;
float *fr, *fi, *pr, *pi, *si;

/*Allocate internal work space*/
fr = (float *) calloc(n+1, sizeof(float));
fi = (float *) calloc(n+1, sizeof(float));

pr = (float *) calloc(n+1, sizeof(float));
pi = (float *) calloc(n+1, sizeof(float));

si = (float *) calloc(n+1, sizeof(float));

/*Initialize real and imaginary arrays.*/

for(i=1; i<=n; i++)

A.4. PART IV 743

{
fr[i] = f[i];
fi[i] = 0.0;

pr[i] = p[i];
pi[i] = 0.0;
}

/*Compute the DFT of f and p.*/
FFT1D(fr,fi,n,-1);
FFT1D(pr,pi,n,-1);

/*Calculate the product of the complex Fourier transform of F and
the complex conjugate of P*/

for(i=1; i<=n; i++)
{
s[i] = (pr[i] * fr[i]) + (pi[i] * fi[i]);
si[i] = (pi[i] * fr[i]) - (pi[i] * fr[i]);
}

/*Compute the Inverse DFT*/
FFT1D(s,si,n,1);

/*Free space from work arrays.*/
free(fr);
free(fi);

free(pr);
free(pi);

free(si);
}

The test unit for this module is the same as that provided in the previous question.
Cross correlation of a sine wave with the same sine wave produces a spike. The
correlation of a sine wave with a cosine wave does not produce a spike. In general,
the correlation of a signal f with a matching signal or template p produces a peak or
spike in the output - the correlation function. This is one of the fundamental methods
of pattern recognition for example.

13.15

#include <math.h>

void AUTOCOR(float f[], float s[], int n)
{

int i;

744 APPENDIX A. SOLUTIONS TO PROBLEMS

float *si;

/*Allocate space for work arrays.*/
si = (float *) calloc(n+1, sizeof(float));

/*Initialize real and imaginary working arrays for the signal.*/

for(i=1; i<=n; i++)
{
s[i] = f[i];
si[i] = 0.0;
}

/*Compute the DFT*/
FFT1D(s, si, n, -1);

/*Compute the product of the complex Fourier transforms F and its
complex conjugate*/

for(i=1; i<=n; i++)
{
s[i] = s[i]*s[i]+si[i]*si[i];
si[i] = 0.0;
}

/*Compute the inverse DFT*/
FFT1D(s, si, n, 1);

/*Free internal memory*/

free(si);
}

An example test unit is given below.

#include <stdio.h>
#define n 512

void main(void)
{

char ans;
int i,w;

float s1[n+1],s2[n+1],s3[n+1];

start: printf("input width of Tophat function\n");

A.4. PART IV 745

scanf("%d",&w);

TOPHAT(s1,n,w);
gopen();
gsignal(s1,n,1);

AUTOCOR(s1,s2,n);
gsignal(s2,n,1);

printf("again?<y>\n");
scanf("%s",&ans);
if(ans==’y’)goto start;
else
exit(0);
}

The output is a triangle.

13.16

void FILTER(float s[], float f[], int n)
{

float *si;

/*Allocate space for work arrays.*/
si = (float *) calloc(n+1, sizeof(float));

/*Initialize imaginary array.*/
for(i=1; i<=n; i++)si[i]=0.0;

/*Compute the DFT.*/
FFT1D(s, si, n, -1);

/*Compute the product of the complex Fourier transform
with the input filter.*/
for(i=1; i<=n; i++)

{
s[i]=f[i]*s[i];
si[i]=f[i]*si[i];
}

/*Compute the inverse DFT.*/
FFT1D(s, si, n, 1);

/*Free work space.*/
free(si);

746 APPENDIX A. SOLUTIONS TO PROBLEMS

}

/***/

#include <stdio.h>
#define n 512

void main(void)
{

char ans;
int i,w,p;

float f[n+1],s[n+1];

start: printf("input width of tophat function\n");
scanf("%d",&w);

TOPHAT(f,n,w);
gopen();
gsignal(f,n,1);

p=10;
COSINE(s,n,p);
gsignal(s,n,1);

FILTER(s,f,n);
gsignal(s,n,1);

printf("again?<y>\n");
scanf("%s",&ans);
if(ans==’y’)goto start;
else
exit(0);
}

When the bandwidth of the Tophat filter is greater than that of the cosine wave whose
Fourier transform is a delta function (in the negative and positive half spaces), the
wave is reproduced. However, when the bandwidth is less than that of the cosine
wave so that the delta functions are effectively set to zero, the cosine wave ‘vanishes’.

13.17

void ANASIG(float f[], float q[], int n)
{

int nn, i;

A.4. PART IV 747

/*Determine mid point of array.*/
nn = 1 + (n/2);

/*Initialize imaginary working array for the signal.*/
for(i=1; i<=n; i++) q[i]=0.0;

/*Compute the DFT.*/
FFT1D(f, q, n, -1);

/*Set the negative frequencies of the DFT to zero.*/
for (i=1; i<=nn-1; i++)
{
f[i] = 0.0;
q[i] = 0.0;
}

/*Scale the positive frequencies and DC of the DFT by 2.*/
for (i=nn; i<=n; i++)
{
f[i] = 2.0 * f[i];
q[i] = 2.0 * q[i];
}

/*Compute the inverse DFT.*/
FFT1D(f, q, n, 1);

}

13.18

void HILBERT(float s[], int n)
{

float *si;

/*Allocate space for work arrays.*/
q = (float *) calloc(n+1, sizeof(float));

/*Compute the analytic signal.*/
ANASIG(s, q, n);

/*Write quadrature component to output signal s.*/
for(i=1; i<=n; i++)s[i]=q[i];

/*Free space from work arrays.*/
free(q);

}

748 APPENDIX A. SOLUTIONS TO PROBLEMS

Test unit

#include <stdio.h>
#define n 512

void main(void)
{

char ans;
int i,p;

float s[n+1];

start: printf("input number of periods of sine wave\n");
scanf("%d",&p);

SINE(s,n,p);
gopen();
gsignal(s,n,1);

HILBERT(s,n,p);
gsignal(s,n,1);

printf("again?<y>\n");
scanf("%s",&ans);
if(ans==’y’)goto start;
else
exit(0);
}

13.19

void AMPENV(float s[], float a[], int n)
{

int i;
float *q;

/*Allocate internal memory.*/
q = (float *) calloc(n+1, sizeof(float));

/*Copy array s to array a*/
for(i=1; i<=n; i++) a[i]=s[i];

/*Compute the analytic signal.*/
ANASIG(a, q, n);

A.4. PART IV 749

/*Compute amplitude envelope of the analytic signal.*/

for (i=1; i<=n; i++)
{
a[i] = a[i]*a[i]+q[i]*q[i]
}

/*Free space from work arrays.*/
free(q);

}

Test unit.

#include <stdio.h>
#define n 512

void main(void)
{

char ans;
int i,p;

float s[n+1], a[n+1];

start: printf("input number of periods of sine wave\n");
scanf("%d",&p);

SINE(s,n,p);
gopen();
gsignal(s,n,1);

AMPENV(s,a,n);
gsignal(a,n,1);

printf("again?<y>\n");
scanf("%s",&ans);
if(ans==’y’)goto start;
else
exit(0);
}

13.20

void SINCINT(float x[], int n, float y[], int m)

750 APPENDIX A. SOLUTIONS TO PROBLEMS

{
int nn, mm, i;
float *xr, *xi, *yi, scale;

/*Allocate internal memory.*/

xr = (float *) calloc(n+1, sizeof(float));
xi = (float *) calloc(n+1, sizeof(float));

yi = (float *) calloc(m+1, sizeof(float));

/*Determine mid point of array.*/

nn = 1 + (n/2);
mm = 1 + (m/2);

/*Initialize working arrays.*/

for(i=1; i<=n; i++)
{
xr[i] = x[i];
xi[i] = 0.0;
}

for (i=1; i<=m; i++)
{
y[i] = 0.0;
yi[i] = 0.0;
}

/*Compute the DFT.*/

FFT1D(xr, xi, n, -1);

/*Zero-pad n-point spectrum to give m-point spectrum.*/
for (i=1; i<=n; i++)

{
y[mm-nn+i]=xr[i];
yi[mm-nn+i]=xi[i];
}

/*Compute the inverse DFT.*/
FFT1D(y, yi, m, 1);

/*Scale sinc-interpolated signal by (m/n).*/
scale = m / n;
for (i=1; i<=m; i++)

A.4. PART IV 751

{
y[i] = y[i] * scale;
}

/*Free internal memory.*/
free(xr);
free(xi);

free(yi);
}

Test unit.

#include <stdio.h>
#define n 128
#define m 256

void main(void)
{

char ans;
int i,p;

float s[n+1], ss[n+1];

start: printf("input number of periods of sine wave\n");
scanf("%d",&p);

SINE(s,n,p);
gopen();
gsignal(s,n,1);

SINCINT(s,n,ss,m);
gsignal(ss,m,1);

printf("again?<y>\n");
scanf("%s",&ans);
if(ans==’y’)goto start;
else
exit(0);
}

A.4.2 Solutions to Problems Given in Chapter 14

14.1

752 APPENDIX A. SOLUTIONS TO PROBLEMS

void ILF(float s[], int n, int bw)
{

float *fx;

/*Allocate space for work arrays.*/
fx = (float *) calloc(n+1, sizeof(float));

/*Create Tophat filter of bandwidth bw.*/
TOPHAT(fx, n, wb);

/*Filter signal with Tophat filter.*/
FILTER(s, fx, n);

/*Free space from work arrays.*/
free(fx);

}

14.2

void GLF(float s[], int n, int bw)
{

float *fx;

/*Allocate internal memory.*/
fx = (float *) calloc(n+1, sizeof(float));

/*Create Gaussian filter of bandwidth bw.*/
GAUSSIAN(fx, n, bw);

/*Filter signal with Gaussian filter.*/
FILTER(s, fx, n);

/*Free space from work arrays.*/
free(fx);

}

14.3

#include<math.h>

void BLF(float s[], int n, int bw, int ord)
{

int nn;
float *fx, div;

A.4. PART IV 753

nn=1+(n/2);

/*Allocate space for internal array.*/
p = (float *) calloc(n+1, sizeof(float));

ord=2*ord;
/*Create Butterworth filter of bandwidth bw and order ord.*/

for(i=1; i<=n; i++)
{
div=(float) (i-nn)/bw;
p[i] = 1.0 / (1.0 + pow(div,ord));
}

/*Filter signal with Butterworth filter.*/
FILTER(s, p, n);

/*Free space from work arrays.*/
free(p);

}

14.4

void IHF(float s[], int n, int bw)
{

float *p;

/*Allocate space for work array.*/
p = (float *) calloc(n+1, sizeof(float));

/*Create ideal highpass filter of bandwidth wb.*/
nn=1 + (n/2); /*Set position of DC level.*/
mm=2*bw;
for (i=1; i<=n; i++) p[i]=1.0; /*Initialize.*/

for (i=nn-bw+1; nn-bw+mm; i++) p[i]=0.

/*Filter signal.*/
FILTER(s, p, n);

/*Free internal memory.*/
free(p);

}

/***/

754 APPENDIX A. SOLUTIONS TO PROBLEMS

void GHF(float s[], int n, int bw)
{

int i, nn;
float *g, x, sigma;

/*Allocate internal memory.*/
g = (float *) calloc(n+1, sizeof(float));

/*Create Gaussian highpass filter of bandwidth bw.*/

/*Determine mid point of array.* /
nn=1+(n/2);

/*Generate Gaussian signal.*/
sigma=(float) bw;
for(i=1; i<=n; i++)
{
x=(float)(i-nn);
g[i]=exp((x*x)/(sigma*sigma)) - 1;
}

/*Filter signal*/
FILTER(s, g, n);

/*Free internal memory.*/
free(g);

}

/***/

\begin{verbatim}
#include<math.h>

void BHF(float s[], int n, int bw, int ord)
{

float *fx, div, x;

/*Allocate space for internal array.*/
p = (float *) calloc(n+1, sizeof(float));

ord=2*ord;
/*Create Butterworth highpass filter of bandwidth bw and order ord.*/

for(i=1; i<n+1; i++)
{

if((i-nn) != 0)
{
div=(float) bw/(i-nn);

A.4. PART IV 755

p[i] = 1.0 / (1.0 + pow(div,ord));
}

}
p[nn]=0.0;/*Set midpoint value to zero.*/

/*Filter signal.*/
FILTER(s, p, n);

/*Free space from work arrays.*/
free(p);

}

14.5

#include <math.h>
long float pow(long float x, long float y);

void FRAC_FIL(float s[], int n, int seed, long float q)
{

int i,nn=1+n/2;
float pi, S, C;
float *sr, *si;
long float denom;
long float omega;

pi=4.0*atan(1.0);

/*Allocate memory to internal work space.*/
si = (float *) calloc(n+1, sizeof(float));

/*Compute Gaussian noise field.*/
GNOISE(s,n,seed);

/*Compute the DFT.*/
FFT1D(s, si, n, -1);

/*Compute constants associated with filter.*/
C=cos(pi*q/2);
S=sin(pi*q/2);

/*Apply the Fractal Filter.*/
for (i=1; i<=nn-1; i++)
{
omega=(long float) (nn-i);
denom=pow(omega, q);
s[i] = (C*s[i]-S*si[i])/denom;

756 APPENDIX A. SOLUTIONS TO PROBLEMS

si[i] = (S*s[i]+C*si[i])/denom;
}

for (i=nn; i<=n; i++)
{
omega=(long float) (i-nn);
denom=pow(omega, q);
s[i] = (C*s[i]-S*si[i])/denom;
si[i] = (S*s[i]+C*si[i])/denom;
}

/*Note: DC components (where the filter is singular) remain that same.*/

/*Compute the inverse DFT.*/
FFT1D(s, si, n, 1);

/*Free space from work array.*/
free(si);

}

14.6

#include<math.h>

void WIENER(float s[], float p[], float f[], int n, long float snr)
{

int i;
float *sr, *si, *pr, *pi, *fi, gamma, denom;

/*Allocate memory for internal arrays.*/

sr = (float *) calloc(n+1, sizeof(float));
si = (float *) calloc(n+1, sizeof(float));

pr = (float *) calloc(n+1, sizeof(float));
pi = (float *) calloc(n+1, sizeof(float));

fi = (float *) calloc(n+1, sizeof(float));

/*Compute gamma from SNR.*/
gamma = 1.0 / pow(snr, 2);

/*Initialize real and imaginary arrays.*/
for (i=1; i<=n; i++)
{

A.4. PART IV 757

sr[i] = s[i];
si[i] = 0.0;

pr[i] = p[i];
pi[i] = 0.0;
}

/* Compute the DFTs of signals.*/
FFT1D(sr, si, n, -1);
FFT1D(pr, pi, n, -1);

/*Apply Wiener Filter.*/
for (i=1; i<=n; i++)

{
denom = 1.0 / (pow(pr[i], 2) + pow(pi[i], 2) + gamma);
f[i] = (sr[i]*pr[i] + si[i]*pi[i]) * denom;
fi[i] = (si[i]*pr[i] - sr[i]*pi[i]) * denom;
}

/*Compute inverse DFT.*/
FFT1D(f, fi, n, 1);

/*Free internal memory.*/
free(sr);
free(si);

free(pr);
free(pi);

free(fi);
}

14.7 The test unit given below is designed to investigate the application of the Wiener
filter in a noise free environment. It illustrates the effect of convolution and deconvo-
lution using a Fourier filtering approach. The purpose of using two spikes is to provide
a test which illustrates the restoration of information in terms of the ‘resolution’ of a
known input, i.e. the distance between the spikes.

#include <stdio.h>
#define n 128

void main(void)
{

char ans;
int i, w, snr;

758 APPENDIX A. SOLUTIONS TO PROBLEMS

float f[n+1], p[n+1], s[n+1];

SPIKES(f,n,10)
gopen();
gsignal(f,n,1);

start: printf("input width of Gaussian\n");
scanf("%d",&w);

GAUSSIAN(p,n,w);
gsignal(p,n,1);

CONVOLVE(f,p,s,n);
gsignal(s,n,1);

printf("input snr\n");
scanf("%f",&snr);

WIENER(f,p,s,n,snr);
gsignal(s,n,1);

printf("again?<y>\n");
scanf("%s",&ans);
if(ans==’y’)goto start;
else
exit(0);
}

14.8 Note that the values of the SNR used in the restoration of a signal with the
Wiener filter does not correlate directly to the snr of the signal.

#include <stdio.h>
#include <math.h>
#define n 128

void main(void)
{

char ans;
int i, w;
long float snr, SNR;
long float a=1;

float p[n], f[n+1], s[n+1], Noise[n+1];

A.4. PART IV 759

SPIKES(f,n,10);
gopen();
gsignal(f);

start: printf("input standard deviation of Gaussian\n");
scanf("%d",&w);

GAUSSIAN(p,n,w);
gsignal(p,n,1);

CONVOLVE(f,p,s,n);
gsignal(s,n,1);

GNOISE(Noise,n,123);
gsignal(Noise,n,1);

SCALE(s,n,a);
SCALE(Noise,n,a);

printf("input snr\n");
scanf("%f",&snr);

for(i=0; i<n; i++)
{
s[i]=snr*s[i]+Noise[i];
}
gsignal(s,n,1);

printf("input SNR for Wiener restoration of signal\n");
scanf("%f",&SNR);

WIENER(s,p,f,n,SNR);
gsignal(f,n,1);

printf("again?<y>\n");
scanf("%s",&ans);
if(ans==’y’)goto start;
else
exit(0);
}

14.9

void MATFIL(float s[], float p[], float f[], int n)
{

int i;

760 APPENDIX A. SOLUTIONS TO PROBLEMS

float *sr, *si, *pr, *pi, *fi;

/*Allocate internal memory.*/

sr = (float *) calloc(n+1, sizeof(float));
si = (float *) calloc(n+1, sizeof(float));

pr = (float *) calloc(n+1, sizeof(float));
pi = (float *) calloc(n+1, sizeof(float));

fi = (float *) calloc(n+1, sizeof(float));

/*Initialize real and imaginary arrays.*/
for(i=1; i<=n; i++)

{
sr[i] = s[i];
si[i] = 0.0;

pr[i] = p[i];
pi[i] = 0.0;
}

/*Compute the DFT of signal s and p.*/
FFT1D(sr, si, n, -1);
FFT1D(pr, pi, n, -1);

/*Apply the Matched Filter.*/
for (i=1; i<=n; i++)
{
f[i] = (sr[i]*pr[i] + si[i]*pi[i]);
fi[i] = (si[i]*pr[i] - sr[i]*pi[i]);
}

/*Compute the inverse DFT.*/
FFT1D(f, fi, n, 1);

/*Free internal memory.*/
free(sr);
free(si);

free(pr);
free(pi);

free(fi);
}

14.10 The main program given below, provides a test unit for investigating the restora-

A.4. PART IV 761

tion of a signal (two spikes) when it has been convolved with a linear FM chirp. The
restoration of the signal in the presence of additive noise is remarkably robust and
provides an excellent reconstruction when the snr (as defined here) is very low, i.e.
snr=1 or less. As in question 14.8, the use of two spikes, provides an estimation of
the resolving power of the method in terms of the extraction of a signal from noise.

#include <stdio.h>
#include <math.h>
#define n 512

void main(void)
{

char ans;
int i, w, snr;
long float a=1;

float f[n+1], p[n+1], s[n+1], Noise[n+1];

SPIKES(f,n,30);

start: printf("input width of chirp\n");
scanf("%d",&w);

CHIRP(p,n,w);
gopen();
gsignal(p,n,1);
gsignal(f,n,1);

CONVOLVE(f,p,s,n);
gsignal(s,n,1);

GNOISE(Noise,n,4526);
gsignal(Noise,n,1);
SCALE(s,n,a);
SCALE(Noise,n,a);

printf("input snr\n");
scanf("%f",&snr);

for(i=1; i<=n; i++)
{
s[i]=snr*s[i]+Noise[i];
}
gsignal(s,n,1);

762 APPENDIX A. SOLUTIONS TO PROBLEMS

MATFIL(s,p,f,n);
gsignal(f,n,1);

printf("again?<y>\n");
scanf("%s",&ans);
if(ans==’y’)goto start;
else
exit(0);
}

/**/
#include <math.h>

void CHIRP(float s[], int n, int nw)

{
int nn, mm, i, j, jj;
float pi;

pi=4.0*atan(1.0);

/*Determine mid points of the array.*/

nn=1+(n/2);
mm=1+(nw/2);

/*Initialize array s[] just in case.*/

for(i=1; i<=n; i++)s[i]=0.0;

/* Compute chirp. */
j=0;

for(i=nn-mm+1; i<=nn+mm; i++)
{
jj=j*j;
s[i]=sin(2*pi*(float)jj/n);
j=j+1;
}

}

A.4.3 Solutions to Problems Given in Chapter 15

15.1 The ML estimate is obtained by finding the coefficients An which satisfy the
condition

∂

∂Am
lnP (s | f) = 0.

A.4. PART IV 763

The probability of measuring s given f is determined by the noise since

n(t) = s(t)− f(t).

If the noise is zero-mean Gaussian with standard deviation σ2
n, then,

P (s | f) =
1√

2πσ2
n

exp

⎛⎝− 1
2σ2

n

T∫
−T

| s(t)− f(t) |2 dt
⎞⎠

and the ML estimate is given by solving the equation

− 1
2σ2

n

∂

∂Am

T∫
−T

| s(t)− w(t) |2 1
w(t)

dt

which yields
S(ωm) =

∑
n

AnW (ωm − ωn).

Using the convolution theorem, we have

sBL(t) = a(t)wBL(t)

and hence, the ML estimate is

fML(t) =
w(t)
wBL(t)

sBL(t).

Note, that this result is identical to the least mean square approximation.

15.2 Note, that the Rayleigh distribution is a very common and generally accurate
model for the random amplitude fluctuations a of a signal where

P (a) =
1
σ2

a

a exp
(
− a2

2σ2
a

)
; a ≥ 0.

It is an accurate representation of the statistical fluctuations of the amplitude modu-
lations of many radar, sonar, ultrasonic and seismic signals for example. If the signal
s is taken to represent amplitude modulations then the functions f and n are neces-
sarily real and non-negative. Hence, in this case we can utilize an inverse weighted
PDF of the form

P (s | f) =
1
σ2

n

T∫
−T

[s(t)− f(t)]dt exp

⎛⎝− 1
2σ2

n

T∫
−T

[s(t)− f(t)]2
1

w(t)
t

⎞⎠ .

The ML estimate is then given by finding the coefficients An which satisfy the equation

∂

∂Am
lnP (s | f) = −W (ωm)

N(0)
+

1
σ2

n

(
S(ωm)−

∑
n

AnW (ωm − ωn)

)
= 0

764 APPENDIX A. SOLUTIONS TO PROBLEMS

where N(0) is the DC level of the noise, i.e.

N(0) =

T∫
−T

[s(t)− f(t)]dt =

T∫
−T

n(t)dt.

From this equation we get (using the convolution theorem)

− σ2
n

N(0)
wBL(t) + sBL(t) = a(t)wBL(t)

and hence, the ML estimate for a Rayleigh distribution becomes

fML(t) = w(t)
(
sBL(t)
wBL(t)

− σ2
n

N(0)

)
.

Observe, that when σn = 0, the ML estimate for Rayleigh statistics reduces to the
ML estimate for Gaussian statistics.

15.3 The MAP estimate is obtained by finding the coefficients Am which satisfies the
equation

∂

∂Am
lnP (s | f) +

∂

∂Am
lnP (f) = 0

where
f(t) = w(t)

∑
n

An exp(iωnt).

Using the distributions given,

− 1
2σ2

n

∂

∂Am

T∫
−T

| s(t)− w(t)
∑

n

An exp(iωnt) |2 1
w(t)

dt

− 1
2σ2

f

∂

∂Am

T∫
−T

| w(t)
∑

n

An exp(iωnt)− f̄(t) |2 1
w(t)

dt = 0.

Differentiating, we get

1
σ2

n

T∫
−T

[s(t)− w(t)
∑

n

An exp(iωnt)] exp(−iωmt)dt

− 1
σ2

f

T∫
−T

[w(t)
∑

n

An exp(iωnt)− f̄(t)] exp(−iωmt)dt = 0

or

1
σ2

n

S(ωm)− 1
σ2

n

∑
n

AnW (ωm − ωn)− 1
σ2

f

∑
n

AnW (ωm − ωn) +
1
σ2

f

F̄ (ωm) = 0

A.4. PART IV 765

where

F̄ (ωm) =

T∫
−T

f̄(t) exp(−iωmt)dt.

Using the convolution theorem, we then obtain(
1
σ2

n

+
1
σ2

f

)
a(t)wBL(t) =

1
σ2

n

sBL(t) +
1
σ2

f

f̄(t).

Rearranging, the MAP estimate for Gaussian statistics is given by

fMAP (t) =
1

1 + Γ2

w(t)
wBL(t)

(
f̄(t) + Γ2sBL(t)

)
where Γ is the signal to noise ratio defined by

Γ =
σf

σn
.

15.4 In this case

∂

∂Am
lnP (f) =

W (ωm)
F (0)

− 1
σ2

f

∑
n

AnW (ωm − ωn)

where F (0) is the DC level of F (ωm),

F (0) =

T∫
−T

f(t)dt

and
∂

∂Am
lnP (s | f) = −W (ωm)

N(0)
+

1
σ2

n

(
S(ωm)−

∑
n

AnW (ωm − ωn)

)
where N(0) is the DC level of N(ωm),

N(0) =

T∫
−T

n(t)dt.

It is then easy to show, that the MAP estimate for Rayleigh statistics is given by

fMAP (t) =
1

1 + Γ2

w(t)
wBL(t)

[
Γ2sBL(t) + σ2

fwBL(t)
(

1
F (0)

− 1
N(0)

)]
.

15.5 Maximum entropy estimation is usually based on modelling the object itself. A
reconstruction is found for f such that

E = −
T∫

−T

f(t) ln f(t)dt

766 APPENDIX A. SOLUTIONS TO PROBLEMS

is a maximum. If we use a model for f of the form

f(t) = w(t)
∑

n

An exp(iωnt),

then the problem is reduced to finding the coefficients An which maximizes E. This
requires that f is both real and non-negative. Another way in which the object can
be reconstructed is by choosing the coefficients An is such a way that the entropy of
the amplitude spectrum | An | is a maximum. The entropy of this spectrum is given
by

E = −
∑

n

| An | ln | An | .

Now, because s = f + n, we can write

λ

⎡⎣ T∫
−T

| s(t)− f(t) |2 1
w(t)

dt−
T∫

−T

| n(t) |2 1
w(t)

dt

⎤⎦ = 0

where λ is the Lagrange multiplier. Thus, we may write the entropy of | An | as

E = −
∑

n

| An | ln | An | −λ
⎡⎣ T∫
−T

| s(t)− f(t) |2
w(t)

dt−
T∫

−T

| n(t) |2
w(t)

dt

⎞⎠ .

This entropy is a function of the coefficients Am that we want to compute and is
therefore a maximum when

∂E

∂Am
= 0.

Substituting our model for f(t) into the equation for E and differentiating with respect
to Am, we get

(1 + ln | Am |) A∗
m

2 | Am |

−2λ

⎛⎝ T∫
−T

[s(t)− w(t)
∑

n

An exp(iωnt)] exp(−iωmt)dt

⎞⎠ = 0.

Noting that Am can be written as

Am =| Am | exp(iφm)

where | Am | and φm are the amplitude and phase spectra of Am respectively, we
have

(1 + ln | Am |) exp(iφm) = −2λ

(
S(ωm)−

∑
n

AnW (ωm − ωn)

)
or

| Am |= exp

[
−1 + 2λ exp(−iφm)

(
S(ωm)−

∑
n

AnW (ωm − ωn)

)]
.

A.4. PART IV 767

This equation is transcendental in Am and as such requires that Am is evaluated
iteratively, i.e.

| Ak+1
m |= exp

[
−1 + 2λ exp(−iφk

m)

(
S(ωm)−

∑
n

Ak
nW (ωm − ωn)

)]

where
φk

m = Im[lnAk
m].

A useful approximation to this maximum entropy estimate can be obtained by lin-
earizing the above equation. This is obtained by expanding the exponential function
and retaining the linear terms giving

| Am |� 2λ exp(−iφm)

(
S(ωm)−

∑
n

AnW (ωm − ωn)

)

or
Am

2λ
� S(ωm)−

∑
n

AnW (ωm − ωn).

From the last equation, it follows that (taking the inverse Fourier transform and using
the convolution theorem)

a(t) � sBL(t)
wBL(t) + 1/2λ

and hence

f(t) =
w(t)sBL(t)

wBL(t) + 1/2λ
.

15.6 For the model given, the error function required is

e =

T∫
−T

∣∣∣∣ s(t)w(t)
− ln

(
f(t)
w(t)

)∣∣∣∣2 w(t)dt =

T∫
−T

∣∣∣∣∣ s(t)w(t)
−
∑

n

An exp(iωnt)

∣∣∣∣∣
2

w(t)dt

where w > 0 and s and f are non-negative functions. Differentiating with respect to
Am, this error is a minimum when

Sn −An ⊗Wn = 0

or in real space, when
a(t)wBL(t) = sBL.

Thus, we obtain the solution

f(t) = w(t) exp
[
sBL(t)
wBL(t)

]
.

768 APPENDIX A. SOLUTIONS TO PROBLEMS

A.4.4 Solutions to Problems Given in Chapter 16

16.1

void FIRCON(float f[], float p[], float s[], int n, int w, int opt)
{

int edge, mm, m, nn, i, j;
float *fw, sum;

/*Allocate space for work arrays.*/
edge = w * 0.5;
m = n + 2 * edge;
fw = (float *) calloc(m+1, sizeof(float));

/*Determine mid point of arrays.*/
nn = 1 + (n * 0.5);
mm = 1 + (m * 0.5);

/*Initialize working array for the signal.*/
for(i=1; i<=m; i++) fw[i]=0.0;
for(i=1; i<=n; i++) fw[mm-nn+i]=f[i]

/*Apply end point extension if indicated.*/
if (opt != 0)
{
for (i=1; i<=edge; i++)
{
fw[i] = f[1];
fw[m-i+1] = f[n];
}

}

/*Apply convolution to work array.*/
for (i=1; i<=n; i++)
{
sum = 0.0;

for (j=0; j<w; j++)
{
sum += fw[i+j] * p[w-j];
}

s[i] = sum;
}

/*Free internal work space.*/

A.4. PART IV 769

free(fw);
}

/**********************TEST UNIT*******************/

#define n 128

void main(void)
{

float f[n+1], s[n+1], p[3];

TOPHAT(f,n,20);
gopen();
gsignal(f,n,1);

p[1]=1;
p[2]=-1;

FIRCON(f,p,s,n,2,1);
gsignal(s,n,1);

exit(0);
}

16.2

void FIRCOR(float f[], float p[], float s[], int n, int w, int opt)
{

int edge, mm, m, nn, i, j;
float *fw, sum;

/*Allocate internal memory.*/
edge = w * 0.5;
m = n + 2 * edge;
fw = (float *) calloc(m+1, sizeof(float));

/*Determine mid point of arrays.*/
nn = 1 + (n * 0.5);
mm = 1 + (m * 0.5);

/*Initialize internal array.*/
for(i=1; i<=m; i++) fw[i]=0.0;
for(i=1; i<=n; i++) fw[mm-nn+i]=f[i]

770 APPENDIX A. SOLUTIONS TO PROBLEMS

/*Apply end point extension if indicated.*/
if (opt != 0)
{
for (i=1; i<=edge; i++)
{
fw[i] = f[1];
fw[m-i+1] = f[n];
}

}

/*Apply correlation process.*/
for (i=1; i<=n; i++)
{
sum = 0.0;

for (j=0; j<w; j++)
{
sum += fw[i+j] * p[j+1];
}

s[i] = sum;
}

/*Free memory from stack.*/
free(fw);

}

/**********************TEST UNIT*******************/

#define n 32

void main(void)
{

float f[n+1], p[n+1], s[n+1];

TOPHAT(f,n,20);
TOPHAT(p,n,20);
gopen();
gsignal(f,n,1);

FIRCON(f,p,s,n,n,1);
gsignal(s,n,1);

exit(0);
}

A.4. PART IV 771

16.3

void MAVFIL(float s[], int n, int w, int opt)
{

int edge, mm, m, nn, i;
float *sw, sum, scale;

/*Allocate parameters and internal work space.*/
edge = w * 0.5;
m = n + 2 * edge;
*sw = (float *) calloc(m+1, sizeof(float));

/*Determine mid point of arrays.*/
nn = 1 + (n * 0.5);
mm = 1 + (m * 0.5);
scale = 1.0 / w;

/*Initialize internal working array.*/
for(i=1; i<=m; i++) fw[i]=0.0;
for(i=1; i<=n; i++) fw[mm-nn+i]=f[i]

/*Apply end point extension if indicated.*/
if (opt != 0)
{
for (i=1; i<=edge; i++)
{
sw[i] = s[1];
sw[m-i+1] = s[n];
}

}

/*Compute the first average value.*/
sum = 0.0;
for (i=1; i<=w; i++)
{
sum = sum + sw[i];
}

s[1] = sum * scale;

/*Calculate the remaining average values.*/
for (i=2; i<=n; i++)
{
sum = sum - sw[i-1] + sw[i+w-1];
s[i] = sum * scale;
}

/*Free space from work array.*/

772 APPENDIX A. SOLUTIONS TO PROBLEMS

free(sw);
}

16.4

void MEDIAN(float x[], int w, int xmed) /*Prototyping*/

void MEDFIL(float s[], int n, int w)
{
int i, k, m, frame;
float *x,*y;
float med;

/*Declare internal workspace.*/
x = (float *) calloc(n+1, sizeof(float));
y = (float *) calloc(n+1, sizeof(float));

/*Zero pad s with an array of zeros (w-1)/2 samples wide.
/*The zero padded signal is stored in array x.*/

m=n+w-1;
for (i=1; i<=m; i++) x[i]=0.0;

frame=(w-1)/2;
for(i=1; i<=n; i++)
x[i+frame]=s[i];

/*Start the process.*/
for(i=1; i<=n; i++)
{

/*Select the size of the neighbourhood of samples
and store the result in the array y.*/
for(k=1; k<=w; k++) y[k]=x[i-1+k];

/*Compute the median value of y.*/
MEDIAN(y,w,med);

/*Store the median value in array s - output.*/
s[i]=med;

/*Repeat the process, i.e. move on to the next point.*/
}

}

/*****************INTERNAL FUNCTION****************/

A.4. PART IV 773

void SORT(float x[], int n) /*Prototyping*/

void MEDIAN(float x[], int n, int xmed)
{
int nn, mid;

/*Computes the median of a set of n numbers
where n is an odd number; 3, 5, 7,...*/

/*Sort numbers in order of increasing value.*/

SORT(x,n);

/*Compute median xmed - where half the numbers
in x[i] > xmed and half the numbers in x[i] < xmed.
The value of xmed is just the mid value of array x(i).*/

nn=(n-1)/2;
mid=nn+1; /*Mid point of array.*/
xmed=x[mid]; /*Median value.*/
}

/*******************INTERNAL FUNCTION***************/

void SORT(float x[], int n)
{
int i,j;
float temp;

/*Sorts n numbers in order of increasing value using a
’bubble sort’ with dynamic looping.*/

/* Start process. */

for(i=1; i<=n-1; i++)
{
for(j=1; j<=n-i; j++)/* Dynamic upper limit on nested loop. */

{
/*Check if x[j] is greater than x[j+1]. If so,

then exchange positions: x[j] becomes x[j+1]
x[j+1] becomes x[j]. */

if(x[j] > x[j+1])
{
temp=x[j];
x[j]=x[j+1];
x[j+1]=temp;

774 APPENDIX A. SOLUTIONS TO PROBLEMS

}

/* Repeat process. */
}

}
}

16.5 The moving average filter is useful for removing high frequency noise of relative
low amplitude, but very poor when it comes to dealing with high amplitude noise
spikes. In the latter case, the median filter replaces a large amplitude spike which is
out of context with its nearest neighbours with the median value of these neighbours
rather than the average value which is dominated by the ‘out-of-context’ neighbour.
Thus, for noise spikes, the median filter is ideal.

A.4.5 Solutions to Problems given in Chapter 17

17.1

#include <math.h>
/* Prototype functions */
void FFT1D(float a[], float b[], int n, int opt)
void UNOISE(float s[], int n, int seed)
void GNOISE(float s[], int n, int seed)

void RFS(float *s, int n, float D)
{

int i, k, m, opt;
float *si, *amp, *phase, q, pi;

/* FUNCTION: Generates a fractal signal s, of size n, with fractal
dimension D, using the Fourier synthesis method.

AUTHOR: J M Blackledge

PARAMETERS
Input: n - signal size.

D - fractal dimension of signal.
Output: s - fractal signal.

INTERNAL VARIABLES
i - array counter.
k - absolute frequency.
m - midpoint of signal.
opt - inverse FFT option.
si - imaginary part of signal.

A.4. PART IV 775

amp - amplitude of signal in Fourier space.
phase - phase of signal in Fourier space.
q - fractal parameter of signal.
pi - value of pi.

EXTERNAL FUNCTIONS:
GNOISE - generates noise signal with Gaussian distribution.
NOISE - generates noise signal with uniform distribution.
FFT1D - performs FFT in 1D.

INTERNAL FUNCTIONS:
None */

/* Calculate midpoint, q and pi values. */
m=n/2+1;
q=5.0-2.0*D;
pi=4.*atan(1.);

/* Allocate memory for arrays. */
si = (float *) calloc(n+1, sizeof(float));
amp = (float *) calloc(n+1, sizeof(float));
phase = (float *) calloc(n+1, sizeof(float));

/* Generate random values for amplitude
and phase of the fractal. */
GNOISE(amp,n,123456);
UNOISE(phase,n,654321);

/* Calculate real and imaginary parts of signal
in Fourier space. */
for (i=1;i<=n;i++) {

/* Absolute value of frequency at i. */
k=i-m;

/* Perform lowpass filter on the signal. */
if (k!=0)

amp[i]/=pow(abs(k),q/2.0);

/* Calculate phase of the signal. */
phase[i]*=2.0*pi;

/* Calculate real and imaginary parts of the signal. */
s[i]=amp[i]*cos(phase[i]);
si[i]=amp[i]*sin(phase[i]);

}

776 APPENDIX A. SOLUTIONS TO PROBLEMS

/* Perform inverse FFT to get signal in real space. */
opt=1;
FFT1D(s,si,n,opt);

/* Free memory. */
free(si);
free(amp);
free(phase);

}

17.2

#include <math.h>
#include <stdlib.h>
/* Prototype functions */
void POWSPEC(float s[], float p[], int n)

float FD(float *s,int n)
{

int i, k, m, nk;
float *p, lnp, lnk, lnplnk, lnk2, q;

/* FUNCTION: Calculates the fractal dimension of signal s
using the spectral power method.

AUTHOR: J M Blackledge

PARAMETERS
Input: s - signal.

n - signal size.
Output: FD - fractal dimension of signal s.

INTERNAL VARIABLES
i - counter for signal.
k - absolute frequency.
m - midpoint of signal.
nk - number of frequencies used in calculation.
p - power spectrum of signal s.
lnp, lnk, lnplnk, lnk2 - sum of logs of the values k and p.
q - estimate of the q value for signal s.

EXTERNAL FUNCTIONS:
POWSPEC - calculates the power spectrum of the signal.

A.4. PART IV 777

INTERNAL FUNCTIONS:
None */

/* Allocate memory for power spectrum. */
p = (float *) calloc(n+1, sizeof(float));

/* Calculate midpoint of signal. */
m=n/2+1;

/* Calculate power spectrum. */
POWSPEC(s,p,n);

/* Sum the values of ln(p[i]), ln(p[i]).ln(k), ln(k)
and (ln(k))^2. */
lnp=0.0;
lnplnk=0.0;
lnk=0.0;
lnk2=0.0;
nk=n;
for (i=1;i<=n;i++) {

k=abs(i-m);
if ((p[i]!=0.0) && (k!=0)) {

lnp+=log(p[i]);
lnplnk+=log(p[i])*log(k);
lnk+=log(k);
lnk2+=log(k)*log(k);

} else {
nk--;

}
}

/* Calculate value of q. */
q=(nk*lnplnk-lnk*lnp)/(pow(lnk,2)-nk*lnk2);

/* Free memory. */
free(p);

/* Return fractal dimension value. */
return ((5.0-q)/2.0);

}

17.31 For 0 < q < 1 and since the characteristic function is symmetric, we have

p(x) = Re[f(x)]

1Grateful thanks to Dr Keith Hopcraft, Nottingham University, for suggesting this approach.

778 APPENDIX A. SOLUTIONS TO PROBLEMS

where

f(x) =
1
π

∞∫
0

eikxe−kq

dk =
1
π

⎛⎝[1
ix
eikxe−kq

]∞
k=0

− 1
ix

∞∫
0

eikx(−qkq−1e−kq

)dk

⎞⎠

=
q

iπx

∞∫
0

dkkq−1e−kq

eikxdk =
q

iπx

∞∫
0

eikxkq−1φ(k)dk

where
φ(k) = exp(−kq).

For 0 < q < 1, f(x) is singular at k = 0 and is once differentiable. Using the result
given, for 0 < q < 1,

AN = Γ(q)e−iπ(1−q/2)e−kq |k=0
ei0

xq
= −Γ(q)eiπq/2

xq

.˙. f(x) = − q

iπx

(
−Γ(q)eiπq/2

xq

)
and

p(x) =
2Γ(1 + q) sin(πq/2)

πx1+q
, | x |>> 0.

For 1 < q < 2, we can integrate by parts twice to obtain

f(x) =
q

iπx

∞∫
0

dkkq−1e−kq

eikx

=
q

iπx

[
1
ix
kq−1e−kq

eikx

]∞
k=0

+
q

πx2

∞∫
0

dkeikx[(q − 1)kq−2e−kq − q(kq−1)2e−kq

].

The first term of this result is singular and therefore provides the greatest contribution
and thus we can write,

f(x) =
q(q − 1)
πx2

∞∫
0

eikx(uq−2e−kq

)dk.

Using the result given, writing q = λ − 1 and noting that for 1 < q < 2, φ is twice
differentiable, we get

f(x) = −q(q − 1)
πx2

[Γ(q − 1)eiπ(q−3)/2e−kq

x−(λ−1)eix0

+Γ(λ)ei(1+q−3)π/2(e−kq

)′ |k=0 e
ix0].

Thus,

p(x) = −Γ(1 + q) cos[π(q − 3)/2]
πx2xq−1

= −Γ(1 + q)cos[π(q − 3)/2]
πx1+q

, | x |>> 1

A.4. PART IV 779

which maps smoothly onto the previous asymptotic as q → 1 from above.

17.4 For ω > 0, the function P (ω) has a maximum when

d

dω
lnP (ω) =

2g
ω
− 2ωq
ω2

0 + ω2
= 0.

Since P (ω) �= 0∀ω, this implies that a maximum value of P (ω) occurs at a value of
ω = ωmax given by

ωmax = ω0

√
g

q − g , q > g.

The value of P (ω) at this point is therefore given by

Pmax ≡ P (ωmax) =
ω2g

max

(ω2
0 + ω2

max)q
= ω

2(g−q)
0

gg

qq
(q − g)q−g.

For a time invariant linear system and with n denoting a white noise input, we have

S(ω) =
(iω)g

(iω − ω0)q
N(ω).

Inverse Fourier transforming,

1
2π

∞∫
−∞

(iω − ω0)qS(ω) exp(iωt)dω =
1
2π

∞∫
−∞

(iω)gN(ω) exp(iωt)dω =
dg

dtg
n(t).

The integral on the left hand side can be written as

1
2π

∞∫
−∞

(iu)qS(u) exp(ω0t) exp(iut)du = exp(ω0t)
dq

dtq
s(t).

Thus,
dq

dtq
s(t) = exp(−ω0t)

dg

dtg
n(t)

and on inversion,

s(t) =
1

Γ(q)

t∫
0

exp(−ω0τ)
(t− τ)1−q

dg

dτg
n(τ)dτ.

To investigate the scaling law, consider the integral

1
Γ(q)

t∫
0

exp(−ω0τ)
(t− τ)1−q

dg

dτg
n(λτ)dτ =

λg

λq

1
Γ(q)

t∫
0

exp(−ω0ξ/λ)
(λt− ξ)1−q

dg

dξg
n(ξ)dξ.

Hence,

Pr[s(t, ω0)] =
λg

λq
Pr[s(λt, ω0/λ)].

780 APPENDIX A. SOLUTIONS TO PROBLEMS

Here, as we scale t by λ, the characteristic frequency ω0 is scaled by 1/λ; this is a
result that is consistent with the scaling properties of the Fourier transform, i.e.

f(λt) ⇐⇒ 1
λ
F
(ω
λ

)
Thus, as we zoom into the signal s(t) by decreasing λ, the distribution of amplitudes
- the PDF of the signal - remains the same (subject to scaling by λg/λq) and the
characteristic frequency of the signal increases by a factor of 1/λ.

A.4.6 Supplementary Problems to Part IV

IV.1 (a) Given that a signal f(t) with period 2T can be expressed as a complex Fourier
series of the form

f(t) =
∞∑

n=−∞
Fn exp(−inπt/T)

show that the coefficients Fn are given by

Fn =
1

2T

T∫
−T

f(t) exp(−inπt/T)dx

Use this result to obtain a generating formula for the discrete Fourier coefficients Fn

in the case when the signal is a tophat function of width 2T centered at t = 0.

(b) Defining the Fourier transform of a signal f(t) as

F (ω) =

∞∫
−∞

f(t) exp(−iωt)dt

find F (ω) when
f(t) = exp(−λ | t |)

where λ is a real constant. Using your result together with the convolution theorem,
show that a solution to the equation

y(t) = x(t) + λ

∞∫
−∞

exp(− | t− τ |)y(τ)dτ

is

y(t) = x(t) + ψ(λ)

∞∫
−∞

exp(−√1− 2λ | t− τ |)x(τ)dτ

stating both the functional form of ψ and the condition on λ for which this solution
is valid.

IV.2 (a) Find expressions for the N-length DFT of each of the following digital signals:

A.4. PART IV 781

(i) the N-component unit sample (impulse) signal (the Kronecker delta function)

δn =

{
1, n = 0;
0, n �= 0;

(ii) the N-component signal defined as follows

fn =

{
1, n = m;
0, otherwise

where 0 ≤ m ≤ N − 1;

(iii) the N-component unit ramp signal given by

fn =

{
n, n ≥ 0; o,
n < 0.

List all the DFT values of each signal for N = 4.

(b) Compute the DFT of the signal fi = (1, 1, 0, 0) and verify Parseval’s theorem.

(c) Prove the following properties of the DFT:

(i) the periodicity property for the DFT Fm and the IDFT fn;

(ii) the linearity property.

(d) Describe the use of the DFT and the inverse DFT in obtaining the linear discrete
convolution for FIR systems, i.e. when a finite duration sequence fn of length N is
input to system with a with a FIR function gn of length M .

IV.3 (a) Consider the discrete convolution equation

si =
∑

j

pj−ifn.

Write this equation in matrix form

s = P f

computing the elements of P in the case when

f = (0, 0, 0, 10, 0, 0, 10, 0, 0, 0)T

and
p = (10, 11, 12, 11, 10)T .

Consider the case when additive noise is present. Compute the result of applying a
3×1 median filter to the signal si when the noise array is (1, 3, 2, 3, 1, 5, 2, 3, 1, 1)T .
What is the effect of applying this process?

782 APPENDIX A. SOLUTIONS TO PROBLEMS

(b) By minimizing the quantity ‖ni‖22 with respect to fi, and employing the discrete
convolution and correlation theorems, show that the inverse filter is given by

P ∗
i

| Pi |2
where Pi is the discrete Fourier transform of pi and P ∗

i is the complex conjugate of
Pi. Discuss the problems that can occur with the application of this type of digital
filter.

IV.4 An experiment is carried out where M samples of a signal si are measured in the
presence of additive Gaussian noise. The signal is known to have a constant amplitude
f over the duration of the experiment. The Probability Distribution Function (PDF)
of the noise is Gaussian with a standard deviation of σn and the PDF of the signal
itself is Gaussian with a standard deviation of σf .

Starting from Bayes rule, show that:

(i) the Maximum Likelihood (ML) estimate for f is given by

f̂ML =
1
M

M∑
i=1

si.

(ii) Derive an expression for the Maximum a Posteriori estimate f̂MAP and hence,
show that

f̂MAP � f̂ML;
σn

σf
<< 1.

IV.5 (a) Given that

F (ω) =

∞∫
−∞

f(t) exp(−iωt)dt

and ∞∫
−∞

1
t

exp(−iωt)dt = −iπsgn(ω)

show that the ‘Analytic Signal’ s(t) defined as

s(t) =
1
π

∞∫
0

F (ω) exp(iωt)dω

can be written in the form
s(t) = f(t) + iq(t)

where q(t) is the Hilbert transform of f(t) given by

q(t) =
1
π

∞∫
−∞

f(τ)
t− τ dτ

A.4. PART IV 783

By writing sin(ω0t) and cos(ω0t) in terms of complex exponentials, compute the
Fourier transforms of these functions. Hence, or otherwise, find the Hilbert trans-
form of cos(ω0t).

(b) The module

FFT(c,n,sign)

is a Fast Fourier Transform (void) function where: c is the complex I/O array, n is the
array size, sign=-1 gives the forward transform; sign=1 gives the inverse transform.
This subroutine computes a complex spectrum where the DC level is placed at n/2 +
1. Using this FFT and including comment lines to explain the code, write a C void
function

HILBERT(s,n)

to compute the discrete Hilbert transform of a given input where s is the real I/O
array and n is the array size.

IV.6 The complex Fourier series representation of a piece-wise continuous function
f(t) with period T is given by

f(t) =
∞∑

n=−∞
an exp(i2πnt/T)

where

an =
1
T

T/2∫
−T/2

f(t) exp(−i2πnt/T)dt

(i) Derive a complex Fourier series representation of the delta sequence

∞∑
n=−∞

δ(t− nT)

Hence or otherwise, show that the Fourier transform of this sequence is given by

2π
T

∞∑
n=−∞

δ(ω − 2πn/T)

where ω is the angular frequency.

Use the results above to show that the digitization of a bandlimited analogue signal
leads to a replication of its spectrum and in this context, explain the meaning of the
term ‘Aliasing’.

784 APPENDIX A. SOLUTIONS TO PROBLEMS

(ii) An ultrasonic signal with a bandwidth of 1MHz is recorded in analogue form.
What is its Nyquist frequency and what is the maximum sampling interval at which
it should be sampled to avoid Aliasing?

(iii) Explain the basis for ‘sinc interpolation’ and discuss how it can be implemented
in practice using a Fast Fourier Transform.

The void function

FFT1D(a,b,n,sign)

is a Fast Fourier Transform where a is the real I/O array, b is the imaginary I/O
array n is the array size, sign=-1 gives the forward transform; and sign=1 gives the
inverse transform

This subroutine computes a complex spectrum (with real and imaginary parts given
by a and b respectively) where the DC level is placed at n/2 + 1.

Using this FFT and including comment lines to explain the code, write a C void
function

SINC_INTERP(x,n,y,m)

to sinc interpolate a signal from n data samples to m data samples where m>n and
both m and n are integer powers of 2 where x and y are the input and output arrays
respectively and are of type float.

IV.7 (i) Compute the result of applying the FIR kernel (0, 1, 2, 1, 0)T to the digital
signal

(0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0)T

using zero padding.

Explain the computational differences between applying an FIR filter directly and
using an FFT commenting in each case on:

• numerical efficiency

• accuracy

(ii) The digital signal
(1, 0,−1, 0)T

is recorded by a system whose impulse response function is known to be (1, 2, 1)T .

Use zero padding to construct an appropriate matrix equation which relates this
digital signal to the input function of the system. Use the result to deconvolve the
signal using an appropriate algorithm with exact arithmetic.

Write a C void function to implement your method of deconvolution for an arbitrary
3×1 impulse response function and an arbitrary digital signal consisting of n samples:

A.4. PART IV 785

DECON(s,p,f,n)

where s is the input signal (real input of type float), p is the impulse response function
(real input of type float), f is the deconvolved signal (real output of type float) and n
is the array size (real input of type int).

IV.8 (a) Explain the term ‘Gibbs’ phenomenon and discuss situations when it is most
likely to occur in the processing of digital signals. What techniques can be employed
to remove this effect? - illustrate your answer by considering the application of a
lowpass filter.

(b)

(i) Write down the Discrete Fourier Transform of a (complex) array fn of size N and
the associated inverse transform of a (complex) array Fn of the same size.

(ii) Compute the real and imaginary parts of the DFT of the array (0, 1, 1, 0). If the
sampling interval between the elements of this array is 1 second what is the frequency
interval between the elements of its DFT ?

(c)

(i) Assume a FFT void function is available called

FFT(a,b,n,sign)

where a and b and real and imaginary I/O array respectively, n is the array size and
sign=±1 for computing the forward (-1) and inverse (+1) transforms respectively.
Write a void function in C to compute the power spectrum of a signal using a switch
to provide the user with the option to output the result using a logarithmic scale:

POWSPEC(s,p,n,opt)

where s is the input, p is the output, n is the array size, opt=0 outputs the power
spectrum on a linear scale and opt=1 output the power spectrum using a logarithmic
scale

IV.9 (a) A digital signal si can be described by the stationary process

si =
∑

j

pi−jfj + ni

where pi is the impulse response function, fi is the object function and ni is the noise
function. Assuming that the noise is signal independent show that if we construct an
estimate for fi of the form

f̂i =
∑

j

qjsi−j

786 APPENDIX A. SOLUTIONS TO PROBLEMS

then the DFT of qi (the Wiener Filter) which minimizes the error

e = ‖fi − f̂i‖22
is given by

Qi =
P ∗

i

| Pi |2 + |Ni|2
|Fi|2

where Pi, Fi and Ni are the DFT’s of pi, fi and ni respectively.

(b) Explain some of the practical difficulties associated with the application of this
filter for digital signal processing and discuss techniques through which estimates of
the signal-to-noise ratio can be estimated.

(c) The Wiener filter can be approximated by

Qi =
P ∗

i

| Pi |2 +Γ

where

Γ =
1

SNR2 ,

SNR denoting the signal-to-noise ratio of the input signal. A subprogram is to be
written to compute f̂i for i = 1, 2, ..., N given the signal si, the impulse response
function pi and value of SNR.

(iii) Write a function in C to compute f̂i.

void WIENER(float s[], float p[], float f[], int n, float snr)

where it is assumed that you have an FFT subprogram called fft(a,b,n,sign) is available
where a is the real I/O array, b is the imaginary I/O array, n is the array size, sign=-1
gives the forward FFT and sign=1 gives the inverse FFT.

IV.10 (a) Compute the output obtained by applying a FIR filter to the signal

(0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0)

using the kernel 1
4 (1, 2, 1) and the zero padding method.

(b) Compute the moving average and median filters of the signal given in part (a)
using a window of size 3 and zero padding. Comment on the results?

(c)

(i) Write a subprogram in C to compute the median filter of a digital signal using
zero padding and a bubble sort for windows of arbitrary (odd) size: subroutine med-
fil(s,n,size) where s is the I/O (type float), n is the I/O array size (type int) and size
is the size of the window (=3,5,7,...) which is of type int.

A.4. PART IV 787

IV.11 Random scaling fractal signals are stochastic signals which are statistically
self-affine. There discrete power spectrum can be modelled as

P̂ (ki) =
c

kβ
i

∀ki > 0; i = 1, 2, ..., N

where c is a constant and β is related to the fractal dimension D (1 < D < 2) by

β = 5− 2D

(a) By considering the error function

e(c, β) = ‖ lnP (ki)− ln P̂ (ki)‖22
where P (ki) is the power spectrum of a given signal, show that the values of β and c
which for which e is a minimum are given by

β =

(∑
i

ln ki

)(∑
i

lnPi

)
−N∑

i

(lnPi)(ln ki)

N
∑
i

(ln ki)2 −
(∑

i

ln ki

)2

and

c = exp

[
1
N

(∑
i

lnPi + β
∑

i

ln ki

)]
where

Pi ≡ P (ki) and
∑

i

≡
N∑

i=1

.

What is the physical significance of the parameter c.

(b) Consider the following table of data

ki : 1 2 3 4

Pi : 1
1
4

1
9

1
16

What is the fractal dimension of the signal whose power spectrum is Pi.

(c) Working in either K & R or ANSI C, write a void function which computes the
fractal dimension of signal given the following I/O:

• Inputs - Pi, ki and N ,

• Output - D.

Appendix B

Graphics Utility

There are a wide range of graphics facilities available for plotting signals. Many of
these facilities form part of an integrated windows based package such as MATLAB
which can of course be used for this purpose. A detailed discussion of the many graph-
ics facilities currently available is beyond the scope of this book and it is left to the
reader to apply the facilities best suited to his/her application and available software
systems. However, for completeness, this appendix provides the C code developed to
display a signal using the graphics functions available with the Borland Turbo C++
compiler. Version 3.00 (published in 1992 by Borland International) of this compiler
was originally utilized to develop a DSP library using a DOS environment by stu-
dents undertaking an MSc programme in ‘Digital Signal Processing’ established by
the author in the early 1990s and it may still be of value to those with limited access
to a more advanced graphics system. This low level graphics facility is based on the
function gsignal and is utilized as follows:

gopen();

...

option=1
gsignal(s,n,option);

...

gclose();

Compilation requires a link to graphics.lib and execution assumes that the file egavga.bgi
resides in the current directory. Here, s in an array of length n which is taken to be
a stream of floating point numbers. The plot is automatically windowed and scaled
but the size of the arrays that can be plotted are limited to 512 elements. There
are two options available; option=1 (recommended) ‘holds’ the plot until the user
‘hits’ a key where upon the process continues; option=0 continues processing as soon
as the plot has been completed. The function can be used in multiples to plot the
progress of a process and for diagnostic purposes. Further, standard I/O can be used

788

789

while the graphics are ‘open’, the output being an overlay in standard format. The
module assumes that arrays of size n are input which have been processed using the
elements s[0], s[1],..., s[n-1] or s[1], s[2],..., s[n] inclusively. In the latter case, which is
the basis for the processors discussed in Part IV, the 0th element of the array should
be initialized (i.e. set s[0]=0) to prevent spurious values from corrupting the output.

#include <graphics.h>
#include <math.h>
#include <stdio.h>
#include <conio.h>
#include <ctype.h>
#include <stdlib.h>

#define XPOS0 8
#define XPOS1 3
#define YPOS0 5
#define YPOS1 12

void clear_text(void);
void clear_enter(void);
void press_enter(void);
void gopen(void);
void gclose(void);
void set_gray(void);
void set_color(void);

extern int win_xmax, win_ymax;

static float step_x_len, step_y_len;
static float ymax, ymin, xmin, xmax;

void axis();
void plot(float y[], int n);
int calc_y_pixel(float y);

void gsignal(float s[], int n, int iopt)
{

int i;

/***/
/* */
/* FUNCTION: Displays a digital signal held in array s[] using */
/* Borland C++ V3 graphics functions. */
/* */
/* NOTE: The program automatically scales the axis so that the */
/* display lies within the bounds of the x and y axis. */
/* */

790 APPENDIX B. GRAPHICS UTILITY

/* */
/* PARAMETERS */
/* */
/* Input: s - digital signal */
/* n - no. of samples (<=512) */
/* */
/* iopt - continuous or static mode */
/* */
/* iopt = 0 gives continuous mode. */
/* iopt = 1 holds display until user ’Hits’ a key */
/* */
/* Output: None */
/* */
/***/

/* Compute largest (ymax) and smallest (ymin) value of y. */

ymin = 0.0;
ymax = 0.0;
for (i=0; i<=n; i++)
{
if(s[i] > ymax)
ymax = s[i];

if(s[i] < ymin)
ymin = s[i];

}

if (ymax == ymin)
{
ymax = 1.0;
ymin = -1.0;
}

/* Define the minumum and maximum values of the x-axis. */

xmin = 0.0;
xmax = (float) n-1;

/* Plot axis. */

axis(0.7f, 0.03f);

/* Plot signal. */

plot(s, n);

791

/* Provide user with display mode options, i.e.
/* continuous or held display. */

if (iopt == 1)
press_enter();

}

void axis()
{

int x_axis, y_axis, x, y, temp_x;
float temp_y, i;
char c[20];

/***/
/* */
/* FUNCTION: Plots the axes. */
/* */
/***/

step_x_len = (win_xmax-2.0) / (xmax-xmin);
step_y_len = (win_ymax-2.0) / (ymax-ymin);

setviewport(0, 0, win_xmax, win_ymax, 1);
clearviewport();

set_color();

setcolor(BLUE);
setlinestyle(SOLID_LINE, 1, NORM_WIDTH);
rectangle(0, 0, win_xmax, win_ymax);

setcolor(DARKGRAY);
setlinestyle(SOLID_LINE, 1, NORM_WIDTH);

x_axis = 1 + (xmax * 0.5);
x_axis = 1 + x_axis * step_x_len;
y_axis = calc_y_pixel(0.0);

line(x_axis, 1, x_axis, win_ymax-2);
line(1, y_axis, win_xmax-2, y_axis);

settextstyle(SMALL_FONT, HORIZ_DIR, 1);

temp_x = 1 + (xmax * 0.5);
for (i=0; i<=temp_x; i+=temp_x * 0.25)
{

792 APPENDIX B. GRAPHICS UTILITY

x = (temp_x+i) * step_x_len;
line(x, y_axis-5, x, y_axis+5);
sprintf(c, "%-3.0f", temp_x+i);
outtextxy(x, y_axis-13, c);
x = (temp_x-i) * step_x_len;
line(x, y_axis-5, x, y_axis+5);
sprintf(c, "%-3.0f", temp_x-i);
outtextxy(x, y_axis-13, c);
}

temp_y = fabs(ymin);
if (temp_y < ymax)
temp_y = ymax;

for (i=temp_y * 0.2; i<=temp_y; i+=temp_y * 0.2)
{
y = calc_y_pixel(i);
line(x_axis-5, y, x_axis+5, y);
sprintf(c, "%-g", i);
outtextxy(x_axis+13, y, c);
y = calc_y_pixel(-i);
line(x_axis-5, y, x_axis+5, y);
sprintf(c, "%-g", -i);
outtextxy(x_axis+13, y, c);
}

}

void plot(float y[], int n)
{

int scr_x,scr_y;
int i;

/***/
/* */
/* FUNCTION: Plots the signal. */
/* */
/***/

setviewport(0, 0, win_xmax, win_ymax, 1);

setcolor(RED);
setlinestyle(SOLID_LINE, 1, NORM_WIDTH);

scr_x = 1;
scr_y = calc_y_pixel(y[1]);

moveto(scr_x, scr_y);

793

for (i=2; i<=n; i++)
{
scr_x = 1 + ((i-1)*step_x_len);
scr_y = calc_y_pixel(y[i]);

lineto (scr_x, scr_y);
}

}

int calc_y_pixel(float y)
{

int i;

i = 1 + (ymax-y) * step_y_len;

return(i);
}

/***/
/* */
/* FUNCTION: Provides functions for display options. */
/* */
/***/

extern int scr_xmax, scr_ymax;

static int win_xmax, win_ymax;
int cur_x, cur_y;

void clear_text(void)
{

win_xmax = scr_xmax - 513;
win_ymax = scr_ymax;

setviewport(514, scr_ymax-13, scr_xmax, scr_ymax, 1);
clear_enter();

setviewport(514, 0, scr_xmax, scr_ymax-13, 1);
clearviewport();

moveto(0, win_ymax-13);
lineto(0, 0);
lineto(win_xmax, 0);
lineto(win_xmax, win_ymax-13);

setcolor(LIGHTGRAY);
settextstyle(SMALL_FONT, HORIZ_DIR, 1);

794 APPENDIX B. GRAPHICS UTILITY

cur_x = XPOS1;
cur_y = YPOS0;

}

void clear_enter(void)
{

setcolor(LIGHTBLUE);
setlinestyle(SOLID_LINE, 1, THICK_WIDTH);

clearviewport();

moveto(0, 0);
lineto(0, 13);
lineto(scr_xmax-513, 13);
lineto(scr_xmax-513, 0);

}

void press_enter(void)
{

setviewport(514, scr_ymax-13, scr_xmax, scr_ymax, 1);
setcolor(LIGHTGRAY);

outtextxy(XPOS1, 5, "Press Enter");
getch();
clear_enter();

setviewport(514, 0, scr_xmax, scr_ymax-13, 1);
setcolor(LIGHTGRAY);

}

int get_int(void)
{

char cx, tempstr[2], nx[10];
int i, color, bkcolor;

cur_x = XPOS1;
cur_y += YPOS1;

for (i=0; ((cx=getch())>=’0’ && cx <= ’9’) ||
cx == ’-’ || cx == 8; i++)

{
if (cx == 8)
{
color = getcolor();
bkcolor = getbkcolor();
setcolor(bkcolor);
sprintf(tempstr, "%c", nx[--i]);

795

outtextxy(cur_x, cur_y, tempstr);
nx[i--] = ’ ’;
cur_x -= XPOS0;
setcolor(color);
}

else
{
nx[i] = cx;
sprintf(tempstr, "%c", cx);
outtextxy(cur_x += XPOS0, cur_y, tempstr);
}

}
nx[i] = ’\0’;

return(atoi(nx));
}

float get_float(void)
{

char cx, tempstr[2], nx[10];
int i, color, bkcolor;

cur_x = XPOS1;
cur_y += YPOS1;

for (i=0; ((cx=getch())>=’0’ && cx <= ’9’) ||
cx == ’-’ || cx == ’.’ || cx == 8; i++)

{
if (cx == 8)
{
color = getcolor();
bkcolor = getbkcolor();
setcolor(bkcolor);
sprintf(tempstr, "%c", nx[--i]);

outtextxy(cur_x, cur_y, tempstr);
nx[i--] = ’ ’;
cur_x -= XPOS0;
setcolor(color);
}

else
{
nx[i] = cx;
sprintf(tempstr, "%c", cx);
outtextxy(cur_x += XPOS0, cur_y, tempstr);
}

}
nx[i] = ’\0’;

796 APPENDIX B. GRAPHICS UTILITY

return(atof(nx));
}

char get_char(void)
{

char cx;

cx = getch();
cx = toupper(cx);

return(cx);
}

void get_string(char string[])
{

char cx, tempstr[2];
int i, color, bkcolor;

cur_x = XPOS1;
cur_y += YPOS1;
for (i=0; ((cx=getch()) != 13) && i<12; i++)
{
if (cx == 8)
{
color = getcolor();
bkcolor = getbkcolor();
setcolor(bkcolor);
sprintf(tempstr, "%c", string[--i]);

outtextxy(cur_x, cur_y, tempstr);
string[i--] = ’ ’;
cur_x -= XPOS0;
setcolor(color);
}

else
{
string[i] = cx;
sprintf(tempstr, "%c", cx);
outtextxy(cur_x += XPOS0, cur_y, tempstr);
}

}

string[i] = ’\0’;
}

void put_string(int x, int y, char string[])
{

797

outtextxy(x, cur_y+=y, string);
}

void put_ij(int i, int j)
{

char string[20];

setviewport(514, scr_ymax-13, scr_xmax, scr_ymax, 1);
setcolor(WHITE);

setlinestyle(SOLID_LINE, 1, THICK_WIDTH);

clearviewport();

moveto(0, 0);
lineto(0, 13);
lineto(scr_xmax-513, 13);
lineto(scr_xmax-513, 0);

sprintf(string, "i=%2d, j=%2d", i, j);
outtextxy(XPOS1, 5, string);

setviewport(514, 0, scr_xmax, scr_ymax-13, 1);
}

/***/
/* */
/* FUNCTION: Provides functions for displaying data. */
/* */
/***/

int scr_xmax, scr_ymax;
int win_xmax, win_ymax;

static struct palettetype color_pal;
static struct palettetype gray_pal;
static int maxcolor;

void gopen(void)
{

int gdriver=DETECT, gmode, errorcode;
int i;

closegraph();
initgraph (&gdriver,&gmode,"");

if ((errorcode = graphresult()) != grOk)

798 APPENDIX B. GRAPHICS UTILITY

{
closegraph();
printf("Graphics error: %s\n", grapherrormsg(errorcode));
printf("Press any key to halt:");
getch();
exit(1);
}

maxcolor = getmaxcolor();

getpalette(&color_pal);

getpalette(&gray_pal);

for (i=0; i<=maxcolor; i++)
gray_pal.colors[i] = 39-i;

for (i=0; i<gray_pal.size; i++)
setrgbpalette(gray_pal.colors[i], i*4, i*4, i*4);

set_color();

scr_xmax = getmaxx();
scr_ymax = getmaxy();

win_xmax = scr_ymax;
win_ymax = scr_ymax;

setviewport(0, 0, win_xmax, win_ymax, 1);
clearviewport();

setcolor(BLUE);
setlinestyle(SOLID_LINE, 1, THICK_WIDTH);
rectangle(0, 0, win_xmax, win_ymax);

}

void gclose(void)
{

closegraph();
}

void set_gray(void)
{

int i;
for (i=0; i<=maxcolor; i++)
setpalette(i, gray_pal.colors[i]);

}

799

void set_color(void)
{

int i;
for (i=0; i<=maxcolor; i++)
setpalette(i, color_pal.colors[i]);

}

Index

absolute error, 311
absolutely integrable, 49
accumulation error, 313
acoustic signals, 416
acoustic wave speed, 105
acoustic waves, 104
acoustics, 51
addition of matrices, 163
addition theorem, 86
additive generators, 468
additive noise, 494, 505
adjoint of a matrix, 172, 288
admissibility condition, 153
ALGOL, 344
algorithm selection key, 484
algorithmic error, 313, 315
aliasing, 98, 416
all poles method, 515
allocation, 329
amplitude envelope, 129
amplitude modulated imaging, 136
amplitude modulation, 418, 506
amplitude modulations, 134
amplitude spectrum, 77, 80, 128
analogue signal, 98
analogue signals, 93
analogue-to-digital, 96
analytic, 16
analytic continuation, 509
analytic function, 18
analytic functions, 18
analytic part, 29
analytic signal, 9, 129, 132, 418
angular frequency, 76, 105, 108
anomalous diffusion equation, 554
APL, 345
arbitrage, 584
Argand diagram, 11, 77

argument, 11
arithmetic expressions, 369
arithmetic operations, 318
array processing, 378
arrays, 367
assignment operators, 368
associative law for matrices, 165
associativity, 49, 92
asymptotic forms, 565
asymptotic Green’s function solution, 107
asymptotic solution, 564
attack, 486
augmented matrix, 185, 258
authentication, 440, 443, 446, 486
autoconvolution, 89
autoconvolution theorem, 92
autocorrelation, 90
autocorrelation function, 92, 435, 590, 607
autocorrelation theorem, 92, 544
automatic code generation, 325

back-substitution, 185, 193, 218
backward differencing, 547
Banach lemma, 234
banded matrices, 238
banded matrix, 199
banded systems of equations, 199
bandlimited, 93
bandlimited function, 79, 96
bandlimited functions, 508
bandpass filter, 426
bandpass filters, 99
bandwidth, 508, 525
baseband signal, 131
baseband spectrum, 130
Basic, 343
batch adding, 317
batch systems, 338

800

INDEX 801

Bayes rule, 494, 496
Bayesian estimation, 459, 494, 496
beam profile effects, 462
bench marking, 332
Bermann process, 572
Bersoff’s law, 329
Bessel function, 415
bifurcation, 476, 477
bin, 414
binary arithmetic, 307
binary coded decimal, 306
binary number system, 306
binary sequence, 447
binary string conversion, 449
binary to decimal conversion, 308
binomial expansion, 106
bisection, 277
bit error, 578
bit error rate, 578
bit errors, 573
bit rate, 574
bit reversal, 408
bit stream, 573
bits, 305
bitwise logical operators, 368
black box testing, 328
black noise, 564
Black-Scholes analysis, 588
Black-Scholes equation, 587
Black-Scholes formula, 587
Black-Sholes analysis, 578
bloatware, 336
block cyphers, 484
Blum integer, 471
Blum-Mercali generator, 471
blurring, 89
Boltzmann entropy, 504
Boolean quantities, 369
Born approximation, 106, 110, 460
bottom-up design, 332, 386
bottom-up testing, 332
boundary conditions, 256
box counting dimension, 557
Box-Muller transform, 471
Bromwich integral, 121, 561
brown noise, 564
Brownian flights, 544

Brownian motion, 546
Brownian transients, 556, 567
bull/bear cycle, 586, 603
Burg entropy, 515
Burg’s maximum entropy method, 515
Butterworth highpass filter, 100
Butterworth lowpass filter, 99

C programming, 305
C programming language, 346, 364
C++ programming, 347
CASE tools, 326, 335
casting, 367
Cauchy distribution, 545
Cauchy’s integral formula, 122
Cauchy’s residue theorem, 28, 35
Cauchy’s theorem, 24, 26, 33
Cauchy-Riemann equations, 16, 17, 23
Cauchy-Schwarz inequality, 211
causal convolution, 121, 149, 548
Caylay-Hamilton theorem, 263
Cayley-Hamilton theorem - applications,

264
center differencing, 103, 255
central limit theorem, 115
cepstrum, 127
changeability, 383
chaos, 474, 477
chaotic signals, 474
char, 366
characteristic equation, 258
characteristic function, 542, 544
characteristic matrix, 256, 517, 537
characteristic polynomial, 269
characters, 318
Chebyshev method, 239
chirp coding, 442, 446, 487
chirp decoding, 447
chirp functions, 446
chirp transform, 445
chirped pulse, 439
chirping parameter, 440
Cholesky’s method, 194
circuit theory, 63
clarity of structure, 340
classes, 347
classical analysis, 41

802 INDEX

classical derivative, 46
classical Fourier transform, 57
classical fractional integrals, 149
closed contour, 31
closed path, 21
COBOL, 344
code generation, 336, 448
code portability, 334
code-book protocol, 470
coding process, 451
cofactors, 172–174
coherent Gaussian noise, 542
cohesion, 330, 385
column matrix, 286
column vector, 286
comb function, 43, 93
commenting, 324
common depth point stack, 138
communications engineering, 364
commutativity, 49, 92
compiling, 392
complex analogue signals, 231
complex analysis, 9
complex cepstrum, 127
complex conjugate, 86
complex conjugate of a matrix, 289
complex digital signals, 231
complex form, 13, 57
complex Fourier series, 67, 69, 70, 103
complex function, 16, 18
complex functions, 13
complex integration, 20
complex number, 9
complex plane, 15, 18, 25
complex plane analysis, 129
complex planes, 13
complex roots, 9
complex spectrum, 77
complex variable, 13
complex zeros, 136
complexity, 330, 383
complexity measure, 384
comprehensibility, 383
compressibility, 105
compression space, 69
computational error, 312, 314
computer storage requirements, 202

concatenation, 449
condition number, 219, 222
conditional branching, 370
conditional heteroskedacity, 593
conditional probability, 495
conditioning, 317
conditioning of linear systems, 218
confusion, 443
conjugate gradient method, 183, 238
constrained deconvolution, 457
constraints, 329
continuity condition, 567
continuous derivatives, 47, 50
continuous wavefield, 105
continuously differentiable, 47
control flow, 328
control statements, 302, 369
control structures, 317, 319
convergence, 237
convergence - necessary condition, 243
convergence - sufficient condition, 243
conversion error, 312, 314
convolution, 49, 87
convolution equation, 53
convolution integral, 41, 51, 89
convolution operation, 107
convolution process, 41, 525
convolution representation, 550
convolution sum, 51, 162, 524
convolution theorem, 90, 97, 108, 416, 561
convolution theorem for Laplace transforms,

121
correlation, 87
correlation integral, 89, 153
correlation process, 528
correlation sum, 528
correlation theorem, 91, 435
cosine function, 83
cosine taper, 415
cosine transform, 124
cosinusoidal wave functions, 125
coupled equations, 256
coupling, 330
covert digital communications, 573
Cramers rule, 169, 173
critical states, 582
cross entropy, 507

INDEX 803

cross-correlation, 88
Crout’s method, 194
cryptanalysis, 486
cryptography, 443, 468, 486
cryptology, 443
cut-off frequency, 99
cycle length, 464, 465, 469, 482
cyclometric complexity, 384
cypher stream, 486
cyphertext, 468

d’Alembertian solution, 561
data acquisition, 460
data analysis, 331
data compression, 68
data consistency, 513
data declarations, 317
data error, 312
data flow design, 331
data flow diagrams, 331
data processing, 311
data type statements, 366
data windowing, 413
database design, 334
dataflow diagram, 340
David Hilbert, 129
DC component, 71, 566
De Moivre’s theorem, 13
de-noising, 444
de-trended log price, 589
decibel scale, 416
decimal integer, 366
decimal system, 305
decimal to binary conversion, 307, 308
decision tables, 323
declarations, 367
decoding process, 454
defect amplification, 329
deflation, 268, 270
deflation method, 271
deflation method - non-symmetric matrix,

271
deflation method - symmetric matrix, 272
delta function, 78
delta-sequence, 44
demodulation, 129, 130
dense matrix, 289

density, 105
design, 328
detailed design, 334
detailed flowcharts, 323
determinants, 168
deterministic arithmetic processes, 464
deterministic chaos, 482, 541
DFT, 406
diagonal dominance, 238, 243
diagonal matrix, 242, 287
diagonalization, 190
diagonalization of matrices, 260
dielectric, 104
difference equations, 256
differential operator, 549
differentiation and the Fourier transform,

81
differentiator, 64
diffraction, 81
diffused watermark, 444
diffusion, 443
diffusion equation, 75, 556
diffusion equation solution, 561
diffusion of information, 604
diffusivity, 557
digital filters, 102
digital gradient, 102
digital signals, 93
digital watermarking, 443
digital-to-analogue conversion, 97
dilation, 153
Dirac delta function, 41
Direct Current, 71, 77
direct methods of solution, 183
discontinuity, 43
discrete amplitude spectrum, 416
discrete convolution, 103, 416, 523
discrete correlation, 417, 526
Discrete Cosine Transform, 68
Discrete Fourier Transform, 68
discrete Fourier transform, 70, 101, 256,

406
discrete phase spectrum, 416
discrete power spectrum, 416
discretization, 71, 103
distributive law for matrices, 165
distributivity, 92

804 INDEX

do loop, 372
do-loop, 320
documentation, 365
dominant eigenpair, 268
dominant eigenvalue, 267
dominant eigenvector, 268
Doolittle factorization, 282
Doolittle’s method, 194
DOS, 338
double, 366, 368
double pole, 29
double precision, 224
double sided Laplace transform, 114
dry run, 328
Duffing oscillator, 480
dynamic memory allocation, 342, 379, 380
dynamic memory management, 341

ease of extension, 340
efficiency, 341
efficient market hypothesis, 578, 580, 584,

589
eigenfunctions, 255, 508
eigenvalue problem, 256
eigenvalues, 255
eigenvalues - formal methods of solution,

257
eigenvector, 256
El Farol bar problem, 603
electromagnetic wave speed, 105
electromagnetism, 51
Elliot waves, 582
else-if constructs, 370
embedding information in noise, 573
encryption, 485
endpoint extension, 530
energy theorem, 87
Enigma cypher, 470
entropy, 443, 468, 503
entropy conservation law, 504
error analysis, 311
error growth, 313
error reduction, 316
Euclidean geometry, 542
Euclidean norm, 209–211
exact arithmetic, 218
exponent, 305

exponential error growth, 313
exponential format, 366
exponential function, 12
external support, 341

Fast Fourier Transform, 71
fast Fourier transform, 405, 406, 534, 565
feedback process, 534
Feigenbaum diagram, 476, 483
FFT, 406, 417
FFT - C function, 410
field theory, 51
financial derivatives, 585
finite band, 80
finite difference analysis, 238
finite differencing, 479
finite element analysis, 238
Finite Impulse Response filter, 53
finite impulse response filter, 522, 526, 534
first order solution, 461
fixed point representation, 305, 314
fixed point storage, 309
float, 366, 368
floating point error, 314
floating point representation, 305
floating-point number, 366
flow diagrams, 334
flowcharts, 323
FM imaging, 136
Fokker-Plank-Kolmogorov equation, 555
for loop, 371
for-loop, 320
formal methods of solution, 171
formatted input control, 366
formatted output, 365
fortran, 341
forward differencing, 102
forward-substitution, 193
Fourier amplitude, 81
Fourier analysis, 42
Fourier coefficients, 57, 68
Fourier cosine series, 60
Fourier dimension, 533, 541, 557, 608
Fourier filters, 404
Fourier phase, 81
Fourier series, 57, 63
Fourier sine series, 61

INDEX 805

Fourier space, 79, 90, 405, 427
Fourier theory, 67
Fourier transform, 9, 75, 77, 90, 103, 223,

413
Fourier transform pair, 69, 70, 78, 79
Fourier transforms, 92
fractal geometry, 542
fractal demodulation, 575
fractal diffusion equation, 556
fractal dimension, 541, 573
fractal dimension signature, 575
fractal geometry, 545, 553, 596
fractal market hypothesis, 578, 602
fractal modulation, 573–575
fractal noise, 564
fractal noise generation, 573
fractal signals, 152
fractal time, 567
fractal time series, 595
fractals, 477
fractals/bit, 578
fractional calculus, 115, 547, 553
fractional differential, 82
fractional differential operator, 547
fractional differentiation, 547, 551
fractional diffusion equations, 554
fractional dynamics, 554
fractional integrals, 547
fractional Laplacean, 555
fractional operators, 115
frequency distribution, 77, 541
frequency hopping, 574
frequency modulated signals, 439
frequency modulation, 132, 573
frequency of oscillation, 52
Fresnel transform, 445
full pivoting, 189
function, 329, 365
functional specification, 333
functional testing, 328
functionality, 346
functions, 320, 327
Fynman diagram, 51

Gabor transform, 139
Gamma distribution, 533, 542
Gamma function, 116, 547

gamma function, 149
Gauss’ method, 184
Gauss-Jordan method, 193
Gauss-Seidel method, 238, 239
Gaussian distributed deviates, 472
Gaussian distribution, 115, 545
Gaussian elimination, 184, 218, 258
Gaussian function, 83
Gaussian highpass filter, 99
Gaussian lowpass filter, 99
Gaussian noise, 477
Gaussian probability density function, 557
Gaussian random number generator, 471
geese, 397
general stochastic models, 572
generalized derivative, 46
generalized Fourier transform, 57
generalized Hann window, 415
George Green, 51
George Green Memorial Committee, 51
Gerchberg-Papoulis method, 511
Gerschgorin’s theorem, 277
Gibbs’ phenomenon, 68
Givens’ method, 278
GOTO statement, 342
goto statement, 387
Green’s function, 41, 51, 52, 460, 559
Green’s function solution, 53
group delay, 145

Hénon-Heiles equations, 480
half range series, 62
half-integration, 548
Hamming window, 415
Hann window, 415
Hanning window, 415
harmonic components, 60
harmonics, 60
Heaviside expansion theorem, 115
Heaviside step function, 561
hedging, 586
Helmholtz equation, 107
Hermitian conjugate of a matrix, 289
Hermitian matrix, 289
Hessenberg form, 283
Hessenberg matrix, 290
highpass filter, 64, 65, 426

806 INDEX

highpass filters, 99
highpass system, 63
Hilbert matrices, 223
Hilbert matrix, 219, 289
Hilbert space, 228, 513
Hilbert transform, 129, 418, 477
Hill’s equation, 480
histogram, 468
Holder’s inequality, 211, 212
homogeneity condition, 209
homogeneous linear systems, 171
homogeneous systems, 175, 255
homogeneous wave equation, 255
homomorphic filter, 458
homomorphic process, 458
homomorphic systems, 128
Householder matrix, 281
Householder’s method, 279
Hurst exponent, 596
Hurst processes, 596
Hurst’s equation, 597
hybrid programming, 332

ideal bandpass filter, 100
ideal highpass filter, 99
ideal lowpass filter, 99
idempotent matrix, 288
identifier, 318
identifiers, 324
identify operator, 550
identity matrix, 287
if-else constructs, 370
if-then-else statement, 319
if-then-else statements, 328
ill-conditioned, 428
ill-conditioned systems, 176, 218
ill-conditioning, 222
ill-posed problems, 510
image compression, 68
imaginary part, 9, 91
important integral transforms, 75
improper function, 41
impulse, 51
Impulse Response Function, 89
impulse response function, 51, 150, 238,

434, 437, 496, 524, 549
independent development, 383

indirect methods of solution, 237
infinite impulse response filter, 534
infinite integral, 49
infinite moments, 545
infinite variance, 546
infinity norm, 209
infinity of solution, 175
information and entropy, 503
information entropy, 483, 504
inheritance, 347
inhomogeneous linear systems, 170
inhomogeneous systems, 175, 255
inhomogeneous wave equation, 52
initial condition, 468
input, 318
instantaneous frequency, 439
instantaneous phase, 134, 418
int, 366
integers, 318
integral equation, 51
integral operator, 549
integral representation, 45
integral transforms, 223
integration and the Fourier transform, 82
interactive restoration, 432
internal functions, 375
interpolation, 97, 533
inverse DFT, 417, 418
inverse discrete Fourier transform, 565
inverse filter, 100, 427, 501
inverse Fourier operator, 78
inverse Fourier transform, 78
inverse iteration, 285
inverse Laplace transform, 115, 120, 223
inverse matrix, 167, 171, 288
inverse problems, 405
inverse solution, 571
inverse weighted mean square error, 514
iteration, 371
iteration matrix, 237, 238
iteration number, 237
iteration process, 239
iterative improvement, 223, 225
iterative methods, 237, 240
iterative solutions, 210
iterative techniques, 537

Jackson method, 330

INDEX 807

Jacobi’s method, 238, 239
Jacobi’s method - symmetric matrices, 272
Java, 347
jitter, 138, 460
job control language, 337
John Bromwich, 115
Joint Photographic Experts Group, 68
joint probability, 472, 495
Joker effect, 597
Jordan’s methods, 190
Joseph Fourier, 75, 115
jump discontinuity, 46

Kaiser window, 415
kernel, 526
key, 468, 469
key exchange, 469, 486
Kronecker delta, 166
kronecker delta, 432
Kronecker delta function, 101
kurtosis, 532, 593

Lévy distributions, 545, 554
Lévy flights, 544, 545, 556
Lagrange multiplier, 458, 506
languages, 336
Laplace, 51
Laplace space, 115
Laplace transform, 114, 223, 548, 561
Laplace transform of a derivative, 119
Laplace transform of a periodic function,

117
Laplace transform of an integral, 119
laplacean, 553
least squares method, 229
least squares principle, 226, 428
libraries, 375
linear congruential generator, 467
linear congruential method, 464
linear convolution models, 229
linear differential operator, 52
linear discrete system, 151
linear eigenvalue problem, 162
linear error growth, 313
linear feedback shift register, 468
linear FM pulses, 439
linear frequency modulation, 439
linear polynomial models, 227

linear simultaneous equations, 162
linear sweep, 447
linearly dependent eigenvectors, 259
linearly independent eigenvectors, 260
linking, 392
Linux, 340
log price increments, 591
logarithmic feedback map, 479
logarithmic sweep, 447
logarithmic transform, 128
logical expressions, 369
logical relational operations, 318
logical testing, 328
logistic map, 475, 478
lognormal random walk, 583
lognormal random walk model, 601
long, 366
looping, 371
Lord Kelvin, 76
Lorenz equations, 479
low-level language, 364
low-level specifications, 323
lower triangular matrix, 193, 242, 288
lowpass filter, 67, 131, 426
lowpass filtering, 68
lowpass filters, 99
lowpass system, 65
LR method, 282
LU factorization, 193, 202
Lyapunov Exponent, 481

macro-economic models, 589
maintaining accuracy, 316
Mandelbrot stable paretian hypothesis, 593
mantissa, 305
mapping, 13
market analysis, 583
matched filter, 437, 445
Mathieu equation, 480
matrices, 163
matrix algebra, 163
matrix equations, 162
matrix inversion by Jordan’s method, 191
matrix inversion by LU factorization, 198
matrix norm, 208
Matrix norms, 215
matrix norms - basic definition, 215

808 INDEX

Matthews cypher, 483
Max Born, 106
maximum entropy, 81, 516
maximum entropy deconvolution, 505, 506
maximum entropy method, 503
maximum error, 315
maximum likelihood filter, 501
maximum likelihood method, 498, 501
maximum a posteriori method, 497, 502
McCabe cyclometric complexity, 330
mean, 532
mean square error, 227, 230
median filter, 532
medical ultrasonic imaging, 104
Mellin transform, 115
memory, 391, 548
memory management, 377
Mersenne prime numbers, 465
metric spaces, 210
Minkowski dimension, 557
Minkowski inequality, 212, 214
minors of a matrix, 172
modern portfolio theory, 584
modification history, 395
modular based functions, 464
modular design, 364
modular programming, 302, 332, 390, 394
modular programming in C, 377
modularity, 329, 381
modulation, 129, 130
module complexity, 383
module coupling, 384
module size, 330, 382
modulus, 11
moments, 532
monotonic convergence, 243, 476
Morse code, 470
moving average filter, 531
moving window, 103, 526, 575
moving window filters, 531
moving window principle, 536, 571
multi-access, 338
multi-fractal characteristics, 572
multi-fractal financial analysis, 580
multi-fractal market hypothesis, 578, 604,

607
multi-fractal statistics, 572

multi-fractals, 541
multi-random fractals, 567
multi-resolution, 152
multi-way decision, 370
multiple inheritance, 347, 348
multiple scattering, 109, 460
multiplexing, 126
multiplication of a matrix by a scalar, 164
multiplication of matrices, 164
multiplicative model, 128

narrowband signal, 131
natural pivoting, 218
naturalness of application, 340
necessary condition for convergence, 245
negative frequency, 132
nesting, 316
nilpotent matrix, 288
noise, 459
non-destructive evaluation, 104
non-differentiable, 21
non-equilibrium phase transitions, 555
non-periodic function, 76
non-recursive filters, 404, 522
non-singular matrix, 167, 271, 287
non-stationarity, 152
non-stationary algorithm, 566
non-stationary convolution, 537
non-stationary fractal signals, 568
non-stationary fractional dynamics, 556
non-stationary processes, 544
non-stationary signals, 535
non-trivial solutions, 175
non-uniform distribution, 485
nonlinear coupled equations, 474
nonlinear maps, 474
normal distribution, 83
normalization property, 43
normalized eigenvectors, 259
normalized floating point, 305
normalized floating point binary, 309
null matrix, 286
numerical analysis, 210
numerical error, 311
Nyquist frequency, 93, 97

Oak, 347
object library, 392, 394

INDEX 809

object oriented design, 329
off-diagonal elements, 273
off-diagonal positions, 274
Oliver Heaviside, 115
one-dimensional Fourier operator, 76
one-way functions, 471
operating systems, 336
operating systems development, 339
operational constraints, 327
operations on characters, 318
operations on integers, 318
operations on reals, 318
operators, 367
operators of integer order, 549
optical form, 71
optimization, 208
option volatilities, 588
options, 585
Ornstein-Uhlenbeck process, 572
orthogonal basis functions, 126
orthogonal matrix, 288
orthogonal properties of eigenvector, 259
orthogonality, 59, 280
orthogonality principle, 228, 427, 458, 512
oscillatory convergence, 243
out-of-band frequencies, 100
out-of-band noise, 137
outline flowcharts, 323
output, 318
over-determined systems, 177
over-writing, 379
overflow, 267, 309, 314

p-norm, 209
page fault, 391
parameters, 321
parametrization, 554
Parseval’s theorem, 86
partial differential equations, 41, 51
partial pivoting, 188
partitioning, 279
Parzan window, 415
Pascal, 343
passing variables, 374
Patterson entropy, 507
Paul Dirac, 41
pencil line beams, 462

periodic function, 18
periodic replication, 96
permeability, 105
permittivity, 105
perturbation of data, 219
perturbation of data and matrices, 221
perturbation of matrices, 220
phase distribution, 478
phase modulation, 573
phase portrait, 477
phase space, 480
phase spectrum, 77, 80, 128
phase transitions, 542
phase unwrapping, 128, 135
piecewize continuous function, 50, 67
pink noise, 564
pipes, 339
pivot, 185
pivotal strategies, 188
pivots and pivoting, 187
PL/1, 345
plaintext, 468, 484
pointers, 348, 374
pointwize behaviour, 44
Poisson, 51
pole, 29
portability, 341
post solution modification, 223
power method, 265
power spectra, 541
power spectral density decomposition, 448
power spectral density function, 77, 544,

590, 607
power spectrum, 77, 81, 435
power spectrum equalization, 435
predator-prey processes, 475
presentation, 395
prime numbers, 465, 471
principal part, 29
principal phase, 11, 134, 478
private key, 444, 469, 471, 486
probability, 494
probability density function, 443, 496, 544
probable error, 313
procedures, 321
process logic, 323
process specification, 322

810 INDEX

product theorem, 90, 96
program design, 324
program development time, 326
program documentation, 326
program efficiency, 325
program reliability, 325
program specification, 324
program structures, 317
programming, 334
prolate spheroidal wave function, 509
propagation of information, 604
propagator, 51
proper function, 44
properties of a determinant, 169
prototyping, 335, 375
pseudo chaotic number generation, 482
pseudo chaotic number generators, 482
pseudo code, 322, 417, 418
pseudo random number generation, 443
pseudo random number generator, 466,

469
pseudo random number generators, 462,

573
pseudo random sequences, 463
pseudo-code, 186
pseudocode, 326
public key, 471
public key infrastructure, 471
pulse-echo systems, 110, 461
pulsed wavefield, 105
pure imaginary, 9
pure real, 9

q-signature, 607
q-value, 606
QR method, 282
quadratic iterators, 475
quadratic-Gaussian bandpass filter, 100
quadrature component, 129
quadrature detection, 131
quadrature filters, 131
quadrature signal, 418
quality control, 329
quantum electrodynamics, 51
quantum field theory, 51
quantum Green’s functions, 51
quantum mechanics, 51

quantum scattering theory, 106

Rössler equations, 480
radar, 104
random amplitude, 499
random fractal signals, 541
random number streams, 464
random scaling fractals, 542
rapping, 530
Rayleigh quotient, 266
Rayleigh’s theorem, 87
reading data, 388
real analogue signals, 230
real digital signals, 230
real part, 9, 91
real random sequences, 463
real space, 90
real zero conversion, 136
real zeros, 136
real-time systems, 338
reals, 318
recursive filters, 522
reduced matrix, 270
reference code, 444
refractive index, 105
regularization, 405
relative error, 311
relatively prime number, 471
relatively prime numbers, 465
relaxation iteration, 242
relaxation method, 239
repeat-loop, 320
repetitions, 319, 386
replicated spectra, 96
requirement specifications, 329
rescaled range analysis, 581, 595, 598
residual vector, 224
residue, 29
residue theorem, 29
reverberation, 460
Richard Fynman, 51
Riemann integral, 149, 547
Riemann-Liouville transform, 149, 547
Riesz operator, 553, 554
ringing, 68
risk analysis tool, 607
Rivest, Shamir and Adleman generator,

471

INDEX 811

root mean square, 109
rotation matrix, 273, 274
round-off-errors, 268
rounding down, 312, 314
rounding error, 312
rounding off, 314
rounding up, 312, 314
row matrix, 285
row vector, 285
run length, 463
running weighted average, 526

sampled function, 94
sampling interval, 70
sampling operation, 44
sampling property, 41, 43, 78
sampling theorem, 42, 93
sawtooth map, 478
scale invariance, 542
scaling, 267
scaling or matrices, 203
scatter generating parameters, 107
scattering from layered media, 104
scheduling, 329
Schrödinger equation, 141, 555, 556
Schwarz inequality, 437
scrambling, 469, 484
second order derivative, 103
second order scattering, 461
secure digital communications, 573
seed, 465, 466, 468
segmented programs, 325
seismic imaging, 138
seismology, 104
selections, 319, 386
self-affinity, 541
self-similarity, 477, 541
semantics, 317
semi iterative techniques, 238
sequences, 319
serial method, 274
series solution, 561
session key, 484
Shannon entropy, 504
shared modules, 385
shift theorem, 86
short, 366

shuffling, 467
side lobes, 462
sideband spectrum, 130
sign function, 84
signal analysis, 41
signal attributes, 134
signal independent noise, 430
signal-to-noise ratio, 434, 437, 443
signum function, 42
similarity dimension, 557
similarity theorem, 86
similarity transform, 269, 283
simple closed curve, 23
simple pole, 29
simply connected region, 23
sinc function, 97, 414, 508
sinc interpolation, 97
sine function, 83
sine map, 479
sine transform, 123
single character, 366
single program systems, 338
single scattering, 461
single side-band spectrum, 419
single sideband spectrum, 133
singular matrix, 287
singularities, 21
singularity, 514
skew Hermitian matrix, 289
skewness, 532
slowness, 557
smearing, 89
smoothing, 68
software life cycle, 327
software maintenance, 328
solid state physics, 51
solution to complex systems or equations,

203
solution vector, 241
sparse matrices, 238, 537
sparse matrix, 289
spatial frequency, 76
special types of matrices, 285
specification, 327
speckle, 542
spectral analysis, 416
spectral extrapolation, 508

812 INDEX

spectral leakage, 414, 415
spectral radius, 246
spectrogram, 140
spectrum, 71, 77
speech processing, 128
speed, 391
spread-spectrum, 574
square integrable, 76
square wave, 59
square wave signal, 60
stability of linear systems, 208
standard deviation, 497, 567
standard form, 71
standards, 329
statement layout, 365
stationary, 89
stationary process, 443
statistical filters, 532
statistical self-affinity, 543
statistics of dimension, 558
steady-state, 63
stenography, 443
step length, 102
STFT, 140
Stieltjes-Riemann integral, 129
stochastic resonance, 542
stochastic term, 460
strange attraction, 480
string (null terminated), 366
string and system testing, 335
string control, 366
structure block diagrams, 323
structure charts, 334
structured code, 323
structured programming, 302, 364, 386
structured programming in C, 377
stubs, 332
Sturm sequence, 275
Sturm sequence iteration, 256, 275
style, 395
style and presentation, 324
sub-processes, 393
subprogram, 365
subprograms, 317, 320, 393
subroutines, 393
successive doubling method, 407
successive improvement, 223

successive-over-relaxationmethod, 238, 239
successive-under-relaxation, 239
sufficient condition for convergence, 244
switch constructs, 370
symbolic constants, 367
symbolic definition, 44
symmetric cypher, 471
symmetric encryption, 469
symmetric functions, 92
symmetric matrix, 287
symmetry of the Fourier transform, 115
syntax, 317
system design, 327
system lifecycle, 381

tangent feedback map, 479
Taylor series, 57, 509
technical specification, 333
temporal correlation, 470
temporal frequency, 76
tent map, 479
test data, 328
test-beds, 332
testing, 328, 332
testing procedures, 302, 325
thermal conduction, 75
thermodynamics, 75
threshold partitioning, 485
tick data, 579
time history, 104, 138
time invariant linear systems, 89, 548
time-sharing, 338
Toeplitz matrix, 290, 517
top-down design, 330
top-down planning, 364
tophat function, 42, 82, 97
trace of a matrix, 287
transcription error, 312
transfer function, 434, 508
transformation matrix, 273
translation, 153
transmission line, 53
transpose matrix, 287
transpose of a matrix, 166
triangle inequality, 211
triangularization, 185
tridiagonal matrix, 289, 525, 536

INDEX 813

tridiagonal systems, 199
trigonometric functions, 59
trigonometrical Fourier series, 58, 68
trigonometrical series, 57
trivial solution, 175
truncation error, 126, 311, 312, 314
two dimensional arrays, 374
two-dimensional Fourier transform, 81
two-way travel time, 108

unconditional branching, 369
under-determined systems, 177
underflow, 314
unformatted output, 365
uniform distribution, 438, 443, 485
uniform PDF, 486
uniformly distributed deviates, 472
unit circle, 36
unit matrix, 166, 287
unit step function, 42, 85
unit testing, 335
UNIX, 339, 346
UNIX filters, 340
unsigned, 366
unsigned decimal integer, 366
unwrapped phase, 136
upper Hessenberg form, 283
upper Hessenberg matrix, 283
upper triangular matrix, 184, 193, 242,

288
user defined functions, 372
user requirement, 333

van der Monde matrices, 223
variable names, 367
variance, 532
VAX/VMS, 342
vector norm, 208, 209
virtual address extension, 310
virtual memory, 391
virtual memory system, 391
void functions, 373
volatility, 593, 608
volatility term structure, 594
vols, 588

Walsh transform, 125
Warnier diagrams, 323

watermarking, 440, 447
wave equation, 105, 556
wave equation solution, 560
wavefield, 105
wavelet decomposition, 448, 449
wavelet function, 152
wavelet space, 154
wavelet transform, 152, 449
wavenumber, 105
weak scattering, 106, 109
weighting functions, 512
Welch window, 415
well-conditioned, 430
Weyl transform, 149
while loop, 371
while-loop, 320
white box testing, 328
white noise, 438, 564
white spectrum, 437
Wiener filter, 428, 434
Wiener process, 572
Wiener-Hopf equation, 121
Wigner transform, 141
Wigner-Ville transform, 142
Wilkinson test, 507
window, 526
window function, 413
windowing function, 140
word length, 309, 313
World Wide Web, 347
writing data, 388
Wyle transform, 547

X-ray crystallography, 81

z-transfer function, 151
z-transform, 150
zero frequency, 71
zero padding, 530, 536
zero-mean Gaussian distribution, 497
zero-mean white Gaussian noise, 544

	Digital Signal Processing (Second Edition)
	Recommended Citation

	C:/DSPBOOK Edition 2/DSPBOOK_HORWOOD_V2/dspbook.dvi

