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DIGITAL SIGNAL PROCESSING

“Talking of education, people have now a-days” (he said) “got a strange opinion that
every thing should be taught by lectures. Now, I cannot see that lectures can do so
much good as reading the books from which the lectures are taken. I know nothing
that can be best taught by lectures, except where experiments are to be shown. You
may teach chymestry by lectures - You might teach making of shoes by lectures!”

James Boswell: Life of Dr Samuel Johnson, 1766

Dedication

To all those students with whom I had the good fortune to
work and, in using the material herein, taught me how to

teach it.
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Foreword to the Second Edition

I was flattered when the publisher, Ellis Horwood asked me to write this Foreword,
because my introduction to signal processing began in the Second World War when,
as a communications officer in the Royal Corps of Signals, I worked with a war-time
teleprinter. We used a system based on 5-bit letters and a pair of copper wires. It
provided a bandwidth of about 200Hz that could be separated by filters from the rest
of a voice channel without noticeably distorting the speech. Today the bandwidth
available is huge by comparison and information can be conveyed through a multitude
of channels using tiny glass fibres. However, although the engineering associated with
information and communications technology in general has and continues to undergo
radical change, many of the underlying mathematical principles remain the same.

G H Hardy in his book A Mathematician’s Apology wrote that there were ‘no
interesting applications of pure mathematics’. This is no longer true and Professor
Blackledge’s book Digital Signal Processing will enable many people to make use
of their interest in, and perhaps fascination with, mathematics in such a way, and
through a field of study, that will help us all communicate our ideas more quickly and
conveniently through the digital world of today.

The Earl Kitchener of Khartoum



Preface to the Second Edition

This book provides an account of the mathematical background, computational meth-
ods and software engineering associated with digital signal processing. The aim has
been to provide the reader with the mathematical methods required for signal analysis
which are then used to develop models and algorithms for processing digital signals
and finally to encourage the reader to design software solutions for Digital Signal
Processing (DSP). In this way, the reader is invited to develop a small DSP library
that can then be expanded further with a focus on his/her research interests and
applications.

There are of course many excellent books and software systems available on this
subject area. However, in many of these publications, the relationship between the
mathematical methods associated with signal analysis and the software available for
processing data is not always clear. Either the publications concentrate on mathe-
matical aspects that are not focused on practical programming solutions or elaborate
on the software development of solutions in terms of working ‘black-boxes’ without
covering the mathematical background and analysis associated with the design of
these software solutions. Thus, this book has been written with the aim of giving
the reader a technical overview of the mathematics and software associated with the
‘art’ of developing numerical algorithms and designing software solutions for DSP,
all of which is built on firm mathematical foundations. For this reason, the work
is, by necessity, rather lengthy and covers a wide range of subjects compounded in
four principal parts. Part I provides the mathematical background for the analysis of
signals, Part I considers the computational techniques (principally those associated
with linear algebra and the linear eigenvalue problem) required for array processing
and associated analysis (error analysis for example). Part IIT introduces the reader
to the essential elements of software engineering using the C programming language,
tailored to those features that are used for developing C functions or modules for
building a DSP library.

The material associated with parts I, IT and III is then used to build up a DSP
system by defining a number of ‘problems’ and then addressing the solutions in terms
of presenting an appropriate mathematical model, undertaking the necessary analysis,
developing an appropriate algorithm and then coding the solution in C. This material
forms the basis for part IV of this work.

In most chapters, a series of tutorial problems is given for the reader to attempt
with answers provided in Appendix A. These problems include theoretical, computa-
tional and programming exercises. Part II of this work is relatively long and arguably
contains too much material on the computational methods for linear algebra. How-
ever, this material and the complementary material on vector and matrix norms forms
the computational basis for many methods of digital signal processing. Moreover,
this important and widely researched subject area forms the foundations, not only of
digital signal processing and control engineering for example, but also of numerical
analysis in general.

The material presented in this book is based on the lecture notes and supple-
mentary material developed by the author for an advanced Masters course ‘Digital
Signal Processing’ which was first established at Cranfield University, Bedford in 1990
and modified when the author moved to De Montfort University, Leicester in 1994.
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The programmes are still operating at these universities and the material has been
used by some 700++ graduates since its establishment and development in the early
1990s. The material was enhanced and developed further when the author moved
to the Department of Electronic and Electrical Engineering at Loughborough Uni-
versity in 2003 and now forms part of the Department’s post-graduate programmes
in Communication Systems Engineering. The original Masters programme included
a taught component covering a period of six months based on two semesters, each
Semester being composed of four modules. The material in this work covers the first
Semester and its four parts reflect the four modules delivered. The material deliv-
ered in the second Semester is published as a companion volume to this work entitled
Digital Image Processing, Horwood Publishing, 2005 which covers the mathematical
modelling of imaging systems and the techniques that have been developed to process
and analyse the data such systems provide.

Since the publication of the first edition of this work in 2003, a number of mi-
nor changes and some additions have been made. The material on programming
and software engineering in Chapters 11 and 12 has been extended. This includes
some additions and further solved and supplementary questions which are included
throughout the text. Nevertheless, it is worth pointing out, that while every effort
has been made by the author and publisher to provide a work that is error free, it is
inevitable that typing errors and various ‘bugs’ will occur. If so, and in particular, if
the reader starts to suffer from a lack of comprehension over certain aspects of the
material (due to errors or otherwise) then he/she should not assume that there is
something wrong with themselves, but with the author!

J M Blackledge, January 2006
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Notation
Alphabetic
an Real coefficients of a Fourier cosine series
adjA Adjoint of matrix A
A= (a;;) Matrix with element at i*" row and j*® column
AT Transpose of A
AL Inverse of A
[A ] B] Augmented matrix formed from matrices A and B
| A Determinant of A
A(t) Amplitude modulation (amplitude envelope)
A(w) Amplitude spectrum
bn, Real coefficients of a Fourier sine series
b Data vector of linear system Ax = b
chirp(t) Unit chirp function [with complex form exp(—iat?)]
comb(t) Comb function [= > 6(t — nT)]
n
cond(A) Condition number of matrix A (=||A| x ||A~Y)
Cn Complex coefficients of a complex Fourier series for example
C Capacitance or the contour followed by a path of integration in
the z-plane
c Data vector associated with linear system x = Mx + ¢
D Fractal dimension or diagonal matrix
detA Determinant of A (also denoted by | A )
e Error vector
f@) Arbitrary real function - typically object function or system input
f(z) Function of a complex variable
| f1 modulus of complex variable or function f
1FI Norm (e.g. a Euclidean norm) of a function f(t)
I £l Norm of an array or vector f;
I fill2 Euclidean norm of array or vector f;
1%l p-norm of vector x
[1%] 0 ‘Infinity’ or uniform norm of a vector x
| Al Norm of matrix A
F(w) Complex spectrum of function f(t)
F.(w) Real component of spectrum
Fi(w) Imaginary component of spectrum
F; Discrete complex spectrum of discrete function f;
g(t) Arbitrary function
g(t | to,w) Green’s function
H(t) Tophat function
I Unit or identity matrix

Im[f]

Imaginary part of complex variable or function f



Wavenumber (= 27/)\)

Lower triangular matrix

Lower triangular matrix with 1’s along the leading diagonal
Iteration matrix associated with linear system x = Mx + ¢
Noise function

Discrete noise function

Noise spectrum

Instrument function or Impulse Response Function
Discrete Impulse Response Function

Transfer Function (Fourier transform of p;)

Discrete Transfer Function (DFT of p;

Probability density function also denoted by Pr[z(t)]
Conditional probability of obtaining a given b

Power spectrum (=| F(w) |?) where F(w) is the
Fourier transform of f(t)

Discrete power spectrum

Probability occurrence of x

Fourier dimension

Quadrature signal

Resistance

Denotes the i*" row of a matrix

Real part of complex variable or function f

Real or complex (analytic) signal

Discrete real or complex signal

Sign function

Sinc function (= sin(t)/t)

Time

Upper triangular matrix

Upper triangular matrix with 1’s along the leading diagonal
Unit step function

Solution to a partial differential equation (e.g. wavefield)
Eigenvectors of linear system Av; = A\;v;

Walsh function

Solution vector of linear system Ax = b

Eigenvectors of linear system Ax; = \;X;

Transpose of vector x

i*? element of vector x

Initial value

Complex number of the form a + b

Complex conjugate a — ib of a complex number a + ib
In (e.g. = € [a,b) is equivalent to a < z < b)

Forall (e.g. f(t) =0, Vte& (a,b])



Greek

o} Chirping parameter

I'(q) Gamma function

o(t) Dirac delta function

0ij Kronecker delta

5t Small increment (denoted also by At)

0(t) Instantaneous phase

A Wavelength

Y Eigenvalues of linear system Ax; = \;x;

¥(t)  Instantaneous frequency

On Delta sequence function

p(M)  Spectral radius of (iteration) matrix M

w Angular frequency or the relaxation parameter

Q Bandwidth of a spectrum

Operators

C Cosine transform operator

D Linear differential operator

D1 Fractional differential operator

By One dimensional Fourier transform

E 1_1 One dimensional inverse Fourier transform

H Hilbert transform operator

Ia Fractional integral operator (e.g. Riemann-Liouville fractional integral)

L One sided Laplace transform operator

L='  Inverse Laplace transform operator (Bromwich integral)

S Sine transform operator

4% Wavelet transform

W1 Inverse wavelet transform

® Convolution operation (continuous or discrete and causal or otherwise,
depending on the context specified)

® Correlation operation (continuous or discrete and causal or otherwise,
depending on the context specified)

<= Transformation into Fourier space

«——  Transformation into some transform space (as defined)

xi
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Glossary of Terms

Mathematical and Statistical

ACF
AM
BL
CDP
CP/M
DFT
FFT
FM
FIR
GUI
IDFT
IIR
IRF
LCM
MAP
ML
PDE
PDF
PSDF
RSRA
RZC
STFT
TF
WV

Autocorrelation Function

Amplitude Modulations (the amplitude envelope)
BandLimited

Common Depth Point

Control Program for Microprocessors
Discrete Fourier Transform

Fast Fourier Transform

Frequency Modulations

Finite Impulse Response

Graphical User Interface

Inverse Discrete Fourier Transform

Infinite Impulse Response

Impulse Response Function

Linear Congruential Method

Maximum a Posteriori

Maximum Likelihood

Partial Differential Equation

Probability Distribution or Density Function
Power Spectral Distribution or Density Function
ReScaled Range Analysis

Real Zero Conversion

Short Time Fourier Transform

Transfer Function

Wigner-Ville

Computer Science

BCD
CASE
CPU
DSP
1/0
JCL
PCNG
PRNG
RAM
VAX
VDU
VMS

Binary Coded Decimal

Computer Aided Software Engineering
Central Processing Unit

Digital Signal Processor
Input/Output

Job Control Language

Pseudo Chaotic Number Generator
Pseudo Random Number Generator
Random Access Memory

Virtual Address Extension

Visual Display Unit

Virtual Memory System



Organizational and Standards

DOS
EMH
FMH

LPI
MATLAB
MPT

MS

NYA

PKI

RSA

Disc Operating System
Efficient Market Hypothesis
Fractal Market Hypothesis
Log Price Increment

Highlevel technical computing language by MathWorks Inc.

Modern Portfolio Theory
Microsoft

New York Average

Public Key Infrastructure
Rivest, Shamir and Adleman

xiii
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Introduction

Many aspects of electrical and electronic engineering have been reduced to the appli-
cation of programming methods for processing digital signals. In the ‘old days’, the
electrical engineer used to get the soldering iron out and ‘make things’, e.g. transistor
circuits and later, integrated circuits using functional electronics. Moreover, many
of these systems were based on analogue technology. Nowadays, much of the elec-
trical engineers job is based on processing information in the form of digital signals
using ever more powerful CPUs and increasingly specialist DSP hardware that, more
often than not, are just powerful floating point accelerators for processing specialist
software.

The design of any electronic system in terms of both the hardware that executes
it and the software that ‘drives’ it is inextricably bound up with the simulation of
the system. Indeed, although the jargon and sound bites change radically from one
scientific and engineering discipline to another, the use of mathematical modelling
for computer simulation has become of major significance in industry. A wealth of
excellent computer packages exist for this purpose, which engineers use routinely for
design and development. The electrical and electronic engineer now has many highly
sophisticated simulators for designing digital signal processors which can then be used
to program an appropriate chip directly. Much of the work is then undertaken in the
design and generation of code which is invariably based on C and/or C++ depending
on the characteristics of the problem. It is within this context that the material
herein has been prepared but with the proviso that the reader first comes to terms
with the mathematical and computational background upon which all such systems
are ultimately based.

The principal purpose of this book is to take the reader through the theoretical
and practical aspects required to design and apply a DSP object library using pro-
gramming techniques that are appropriate to the successful completion of this task.
The culmination of this process is the basis for the material given in Part IV and
Parts I-ITI can be considered to be the background to this process for those readers
that have no previous experience of the subject. The material is based on a set of
lecture notes and supplementary material developed by the author over a number of
years as part of an MSc programme in ‘Digital Signal Processing’ established by the
author at the Universities of Cranfield, De Montfort and Loughborough in England
over the 1990s. This programme has increasingly made use of MATLAB as a proto-
typing environment which is ideal for investigating DSP algorithms via application
of the MATLAB DSP toolbox. However, emphasis has and continues to be based on
instructing students on the design of C code for DSP so that software can be devel-
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oped that is independent of a commercial system (other than the C/C++ compiler).
The programming approach has been based on the use of Borland Turbo C++ and
this is reflected in some of the code discussed in this work, in particular, the graphics
utility that is provided for readers to display signals in Appendix B. Apart from this
aspect, the C code that is provided here is independent of a specific compiler and the
reader may introduce other graphics facilities as required, including those associated
with MATLAB which has excellent facilities in this regard and have been used in this
book from time to time.

Part I of this book covers the mathematical methods that lie behind the processing
of signals and their analysis. Chapter 1 covers the essentials of complex analysis from
the introduction of complex numbers through to the principles of complex integration
and the results that can be used to evaluate a wide variety of integrals. Such methods
are of significant value in providing analytical solutions to problems in signal and cir-
cuit analysis such as in the evaluation of the response of time invariant linear systems
to periodic and/or aperiodic inputs; this includes the design and characterisation of
different filters and their theoretical evaluation. Moreover, complex analysis features
routinely in the application of a wide variety of integral transforms such the Fourier
transform that is introduced in Chapter 4 for example.

Chapter 2 introduces the reader to a singularly important generalised function,
namely, the delta function together with other related generalised functions such as
the step function, the sign function and the tophat function for example. All of these
functions are of specific importance in signal analysis where the delta function plays
a pivotal role especially in the development of generalised Fourier theory and the
sampling theorem for example.

The Fourier transform is introduced and studied using two approaches. The first
of these is based on the Fourier series which is the basis for the material discussed in
Chapter 3 and introduces the Fourier transform (and the discrete Fourier transform)
using a classical approach. The second approach to introducing the Fourier transform
is via a path that is intrinsically related to the delta function; this is the so called
generalised approach to Fourier theory and is discussed in Chapter 4. In practice, both
approaches to Fourier theory are important especially when the reader is required to
comprehend the connection and synergies that exist between the theoretical basis for
many aspects of signal analysis and the systematic design of a computer algorithm for
processing digital signals. Although the Fourier transform is arguably the ‘work-horse’
(both theoretically and computationally) for studying time invariant linear systems,
it is not the only integral transform that is of value. Chapter 5 of Part I looks at other
integral transforms that are of value to signal analysis. These transforms include the
Laplace transform, the sine and cosine transforms which are used for solving causal or
initial value problems and for data compression for example, the Gabor, Wigner and
Wigner-Ville transforms for studying signals that are time variant, the z-transform
(which is used for solving models for signals that are based on discrete control systems
for example) and transforms such as the Riemann-Liouville transform which forms the
basis for modelling and analysing fractal signals for example. The wavelet transform
is also briefly introduced together with a short discussion of its origins and properties
with regard to its multi-resolution characteristics.

Part IT is on computational linear algebra which starts with a review of matrix
algebra and linear algebraic systems of equations given in Chapter 6. The mater-
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ial covers methods of solving linear equations using direct methods (Chapter 7) and
indirect or iterative methods (Chapter 9) and considers techniques for solving the
linear eigenvalue problem in Chapter 10. In addition, a single chapter (Chapter 8) is
devoted to a study of vector and matrix norms which are an essential analytical tool
used for error analysis, optimization and the quantification of numerical procedures.
Part II is relatively extensive and there is arguably too much material on this sub-
ject given the remit of this book. However, many years experience in teaching DSP
to graduate students by the author has revealed that there is often a fundamental
lack of knowledge of computational linear algebra, a subject area that is absolutely
fundamental for the formal mathematical definition of digital signals and the digital
algorithms that process them. Many of the algorithms used in DSP end up being
expressed in matrix form and the numerical solutions to such problems invariable re-
quire the solution to systems of linear algebraic equations. Similarly, the computation
of eigenvalues and eigenvectors is not only an important aspect of linear algebra but
also enters into some practical methods of signal analysis.

Part III covers aspect of the software engineering methodologies and ideas that
a programmer should comprehend. This material is deliberately integrated into the
C programming language but does not represent a complete or even partial course
on C. Instead, those aspects of the language are discussed that are essential only to
the programming exercises that are given in Part IV. These ‘essentials’ are coupled
to a discussion on the principles of software engineering with an emphasis on good
programming practice; in particular, modular and structured programming and the
design of a DSP library. Thus, apart from introducing the reader to the principles
of signal analysis and DSP, one of the goals of this work is to help the reader design
their own software provision from which further extensions and developments can
be made. Chapter 11 provides an introduction to the essentials of number systems
and issues concerning numerical accuracy that are associated with them (e.g. errors
associated with the binary representation of decimal numbers) and provides a brief
overview of programming languages and operating systems that the reader may or
otherwise have acquired a working knowledge of. This chapter also provides a dis-
cussion on the principles of software engineering which are extended in Chapter 12
via a programming approach working with C. This includes the presentation of some
example programs relating to the computational methods discussed in Part IT and
other numerical procedures that are either useful examples in themselves or relate to
methods that are required later on in the work. Specific examples are given of pro-
grams that are required to help the reader design, execute and test the DSP modules
discussed in Part IV.

Part IV discusses the principles of DSP in terms of a set of specific problems,
solutions, the design of an appropriate algorithm and finally, the development of C
code, which is left to the reader as an exercise. The material makes both general or
specific reference to that presented in Parts I-III and provides examples of specific
algorithms using pseudo code via the programming practices discussed in Part III.
Chapter 13 discusses the use of digital filters with regard to the application of the
Fast Fourier Transform or FFT. This is presented together with the C code that is
required by the reader to develop many of the digital signal processors studied in
this and later chapters, starting with Chapter 14 which investigates the process of
digital filtering in the Fourier or frequency domain. Chapter 15 introduces a statis-
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tical approach to the extraction of information from noise using Bayesian estimation
theory and techniques based on the application of entropy conscious approaches (e.g.
maximum entropy estimation). The chapter expands this theme to a study of the
problem of extrapolating the spectrum of bandlimited signals, which like so many
inverse problems, is an ill-posed problem. Chapter 16 investigates the computational
principles associated with processing signals in the time domain and looks at the def-
initions, mathematical models and applications of the Finite Impulse Response filter,
the Infinite Impulse Response filter and goes on to briefly investigate issues related to
processing non-stationary or time variant signals defined by a linear process. Finally,
Chapter 17 investigates the world of (random) fractal signals using an approach that
is based on fractional partial differential equations which has been a research interest
of the author for some years. The use of fractals or self-affine models for analysing
and processing signals has been around for many years and is important in that so
many naturally occurring signals in nature (speech, radar, seismic, economic and bio-
medical signals to name but a few) exhibit fractal properties. This chapter includes
a brief overview of some of the methods used for analysing and interpreting signals
that have been generated by nonlinear and chaotic systems using fractal geometry.
This chapter is, in effect a continuation of the material discussed in Chapter 14 which
introduces methods of simulating noisy and chaotic signals.

In this book, emphasis is placed on the use of set problems which are given at
the end of most chapters. These problems have been designed to instruct the reader
on aspects of the material which is either complementary or exploratory in terms of
advancing a specific theme further. Some of the questions are aimed at completing
aspects of the material which are not covered by the text in full; other questions form
the basis for material that occurs later on in the work. These problems have been
designed to complement the readers ‘learning curve’ and should ideally be attempted
after reading and comprehending the material provided in a given chapter. The
questions represent an important aspect of the readers appreciation of the theoretical
and practical programming techniques in order to develop an in-depth understanding
of the material herein.

Full solutions are provided in the appropriate Appendix. Providing these solutions
clearly adds to the bulk of the book but is of significant value to the reader in terms
of completeness and necessary reference. The solutions are in the form of answers
to the theoretical questions set in parts I and II and the theoretical and software
development questions (given in C) provided in Parts III and IV. In addition to
model solutions, the appendix contains a number of supplementary problems. These
problems have been taken from a selection of the examination papers prepared by the
author for assessment of students undertaking an MSc programme in ‘Digital Signal
Processing’. Hence, the style of the questions set are different to those of the problems
at the end of a chapter. No solutions are provided to these supplementary problems.

Throughout the book, a number of examples and case studies are provided. Some
of these cases studies have been designed to extend the material as required. Cer-
tain case studies are based on the authors research interests and represent new and
novel approaches to some specific problems. The ‘software solutions’ associated with
some of these examples and case studies are given in MATLAB which is an ideal
prototyping environment for investigating new approaches to numerical problems.
Here, MATLAB’s DSP and other toolboxes are used to present prototype code that
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can be investigated further as required by the reader. The graphical examples given
are not extensive for reasons of page minimization but also, because it is of greater
educational value for readers to investigate a processing technique by plotting and
interpreting the output of software they have developed for themselves (as discussed
in Part IV); a principle, which is the central kernel of this publication. Finally, each
chapter contains a list of textbooks which the author has used and in some cases,
has been involved in developing. The list is not extensive but is aimed at introducing
‘further reading’ which in most cases, either complements the material provided in
a chapter or (significantly) extends it using works that are of historical as well as
academic value and span an appropriate period over which the subject has been sig-
nificantly developed. It was originally intended to include a list of references based
on resources available on the Internet. However, such resources change so rapidly
and are available so readily, that it was later considered better to leave the reader to
make use of the Internet directly through the available search engines from which the
reader can acquire a wealth of excellent material on this subject area and beyond.

Above all, the book attempts to provide a unified and coherent approach to the
subject and to give the reader a blend of theory and practice that is, where ever
possible, linked together via an appropriate underlying mathematical model. One
such model that can be taken by the reader to be a fundamental underlying theme is
the equation

s(t) = p(t) @ f(t) +n(t)

where s is the output (a recorded signal), f is the input signal to a system described
by the function p and the process of convolution (denoted by the symbol ®) and n is
the noise generated by the system. This is the classic time invariant linear systems
model which forms the basis for a wide range of problems, from control engineering to
speech processing, from active radar to biomedical signal analysis. The convolution
equation is actually an integral equation. It can be considered to be a special form of
the so called inhomogeneous Fredholm equation of the second kind, namely

b

s(t) = / p(t, ) F(r)dr + n(t)

a

where n(t) is a known function and a and b are the fixed points at which s satisfies
boundary conditions. A more general case occurs when the integral above runs from
a to t giving the so called inhomogeneous Volterra equation of the second kind, both
cases having homogeneous forms when n = 0. From a theoretical point of view, we
can consider this book to be on the subject of analysing and solving integral equations
of this form except for the fact that the function n is not known, only its probability
density function is known (at best).

The convolution process is absolutely fundamental to so many aspects of physics.
It describes the smearing or blurring of one function with another which can be seen
in terms of the information content of a signal being distorted by that of another. The
convolution process is also of fundamental importance to statistics in that it describes
the statistical distribution of a system that has evolved from combining two isolated
and distinct sub-systems characterised by specific statistical distributions. Moreover,
as more and more ‘sub-systems’ are combined (linearly), the statistics of the output
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approaches a normal or Gaussian distribution. This is the so called Central Limit
Theorem which is absolutely fundamental to statistical physics and the stochastic
behaviour systems in general.

A principle requirement is to established the form of the function p. In the ideal
case of a noise free environment (i.e. when n(¢) = 0V?¢) this can be achieved by
inputting an impulse which is described mathematically in terms of the Dirac delta
function ¢ (as discussed in detail later in Chapter 2). In this case,

s(t) = p(t) ® o(t) = p(t)

i.e. the output is p(t). For this reason, p is often referred to as the Impulse Response
Function (IPF) because it is in effect, describing the response of a system to an
impulse. This fundamental model has an equivalence in frequency space, and, via the
convolution theorem can be written as (with n(t) = 0Vt)

where S, P and F' are the spectra of s,p and f respectively and w is the (angular)
frequency. Here, P characterises the way in which the frequency distribution of the
input is transferred to the output and for this reason it is commonly referred to
as the (frequency) Transfer Function (TF). In this sense, we can define an ideal
system as one in which P(w) = 1Vw. The addition of noise is an important aspect of
signal processing systems because it must always be assumed that no signal or signal
processing system is noise free. The physical origins of noise are determined by a
range of effects which vary considerably from one system to the next. In each case,
suitable statistical models are required to model the noise term which in turn, can be
used to design algorithms for processing signals that are robust to noise. This involves
the so called extraction of information from noise which is discussed in Chapter 15
using Bayesian estimation methods.

The basic model for a signal, i.e.

s(t) = p(t) ® f(t) +n(t)

can be cast in terms of both piecewise continuous and generalised functions and also
discrete functions or vectors. Indeed, many authors present the problem in terms of
the equation

s=Lf+n

where L is a linear operator (typically a linear matrix operation) and s, p and n are
vectors describing the discrete or digital versions of the functions s, p and n respec-
tively (as given on the front cover this book). Moreover, there is a close connection
between the application of this model for signal processing and that associated with
the general solution to physical problems specified by certain partial differential equa-
tions (PDE’s) which are linear, homogeneous or inhomogeneous with homogeneous
and/or inhomogeneous boundary conditions. In this case, it is often useful to de-
termine how the system described by a PDE responds to an impulse. The solution
to this problem is known as a Green’s function named after the English mathemati-
cian and physicist George Green whose work dates from early nineteenth century and
who provided one of most indispensable mathematical tools of the twentieth century.
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However, the Green’s function is essentially an impulse response function, an exam-
ple being the wave generated by dropping a small stone vertically into a large pool of
still water. It provides a solution that is based on a convolution process which is an
underlying theme of many models in engineering, physics and statistics for example
and a central component of the methods and ideas discussed in this work.

As an example, consider the process of diffusion, in which a source of material
diffuses into a surrounding homogeneous medium; the material being described by
some source function which is a function of both space and time and of compact
support (i.e. has limited spatial extent). Physically, it is to be expected that the
material will increasingly ‘spread out’ as time evolves and that the concentration
of the material decreases further away from the source. It can be shown that a
Green’s function solution to the diffusion equation yields a result in which the spatial
concentration of material is given by the convolution of the source function with a
Gaussian function and that the time evolution of this process is governed by a similar
process. Such a solution is determined by considering how the process of diffusion
responds to a single point source (a space-time dependent impulse) which yields the
Green’s function (in this case, a Gaussian function). The connection between the
basic convolution model for describing signals and systems and the Green’s function
solution to PDEs that describe these systems is fundamental. Thus, the convolution
model that is the basis for so much of the material discussed in this work is not
phenomenological but based on intrinsic methods of analysis in mathematical physics
via the application of Green’s function solutions. A useful example of this is given in
Chapter 4 in terms of a case study which serves to highlight the role of the Fourier
transform and the convolution operation in terms of the ‘physics’ of the propagation
and scattering of waves and the signal model (a convolution integral) that this physics
produces.
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Signal Analysis



Chapter 1

Complex Analysis

1.1 Introduction

Complex analysis is an essential aspect of signal analysis and processing. Examples
of the use of complex analysis for signal processing include: (i) The Fourier transform
which provides a complex spectrum; (ii) the analytic signal, which is a complex signal
with real and imaginary (quadrature) components; (iii) complex roots or ‘complex
zeros’ for representing a signal; (iv) the amplitude and phase of a signal - essentially
a complex plane or ‘Argand diagram’ representation of a signal. Complex or contour
integration is also often used to derive analytical results relating to ‘filtering’ type
operations on spectral (complex) functions.

In this chapter, for the sake of completeness and with regard to the portfolio of
this book, a short overview of complex analysis is given primarily for those readers
who are not familiar with the subject or need to re-familiarize themselves with it.
The aspects taken from the field of complex analysis focus on those areas that have
direct relevance to the field of signal analysis.

1.2 Complex Numbers

There are a number of ways to introduce a complex number, but, typically, we can
consider the fact that within the real domain, the equation 22+ 1 = 0 has no solution.
We therefore specify a solution of the type

x = +i where ¢=+v—1.

A complex number has the form z = a + ib where a and b are real numbers. The real
part of z is defined as Re[z] = a and the imaginary part of z as Im[z] = b and we
consider pure real numbers as a + i0 and pure imaginary numbers as 0 + ib.

1.2.1 Addition, Subtraction, Multiplication and Division
Addition and subtraction

(a+ib) £ (c+id) = (a£c)+i(bLtd)

9



10 CHAPTER 1. COMPLEX ANALYSIS

Multiplication
(a+ib)(c+id) = ac + iad + ibc + ibid = ac + i(ad + bc) + i2bd
Now 72 = (v/—1)% = —1, therefore i%bd = —bd and thus,
(a +1b)(c +id) = (ac — bd) + i(ad + be).
Division

a+1ib
c+id

must be expressed as A+ iB.

We note that (¢ + id)(c —id) = ¢? + d? so that

a+ibc—id  (ac+bd) +i(bc — ad)

c+ide—id c2 4+ d?
Hence,
ac + bd bc — ad
c2 4 d? . c? +d2

1.2.2 Powers of i = /-1

We note that

and
., 1 13 1
1 T =T = =0 =1
7 11 -1
i? = -1, i3 =1 ete.

1.2.3 The Complex Conjugate

If 2z = a+ib, then z* = a — ib and if z = a — b, then z* = a + ib. z* is called the
complex conjugate of z. Note that if a + ib = ¢ + id, then formally, a = ¢ and b = d.
Also note that

2% = (z +iy)(z — iy) = 2* + ¢
and

Re[z] = %(z +z") =z, Im[z]= —%(z —z") =y.
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1.2.4 Geometrical Representation (The Argand Diagram)

Imaginary Complex plane

axis Va2 +y? z=x+1y

Real axis

=z -1y

Figure 1.1: Geometrical representation of a complex number.

The Argand diagram is based on considering the real and imaginary parts of a
complex number to be the positions on the vertical (imaginary) and horizontal (real)
axis of a conventional graph respectively as shown in Figure 1.1. This leads directly
to polar or (r,6) notation. Let

r=+22+y?=vz* =z |,

| z | being referred to as the modulus of z with alternative notation modz. Then
x =rcosf and y = rsinf giving

z=r(cosf +isinf), z*=r(cosf —isinb)
where

,1%
.

6 = tan

The phase 6 is referred to as the argument of z and is therefore sometimes donated
by argz. Note that argz = tan~!y/x is multi-valued. We can restrict argz to a
principal phase or range between —7% and 7. The value of argz is then referred to as

the ‘principal value’.

Example Consider the complex number z =144. Then 12 =14+1=2or r = /2,
cosf = 1/v/2 and sinf = 1/4/2. Further, tanf = 1 so § = tan~'1 = 45° or
m/4 radians. Hence, we can write

modz =| z |= V2, argz = %
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Note that in general,
argz =0+ 27n

where
n=0,+1,42,...

1.2.5 De Moivre’s Theorem

Suppose that
z1 = ri(cosf; +isinby), (1.2.1)

29 = 12(cos Oz + isinfy).

Then
z122 = r1r2(cosfy + isin 6y )(cos Oz + isinby)

= ry71a[(cos 1 cos O — sin Oy sin O3) + i(cos Oy sin O + sin O cos 05)]
= ryiracos(fy + 02) + isin(fy + 02)].
Thus, by induction,
2129...2n = T1T2...Tp[cos(01 + 02 + ... + 6,,) + isin(01 + 02 + ... + 0,,)].
Now let
Z1=20=..=2p, TT=To=..=71, and 01 =0, =..=0,.

Then
21 = r1[cos(nby) + i sin(nby)].

But from equation (1.2.1)
21 =ri(cosfy +isinf)".

Hence,
(cosf + isin @)™ = cos(nf) + isin(nd).

1.2.6 The Complex Exponential

Unlike other functions, whose differentiation and/or integration yields different func-
tions (with varying levels of complexity), the exponential function retains is functional
form under differentiation and/or integration. Thus, we can define the exponential
function as that function f(z) say, such that

F(@) = (&) = F(a)

What form should such a function have? Suppose we consider the power series

x? 28 "
f(l‘)=1+$+i+§+...+m+...
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Differentiating,
(E2 xnfl
rooN = _
flle)y=0+14+2+ o] + .+ 1) +...=f(z)

as n — oo. This power series is unique with regard to this fundamental property and
is given the special notation e or exp, both of which are used throughout this text.
The reason why e appears so commonly throughout mathematics is because of its
preservation under differentiation and/or integration. This property can be extended
further if we consider an exponential of complex form exp(iz). Suppose we let

f(0) = cosf + isind. (1.2.2)

Then
' (0) = —sin@ +icosh =if(0).

Now, a solution to f/(8) = if(0) is
f(0) = Aexp(if) (1.2.3)

where A is an arbitrary constant. From equation (1.2.2), f(0) = 1 and from equation
(1.2.3), f(0) = A. Thus A =1 and

exp(if) = cosf + isinf.

Another way of deriving this result is to consider the expansion of exp(if), i.e.

PO AN A A i N A A i
exp(if) = 1+if+ 5+ b o b e S g e g
6> 64 . 63 o
:1—54-1— +z<0—§+a—...)—cosf)—f—zsm@.

Finally, we note (from De Moivre’s theorem) that

exp(inf) = (cosf + isinf)" = cos(nb) + isin(nd).

1.3 Complex Functions

Some simple examples of complex functions are
1 n 2 n
z+3, —, 2", exp(z), cosz, ap+aiz+ a2z’ + ...+ apz".
z

If f(z) is a function of a real variable, then f(z) is a function of a complex variable.
Just as the function y = f(x) defines a mapping from z to y, so the function w = f(z)
defines a mapping from the z-plane to a w-plane as illustrated in Figure 1.2. Both
planes are complex planes.
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y = f(x)
x
Yy
Real Plane
w = f(2)
Yy z v w
z =x + iy w = u + v
T u

Complex Plane

Figure 1.2: Mappings of a real function in the real plane (top) and a complex function
in the complex plane (bottom).

Example Consider the function w = 22, then
w=2? = (z+iy)> =2 —y? + 2izy = u + iv
where u = 22 — 32 and v = 2zy. In general,

w= f(z) =u(z,y) +iv(z,y)

where v = Re[w] and v = Im[w].

1.3.1 Differentiability of a Complex Function

Consider the function w = f(z), then

w—+ dw = f(z 4+ 62)

and
bw  flz+82)— 1(2)
Sz 8z '
Thus i 5
QO — ey — i W
3 =1 (2) = Jim
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which provides a result consistent with the differentiation of a real function.

Y

¢ Many ways of
/ \ approaching z

from z + 62

Figure 1.3: There are many way to approach a point in the complex plane. A complex
function is differentiable if the same result is obtained irrespective of the path taken
to the point.

However, in the complex plane, there are many ways of approaching z from z + dz.
Thus, the function w = f(z) is said to be differentiable if all paths leading to the
point z yield the same limiting value for the ratio dw/dz as illustrated in Figure 1.3.

1.3.2 The Cauchy-Riemann Equations

v

Figure 1.4: Two paths are considered: Path 1 is parallel to the x-axis and path 2 is
parallel to the y-axis.

Consider a path that is parallel to the x-axis (path 1 in Figure 1.4) so that dx #
0,6y =0 and 0z = dx. Then

ow  ou-+idv  du v

oz ox ~or Zém
and thus,
ou ov
/ _ -7 -7
J'z) = oz oz
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Now consider a path parallel to the y-axis (path 2 in Figure 1.4) so that dz = 0,y # 0
and 6z = idy. In this case,

dw  du+idv v du

dz  idy Oy B Zéy
and thus,
ov ou
/ _ T
fl(z) = a9 Z@y'

As f(z) is assumed to be differentiable at z = x + iy,

ou o0 _ov_ ou
Ox Zax_ay oy

or after equating real and imaginary parts

ou Ov ov ou

%—a—y an %——a—y

These are necessary conditions for the differentiability of a complex function. Now,
since 0z = dz + idy,

) Ju Ju [ Ov v
dw = du + idv = adx + a—ydy—i—z <%dx + 8_ydy) .

Using the Cauchy-Riemann equations

dw = (@dx — @dy> +1 (ﬁda: + @dy) = @(dx +idy) + Z%(dﬂ? + idy)

Ox Oz ox ox Ox
ou . Ov . ou . Ov
= <% + z%) (dx + idy) = <% + Z%> dz.
Hence,
dw Ou  Ov

& oz o
Note that the right hand side of the equation above is independent of z.

1.3.3 Analytic Functions

If f(z) is differentiable at every point in a neighbourhood of the point P (see Figure
1.5), we say that it is analytic at the point P.

Example 1 Consider the function w = zz* = 22 4+y? in which u = 22 4+y? and v = 0.
Then

ou ov

- = 2 —
Ox o oy 0,
ov ou
oo, &=y
Ox 0 Oy 4
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In this case, the Cauchy-Riemann equations are satisfied only at the origin x = y = 0.
Hence, | z |? is differentiable at z = 0 only and it is not an analytic function anywhere
else.

Example 2 Consider the function w = z* =  — iy where v =  and v = —y. In this
case,
v ou
or oy 7 0x oy
and 5 5
2o, Z oo
oy ox

Therefore, z* is not differentiable anywhere.

Neighbourhood of P

Zz

Figure 1.5: The neighbourhood of a point P in the complex plane is the region in the
complex plane that (completely) surrounds that point.

Example 3 For the function

1 1 T — 1y
w=-= = ,
z x+iy 2%+ 2
Y
= and v
$2+ 2 x2+y2

In this case,

ou Ov Ou ov

ooy Oy on
Therefore, the Cauchy-Riemann equations are satisfied everywhere except at z = 0.
Hence, 1/z is analytic at all points of the z-plane except at z = 0.

Example 4 Consider the function
w = exp(z) = exp(x + iy) = exp(x)(cosy + isiny),

so that
u = exp(x)cosy, v = exp(z)siny
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and

Ou Ov Ou  Ov
oxr oy Oy = Oz
In this example, the Cauchy-Riemann equations are satisfied everywhere in the z-
plane. Hence, exp(z) is an analytic function at all points in the complex plane.
Note that | exp(z) |= exp(z) and arglexp(z)] = y+2mn, n=0,+1,+2,.... Thus,
exp(z) is a periodic function with a period of 27.

1.3.4 Some Important Results

For analytic functions wy = f1(z) and we = fa(2):

d . dw; dws
E(wl +’U)2) d dz ;
d _ d 2 dw1
gz (Wiwe) = wr=gE +we
d (1 1 dw
& (a) v w70
and p p
z 1 w
dw =T g 7Y
If w=w(&) and £ = £(z), then
du _ dw de
dz  d¢ dz’
Also p
n n—1
i =nz

where n is an integer.

1.4 Complex Integration

The integral of a complex function is denoted by

I—C/f(z)dz

where
f(2) = u(z,y) +iv(z,y), dz=dc+idy

and C denotes the ‘path’ of integration in the complex plane (see Figure 1.6). Hence,

I= /(u +iv)(dz + idy) = /(udm —vdy) + 1 /(udy + vdx)

C C C
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with the fundamental results

Ju@+g@iz= [ 1@+ [ a,
C C

c
/k‘f(z)dz:k/f(z)dz

C c

/ F(2)dz = / F(z)dz+ / F(2)d=
(e Cy

C1+C>

and

as illustrated in Figure 1.7.

C/ F()dz

i

Figure 1.6: Integration in the complex plane is taken to be along a path C.

/ f(z)dz:é[ F)dz + C/ F2)dz

C1+C2

Co

Gy

8

Figure 1.7: Integration over two paths C; and Cs in the complex plane is given by
the sum of the integrals along each path.



20 CHAPTER 1. COMPLEX ANALYSIS

Example 1 Integrate f(z) = 1/z from 1 to z along a path C' that does not pass
through z = 0 (see Figure 1.8), i.e. evaluate the integral

dz
-

I =
c

Let z = rexp(if), so that dz = drexp(if) + r exp(if)idf. Then

7 C/ exp(ifiicf;i—g)rid@) _ C/ <% N id9>

where n is the number of time that the path C' encircles the origin in the positive
sense, n = 0,+1,42,..... Hence

I=In|z|+i0+2mn)=Inz.

Note, that substitutions of the type z = rexp(if) are a reoccurring theme in the
evaluation and analysis of complex integration.

>
T

Figure 1.8: Tllustration of the path of integration C' for integrating 1/z from 1 to z.

Example 2 Integrate f(z) = 1/z around z = exp(if) where 0 < § < 27 (see Figure
1.9). Here,
dz = exp(if)idf

and
27

I:/ldz:/z'dO:Qm'.
z

C 0
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The path of integration C'in this case is an example of a contour. A Contour is a simple
closed path. The domain or region of the z-plane through which C is chosen must
be simply connected (no singularities or other non-differentiable features). Contour
integrals are a common feature of complex analysis and will be denoted by § from
here on.

Important Result
dz

C

Proof Let z = rexp(if), then dz = rexp(if)idf and

2

2m
dz rexp(if)idd i )
/Z”Jr1 B / ritlexpli(n +1)0] /exp( inf)df
C 0 0

11 ) o
=~ 7, lexp(=ind)]y

Note, that n must be an integer > 0.

A

Y z

11
= —T—nﬁ[exp(—Qm'n) —1]=0.

dz = e%idp

H“

L
-

(=]

—

Figure 1.9: Integration of 1/z around z = exp(if), 0 <6 < 2.

1.4.1 Green’s Theorem in the Plane

Theorem If S is a closed region in the x — y plane bounded by a simple closed curve
C and if P and @ are continuous function of z and y having continuous derivatives

in S, then
7{(de + Qdy) = // <% - g—];) dxdy
s

c
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Proof Consider the accompanying diagram (see Figure 1.10).

Let curve ACB be described by the equation

y =Y (z).
Let curve BDA be described by the equation
y = Ya(z).
Let curve DAC be described by the equation
z = X1(y).
Let curve CBD be described by the equation
= Xa(y).
Y
D
d
] B
A
C -
C
a b X

Figure 1.10: Path of integration for the proof of Green’s theorem in the plane.

Then,

b

// —dxdy /(V/ —dy dx—/ z,Ys) — Pz, Y1)]dx
= /bP(x,Yg)d:c—/P(x,Yl)dx /P(x Yi dx—/P (z,Ys)d %Pdm

a a
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Similarly,

[/ mw-/ﬁ/—w)@—ﬁM&,>Qwhw

:/Q(XM dy—/Q Xl,y)dyz/dQ(Xg, dy+/Q X1,y dy—dey

[ [ [

1.4.2 Cauchy’s Theorem

Theorem If f(z) is analytic and f’(z) is continuous in a simply connected region R,
and C' is a simple closed curve lying within R, then

§ 1) -

c
j{f(z)dz = j{(udx —vdy) + 14 %(udy + vdx).
c

C C
Using Green’s theorem in the plane, i.e.
g p )

f(Pda: + Qdy) = /S/ (g—g — g—];) dzdy

where P and @ have continuous partial derivatives, we get

7§f dz—//(—@——)dxdyﬂ//(@—@)dmy.

But from the Cauchy-Riemann equations

Proof

dv  Ou
oy
and
Ju v
or Oy’
Hence,
]{f(z)dz =0.

c

Corollary 1 If C; and Cs are two paths joining points ¢ and z in the z-plane (see
Figure 1.11) then, provided f(z) is analytic at all points on C; and C3 and between

Cl and CQ,
/f(z)dz: / f(z)dz.

alC11 a|C21
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Here, T denotes that the path of integration is in an anti-clockwize direction and | is
taken to denote that the path of integration is in a clockwize direction. This result
comes from the fact that the path taken is independent of the integral since from
Cauchy’s theorem

z a

/ + / f(z)dz=0

a|ClT Z|Cgl

/Zf(z)dz—— /a f(z)dz = /Z f(z)dz.

alC17 z|Cal a|C21

and thus,

Cs

z

/f(z)dz: / f(z)dz

alC1T alCs T

Figure 1.11: An integral is independent of the path that is taken in the complex plane.

Corollary 2 If f(z) has no singularities in the annular region between the contours

Cl and CQ, then
7{ f(z)dz = 7{ f(z)dz.

(o) Cal

We can show this result by inserting a cross-cut between C; and Cs to produce a
single contour at every point within which f(z) is analytic (Figure 1.12). Then, from
Cauchy’s theorem

/f(z)dz+/bf(2)dz— / f(z)dz—i—/df(z)dz—().

CiT a Cal c
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Rearranging,
b c
/f(z)dz—f—/f(z)dz—/f(z)dzz /f(z)dz
C1T a d Ca21
But
and hence,

Figure 1.12: Two contours C; and C3 made continuous through a cross-cut.

1.4.3 Defining a Contour

A contour can be defined around any number of points in the complex plane. Thus,
if we consider three points z1, 29 and z3, for example, then the paths I'y,I's and I's
respectively can be considered to be simply connected as shown in Figure 1.13. Thus,

we have
j{f(z)dzz/f(z)dz—i—/f(z)dz—i—/f(z)dz.
c T, T, T3

I:]{%:/%
z z
r

c

Example
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where T' is a circle which can be represented in the form z = rexp(if), 0<6 < 2.
Then, dz = rexp(if)idf and

27

/%:/’L’dQZQW’L’.
z
r

0

Figure 1.13: Defining the contour C' which encloses three points in the complex plane.

1.4.4 Example of the Application of Cauchy’s Theorem

Let us consider the evaluation of the integral

o0

sinx
dzx.
T

0

Consider the complex function exp(iz)/z which has one singularity at z = 0. Note
that we have chosen the function exp(iz)/z because it is analytic everywhere on and
within the contour illustrated in Figure 1.14. By Cauchy’s theorem,

-r R
/exp(iz) s+ / exp(ix) dqj_}_/exp(iz) dz+/exp(im) dr = 0.
z x z x

CR —R C.,v T
We now evaluate the integrals along the real axis:
R —r R R R
/exp(ix) dx—f—/ exp(ix) d — / exp(ix) dx—/ exp(—ix) d — / exp(ix) — exp(—ix) d

x x x x x
T —R T T T
R . o0 .
:2i/812xdx:2i/suxlxdm as R— oo and r — 0.

r 0
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Evaluating the integral along C,:

/M

Cr

0

0

T

dz = /exp[z’r(cos@ +isinf)]idd [with z = rexp(if)]

us

0

- /exp[ir(cos@ +isinf)idd = — /exp(())z'dﬂ as r— 0 (ie. —im).

Cr

\

Figure 1.14: Contour used for evaluating the integral of sin(x)/z, z € [0, c0).

Evaluating the integral along Ckg:

™

dz = /exp[iR(cosH +isin@)idf [with z = Rexp(if)]

/ exp(iz)
z
Cr 0
= /exp(z’Rcos 0) exp(—Rsinf)idd =0 as R — oo.
0
Combining the results,
o0
22'/ 2 ir — i = 0.
x
0

Hence,

0 .
sin s
der = —.
T 2
0
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1.4.5 Cauchy’s Integral Formula

Theorem If f(z) is analytic in a simply connected region R and C' is a contour that
lies within R and encloses point zg, then

f(z)

dz = 2mif(29).
zZ— 20

C

Proof Consider a small circle I" with center zy and radius r, lying entirely within C
(see Figure 1.15).

y 1

G

>
x

Figure 1.15: Circular contour I within arbitrary contour C' enclosing a point zg.

Then

I= z{ zf—(zz)odz - z{ Zf_(zz)odz.

Let z — zg = rexp(i), then dz = r exp(if)idf and

27
jo [rsreo Haotrexpl@) o inyids = i [ flavtresplionas =i [ o as v -0
rexp(if)
0
= 27Tif(20).
Hence,

RO

omi | 2 — zo
c

f(z0) =

1.5 Cauchy’s Residue Theorem

Cauchy’s residue theorem is fundamental to complex analysis and is used routinely
in the evaluation of integrals. We start with some important preliminaries. If f(z) is
analytic at zo it may be expanded as a power series in (z — zg), i.e. as a Taylor series,

f(2) =ap+ai(z — 20) + as(z — 20)? + ... + an(z — 20)"
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where )

Ap = —
n

To expand a function f(z) which is analytic (apart from singular points) about one
of its singular points zy we can write

f(2) =ap+ai(z — 20) + as(z — 20)? + ... + an(z — 20)"

by n bo by,
z—z0 (2—20)?2 7 (z—2z20)"

This series has two component parts, i.e. f(z) = analytic part + principal part.
Expanding the function in this way allows us to develop the residue theorem.

1.5.1 Poles and Residues

If the principal part terminates at the term %, f(2) is said to have a pole of
order n at zg. The coefficient by is called the residue of f(z) at zo.

Examples
flz)=-
z = 0 is a simple pole and the residue is 3.
1
)=
z = 0 is a double pole with residue is 0.
. 5 2
f(z) =sinz + i
z = 0 is a pole of order 3; the residue is 5.
21 i i
f(z)_zQ—l T2-1 241
has a simple pole at z = 1 with a residue 7 and a simple pole at z = —1 with residue

—1.

1.5.2 Residues at Simple Poles

To find the residue at a simple pole zy we write

Then

giving
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Example

(=1 (2+2)(z+3)

has simple poles at
z=1 z=-2, z=-3

with residues

1.5.3 Residues at Poles of Arbitrary Order

Residue at a double pole

b1 bo
F(z) =4g(2) (z—20) (2—20)?
(z—20)%f(2) = (2 — 20)%9(2) + (2 — 20)b1 + ba.
Now 4 p
e (G 20)°f(2)] = e (Gl 20)?g(2)] + b1
Hence,

z—z0 dz
Residue at a triple pole
- bl b2 b?,

f(z) =g(2) + (z—20) ' (z—2)? + (z — z0)?

or
(2 —20)3f(2) = (2 — 20)3g(2) + b1 (2 — 20)? + ba(z — 20) + bs.
Now
d? 3 d? 3

A =20 F(D)] = 5=~ 20)70(2)] + 201

Hence ,
d
b = 5 Jim 1z = 20)° /()]

Residue at an n-order pole

From the results above, by induction, the residue at a pole of order n is given by

1 ) d(nfl)

g1 dm ey [z = 20" )

bl:(n—l
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1.5.4 The Residue Theorem

Theorem If f(z) is analytic in and on a closed contour C' except for a finite number
of poles within C, then

%f(z)dz = 2772'2&;

& i

where >~ R;=sum of residues of f(z) at those poles which lie in C.

Proof Make cuts and small circles I'; around each pole z; which lies within the contour
C (see Figure 1.16).

Figure 1.16: Cuts of small circles I'; around poles at z; which lie within the contour

C.

Since f(z) is analytic at all points within the new contour, by Cauchy’s theorem

/f(z)dz +Y / F(z)dz =0
1

i
or
/f(z)dz:z:/f(z)dz
c1 ' Tt
Thus,

%f(z)dz = Z%f(z)dz
c by

If the point z; is a pole of order n, then on the small circle T';
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By Cauchy’s Theorem

T

and p

f{ 0, n=2,3,4,.

(z—z)"

r;

Hence,
dz ) .
f(z)dz=b = 2mib; = 2miR;.
zZ— Z

i

where R; is the residue associate with the pole z = z;. Repeating this analysis for all

poles within C, we have
%f(z)dz = QWiZRi
& i

1.5.5 Evaluation of Integrals using the Residue Theorem

Example 1 Evaluate the contour integral

144z — 322
7{—%2 3Zdz

z—1
c
around:
(i) a circle
1
2,2 _ 1

T + Yy = 47
(ii) an ellipse

z2 g2

el A

9 + 4

The integral has a simple pole at z = 1 and the residue at this pole is

. <(z —1)(1+4z— 322)> .,

z—1

z—1

The pole is outside the circle | z |= 1 and thus,

1 _ 2

7{ 1tdz-327,
z—1

lz|=3

The pole is inside the ellipse, hence,

1+ 4z — 322
7{ ngzdz:27ri><2:4m'.

2 —
ellipse
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fe
C

where C is the circle | z |= 3 (or any other circle that encloses z = 1). There is a pole
of order 4 at z = 1. The residue in this case is

Example 2 Evaluate

L 3. - Lo ()_3
gzﬂﬁsm(ﬂz = —g; Jim 7° cos(z) = —=.

By Cauchy’s theorem

7{ SIT2) g T
(z— 1) 6 '3
C

Example 3 Evaluate

Consider

241 (z44)(z—4)
which has poles at +i and the contour illustrated in Figure 1.17. The residue at z = ¢
is
z—1 1

and thus
R
/ dx +/ dz 2i><1 -
= ZTr — = .
2 41 2241 2
-R r

The integral over I' can be written in the form [with z = Rexp(i0)]

/ Rexp(i6)ido

R2 exp(2i0) + 1 — 0 as oo

r

Hence
o0

/ dx .
x22+1

— 00

and (since the integrand is symmetric about = = 0)

o0

/ dz o
2241 2

0
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Example 4 Evaluate

Consider the complex function

£ =1

and the contour illustrated in Figure 1.18. Let z = Rexp(if), then on the path just
above the cut, 8 = 0 and

1y~ VRonl) _ Vi
1+ R2exp(0) 1+a2"

On the path just below the cut, # = 27 and

VRexp(ri) _ x

1) = 1+ R2exp(4mi)  1+a2
y 4
z
A 3 F
9 .
_R R
e

Figure 1.17: Contour used to evaluate the integral of the function (1 + z?),z €
(=00, 00).

The poles inside the contour exist at z = +i. The residue at z =i is

hm&g:mz)_ﬁ exp(in/4) _ s Tvs _ V2

Z+i)(z —1) 2 2 2 A=

z—1
The residue at z = —1 is

im (L+i)v= . Vi _exp(3in/4) Q L
: ((Z—i)(z+i)> T o 2 4 (=1 —1).

z——1
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By Cauchy’s residue theorem

j{f(z)dz = QWiZRi = 2mi X g(l —i—1—i)= 2m?(—2¢) = /2.
T (2

Hence,
[ Vi [ —VE vz
x z -z z
d d d dz =2
/1+x2 CC—i—/l—i-zQ Z+/1+x2 x+/1+22 2= Vor
T T R y
R 27 . X 0 . .
:>2/ VT dx_'_/\/ECZG/QRQZ-OZ'dQ+/\/F619/27“€Z?Z'd9 — V.
1+ a2 1+ R2e2¥ 1+ r2e2®
T 0 27
Finally,
RR
%HO as R— oo and 1\_/[0:2—>0 as r— 0
and hence
[
T+227 2 2
0
y
N VZ
f(‘)_1+z2
T
R
-» T

—i

35

Figure 1.18: Contour used to evaluate the integral of the function v/z/(1 + z?),z €

[0, 00).
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1.5.6 Evaluation of Trigonometric Integrals
To evaluate integrals of the form

2

/ f(cos@,sin 0)db

0

we can substitute z = exp(if), so that

cosf =

@

=

>

Il

Rlr =
/\ /\
I N

| +
ISR ISENE
~

and integrate round a unit circle | z |= 1.

Example Evaluate
2

do
I=[] ——.
/2—}—0059

0

dz/iz 2 dz
I= 2+l(z+l):Z 224+4z+1
2 z C

Now, 22+ 42+ 1 =0 when z = —92 4+ /3 and the residue at z = —2 + /3 is 7.
Hence,

Consider

2T

f V3

2
I = ><27m><

1.6 Summary of Important Results

Complex numbers
z=x+1y; = =Re[z], y=Imz

Complex conjugate
2= —1y

Polar representation

z=rcosf+irsinf, r=+/22+1y2, 60=tan ! (Q)
x

De Moivre’s Theorem

(cosf + isin )™ = cos(nf) + isin(nd)
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Complex exponential
exp(if) = cosf + isinf
Complex functions
w = f(z) is a mapping from the z = = + iy plane to the w = u + v plane.
Cauchy-Riemann equations

The necessary conditions for the differentiability of a complex function, i.e.

ou_ov

or Oy
and

ov_ o

oxr Oy’

Analytic functions

Functions f(z) that are differentiable at everywhere in a neighbourhood of the point
z, i.e. complex functions that satisfy the Cauchy-Riemann equations.

Complex integrals
I= / f(z)dz
c

where C' defines a path in the complex plane; a contour if C is a closed path where

the notation is
I= j{f(z)dz
c

Green’s theorem in the plane

firtorom = [ (22-2)

C S

160

(o]

Cauchy’s theorem

where f(z) is analytic in a simply connected region.

Cauchy’s integral formula

%Mdz = 2mif(z0)

Z— 20
C
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Cauchy’s residue theorem

}I{f(z)dz = ZﬂiZRi

c

where R; are the residues of f(z) at the poles which lie within C.

1.7 Further Reading

There are a wide range of text books covering complex analysis that have been pub-
lished over many years. The following texts provide some examples covering these
years.

e Copson E T, An Introduction to the Theory of Functions of a Complex Variable,
Oxford University Press, 1935.

e Titchmarsh E C, The Theory of Functions, Oxford University Press, 1939.
e Knopp K, Theory of Functions, Dover Publications, 1945.
e Apostol T M, Mathematical Analysis, Addison-Wesley, 1957.

e Fuchs B A and Shabat B V, Functions of a Complex Variable, Pergamon Press,
1964.

e Silverman R A, Complex Analysis with Applications, Prentice -Hall, 1974.

e Churchill R V and Brown J W, Complex Variables and Applications, McGraw-
Hill, 1984.

e Paliouras J D and Meadows D S, Complex Variables for Scientists and Engi-
neers, Macmillan Publishing Company, 1990.

1.8 Problems

1.1 Write the following complex numbers z in the form z = a + ib where a = Re[z]
and b = Im|[z]:

ol4i 1 4—5i
(i) 94 (i) 75 (iii) 2- 32
(1 +20)(1+30)(3+1) 13\
(iv) 13 V) <_§+17> '

1.2 Plot the following complex numbers in the z-plane: (i) z, (ii) 2%, (iii) z + z*, (iv)

V(zz%), (v) iz.
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1.3 If z; and 2y are complex numbers, prove that
(214 22)" = 2] + 23

and that

1.4 Find the moduli and the arguments of the following: (i) 1 — /3, (ii) exp(in/2) +
V2exp(im/4), (iil) (1 +14)exp(in/6), (iv) z122, (v) 21/22 where z; = 2exp(in/5) and
zg = 3exp(im/3).

1.5 Show that: (i) exp(im) + 1 = 0, (ii) exp(im/2) — i = 0, (iii) i* = 1//e7, (iv)
iVi=em, (v) i/t =i

1.6 If C = [exp(ax)cosbzdr and S = [exp(az)sinbrdr show that C + iS =
J exp[(a + ib)z]dz and hence (ignoring constants of integration) that

= % (acosbx + bsinbx)

and (az)
exp(ax ,
= m(a sin bx — b cos bx).

1.7 Given that z = rexp(if) and z — 1 = Rexp(ia), show that

1
Re[ln(z — 1)] = 5 In(1 —r? — 2rcosf).

1.8 Given that [ exp(—z?)dz = /7 show that
—o0

o0

1
/exp(—xQ) cos axdr = 5 exp(—a?/4)/m
0

by integrating exp(—z2) around the rectangle whose sides are x = R, = —R, y=
0, y=a/2, and letting R — oo.

1.9 Evaluate the following contour integrals:

3 2 1
(i) /%dz around 22 +2y? =4 and around z?+y® = 3
P

.. 322 —22+1 9 9
(ii) /mdz around z° 4 y° =4.

1.10 Show that

oo

/ dx
=
22 4+ 22 + 2

—0o0
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by integrating (22 + 2z + 2)~! around a large semicircle.

1.11 Evaluate )

/ do
2 +siné
0

by writing z = exp(if) and integrating around the unit circle.

1.12 By integrating exp(iz)/(1 + z?) around a large semicircle show that

[e )

Cos T T
——dr = —.
/1—|—m2 2e

0



Chapter 2

The Delta Function

This chapter is primarily concerned with an introduction to the delta or J-function
which is used routinely in the study of signals and systems. However, we also introduce
the convolution integral (a natural consequence of the sampling property of the J-
function) and further, consider the role of the Green’s function. Although the Green’s
function is not a necessary pre-requisite for much of the mathematical background
required in signal analysis, it does provides an important link between the J-function
and the convolution process - a process that is fundamental to signal analysis and
processing and is related to a fundamental approach to solving linear inhomogeneous
partial differential equations. Thus, it is introduced to the reader in this chapter for
reasons of both interest and continuity.

Since the mid 1930s, engineers and physicists have found it convenient to introduce
fictitious functions having idealized properties that no physically significant functions
can possibly possess. A typical example of these functions is the so-called Dirac delta
function, which is defined by some authors as having the following properties:

5(6) = {o, t#£0;

oo, t=0.

/ F(Hs(t)dt = £(0).

The §-function was first introduced by Paul Dirac in the 1930s as part of his pioneering
work in the field of quantum mechanics but the idea may well have been around
in mathematical circles for some time before that. Nevertheless, the d-function is
sometimes referred to as the Dirac d-function. Clearly, such a function does not exist
in the classical (analysis) sense. It was originally referred to by Dirac as an improper
function and he recommended its use in analysis only when it is obvious that no
inconsistency will follow from it.

When attempting to provide a rigorous interpretation of the above equations, it
is necessary to generalize the concept of a function. It was the work of L Schwartz
in the 1950s which put the theory of (), and another fictitious functions, on a
firm foundation. The mathematical apparatus developed by Schwartz is known as

41
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the ‘Theory of Distributions’ - more accessible and simplified versions of this theory
being developed in the classical text books of Lighthill and Zemanian for example
which form the basis of the theory of generalized functions.

The J-function is just one of a class of ‘generalized functions’ that has fundamental
importance in signal analysis. It is a function that needs to be introduced at this stage
in order for the reader to be acquainted with its use later on. It is, for example, of
fundamental importance in generalized Fourier analysis and in the sampling theorem
which are discussed later on in Part I of this work. We shall start by introducing some
special functions that are of particular importance in signal analysis and are related
to definitions and applications involving the d-function. We consider the functions
discussed here to be functions of ¢t which is taken to denote time.

2.1 Some Important Generalized Function

The Tophat Function

The tophat function is defined as

The Unit Step Function

We define the unit step function U by the relation

, >0

ut) = {0 t<0.

where U(0) is undefined. Where necessary, we adopt the following convention:

1, t>0;
U(t)=<K¢c, t=0;
0, t<0.

where ¢ is any value between 0 and 1, i.e. ¢ € [0, 1].

The Signum Function
The signum function sgn is defined as

1, t > 0;
sgn(t) = {

1, t<0.
Note that
sgn(t) =U(t) — U(-t)
and

U(t) = 5 [1+sgn(t)].

N =
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Each of these functions have discontinuities and are therefore in the classical sense,
not differentiable. If we let f be any function whose only discontinuity is a simple
‘jump’ discontinuity at ¢t = a, then f can always be expressed in the form

f@&) =1 ()U(a—1t) + p2(t)U(t — a)

where ¢1 and ¢ are continuous everywhere.

The Comb Function

Another function that is of importance in signal analysis (in particular, in the analysis
of sampled functions) is the comb function given by

comb(t) = i o(t —nT)

n—=—oo

where T is a constant and § is the d-function whose properties are now discussed.

2.2 The Delta Function

If we assume the existence of a d-function which behaves formally as the derivative of
the unit step function U, then:

(i) The pointwize behaviour of § should be given by
t = 0;

5(t) — m7 )

0, t#0.

(ii) If f is any function which is continuous in a neighbourhood of ¢ = 0, then

o0

/ F(H8(t)dt = £(0).

This last result is known as the sampling property of the d-function. In particular,

/MW%z/U@ﬂMMMzU@,Mt#O

Note that if U(t) =1 V¢ then (normalization property)

oo

/ﬁu—ﬂm:L

—00

The properties (i) and (ii) above are actually incompatible. In fact, there is no
function, in the ordinary sense of the term, which can behave consistently as the
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‘derivative’ of the unit step function. In what follows, we use the symbol § as a
convenient way of representing the fundamental sampling operation stated in point
(ii) above, and construct a consistent set of rules for operating with this symbol. No
appeal should be made to the apparent pointwize behaviour of the ‘function’ §(t),
except for purely descriptive purposes.

The descriptive or symbolic definition is compounded in point (i) above and de-
scribes an infinitely ‘thin’ spike with infinite amplitude which is clearly not a proper
function. It is therefore sometimes convenient to ‘visualize’ a d-function in terms of
the limit of a sequence of ‘proper’ functions Sy, (x) which are known as J-sequences,
ie.

0(t) = lim Sp(t).
n—oo
The d-function can then be thought of in terms of the role it plays in the following
fundamental definition:

2.2.1 Examples of §-sequences

A delta- or §-sequence can be generated from any piecewize continuous function that
has the property whereby it contracts and increases its amplitude as a parameter is
increased. Examples include the following:

The Gaussian function

Sp(t) = —= exp(—n2t?).

VT

The tophat function

The Cauchy function

The sinc function

where
sin(nt)

sinc(nt) = "
n
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2.2.2 Integral Representation of the -function

The last d-sequence example provides an important and widely used integral repre-
sentation of the d-function. Noting that

1 int) — —int
1 exp(int) — exp(—int) _n sinc(nt),

n
1
—_ 3 t d fr—
2 /exp(zw) @ 2w it ™
—n

then, since
[ s,05wd= [ sof@a

we can write

2.3 Properties of the /-function

Having introduced the J-function, we now provide a collection of its fundamental
properties.

Generalization Sampling Property

If f is continuous on a neighbourhood of ¢ = a, then

Note that we use the symbol ¢, to denote the translation of any given function ¢, i.e.

$a(t) = ¢(t — a).

Addition
() ) )

/ FOI6(E) + 6(t))dt = / FOo(0)dt + £(0)
(i) .
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Multiplication
(i) For any number k
[ rowsoia = ko)

Differentiation of Discontinuous Functions

Let f be a function defined by
ft) = d1(t)ula —1t) + p2(t)u(t — a)

where ¢1 and ¢, are differentiable functions, and f has a jump at t = a. The classical
derivative f’ of f is defined everywhere except at t = a as

F(t) = $h(tyula—t) + dh(tult — a), for ¢ #a.

The generalized derivative D f is now given by
Df(t) = ¢1(t)ula — t) + @5 (t)u(t — a) + da(t)[¢2(a) — 41(a)]
= f'(t) + [f(a®) = f(a)]o(t — a).

Integration of the generalized derivative will recover the original function f, complete
with the jump discontinuity at ¢ = a. Integration of the classical derivative loses
the information about the jump. Often it is clear from the context, which of the
derivatives is referred to. The same symbol f’ is used for either sense of the term.
(But this usage can cause confusion.)

2.4 Derivatives of the /-function

The derivative ¢’ of § is defined in terms of the following fundamental sampling prop-
erty: For any function f which has a derivative f’ continuous in some neighbourhood
of t =0,

| e v =-r0)

More generally, for any given positive integer n, the generalized function §(™ is defined
by the characteristic sampling property

o0

/ £SO (1)dt = (—1)" £ (0)

— 00
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where f is any function with continuous derivatives at least up to n*® order in some
neighbourhood of t = 0.

Translation
[ rsoi =1,
/ £SO (1)t = (—1)" £ (a).
Addition
/ SO + 50 (1))t = / FOS(0)dt + (~1)"F™(a).

More generally, if n and m are positive integers with n > m, and if f is any function
with continuous derivatives at least up to the n*® order, then,

oo

/ FOBE () + 6™ (0)dt = (—1)" F™(a) + (=1)™ F™) (b).

Multiplication
(1) For any number k,

o0

/ FOR™ B)]dt = (—1)"k ) (0).

(ii) If ¢ is continuously differentiable, then ¢(¢)d’(¢) is defined by

[ 10ws o=~ | 560 = -7060) - 1060,

t=0

Therefore

¢(t)d'(t) = ¢(0)d"(t) — ¢'(0)d(2).
(iii) If ¢ has continuous derivatives at least up to order n, then

n(n — 1) 1"

S(1)8" (1) = ¢(0)6™ (t)—ng' (0)6 1) () + ¢"(0)0" 2 () +...A(=1)" 6" (0)d ().
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2.5 Integration Involving Delta Functions

/ s (tydt =6V (1), n>1,

/ M (t)dt = 0.

(iii) If a < 0 < b, then

b

/ 8™ ()t = (~1) £ (0),

a
(iv) If 0 < @ or b < 0, then

b
/ F(@)8™ (t)dt = 0.

(v) If a =0 or b =0, then the integrals are not defined.

Change of Variable

To interpret expressions of the form 0[¢(t)] we can use one or other of the following
methods:

(i) Generalization of the ordinary change of variable rule for integrals. Thus, let
x = ¢(t), so that t = ¢~ 1(x) = ¢(x) say. Then,
b »(b)
[ s = [ @i @
a #(a)
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(ii) Alternatively, we can use the fact that

Ly
s16(0)] = LU (@) = Lulp() o = 900
dt

Both methods can be adapted to apply to expressions of the form 6™ [4(t)].

Special Results

(i)
(i)

(iii)
O(sint) = Z §(t — mm).

m=—0o0

Note that § behaves like an even function and 4’ like an odd function, i.e.

5(—t) =6(t), &' (—t)=—0'(¢).

2.6 Convolution

The convolution f; ® fo of two ordinary function f; and fs is defined by

oo

(ﬁ@hW%z/hﬁ%@—ﬂW

— o0

whenever the infinite integral exists. In particular, this will certainly be the case
whenever f; and fy are absolutely integrable, i.e.

/ | fi(t) | dt < oo, i=1,2.

(1) Convolution is associative,

(i®f)® fz=fie(f2® f3)

and commutative,

f[1® fa=f2® fi1.
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If h is a function such that h(t) =0, V¢ < 0 then,

(Fon) ) = [ ft—r)h(r)dr = / FR(E - )dr

If, in addition, f is such that f(¢) =0, V¢t <0 then,
¢ ¢
(f®h)( /f (t—7)h /f h(t —7)d
0 0

(ii) For any piecewize continuous function f we have

oo oo

(f ©0)(t) = / £t - 7)3(r)dr = / ()8t — 7)dr = (1)
and -
(f ®d,) /ft—T = f(t —a).

(iii) For any function f which has continuous derivatives at least up to the n*® order,

(om0 = [ fe-nsmdr= [ 1= 0w = 7).
(iv) .
(62 ®