Image processing using a two-dimensional digital convolution filter.

Rajendra P. Rathi
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Rathi, Rajendra P., "Image processing using a two-dimensional digital convolution filter." (1984). Electronic Theses and Dissertations. 6788.
https://scholar.uwindsor.ca/etd/6788

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

NOTE TO USERS

This reproduction is the best copy available.

UMİ

IMAGE PROCESSING USING A TMO-DIMENSIONAL DIGITAL CONVCLUTION FILTER

by

Rdjendra P. Ratni

A thesis
presented to the University of Windsor in partial fulfillment of the requirements ior the deqree of Master of applied Science in
Department or Electrical Enqineerinq

Windsor , Untario, 1984
(c) Rajendra p. Rathi, 1984

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI

UMI Microform EC54774

Copyright 2010 by ProQuest LLC
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Abstract

ABSTBACT

A two-diaensional daqital convolution Eilter (referred as convolver) employing the fast number theoretic transform (FNTT) alqorithm was built in the Department as an external peripaeral to the 3 in mini-computer for rmaqe Processinq. The purpose of this research is to analyse the desiqn, suqqest improvenents, provide a working system and illustrate the use of the convolver throuqh various examples. The thesis describes the theoretical backqround and the nardware implementation of the convolver. A detailed explaination of the design considerations has been developed to provide an edsy and complete reference for the user. Several comparisons have been presented, as part of analysis, to establisn the efficiency of the techniques used in the desiqn or tae convolver. Timinq diaqrains have been prepared to facilitate the understanding of the processing of siqnalis throuqn the filter. Throuqh-put rate calculations are included to indicate the speed of processing.

A systematic way to write the interfacinq software has been explained. A directory of the available software, and a table of the main Inteyrated circuits used in the convolver is included. Software has been written to make the convolver part or a user friendly imaqe processing system.

Two desiqn metnods to improve the speed of processinq are proposed.

```
    dedicated to
    Carl and Viola Glos
with love, honor and respect
```


ACKNOWLEDGEMENTS

I am deeply indebted to Dr. W.C. Miller and Dr. G.A. Jullien for their constant help, support and guidance throughout the course of my degree. I express my sincere gratitude to Dr. M. Shridhar for his valuable advices and encouragements. I express my sincere thanks to Dr. M. Ahmadi, Dr. M. Sid-Ahmed, and Dr. J. J. Soltis for their constructive comments and criticisms. I am also thankful to Mrs. S.A. Ouellette and Mrs. L.J. Kennedy for their invaluable assistance.

I sincerely acknowledge the support provided by the American-Nepal Education Foundation, Oregon, U.S.A. In particular I am grateful to Dr. Hugh B. Wood, Executive Director of the Foundation, for his personal interest in me.

I am especially grateful to Mr. Carl M. Glos and Mrs. Viola Glos whose guidance has been a perennial source of inspiration for me in my personal life throughout my degree at Windsor. I also thank Mr. Edwin D. Reimer and Mrs. Elfrieda Reimer for being my wonderful friends at Windsor. I express my sincerest thanks and gratitude to my parents for their help, love and patience. I also wish to mention my gratefulness to Dr. K.K. Aggarwal, my professor at Regional Engineering College, Kurukshetra, India, who motivated me for graduate studies and research.

TABLB OF CONTENTS

ABSTBACT ii
ACKMOWLEDGEABNTS iv
TABLE OF COMTEMTS vi
TABLE OF PIGURES vii
LIST OF TABLES ix
LIST OF ABBREVIATIOHS xi
Chapter page
I. INTRODUCTION 1
Objective and outline of the iesearch work 1
Thesis oryanization 8
II. DIGITAL FILTBRIMG USIMG FAST NOABER TBEORETIC TRANSPORA TECHEIQOES 10
Introduction 10
Definltion of Number Tneoretic Transform 12
Modular arithmetic 13
An Example of convolution using NTT when M is d prime 21
Practical Consıderatıons in choosinq \mathcal{E}, N and M for an Nirt 23
Desiqn consideration for $N T T$ used in Convolver 24
cnoosing is 25
choosing N and ε 27
ORDERED-INPUT-OBDEEED-OUTPUT-NIT dlqorithm 28
Residue to Banary Conversion 29
Use of MHC in obtaining the final result 30
conclusion 31
III. IMPLEGENTATION OF BOTTERPLY AND ABALYSIS ON THE COMVOLVER 33
Introuluction 33
Efficient Implementation oi Butterfly 34
Implementinq uultiplication using the sub- modular approach 36
calculating the entries in the Look-up tables 38
memory savinu by the use of sub-modularapproach40
iurtner reduction in memory requirements 43
timing consideration for the butterfly 44
Throuqhput Rate Considerations (OIOO-alqorithm) 46
serial sequential processina 46
Speed consideration in the convolver 49
Cascade processing 51
three-memory structure for faster processing 52
using a complete butterfly for faster speed 54
A brief Comparison of FET and FNTT butterfly implementations 56
Comparison of $1-\mathrm{D}-\mathrm{radix}-2$ and $2-\mathrm{D}-\mathrm{radix}-2$ butterilies 58
Comparisun of B / B conversion methods 60
Conclusion 62
IV. HABDHARE AMD POBCTIONAL DETAILS OP TBB CONVOLVBR 69
introduction 69
overviey of tine Hardvare 70
System Clocks and Reset Loqic 75
HSD/Convolver Intertace 76
Line Drivers/Beceivers 78
NTT staqe/ butterfly counter 78
Interface control loqic 79
LDIGG operation 81
LDCOF operation 81
CLKACNT operation d 2
SDEILDT operation 82
SDCaindT operation d2
MEMORY BUPFERS 84
Memory Write address Generator 34
Memury Read Address Generator d 5
fuidale Factor/Trans. of Filter Coefr. Addr. Genrator ৪5
Memory Address Multiplexer 86
Memory Butrer MEill and MEM2 d7
Memory Bufier TCOFMEM 87
Twiadle Factor EPRCas d8
The Butterfly Unit 38
Pipeline Timiny 92
Residue to Binary Converter 92
usiny the convolver 95
V. PILTERING APPLICATIONS AND PILTBRING OF LABGE Mathices 98
Introduction 98
Filtering usinc Transform Techniques 49
A simple technique to desiqn 2D-FIR rilters 100
deterinination of cut-off based cn enerqy transaissions [16] 100
Low Pass Filterinq 101
Hiqh Pass Filterinq 104
Homo-morphic Eiltering 106
Examples of tine Imaqe Filterinq 107
Filtering or Imaqes of laryer dimensions 112
Block-mode filterinq 113
Block-Mode Filtering Alqoritha 115
irap-around Error Consideration Eor First Block 119
Number or Blocks to be Processed 120
Timinq Consideration in processinq larqer Imayes 120
conclusions 123
VI. CONCLUSIONS 124
Appendix Pdue
A. DEVELOPGENT OF OIOO-NTT ALGORITHM 128
B. PROCEDURE TO USB AN HSD DBYICB ON SEL MINI- COMPUTER 132
C. DIRECTORY OF AYAILABLE SOPTWARE RELATED TO THE COXVOLVER 138
REPERENCES 139
VITA AOCTORIS 142

TABLE OF FIGURES

Pigure

3. 1 A 2-D radix-2 Butterfly in OIOO alqorithm
3.2 Sub-modular Index Tables
4. 3 A modulo 19 BOM array multiplier (sub-moduli 7 and (3)
3.4 The Butterfiy computation unit
3.5 Timpnq Diayra@ and teqister Contents In the Convolver butterrly
5. 6 Graphical representation of OIUO-alqorithm ror the case of $N=8$ (1-D-radix-2)
3.7 A Three Memory Burfer Structure for Improved speed of processing
3.8 Timinq Consideration in the use of Memory Confiquratıon snown in Fiq. (3.7)
3.9 Interconnections in the use or a "Complete" butterfly
6. 10 Implementation of the Chinese Remainder

Theorem

```
3.11 Implementation of the sixed Radix
    Conversion Method
4.1 Overview uE the Convolver hardware
4.2 The Filter Interface and I/U Control
        Unit
    4.3 The Memory Buffer Oryarization
    4.4 The Butterfly Computation Unit
    4.5 The pipellne timin\ diayram
    4.6 The Kesidue to Binary Convesion Unit
    5.1 Tne radial cross-section or Low Pass FiLters
    5.2 The radidl cross-section Oi Hiqh Pass Filters
    5.3 A cross-section or a llomo-mocphic Filter
    5.4 to 5. 20 Examples of the filtering
        throuyh the use or the convolver
        and other alyorithms in software.
```


LIST OP TABLES

Taole
3.1 Memory Kequirements by Direct and Submodular approach of Multiplication and the Memory Savinq Ratio (MSk)
3.2 Comparison of rime required for convolution Dy different methods of Processinq
3.3 Colaparison or butterfly computational requirement (1-D-radis-2 and 2-D-radix-2)
3.4 COmparison OE CRT and aKC Lmplementation
4. 1 Main features of the convolver
4.2 Main IC's and therr usaje in tae Convolver
5.1 Approximate Computation time using different methods of convolution
5.3 processing Titae by the use of different size of Basic block Eor laryer imaqes $M=N=1024, J=K=25, t 1=1$ usec, $t 2=5$ usec
5.4 Processinq time by the use of difterent size - ix -

```
of Basic block ror larqer imaqes
M=#=256, J=K=17, t1=1 usec, t2=5 usec
```


LIST OP ABBREVIATIOMS

A/D	Aualug to Diqital
B / R	Bindry to Residue Conversion
CBT	Chinese Reaainder Theorem
FIR	Finite Impulse Response
FNT	Fermat Number Transiorm
HSD	Hiqn Speed Device
MEs	Memory Butrer
MEC	Mixed uadix Conversion Method
NTT	Number Theoretic Transform
OIUO	Ordsered Input urdered uutput
E/b	kestiue to binary Conversion
RNS	Lesidue Number System
Hi	Eader Transform
$\dot{\square}$	Generator used in definition of NTT
pl	i ca prime moduli
ri	i th residue
1.1 m	operation modulo :
*	Siyn to represent multiplication
**	jign to represent exponentiation

Chapter I

I HTRODOCTIOM

1.1 OBJECTIVE AND OUTLINE OE THB RESEABCH HORK
 Hiqh speed diyital filterinq of two-dimensional siqnals

 is an essential element of contemporary research on siqnal processinq. The application areas include imaqe processing, pattern recognition, digital communication and robotic vision. The pre-processing of siqnals is also important for lmaqes obtained trom space exploration photoqraphs, radioqraphs, nuclear medical imaqes, and qeophysical data. The filtering, or the convolution of imaqes with a filter kernel. can be achieved eitaer by direct computation or indirectly, by the use of a transtorm havinq the cyclic convolution property.One of the iadirect tecnaiques for tne convolution is use of the Discrete fourier Iranstorm (DFT). The use of DFT for convolution became popular when Cooley and Tukey [231 introduced the efificient Past Fourier Transforin (FFT) alqurithm to compute DFT resultiaq in a siqnificant savinq $1 n$ computation and performance iaprovement over the direct method. The FFT uses the cyclic property of the complex exponentidl function to reduce the number or multiplications. The speed of the $F P T$ and therefore the maxiaum data-process-
ing speed still remains proportional to the (complex) multiplication time. at tempts were made to reduce the multiplication time, for example, Liu and Peled [25] proposed to use a bit-sllcing alqorithm and table look-up scheme to replace the conventional multiplier. Also, tnere $1 s$ a derinite drawback in tae use of DFT for machine implementation, that there 1 s finite precision representation or the transcendental multiplier functıons. These approximations contribute to the error noise in the output.

An alternative transform domain technique uhich has attracted consideraple interest in last few years is the use or the Number Theoratic Transform (NTT). Fermat Number Transforms (ENT) and kader Transforms (RT), which are speClfic NTT's have been implemented [7,14]. A very attractive method of implementation or NTt's cor convolution is, however, over the riays that are isomorphic to direct sums of Galois Fielus [13]. Thas implies the use of the kesidue Number system (fins), which itself is of particular interest in diqital siqnal processing $[311$ vecause $u t$ the parallel nature of its arithmetic. The ans was extensively investiqated by Szabo and Tanaka [3] in 1967 for use in the desiqn of a qeneral purpose computer. Residue techniques, however, did not receive wide-spread attention because tne rerrite core memories used at that time were too expensive and bulky to justify their use to store the needed tables.

With the current advances in semi-conductor memory technoloqy, the implementation of NTT's Eor siqnal processing is a viable alternative to conventional methods $\quad 77$. Thouyh the transtionm domain representation of NTT sequences nas no known practical interpretation, its implementation for convolution is meaningful. The only restriction to be observed is that the data foints are small enouqh (scaled) so that the final result does not produce a data point qreater than the ring modulus. Also, since the transform is defined over a finite rinq, the results are exact. purther, in RNS arithmetic implementation, a multiplication can be replaced by a taole look-up operation, and thus the throuqhput rate ean ve expected to be hiqh with relatroely low nardware cost. Tae number or bits used for data representation, nowever, should be sudil so that memories required for look-up tables are commercially available. Jullien 「5 \quad suqqested a method to implement multiplications which results Lr tremendous memory saving and reduces memory requirement to a viable size, still using look-up tables.

The transform domain techniques are only attractive When one or the fast alqorithms are employed in their computation. Fast fourler Transform type dyoritnms can be applied to compute the N1T. The neart of sucn fast alqorithm is a computational unit called a "Butterfly". one or multi dimensional butterrlles have been used to compute the transforms [10]. The urdered-Input-Urdered-Output (OLOO) alyor-
itha [4] is of partıcular interest since it elininates the data pre-shuffiling. This further requires unity twiddle factors at the last staqe of the butterrfly computation. Hence, the transiorm of the coetficients can be aultiplied by the transform of the data points at the last staqe of butterfly computation instead of the multiplication by tine tuiddle factors. This results in saving in the total number of computations.

For its practical use, any fins arithmetic structure requires Binary to $H e s i d u e(B / R)$ and Residue to Binary (H / B) converter units. Several harduare techniques [3] are available ror a $\overline{\text { a }}$ a converter. The separate need of such a B / a can be avoided $1 f$ the A / D converter used qives the binary output which also is a residue. This can be a case when the ring modulus is larqer than the possible maximum value of any data point. The sinal outputs obtained from a two or more moduli. houever, have to de combined to obtain the result. The Chinese kemainder Theorem (CiT) is one of the methods [3], but it suriers from the disadvantaqe that it needs a mod M adder, where M is tne dynamic ranqe. The other method is via the use of a Mixed kadix Conversion (MRC) technique. The multiplication needed in this method can be implemented usinq luok-up tables. This method has computational advantaqes over the CRT wnen fewer moduli are used.

Harduare realizatıons are normally fized for a specific size of imaqe operated on by a particular alyoritam. Multi-
ple use of the same piece of hardware and use of over-lap techniques can be used in processinq of imaqes of larqer dimensions [181 than that of the basic block size. Such alqorithms are artractive when working in a limited memory systen, such as tat of a mini-computer.

A special purpose diqital siqnal processor is a dedicated piece of hardware whose function is to periorm a specific set of processinq alqorithms (in real time) as a self contained subsystem. Ubviously all the siqnal procesing algorithms can be implemented on a qeneral purpose computer, however the speed of such implementations on qeneral purpose computers are not particularly attractive. Many industrial needs nave only one application in mind, for example, faulty part detection 1 a an assembly line. Secondy, most qeneral purpose computer architectures can not normally hande slmultaneous computations. A dedicated piece of hardvare, however, is desiqned to handle a larqe number of computations, andemploys a parallel processinq and pipelining to achieve speeds several orders of maqnitude faster than qeneral purpose computers.

This research is an extensive investiqation into the processer architecture of a Fast 2-dimensional Diqital Convolution Filter using Number theoretic transform
techniques. The processor was built by Dr.i.K. Naqpal for the Signals and Systems qroup, Dept. of Electrical Engineering at the University of $W i n d s o r$ [29 1. Although different hardware structures ror the realization of past fourier Transforms have been proposed. processing imaqes and other inherently two-dimensional siqnals usinq a Fast Number Theoretic Transform (FNTT) with a two-dimensional butterfly structure is a reldtively recent method. The various components which make up the complete processor are examined in this thesis.

In the realization of diqital systems using special purpose harduare, the concepts of parallelism, multiplexing, and pipeling are oi qreat importance in achieving a maximua value of performance-cost ratio for the particular application being considered. The theoretical considerations useEul with respect to 'speed and cost trade-orfs' are reviewed in this work.

The memory architecture needed for implementation of two-dimensional urdered-Input-Ordered-Output NTT alqoritam is investiqated in liyat of the speed/cost trade-off. The implementation of such \perp butterfly is descrided in detail. The use of table look-up for mathematical operations, in particular multiplication, by a sub-aodular approach, is investiqated.

Several desiqu aspects used in implementation of the processor are conpared to establish the efficiency of the convolver. For example, computation saving by the use of a
two-dimensional butterfly is compared with that of one-dimensional butterily. Several other comparisons are made to support the architecture used in the convolver. For instance, the use of the Mixed Radix Conversion method is justified compared to the chinese kemainder Theorem in the implementation of Hesidue to Binary converter. The implementation or multiplication oy sub-modular look-up table and by the use or direct $R O M$ multipliers is compared.

Timing considerations are made for serial sequential procesing (used in the convolver) and cascade processing, and speed/cost (eiriciency) consideration ior these methods are investiqated for vịdeo-rate processinq speed. Two structures, namely, a three-memory buffer structure and use of a 'complete' butterily structure, have been proposed to improve the processiaq speed. The timinq diaqrams with respect to reqister contents in the butterily of the convolver are presented.

Several examples of image filtering are presented to illustrate tae application of the processor. The examples are taken from well defined imayes. a simple and approximate method to obtain the cocticients of a two-aimesnsional finite impulse response filter is described. Several standard filters are used for Imaqe smoothening, Imaye Enhancement and other fedture extraction on images. The results obtained from three dirferent metiods in softuare, namely direct use of convolution, using the frt and using the fNTT.

The use of block-qode filtering is investicated in filterinq of very larqe sequences, in a liaited adn-nemory system. The choice of the basic-block size is a trade-off wath speed. Theoretical comparisons for this trade-off are presented.

1.2 THESIS ORGAMIZATIOM

Chapter-2 provides the theoretical backqround on the application of Fast Number Theoretic Transform techniques in diyital filtering of two dimensional sequences. It details the modular arithmetic, alqebraic constraints to be observed in the use of the NTT and the restrictions imposed from practical point of view. Further it describes the concepts of the 2-dimensional oIOO-NTT alqorithm, and the method of Mixed Radix colversion used in the residue to bindry conversion. The desiqn considerations used in the convolver are detalled in this cnapter.

The implementation of tae transform computational element, the putterfly, and the multiplication in the butterfly using the sub-modular approacn, are described in Chapter-3. A number of conparısons witn respect to speed, cost and memory storaqe are included in this part to describe the performance of tae processor. Various timinq diaqrams are also included in tais part.

Chapter-4 deals with the hardware and the functional details of the imaqe processor. In particular, both the me-
mory architecture dnd the butterfly operation are described. The High Speed Device ($H S D$) interface of the Pilter with the mini-computer SEL and the control logic are examined. The discussion on the softuare of the $H S D$ is included in the appendix. The steps for the use of the convolver are described in this chapter.

In the next part, Chapter-5, we detail the results of filtering by the use of several standard filters on test inaqes. The applications in mind were Image Smoothening and Edqe Enhancement. This final part considers the processinq of larqe arrays (larger than can be processed in one block) oy block-mode filtering. The time of processing. which depends on block size has been compared. Chapter-6 presents the conclusions of this research work.

Chapter. II

DIGITAL FILTERIAG USIGG PAST NUABBR TGEORETIC TRAMSRORA TBCHNIQUES

2. 1 IMTBODUCTION

In diqital imaqe processing, as well as in other areas, it is desirable to filter a two-dimensional discrete siqnal $x(i, i)$ by convolving that siqnal with the tro-dimensional diqital pulse response of applied filter $h(i, j)$ producinq an output siqnal $y(i, j)$. The two-dımensional convolution is defined as

$$
\begin{align*}
& y(i, j)=x * n \\
&=\sum_{k=0}^{n-1} \sum_{i=0}^{M-1} x(k, 1) \cdot h(i-k, j-1) \tag{2-1}\\
& \quad i, j=0,1, \ldots \ldots \ldots, 1
\end{align*}
$$

Where the sequences x, h and y are assumed to have
 1Y, $\because \geqslant N+L-1$.

Processing siqnals with a diqital computer or with special purpose diqital hardware involves the lmplementation of computational schemes on sequences of numbers. por example, Eqn. (2.1) can be implemented by actually taking the sum of products as defined or by indirect methods. The indirect method consists or taking the transforms of sequences x and
h. multiplying the two transforms and takinq an inverse transforn of the product. The indirect methods are attractive, because vith viable restrictions on the leaqth of sequences, computationally efficient algorithms can be developed which have advantaqes over direct methods in teras of speed and thus the cost of filteriny. The most common technique to reduce the computational cost of convolution is by the use of the Discrete Fourier Transform computed via use of Fast Fourier 'ransfora (FPT) alqorithm.

It is interesting to note that the $F F T$ has been used to compute convolutions and many hardware structures have been implemented [4,24] with sliqht variations to the basic alqorithm suqqested by Cooley and Tuckey [23]. Each structure looks at the harduare/speed trade-off associated with both the computational elements and the supporting structure. However, this procedure is time-consuming on mini-computers even with multiplication nardware installed, due to the larqe numper of complex multiplications required. purther there is considerable build-up of round-off er ror because of the tinite precision in representinq real numbers on diqital computers. Filter desiqns using $K O M$ oriented ans arithmetic units [11] and implementation of the FPT witn the use of Residue Number system [31] have been suquested for improved efficiency. Since for convolution we are only interested in the Cyclic Convolution property (CCP) of the transform, it is natural that alternatives to complex multiplications in-
volved in FFT tyiddle factors have been investigated. Number Theoretic Transforms (NTT), Which are defined as part of Generalized Discrete Fourier Transforms (GDFT), ase inteqer twiddle factors and have gained considerable interest for several years as a class of siqnal processing algorithas. The hardware of the Image convolver uses Number Theoretic Transform for employing the indirect nethod of filterinq.

2.2 DEFIMTTION OF HOGBBR THEORBTIC TRABSFORG

Number Theoretic Transforms are defined as part of a class of Generalized Discerete Fourier Transforms and are conputed over finite fields [13].

$$
\begin{gather*}
x_{k}=\left|\sum x_{n} \varepsilon^{n k}\right|_{M} \\
x_{n}=\left|N^{-1} \sum x_{k} \varepsilon^{-n k}\right|_{M} \tag{2.2}
\end{gather*}
$$

Where N is the sequence lenqth and A represents the sodulus of the field arithretic; the qenerator \mathcal{E} is an Nth root of unity ($\varepsilon * * \mathbb{N}=1 ; \varepsilon * * N 1 \neq 1$ mod $\mathrm{mor} 1 \leqslant N 1<N)$ and N exists. It has been suqqested that NTT's be implemented in rinqs which are isomorphic to a direct sum of Galois fields:

$$
\mathrm{R}=\mathrm{GF} \mathrm{Cp}_{1}^{r_{1}}+G F\left(\mathrm{p}_{2}^{r_{2}}{ }_{I}+\ldots . .\right.
$$

where the pi are priaes and represents the deqree of the extension fields. The results of the operation can be recovered by either using the Chinese Remainder Theorea or a mixed radix conversion [3] alyoritna. This amounts to implementing the NTT using the Residue Number System (RNS) and the inherent parallelism of ans implementation can be made to advantaqe to obtain faster speed of processing. We rirst discuss some of the basic concepts of RNS from number theory relevant to the NTT in the next section.

2.3 MODULAE ABITHGETIC

DEFINITION-2.1: Two integers a and b are said to be conqruent mod a if

$$
\begin{equation*}
a=b+k \cdot n \tag{2.4}
\end{equation*}
$$

Where k is some inteqer and M is the modulus. The b is residue of a mod M wien

$$
0<b<x
$$

and 15 written as

$$
a=b(\bmod i)
$$

DEPINITION-2.2: All inteqers are conqruent mod M to some inteqer in the finite set ($0,1,2, \ldots M_{M} 1$) and let the set of elements de combined by two different uperations $1+1$ and '. ' both mod M. Then tais set is called the ring of inteqers mod M and is denoted by zm. Sucn a riny is a commutative ring with identity [9].

DEFINITION-2.3: If in a riny of inteqers qultiplicative inverses exist for all nonzero inteqers, this ring is known as a Field. It can be shown that $Z m$ is a field if and only if M is a prime. The set of all invertible elements of a rinq is a qroup vith respect to the operation of multiplication and is called a "multiplicative qroup".

The following basic aritnmetic operations are defined in modular arithmetic.

1. Addition: Example, $7+12 \equiv 2$ (aod 17)
2. Neqation: Example, $-7 \equiv 10$ (mod 17)
3. Subtraction: Example, $1-12 \equiv 7+(-12) \equiv 7+5 \equiv 12$ (mod 17)
4. Aultiplication; Example, $7 \times 12 \equiv 16$ (mod 17)
5. Mulfiplicative Inverse: Multiplicative Inverse or an
 latively prime. In tnat case b is an inteyer such that $b x b^{-1} \equiv 1(\bmod a)$. It may pe hovever noted that When 14 a non-prime inteyer, not all inembers of the set nave multıplicative inverses.

$$
\begin{aligned}
\text { Example: } & 7^{-1} \equiv 5 \quad(\bmod 17) \\
& \text { for } 7 \times b \equiv 1 \quad(\bmod 17)
\end{aligned}
$$

$$
3^{-1} \equiv 5(\bmod 14) \text { as } 3 \times 5 \equiv 15 \equiv 1(\bmod 14)
$$

but 2^{-1} (mod 14) does not exist.
6. Divison: x / y exists if and only if y has an inverse and x / y is contained in the rinq. In that case x / y $\equiv x \cdot y^{-1}$.

$$
\text { Example: } \quad 12 / 6=12 \times 3=2 \quad(\bmod 17)
$$

DEFINITION-2.4: IE pi. is a prime, the elements $\{0,1,2, \ldots \ldots p i-1\}$ form $\mathfrak{f i e l d}$ with addition and qultiplication modulo pi. In any finite field tine number of elements must be a power of a prime (pi**ri), where ri is a positive inteqer and an element (primitive root) must exist, powers of which can qenerate all the non-zero elements of the field. Such a field is commonly denoted by the symbol GF (pi**ri) and is called a Galois Field [9].
 the BNS takes the rorim of an L-tuple

$$
x=(x 1, x 2, \ldots \ldots, x 1)
$$

of the least positive residues rith respect to the set of moduli
(m1,m2,..............

Tne range of numbers which can be uniquely coded in R ds are

$$
u \leqslant x<\prod_{i=1}^{l} m i=M
$$

A siqned intequr system can be developed attachinq a positive sign to numbers in the ranqe $\left\{0,1, \ldots . . \begin{array}{l}\text { m/2-1\} for } M\end{array}\right.$ even or $\{0,1, \ldots \ldots(y-1) / 2\}$ tor 1 odd, and a neyative siyn to the number in the ranqe $\{1 / 2, M / 2+1 \ldots M-1\}$ or $\left\{(M+1) / 2, \ldots . . . M_{-1}\right\}$ respectively. The operations in RNS can be carried independently for eaca of the moduli. The correct answers would be obtained reqardless of intermediate overfluws of an arithmetic computation if tae result is witnin the range of the nuinoer system.

As mentioned in introduction, for the existence of transforas vith the DFT structure yiven in Eqn. (2-2) and having the cyclic Convoluticn Property (CCP), it is necessary that an intefer exist that is an Nth root of unity. We will consider this problem usinq modular arithmetic.

First Euler's function $\mathcal{J}(M)$ is defined as the number of inteqers in 2π taat are relatively prime to k. obviously then for M a prime number $(H)=M-1$. If A is a composite number and its prime factored form is denoted by

$$
g=(p 1)^{r 1} \cdot(p 2)^{r 2} \ldots \ldots \cdot(p 1)^{r 1}
$$

then the qencral expression ror is [9]

$$
\text { i) } \begin{align*}
(M) & =M(1-1 / p 1) \cdot(1-1 / p 2) \cdots(1-1 / p l) \cdot \\
& =\prod_{i=1}^{l}(p i-1) \tag{2.5}
\end{align*}
$$

FHEOKEM-2.1: Euler's theorem states that for every ε prime to M

$$
\begin{aligned}
& i(\mathrm{M}) \\
& \varepsilon^{\quad=1}(\text { mod } \mathrm{H})
\end{aligned}
$$

For M prime thas reduces to Fermat's theorem.
THEOREM-2.2: Fermat's theorem states that for M a prime number,

$$
\begin{aligned}
& (x-1) \\
& i \quad=1(\bmod (1)
\end{aligned}
$$

which holds for all nonzero elements of $Z n$ since they are all relatively prime to M if M is a prime.

There are certain roots of unity that are of particular interest. If N is the least positive inteqer such that

$$
\mathrm{N} \quad \mathrm{~N} 1
$$

$$
\varepsilon=1(\bmod M) ; \quad \therefore \neq 1(\bmod \pi) ; 1 \leqslant N 1<N \quad(2.7)
$$

then E is said to be a root of unity of order N, or E is a primitive Nth root of unity.

It the order of ε is equal to $\otimes(M)$. then ε is called a primitive root. If M is a prime and ε is a primitive root, the set of integers

$$
\begin{equation*}
X=\{\varepsilon \quad(\bmod M), k=0,1,2, \ldots, M-2\} \tag{2.8}
\end{equation*}
$$

is the total set ur nonzero elements in $Z \mathbb{m}$, and all nonzero elements in 2 m can ve qenerated by powers of the primitive root. Tnis, thus cadracterizes the entire field. The nonzero
 M-1 \{1,2,...... -1$\}$, with multiplication modulo M. isomorphic to the addition yroup \{0,1,.....il-2\} with addstion modulo M-1.

Euler's theorem implies that if E is of order N then N must divide (M), denoted by $N(\mathbb{D}(M)$. If M is a prime it can be shown that ruots of order N exist if and only if $N(\mathbb{N} \boldsymbol{N} \boldsymbol{1})$ and the roots are qiven $u y$

$$
(M-1) / N
$$

$$
\begin{equation*}
\varepsilon=\varepsilon \circ \tag{2.9}
\end{equation*}
$$

where ε_{0} denotes a primitive root. More yenerally if ε is a root of order N then
$\varepsilon * * k$ is of order N / K if k / N
E**K is $O \mathscr{r}$ order N if N and k are relatively prime.

This implies that the number of roots of order N is qiven by $\omega(N)$ and, thererore, the number of primitive roots is $\begin{aligned} & (0)(M)) . ~ T h e s e ~ r e l a t i o n s ~ a l l o w ~ o n e ~ t o ~ c a l c u l a t e ~ a l l ~ o f ~\end{aligned}$ the roots of all possible orders from one primitive root. Example:

$$
\begin{aligned}
& \text { Let } \mathrm{i}=7,2 \mathrm{~m}=\{0,1,2,3,4,5,6: 1+1,1,1\} \\
& x(1)=1 \quad x(2)=1 \quad \Delta(3)=2 \\
& \omega(4)=2 \quad \omega(5)=4 \quad \text { i (} 6)=2 \\
& \text { i(1) }(7)=6
\end{aligned}
$$

Consider raisiny eacn element of $Z 7$ to powers from 1 to 6 (mod 7), Tab-(2.1).

This illustrates several very interestinq Features. Consider the various roots of order N, Tab-(2.2).

Only those N that divide $d(i)=0(7)=6$ have roots that belong to them. The numper of roots is qiven by $\alpha(N)$ and the number of primitive roots $2 s \mathrm{a}(\mathrm{d}(\mathrm{M})=2$ and they are 3 and 5 . Note that both of the primitive roots qenerate all the nonzero elements.

$$
\rightarrow(H)-1
$$

For d nonprime M, $\dot{\text { n }}$ nas an inverse qiven by \mathcal{E} if \mathcal{E} and M are relatively prime. It can be noted tat for M a composite rather than a prime number, Zm is not a field since all elements will not have inverses. There is no primitive root that will yenerate the entire ring, only subiets with $\mathcal{H}(M)$ elements. Let i adve tne followinq unique prime factorization.

$$
\begin{aligned}
& \text { r1 r2 r1 } \\
& M=(p 1) \quad .(p 2) \quad \ldots \ldots(p 1)
\end{aligned}
$$

When the arithmetic was to be performed mod M, it can be performed modulo eacn prine power (pi)**ri separately [9] and the innal result mod a can be obtained using the chinese Bemainder theorem \{ 3 \}. When the arithmetic mod (pi**ri) is performed in rinite fields, then every field with N elements is isomorphic to every other field with N elements.

Now we return to the discussion on the desiqn of the NTT processor. De notice the followinq requirements for the CCP to exist and the NTT to be defined over the finite field.

THEOREM-2.3: A lenqth N transform having the DFT structure will implement cyclic convolution if and only if there exists an inverse of N and an element ε, a root of unity of order N, i.e., N is the least positive integer such that

$$
\varepsilon * * N=1
$$

This is a very qeneral result applyinq to both rinqs and rields that are finite or infinite and it has been developed from d variety of points of view [25]. For macomposite number as represented in Equ. (2-5), we can obtain the results of opeation mod A by combining the results ottained Erom the operation madulo each (pi**ri).

Therefore, the leaqth N number theoretic transform hav-
 $i=1,2, \ldots . .1$. Tnis requires that E (mod $p i * * r i)$ de an inteqer of order N and must exist in $2\{p i * * r i\}$, i.e..id is the least positive inteqer such that

$$
\varepsilon * * N=1 \text { (mod pi**ri), } i=1,2, \ldots .1 .
$$

Purthermore, since the inverse transform requires N : the inverse of N should exist $\ln 2\{p i * * r i\}$, or, N should be relatively prime to M. Now we fiad that by euler's theorem

$$
N \mid \otimes\left(p_{1} * * r i\right), \quad i=1,2, \ldots . .
$$

 or $N / p i \quad(p \perp-1)$ because $a(p i * * r i)=p i \quad$ ($\left.p_{1}-1\right)$.

Since \mathbb{N} is relatively prime to M (or its factors)
$N \mid(p i-1) \quad i=1,2, \ldots \ldots 1$.
N|qCd\{p1-1.p2-1......p1-1\}
We define $O(M)$ as the qreatest common divisor (qcd) of the (pi-1)

$$
O(A)=q \operatorname{cd}\left\{p 1-1, p^{2}-1, \ldots, p l-1\right\}
$$

therefore, N|O(M)

This qives us
THEOREM-2.4: A lenqth N transform having the DFT structure
will implement cyclic convolution mod M if and only if N(O (M)
ma this establisnes the maximum transform lenyth in z mas $\operatorname{Nax}=0(1)$

This is a very important theorem that states exactly what the possible transiorm lenutis for a qiven modulus are.

2.3.1 Ag Example of convolution using NTT when \boldsymbol{y} is a prine

Consider two sequences

$$
\begin{aligned}
& x=(2,-2,1,0) \\
& \mathfrak{n}=(1,2,0,0)
\end{aligned}
$$

Whose convolution is desired. From overflow consideration, it is sufficient ir we derine the transforms over $G F(17)$

$$
A=17 \quad N=4
$$

Now since $y=17$, the inteqer 2 is of order 8 therefore $(2 * * 2)=4$ 1s an \dot{i} oi order 4.

The transformation matrix T is given by

$$
T=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 4 & 4 * * 2 & 4 * * 3 \\
1 & 4 * * 2 & 4 * * 4 & 4 * * 6 \\
1 & 4 * * 3 & 4 * * 6 & 4 * * 9
\end{array}\right]
$$

OR.

$$
T=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 4 & 16 & 13 \\
1 & 16 & 1 & 16 \\
1 & 13 & 16 & 4
\end{array}\right] \quad(\bmod 17)
$$

since $4=-4 \quad(\bmod 17)=13$ (mod 17) and the inverse Transformation Matrix is

$$
T=13\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 13 & 16 & 4 \\
1 & 16 & 1 & 16 \\
1 & . & 4 . & 16 \\
& &
\end{array}\right]
$$

The Transforms of x and h are given by

$$
\begin{aligned}
x=T \cdot x & =\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 4 & 16 & 13 \\
1 & 16 & 1 & 16 \\
1 & 13 & 16 & 4
\end{array}\right]\left[\begin{array}{r}
2 \\
15 \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{lllll}
1,10,5,9 & (\bmod 17)
\end{array}\right.
\end{aligned}
$$

similarly $H=\{3,9,10,10\}$
and thus $Y=X . H$

$$
=\lceil 3,5,12,5\rceil \quad(\bmod 17)
$$

Taking the inverse transform of Y.

$$
y=(2,2,14,2) \quad(\bmod 17)
$$

According to our assumption, integers are supposed to lie between - 8 and 8. Therefore

$$
Y=(2,2,-3,2)
$$

Which is the correct answer.

2.4 PRACTICAL CONSIDBRATIONS IN CHOOSING E EN AHD M ROB AN NTT

Although the class of all possible uumber theoretic transforms seems very larqe at first consideration (in fact, infinite), closer examination snows that very few seem to be attractive for use in siqual processinq. Aqarwal and Burrus [6] summerise the criterıd which would make a particular NTT to be attractive in comparison to other implementations of convolution. Tiney list that for NTT to de computationally efificient three requirements are:

1. (a) N should be hiqhly composite (preferably a power of 2) for a fast rfT-type alqoritha to exist and
(b) N should be larye enouqh for practical sequence lenths
2. since complex multiplications take most of the computation time in calculatinq the FFT, it is important that multiplication by powers of \mathcal{E} be a simple operation. For machine implementation, this is possible if the powers of \mathcal{E} have binary representations with very few bits; preterably also a power of two, where multiplication $D y$ a power \dot{e} reduces to a word suift.
3. In order to faclitate arithmetic mod x ror machine implementations, M should have a binary representation with a very few bits and should be large enouqh to prevent overflow.

Unfortunately the conditions qiven by above theorems in sec-(2.3) do not qive a systematic way of determining the "best" cnoices. Usually M nas to be selected first and N and \mathcal{E} are determined suitably. When the modulus M is chosen to be a Fermat Number as

$$
\begin{aligned}
y=P t & =2_{b}^{2^{t}}+1 \\
& =2^{2}+1 \quad(2 \cdot 10)
\end{aligned}
$$

then a promising class of NTT's can be obtained [8]. Such transforms are called fermat Number Transform (FNT). A special class of such transtorm is when the value of ε is chosen $\varepsilon=S Q R T(2$.$) . These transforms are described by Rader and$ are known ds Rader Transforms [9].

2.5 DESIGN CONSIDERATION EOQ NTT USED IM CONVOLVER
 As we mentioned in section-(2-4), it is usually but not dlways the case that a value of M is chosen ifirst and suitable transform lenqth N and the qenerator ε is determined. we will follow the same approacn.

2.5.1 choosing H

In the ring of inteqers mod M. conventional inteqers Can be unambiquously represented only if their absolute value is less than $M / 2$. If the input inteqer sequences $x(n)$ and $h(n)$ are so scaled that $|y(n)|$ never exceeds $M / 2$, we would qet the same results by implementing convolution in the ring of inteqers modulo H as that obtained with normal arithmetic. In most diqital filterinq applications, $h(n)$ represents the impulse response and is known a priori: also the maximum magnitude of the input siqnal is usually known. In this case, we can bound the peak output magnitude [7] by

$$
|y(n)| \leqslant|x(n)| \max * \sum_{n=0}^{N-1}|h(n)|
$$

One possible solution to this overflow problem involves seqmenting the words into shorter blocks and convolving them separately [3]. Another approach to solving the sequence length vs word lenqth constrain is to use block processing where the sequence of lenath N is broken into smaller blocks and the results arc combined. However a better alternative to this problem can be arqued when hardware implementation of diqital filters using the ENTM is desired. The method works as follows:

The convolution is implemented modulo two different primes p1 and p2 where p1 and p2 are chosen such that cyclic
 machone. By exploiting the inherent parallelism of RNS arithmatic, the processing medulo p1 and p2 can be performed
in parallel and the results combined to quve tie correct and exact solution by use of either the Chinese Remainder Theorem or a Mixed Radix Conversion method .

In our implementation this latter technique has been employed; the value of $p 1$ and $p 2$ nave chosen to be 641 and 769 which are prime numbers. The operations with respect to prime moduli are yenerally represented by $p i$ and we will Eollow the same convention. The prime moduli chosen are of the form $p i=4 i=q .2 * * p+1$, where $(2 * * p)=128$. These numbers are chosen for several reasons. First, both the numbers, 641 and 769, support 128 point transforms and are the larqest two primes ($\leqslant 10$-bits) , tnat support this transform lenqth. Secondly, the desiqn or the Convolver was aimed for Imaqe processing where 128 or 256 levels are sufficient for imaqe representation. Taus the input data array will have no number qreater than 255 and hence the residues with respect to tood pi is same as the data itself. This will save us the hardware cost 1 n the sense that a binary to residue converter can be avoided. Further since,

$$
M=\prod_{i} p i \quad i=1,2, \ldots .1
$$

in our case we ootain $M=641 \times 769<2 * * 19$ (19-bits). Also by simulation results operated over several imaqes using the Fast Number Theoretic Transform, $2 t$ was found that the convolution result never exceeded a 17 -bit binary representation. In d sense, we have thus provided a 'cushion' of 2-bits which is ressonaoly sutificient. Also, it was essen-
tial from the point of vien of Euler's Tneorem (sec-2.2) that $\operatorname{Nmax}=O(H)=\operatorname{qcd}\{p 1-1, p 2-1, \ldots \ldots, p 1-1\}$ and since the sequence lenqth was decided as $N=128$ for 2-D processing of (128×128) images, the choice of $p 1=641$ and $p 2=769$ yas most suitable for hardware implementation.

2.5.2 choosing $\underset{\sim}{\text { and }} \underline{\underline{E}}$

For the implementation of NTT's for diqital imaqe processinq, it is essential that an FFT-type alqorithm be utilized to compute the NTT of sequences in order to achieve the best speed/cost ratio. This requirement implies that the sequence lenqth should be a hiqhly composite number, preferably a power of two. Gonqalez [16] descibes that for almost all imaqe processing applications inaqes represented by dimensions in the ranqe (128×128) to (512×512) are sufficient when 8-bit representation is used for each data-point (qray level). Thus the choice is linited to have $N=128$, 2bo or 512. Now since the prine moduli 641 and 769 support a 128-point transform, the sequence lenqth was chosen to be 128. The hardware cost was another ractor in deciding the size of the basic block to be (128x128). Furtner this complies with the requirement of Euler's Theorem.

Once the value of A and N have been fixed the value of ε is determined by findinq an Nth root of unity in each field as described previously. The main restriction on the parameters is the value of N so that a FNTT can be utilized.

The other parameters are chosen based on N. Since the implementation of multiplication is through the use of look-up tables, the restriction on εi is an alqebraic rather than hardware related.

2. 6 ORDERED-INPOT-ORDEREDGOUTPUT二NTT ALGORITHM

The traditional FFT-type alqorithms require pre-shuffling or post-ordering of the data which results in a reduced throuqnput rate and increased hardware cost. Usinq a hardware lmplementation, various structures have been suyyested [1] where pre-shuffling is performed at the host-computer or by providınq.additional loqic circuitry. The convolver, however, uses an Ordereu-Input-ordered-output (OIOO) alqorithm for implementing the FNTT. The alqorithm was proposed by Corintnios [o] and was oriqinally described for a 1D-radix-2-FFT eaploying use of serial-sequencial pipelining usinq a sinqle Butterfly Jnit (BU). In our implementation, the oriyinal idea was extended and modified [10]. For example, we utilize a 2 D -radix-2 Butterfly for the FNTT and the operations are performed in parallel for the two moduli. The development of the two-dimensional UIOO-NTT alqorithm is outlined in appendix-(A).

It is seen from the Eqn. ($A-6$) that the computation of the NTT of the vector 1 can be divided into n-stages where each staqe performs the operations specified by the operators $\Psi_{i} R_{i}$ - The operators of any staye operates on the
output of the previous staqe and the operator $\Psi_{n} R_{n}$ of the first stage operate on the vector f. Since the two-dimensional operators Ψ_{i} and R_{i} of a staqe have been defined as the Kronecker product of the l-D operators, p_{i}, q_{i}, s_{i} - the output of a staqe can be computed by sequential application of the opeators alony each dimension of the input to the stage. Thus a staqe consists of the sequential application of an r-point $N T T$, permutation and twiddle factor multiplication operations to the points in each dimension of the tyo-dmensional representation of the input to the staqe. An analysis of memory orqanization and savinq in computation is qiven in the next chapter (sec-3.5).

2.7 RESIDUE TO BIHABY CONYEBSION

The use of an NTT computed over several Galois fields allows us to use Rasidue Number System concepts. The input data is colverted to the corresponding residues before computation with tue NTT processor. By the use of a siqned representation, numbers $1 n$ the ranqe $\{-p / 2, p / 2-1\}$ can be uniquely coded. A combinatorial loqic circuit for such conversion is qiven in [3]. nowever, the input array can be suitably scaled so that numbers are in the ranqe 0 and 255 (8-bit). Since the $\mathfrak{m o d u l i}$ are larqer than the maximum possible value in the input data, the residues of the sequence is the sequence itself. Thus we avoid the need of a binary to residue converter unit.

The siqnals ontained after processing are the residues too, and have to be converted to their correct binary representation. This is done ky either the Chinese Remainder Theorem or by the use of a dixed Radix Conversion Method. For the reasons descrided in sec-(3.9) it was preferred to use the Mixed Radix Conversion (MRC) to obtain the final result from the residues.

2.7.1 Use of gBC in obtaining the fingl result

The mixed-radix system is a weiqhted number system where a number x is represented as 〈an,......,a2,al> where

$$
x=a n \prod_{i=1}^{n-1} R i+\ldots \ldots .+a 3 \cdot R 2 \cdot R 1+a 2 \cdot R 1+a 1
$$

Where the $\dot{\text { il's }}$ are the radices and ai's are the mixed radix diqits $0 \leqslant$ ai<ki. Numbers in the canqe [0, $\left.\prod_{i=1}^{n} R i-1\right]$ can be represented by this manner. By choosing the radices to be the moduli ($p i=12$) when pi are prime numbers,

$$
x=a n \prod_{i=1}^{n-1} p i+\ldots \ldots .+a 3 . p 2 p 1+a 2 . p 1+a 1 \quad(2.25)
$$

Which is also equivalently represented by

```
x = \langlern,........r2,r1\rangle
    = residue or x w.r.t. different moduli
```

The ai's can be determined sequentailly in the following manner, starting with a1, since

$$
\begin{aligned}
a 1 & =x(\bmod p 1)=\text { residue of } x \text { w.r.t. } p 1=r 1 \\
a 2 & =\{(x-a 1) / p 1\}(\bmod p 2)=\{[x / p 1] \mid(\bmod p 2) \\
a 3 & =\{(x-a 1-a 2 \cdot p 1) / p 1 \cdot p 2\}(\bmod p 3) \\
& =\{[x / p 1 . p 2] \mid(\bmod p 3)
\end{aligned}
$$

$$
a i=|[x / p 1, p 2 \ldots p i-1]|(\bmod p i)
$$

Once the mixed diqits are known, then by application of Eqn-(2.25) the value of x can be determined.

Example: $\begin{aligned} & \text { Let } p 1=13 \text { (mod } p 2=17 \\ & \text { then } p 1 \text { (mot }=4\end{aligned}$
if the qiven $x=\langle r 1, r 2\rangle=\langle 8,9\rangle$ then x would be obtained as follous:

Moduli	13	17	
$x=\langle r 1, r 2\rangle$	8	9	a $1=8$
$x-a 1$	0	1	
$\lceil(x-a 1) / p 1]$		4	a $2=4$

hence

$$
\begin{aligned}
x & =a 2 \cdot p 1+a 1 \\
& =4 \cdot 13+8 \\
& =6 u \\
& \text { wnich is the correct result. }
\end{aligned}
$$

The method of Mixed-radix conversion thus can be utilized to find the binary representation by performinq operations in a serial pipeline fashion and is advantayeous over the Chinese Remainder Method of conversion in our case.

2.8 CONCLUSION

In this introductory chapter, we have presented the theoretical backyround necessary to understand the processor architecture used in the convolver. The modular arithmetic necessary to develop the concepts $10 r$ use in the implementation of Fast Nunber Theoretic Transforms for diyltal filterinq nas been discussed. The theoretical and practical con-
siderations to choose an NTT are outlined. The
Ordered-Input- ordered-output (OIOO) dlqorithm has been con-
sidered. Finally the use of a Mixed Radix conversion method
for kesidue to Binary conversion is presented.

Abstract

Chapter III IMPLEMENTATIOA OF BUTTERFLY AND ANALYSIS ON THE CONVOLVER

3. 1 INTRODUCTION

In the previous chapter we developed the theoretical backqround necessary for implementation of fast Number Theoretic Transform techniques to use them in diqital filtering of two-dimensional sequences. In particular, an UIOO-NTT alqorithm was considered for the $2-D-r a d i x-2$ butterfly structure.

This chapter has two parts. The first part discusses the structure and implementation of the butterfly unit. In particular, the impleaentation of multiplication in the butterfly unit by the use of a sup-modular look-up tatle approach is discussed in detail. Next, this chapter describes various topics related to the convolver as part of the analysis. This part includes the timing didqrams, throuyhput rate considerations, and various comparisons in terms of computational requirements. Two desiqn extensions are also suyqested to achieve a hiqher processinq rate. Finally, the two popular nethods of residue to binary conversion implementation are compared.

3.2 EFPICIBAT IMPLEAEATATION OP BUTTEBELY

As stated in sec-(2.2) NTT's could be implemented over a ring which is isomorphic to a direct sum of Galois fields. This amounts to implementing the transform using the RNS. Since in RNS arithmetic the number of different elememts and the result of any operation (,.,+ is bounded by a maximum number (the modulus of the operation), it is possible to precompute the results of all possible operations and store them in Rom arrays. Whenever an operation has to be performed on two operands, the operands are concatenated as a sinqle address to $a \operatorname{ROM}$ and the result obtained as a table look-up. Tnis resultṣ in tregendous speed, limited only by the access time of the $R C N$. As memory prices continue to decrease and as the advances in semiconductor hiqh density memory systems multiply, the look-up table approach for mathematical operation 1 n ans becomes more and more attractive. In fact, the table-look up appraoach by use of hom for EPROM) arrays could be considered as the "best" solution [21] for hiyh speed realization and hence for hiyin throuqhput rates.

Implementation of multiplication is particularly attractive by this method, since implementation of mod maltiplication is difficult with the conventional binary multipliers. The multiplication in the butterfly unit is implemented throuyh the table-look up approach for faster operation.

The basic idea of implementing an efficient Butterfly Operation (BO) was described by Jullien [5] for a 1D-radix-2 by substituting the conventional multiplier by the use of Look-up rables and thus achieving increased throuqhput rate - Since the dutterily operation is basic to any transform domain implementatıon, the desiqn suqqested in [5] was implemented in the convolver with little modification. The actual implementation was extended to a $2-\mathrm{D}$-radix-2 structure and data were pre-multiplexed to obtain an efficient hardware confiquration and to ensure an OIOO-NTT alqorithm.

A butterfly operation can be performed havinq either a Decimation in Time (DIT) or Decimation in frequency (DIF) structure. The DIF structure suqgests [1,2] that the multiplication by twiddle factors is applied after the addition/ subtraction operation over the data points participatinq in the butterily. A 1D-radix-2-DIF butterfly is descrited by

$$
\begin{align*}
& A=(a+b) \\
& B=(a-b) \cdot \varepsilon * * K \tag{3.1}
\end{align*}
$$

Where a and b are the inputs to the butterfly at staqe $n-1$. A and B are the outputs (input to staye n), and the index k depends on the location of the butterfly. Similarly, in the case of a 2-D-radix-2 butterfly [2] there are four data points doo, ao1, alo,d as input and the output A, B, C, D is as qiven below:

$$
\begin{aligned}
& A=(a+b+c+d) \\
& B=(a-b+c-d) \cdot \varepsilon * * i \\
& C=(a+b-c-d) \cdot \varepsilon * * j
\end{aligned}
$$

Fig. (3.1) A 2-D-radix-2 Butterfly (OIOO.algorithm).

$$
D=(a-b-c+d) \cdot \varepsilon * *(i+j) \quad(3-2)
$$

Where the input/output relations hold for a complete staqe of butterflies and the indeces, 1 and j, depend on the exact location of the butterfly in a particular staqe of the operation (Fiq-3.1). There are two basic arithmetic operations in such an implementation, namely, multiplication and addition. The use of ROM-array structure over conventional adders for addition does not siqnificantly improve the computation efficiency. For example, a 16-bit addition can be performed in less than 100 nsec by the use of fast adder circuits. The memories used in look-up tables have the same order of access time.. However, multiplication can be made a faster process through the use of look-up tables.

3.2.1 Implenenting Myltiplication using the sub-modular approach

By the use of look-up tables, the multiplication can be performed as simple and as iast as the addition. The computation thme is qiven by the sum of rollaccess time (ta) plus latch settling time (tl). For example the throuput rate of operation tirough currently dvailable $8 K x 8$ bit pROM's (such as the Intel 2732) is in excess of 5 MHz . Suca a multiplier scheme was considered in [21] for butterily pipelininq frequently used in siqnal processing. To add furtier to the speed, and to decrease the net memory requirements for larqe dynamic range, a sub-modular approach to multiplication was suqqested by Jullien [5]. We will show the tremendous savinq
obtained through this approach. First, let us consider the alqorithm.

It was shown in sec-(2.3) that if ε is a primitive root of the prime, pi, then a mafping qiven by

$$
x n=\varepsilon * * k n
$$

$$
k n=0,1,2, \ldots . \ldots, p i-1
$$

will qenerate all the non-zero elements of the set qiven by Zpi. Also there exists an isomorphism between a multiplicative qroup x having elements $\{x n\}=\left\{1,2,3, \ldots . . \ldots . . p_{i}-1\right\}$ with multiplication modulo pi, and the additive qroup k havinq elements $\{k n\}=\left\{0,1,2, \ldots . . . p_{i-2\}}\right.$ with addition modulo pi-1 when pi is a prime. Thus,

$$
\begin{equation*}
\left|x_{n} x_{j}\right|_{p_{i}}=\left.\varepsilon^{\mid k_{n}+k_{j}}\right|_{p_{i-1}} \tag{3.4}
\end{equation*}
$$

which suqqests that multiplication can be performed in three steps:

1. Find the index $k i$ ror each number
2. Add indices, mod (pi-1)
3. Perform the inverse index operation

The above steps can be inplemented directly using an all kom-array structure with a pipe-lininq arranqement. The memory requirement of order $\{(p i * * 2) x N-b i t s\}$ in the second step, when addition is performed mod (pi-1), is equivalent to directly performing lock-up for multiplication and it seems that no improvement results. However substantial saving accrue because we can perform adidion in a modulus oth-
er than the prime modulus. Ye can compute addition by decomposing the modulus into two relatively prime (sub-)moduli u and v, and performing the addition $i n ~ Z u$ and $Z v . ~ T h e r e-~$ sult is reconstructed using a look-up table which incorporates the submodular reconstruction, modulus overflow correction and inverse index-look up. The choice of u and v should satisfy u. $y>2 . p i$. We here describe the steps involved in sub-modular approach of multiplication with an example.

3.2.2 calculating the entries in the fook-up tables

The steps in calculating the entries in the look-up table are as folluws:

1. Generatiny Submodular index Tables:

Once the primitive root if is decided for the modulus pi, a table based on $x=|\varepsilon * * k| p i \quad$ is constructed. By inverting the table with respect to its address and contents of this table, we have a table of indices which is reduced to two index tables modulo u and v. For example, for $p_{1}=19$ with $\{u, v=7,8\}$ and $\varepsilon=2$ we form a table of mapping $x=|2 * * k|(m o d 19)$ and rearrange it to obtain $|k|(\bmod 7)$ and $|k|(\bmod 8)$. Fiq-(3.2).
2. Submodular Addition Table Construction:

The addresses of these tables are found by concatening the two-input sub-moduli residues to be ad-

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
x	1	2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10

(a)

x	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
k	0	1	13	2	16	14	6	3	8	17	12	15	5	7	11	4	10	9
k_{7}	0	1	6	2	2	0	6	3	1	3	5	1	5	0	4	4	3	2
k_{8}	0	1	5	2	0	6	6	3	0	1	4	7	5	7	3	4	2	1

(b)

Fig. (3-2) Submodular Index Tables.
ded. The contents of the table address is the submodulo addition of the input residues, Fig-(3.3). At certain locations corresponding to unused addresses in the table we store a code (say, 8) to represent the invalid operation of linding the index of zero.
3. Reconstruction Taole:

As indicated above, the reconstruction table will incorporate the followinqs:
(a) Submodular neconstruction: This is obtained using the Chinese Remainder Theorem for the residues ri and r2 with respect to u and v and the table entries are computed to correspond to a value r_{i} qiven $k y$

$$
\left.r_{i}=\left.\left|r_{1} \cdot v \cdot\right| \frac{1}{v}\right|_{u}+r_{2} \cdot u \cdot\left|\frac{1}{u}\right|_{v} \right\rvert\, u \cdot v
$$

(b) Modulus overflow Correction: Tite overflow of the modulus (pi-1) can be corrected by the following operation on r as

$$
\begin{equation*}
r i=|r i|(\bmod p i-1) \tag{3.5}
\end{equation*}
$$

(c) Inverse Index Look-up: An inverse mappinq corresponding to

$$
\begin{equation*}
y i=|\varepsilon * * r i|(\bmod p i) \tag{3.6}
\end{equation*}
$$

is employed on the corrected value of ri to obtain the entries for the table.

Let $u s$ take, for example, $\{p i=19\}$, $\{u, v=7,8\}$, then u, v > 2.pi. Let us multiply 7 by 10 (mod 19). We find

$$
\begin{aligned}
& \quad\left|\frac{1}{v}\right|_{u}=\left|\frac{1}{8}\right|_{7}=1 ;\left|\frac{1}{u}\right|_{v}=\left|\frac{1}{7}\right|_{8}=1 \\
& r_{1}=2 ; r_{2}=7(\text { from step 2) } \\
& \therefore r=\left|r_{1} \cdot 8.1+r_{2} \cdot 7 \cdot 7\right|_{56}=|16+343|_{56} \\
&=23 \\
& \text { and } y=|2| 23|18|_{19}=\left|2^{5}\right|_{19}=13
\end{aligned}
$$

The interconnection employed in this all "ROM" structure for multıplication is shown in Fiq. (3.3) and the intermediate results for the example just worked out are circled.

3.2.3 memory saving by the use of sub=modular approach

It is onserved that the memory requirements using the submodular approach are qreatly reduced. To calculate the memory requirements and to make a comparison of memory saviny by the sup-modular approach of multiplication as compared to the darect table look-up, we define tia gemory Saving Fatio (MSR) as.
MSR (dir)

Where Mem (dir) represents the memory requirement by direct multiplicatioon using look-up and Mem (sub) represents the memory requirement by use of sub-modular approach. Here we consider a case when one modulus is broken into two sub-moduli.

Let N be the number of bits by which each of the moduli is represented, c is the number of bits by uhich each of two sub-moduli is represented, $a n d b$ is the number of bits at the output of the result.

1. a direct implementation of multiplication by ROM-look up would require (for each modulus).

Mea (dir) $=(2 * * N) \times(2 * * N) \times b$ bits (3.8)
In case of convolver, this will be

$$
\begin{aligned}
& =(2 * * 24) \times 10 \text { bits } \\
& =160 \text { Heqa bits }!
\end{aligned}
$$

which is lmpractical and the cost unjustified.
2. an implementation usinq sub-modular approach would require (for each modulus).

In step a) for qeneratinq submodular residues of indices Mem $(s u b-a)=(2 * * N) \times c$ bits/sub-modulus

In step b) for performing the index addition $\operatorname{Mem}(s u b-b)=(2 * * c) \times(2 * * c) \times c \quad b i t s / s u b-m o d u l u s$ In step c) the reconstruction of the result is obtained. The memory required is

$$
\text { Mem }(s u b-c)=(2 * * c) \times(2 * * c) \times b \text { bits }
$$

Thus the total memory requirement usinq the sub-modular approach is (for each modulus).

Mem (sub) $=2 x$ Mem (sub-a) $+2 \times \operatorname{Mem}(s u b-b)+$ Mea (sub-c)

$$
=2 \times(2 * * N) x c+(2 * * c) \times(2 * * c) \times 2 c+(2 * * c) \times(2 * * c) \times b
$$ and the Memory Saving Batio (MSR) is $(2 * * N) \times(2 * * N) \times b$

MS R =
$2 c \cdot(2 * * N+2 * * 2 c)+b \cdot(2 * * 2 c)$
D. $(2 * * 2 N)$
= ------------------------------
(3.9)
$(2 * * 2 c)(2 c+b)+2 c-(2 * * N)$
which for $N \cong 2 c \cong$ approximates
MSR $\cong(1 / 3) \cdot(2 * * N)$
The MSE fur varıous values of b corressponding to $N=2 c$ is listed in Table-(3.1). A memory savinq ratio of about 341 is oitained in case of the convolver (for each modulus). It is observed that larqer the dynamic ranqe, niqher is MSR. This is an expected result.

Table-(3.1) Memory Requirements by Direct and Subqodular approach of Multiplication and the Memory Saving Batio (MSR): $1 \mathrm{~K}=1024$, $1 \mathrm{M}=1024 \times 1024$

3.2.4 further reduction in memory reguirements

We can further reduce the memory requirement by providinq an obvious simplification when the objective is to perform NTT where a aultiplication by a twiddle factor of the form e**l is involved. since multiplication in Eqn. (3.2) is between some arbitary data and ($\varepsilon * * 1$) where 1 depends upon the position of the butterfly in a staqe, the sequence $\{\varepsilon * * 1\}$ can be prestored with the mappinq already applied. This will reduce the memory requirement in step d) of submodular approach by half. This excludes the memory required to store the reduced sequence ($\varepsilon * * 1$). The memory reguired to
store the twiddle factors in any case is small and depends simply on the number of points involved in the transform at a time, e. q, in our case 128 -different twiddle factors would require $128 \times c \times 2=128 \times 12=1536$ bits/modulus $=$ 1.5K-bits/modulus.

3.3 TIBING CONSIDERATION FOR THE BUTTEERLX

Next, we describe various topics which are related to the convolver as part of its analysis. In this section, the timing diaqram for the dutterfly unit is considered.

The working of the butterfly has been described in detail in sec-(4.7) and the staqe-wise description is qiven there. Here we present a timinq-analysis of the butterfly so that we can estimate the throuqh- put rate. Fig-(3.4) shows the butterfly computational unit. The reqister-contents of the butterfly is shown in Fiq-(3.5). Oith the first clock [pipclk5] reqister R11 receives the first data point (a1), Which is buffered in 12 when the next data (b1) is latched in R22 at the second half of fpipclk57. The result of the addition, (al+b1), is then moved to a 13 at the next clock when data (c1) arrives in 811 . The next half of the clock allows fourth data sample (d1) in 222 while (a1-b1) is latched to R23. The next clockpulses allow addition, (c1+d1), and subtraction, (c1-d1), while data points (a2 and b2) for the second butterfly are received in the unit. The results $(c 1+d 1)$ and $(c 1-d 1)$ are latched in 834 and 844 in a

Fig. (3.4) The Butterfly Computation Unit

Fig. (3.5) The Timing Diagram and Register Contents in the Convolver Butterfly.
sequential fashion. When [pipclk1] occurs, the result of the second $a d d i t i o n(a 1+b 1+c 1+d 1)$ and $(a 1+b 1-c 1-d 1)$ are sequentially stored in B15. The other two data points, c2 and d2, are received in the unit. The operations after $R 15$ for each of the butterflies are straiyht forward and occur with each basic clock pulse. The data is divided into two channels corresponding to two sub-moduli. The data goes to next reqister (Ri6, $i=1,2$) after error correction and index look-up. The added indices are then latched in R17 and R27 at the next clock pulse. Meanwhile, (a1+b1+ci-d1) and (a1-b1-c1+d1) are calculated and input for next butterfly computations are recerved in the pipeline. At the next clock pulse, the result from the index add look-up table is sent to the reconstruction Eproms and are latched in R18. Thus a rate of $(1 / t)$ data per sec is maintained where 't' is basic clock period or half of the period of fpipckl5 1 .

It is noticed that a delay of 9 -cycles is introduced (tiq-3.4) between an input and the corresponding output of the kutterfly of that staqe. The butterfiy operation proceeds for 14 staqes taking into account the forward and the inverse transforms. At tne final staqe of the forward transform, the NTT of the filter coefficients is used as multilier instead of multiplication by unity twiddle factors.

3.4 THEOUGHPOT BATB CONSIDEBATIONS (OIOO-ALGORITEB)

3.4.1 serial sequential processing

The ordered-Input-Ordered-Output (oroo) alqorithm has veen discussed in sec-(2.6). The mathematical development of the algorithm is qiven in Appendix-(A). The alqorithm can be characterized by the following:

1. Let $N X N$ be the size of the input matrix and r be the radix of the butterfly operation. Then the input matrix is divided into $r * * 2$ blocks and each block is further divided into $r * * 2$ sub-blocks. If the data is accessed sequentially, then the address seperation between the data points at any staqe of operation, along any dimension, is always (N/工**2), except at the first staqe. The data $n u s t$ be seperated by (N/r) words for the first staqe of operation. A 8-point transtionm structure is shown in Fiq-(3.6). To use the same hardware confiquration for the first staye as that of other staqes, the input matrix is permuted while loading the aatrix into the input memory buffer.
2. A butterfly computation (OIOO-alqorithm) consists of preweiqhtinq (audition/subtraction) followed by weiqhtinq (multiplıcation by twiddle factors). At the nth staqe of operation, the twiddle factors are all unity and the welqhting is not required.

(a)

(b)

Fig. (3.6) (a) Graphical Representation of the Ordered-input Orderedoutput algorithm for the case $N=8$ (1-D-radix-2)
(b) Fig. (al with Permutation of Sequence While Loading in the Memory Buffer.

The above characterizations can be used to calculate the throughput rate．

MAXIMUM THBOUGHPUT－GATE POSSIBLE：

Let tp ve the time of performing preweiqhting and tm be the time of performing preweiqhting followed by weighting． Since the n－th iteration involves only preweiqhtingr the to－ tal time required in the forward transform is

$$
\begin{equation*}
T C=(n-1) \cdot(N \cdot N / \Sigma \cdot \Gamma)-t a+(N \cdot N / E \cdot I) \cdot t p \tag{3.10}
\end{equation*}
$$

where n is the number of stages．In hardware implemen－ tations，the multiplication by the twiddle factors can be made as iast as audition throuqh the use or a look－up table． In that case，we can simplify eqn－（3．10）by substituting tm $=2 \cdot t p$, and

$$
\begin{equation*}
T C=(N \cdot N / \Sigma-r) \cdot(n-1 / 2)-t ⿴ 囗 十 m \tag{3.10a}
\end{equation*}
$$

Using the relation（3．10a），it is possible to calculate the time required $1 n$ computing a torward transiorm．If addition can be performed in 300 nsec．（i．e．tu＝ 300 nsec．）then tne transform of a matrix of size（128x 128）can be performed in

$$
\text { Tc }=7.98 \text { msec. } \quad \text { (3.10b) }
$$

which implies a samplinq rate of 2.051 MHz ．If fast adders are employed in tae circuitary（say tm＝70 nsec）then the time for a transEorm yould be qiven by，

$$
\begin{equation*}
\mathrm{Tc}=1.86 \text { msec. } \tag{3.10c}
\end{equation*}
$$

whicn supports a sampliny rate of 8.2 MHz ．

To compute the convolutions，the filter coefficients is multiplied to the preveighted output from the final staqe of the forward transform，and the inverse transform of the re－ sultinq sequence is obtained．The multiplication by the fil－ ter coefficients can assumed to be equivalent to weiqhtinq at the final staqe of the forward transform．Since，there is no need of werqhting at the final staqe of the inverse transtorm，the total time to compute convolution is qiven DY。

$$
T(\operatorname{con} v)=(\alpha, N / r \cdot r) \cdot\{n \cdot t m+(n-1) \cdot t a+t p\} \quad(3.11)
$$

Assuming tp $=2$. tm as above，we have

$$
\begin{equation*}
T(c o n v)=(N \cdot N / r-r) \cdot(2 n+1) \cdot t m \tag{3.11a}
\end{equation*}
$$

Using t⿴囗 $=300 \mathrm{nsec}$ for a matrix of size（ 128×128 ），the time required to compute convolutions is

$$
\begin{equation*}
T(\text { conv })=17.8 \text { msec. } \tag{3.11b}
\end{equation*}
$$

indicating a sampling－rate of -919 MHz ．The use of fast ad－ ders and memories（ using tm $=70$ nsec）will qive a process－ ing time of

$$
\begin{equation*}
T(\text { conv })=5 \mathrm{msec} \tag{3.11c}
\end{equation*}
$$

which supports a sampling rate of 3.76 MHz ． VIDEO－RATE PROCESSING：

In siqnal processinq，a process is said to operate in real－time if the data－processing rate is higher than or equal to the data samplinq（input）rate．Thus，dependinq on
the particular application, the "real-time processinq time" may be different.

In many applications, it is desired that the processinq speed supports a video rate. Such hiqh speed procesing requirement is essential in diqital tele-vision transmission. Many Robotics applications also require a very hiqh processing rate. The video-rate is

$$
\begin{aligned}
\text { Vr} & =30 \text { pictures per sec } \\
& =1 \text { picture every }(1 / 30) \text { sec } \\
& =33.3 \mathrm{msec} \text { per picture } \\
& =.492 \mathrm{MHz}, \text { for a } 128 \times 128 \text { pixel picture. }
\end{aligned}
$$

Based on the calculations (eqn.3-11). it appears that the application of tae oroo-alyorithm, with the basic time of a wathematical operation $a s t m=300 \mathrm{nsec}$, supprots a video rate.

3.4.2 Speed consideration in the copyolver

The use of a $2-D-r a d i x-2$ oloo-alqorithm requires that the four data points participate \quad n any butterfly computation (Fiq-3.1). The mathematical operations required by tne butterfly computation (eqn-3.2) can then be implemented by the use of 8 adder/subtracters and 3 multipliers. Theserequirements can be simplified if a sacrifice in speed is ayreed. In that case, a "quarter" of the butterfly is used to process the data. The data input to the butterfly is in a sequential fashion, one data at the occurrence of every
clock pulse. This type of arranqement saves the harduare cost required to implement a "complete" butterfly unit. In fact, the convolver desiqu uses only a quarter of the butterfly and the data flow is in a sequential fashion. The use of pipeline arrangenent lets a data with every clock pulse, and there is delay of 9 clocks between the input and the corresponding output at every stage of computation. Thus, the total time of convolution derends on

1. the total number of data points
2. the time of a basic clock
3. the delay setween the input and the corresponding output

Tne total time of convolution is then qiven by,

$$
\begin{equation*}
T(\operatorname{con} v)=2 \cdot n[(N \cdot N) \cdot t+9 . t] \tag{3.13}
\end{equation*}
$$

where t is the basic clock period. The basic clock used in the convolver is or 300 nsec.. Thus an imaqe of size (128×128) is processed in a total time of

$$
\begin{equation*}
T(\text { conv })=68.8 \text { msec } . \tag{3.13a}
\end{equation*}
$$

Which implies a sampling rate of 0.24 hHz .

Table-(3.2) Comparison of Time required for convolution by different methods of processing.

3.4.3 Cascade Processing

A cascade processor may prove to be prohibitively expensive. Neverhteless, instead of usinq an input buffer memory and oscillating data successively betweeen two memories, if we provide a number of memory arrays and butterflies equal to the number of staqes, then the frocessing speed can be increased $b y$ a factor of n, where n is the number of staqes. The convolution computation time, in that case, is given by,

$$
\begin{equation*}
T(\operatorname{con} v)=2 \cdot[(N \cdot N / \Sigma \cdot r) \cdot t+D] \tag{3.14}
\end{equation*}
$$

Where D represents the delay between the input and the corresponding output data point. This delay is very small and can be neqlected in calculation of speed of the processor. With $t=300$ nsec., the convolution time for a matrix of size (128×128) is 2.45 msec. (a sampling rate of 6.5 MHz). A further qain in speed by a factor of 4 can be achieved through the use of a "complete" butterfly.

The convolution time obtainable through the different methods of processing is qiven in rable-(3.2). The I/O time between the SEL computer and the convolver for a picture of size (128×128) bytes (throuqh the use of HSD interface) is approximately 15 msec. and requires an overhead time of 5 msec. Since the use of convolver was intended in conjunction with the SEL dini-computer, efforts to use very hiqh processing rates may not be supported. Thus the use of cascade processing is not recommended.

3.5 THREE-MEMORI STBOCTURE FOR PASTBR PROCESSING

In this section and in the next section we consider two of the desiqn improvements for faster processinq. The $1 / 0$ rate between the $S E L$ minicomputer and the convolver is 1.2 usec/32-bit word (througn the use of the digh Speed Data Interface). An imaqe of (128x128) bytes is transferred from the computer to the rilter in 5 msec. by multiplexing 4 data points to form a word. The filtered imaqe is received in an array of 16 -bit per data point, and thus the data transfer

Fig. (3.7) A Three Memory Buffer Structure for Improved Speed of Processing.
time is 10 msec.. The total $\mathrm{I} / 0$ time, including the overhead of about 5 msec.. is 20 msec.. The processing time to filter an imaqe is 68.8 msec. (sec-3.4). In processing of an imaqe, the two times do not over-lap. This is because, the convolver design does not allow any communication between the host computer and the filter while the processing is in proqress. Also, there are only two memory buffers, MEM1 and MEM2, in the filter. The data oscillates back and forth between these two buffers at the various staqes of operation to compute the convolution. A threememory structure is suqqested (Fiq.3.7) which can reduce the I/O Lde time.

Whether the data.is sent from a video-diqitizer camera or from the host computer where the images have been stored, two of the buifers store the input and output of the intermediate NTT staqes. The third buffer can be employed to collect the sampled input for a second imaqe while the filter processes the first imaqe. Similarly, tne final result can be collected in one of the two buffers involved in the processing of that imaqe and can be transferred through the I/O channel while the processing of the second limaqe is in proqress. All three aemory structures are required to be identical. Assume that $M E H 1$ stores the input for the first imaqe. Now MEM1 and MEM2 are used to store all the intermediate results of tiae dutterfly stayes for that iraqe and the final result is available in MEM2. While the first imaqe is beinq processed, tne second imaqe is written into memory

O.P. (Previous)

Fig. (3.8) Timing Consideration in the Use of Memory Configuration Shown in Fig. (3.7).

MEM3. At the completion of filtering of the first imaqe, MEM3 and MEM1 are used to store the intermediate results for the second imaqe. At the time when the processing of the second imaqe beqins, the output multiplexer qates the already processed imaqe throuqh the output channel. This is possible because the input and output of the NTT alqorithm, as qiven by the OIOO-NTT alqorithm, have the same addresses. At the beqining of a new computation, the buffer selection is chanqed and durinq the computation of convolution, the I/O channel is utilized to perform the input and output operations.

As noted earlier, the total time required for the input and output of an imaqe (throuqh the use of a aSD interface) is approximately 20 msec., and the actual processing time for an imaqe of size (128×128) is 68.8 msec.. Throuqh the use of three-memory structure outlined above, it is possible to have 100% over-lap of $\mathrm{I} / 0$ time with the processing time (Fiq. 3-8). This implies that if imaqes are processed in succession, then the processing time can de reduced to about 48 msec.. This is an improvement in speed by 28 .

3.6 USIMG A COMPLBTB BUTTEBFLY FOR EASTER SPEED

The convolver implements a 2-D-radix-2 butterfly (OIOO-alqorithm) for the computation of transforms. In ardware, the processinq is performed in a serial sequential fashion. It was ooserved in sec-(3.3) that we use a multi-

Fig. (3.9) Interconnections in the use of a "complete" Butterfly.
plexed "quarter" butterfly to compute the transform of the sequence. We can, instead, use a "complete" butterfly structure to obtain a four-fold increase in speed. The possible structure of a scheme to use a complete butterfly is shown in Fiq-(3.9).

The implementation of a $2-D-r a d i x-2$ butterfly requires the implementation or eqn.(3.2). The (preweiqntinq) operations of addition and subtraction can be obtained throuqh the use of eiqht adder/subtracters, each with two data as input. The method will involve two levels of operation to avoid the use of 4 inputs adders. The implementation also requires 3 multipliers as shown in Fiq.(3.7). This is because the multıplication by unity may not be performed. The data flows back and forth between the two memory buffers. Once the input sequence has been permuted, the adaresses required for the input and the corresponding output are the same. This means taat the same adress qeneratıon loqic circuitary can be used for the control of data flow by the use of a deldy equal to the time required for processing of one data point.

This is an arranyement wnere there is a simultaneous processinq of 4 data points toqether in a pipeline tlow. The time of convolution by this method $1 s$ qiven by,

$$
T(\text { conv })=2 . n \int^{\circ}(N \cdot N / L \cdot r) \cdot t+D T(3.17)
$$

where D is the delay between the input and the corresponding output and $r=2$, the radix of operation. The time required to
compute convolution by this method (for an imaqe of 128×128 pixels) is 18.45 msec.. This supports the video rate.

It is interesting to note that the hardware requirement for the butterfly increases $0 y$ a factor of more than 3 (nearly 4). However, at the same time it is possible to use the rest of loqic circuitary with lıttle modifications. This implies that the total cost of the entire filter structure does not increase by a ractor of 4 , while the speed gain is four-fiold.

3.7 A BRIEF COMPARISON OF FET AND ENTT BUTTERFLY IHRLEBENTATIOHS

A comparison of FFT and FNTT butterfly implementation involves several variables. Here we make a brief comparison between a FFT and a FNTT butterfly implementations taking into account the followinq variables only:

1. Speed
2. Hardware complexity
3. Accuracy

There are two distinct operations in a butterfly computation: addition (or suktraction) of the data points and multiplication by the twicdle factors. A FFT buttefly requires complex arithmetic. When the aritnmeitc unit is of qeneral purpose nature, a complex adaition takes twice the time that of a real addition and, a coaplex multiplication takes four times the time required by a real multiplication - Use can be made of the fact that the input data are real.

This results in a saving of 50 percent if one neqlects the overhead involved. Thus, the additions in the butterfly in the two implementations can be made equivalent in teras of speed. The multiplication by the twiddle factors throuqh the use of a fNTT outterfly will be efficient on a qeneral purpose arithmetic unit. However, the mathematical computations in the use of FNT require mod H operations. A mod M operation on a general purpose computer is computed by performing inteqer division, which is a time consuming process. Thus the efficiency of a FNTT implementation over a FFT implementation is dooned.

Aqain, it is possible to use special purpose hardwares [19] to handle the dutterfly computations. The hardyare complexity increases in case of PFT butterfly because of the complex nature of the arithmetic involved in the computation. The need of binary to residue and residue to binary converters in the use of the FNTT butterfly increase the hardware requirement. Also, it is possible to use a table look-up approacn to implement multiplication for a faster processinq. The look-up tables entries required by the fFT butterflies are subjected to error due to the finite precision representation of the transcedental multiplier function. In qeneral, these tables require more memory [257 than the correspondinq look-up tables in the FNTT butterfly inplementation.

Further, the results obtained throuqh the use of a FNTT alqorithm are exact if the dynamic ranqe of the machine is large enough so that no number in the final result is qreater than the the adchine dqnamic ranqe. But in case there is an overflow, the resulting sequence does not represent the transform. Because of the error due to finite precision representation of the transcedental multiplier functions, the results obtained throuqh the use of a FFT alqorithm are approximate. Thus it is difficult to establish the superiority of one implementation over other. Several other factors, suca as the type of data to be processed etc.. must also be considered to compare.the two implementations.

3.8 COMPABISON OF 1-D-RADIX-2 AND 2-D-RADIX 2 BUTTEBFLIES

For this comparison, we will define the complexity based on the numoer of multiplications required in the implementation of a 1-D-radix-2 and a 2 -D-radix-2 butteflies to process a matrix. The multiplications involved in the implementation of butterflies are the multiplications by the twiddle factors.

For an m-dimensional-radix-r butterfly, it was shown [10] that the total number or multiplications with twidale factors is

$$
\Gamma(r) * * m-1]
$$

as it combines $\int m$. (r$) * *(\mathbb{m}-1) 1$ composite twiddle factor multiplications. If a one dimensional radix-r transform opera-
tion were performed along all m dimensions in a sequential fashion, then the number of twiddle factor multiplications would be equal to $\{m,[(I) * * m-(I) * *(m-1)]\}$. Thus the total number of multiplications is qiven by,

$$
M=\left[(\Sigma) * *_{\mathbb{R}}-1\right] \cdot(n) \cdot(M \cdot M / \Sigma \cdot I)
$$

Where 'n' is the number of staqes. Hence the ratio or multiplications ($B M$) between $1-D-r a d i x-r$ and $m-D-r a d i x-r$ butterfly implementation is

$$
m \cdot[(\mathrm{I}) * * \mathrm{~m}-(\mathrm{I}) * *(\mathrm{~m}-1)]
$$

$$
\begin{equation*}
B M= \tag{3.15a}
\end{equation*}
$$

$$
(I) * * m-1
$$

and the percentaqe saying in computation is equal to

$$
\begin{align*}
& m \cdot[(I) * * m-(r) * *(m-1)]-[r * * \mathbb{m}-1] \\
& m \cdot[(r) * * m-(r) * *(m-1)] \tag{Z}
\end{align*}
$$

To compare a $1-D-r a d i x-2$ and a $2-D-r a d i x-2$, we substitue $m=2$ and $r=2$ in eqn-(3.15). We obtain
$R M=(4 / 3)=1.3333$
and a saving in computation of 25 \% 15 obtained, , ble-(3.3).

It is interestiny to note a 2-D-radix-2 structure is computationaly tae same as a $1-D-r a d i x-4$ structure, which has been described as optimum [1,2].

Fig. (3.101 Implementation of the Chinese Remainder Theorem.

Table-(3.3) Comparison of butterfly Computational Requirements

3.9 COMPARISON OF B \angle CB CONVERSION METHODS

Kesidue to Binary (B / B) conversion is implemented $u y$ either the Chinese Remannder Theorea (CRT) or by the use of the Mixed Radix conversion (MRC) method, sec-(2.7). The Chinese Hemainder Theorem Expresses the relationships between the number and $1 t s$ aNS representation as,

$$
x=\left.\left.\left|\sum x_{i} m_{i}\right| \frac{1}{\hat{m}_{i}}\right|_{m_{i}}\right|_{M}
$$

Where xi are tne residues (mod $p i$) and $u=\prod_{i} p i$. On the other hand, the dixed-Radix conversion method requires two steps. In the first step, the residues are transferred to Mixed-Radix (weiqhted) diyits. The second step converts these diqits into a fixed radix form (e-q. oinary). Repeating the relations from $\sec -(2.7)$,

$$
\left.\begin{array}{rl}
\langle r n, \ldots ., r 3, r 2, r 1\rangle & =x
\end{array}\right)=\langle a n, \ldots ., a 3, a 2, a 1\rangle
$$

Fig. (3.11) Implementation of Mixed-Radix Conversion Method.

Where ri's are the residues (mod pi), ai's are the mixed diqits and pi's are the prime moduli. The block diagrams for the methods are snown Fig-(3.10) and Fiq-(3.11). The number of computational elements required by the two methods are can be compared. Let $a(n)$ represent the number of adder/subtracters, and $b(n)$ represent the number of multipliers. Then

1. For a(n) 'n' moduli representation, the CRT requires $2 n$ multipliers and an adder (mod M).
2. For $a(n)$ ' n ' moduli representation, the MRC requires

$$
\begin{array}{lc}
a(n)=(n-1) \cdot(n / 2)+1 & \text { adder } / \text { subtracters } \\
b(n)=b(n-1)+b(n-2) & \text { multipliers }
\end{array}
$$

Where $b(i)$ is an operator, $b(0)=1$ and $b(1)=1$ and $n>1$. The requirement that a modulo M adder be used in the CRT alqoritha, restracts its use in nardware implementations. Ta-ble-(3.4) shows the requirements or adders and multipliers for various values of 'n'.

Tanle-(3.4) Comparison of CAT and $4 R C$ implementation
(a) Number of adders
(b) Number of multipliers

It will be noticed that for small $n(n<4)$, it is beneficial to use the Mixed-Radix-conversion method to compute the results of Residue to Binary operation. Also, it is possible to combine various fixed arithmetic operation for a particular implementation. The requirements after such combination is indicated by putting the numbers in brackets in the table.

3. 10 CONCLOSION

In this chapter we have discussed various aspects of the convolver. The main focus was the butterfiy unit. Rirst we discussed the efficient implementation of butterfly and then we evaluated the performance of the filter with respect to speed, memory requirenents and computation cost. This was followed by d comparison oetween the implemented filter and other techniques of diyital filtering, in terms of computational efficiency. The timing considerations in the pipe-line structure was evaluated, and the throuqh-put rate determined. Two desiqn iaprovements for faster processing were suquested. Finally, the two methods of implementation of Residue to Binary conversion were compared.

Chapter IV

hardiare and functional details of the convolver

4.1 INTRODUCTION

For several problems in Imaqe Processing, linear filtering of imaqes prior to the applications of other alqorithm is extremely important. Filtering of discrete siqnals can be implemented on a qeneral purpose diqital computer of redsonable size. This is a time consuming process, and when speed of filtering is more important a hardware implementation is the only viable solution. The speed and cost considerations are vasic to filter hardware desiqn and a compromise has to ve achieved between the two dependinq on the particular application 1 n mind. For example, the speed of riltering is the main consideration when real-time processiny of siynals is desired [4].

In this chapter we describe the hardware and functional details of the convolver. It is suqqested that the user of the convolver refers to reference $\lceil 29 \mid$ for specific details about the hardware circuitary.

4.2 OVERUIEM OP THE HABDMABE

The Convolver hardware has been assembled on four Auqat Wire Wrap boards. One of the boards contains the interface betweem the HSD and the convolver, and the control loqic; two boards support the memory buffers and the 2-D-radix-2 Butterfly unit; and the fourth board has the Residue to Binary (R / D) conversion unit, A conceptual diaqram of the Convolver orqanization is qiven in fiq-(4.1). The main components of the hardware are described in detail in the following sections. An overview is presented here.

The convolver implements a 2-D-radix-2 Fast Number Theoretic Transform (ENIf) using an ordered-Input-orderedOutput alyorithm [0] where the multiplications in the butterfly are performed using the sub-modular approach [57. The host computer sends the imaqe input and the indices of the transformed coefficients dnd the necessary control siqnals to start the filtering operation. The data stored in the memory buffers are processed with tne butterfly unit for a 7-staqe sequential implementation. when the input to the butterfly is from the memory butfer-1 then the output is written to the memory burfer-2 and vice versa. At the final staqe of the forward transform, the output is multiplied by the transform of the filter coefficients usiny the twiddle factor multiplier. At the end of the inverse NTT staqe the data is processed by a Residue to Binary converter, which then transmits the data back to the host computer.

TABLE (4.1)

THE IMAGE PROCESSOR (BASIC BLOCK)

INPUT DATA ORGANIZATION: 128×128 (BYTES) FOR IMAGE
$128 \times 128 \times 24$ BITS FOR COEFFS.
MODULI: 641,769
ALGORITHM FOR BUTTERFLY: 2D-RADIX-2
OI O O-NTT ALGORITHM
decimation in frequency
OUTPUT:
$128 \times 128 \times 16$ BIT-BLOCK OF
FILTERED SECTION OR IMAGE
TIMING:
BASIC CLOCK 300 ns
I/O TIME $=5 \mathrm{msec}+10 \mathrm{msec}=15 \mathrm{msec}$.
BUTTERFLY COMPUTATION TIME $=68.8 \mathrm{msec}$
TOTAL PROCESSING TIME $=85.0 \mathrm{msec}$
TECHNOLOGY:
MSI and SSI Standard TTL and MOS Static Memory, EPROMs

PHYSICAL:
PACKAGED ON 4-AUGAT WIRE WRAP BOARDS $9 \times 16 \times 1.5$ INCH POWER CONSUMPTION: 5V DC

TABLE 4.2 Main Integrated Circuits Used in the Convolver

IC TYPE	MANUFACTURER	FUNCTION/USAGE
74S124	Texas Instrument (II)	Dual Voltage Controlled Oscillator ($1 \mathrm{~Hz}-60 \mathrm{MHz}$); Generation of Clock
74S138	TI	```Decoder/Demultiplexer (l of 8); Stage Decoder```
745139	TI	2 to 4 line Decoders/Demultiplexer; Stage Decoder
75138	TI	Quadruple Bus Trans-receiver (8-line); Trans-receiver driver.
74574	TI	Dual D-Type . Positive Edge Triggered Flip-Flop; Delay
745175	TI	Quadruple D-Type Flip-flop with clear delay.
LM311	National	Voltage Comparator; In control of circuitary for Interface; Reset Logic.
745163	TI	Synchronous 4-bit counter; Butterfly and stage counter
745253	TI	Dual 4 to line Data Selectors/ Multiplexer with 3-state output; In control circuitary for address generation.
74S257	TI	Quadruple 2 line to 1 line Data Selectors; Multiplexing of Data at output of residue to binary converter.
745163	TI	4-bit Sync. counter; Memory address generation for data input
745283	TI	4-bit Full Adder with Fast carry; Adder-subtractor

IC TYPE	MANUFACTURER	FUNCTION/USAGE
2118	Intel	RAM Memory (16384 x l bit) 16KXI; Memory Buffers; Coefficient Memory
AM2964B	AMD	Dynamic Memory Controller (for 16 K and 64 K MOS RAM) R/W address control
AM 2966	AMD	Octal Dynamic Memory Drivers with 3-state output; Tristate buffer for memory
2732A	Intel	EPROM (4Kx8 bit) Twiddle Mem/Look-up tables
AM2517	AMD	```Arithmatic Logic Unit Butterfly - ALU, Function Generator A+B, A+B, A•B, etc.```
9319	Fairchild	```Decode Sequencer (l of 10 sequential output) Generation of different clock from the main clock```
96502	TI	```Dual retriggerable monostable multivibrator; In correct sequencing.```

The basic block for filtering by this method is an inaqe of (128×128) bytes. The various components of the filter are described below. The main features of the filter are summerised in Taple-(4.1). The main Inteqrated Circuits (IC's) used in the convolver and their functions are explained in Table-(4.2).

4.3 SISTEA CLOCKS AHD RBSBT LOGIC

The filter desiqn is based on a synchronous architecture and is driven by the system master clock. A dual voltaqe controlled oscillator $\mathrm{IC}-745124$ has been used to qenerate a $20-\mathrm{MHz}$ clocx which is divıded by the Decade Sequencer IC-9319 to qenerate six non-overlapping clocks with a period of 300 nsec. These clocks are inverted to qenerate two sets of system clocks: One set or the system clocks is used by the Interface Board and the other set is used to yenerate memory and pipe-liaing timiny siqnals.

The Voltaye Comparator IC-LM311, driviny a rono-stable circuit has been used to qenerate a power-on reset pulse. This pulse is loqically Od-ed whthe I/O-reset pulse [selior] from the $H S D$ to qenerate three dirferent Resets [Eilreset, filreset1, filreset2] which are used to clear various reqisters and to initialize the interiace loqic.

4.4 BSD/COBVOLVBR IHTEEPACB

The HSD/convolver interface is an essential component of the convolver as well ds the Image processing system. The Hiqh Speed Device (HSD) interiace loqic links the $H S D$ nandler (in SEL-32/27 computer) and the filter. The HSD interface loyic is very qeneral in nature and apart from convolver, devices such as the video diqitizer can use the same HSD-interface loyic. Tae HSD-interface (Piq-4.2) has the rollowing main components:

1. Line Drivers/beceivers
2. Hultiplexers (Accumulators)
3. I/O data counter (NTT staye/ butterfly counter)
4. control loyic for I/O operations
5. Control loyic ror data input from Video-diqitizer The interface loqic is controlled by the siqnals from the i $i S D$ handler. The Filter finction reqister is loaded from tae HSD to specify the uext filter function (sec-4.5). When an $1 / 0$ filter-iunction is specified tae data transiers at a rate of 1.2 us (1200 nsec) per 32 -bit word. pour pixels are transferred at a time from the $S E L$ to the convolver as input data, and tnese are demultiplexed at the basic system clock rate of 300 nsec before writiny the pixels byte 1 nto the memory buffer. Thls ensures a continuous transfer of data. The $1 / 0$ data counter keeps the record of the number of data trausier and once the specified number of data-transfer has taken place, it resets and is then available for other countinq functions.

Fig. (4.2) The Filter Interface and I/O Control Unit.

4.4.1 Line Drivers/Beceivers

The Line Drivers/Receivers consist of 12 TI-75138 IC's and are connected to the $H S D$ via two 50 pin flat cables. The driver part is controlled $5 y$ the strobe siqnal [selinstbl. and is enapled whenever the data-status is to be sent to the HSD.

4.4.2 NTT stage $/$ botterfly counter

The NTT Staqe/ Buttefly Counter (NSBC) serves a dual purpose. During tae data-transfer between couvolver and $H S D$. it counts the number of pixels and during tine convolution operation it serves as a staqe and butterfly counter. This is also rererred to as tne I / O Data Counter.

This 18 -bit NSBC is a synchronous counter and is made up of live IC-74S163. During an $1 / 0$ transfer this counter is controlled by tae interiace loqic and indicates when the specified number of data have transierred. when the filter is set to perforim the convolution, i.e., wnen [filon=1], the butterfly counter is used to yenerate the count for the 14-staqes (7 Lor forwaru and 7 fur iuverse) a of 128×128 transform.

When used as the NSBC, it qenerates a b-bit column address, a b-bit row address and d 2-bit word audress. These address oits are used to compute the Read/write addresses of data items froa and to MEM1 and MEM2 for the current butterfly operation. The reuaining 4 -bits are used for the staqe count (1-14).

The NSBC forms a aodulo（ $2 * * 14+9)$ counter，and qenerates the addresses in a serial fashion such that data are always（N／工＊＊2）apart as required by the OIOO－NTT alqor－ ithm．The additional count of 9 is required to complete the Read／Write operation at eaca staqe．Out of the 4－bits used for the staqe count the $A S B$ determines wiether the forward （0）or the inverse（1）operation is beinq periormed．At the end of the filtering operation，d siqnal［clrruntf］is qen－ erated to clear tne〔iilstart〕 Llip－ilop and to terminate Iilterinq［filon＝0）．At this time the filtered imaqe is available in $M E M 1$ ，to de transrerred to the SEL via the $H S D$.

During the transter of either Imaqe data or Coetficient data between the $d \dot{D}$ and the convolver，the counter qener－ ates the dudress of MEM1／TCOPMEM to store or retrieve tae data from amylrcofyey．This process proceeds in a sequen－ tial rashion and at the end or the data transfer of （128×12B）points a siqnal［filiadatacomplis qenerated which irhibits furtner transfer oferations between the $H S D$ and the convolver．Tne NBSC $1 s$ cleared at the beyininq of each transter operation from the siqnal supplied by HSD．

4．5 INTERFACE CONTROL LOGIC

The interrace control loqic yenerates tine siqnals re－ quired for data transfer between the $H S D$ and the convolver． Two kinds of siquals are recoqnized：PILFUNCEDY，PILfUNCACK，

to convolver while filootady, FILOUTACK, FILSIATBDY and gristatack control the transier of data from the convolver to HSD.

Whenever a new filter function is specified, the [filfuncrdy] qoes uiqh and with the next [mclk50] the sixbit function is loaded in the filter-function reqister. Three of the six oits specify one of eight possible functions:

1. NOP
2. LDIMG
(001) Load Imaqe data in (Buffer 1)
3. LDCOF (Tcoeft Mem) .
4. LDDSP
(011) Load memory for displayinq imaqe
5. SDPILDT
6. SDCAMDI to HSD
7. NOP
8. CLRMCNT (110) Cledr butterfly Counter and send Filter status to HSD
(111) left for future use
(100) Send filtered imaqe to HSD
(101) Send diqitized imaqe froa camera

The fourth bit [iilfunc3] determines whetier or not tiae convolution process has been requested and, at the end of the filterinq operation, clears [filstart] at waich a new filter-function may be loaded to the fil-func-requster. There is no provison roc external Interrupts, and once the filterinq beqins, there is no data transfer between the iSD and the convolver until the end of the filtering operation.

This , hovever, does not affect LDDSP and SDCAMDT since the operations they control can be performed independently.

4.5.1 LDIHG operation

Wnen LDIMG is true, the sequential loadinq or the imaqe data $u s$ enabled. AEter the [filinrdy] siqnal is active, and if no previous function is beinq served, then a 40 nsec pulse is qenerated wicn enables asynchronous data transfer. The data from the $S E L-b u s$ are transfered to the filin-reqisters (32-bit) and from there the data is demultiplexed and written into $\operatorname{sEM} 1$. The counter starts counting at the beqining of the data transfer and is sychronised with the rate of data transier. Tae demultiplexiny and writinq into memory is completed berore the next data arrives. The 4-byte data 15 duays written to memory in the sequence Most Siqnificant Byte to Ledst Siynificant Byte (bits 31-24 to bits 07-00). The siqnal [filinack] is sent to tne $H S D$ to acknowledqe the completion ordata transfer.

4.5.2 LDCOF operation

When LDCOF is true, the least siqnificant 24-bits of the data are transfered in the same rasnion as above for LDIMG. The 24 -bit word is formed by reducing the indices of the transiona of coefficients corresponding to the set of sub-moduli 62 and 63, as indicated in sec-(4.6.6).

4.5.3 CLBBCBI operation

This is a special type of function performed by the filter to inform the HSD status of the filter. Whenever status information is requested the CLRMCNT siqnal is made true by sending the siqnals from the $H S D$. The filter then transmits a 5-bit data pack on 32-bit lınes indicatinq FILON, NTTR,ISTAGRO, ISTAGR1, ISTAGR2. This informs tae iSD as to Whether or not an I / O operation is to performed.

4.5.4 SDFILDT Operation

When SDFILDT is active low, the data from the MEM1 is sent to the HSD. The.riltered output for each data point is a 16 -bit word and is multiflexed to form a 32-bit word for fast I / O operation. The counter keeps track of the number of pixels sent to the HSD.

4.5.5 SDCAMDT operation

This functıon implies a transfer of data from the filter to the HSD when the data is obtained from a camera (Vi-deo-diyitizer). The camera outputis a 8 -bıt word. The camera multiplexer [rdcammux] multiplexes four 8-bit outputs to form a 32-bit word for iast $I / 0$ operation throuqia the HSD.

4.6 BEHORI BOPFBRS

The block diaqram of the memory buffer arrangement used in the convolver is shown in Piq-(4.3). The fiqure shows the main memory buffers (MEM1 and MEM2). The Twiddle Factor Memory (TFMEM) EPROMS, the transform of the coeficicients memory (TCOFMEM), and the associated loqic for the qeneration of Read/urite addresses.

1. MEM1 and MEM2 are orqanized in $16 K \times 20$ bits each and store tae input data and the intermediate results of the butterfly operations.
2. TFMEM EPROMS store the indices of 128 residues of ($* * * k$) for $k=0.1,2 \ldots \ldots . .127$ correspondinq to the set of sub-moduli, 62 and 63.
3. TCOFMEM is orqanized as 16 Kx 24 bit and stores the 128×120 indices of $N T T$ of the qiven filter cernel corresponding to the set of sub-moduli 62 and 63.

4.6.1 Menory Urite Address Generator

The output of the Butterfiy counter is also used to qenerate addresses for Bead/write operation from and to MEM1. MEM2 and TCOFAEM. Because of the pipelining structure of the Butterfly unit, there is delay of y pulses between the input and tae correspondiny output. This means that output or the butterfly counter aust subtract y to qenerate correct mearory addresses. As required by tne OICO-NTT alqorithm, data are always written in a block of 64×64 with a

configuration $[(0,0),(0,64),(64,0),(64,64)\}, \quad\{(0,1)$, $(0,65),(64,1),(64,65)\} \ldots . ..)^{\prime}$ and this confiquration is obtained by usinq the siynals [IROK5-IRONO.ICOL5-ICOLU, IHCRD1-IWORDU].

4.6.2 Hemory Read Address Generator

The addresses of the data points participating in a butterfly computation depends on the block address within the imaqe (there are 4 blocks) and a sub-block address within the specified block. The staqe-decoder and the butterfly counter are used to control the Memory-address qenerator. Thermem-ad-qeal multiplexes the output of the Butterfiy counter in suca a way that a correct memory read dudress 15 qenerated during each staqe of the NTT and the INTT operations.

4.6.3 Triddle Factor/Trans. of Pilter Goeff. AddrGenrator

The TR/TFCOF Address yenerator generates three types of addresses:

1. TCOEMEM address required for storing tne NTT of the rilter coefticients into rCoryem
2. Address required for accessinq the twidde factors from tae memory during the NTT and the INTT operations
3. Address required fur accessing the transform of tae filter coefficieats from tcofaca during the final staye of the forward NTT computation

Due to the pipeline implementation of the Butterfly unit, a delay of 6 clock cycles between the output of the counter and the output required by the address qenerator for TCOFMEM must be introduced. Also, due to the the access time of the T epgoms, the $T F$ address must be qenerated one cycle ahead of the TCOFMEM address. The transform of the coetricients is pre-shuffled and is loaded in tCofmem in such a rashion that theq can be addressed sequentially for multiplications by the transicrm of the imaqe.

The OLOO-NTT alyoritha requires three different values of the Twiddle factors for each butterfly operation depending on the row index.i, the column index i, and the sum (i+j) and the stave or tae butterfly. These indices are qenerated by masixiny the output of the staqe decoder and are then multiplexed to qenerate the correct addresses for the Twidule Factors.

4.6.4 Memory Address Multiplexer

 while MEM1 stores the input imaqe, the filtered output and the intermediate staqe results, MEM2 only stores the results from intermediate stayes. The memory-add-multiplexer selects the memory buffer and the operation (Redd or Write) itself.
4.6.5 Benory Buffer HE日1 and gBy2

The menory buffers MEH1 and MEM2 are orqanized as $16 K \times 20$ bits where bits $(19-10)$ are reserved for residues corresspondiny to the wodulus 641 and bits $(y-0)$ are reserved for residues corresponding to the modulus 769. The Dynamic Memory Controller (DMC1) qenerates the row/column addresses for MEMI and maintains the proper timinq siqnal durinq read/urite and refresh operations. Since only one of the two mearies, MEM1 or MEar, qives the output at any time, the two outputs are wire ored to [mem-rey]. The input data to mexi is written oyte oy byte throuqh the [filin-mux] from the $H S D$ at the beqining of the convolution process. MEM2 is controlled by DMC2 and the necessary addresses for this buffer are qenerated by the [mem-add-mux].

4.6.6 Memory Buffer TCORMEM

The memory buffer TCOPMEM is orqanized as 16 Kx 24 bits and stores the indices of the residues of the NTT of the coefticients. The indices of each residue are computed with respect to sub-moduli 62 and 63 in soltware and combined to fiorm a 24 -bit word as snown below:

The TCOFMEM is also controlled by the dynamic memory controller. Tae data infut to this buffer is throuqh「tilin-mux firom tine $H S D$. The output of this buifer is connected to the rfCOP Requster and is wire ored with the $T P$ EPROMS, since only one of the two is enabled at any time.

4.6.7 Triddle Factor BPBoMs

The TP ERROMS store the indices of the powers of the yenerator for the set or moduli 641 and 769. The format for storing these indices is same as that for indices in TCOFMEM. TAE ERROMS used are LC-2732A. The addresses 0-127 and 128-255 store the indices corresponding to the various values of $\varepsilon * * k$ dad $\varepsilon * *-k$ respectively.

4.7 TEE BUTTERPLI DEIT

The Butterfly Uait (BU), Fiq-(4.4), consists of binary ddders/substracters (An2517), Look-up tables (EPROBS), and standard 8-bit Schottxy 1 TL reflsters. The transrorm opera-
 parallel. The residue representation and tue operations of addition and subtraction are performed in ''s complement bi- $^{\prime}$ nary. Thus, a residue between $\{0,(p i-1) / 2\}$ has the same representation as binary and the values between $\{(p i+1) / 2\}$ and $\{(p i-1)\}$ are represented as $\{2 * * 10-X i)$ were X_{i} is the residue.

As discussed in sec-(3.2). the implementation of tine butterfly requires the iaplementation of the rollowinq equations:

$$
\begin{aligned}
& A(i, i)=[a(i, 1)+d(i, j)+a(j, i)+a(j, j)] \\
& A(i, j)=[a(i, i)-a(i, j)+a(j, i)-a(j, j)] \quad(\varepsilon * * m) \\
& A(j, i)=[a(i, i)+a(i, j)-a(j, i)-a(i, j)]-(\varepsilon * * n) \\
& A(i, j)=[a(i, i)-a(i, i)-a(i, i)+a(j, j)] \cdot\{\varepsilon * *(\mathbb{m}+n)\} \\
& i=0,1,2, \ldots 63 ; \quad j=64,65, \ldots 127
\end{aligned}
$$

where m and n depend on the staqe and the location of the butterily beinq performed.

The butteriiy operation is performed in 8 staqes and these can be reduced to three basic steps:

1. Pipeline staye 1 dad 2

Staqe one (reqister fill) is used to buffer the input to the ist adder/subtracter and staqe tyo (reGister ki2) delays the first data by a clock pulse while the second ada is stored in reqister R22. The result of addition/substraction is computed (11-bits) and is stored intu 3 rd staqe reyisters $\mathbb{1} 13$ and $[23$.
2. Pipeline staqe 3,4 and 5

These pipeline stayes provide butrering of tae datd between the Ist and $2 n d$ adder/subtractor. Staqe 3 and 4 store the result of the pair of additions and subtractions. The reyisters (R14-R44) in staqe 4 act as burier and the desired output is obtained ky con-
necting the inputs at this staqe to two inputs of the 2nd adder/subtractor unit. The output of these operations is obtained in staqe-5 reqister (a15) which, in turn, feeds staqe 6.
3. Pipeline staqe 0.7 and 8

These staqes form the main computation unit (multiplier) usiny the subqodular look up approach. In stage 6, the EPROMS perform the error correction and compute the index corresponding to the sub-moduli 62 and 63. The data for these $E P B O M s$ have been qenerated using tue software on the SEL -32/27.These indices are added to the 1 ndices of either the Triddie factors or of the Transform of the coetficients in staqe 7 through the use of Index-add-look-up tables. The output of these EpkoMs is stored in reqisters (R 17 and R27) at staqe 7 and is fed to staqe 8 to obtain the reconstruction throuyh tiae use of the Reconstruction/cor rection table. The EPROMs at these stayes nave been proyrammed using the sortware proqrams (ECILUT.TABLE, and aECON1).

At the risinq edqe of the ycL $x 00$ the $B U$ output pecomes available at staqe- 8 reqister ($R 18$) which is then stored in either MEM1 or MEM2.

Fig. (4.5) Tha Pipeline Timing Diagram

4.7.1 Pipeline Tining

The basic timing siqnals and tae pipeline clocks are derives from the system clock MCLKOO. The MCLKOO is buffered and tne delayed clocks are obtained as yClKO10 through MCLKOSO. These clocks are used to stobe the data into pipeline staqes 8.7.6. and 5. The MCLK050 is used to qenerate 4 non-overlapping clocks PIPCLK1.PIPCLK2,PIPCLK3 and PIPCLK4 having a period of 1200 nsec throuqn the use of a decade sequencer and delay units. The prpclk's are also used to qenerate two other clocks PIPCLK5 and $\overline{\text { PIPCLK5 wich are used to }}$ select different pipeline reqisters in staqes 3 and 4 , and also to control the ist and 2 nd adder/subtractor staqes. A timing diagram of these clocks 1 s shown in Fiq.-(4.5).

4.8 BESIDUE TO BIMARI CONDERTER

The output obtalned frou the butterfly unit is in the ENS representation (mod 641 and mod 709) with each residue represented in $2^{\prime \prime} s$ complement form. A deslue to Binary (i/B) converter, $r i q-(4.6)$. is used to obtain the final results. It utilizes the Mixed-kadix conversion method [3] for R / B conversion (sec-2.7). The desiqn uses a pipeliniuq approach such that the final result can be transterred to the $i S D$ at the maximum possiole rate (1.2 usec/32-bit word). The adders/ subtractors used are binary adders and the fixed multiplication is periormed via look-up tables. The output of the B / B is a 16 -bit number.

Fig. (4.6) Realdue to Binary Convertor

The R / B converter unit is made up of 4 pipeline stages and it receives input from the butterily unit output stored in MEM1. The pipeline timing pulses are qenerated from the delayed clock HCLK00. The staqe 1 reqisters (R11, R21) are used to buffer the output of MEM1. In staqe 2 , the residue mod 041 is substracted from the residue mod 769. The result is then stored in staqe 2 reqister (1212 . Also an EPROM is used to convert the 2 's comlenent representation of the residue, a1, for modulus 641 into a positive binary representation (10-bit). The result is stored in reyister (1822). In staqe 3. a look-up table is used to convert the 2 's complement output oi the previous stages into a positive residue with respect to the modulus 769. Tnis residue, a2, is then multiplied by $\quad 041$ to qenerate a 19-bit product. The most siqniricant 15 -bits are taken as the result (in reqister 813). These staqe 3 steps are combined toqether and the result is ootained from the eproms. The ERHOMS are proqramned using the softuare proqran RSBCN on the sel computer. Also, the content of radister R22 is transferred to the reqister a 23 in staqe 3.

Staqe 4 of the R / B converter computes talue value (a2*p1+a1) by adding the output of staqe 3 via the adders. The addition is performed by adding the 16 -bit output for al to the 15 -bit output from a $2 *$ p1. The result i s then sent to [rbcam-mux] to multiplex two consecutive lo-bit words into a 32-bit word and is Finally sent to the HSD. The final result
is a positive numper in the ranqe $\{0,769 * 641 / 4\}$ and a correction is applied in software to obtain the true 2 's complement representation.

4.9 USING THE COYVOLVER

We have described the nardware and functional details of tne convolver in this cnapter. This section describes the steps in using the filter. The expldination of the various software avallable is qiven in Appendix-(C)\&(D).The following steps wust be carried out:

1. Desiqn a two-dinensional Einite Impulse Response (FIB) Eilter with a relatively smaller kernel size than the dimensions of tae imaye to be filtered. fIt was mentioned in sec- $(2,2)$ that to aroid the vrap-around error, the transform length must be chosen to be $1 \geqslant N+L-1$, where N and L are dimenssons of the input sequence and the filter kernel respectively. In the use of the convolver, which performs a 128-point transiora, the wraf-around error can be completely eliminated if dnd only if, the sum of non-zero sequence lenyths ar the input is less than or equal to 129. However, if the use of the convolver is intended on dn image of size (128×128), then it is advantayeuus to have a filter kernel as small as possible (to have smaller wrap-around error). Alternatively, the actual image must be reduced to a smaller size by
substitutinq appropiate number of rows and colums by zeros. 1 Store these coefficients in a iile. Let us call tais file as coerf. Note that the available sortware is written for an imaqe size of (128x128) and an filter size of (17×17). The software can be modified to include other sizes of the iilter kernel.
2. Use the proqram SClCOF to achieve a proper scaling factor and multiply the coefficients with this scaling factor so tidt the NTT of the coefficients is represented by $12-$ bits or less.
3. Use the proyram NFCOEF to find the NTT or the coefficients using the moduli 62 and 63 and store the output in a file, say NTTCOF.
4. Use the proyram confil to do the following:
a. rransmit the imaqe to the filter
D. Pransmit the NIT of coeffacients to the falter
c. Receive the filtered imaqe arter processing
5. Jse the proqran dSpsimg to display tae oriqinal and the filtered imaqe on the aydin Graphic terminal. We have combined all these steps in a sinqle Command Pile "filter" and a new user can simply type the following on the console (when in FILTER directory) to use the convolver:
```
ISM> FILTER I:LAGE CCEFF OUTPUT <cr>
```

Where IMAGE is the name of the imaqe to be filtered, CORPF is the coefficient-file name, and OUTPUT is the output file name in wich the filtered imaqe is stored. The processing takes place as described above. The software referred above is available in directory 'filfer' on the SEL hard-disk, and the hardcopy of the proqrams is available in [29].

Chapter V

FILTBRING APPLICATIOAS AMD PILTERIMG OP LARGB aATRICBS

5. 1 INTRODUCTIOA

The filtering of Imayes and other inherently two-dimensional siqnals is an important part of imaqe processiny and pattern recoqnition. In most applications, filterinq is used ror pre-processing of the imayes from which certain Leatures have to be extracted. For example, by the use of a boundary enhancement filter, certain reqions in an imaqe can be isolated and the features such as area, centroid, etc. can be calculated for that particular reqion. Siailarly, in tine case of detection or a falty part in an auto-assembly line, a template matcninq alqorithm is applied to the filtered imaqe. Tine filteriny of the images, thus, plays an important role in inaqe processinq and pattern recognition. In this cnapter, we lllustrate the application of filtering on test laaqes. We present a smple and approximate frequency domain designing tecnnique for Finite Impulse kesponse filters. We also obtain filtered imayes usiny the same filter kernel by three jifferent sortware algorithms, namely, direct convolution, filtering using tie frt and filterinq using the PNTT. Next, we describe the filterinq of
images of dimensions larger than the basic block size in a limited memory system. This block-mode filterinq alqorithm is discussed in detail. The choice of the basic block size difects the filteriny speed and theoretical comparisons for this trade-off are presented.

5.2 FILTERING USING TRABSPORE TECHYIQQES

The uie of transform domain techniques in diqital filterinq is attractive only when a fast alqorithm is employed to compute tae transiora. The transform must have the cyclic Convolution property (CCP). Tine use of transrorm technique for filteriny involves tae following steps:

1. Taking the transform of the qiven sequence

$$
T: X(k 1, k 2)=\sum \sum x(n 1, n 2) \cdot\{\omega * *(n 1 k 1+n 2 k 2)\}
$$

2. Taking the transiorm of the qiven tilter-coefficients, $h(n 1, n 2)-\infty \quad H(k 1, k 2)$.
3. Multiplyiny the two transiorm domain representations point by polnt to octain

$$
\begin{equation*}
Y(k 1, k 2)=X(k 1, k 2) \cdot H(k 1, k 2) \tag{5.2}
\end{equation*}
$$

4. Taking the inverse transtorm of the result $Y(k 1, k 2)$ to odtain the filtered output

$$
T^{-1}: Y(n 1, n 2)=\frac{1 \Sigma}{N^{2}} \Sigma Y(k 1, k 2) \cdot\left\{N^{* *}(-n 1 \times 1-n 2 k 2)\right\}
$$

The sequence lenutins in above calculdtions must je larqe enouqh to avoid wrap around error (sec-2.1). We eaploy a filter kernel of (17x17) size on tne pre-stored imayes or (128×128) and obtain the results of processing through the convolver.

5.3 A SIAPLE TBCHMIOUB TO DESIGE 2D-FIR PILTBES

In this section we consider a technique to desiqn siaple $F I R$ filters in the requency domain. The desiqn assumes "brick-wall" type filters with a cut-off based upon the requirement of transmitted or rejected siqnal energy [17]. Whenever a time domain representation is required we find this by inverting the frequency domain desiqn. We stress here that this would only qive an approximate filter kernel (truncated to a certain size). We choose such an appoach beCause the purpose in this thesis is to show the application of filteriny rataer than desiqn techniques.

5.3.1 deternination of cut-off based on epergy transaissions [16]

It is possible to compute the Enerqy content of an imaqe by takinq its rourier transform, and computinq the maqaitude square or tae coefficients,

$$
\begin{aligned}
E(k 1, k 2) & =1 \mathbb{K}(k 1, k 2) 1 * * 2 \\
& \left.=\int \operatorname{Ze}\{x\}\right] * * 2+\int \operatorname{Im}\{x\} \mid * * 2
\end{aligned}
$$

so that the total enerqy (Parseval's theorem) would be proportional to

$$
\begin{equation*}
E t=\sum_{k_{1}} \sum_{k_{2}} E(k 1, k 2) \tag{5.5}
\end{equation*}
$$

Assuming that the transform has been centered, a circle of radius r with oriqin at the center of the frequency square encloses $q(\%)$ or total enerqy, where

$$
\begin{equation*}
4(x)=100 *\left[\sum_{k_{1}} \sum_{k_{2}} E(k 1, k 2) / E t\right] \tag{5.6}
\end{equation*}
$$

and the summation is taken over the values of (k1,k2) which lie inside, or on the boundary of the circle.

Conversely, if the desired amount of filtered enerqy (pass or stop) is specified, it is possible to determine the radius r wich encompasses that amount of enerqy. This radius can be used as the cut-ofi frequency to desiqn a standard filter. Me define a standard filter such as a Butterworth Hiqi pass filter (sec-5.3.3) through an explicit mathematical expression. The time domain representation is obtanned by takiuy the inverse fourier transtion of tne coefficients. This filter is truncated to a reasonable size, which introduces some error (Gibb's oscillation). Por the purpose of illustratiny the use of the filter, this error is acceptable.

Also, in all Cases described below, the filters are functions which affect the correspondinq real and imaqinary components of the pourier transform in exactly tne same manner. Such filters are referred to as Zero Phase Shift filters because they do not alter the phase of the transform.

5.3.2 Low Pass Filtering

Edges and other sharp transitions (such as noise) in the qrey levels of an contribute heavily to the hiqn frequency content of its fourier transform. It follows, therefore, that blurriny can ke achieved via the irequency domain oy attenuating a speciried ranqe of hiqn-frequency compo-
nents in the transform of a qiven imaqe (passing the low frequency components). The tilter coerficients can be obtained by speciryang the cut-off and the nature of the curve (Piq.5-1) to fit in one of the followinq standard filters:

1. Ideal Low pass

$$
H(k 1, k 2)= \begin{cases}1 & \text { if } D(k 1, k 2) \leqslant D o \\ 0 & \text { if } D(k 1, k 2)>\text { Do }(5.7)\end{cases}
$$

where Do is the distance from the center to cut-off frequency locus, $D(k 1, k 2)$ is the distance from point (ki,k2) to the oriqin of the frequency plane, i.e.,
$D(k 1, k 2)=\sqrt{\{k 1 * * 2+k 2 * * 2\}}$
This is a rilter with sharp cut-off.
The sharp cut-off frequencies of an ideal lowpass filter cannot be realized with electronic components, although they can be simulated The caoice or a sadil Do results in pronounced blurring and rinuinq.
2. Butterworth Low Pass

1

$$
\begin{align*}
\mathrm{H}(\mathrm{k} 1, \mathrm{k} 2)= & 1 \tag{5.8}\\
& 1+0.414 *(\mathrm{D}(\mathrm{k} 1, k 2) / \mathrm{Do} 7 * * 2 \mathrm{n}
\end{align*}
$$

were n is the order of the filter, and the cut-off 15 derined at $(1 / \sqrt{2})$ or the maximum value of H(k1,k2). This is a smootn filter.

Fig. (5.1) Radial Cross-section of Low Pass Filters
(a) Ideal
(b) Butterworth
(c) Exponential

Fig. (5.2) Radial Cross-Section of High Pass Filters
(a) Ideal
(b) Butterworth
(c) Exponential
3. Exponential Low Pass

$$
H(k 1, k 2)=\exp [-\{(D(k 1, k 2) / D o\} * * n] \quad\{5.8 a)
$$

This is smooth filter and the n controls the rate of decay of the exponential function.

5.3.3 Hiqh Pass Filtering

Since edqes and other dbrupt chanqes in qray levels are associated with hifh-frequency components, imaqe sharpening can be aciieved in the rrequency domain by a hiqh pass filterinq (fiq.S-2). The methcd of qenerating the coefficients for a hiqh pass tilter is same as in the case of low-pass fllterinq:

1. Ideal Hiqn Pass

$$
H(k 1, k 2)= \begin{cases}0 & \text { if } D(k 1, k 2) \leqslant D o \tag{5.9}\\ 1 & \text { if } D(k 1, k 2)>\text { Do }\end{cases}
$$

2. Butterworta diqh pass

1

$$
\begin{aligned}
& 1+0.414 *[D O / D(k 1, k 2)]^{* * 2 n}
\end{aligned}
$$

3. Exponential High pass

$$
\begin{equation*}
t i(k 1, k 2)=\exp [-\{D O / D(k 1, k 2)\} * * n] \tag{5.10a}
\end{equation*}
$$

Where the symbols have tne same meaning as in the last section.

5.3.4 Hono-norphic Filtering

The illuminatıon-rerlectance model [16] of an imaqe can be made the basis for a frequency-domain procedure that is useful for improving the appearance of an image by simultaneous briqitness ranqe compression and contrast eninancement. The illumination component of an image is qenerally characterized by slow spatial variations. The reflectance component, on the other hand, tends to vary abruptly, particularly at the junctions of very dissiailar objects. These characteristics lead to associate [171 the low frequencies of the fourier transiorm of the alqorithm of an imaqe yith lllumination, and the high rrequencies with reflectance. Althouqh this is d rouqh approximation, it can be used to dovantaqe in imaqe enhancement.

The cross-section of the filter function for use in homomorphic filterıng is shown in fiq-(5.3). Tne mathematical characterization of the alqorithm is as follows:

1. Find the natural loqarithm of the input imaqe
2. Compute the transfora of the imaqe
3. Multiply the transform with the filter coefficients
4. Compute the inverse transionm
5. Find the exponential of the result.

Fig. (5.3) Cross-section of a circularly symmetric filter function for use in homomorphic filtering.

Fig. (5.4) The convolver hardware unit.

5.3.5 Examples of the Inage Filtering

The examples of Image filtering included in this thesis are obtained by the application of the following filters on the oriqinal imaqes saown in fiq-(5.5) to fiq-(5.8):

1. Fiq-(5.9) to fiy-(5.11) have been obtained by the use of a Butterworth hiqh pass filter.
2. Fiq-(5.12) nas been obtained usinq the filter coefficients or a high fass filter availaole in the department [29].
3. Fiy-(5.13) to Fig-(5.15) show the result obtained by applyinq the same filter coefficients throuqh the use of the convolver, the fitt alqoritam in software and the fFT alyorithm in sortware.
4. Fiq-(5.16) to Fiq-(5.18) show the result of low-pass filtering oy the application of a Buttervorth low pass filter. These fiqures also include the filtering obtained throuyb the use of other alqorithms in softuare.
5. Piq-(5.19) shows the result obtained using a Homomorphic filter whose transfer function is shown in Fiq-(5.3) ; $\mathrm{R} 1=1.2, \mathrm{~B} 2=0.5$.

Fig. (5.5) Image I.

Fig. (5.7) Image 3.

Fig. (5.8) Image 4

Fig. (5.9)

Fig. (5.1I)
Fig. (5.10)

Fig. (5.12)

Fig. (5.9) to Fig. (5.12) Processed Images (High Pass Filtering)

Fig. (5.13)

Fig. (5.14)

Fig. (5.15)

Eig. (5.13) to Fig. (5.15) Original [Right top] and Processed Images (High Pass Filtering) through the use of the convolver [Left top], FNTT algorithm in software [Right bottom] and FFT algorithm in software [Left bottom].

Fig. (5.16)

Fig. (5.18)

Fig. (5.17)

Fig. (5.19)

Fig. (5.16) to Fig. (5.18) Original [Right top] and Processed Images (Low Pass Filtering) through the use of the convolver [Ieft top], FNTT algorithm in software [Right bottom], and FET algorithm in software [Left bottom].

Fig. (5.19) Application of a filter function for use in homomorphic filtering as specified in Fig. (5.3).

The time of processing of an imaqe of size (128×128) with a filter kernel of size (17x17) by three different methods (applied throuqh software) is qiven in Table-(5.1).

Table- (5.1) approximate Computation Time * usiny different metnods of convolution in softyare for imaqe-size of (128×128), 256 levels.

5.4 FILTERING OF IBAGBS OP LARGER DIMEBSIONS

Next we consider the filtering of larqer imaqes. A common problem in slynal filteriny is that of rilterinq a siqnal of very long or indefinite lenqth by an impulse response that is of a short lenyth. For image processinq in a limited main memory syster, such as a mini-computer, it is necessary to employ special teciniques to iuprove the computaional efficiency when the whole imaqe to de transformed can not be accomodated in the main menory. A straignt forward method is to store the data on a disk, find the trans-
form of rows, transpose the result and then find the transform of columns using the same computational element. Since the processinq is performed takinq one drray at a time from the disk sucin method is I / O bound and is very slow owing to the relatively slow disk access time. A nore efficient method is to section the input imaqe into smaller blocks that can be accomodated in the memory of the computational element and then either use the overlap-save or overlap-add technique. This method, referred to as block-mode filtering [18], provides a very erficient means to compute tyo-dimensional convolutions wen the dimensions of the filter kernel are small. An alteraate.method has recently been proposed by Kraats and Venetsanopoulos $[191$ that is computationally more eificient in certain instances, specially when the filter kernel size is comparable to the basic bluck of the input data. Since almost all cases of two-dimensional filterinq employ a much smaller filter kernel ($N \gg 1$), block-mode filterinq is preferred.

5.5. BLOCK-MODE FILTERING

The two-dimensional convolution is defined (eqn.2-1) as

$$
\begin{equation*}
y(j, k)=\sum_{n=0}^{j} \sum_{m=0}^{j} h(j-m, k-n) f(m, n) \tag{5.12}
\end{equation*}
$$

We begin by proving a fundamental property of-two-dimensional
transforms and convolutions.
Lemma. Given two matrices $f(m, n)$ and $h(j, k)$, both of dimensions D_{1} by D_{2} let the transforms of these matrices be

$$
\begin{aligned}
& F(x, s) \Longrightarrow \sum_{n=0}^{D_{2}-1} \sum_{m=0}^{D_{1}-1} f(m, n) \exp \left[-i 2 \pi\left(\frac{r m}{D_{1}}+\frac{s n}{D_{2}}\right)\right] . \\
& H(r, s)=\sum_{k=0}^{D_{2}-1} \sum_{j=0}^{D_{1}-1} h(j, k) \exp \left[-i 2 \pi\left(\frac{r j}{D_{1}}+\frac{s k}{D_{2}}\right)\right] .
\end{aligned}
$$

Then the inverse transform of the product of these transforms, that is $y(j, k)=\frac{1}{D_{1} D_{2}} \sum_{s=0}^{D_{2}-1} \sum_{j=0}^{D_{1}-1} H(r, s) F(r, s) \exp \left[i 2 \pi\left(\frac{r j}{D_{1}}+\frac{s k}{D_{2}}\right)\right]$.
is equivalent to the convolution form

$$
\begin{align*}
y(j, k)= & \sum_{n=0}^{k} \sum_{m=0}^{j} h(j-m, k-n) f(m, n) \\
& \cdot D_{2} \bar{\sum}_{n=k+1}^{1} D_{i} \sum_{m=j+1}^{-1} h\left(j+D_{1}-m, k+D_{2}-n\right) f(m, n)
\end{align*}
$$

PROOF. The proof is similar to the proof for $1-D$ casks - We substitute for $H(r, s)$ and $F(r, s)$ in the relation defining $y(j, k)$ and have

$$
\begin{aligned}
& y(j, k)=\sum_{q=0}^{D_{2}^{-1}} \sum_{p=0}^{D_{1}^{-1}} \sum_{n=0}^{D_{2}^{-1}} \sum_{m=0}^{D_{1}^{-1}} h(p, 1) f(m, n) \\
& x \frac{1}{D_{1} D_{2}} \sum_{s=0}^{D_{2}^{-1}} \sum_{r=0}^{D_{1}^{-1}} \exp \left[i 2 \pi\left[\frac{r(j-m-p)}{s(k-n-q)}\right] .\right.
\end{aligned}
$$

However, the double sum on the exponential can be written as

$$
\frac{1}{D_{1} D_{2}} \sum_{r=0}^{D_{1}^{-1}} \exp \left(i .2 \pi \frac{r(j-m-p)}{D_{1}}\right)_{s=0}^{D_{2}^{-1}} \exp \left(i 2 \pi \frac{s(k-n-q)}{D_{2}}\right) .
$$

This is a product of two finite sums. Both sums have the orthogonality property demonstrated by Helms [22], that is,

$$
\begin{aligned}
& \sum_{r=0}^{D_{1}^{-1}} \exp \left(i 2 \pi \frac{r(j-m-p)}{D_{1}}\right)= \begin{cases}D_{1} & \text { if } j-m-p=t D_{1} \\
0 & \text { otherwise, }\end{cases} \\
& \sum_{s=0}^{D_{2}^{-1}} \exp \left(i 2 \pi \frac{s(k-n-q)}{D_{2}}\right)= \begin{cases}D_{2} & \text { if } k-n-q=t D_{2} \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

All the indices in the first summation above are defined over [0,D1-1] ; all the indices in the second summation are defined over [0,02-11. As a result, in the two summations we see that $t=0$ or $t=-1$ are the only possible values of t. As a result we can use ($j-\mathbb{m}-p=0$) or ($i-\mathbb{m}-p)=-D 1$ to eliminate the summation on p in Eqn. (5-14): we can also use $(k-n-q)=0$ or $(k-n-q)=-D 2$ to eliminate the summation on q in Eqn. (5-14). Eqn. (5-13) is the result, and the theorem is proved.

Eqn. (5-13) shows a convolution summation with two terms. The first tera on the riqht-hand side is the desired convolution in the form of Eqn. (5-12). The second term is the so-called wraparound-error term, the term that results from the inherent periodicity in the use or discrete fourier transforms. The problem of convolution with discrete Fourier transforms is to force the wraparound error to be zero. The problem of block-mode filtering is to decompose the convolution of Eqn. (5-13) into a larye number of smaller convolutions.

5.6 BLOCK-MODE PILTERING ALGORITHE

The following is the algoritha for block mode filterinq.

1. Choose two numbers D1> J and D2> K.
2. The matrix $n(i, k)$ is extended by the addition of rows and columns of zeros to form a matrix hc(i,k), derined as

$$
h \subset(j, k)= \begin{cases}h(j, k) & 0<j, k<j-1, k-1 \\ 0 & J, k<j, k<D 1-1, D 2-1\end{cases}
$$

3. Let $b(\mathbb{I}, \mathrm{n})$ be a block that is composed of the first D1 rows and D2 columns of $L(\mathbb{m}, n)$. that is,

$$
b(\mathbb{I}, n)=f(m, n) \text { for } 0<a, n<D 1-1, D 2-1
$$

4. Compute the transforms of size D1 by D2 of hc (t. k) and $b(\mathbb{L}, \mathrm{n})$. Porim the product of the transforas and then compute the inverse transform of the products. Call this inverse transform a matrix c(f,k) of size D1 by D2.
5. Part of $c(j, k)$, contains the wrapround error. We save as valid data the sumatrix of $c(i, k)$ defined by the range or indices

$$
j=J-1, J, \ldots, 01-1
$$

$$
k=k-1, K, \ldots, 02-1 . \quad \text { This is a subma- }
$$ trix of size $\mathrm{D} 1-\mathrm{J}+1$ by $\mathrm{D} 2-\mathrm{K}+1$. The rest of $\mathrm{c}(\mathrm{j}, \mathrm{k})$ is discarded.

6. The procedure now splits into two alternative choices for the construction or the next block.

Form a new block b(m,n) from $f(\mathbb{m}, \mathrm{n})$ of size D 1 by $D 2$ and such that the first $J-1$ rows of the new block are the same as the last J-1 rows of the old block. That is, row D1-J+1 of the old block is row 0 of the new block, row $D 1-J+2$ of the old block is row 1 of the new block,
and so on; or,

Fig. (5.21) Construction of Blocks in Black-Mode Filtering Algorithm.

Fora a new block $b(m, n)$ fron $f(m, n)$ of size $D 1$ by $D 2$ and such that the first $K-1$ colunns of the new block are the same as the last $K-1$ columns of the old block. That is, column $D 2-K+1$ of the old block is column 0 of tae ney block, column $D 2-K+2$ of the old block is column 1 of the new block, and so on.
7. Repeat steps 4 through 6 until either one of the following conditions arises.

Rov M-1 of the picture $f(m, n)$ is included in the new block. Add rows of zeros to the new block, if necessary, to make it of size $D 1$ by $D 2$ and repeat steps 4 tarouqn o. Now discard the first D2-K+1 columns of the picture $\bar{f}(\mathbb{m}, n)$ and rederine the column indices of the picture by subtractinq $D 2-K+1$ fron the column index n of $f(\mathbb{I}, n)$. This defines a nev picture oi size M by $N-D 2+K-1$. Go back to step 3 and proceed. Or,

Column $N-1$ of the picture $(m, n) \quad 2 s$ included in the ney block. Add columns of zeros to the ney block, if necessary, to make it of size D1 by D2 and repeat steps 4 throuqn b. Now discard the first D1-J+1 rows of the plcture $f(\mathbb{I}, \mathrm{n})$ and redefine the row indices of the picture by subtractinq D1-J+1 from the row ladex m of $f(\mathbb{R}, \mathrm{n})$. Tnis defines a new picture of size $y-D 1+J-1$ by N. Go back to step 3 and proceed.
8. Steps 3 throuqh 7 are repeated as directed until the entire picture has been processed with the overlappinq blocks. The juxtaposition of all the subwatrices saved in step 5, where the juxtaposition is formed in the same sequence as the construction of the overlapping blocks, constitutes the filtered picture.

5.6.1 Hrap-around Error Considergtion for First Block

It the first $J-1$ rows and the first $K-1$ columns of the picture contain important informaticn that must be filtered, then the picture must be enlarqed by 'padding' so that the discard operations of step 5 would not result in discardinq inrormation that it was desired to filter. For example, a new picture can be constructed by the following procedure. Let $f(m, n)$ de tae extended (or padded) picture of size $J-1+M$ by $K-1+N$. The picture fc(m,H) is constructed as

$$
\operatorname{Ic}(m, n)= \begin{cases}C & 0<m, n<J-2, K-2 \\ f(m, n) & J-1, K-1<m, n<J-1+M, K-1+N\end{cases}
$$

where C is any constant. This extended picture is now used in the eicht-step procedure above, that is, whenever $f(m, n)$ is stated above, we repluce it by tc (m, n). Similarly, we yould replace M and N in the eiqht steps above by $M^{\prime}=J-1+M$ and $N^{\prime}=K-1+N$, respectively.

5.6.2 Number of Blocks to be Processed

Because the blocks must be overlapped, the picture is not processed in blocks of size D1 by D2 . Successive blocks are overlapped in both rows and colums. from tae construction in step 6a, 6b, and 7a, 70, we can see that the total subset of the picture that is processed on any one iteration throuqh the eight steps is a submatrix of size D1-J+1 by D2-K+1. Taerefore, the total number of blocks to be processed is qiven by

${ }^{14}$ * N

[a] =

$$
\begin{equation*}
(D 1-J+1) *(D 2-K+1) \tag{5.15}
\end{equation*}
$$

The symbol Lal stands for the smallest inteqer qreater than a. We use the smallest inteqer yreater than the expression siown because a iraction of a block must be processed as one full block by paudinq out the fractional block (step 7a or 7b). If we had used an extended picture, as discussed in the previous section, then we would replace M and N in Eq. (5) by MP=D1-J+1+M and $\mathrm{N}^{\prime}=\mathrm{D} 2-\mathrm{K}+1+\mathrm{N}$.

5.7 TIGING CONSIDERATIO甘 IN PROCESSING LABGER IHAGES

The number of arithmetic operations required in the processinq of eacn olock is proportional to the number of computation involved in the 2-D transriorm domain technique of filtering. The total time for processing depends upon the number of blocks to be processeu multiplied by tiae required
for each blocx-processing. Also the number of operations required depends upon the radix of the alqorithm and the nature of the butterfly.

We derived relations between a 2-D-radix-2 and a 1-D-radix-2 transform alqoritim in sec-(3.8) andit was shown that a saving of approximately 25% occurs when the former implementation is used. The derivation in this section are for a 1-D-radix-2 structure and the correction factor can be applied to ortain the computational efficiency with respect to other butterily structures.

Assuminq a 1-D-radix-2 dlqorithm for fast transforms, a sequence of $D 1$ points.can be transformed with a total of

$$
\begin{array}{ll}
N(M)=(D 1 / 2)-104 \text { D1 } & \text { multiplications } \\
N(A)=(3 . D 1 / 2) .10 q \text { D1 } & \text { additions }
\end{array}
$$

were multiplications and additions are complex when the frt structure is considered and are of real type when the fNTT structure is considered for a single modulus. Use can be made or the ract tadt the data are real, and taus in the use of the fet structure a 50 percent saving in time can be obtained. Tne transrorm of an imaqe or size dixd2 requires,

$$
\begin{aligned}
& N(B)=(D 1 . D 2 / 2) \cdot\{104 D 1+\operatorname{loq} D 2\} \\
& N(A)=(3 . D 1 . D 2 / 2) \cdot\{10 Q D 1+\operatorname{loq} D 2\}
\end{aligned}
$$

since for convolution results, there are two transforms instaqe) and one pairwise product of matrices (or transform of coerfs with imaqe transform), total number of computation woula be

$$
N C(M)=D 1 . D 2 \cdot[104 D 1+104 D 2+1\}
$$

$$
\operatorname{Nc}(A)=3 . D 1 . D 2 \cdot\{10 q D 1+10 q D 2+1 / 3\}
$$

If ($t 1$) is the time for an addition and ($t 2$) is the time for a multiplication then the total time for processing is,

$$
t(b)=U C(1) \cdot(t 2)+O C(A) \cdot(t 1)
$$

and since there are B such blocks, the total convolution time is,

$$
\begin{align*}
T(\operatorname{Con} V)= & B \cdot t(b) \\
= & D 1 \cdot D 2 \cdot \Gamma(\operatorname{loq} D 1+\operatorname{loq} D 2+1) \cdot(t 2) \\
& +3 \cdot(\operatorname{loq} D 1+10 q D 2+1 / 3) \cdot(t 1) 1 \\
& \quad * \operatorname{Intq}[(M-N) /(D 1-J+1) \cdot(D 2-K+1)] \tag{5.16}
\end{align*}
$$

This estimation only.considers the computation time. The time required in retching the data is not taken into account in this calculation.

It can be seen from the relation that it is possible to vary $D 1$ and $D \ddot{\sim}$ such that total filtering time may be controlled. However D1 and D2 must be integer power of 2 . Finally, D1 and D2 must de caosen suca that matrix (D1xD2) fits into computer memory as a basic block. The best way to choose D1 and D2 is then to evaluate Eqn. (5. 16) for various combinations and to choose (D1×D2) such that $\Gamma(C O n v)$. 15 minimized subject to the condition tnat the data fits into some allowable amount of computer memory. Such a tabulation is presented in Table-(5.3) for (t1)=1 usec.. (t2) $=5$ usec. . $M=N=\left(25 \sigma^{\circ}\right.$ and 1024), and $J=K=(17$ and 25). It is observed, as expected, tiat the laryer the size ($D 1 \times D 2$), the smaller the time $T(c o n v)$.

> Table-(5. 3) Processing Time by the use of different size of Basic Block (ti ne in sec) $H=N=1024, J=K=25, t 1=1$ usec, $t 2=5$ usec

D2						
D1	32	64	128	256	512	1024
32	1442	630	526	509	519	541
64	630	274	227	218	221	230
128	526	227	187	179	181	187
256	509	218	179	171	172	177
512	519	221	181	172	173	177
1024	541	230	187	177	178	182

Table-(5.3b) processing Time by use of Dirferent size of Basic Block (time in sec) $M=N=256, \mathrm{~J}=\mathrm{K}=17, \mathrm{t} 1=1 \mathrm{usec}, \mathrm{t} 2=5 \mathrm{usec}$

5.8 COACLUSIO甘S

In tris chapter, we have tirst described a simple aud approximate method of $2-D$ Finite Impulse Response filter desiyn. The test iqayes have been processed by four different methods to obtain inaqe smoothing and imaqe enhancemnt. The steps in the use of block- mode filtering alyorithm, used for filterinq of larqe imayes, have been described and the processing time for typical cases have been tabulated with reference to different sizes or the basic processing block.

Chapter VI

CONCLUSIONS

The objective of the resedrch work described in this tinesis was to present an elaborate explaination of the theory, harduare implementation, use and analysis of a twodimensional diqital rilter. Tae filter hardware utilizes a fast number taeoretic transiorm alqorithm for high speed processinq of two-dimensional siquals. The main area of application of this filter is in Imaqe processiny.

The conclusions of this study are summarised oelov:

1. Desiqn considerations of a two-dinensional convolution filter nas veen described. This includes the following:
a) Tne theoretical backyround necessary to understand the arcnitecture or the convolver (topics of interests from the Residue Number System, the Number Theoretic Transform, Fast alqoritha for the NTT, 2D-Ordered-Input- Ordered-Output NTT alqorithm for butterfly $1 a p l e m e n t a t i o n) ~ h a s ~ b e e n ~ d e s c r i b e d ~ i n ~ d e-~$ tail.
j) The nariware implementation of the filter has been descrided. particular attention has been paid to the iaplementation of the butterfly unit.
c) The functional detail of each of the units in the convolver has been described.
d) A systematic way to write the interfacing softuare has been described taking the example of the Hiqh Speed Device (HSD) Interface to the mini-computer $S E L-32 / 27$. Also, the user has deen referred to the availade softuare to obtain the processinq throuyn the filter.
2. The steps in the use of the convolver filter has been described. A new user can desiqn his own 2-D FIR filter, store the coelficients in a file and can operate this filter ovér any imaqe of size (128×128) prestored in a file. Further all the steps in use of the convolver have been combined together so that a new user can use the filter throuqh a simple comand in the format (in fil TEE directory):
tSM> FLLTEU IMAGE COEPF OUTPOT <ci>
where IMAGE is input imaqe file, COEFF is the coefficient file and OUTPUT is the output file.

The software has been written and modified to make the convolver a user friendly device. A airectory of the available software is included in the appendix. The use of the convolver has been iilustrated through various examples.
3. Various efficiency analysis on the convolver have been presented. Tinis includes the following:
(a) 1-D-radix-2 and 2-D-radix-2 butterflies have been compared in terms of their computation requirements
(b) The memory requirement in multiplication by the sub-modular look-up table approach has been calculated.
(c) The Chinese Remainder Theorem and the Bixed Radix Conversion method for implementation of a residue to Binary Converter have been compared in terms of their hardware requirements.
4.
(a) Timinq dlaqrams to illustrate the working of the outterily in a pipeline implementation have been prepared.
(b) Tnrougaput rates obtainable by the use of serial sequential and cascade processiny (OICO-alqorithm) were compared. The processinq speed of the convolver has also been calculated.
(c) Two destyn scnemes to improve the speed of filtering have been proposed.
(d) A table of main IC's and their usage in the convolver has been prepared.
(a) A simple and approximate technique for desiqn of a 2-D Finite Impulse Eesponse filter has been discussed.
(D) The block-mode filterinq alqorithm used for processing of larqe matrixes has been described in detail. Theoretical comparisons are made to illustrate the trade-olf between speed and the size of a basic block when larqe matrixes are filtered throuqh the use of olock-mode algorithm.

In [10] a muiti-dimensional algorithm for computing s s:ax: of unitary transforms is derived, following the development suggesced :n $\{: \%$ 12]. Since tee NTI has the same structure as the DFT, the gereral :scr: $\because a=$ ion [10] can be applied when the transforms are defined. in a ring $\because i M 1$ o: interfers modulo M for a two (or multi-) dimensional array for $\left\{n_{1}\right.$. n_{2}) us size is in each dimension.

$$
F\left(k_{1}, k_{2}\right)=\left|\sum_{n_{1}=0}^{N-1} \sum_{n_{2}=0}^{N-1} f\left(n_{1}, n_{2}\right) \alpha^{\sum_{i=1}^{2} \cdot n_{i} k_{i}}\right|_{M}
$$

where α is the primitive $N^{\text {th }}$ root of unity in $Z(M)$. wien $=$ nio ricments of input and output arrays f, and F are arranged in a lexiconraghical orier, the SITT of eqn. (A.I) can be written as

$$
F=|T \cdot E|_{M}
$$

where T is a $\left(N^{2} \times N^{2}\right)$ matrix performing a Number Theoretic Transformation on the $\left(N^{2} \times 1\right)$ input vector f and yielding a $\left(N^{2} \times 1\right)$ output rector E. The transformation matrix T can be factorized into kronecker products of one-dimensional transformation matrix $T_{N}[10]$ and viç. (A.2) could be written as

$$
F=\left|\left(T_{N} \otimes T_{N}\right) \cdot f\right|_{M}
$$

where θ represents the Kronecker product and T_{N} is of si=e ($N \times$ in) with elements $t_{i j}=\alpha^{i j}$.

When $N=r^{n}$ is a composite number conditions []:az :ion that the transformation matrix T_{N} can further be expressed an :re 'ult of submatrices as,

$$
T_{N}=\prod_{i=1}^{n} \mu_{i}^{(x)} s_{i}^{(r)}
$$

where r is the radix of factorization for T_{N}. When radix $: \leq:=1$ ied, we drop the super-script I to write

$$
\begin{equation*}
\mathrm{T}_{\mathrm{N}} \prod_{i=1}^{n} \mu_{i} s_{i} \tag{1.5}
\end{equation*}
$$

and then eqn. (A.3) is expressed as

$$
\begin{equation*}
F=\left|\left\{\prod_{i=1}^{n} \psi_{i} \quad R_{i}\right) \cdot f\right|_{M} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
& \psi_{i}=\mu_{i} \otimes \mu_{i} \\
& R_{i}=s_{i} \otimes s_{i} \tag{2.7}
\end{align*}
$$

and r, the radix of factorization is implied.
To see what eqn. (A.6) implies, let us define [10] n in-dinensional permutation operator δ_{i} as,

$$
\begin{align*}
& \delta_{i}=q_{i} \otimes q_{i} \\
& q_{i}=I_{r^{n-i}} \otimes p_{r^{i}} \tag{ASS}
\end{align*}
$$

and
where I_{K} denotes the identity matrix of dimension K and P_{K} is the idea! sinuille baser permutation matrix operating on a vector of dimension k. in ctn. (nus) to (A.7), μ_{i} is the weighting or twiddle operator specisyinc = ::t: inlications by the twiddle factors and is given by

$$
\mu_{i}^{(r)}=\mu_{i}=I_{r^{n-i}} \otimes D_{r_{i}}, i=2,3, \ldots, n \quad \text { (ג.9) }
$$

where

$$
D_{N / K}=\text { quasi } \operatorname{diag}\left(I_{N / r k}, I_{k}, L_{2 k}, \ldots, \dot{L}_{(5-1) k 1}\right.
$$

and

$$
I_{m}=\operatorname{aia}\left(0, m, 2 m, \ldots,\left(N / m_{x k-1}\right) m\right)
$$

where an element t of the diagonal matrix L_{m} represents ceto racial element, α^{t}, and $S^{(r)}$ is a pre-weighting r-point transform eporaior given by
where an element of t or T_{r} represents the matrix element, α^{t}.
now

$$
s_{i-1}=s \cdot q_{i} \quad i=2,3, \ldots, n
$$

$$
s_{n}=s
$$

and

$$
\mu_{1}=q_{1}=T_{N}
$$

then for $i \neq 1$

$$
\begin{align*}
& S^{(r)}=S=I_{N / r} \otimes T_{r} \tag{ג.10}
\end{align*}
$$

$$
\begin{align*}
\because s_{i-1} & =s q_{i} \\
& =\left(I_{N / r} \otimes T_{r}\right) q_{i} \\
& =q_{i} q_{i}^{-1}\left(I_{N / r} \otimes T_{r}\right) q_{i} \\
& =q_{i}\left(I_{N / r}{ }^{2} \otimes T_{r} \otimes T_{r}\right) \tag{A.12}
\end{align*}
$$

thus

$$
s_{i-1}=q_{i} s^{\prime} \quad-\quad i=2,3, \ldots, n
$$

when

$$
\begin{align*}
& s^{\prime}=I_{N / r^{2}} \theta T_{r} \theta I_{r} \\
& \text { and, } \quad R_{i-1}=s_{i-1} \otimes s_{i-1} \quad i=2,3, \ldots, n \\
& =\left(q_{i} s^{\prime}\right) \otimes\left(q_{i} s^{\prime}\right) \\
& =\left(q_{i} \times q_{i}\right)\left(s^{\prime} \otimes s^{\prime}\right) \\
& =\delta_{i} \cdot\left(s^{\prime} 囚 s^{\prime}\right) \quad i=2,3, \ldots, n \tag{A.13}\\
& R_{n}=s_{n} \theta s_{n} \\
& =s 0 \mathrm{~s} \tag{A.14}
\end{align*}
$$

which shows that the operator $R_{i-1}(i \neq 1)$ always operates over data which are N / r^{2} words apart. In the first iteration, however, the operator R_{n} operates on data which are N / r words apart.

Appendix B

PROCEDURE TO USE AN HSD DBVICE ON SEL MIMI-COBPUTER

EXAMPLE: NTT-Convolver
The two-dimensional NTT-Convolution filter is interfaced with tae SEL-32/27 Minl-computer througin a Hiqh Speed Data (HSD) interface. The data I / O rate through the use of the HSD are considerably hiqh (1.2 usec/ 32-bit word) and the interiacing procedure is dirferent than that of an RS-232 port.

The HSD handler is a software component which frovides qeneral device support for user devices connected to MPXbased series- 32 coinputers. The handler design is based on the notion that the $H S D$ (harduare) acts as a controller. The ASD handler provides a software interiace between MPX-32 rasks and tae iSD. Tae $I / 0$ requests could be accepted in either of two foraats:
a) Pile Control Block (FCB) Format
b) Startio format

FCB Format

The FCB interiace is desiqned to perait a device command and/or a data transfer to be initialized as a result of a user request. An FCB is created with the address of data
and the transfer count is mentioned in the FCB. EXPANDED PCB nust be used and such could be done usinq M. DPCBE in-built subroutine. A call is qiven to IOCS H. EXEC module in form of 'Service Call (SVC)'. The handler constructs first constructs loqical IOCL, takes care of crossinq of map blocks and then converts then to physical IOCL. An exa@ple is illustrated below:

Making an $F C B$ Format I / O request to $H S D$ handler

> EXECUTE ASSEMBLE (in assembly lanquaqe)

FCB to start at word boundary
M. DFCBE HSDFCB,NAGE, O, XABRAY, .,NWT, DFI, NMNWT, ERNWT

LA 1, HSDFCB Load address of label in Reg-1
S®C 1, X'nn' Service call number

where
HSDFCB is the ldoel yiven to expanded FCB
NAME is the Loqical File Code (L.FC) to wnich I/O
is to be performed
XAREAY is tne name or data array
NiTf....etc are the availdable options for NONAIT, EREOR PROCESSING...e

STARTIO Format

In this format the user can create his oun IOCL by means of data statements. Information can be stored into these IOCL's later by separate instructions. Usinq his own IOCL, the user creates an PCB and uses EXECOTE CHANNEL PROGRAM format for this FCB. The ddaress of IOCL is yiven as input in the FCB. A STARTIO nas to be issued then to request Service Call. An illustrative example is qiven below:

EXECOTE ASSEMBLB

```
IOCL GEN 8/X'A2',8/X'30',16/0 (1010 0010 0011 C000 00....)
    GEN 32/T(DATA)
    datad 0
....-.-...
BOUND 4
H. FCBEXP HFCB,NAME,IOCL,O,.,.,.EEROR
LA 1,HPCB Load add. of HFCB
SVC 1,X'25' Channel prcqram no.25 is for EXECUTE
                            CHANNEL PFOGGAM Request of the Handler.
```

These calls also can be made usinq cortuan statements 'CALL H. IOCS, n ' vaere n stands for the operation process number.

```
A Sample procedure for Data-transfer between
    SEL and Convolver
```

The various possible transfers are :

1. Transfer of NTT of Filter Coefficients to the Convolver
2. Transier of Imaye data
3. Transier of Command
4. Transfer of Filtered imaqe or Camera input from Convolver to sel

We will describe the atove transfer and tne handler directives. These interfacing proqrams have been written in Assembly Lanquaqe.

1-TRANSFER OP NTT OP PILTER COEPFICIEMTS

It may be noted that the filter coefficients are multiplied by a proper scaling factor and are made inteqers. Tue NTT of the filter coeff. is taken and is reduced to modulo 62 and 63 (6-bits each) and a 12-bit word for each moduli (total 24-bit) is sent to Coefificient Memory of the Filter throuqh the subroutine LDCOEF. The following is the desciption where a word of 32 -bit (with \quad-MSBs as zero) is sent to the convolver.

CALL LDCOEF(IDAT,IER1,IER2,IOCM)
Where LDAT is name of the Data-array
IER1 is the status of the handler posted in FCB
IER2 is the status of device posted by handler in IOCl

IOCM is tae parameter to indicate I / O operation conpletion

The IOCL used for this purpose is qiven as follows:

EXBCUTE ASSEMBLE
IOCL GEN 8/x'A2', 8/x'30', 16/0
GEN 32/M (DATA)
DATAD 0
GEN 8/x'02',8/x'20'.16/x'4000'
GEN 32/0
DATAD 0
GEN $8 / x^{\prime} A 8^{\prime}, 8 / x^{\prime} 00^{\prime}, 16 / 0$
GBN $32 / \mathrm{H}$ (DATA)
Datad 0
where
HSD Command 'A2' means INPUT TRANSFER , DEVICE STATUS REQUEST
and COMMAND CHAIN
UDD Comand 30^{\prime} means CLEAE $A A I N$ COUNTER OF PILTER
GEN 32/W(DATA) is to qenerate dumay data address
HSD Command '02' means OUTPOT TRANSFER and COMMAND CHAIN
UDD command '20' means luad COEFf. INTO FIlter

HSD command 'A8' means INPUT TRANSPER, DEVICE STATUS REQUEST and INTEFRUPT AFTBR COMPLETED PROCESSING IOC
UDD command ${ }^{\prime} 00$ ' means NOP

2-transfer of rmage to the convolvee
The subroutine used for this purpose is LDIGG and is called as follows:

LDIHG (IDAT, IER1, IER2,IOCM)
the parameters nafe same explaination as above. It may be noticed that the transfer of NTT of Coefis. and that Imaqe data is very much
the same. There are two differences, namely, the number of total words to be transferred is 11000^{\prime} (HEX) i.e. $4 K$ words, and UDD command is ' 10' instead of $^{\prime} 20^{\prime}$ to load the IdAGE in the proper memory location (20^{\prime} describe a fILTER FUNCTION to load COEFfs.). Thus the IOCL would be:

IOCL GEN $d / X^{\prime \prime} A 2^{\prime}, 8 / 1^{1301,16 / 0}$
GEN 32/W (DATA)
DATAD 0
GEN $\quad /$ X' $^{\prime} 02^{\prime} .8 /$ X' $^{\prime \prime} 10^{\prime} .16 / X^{\prime} 10001$
GEN 32/0
DATAD 0
GEN 8/E'AB', 8/X'OU', 16/0
UEN 32/W(DATA)
DATAD 0

This is achieved through the use of subroutine CALL CLSET
which is used for clearing the main counter of the filter and starting the convolver processing and for reading the status of the convolver.

The IUCL posted in this case are similar in part as used for above two data transfer. This time there is no continuous data transfer, rather only the UDD comand transfers

4-thansfer of filtered fatge prum the convolver to sel
The Subroutine used for this purpose is called as CALL STEIMG (IDAT, IER1, IER2,IOCM)
with the parameter descriftion as described above. The IOCL used in this subroutine is as follows:

EXECUTE ASSEMBLE

```
IOCL GEN 8/X'A2',8/X'30',16/0
        GEN 32/id{DATA)
        DATAD 0
        GEN 3/X'82'.8/X'10'.16/X'2000'
        GEN 32/0
        DATAD 0
        GEN 子/X'A8',8/X'OU',16/0
        GEN 32/W(DATA)
        DATAD O
```

 The \(H S D\) and UDD commands are similar as in the previous cases
 with the following differences:
HSD comand '82' means EEAD DATA and COMMAND CHAIN
UDD command '10' means fead filtered Image pron convolver
and the transier count is '2000' (HEX) which is 8 K words.

FILE CONFIL CONTMP ECILUT FILRTD FIITSK FLTSKI

FLRESD GTOPRM HXTOIN INSBLK LOGBOOK NORMAL

NTFLCF
OULPWORD

SCICOF

DESCRIPTION

Program to filter a given image using the NTT convolver.
Program for template matching using the NIT convolver.
Program for error correction and index look-up table.
Program for two dimensional convolution using number theoretic transform. (A simulation of the hardware.l

A separate task for NTT convolution. Can be activated by another task in a multitask environment.

A sample task to activate the task for convolution using NTT convolver.

Program to store the input and output to the butterfly unit at each stage.

Program for reading data from the PROM programmer.
Program for converting hexadecimal values into integer values used in transfer of data from NOVA TO SEL.

Program to insert a blank in the first column used in transfer of data from SEL to NOVA.

This file gives us the name and description of all the programs in the DIR filter.

This program normalizes the output of the convolver between levels 0 and 255.

Program to find the NTT of filter coeffs.
This program filters 256 * 256 image using overlap-save method of convolution and the NTT convolver.

To scale the given filter coeffs. so that no overflow occurs.

APPENDIX (D)

A User Session With the Convolver

A user of the convolver is assumed to be familiar with SEL-32/27 computer and how the programs are executed. An image of size (128×128) with 8-bit representation is assumed to be prestored in SEL computer in Directory "IMAGE". Based on the specific requirement, a two-dimensional filter of relatively smaller kernel (say, 17×17 size) is designed and stored in a file in Directory "FILTER". Let us call the image file as "IMAGEA" and the coefficients file as "COEFFA".

When SEL computer is logged-on it prompts with Task System Manager (TSM). The user must change the directory by executing TAM $>$ DIRE $=$ FILTER \downarrow.

Now the user is in "FILTER" Directory. A program named "FILTER" is a command processing file in this directory. If this command processing file is to be used to obtain the filtered image, one must issue the following command - TSM> FILTER IMAGEA COEFFA OUTPUTA \downarrow

The processing follows the following steps:

1) The filter coefficients are scaled by execution of program "SCLCOF". The input to this program is file "COEFFA" while the output file is "Scoeff".
2) The NTT of the filter coefficients is obtained by the execution of program "NTTCOF". The input to this program is the file "SCOEFF" and the output file is "NTCOEFF".

The files "SCOEFF" and "NTCOEFF" are temporary files and are scratched at the end of their use. One may not need to worry about them.
3) The filtering operation is achieved by executing the program "CONFIL". The files "IMAGEA" will be taken as input image and the file "NTCOEFF" will be taken as the file containing NTT of the filter coefficients. The IMAGE and NTT of coefficients are sent to the convolver, and at the end of processing the filtered image is sent back to computer where it is stored in a file named "OUTPUTA".

The above steps can also be executed in a serial fashion without the use of the command processing file "FILTER". In this case one must be in directory "FILTER". This could be done by executing ISM $>$ DIRE $=$ FILTER 2

One must then create files "SCOEFF" and "NTCOEFF" by issuing the following command.

SM > CREATE SCOFF \downarrow
ISM $>$ CREATE NTCOEFF)
Next the file "COEFF" is assigned as logical file Code $=1$ and the program "SCLCOF" is executed as:

SM $>$ AS $1=$ COEFFA 2
SM $>$ SCLCOF \downarrow
Now, the NTT of the coefficients is obtained by issuing the following command:

TS $>$ NTTCOF 2

The filtering is obtained by execution of program "CONFIL". The file having the image to be filtered and the output file are assigned and filtering command is issued:

ISM $>$ AS 1 TO @ DPI (IMAGE) IMAGE)
ISM $>$ AS $2=$ OUTPUTA \downarrow
SM > CONFIL 2
Note that since the image was stored in "IMAGE" directory (which is different than the current default directory), it was necessary to represent it by @ DPI (IMAGE) IMAGEA where "@ DPI (IMAGE)" lets the computer use "(IMAGE)" Directory. The file "OUTPUTA" is stored in "FILTER" Directory. This file is the filtered output.

The filtered image can be displayed by issuing the
following command:
SM $>$ AS $1=$ OUTPUT)
ISM $>$ DISPIMG 2
The program "DISPIMG" displays an image of size (128x128) on the Aydin Color Monitor. To display the input image, which was assumed to be "IMAGE" directory, the following commands have to be issued:

SM > AS 1 TO @DPI(IMAGE)IMAGEA)
TS > DISPIMG)
As described earlier, the first command lets the computer search the input file in "(IMAGE)" directory. .

BBFERENCRS

1. L.R-Rabiner and B.Gold Theory and Applications of Diqital Signal processingi Prentice-Hall, Englevood Cliffs, New Jersey. 1975
2. A. \quad.Oppenheim and B. . ${ }^{\text {. Schafer }}$ Digital Signal Processing' pretice-Hall Inc., Enqlewood Cliffs, New Jersey, 1974
3. N.S.Szabo and R.I.Tanaka IResidue Arithmetic and its Applications to computer Technolouri Ac-qraw Hill Book Company, New York, 1969
4. A.Peled and B.Liu Dıgital Signal Processingi Johnwiley and Company, New York, 1979
5. G.A.Jullien IImplementation of Multiplication Modulo a Prime Numper, with Applications to Number Theoretic Transforms' IEEE Trans. on Computers, Vol.C-29, pp.89ま-905. Oct 1980
6. M.J.Corinthios 'A Past Fourier rransform Eor gigh Speed Signal Procesingi IEEE Trans. on Computers, Vol.C-20. pp.843-847. A49 1970
7. R.C.Ayaryal and C.S.Burrus INuber Theoretic Transforms to implenent Past Digital Convolution' Proc.IEEE, Vol.63. pp.550-560, April 1975
8. \quad. C.Aqaryal and C.S.Burrus iFast Convolution using Permat Number transtorgs with gpplications to dicital filtering' Leee trans.acous., Speech and Siqn. Proc., Vol.ASSP-22, pp. ©8-97,Apr. 1974
9. J.H. McClellan and C.M. Radar Mumber Theory in Digital Siqnal processingl prentice-Hall Inc.. New Jersey, 1979
10. H.K.Naqpal. G.A.Jullien and W.C. Miller

Multidimensiongl Alyoritnms and grocessor
Architectures for Computing a class of Unitary Transforms'
11. G.A.Jullien and H.C. Blller 'A Hardyare Realization of an NTT Convolver using ROM arfaysi Proc.IEEE.ICASSp-Yol.3,pp.788-791,1980
 Vol.c-20, pp. $517-623$, June 1971
13. J. M. Pollard The Fast Fourier Transform in a Finite Field' Math.Comput., Vol.25. pp.365-374, April 1971
14. C.M.Badar \quad On application of the Number Theoretic Transform methods of high speed convolution to 2-D filtering' IEEE Trans. Cirults and Systems. Vol.CAS-22. June 1975
15. G.A.Jullein and W.C.Miller IAn RNS based FFT processor Harduare Implementation'
16. R.C.Gonqalez and P.dintz LDigital Image Processing. Addison-iesley puolishinq Co.. 1977
17. E.L.Hall 'Computer Imgae Processing and Hecognition' Academic press, 1979
18. B.R.Hunt 'Block-mode Filtering of Pictures' Math.Biosc., Aner.Elsevier publ. Co., Vol.11. pp. 343-354, 1971
19. R.H. Vander Kraats and A.N. Venetsanopoulos Harduare for two-dimensional Digital Riltering using Fermat Number Transrorm' IEEE Trans. on Acous. Speecn and Siqn. Processinq, Vol.ASSP-30, april 1982
20. G.A.Jullien and W.C. Ailler An BNS Arithmetic unit for 2-D Digital Convolution'
21. A.Baraniecka Digital Filtering using Number Theoretic Tecaniques' Pn.D.Thesis. University of windsor, Windsor, Ont., Canada, June 1980
22. H. Helms IPast Fourier Transtorm metnod of Computing Dieference Equations and Simulating Filters' IEEE trans., Vol. AO-15, pp.85-90,1967
23. J. Calculation of Colnplex Fourier Series' Math.Coup., Vol.19. pp.297-301. 1965
24. C.S.Joshi, J.F.MCDonald and $\overline{\text { an }}$. H. Steinvorth VA Video Eate Iwo Dimensicnal East Pourier Transform Processorl IEEE trans.. 1979
25. B.Liu and A.Peled - A new Hardyare Realization of High speed East Fourier Transformersi IEEE Trans. on Acous. Speech and Siyn.erocessinq. Vol.ASSP-23. pp.543-547. Dec 1975
26. H.K. Naqpal 'processor Architectures for Fast Computation of gulti-pigensional Onitary Transforms' Ph.D.Thesis, University of findsor, yindsor. Ont., Canada, 1981
27. G.A.Jullien 'uesidue number Scaling and other Operations using ROM grraysi IEEE Trans. on Computers, Vol.C-27. pp. 325-336, april 1978
28. DoL.Dietmeyer logic Design of Diuital Systems' allyn and Bacon. Boston, 1978
29. --- Project and kesearch Applicable in Industry (PRAI) Grant Beport: University of Windsor, Windsor, Ontario, Canada, 1982 (Project no.-7908. NSERC File no. 612-14/79)
30. ----- 'SEL-32/27 Manuals:
31. Chao-Huan Huang $10 n$ the $k N S$ and its Application to Computer Arcnitectures and Fast Spectral Transforms' Ph.D.Thesis, University of Cincinnati, 1979.
32. R.J.Karwoski 'An Introduction to Digital Analysis including a nigh speed fFT processor Desiqn' TRW LSI Product, eil Sequado, Calif.. June 1980.

VITA AUCTORIS

education

1974 | Graduated from S.S.N. High School, Biratnagar, Nepal (School Leaving |
| :--- |
| Certificate Examination conducted by the Board of Education, Govt. of |
| Nepal, Kathmandu). |

PROFESSIONAL AFFILIATION

Associate Member of Institution of Engineers (AMIE), India.
Student Member of Institution of Electrical and Electronics Engineers (IEEE), New Jersey, USA.

Member of Association of Students Council, Toronto, Ontario, Canada.

MAJOR HONORS AND AWARDS
1983-1985 University of Windsor Merit Scholarship.
1982-1984 A.N.E. Foundation (Oregon), USA, Scholarship Award.
1983 Associate Member of Institution of Engineers (AMIE) as an Honor to Cold Medalist in B.So. (Engineering).

1982 Cold Modal froe the Kurukshatra University given to First Rank holder in professional education.

1977-1982 TSC of Colombo Plan Scholarship for undergraduate study in alectronics and communication engineering (Government of Nepal).

CO-CURRICULAR ACTIVITIES

