120 research outputs found

    Scalable, Data- intensive Network Computation

    Get PDF
    To enable groups of collaborating researchers at different locations to effectively share large datasets and investigate their spontaneous hypotheses on the fly, we are interested in de- veloping a distributed system that can be easily leveraged by a variety of data intensive applications. The system is composed of (i) a number of best effort logistical depots to en- able large-scale data sharing and in-network data processing, (ii) a set of end-to-end tools to effectively aggregate, manage and schedule a large number of network computations with attendant data movements, and (iii) a Distributed Hash Table (DHT) on top of the generic depot services for scalable data management. The logistical depot is extended by following the end-to-end principles and is modeled with a closed queuing network model. Its performance characteristics are studied by solving the steady state distributions of the model using local balance equations. The modeling results confirm that the wide area network is the performance bottleneck and running concurrent jobs can increase resource utilization and system throughput. As a novel contribution, techniques to effectively support resource demanding data- intensive applications using the ¯ne-grained depot services are developed. These techniques include instruction level scheduling of operations, dynamic co-scheduling of computation and replication, and adaptive workload control. Experiments in volume visualization have proved the effectiveness of these techniques. Due to the unique characteristic of data- intensive applications and our co-scheduling algorithm, a DHT is implemented on top of the basic storage and computation services. It demonstrates the potential of the Logistical Networking infrastructure to serve as a service creation platform

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    An analysis of a large scale habitat monitoring application

    Get PDF
    Habitat and environmental monitoring is a driving application for wireless sensor networks. We present an analysis of data from a second generation sensor networks deployed during the summer and autumn of 2003. During a 4 month deployment, these networks, consisting of 150 devices, produced unique datasets for both systems and biological analysis. This paper focuses on nodal and network performance, with an emphasis on lifetime, reliability, and the the static and dynamic aspects of single and multi-hop networks. We compare the results collected to expectations set during the design phase: we were able to accurately predict lifetime of the single-hop network, but we underestimated the impact of multihop traffic overhearing and the nuances of power source selection. While initial packet loss data was commensurate with lab experiments, over the duration of the deployment, reliability of the backend infrastructure and the transit network had a dominant impact on overall network performance. Finally, we evaluate the physical design of the sensor node based on deployment experience and a post mortem analysis. The results shed light on a number of design issues from network deployment, through selection of power sources to optimizations of routing decisions

    IPv6 Network Mobility

    Get PDF
    Network Authentication, Authorization, and Accounting has been used since before the days of the Internet as we know it today. Authentication asks the question, “Who or what are you?” Authorization asks, “What are you allowed to do?” And fi nally, accounting wants to know, “What did you do?” These fundamental security building blocks are being used in expanded ways today. The fi rst part of this two-part series focused on the overall concepts of AAA, the elements involved in AAA communications, and highlevel approaches to achieving specifi c AAA goals. It was published in IPJ Volume 10, No. 1[0]. This second part of the series discusses the protocols involved, specifi c applications of AAA, and considerations for the future of AAA

    Internet of Things : technologies and applications in healthcare management and manufacturing

    Get PDF
    L'Internet des Objets (ou IoT) s'appuie sur des objets connectés dotés de capteurs et technologies capables d'échanger des données entre eux de manière indépendante. Ces nouvelles technologies offrent aux entreprises et à toutes les organisations des moyens pour l’acquisition et le traitement intelligent de l’information (Industrie 4.0) pour demeurer compétitives. Ce mémoire vise à analyser la contribution de l'IoT dans les soins de santé et production, mettant l'accent sur l'Industrie 4.0 et la maintenance prédictive, particulièrement en maintenance, sur la base d’oeuvres littéraires récentes publiées au cours de la dernière décennie. L’objectif principal de ce mémoire est de comprendre l'IoT, d’exposer ses potentiels et sa stratégie de déploiement dans différents domaines d’applications. Même, le but est de comprendre que l'IoT ne se limite pas à l'application de la maintenance des systèmes de production mais aussi du bien-être des patients, c'est pourquoi j'ai choisi ces deux domaines importants où l'IoT peut être appliqué (santé et production) pour ce travail de recherche. Cette thèse aidera à explorer comment l'IoT transforme le système de santé. J'explique comment l'IoT offre de grandes avancées dans ce système. Je donne quelques exemples où ses concepts souhaiteraient être implémentés pour améliorer la qualité des soins des patients et quelques études récentes. Outre, je clarifie l'impact de l’Industrie 4.0 sur la production, notamment en maintenance, en lien avec la maintenance prédictive rendue possible par l’IoT. Je fournis une vue d'ensemble de l'Industrie 4.0 et de la maintenance prédictive. J’aborde les fonctionnalités de l'Industrie 4.0 et présente ses technologies de pilotage susceptibles d'améliorer les domaines de processus de production, tels que la réduction des temps d'immobilisation, les coûts de service, etc. J'attire l'attention sur les implications de la maintenance prédictive dans l’Industrie 4.0 en décrivant son fonctionnement et comment les fabricants peuvent l'exécuter efficacement, avec des exemples à l'appui.The Internet of Things (or IoT) relies on connected objects embedded with sensors and other technologies capable of exchanging data with each other independently. These new technologies provide businesses and all organizations with the means to acquire and intelligently process information (Industry 4.0) to remain competitive. This thesis aims to analyze the contribution of IoT in healthcare and manufacturing, with a focus on Industry 4.0 and Predictive Maintenance, specifically in maintenance, based on recent literary works published over the last decade. The main purpose of this thesis is to understand what IoT is, to highlight its potentials and its deployment strategy in various areas of application. Similarly, the goal is to understand that IoT is not limited to the application of the maintenance of production systems but also of patients’ wellbeing which is the reason why I selected these two important areas where IoT can be applied (healthcare and manufacturing) for this research work. This thesis will help explore how IoT is transforming the healthcare system. I explain how IoT offers great advances in the healthcare system. I give some examples of where its concepts would like to be implemented to improve the quality of care of patients and some recent studies. In addition, I clarify the impact of Industry 4.0 in manufacturing especially in maintenance, in connection with predictive maintenance made possible by IoT. I provide an overview of Industry 4.0 and predictive maintenance. I discuss the capabilities of Industry 4.0 and present its driving technologies that can improve all areas of production processes such as reducing downtime, service costs , etc. Moreover, I draw attention to the implications of predictive maintenance in Industry 4.0 by describing how it works and how manufacturers can run it effectively, with supporting examples

    Proceedings of the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications

    Get PDF
    The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's

    Adaptive Middleware for Resource-Constrained Mobile Ad Hoc and Wireless Sensor Networks

    Get PDF
    Mobile ad hoc networks: MANETs) and wireless sensor networks: WSNs) are two recently-developed technologies that uniquely function without fixed infrastructure support, and sense at scales, resolutions, and durations previously not possible. While both offer great potential in many applications, developing software for these types of networks is extremely difficult, preventing their wide-spread use. Three primary challenges are: 1) the high level of dynamics within the network in terms of changing wireless links and node hardware configurations,: 2) the wide variety of hardware present in these networks, and: 3) the extremely limited computational and energy resources available. Until now, the burden of handling these issues was put on the software application developer. This dissertation presents three novel programming models and middleware systems that address these challenges: Limone, Agilla, and Servilla. Limone reliably handles high levels of dynamics within MANETs. It does this through lightweight coordination primitives that make minimal assumptions about network connectivity. Agilla enables self-adaptive WSN applications via the integration of mobile agent and tuple space programming models, which is critical given the continuously changing network. It is the first system to successfully demonstrate the feasibility of using mobile agents and tuple spaces within WSNs. Servilla addresses the challenges that arise from WSN hardware heterogeneity using principles of Service-Oriented Computing: SOC). It is the first system to successfully implement the entire SOC model within WSNs and uniquely tailors it to the WSN domain by making it energy-aware and adaptive. The efficacies of the above three systems are demonstrated through implementation, micro-benchmarks, and the evaluation of several real-world applications including Universal Remote, Fire Detection and Tracking, Structural Health Monitoring, and Medical Patient Monitoring

    A programming system for process coordination in virtual organisations

    Get PDF
    PhD thesisDistributed business applications are increasingly being constructed by composing them from services provided by various online businesses. Typically, this leads to trading partners coming together to form virtual organizations (VOs). Each member of a VO maintains their autonomy, except with respect to their agreed goals. The structure of the Virtual Organisation may contain one dominant organisation who dictates the method of achieving the goals or the members may be considered peers of equal importance. The goals of VOs can be defined by the shared global business processes they contain. To be able to execute these business processes, VOs require a flexible enactment model as there may be no single ‘owner’ of the business process and therefore no natural place to enact the business processes. One solution is centralised enactment using a trusted third party, but in some cases this may not be acceptable (for instance because of security reasons). This thesis will present a programming system that allows centralised as well as distributed enactment where each organisation enacts part of the business process. To achieve distributed enactment we must address the problem of specifying the business process in a manner that is amenable to distribution. The first contribution of this thesis is the presentation of the Task Model, a set of languages and notations for describing workflows that can be enacted in a centralised or decentralised manner. The business processes that we specify will coordinate the services that each organisation owns. The second contribution of this thesis is the presentation of a method of describing the observable behaviour of these services. The language we present, SSDL, provides a flexible and extensible way of describing the messaging behaviour of Web Services. We present a method for checking that a set of services described in SSDL are compatible with each other and also that a workflow interacts with a service in the desired manner. The final contribution of this thesis is the presentation of an abstract architecture and prototype implementation of a decentralised workflow engine. The prototype is able to enact workflows described in the Task Model notation in either a centralised or decentralised scenario

    Network Flow Optimization Using Reinforcement Learning

    Get PDF
    corecore