
Washington University in St. Louis
Washington University Open Scholarship

All Theses and Dissertations (ETDs)

January 2009

Adaptive Middleware for Resource-Constrained
Mobile Ad Hoc and Wireless Sensor Networks
Chien-Liang Fok
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/etd

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All
Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact
digital@wumail.wustl.edu.

Recommended Citation
Fok, Chien-Liang, "Adaptive Middleware for Resource-Constrained Mobile Ad Hoc and Wireless Sensor Networks" (2009). All Theses
and Dissertations (ETDs). 112.
https://openscholarship.wustl.edu/etd/112

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fetd%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/112?utm_source=openscholarship.wustl.edu%2Fetd%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Computer Science and Engineering

Thesis Examination Committee:
Gruia-Catalin Roman, Chair

Chenyang Lu
Tom Bailey
Chris Gill

Christine Julien
Caitlin Kelleher

ADAPTIVE MIDDLEWARE FOR RESOURCE-CONSTRAINED MOBILE

AD HOC AND WIRELESS SENSOR NETWORKS

by

Chien-Liang Fok

A dissertation presented to the School of Engineering
of Washington University in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2009
Saint Louis, Missouri

copyright by

Chien-Liang Fok

2009

ABSTRACT OF THE DISSERTATION

Adaptive Middleware for Resource-Constrained Mobile Ad Hoc and Wireless Sensor

Networks

by

Chien-Liang Fok

Doctor of Philosophy in Computer Science

Washington University in St. Louis, 2009

Research Advisors: Professors Gruia-Catalin Roman and Chenyang Lu

Mobile ad hoc networks (MANETs) and wireless sensor networks (WSNs) are two

recently-developed technologies that uniquely function without fixed infrastructure

support, and sense at scales, resolutions, and durations previously not possible. While

both offer great potential in many applications, developing software for these types

of networks is extremely difficult, preventing their wide-spread use. Three primary

challenges are (1) the high level of dynamics within the network in terms of chang-

ing wireless links and node hardware configurations, (2) the wide variety of hard-

ware present in these networks, and (3) the extremely limited computational and

energy resources available. Until now, the burden of handling these issues was put on

the software application developer. This dissertation presents three novel program-

ming models and middleware systems that address these challenges: Limone, Agilla,

and Servilla. Limone reliably handles high levels of dynamics within MANETs. It

does this through lightweight coordination primitives that make minimal assump-

tions about network connectivity. Agilla enables self-adaptive WSN applications via

ii

the integration of mobile agent and tuple space programming models, which is crit-

ical given the continuously changing network. It is the first system to successfully

demonstrate the feasibility of using mobile agents and tuple spaces within WSNs.

Servilla addresses the challenges that arise from WSN hardware heterogeneity using

principles of Service-Oriented Computing (SOC). It is the first system to successfully

implement the entire SOC model within WSNs and uniquely tailors it to the WSN

domain by making it energy-aware and adaptive. The efficacies of the above three

systems are demonstrated through implementation, micro-benchmarks, and the eval-

uation of several real-world applications including Universal Remote, Fire Detection

and Tracking, Structural Health Monitoring, and Medical Patient Monitoring.

iii

Acknowledgments

I would like to thank my advisors Gruia-Catalin Roman and Chenyang Lu for their

invaluable advice and support.

Chien-Liang Fok

Washington University in Saint Louis

December 2009

iv

Contents

Abstract . ii

Acknowledgments . iv

List of Tables . viii

List of Figures . ix

1 Introduction . 1
1.1 Challenges Addressed . 7
1.2 Dissertation Overview . 7

2 Background . 9
2.1 Targeted Network Platforms . 9

2.1.1 Mobile Ad Hoc Networks . 9
2.1.2 Wireless Sensor Networks . 11

2.2 Coordination Techniques . 12
2.2.1 Tuple Spaces . 13
2.2.2 Mobile Agents . 14
2.2.3 Service-Oriented Computing 15

3 Limone: A Lightweight Coordination Model for Mobile Ad Hoc
Networks . 16
3.1 Motivation . 17

3.1.1 Application Example: Universal Remote 19
3.2 Programming Model . 22

3.2.1 Reactive Programming: Tuple Space 25
3.3 Middleware Implementation . 26
3.4 Microbenchmarks . 33
3.5 Application Case Study: Universal Remote 34
3.6 Chapter Summary . 37

4 Agilla: A Mobile Agent Middleware for Self-Adaptive Wireless Sen-
sor Networks . 38
4.1 Motivation . 39

4.1.1 Adaptation through In-network Reprogramming 42
4.2 Programming Model . 43

v

4.2.1 Mobile Agents . 45
4.2.2 Tuple Space . 45
4.2.3 Location-Based Addressing . 48
4.2.4 Example . 49
4.2.5 Scalability . 50
4.2.6 Adaptation to Node Failures 50
4.2.7 Security . 51

4.3 Implementation . 51
4.3.1 Target Platform . 51
4.3.2 Middleware Architecture . 52
4.3.3 Agent . 54
4.3.4 Instruction Set Architecture (ISA) 55

4.4 Micro-benchmarks . 57
4.4.1 Micro-Benchmarks . 57

4.5 Application Case Study: Fire Detection 63
4.6 Application case study: Robot Navigation 68
4.7 Agimone: Integrating Wireless Sensor Networks with IP Networks . . 70

4.7.1 System Architecture . 72
4.7.2 Migration Across WSNs . 74
4.7.3 Evaluation . 74
4.7.4 Application Case Study: Cargo Container Monitoring 80

4.8 Chapter Summary . 81

5 Servilla: Service Provisioning for Wireless Sensor Networks 83
5.1 Motivation . 84
5.2 Related Work . 86
5.3 Programming Model . 88

5.3.1 Service Binding . 91
5.3.2 Novel Binding Semantics . 93
5.3.3 Service Invocation . 94

5.4 Programming Languages . 95
5.4.1 ServillaSpec . 96
5.4.2 ServillaScript . 99

5.5 Middleware Architecture and Implementation 104
5.5.1 SPF-Consumer . 104
5.5.2 SPF-Provider . 106
5.5.3 Middleware Modularity . 107

5.6 Micro-benchmarks . 111
5.6.1 Memory Footprint . 111
5.6.2 Efficiency of Service Binding 112
5.6.3 Efficiency of Service Invocation 115

5.7 Application Case Study: Structural Health Monitoring 117
5.8 Chapter Summary . 125

vi

6 Servilla Extension: Adaptive Service Provisioning 130
6.1 Motivation . 131
6.2 Related Work . 132
6.3 Problem Definition . 135

6.3.1 System Model . 135
6.3.2 Design Goals . 136

6.4 Adaptation Mechanisms . 138
6.4.1 Energy-Aware Provider Selection 138
6.4.2 Efficiency Through Invocation Sharing 143
6.4.3 Adapting to Network Topology Changes 146

6.5 Evaluation . 149
6.5.1 Energy Efficiency when Idling 150
6.5.2 Energy Efficiency of Wireless Transmission 154
6.5.3 Energy Efficiency of Wireless Reception 158
6.5.4 Energy Efficiency of Sensing 160

6.6 Applications . 161
6.6.1 Medical Patient Monitoring 162
6.6.2 Structural Health Monitoring 167

6.7 Chapter Summary . 169

7 Future Work . 170

8 Conclusions . 173

Appendix A Measuring the Energy Consumption of WSN Devices 175

Appendix B Derivation of the Energy Utilization Equations for the
Structural Health Monitoring AccelTrigger Service 177
B.1 Local Invocation . 178
B.2 Remote Invocation . 179
B.3 Local vs. Remote Invocation . 180
B.4 Example Scenario 1 . 181

B.4.1 Energy-Aware Calculations 181
B.4.2 Validation of Equations . 184

References . 185

Vita . 202

vii

List of Tables

4.1 Memory Availability and Size of Agilla 51

5.1 Various service binding semantics and when they should be used. . . 93
5.2 WSN devices vary widely in computational resources. 108
5.3 The size of the properties within service specification FFT 113
5.4 Service matching latency when comparing two FFT-real service speci-

fications . 113
5.5 The sizes of the specifications used to evaluate service invocation . . . 115
5.6 The latency of obtaining the a service’s binding state 116
5.7 Power and latency attributes of TelosB and Imote2 platforms when

radio is operating at 1% duty cycle. 121

6.1 Variables for deriving the energy cost of service invocation, and who
must supply them. 140

6.2 The timing and power attributes of sending one acknowledged packet.
The numbers are obtained using an oscilloscope and averaged over ten
packet transmissions. The average and 95% confidence intervals are
shown. 157

6.3 The latency and power attributes of receiving a packet. 159
6.4 The timing and power attributes of sensing. 161
6.5 The success rate of service invocation of the medical patient monitoring

application. 164
6.6 The average number of beacons transmitted per invocation over all

experimental rounds. 165

viii

List of Figures

3.1 The Limone model. Software agents are represented by ovals. Each
agent owns a local tuple space (LTS) and an acquaintance list (AQL).
Agent C is shown migrating to host Y. The dotted rectangle surround-
ing the tuples spaces of agents B, C, and D highlight those that are
accessible by agent C. 23

3.2 The overall structure of Limone. 26
3.3 Acquaintance list. 27
3.4 Local tuple space operations. 29
3.5 Operations on a remote tuple space. 30
3.6 Reaction Registry. 31
3.7 Reaction List. 33
3.8 Application code size and round-trip message passing time using reac-

tions as a trigger, averaged over 100 rounds. 34
3.9 The Universal Remote Application’s User Interface 35

4.1 The Agilla model. Each node in the network maintains a node neighbor
list, a discrete local tuple space, and multiple mobile agents. The
mobile agents are able to migrate between nodes, and access the tuple
spaces belonging to remote nodes. 44

4.2 A portion of the FireTracker agent 49
4.3 Agilla’s middleware architecture . 52
4.4 Messages used during migration . 53
4.5 The mobile agent architecture . 55
4.6 Noteworthy Agilla instructions . 56
4.7 The agents that test smove (top) and rout (bottom) 58
4.8 smove vs. rout reliability . 58
4.9 smove vs. rout latency . 58
4.10 Remote operation lantency . 60
4.11 Local operation latency . 60
4.12 Test program pseudocode . 61
4.13 The layout of the WSN testbed consisting of 31 TelosB nodes spread

across 1000 square meters. Red ‘x’ indicate node placement, the green
‘o’ marks the gateway. 62

4.14 Maté and Agilla reprogramming rates 62
4.15 Deluge reprogramming rate . 62

ix

4.16 An overview of the fire detection and tracking application. When a fire
breaks out, detection agents sense the fire (1) and send a message to
a base station (2), which injects a tracker agent into the network (3).
This agent migrates to the fire and clones itself to form a perimeter.
The perimeter is continuously adjusted based on the fire’s behavior. . 63

4.17 The static Fire agent . 64
4.18 A FireDetector agent . 64
4.19 The reaction registered by the FireTracker agent 65
4.20 The life cycle of a FireTracker agent 66
4.21 The static fire test scenario, the star is the initial position of the

FireTracker agent . 66
4.22 The rate of forming a perimeter around static fires 67
4.23 Dynamic Fire Test Settings . 68
4.24 Dynamic Fire Perimeter Formation 68
4.25 The robot navigation problem. A roadmap graph is overlaid on the

WSN and mobile agents are used to query the temperature along the
edges, which helps the robot navigate around the fires. 69

4.26 The Agimone system architecture. Each WSN has a gateway running
Limone. The gateways communicate using Limone, forming a bridge
for Agilla agents to migrate between WSNs. A Limone registry is used
to discover available WSNs . 71

4.27 Agilla Agent Migration Across Different WSNs 73
4.28 The Latency of Remote Tuple Space Operations 75
4.29 The Five Stages of an Inter-WSN Agent Migration Operation. 76
4.30 The Latency of Each Agent Migration Stage (Average of 1000 Runs) 76
4.31 The In-and-Out Agent Migration Latency. 78
4.32 The End-to-End Migration Latency 78
4.33 End-to-End Latency vs. Size of Agent 79

5.1 Servilla targets heterogeneous WSNs in which different classes of de-
vices provide services that are used by application tasks either locally
or remotely. Services are platform-specific while tasks are platform-
independent. 89

5.2 A specification describing a FFT service 96
5.3 Possible ambiguity: Does attribute Error modify the Latency attribute

or the readx output? . 98
5.4 ServiceSpec specifications are extensible using the import keyword . . 99
5.5 A task that invokes an accelerometer-sensing service 10 times 100
5.6 The uses keyword allows a script to use multiple services that have

the same specification. 100
5.7 The error keyword specifies an error callback function that is executed

when the invocation fails. 102

x

5.8 The error keyword specifies an error callback function that is executed
when the invocation fails. 103

5.9 Servilla’s middleware consists of a virtual machine and a service provi-
sioning framework (SPF). The SPF consists of a consumer and provider.104

5.10 The detailed architecture of the Service Provisioning Framework. . . . 105
5.11 Servilla’s middleware components. 109
5.12 All services must provide this interface. 110
5.13 The code memory footprint of different Servilla configurations on the

TelosB platform. 111
5.14 The latency of comparing a specification. 115
5.15 The latency of obtaining a service’s binding state. 115
5.16 The services used by the damage localization application 118
5.17 The damage localization application task using on-demand invocations 126
5.18 The damage localization application task using event-based invocations 127
5.19 Percent power savings of heterogeneous vs. homogeneous WSNs. . . . 128
5.20 Relative power savings of different invocation types on heterogeneous

WSNs. 129

6.1 The actions performed during periodic invocations. 139
6.2 The actions performed during event-based invocations. 141
6.3 A visualization of how service utilization is calculated. 143
6.4 A näıve brute-force method for calculating utilization. 145
6.5 A algorithm for calculating service utilization when service sharing is

possible. 146
6.6 A finite state machine capturing the behavior of the adaptation mech-

anism used to adapt to network topology changes. 147
6.7 Measured and theoretical Pidle of Imote2 and Telosb devices 151
6.8 The power draw of the TelosB and Imote2 when idling with the radio

on and off. 152
6.9 The power draw of an Imote2 when it transmits 5 packets. 155
6.10 Tsearch versus the duty cycle, both actual and theoretical. The results

indicate that, on average, Tsearch is half of the duty cycle period. . . . 156
6.11 The power draw of a TelosB receiving 5 packets. 158
6.12 The power draw of taking an accelerometer reading. 160
6.13 A map of the WSN testbed used in the medical patient monitoring

application. The testbed nodes provide relay services for delivering
medical patient data to the base station, which is represented as a
red triangle. The dotted lines marks the 358.71m route the patient
traveled during each experimental round. 162

6.14 The average number of messages transmitted per invocation. 165
6.15 The latency of invoking the relay service. 166

xi

6.16 The predicted and actual energy footprints of the structural health
monitoring application scenario when DutyCycle = 10 and InvokePeriod =
1000 in. 168

A.1 The circuit used to measure the power draw of a WSN device. Two
probes from the same oscilloscope simultaneously measure voltages V 1
and V 2 at junctions J2 and J3, respectively. Both are grounded at
junction J1. V 1 measures the voltage across resistor R1 and is used to
calculate the instantaneous current, i = V 1

R1
. V 2 measures the voltage

across the WSN device. The power, P , of the WSN device is thus
P = i · V 2 . 176

xii

Chapter 1

Introduction

Wireless sensor networks (WSNs) and Mobile Ad hoc Networks (MANETs) are two

unique forms of networking that have the potential to make a significant impact

in our daily lives. WSNs consist of a multitude of tiny devices embedded in the

environment that are capable of sensing, computation, and communication. They

revolutionize the capabilities of certain critical applications like tracking and moni-

toring by enabling higher density sensing at significantly lower cost. MANETs consist

of mobile devices like laptops, netbooks, cellphones, and PDAs that are capable of

wireless communication. MANETs differ from traditional networks in that there is no

hierarchy between devices. Instead, devices opportunistically form peer-to-peer wire-

less links whenever they come within range and break the links whenever they move

out of range. They enable networks to form in situations that would otherwise not

be possible and have many important applications like coordinating first responders

in a disaster scenario where the networking infrastructure is destroyed. As relatively

new and unique technologies, existing software engineering techniques, programming

models, and middleware do not adequately address the many novel and fundamental

challenges presented by these networks. Chief among these are (1) the need for a

lightweight minimalist framework for facilitating the development of reliable applica-

tions in highly dynamic and mobile environments, (2) the need for applications to be

self-adaptive in a changing environment, (3) the need to carefully manage the mini-

mal resources available in WSNs, (3) the need to integrate WSNs with the existing

computer network infrastructure, (4) the need to support device heterogeneity and

network dynamics, and (5) the need for adaptive service provisioning in such resource-

constrained and dynamic environments. Throughout this dissertation, new software

1

engineering techniques and programming models were developed that specifically ad-

dress each of the above challenges. In addition, middleware frameworks, services, and

application prototypes were implemented to demonstrate the efficacy of our solutions.

Each of these is now presented.

(1) Developing a lightweight coordination middleware for MANETs. The highly tran-

sient and unpredictable nature of wireless links within MANETs make reliable appli-

cation development extremely difficult. To address this difficulty, numerous powerful

middleware systems were created that deal with the underlying dynamics within

the network. These systems introduced many interesting and novel constructs that

make network disconnections more predictable, like instituting a “safe zone” smaller

than the actual wireless range, and only communicating with devices within the safe

zone [152]. While these systems had strong theoretical underpinnings and provide

many valuable guarantees, the level of services and guarantees provided were more

than what most MANET applications required. For example, the main motivation

behind instituting the aforementioned safe zone is to enable distributed transactions

among groups of devices. This is not necessary in applications that only involve

communication between at most two users since the wireless link connecting the two

devices form and break atomically. To address this, Limone took a different approach

towards addressing the challenges imposed by MANETs. Instead of trying to provide

powerful consistency and atomicity guarantees in a dynamic environment, Limone

sought to find the minimalist set of constructs that are useful to an application de-

veloper, while making no assumptions about wireless link behavior. Starting with

the most basic assumption that a single round-trip communication with a remote

device is eventually possible, Limone sought to build upon this a middleware that

is adaptive and resilient to unpredictable changes in the underlying network. The

investigation resulted in a new and unique coordination model that was unlike any of

the previously existing models, and was better in the sense of being able to operate

in a wider range of environments.

(2) Supporting Self-Adaptive Applications in WSNs. WSN applications must be

self-adaptive due to the continuously changing environment in which the network is

deployed. Since WSN nodes are embedded and can sense the environment, changes

within the environment impact the network, both in terms of the set of applications

that should execute, and the way the applications should behave. For example, a

2

WSN deployed in a forest may initially be used for habitat monitoring. Later, when

the probability of fire is high, the network may be used for fire detection. If a fire

breaks out, the network would best be used to track the fire. Creating software that is

flexible enough to satisfy the diverse requirements of a WSN is challenging, especially

given the limited amount of resources available within a WSN. To address this, Agilla,

a middleware that facilitates self-adaptive WSN applications, was developed. Agilla

is among the first WSN middleware platforms to offer both mobile agent and tuple

space programming models for developing applications. Mobile agents are special

software processes that can explicitly clone or migrate across WSN nodes. They can

do this while maintaining their state, thus elegantly capturing computations that ex-

ecute across multiple WSN nodes. Tuple spaces offer a shared memory space in which

data elements are accessed via pattern matching, allowing independently-developed

mobile agents to freely migrate while still being able to communicate. By merging

these two programming models into a WSN middleware platform, Agilla enabled

WSN applications to restructure themselves in response to a changing environment.

To demonstrate this, we used Agilla to implement a fire detection and tracking ap-

plication that dynamically adjusts itself to maintain a perimeter around a spreading

wildfire. As the wildfire spreads, it disables WSN nodes and eventually breaks the

perimeter. Once broken, the mobile agents adjacent to the breakage clone themselves

around the hole, thus maintaining the integrity of the perimeter.

Tracking is another critical application of WSNs. Tracking is challenging due to

the dynamic nature of the phenomenon being tracked. The application must adapt

whenever the phenomenon moves or changes. Agillas programming model is useful in

developing tracking applications that are able to adapt to changes in the phenomenon

being tracked. To demonstrate this, we used Agilla to implement a cargo container

tracking application. Tracking cargo containers is important for national security and

logistical reasons. It is complex due to the continuous movement, rearrangement,

and exchanging of cargo containers between different administrative domains as they

travel around the world. To secure and track cargo containers, a wireless sensor

network can be deployed such that each shipping container contains a WSN node.

This is demonstrated by an application called AgiTrack, which was implemented

on top of Agilla. Using Agillas flexible programming model, several diverse tasks

are demonstrated including counting the number of containers, searching for items

within the containers, and securing containers. By implementing AgiTrack using

3

mobile agents and tuple spaces, it is able to continue to execute seamlessly despite

reconfigurations in the container orientations.

(3) Integration of WSNs and Internet Protocol (IP) Networks. The aforementioned

middleware and applications run within the confines of a single WSN. This typified

many early WSN applications as the new and unique characteristics of WSNs like their

emphasis on energy-efficiency prevented them from being integrated with the existing

network infrastructure like the Internet, which is based on the Internet Protocol (IP).

This is unfortunate since networks like the Internet offer unmatched connectivity,

enabling near-universal access, and tremendous resources in terms of computing and

data storage. Integrating sensor and IP networks into a uniform platform enables

applications to take advantage of the resources available on traditional IP networks

while still receiving sensor data obtained from within a sensor network. Providing

a unified platform that spans both types of networks would also facilitate flexible

application deployment. To this end, we developed a software middleware framework

called Agimone that allows applications to be deployed on a WSN in the form of

mobile agents, which can autonomously discover and migrate to other WSNs using a

common IP backbone as a bridge. Agimone was the first system to allow mobile agents

to migrate between sensor and IP networks. It facilitated data sharing between WSNs

and the IP network through remote tuple space operations. Using this framework,

computationally weak sensing nodes could defer expensive computations to more-

powerful devices. To evaluate Agimone, it was used to re-implement AgiTrack, the

cargo-tracking application described previously. Micro-benchmarks on the latency of

Agimone operations demonstrated feasibility and applicability to many applications.

(4) Supporting Platform Heterogeneity in Wireless Sensor Networks. Another impor-

tant consequence of integrating WSNs and the Internet is that it is only a matter

of time before the diversity of devices that constitute the network grows to enor-

mous proportions. WSN heterogeneity is a major hurdle in the development and

deployment of WSN applications. This is primarily due to the limited resources

available, which require that applications be carefully engineered in platform-specific

ways for maximum efficiency. Explicitly engineering an application in a platform-

specific manner is labor-intensive, error-prone, and unlikely to result in software that

can run on other platforms or optimization techniques that can be applied to other

4

applications. To solve this problem, a programming model that had yet to be en-

tirely used in WSNs — Service Oriented Computing (SOC) — is used. SOC is a

powerful programming model in that it provides a loose coupling between software

components. This enables software components written by different organizations to

function together seamlessly. SOC principles are applied to WSNs by using them as

a separation between platform-independent application scripts and platform-specific

services. Using SOC, the scripts would be automatically and dynamically bound

to services, based on the specific characteristics of the hardware that is available.

Applications, being platform-independent, could execute anywhere regardless of the

type of hardware available, thus simplifying application development. Services, being

platform-specific, provide access to specialized capabilities of the underlying hard-

ware and are tailored to maximize energy efficiency. The mechanisms for achieving

SOC in WSN were integrated into a new middleware system called Servilla, the first

service-oriented programming framework to function entirely within a WSN. Servilla

integrates aspects of service provisioning and scripting and tailors them to the unique

properties of WSNs to enable applications that are platform-independent and yet able

to access platform-specific functionality. Specifically, scripting enables applications to

be platform-independent by executing within a virtual machine, while service provi-

sioning enables applications to efficiently access platform-specific resources. Through

an evaluation on a heterogeneous WSN consisting of TelosB and Imote2 nodes involv-

ing a structural health monitoring application, Servilla demonstrated the feasibility

of using these programming models within WSNs and the efficacy of using them to

develop platform-independent applications that can still efficiently access platform-

specific resources.

(5) Adaptive Service Provisioning in Wireless Sensor Networks. WSNs are extremely

dynamic systems requiring that the application continuously adapt to a changing

network topology and resource levels. SOC provides a natural decoupling between

applications and resources within the network. Since SOC was already being used in

WSNs for the purpose of handling network heterogeneity, it could be easily modified

to become adaptive to changes in the network. The two key ways in which SOC is

made adaptive within WSNs is in the ability to automatically switch providers if the

current provider fails, and the consideration of energy constraints in the selection of

a new provider. Automatically switching providers is important because it enables

the middleware to address challenges that arise from a changing network topology.

5

SOC turns out to be a perfect mechanism for achieving this form of adaptation since

it already decouples service consumers from providers, thus enabling the seamless

switching of providers from the consumer’s perspective. Energy is a fundamentally

scarce resource in most WSNs since nodes are typically powered by battery. Making

service provisioning energy-aware helps conserve energy resources, enabling prolonged

network lifetime.

The above discussion highlights the various forms of software engineering techniques,

programming models, middleware, services, and applications for WSNs and MANETs

that are discussed in this dissertation. The research initially focused on ways to lightly

coordinate MANET applications, but soon focused on how to simplify application de-

velopment, while enabling applications to be more flexible and adaptive. The work

described resulted in the integration of WSNs with each other and the Internet, form-

ing larger and more complex systems consisting of many types of devices and which

multiple applications must share. To this end, new programming models, middleware,

and services were developed that assist developers in creating applications that can

handle device heterogeneity, efficiently allocate resources, and manage the network.

Finally, the most recent activities include investigations into how to address network

dynamics. WSNs are relatively dynamic given their limited resources and exposure

to potentially harsh and continuously changing environments. This dynamic nature

should be reflected in the bindings between applications and services since the set of

services that are available and the wireless link quality between the application and

its services are continuously changing. Adaptive service provisioning is critical since

selecting the correct service provider may result in significant energy savings and im-

provement in quality of service. The key mechanisms for enabling adaptation and

the additional parameters and equations necessary to perform energy calculations are

identified and presented. Furthermore, since service discovery and binding are done

by the middleware, the adaptation mechanisms are hidden from the application, re-

sulting in little to no increase in application complexity.

6

1.1 Challenges Addressed

The challenges addressed in this dissertation are five-fold. First, the issue of creating

the minimalist useful coordination model for MANETs is addressed. This required

carefully selecting the appropriate set of coordination primitives and operational se-

mantics so as to ensure minimal assumptions about the underlying network.

Second, the issue of facilitating adaptive applications in WSNs is addressed. This

involved implementing, for the first time, support for mobile agents and tuple spaces

within WSNs.

Third, the issue of integrating WSNs with traditional networks is addressed. This

was done by integrating the two aforementioned middleware systems for MANETs

and WSNs, respectively.

Fourth, the issue of how to adapt to network heterogeneity is addressed. This was

done by bring in to the WSN domain, for the first time, the entire SOC programming

model. Using SOC, applications could be written in a platform-independent manner

while still being efficient.

Fifth, the issue of enabling adaptive energy-aware SOC within WSNs is addressed.

This is important because selecting the “right” set of services within the WSN can

make a big difference in terms of energy consumption.

1.2 Dissertation Overview

The dissertation is organized as follows. Chapter 2 provides background informa-

tion. Chapter 3 presents Limone, the lightweight coordination model for facilitating

adaptive applications in MANETs. Chapter 4 presents Agilla, the first mobile agent

middleware for WSNs. It demonstrates how WSN applications can be made adaptive

and WSNs can be seamlessly integrated with IP networks using mobile agents and tu-

ple spaces. Chapter 5 presents Servilla, the first middleware to fully utilize the SOC

coordination model within WSNs enabling in-network collaboration between WSN

devices. It describes how SOC is used to handle network heterogeneity by enabling

7

applications to be platform-independent while still able to access platform-specific

functions. Chapter 6 presents how Servilla is extended to increase energy efficiency

by judiciously adjusting the bindings between services and applications, and service

availability by automatically switching providers when connectivity to the current

provider breaks. Future work is presented in Chapter 7. The dissertation ends with

conclusions in Chapter 8.

8

Chapter 2

Background

2.1 Targeted Network Platforms

The targeted network platforms of the middleware systems described in this dis-

sertation include mobile ad hoc networks (MANETs) and wireless sensor networks

(WSNs). Both these types of networks are made possible by recent advances in tech-

nology, most notably in the areas of device miniaturization, batteries, and wireless

communication. Unlike traditional networks, MANETs and WSNs are ad hoc, mean-

ing they consist of devices that form peer-to-peer wireless links directly between each

other, rather than through a wireless base station that is part of and connected to the

wired network infrastructure. The advantage of wireless ad hoc networks is the ability

to form without fixed infrastructure support, enabling deployment in situations previ-

ously not possible. WSNs are a special type of MANET in which the network devices

are embedded in and can sense the environment. Each of these types of networks are

now discussed.

2.1.1 Mobile Ad Hoc Networks

Mobile devices with wireless capabilities have experienced rapid growth in recent years

due to advances in technology and social pressures from a highly dynamic society.

These devices include laptops, netbooks, cell phones, PDAs, and even some watches.

In addition to communicating with infrastructure-based networks like cellular and

WiFi hotspots, many of these devices are capable of forming ad hoc networks, which

9

are networks that form directly between devices with no central coordinator or fixed

infrastructure support. Ad hoc networks are formed opportunistically by the chance

encounter of two devices supporting the same wireless interface. The simple act of

moving within communication range results in a wireless link through which the two

devices may communicate. By eliminating the reliance on the wired infrastructure, ad

hoc networks can be rapidly deployed in disaster situations where the infrastructure

has been destroyed, or in military applications where the infrastructure belongs to

the enemy. Ad hoc networks are also convenient in day-to-day scenarios where the

duration of the activity is too brisk and localized to warrant the establishment of a

permanent network infrastructure.

Applications for ad hoc networks are many. As previously mentioned, a primary

benefit of MANETs is their ability to function without fixed infrastructure support.

Thus, any application in which the fixed infrastructure is damaged or non-existent

is a potential candidate for MANETs. Typical examples include coordinating first

responders that arrive at a disaster location where the fixed networking infrastructure

is destroyed, enabling peer-to-peer communication among military units deployed in

a hostile region where the infrastructure does not exist, facilitating quick exchange of

data like business contact information among people who are in close physical prox-

imity for short periods of time, and playing multi-player games in which each player

holds a device that communicates with every other device via the ad hoc network,

enabling the players to move about freely while still coordinating their actions. The

number of applications for MANETs is expected to grow as more powerful middle-

ware systems are developed that simplify the creation of applications for mobile ad

hoc networks.

The salient properties of MANETs create many challenges for the application devel-

oper. The inherent unreliability of wireless signals and the mobility of nodes result in

frequent unannounced disconnections and message loss. In addition, mobile devices

have limited battery and computing power. The limited functionality of mobile de-

vices and the peer-to-peer nature of the network lead to strong mutual dependencies

among devices, which have to cooperate to achieve a variety of common goals. This

results in an increased need for coordination support. For example, in a planetary

exploration setting, miniature rovers, each equipped with a single sensor, may need

to perform experiments that demand data from any arbitrary combination of sensors.

10

Middleware systems are often used as a mechanism for addressing the challenges of

programming software for environments that would otherwise be difficult to program

in. The three systems presented in this dissertation focus on one aspect of why

developing applications for ad hoc networks is difficult — the level of dynamics present

in such networks.

2.1.2 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) [43] are a special class of MANETs in which the

devices contain sensors that can gather data about the environment and are typically

embedded in the environment for long periods of time (months to years). A WSN

node is remarkably small. Many of them are approximately the size of a matchbox,

through some are significantly smaller [174]. The primary goal of WSNs is to sense

the environment in which they are embedded.

There are many applications for WSNs [113, 30, 17, 108, 183, 75, 104, 6]. They

include habitat monitoring on the Great Duck Island [113] and in the James Re-

serve [30], and microclimate research around redwood trees [17], surveillance, medical

care [108], structural integrity monitoring [183], highway automation [75] and military

operations [104].

Since WSN nodes are embedded, each device is typically small, battery powered, and

communicates over low-power unreliable wireless radios. Most current WSN devices

differ from MANET devices in terms of amount of computation, energy, and network

bandwidth resources available, often by several orders of magnitude. WSNs may

be ad hoc where they autonomously form a network without infrastructure support.

Depending on the application, the network may form routing trees for delivering data

to base stations, or a multi-hop mesh for delivering data amongst themselves.

WSNs also have the same challenges that face MANETs. Since the devices com-

municate over low power wireless radios, the wireless links with WSNs are also very

dynamic, requiring that nodes adapt to the set of nodes that are within communi-

cation range. In addition, since WSNs are embedded in the environment, a node

11

can be easily damaged, stolen, or disabled, further contributing to the dynamic net-

work topology. Another aspect that is particularly acute for WSNs is the amount

of resources available, in terms of computational ability, energy, and wireless band-

width. WSN nodes are physically smaller than typical MANET devices, resulting in

nodes that have very limited processing power, energy, and wireless communication

capabilities. This lack of resources makes developing applications significantly more

difficult, motivating the use of middleware and coordination techniques for simplifying

application development.

2.2 Coordination Techniques

Mechanisms that address the complexities of ad hoc networks include enhancements

to the operating system, specialized languages, and middleware. Among these, mid-

dleware is the most popular. Operating systems are tightly integrated with low-level

communication services and expose too many details that complicate the program-

ming tasks. The development and use of new programming languages is costly and

entails great risks. Middleware, however, provides high-level abstractions while min-

imizing risk by leveraging off the existing software infrastructure. When designed

properly, middleware can divert attention from mundane concerns like low-level pro-

tocol development, to more fruitful areas involving application-specific goals.

Designing a coordination middleware for ad hoc networks is difficult. It must be

lightweight in terms of the amount of power, memory, and bandwidth consumed.

Depending on the application, it may have to operate over a wide range of devices

with different capabilities: some devices, such as a laptop, may have plenty of memory

and processing ability, while others, such as a node in a sensor network, may have

extremely limited resources. A coordination middleware for ad hoc networks must

be flexible in order to adapt to a dynamic environment; for example, in a universal

remote control application, a remote held by the user must interact with a set of

devices within its vicinity, a set that changes as the user moves. Furthermore, wireless

signals are prone to interference from the environment. Thus, the middleware must

be designed to handle unpredictable message loss.

12

Coordination middleware facilitates application development by providing high-level

constructs such as tuple spaces [57], blackboards [50], and channels [122, 123], in

place of lower-level constructs such as sockets. Tuple spaces and blackboards are both

shared-memory architectures. Tuple spaces differ from blackboards in that they use

pattern-matching for retrieving data; in a blackboard, the data is generally accessed

by type alone. Channels are similar to sockets in that data is inserted at one end and

is retrieved from the other. They differ in that the end points of a channel may be

dynamically rebound.

These high-level constructs facilitate coordination by providing a layer of decoupling

between nodes. In order to create a socket, the identity of the destination must

be known and remains fixed. This is rather inflexible and complicates application

development, particularly in ad hoc networks where connectivity is dynamic. High-

level constructs, however, do not require the sender and receiver to be aware of each

other. When using a tuple space or blackboard, the node that inserts data need not

know the node that later extracts it. Also, since the shared space is public, multiple

nodes may retrieve the same data. When using a channel, the sender need not know

which node is bound to the receiving end of the channel. This level of decoupling

simplifies application development because changes in connectivity no longer need to

be dealt with explicitly.

2.2.1 Tuple Spaces

Tuple spaces [57] are a form of shared memory in which data elements, called tuples,

are accessed using pattern matching instead of direct memory address. They provide

standard operations like out (insert a tuple), in (remove a tuple), and read (read a

tuple). The main advantage of using tuple spaces is the decoupling it provides among

different communicating software components. For example, one component may

insert a tuple and leave. Later, another component unknown to the first may arrive

and receive the tuple. Thus two components are communicating without actually

being aware of each other’s presence. Using a tuple space, the communication is able

to occur regardless of time and space, a phenomena called spatio-temporal decoupling.

This decoupling is important in networks that are highly dynamic since they enable

communication despite changes in the underlying network topology.

13

While a tuple space is logically perceived to be a single shared memory space, it

may in fact be physically distributed among multiple nodes in the network. When a

tuple space is distributed among multiple nodes, it takes the form of a single logical

“federated tuple space” in which the contents appear local but are actually located

on different devices. A key benefit of using tuple spaces is the fact that whether the

tuple space is local or federated is hidden from the applications. This is important be-

cause changes in the underlying network topology can be hidden from the application

developer, thus simplifying applications.

2.2.2 Mobile Agents

Mobile agents are special software processes that have the capability of migrating from

one node to another while maintaining their execution state. This results in the ability

to carry out a sequence of computations that span multiple nodes in the network.

Mobile agents have been used in the Internet [2, 18, 15, 29, 42, 61, 83, 139, 140] and

their potential benefits are well established [94, 112, 182, 148, 168, 169, 181]. Some

systems for the Internet include Agent Tcl [61], Ara [140], Java Aglets [139], Mole [18],

Sumatra [2], TACOMA [83] PeerWare [42], and MARS [29]. They have been used in

data mining [94], e-commerce [112], and network management applications [15]. Since

these systems are designed to run on Internet servers, where computational resources

are relatively plentiful and the links relatively static, efficient resource utilization is

not their main focus.

A few important aspects of mobile agents are worth mentioning. First, mobile agents

are just like any other software process except for their ability to migrate to a different

host. Thus, they are a unit of execution analogous to a thread or process within an

application. When they migrate, they usually carry with them both their code and

state, enabling them to continue executing where they left off. Mobile agents can

optionally not carry their state, a process called weak migration, which requires that

the agent restart from the initial state upon arriving at the destination.

The ability for mobile agents to migrate across nodes is powerful and enables greater

degrees of flexibility relative to traditional statically-installed code. This flexibility is

14

exploited in the design of Limone and Servilla for the purpose of increasing application

adaptability to a changing and highly dynamic environment.

2.2.3 Service-Oriented Computing

Service-Oriented Computing (SOC) [137] is a programming model that consists of

service consumers, providers and a service registry. Its primary advantage stems

from the decoupling of the consumers and providers, enabling them to be developed

by different organizations. Specifically, consumers and providers each submit service

specifications that describe the service required or offered, and are used by the service-

oriented architecture (SOA) to automatically match and bind consumers to providers.

SOC enables loose coupling between service consumers and providers through service

descriptions that can be automatically compared and matched. This decoupling en-

ables independently-developed applications to work together. For example, it enables

an Internet-based application running on a webserver to access data produced by

another application executing within a WSN.

This dissertation uses SOC for a slightly different purpose – to simplify WSN appli-

cations by enabling them to be platform-independent, adaptive, and energy efficient.

Using SOC, WSN applications can be service consumers that are dynamically bound

to services provided by the underlying hardware. This enables platform-independent

applications since platform-specific functionalities can be accessed through services,

simplifying programing. Since services are provided by the hardware, they can be

optimized enabling higher degrees of efficiency. The dynamic binding between service

consumers (the applications) and providers (the hardware) is the key enabler that

one of the middleware platforms presented in this dissertation exploits (Servilla), to

allow WSN applications to handle network heterogeneity.

15

Chapter 3

Limone: A Lightweight

Coordination Model for Mobile Ad

Hoc Networks

Limone (Lightly-Coordinated Mobile Networks) is a novel coordination model and

middleware that facilitates application development in MANETs. It targets dynamic

ad hoc networks in which communication links are transient and unpredictable by

using lightweight coordination primitives that make minimal assumptions about the

execution environment. Specifically, no knowledge about when wireless links form or

break is assumed. Instead, the model starts with the premise that a single round-trip

message exchange is possible and, under this minimalist assumption, offers a reason-

able set of lightweight primitives with precise functional guarantees. Using this set of

lightweight primitives, Limone enables MANET applications to be developed quickly

and reliably. The willingness to accommodate a high degree of uncertainty about the

physical state of the system raises important research questions regarding the choice

of coordination style and associated constructs. A minimalist philosophy, combined

with the goal of achieving high levels of performance, led to the emergence of a novel

model whose elements appear to support fundamental coordination concerns. Central

to the model is the organization of all coordination activities around an acquaintance

list that reflects the current local view of the global operating context, and whose

composition is subject to customizable admission policies. From the application’s

perspective, all interactions with other components take place by referring to indi-

vidual members of the acquaintance list. All operations are content-based, but can

be active or reactive. This perspective on coordination, unique to Limone, offers an

16

expressive model that enjoys an effective implementation likely to transfer to many

MANET environments. This chapter introduces Limone, explains its key features,

and explores its capabilities as a coordination model. To provide a concrete illustra-

tion of the model and its applications, a universal remote application is used as a

running example.

3.1 Motivation

Mobile devices like cellphones and laptops with wireless capabilities have experienced

rapid growth in recent years due to advances in technology and demands from a highly

mobile society. Many of these devices are capable of forming MANETs, in which they

communicate directly with neighboring devices via peer-to-peer wireless links. By not

relying on a fixed infrastructure like physical wires or wireless base stations, MANETs

can be rapidly deployed in disaster situations where the infrastructure has been de-

stroyed or in search-and-rescue scenarios in remote locations where infrastructure does

not exist. MANETs are also convenient in day-to-day scenarios where the duration

of the activity is too brisk, localized, and transient to warrant the establishment of

a network infrastructure. Applications for MANETs are important because they are

able to execute in environments in which traditional infrastructure-based applications

cannot.

The salient properties of MANETs create many challenges for application develop-

ers. The inherent unreliability of wireless signals and the mobility of nodes result in

frequent and unannounced disconnections, which can lead to numerous problems in-

cluding message loss, data loss, and application deadlock. In addition, mobile devices

typically have limited resources in terms of energy, computing capability, and commu-

nication bandwidth. The limited functionality of mobile devices and the peer-to-peer

nature of the network lead to strong mutual dependencies among devices by requiring

them to cooperate to achieve common goals. For example, in a planetary exploration

application, miniature rovers, each equipped with a single sensor or actuator, may

need to perform experiments that demand data from different combinations of sensors

and actuators. The need for different devices to cooperate in a dynamic environment

is the fundamental motivator of enhanced coordination support.

17

Mechanisms that address the complexities of ad hoc networks include enhancements

to the operating system [105, 81], specialized languages [130, 46], and middleware [41,

29, 126, 42]. Operating systems are tightly integrated with low-level communication

services, platform-dependent, and expose unnecessary details that complicate appli-

cation programming tasks. The development and use of new programming languages

is costly as it requires teaching developers a new language. In contrast, middle-

ware simplifies application development by providing higher-level abstractions, while

minimizing risk by building upon the existing software infrastructure and developer

familiarity with existing programming languages. When designed properly, middle-

ware can divert attention from mundane concerns like low-level protocol development,

to more fruitful areas directly involving application-specific goals.

Designing a coordination middleware for ad hoc networks is difficult. On the one

hand, the middleware must provide higher-level abstractions to simplify application

development. On the other hand, the middleware must not place too many constraints

on, or make too many assumptions about, the behavior of the underlying network, lest

it stop working when deployed in a network that violates these assumptions. It must

be flexible to adapt to a dynamic environment. For example, consider an application

in which an universal remote held by the user interacts with the set of devices within

wireless range. As the user moves, the middleware must adapt to changes in the set of

devices within range. Furthermore, wireless signals are prone to transient interference

due to contention with other devices and multi-path effects (i.e., Rayleigh fading [159])

from the environment. The middleware must be designed to handle unpredictable

message loss and transient network connectivity among neighboring devices.

This chapter introduces Limone, a lightweight coordination model and middleware for

highly dynamic MANETs. It supports logical mobility of software agents and physi-

cal mobility of devices. Limone agents are software processes that represent units of

modularity, execution, and mobility. In a significant departure from other coordina-

tion frameworks, Limone emphasizes agent individuality by focusing on asymmetric

interactions among agents. Asymmetry is good because it minimizes the overhead

of the coordination middleware. For example, suppose agent A needs to communi-

cate with agent B but not vice-versa. In this case, an asymmetric middleware can

facilitate communication from A to B without having to enable communication from

B to A. To achieve this asymmetry, the middleware maintains for each agent a

18

separate acquaintance list that defines a personalized view of remote agents within

communication range. For each agent, Limone discovers remote agents and updates

its acquaintance list according to customizable policies.

Traditional Linda-like tuple space primitives facilitate the coordination of agent ac-

tivities. However, Limone allows each agent to maintain strict control over its local

data, provides advanced pattern matching capabilities, permits agents to restrict the

scope of their operations, and offers a powerful repertoire of reactive programming

constructs. The autonomy of each agent is maintained by the exclusion of distributed

transactions and remote blocking operations. Furthermore, Limone ensures that all

distributed operations contain built-in mechanisms to prevent deadlock due to packet

loss or disconnection. For these reasons, Limone is resilient to message loss and unex-

pected disconnection. This allows Limone to function in realistic and highly dynamic

mobile ad hoc environments in which other middleware cannot.

The remainder of this section discusses an example application, Universal Remote,

that is used as a running example throughout the rest of this chapter. In addition to

discussing how Universal Remote can be implemented using Limone, several other

coordination systems are also discussed, compared, and contrasted. By comparing

and contrasting Limone’s approach with that of alternative systems, a better under-

standing of the motivations behind Limone’s design is attained.

3.1.1 Application Example: Universal Remote

Consider Universal Remote, an application in which a mobile device held by the user

discovers controllable devices within wireless range, and enables the user to control

them over a MANET. As the user moves, the set of devices within range vary, which

must be reflected by changes presented to the user. The timing and locations in which

the user moves are unknown and uncontrolled by the application. This illustrates

significant challenges intrinsic to MANETs, like unpredictable and dynamic network

connectivity. The remainder of this section discusses how Universal Remote can be

implemented using Limone and alternative coordination models including JEDI [41],

MARS [29], and Lime [126].

19

JEDI offers a publish-subscribe model where nodes interact by exchanging events

through a logically centralized, though physically distributed, event dispatcher. An

event is modeled as an ordered set of strings where the first is the name of the event,

and the rest are application-specified parameters. Nodes subscribe to events using

regular expressions on the event name. When a node publishes an event, the event

dispatcher passes it to all nodes subscribed to it. Since all communication is done

through the event dispatcher, publishers are decoupled from subscribers.

Universal Remote can be implemented in JEDI as follows. To discover devices, each

devices can publish a device description event to which the user subscribes. When a

device is no longer within range, the system can publish a special event to announce

the disconnection. Similarly, to control a device, the user can publish device control

events with instructions for a particular device. Each device subscribes to the control

events that are destined for it. While this design works, it has a major drawback,

which is the fact that events are not persistent. When a device publishes a description

event, the event dispatcher immediately passes it to all user devices subscribed to it.

Once the event is delivered to all known subscribers, the event is discarded. This

is problematic because in a mobile environment, the user may not be present when

the event is published. Thus each device must periodically re-publish its description

event, which is inefficient in terms of energy and network bandwidth.

MARS consists of logically mobile agents that can migrate across devices in the

network. Each device maintains a local tuple space that is accessable only to agents

residing on the device. The tuple space is enhanced with reactions that allow an

agent to respond to certain events like the insertion or removal of a tuple. MARS

agents can only coordinate with co-located agents (i.e., agents residing on the same

device). Agent migration is required for inter-device communication. MARS adapts

to mobile environments by allowing agents to “catch” connection events that indicate

the arrival or disconnection of a remote device.

Universal Remote can be implemented in MARS as follows. Whenever a device

detects a user, it spawns an agent that migrates onto the user’s device and inserts a

device description tuple. The user’s agent reacts to this tuple, thus learning about the

device. A similar mechanism can be used by the user to control devices that are in

range. This design is inefficient since it requires agent migration for each operation.

20

Like MARS, Lime provides a coordination model based on logically mobile agents

that can migrate across physically mobile devices. Unlike MARS, Lime maintains

group-level tuple spaces that span entire groups of devices. Each device maintains a

host-level tuple space that is restricted to the local device. When multiple devices

come within wireless range, they form a group and logically merge the contents of their

individual host-level tuple spaces, creating a single logically-centralized group-level

tuple space from the agent’s (and application programmer’s) perspective. Agents

coordinate by exchanging tuples through the group-level tuple space. Tuple space

reactions allow the system to notify an agent when a particular tuple is in the tuple

space. Lime provides strong atomicity and functional guarantees via distributed

transactions. For example, when two groups merge, the logical merging of the two

group-level tuple spaces is done atomically. While powerful, this requires a symmetric

relationship between devices, which increases overhead, and assumes connectivity

throughout the transaction, which may be difficult to guarantee depending on the

level of dynamics within the network.

Universal Remote can be implemented in Lime as follows. To enable device dis-

covery, each device inserts device description tuples into the host-level tuple space,

to which the user reacts. Likewise, devices are controlled by having the user insert

control tuples into the tuple space to which the targeted device reacts. The main

problem is the symmetric relationship between devices. Lime enforces a symmet-

ric relationship between coordinating nodes by forming groups. All devices that are

controllable by a universal remote must be part of the same group as the universal

remote. The limitation is that a device can only be in one group at a time. That is,

it can only be controlled by one universal remote at a time, limiting device-sharing

and scalability.

In contrast, Limone follows an incremental and agent-centric paradigm where each

agent forms it own group via the aforementioned acquaintance list. When a user’s

agent and a device’s agent come within wireless range, the exchanging of tuples and

reactions occur gradually, not in a single atomic operation. This is because ensuring

atomicity may be impossible when the network is highly dynamic.

Key differences between Lime and Limone lie in the engagement policy and the num-

ber of tuple spaces used. Lime’s engagement policy is symmetric and built into the

21

model whereas Limone’s policy is customizable by the application, via the acquain-

tance policy, and asymmetric, meaning agent B may be in agent A’s acquaintance list,

but not vice-versa. In Limone, each agent has a seperate tuple space, whereas in

Lime all agents on a host share a single logically-centralized group-level tuple space.

Due to the reliance on lightweight and simple coordination constructs, Limone does

not provide the same levels of atomicity guarantees as Lime. However, it can pro-

vide the general functionality of Lime’s distributed operations with relaxed atomicity

guarantees. For example, Lime provides a global in operation that atomically searches

the entire group-level tuple space, which requires locking all hosts in the group simul-

taneously. By doing this, Lime guarantees that if a matching tuple exists at the time

the operation is issued, the tuple will be found. Although Limone cannot provide

such a guarantee, the user’s agent can sequentially perform inp on each agent in the

acquaintance list until it finds a match. While this does not guarantee the match will

be found, the probability of success is high since the match will be found so long as it

remains in the agent’s tuple space, which is the case for the device description tuple.

This reflects the highly pragmatic approach the design of Limone has followed.

The universal remote can be implemented in existing coordination models, but re-

sults in implementations that limit efficiency and flexibility. In the next section, we

introduce a new coordination model called Limone that addresses the issues identified

in this section.

3.2 Programming Model

Limone assumes a computational model consisting of mobile devices (hosts) capable

of forming ad hoc networks; mobile agents that reside on hosts but can migrate from

one host to another; and data owned by agents that is stored in local tuple spaces

that belong to indvidual agents. The relationship between hosts, agents, and tuple

spaces is shown in Figure 3.1. The features of Limone can be broadly divided into four

general categories: context management, explicit data access, reactive programming,

and code mobility.

22

Mobile Host X

Mobile Agents

Mobile Host Y

Mobile Agents
migration

A
Q

L

LTS
A

Q
L

A
Q

L

A
Q

L

A
Q

L

LTS LTS LTS LTS

A B C D E

wireless link

C

LTS

AQ
L

Figure 3.1: The Limone model. Software agents are represented by ovals. Each
agent owns a local tuple space (LTS) and an acquaintance list (AQL). Agent C is
shown migrating to host Y. The dotted rectangle surrounding the tuples spaces of

agents B, C, and D highlight those that are accessible by agent C.

Context Management: The Acquaintance List

Central to context management is an agent’s ability to discover neighboring agents

and to selectively determine their relevance. Limone provides a beacon-based dis-

covery protocol that informs each agent of the arrival and departure of other agents.

Limone notifies each agent of its relevant neighbors by storing them in indivudal

acquaintance lists, one per agent, where relevance is determined by an engagement

policy that is agent-specified. Since each agent has different neighbors and engage-

ment policies, the context of each agent may differ from that of its peers.

Many existing coordination models for mobility in ad hoc environments presume a

symmetric and transitive coordination relationship among agents. That is, if agent A

coordinates with agent B, then agent B must coordinate with agent A. The problem

with such an approach is its limited scalability, since transitively applying the sym-

metric relationship results in the formation of large groups of agents in which every

agent coordinates with every other agent in the group. As the number of agents

increases, the likelihood that some move away also increases. This results in frequent

group reconfigurations, which consume valuable resources. By allowing an agent to

restrict coordination to agents it is interested in, and not enforcing a symmetric and

transitive coordination relationship among groups of agents, Limone scales better

while reducing resource utilization. For example, if an agent is surrounded by hun-

dreds of agents but is interested only in two of them, it can concentrate on these two

and ignore the rest. Concentrating on these two agents in no way impedes upon their

23

ability to coordinate with other agents. This asymmetry increases the level of decou-

pling among agents and results in a more robust coordination model that requires

fewer assumptions about the underlying network [84].

Explicit Data Access: Localized Tuple Spaces

Limone accomplishes explicit data access in the following manner. Each agent owns a

single tuple space that provides operations for inserting and retrieving tuples. Explicit

data access spans at most two agents. The agent initiating the data access (called the

reference agent) must have the destination agent in its acquaintance list. For security

reasons, the semantics of the operation is akin to a request, i.e., the reference agent

requests that the destination agent perform the tuple space operation for it. By doing

this, each agent maintains full control over its local data and can implement policies

for rejecting and accepting requests from remote agents. This is accomplished using

an operation manager, which is described next.

The operation manager controls which requests are performed and is customizable

on a per-agent basis. It greatly enhances the expressiveness of Limone since it can

be customized to perform relatively complex tasks. For example, suppose each agent

creates a public/private key pair and publishes its public key in a “read-only” tuple.

The read-only nature of this tuple can be enforced by the operation manager by

preventing all requests that would remove it from executing. Using this read-only

tuple, secrecy and authentication can be achieved. Suppose a reference agent wishes

to place a tuple onto a remote agent’s tuple space. To do this, it can first encrypt

the data using its private key, then by the remote agent’s public key. The remote

agent knows that the tuple is secret if it is able to decrypt it using its private key. It

also knows that the tuple was sent by the reference agent if it can decrypt it using

the reference agent’s public key. This example illustrates how the operation manager

can be configured to perform complex tasks, in this case authentication. Other tasks

include access control, enforcing quality-of-service contracts, and fighting denial-of-

service attacks by throttling response times prioritizing the tasks.

24

3.2.1 Reactive Programming: Tuple Space

Reactive programming constructs enable an agent to automatically respond to par-

ticular tuples in the tuple spaces belonging to agents in its acquaintance list. Two

state variables within each agent, the reaction registry and reaction list, support this

behavior. A reference agent registers a reaction by placing it in its reaction registry.

Once registered, Limone automatically propagates the reaction to all agents in the

acquaintance list that satisfy certain properties specified by the reaction (e.g., the

agent’s name or location). At the receiving end, the operation manager determines

whether to accept the reaction. If accepted, the reaction is placed into the reaction

list, which holds the reactions that apply to the local tuple space.

When the tuple space contains a tuple satisfying the trigger for a reaction in the

reaction list, the agent that registered the reaction is sent a notification containing a

copy of the tuple and a value identifying which reaction was fired. When this agent

receives the notification, it executes the code associated with the reaction atomically.

This mechanism, originally introduced in Mobile UNITY [153], and later deployed in

Lime, is distinct from that employed in traditional publish/subscribe systems in that

it reacts to state properties rather than to data operations. For instance, when a new

agent is added to the acquaintance list, its tuples may trigger reactions regardless of

whether the new agent performed any operations.

Code Mobility: Mobile Agents

Code mobility is supported in Limone by allowing agents to migrate from one host

to another. When an agent migrates, Limone automatically updates its context

and reactions. There are many benefits to agent to migration. For example, if a

particular host has a large amount of data, an agent that needs access to it can

relocate to the host holding the data and thus have reliable and efficient access to

it despite frequent disconnection among hosts. Another example is software update

deployment. Suppose an agent is performing a certain task and a developer creates a

new agent that can perform the task more efficiently. The old agent can be designed

to shutdown when the new agent arrives. Thus, simply having the new agent migrate

25

Reaction
Registry

Reaction
List

Tuple
Space

Operation Manager Operation Manager

Reaction
Registry

Reaction
List

Tuple
Space

Figure 3.2: The overall structure of Limone.

to the same host as the old agent updates the application. Such updates are common

practice on the Internet and are equally benificial in MANETs.

3.3 Middleware Implementation

Limone provides a runtime environment for agents via the Limone server, a software

layer between the agent and the underlying operating system. By using different

ports, multiple Limone servers may operate on a single host. However, for the sake

of simplicity, we will treat each host as having one Limone server.

An application uses Limone by interacting with an agent that is specific to the applica-

tion. Each agent contains a tuple space, acquaintance list, reaction registry, reaction

list, and operation manager. The overall structure of Limone is shown in Figure 3.2.

An agent allows the application to customize its profile, engagement policy, and op-

eration manager. An agent’s profile describes its properties. Its engagement policy

specifies which agents are relevant based on their profiles. The operation manager

specifies which remote operation requests are accepted. This section describes how

Limone fulfills its responsibilities and is organized around the key elements of the

run-time environment, i.e., agent discovery, tuple space management, reactions, and

agent mobility.

Discovery Mechanism. Since connectivity between hosts in an ad hoc network is

dynamic, Limone provides a discovery protocol based on beacons that allows an agent

to discover the arrival and departure of other agents. Each Limone server periodically

broadcasts a beacon containing a profile for each agent running on top of it. A profile

26

ABSTRACT STATE: A set of profiles, {p1, p2, . . .}

INTERFACE SPECIFICATION:
boolean contains(AgentID aID) — Returns true if the list contains a profile that

has the specified AgentID.
Profile[] getApplicableAgents(ProfileSelector[] pss) — Returns all of the profiles

within the list that match any of the specified profile selectors.

Figure 3.3: Acquaintance list.

is a collection of triples each consisting of a property name, type, and value. The two

system-defined entries include the host on which the agent resides and a unique agent

identifier. Additional entries can be added by the application. When the Limone

server receives a beacon, it forwards it to each of its agents. When an agent receives

a beacon, it extracts the profiles and passes them to its acquaintance handler, which

uses the agent’s engagement policy to differentiate the relevant profiles and places

them in the acquaintance list. If a particular agent’s profile is already in the list,

the acquaintance handler ensures that it is up to date and that it still satisfies the

engagement policy. Once a profile is added to the acquaintance list, the acquaintance

handler continuously monitors the beacons for the profile. If it is not received for an

application-customizable period of time, the acquaintance handler removes the profile

from the acquaintance list.

The acquaintance list, shown in Figure 3.3, contains a set of profiles representing

the agents within range that have satisfied the engagement policy. The addition of

a profile into the acquaintance list signifies an engagement between the reference

agent and the agent represented by the profile. Once the reference agent has engaged

with another agent, it gradually propagates its relevant reactive patterns (the trigger

portion of the reaction) to the remote agent. While the addition of the profile to the

acquaintance list is atomic, the propagation of reactive patterns is gradual, avoiding

the need for a distributed transaction.

The removal of a remote agent’s profile from the acquaintance list signifies disengage-

ment between the reference and remote agent. This occurs when the remote agent

moves out of radio range, as signified by the lack of beacon reception. When this

occurs, the reference agent removes all of the remote agent’s reactive patterns from

its reaction list. The removal of the profile from the acquaintance list and the reactive

27

patterns from the reaction list is performed atomically, which is possible because it

is done locally.

Tuple Space Management. All application data is stored in individually owned

tuple spaces, each containing a set of tuples. Limone tuples contain data fields dis-

tinguished by name and store user-defined objects and their types. The ordered list

of fields characterizing tuples in Linda is replaced by unordered collections of named

fields in Limone. This results in a more expressive pattern matching mechanism sim-

ilar to the Ψ-terms in [27] that can handle situations where a tuple’s arity is not

known in advance. For example, in the universal remote application, the following

tuple may be created by the remote control destined for a device:

tuple{〈“type”, String, “command”〉,
〈“device ID”, String, “CD Player”〉,
〈“instruction”, String, “play”〉}

Agents use templates to access tuples in the tuple space. A template is a collection

of named constraints, each defining a name and a predicate called the constraint

function that operates over the field type and value. A template matches a tuple if

each constraint within the template has a matching field in the tuple. A constraint

matches a field if the field’s name, type, and value satisfy the constraint function.

For example, the following template matches the message tuple given above:

template{〈“type”, String, valEql(“command”)〉}
〈“device ID”, String, valEql(“CD Player”)〉}2

Notice that the tuple may contain more fields than the template has constraints. As

long as each constraint in the template is satisfied by a field in the tuple, the tuple

matches the template. This powerful style of pattern matching provides a higher

degree of decoupling since it does not require prior knowledge of the ordering of fields

within a tuple, or its arity, to create a template for it.

Local Tuple Space Operations. The operations an agent can perform on its tuple

space are shown in Figure 3.4. The out operation places a tuple into the tuple space.

2valEql(p) is a constraint function that returns true if the value within the field is equal to p.

28

INTERFACE SPECIFICATION:
void out(Tuple t) — Places a tuple into the tuple space.
Tuple rd(Template template) — A blocking operation that returns a copy of a

tuple matching the template.
Tuple rdp(Template template) — A non-blocking operation that returns a copy of

a tuple matching the template, or ε if none exists.
Tuple[] rdg(Template template) — Same as rd except it returns a copy of all

matching tuples.
Tuple[] rdgp(Template template) — Same as rdp except it returns all matching

tuples that exist.
Tuple in(Template template) — Same as rd except it removes the tuple.
Tuple inp(Template template) — Same as rdp except it removes the tuple.
Tuple[] ing(Template template) — Same as rdg except it removes the tuples.
Tuple[] ingp(Template template) — Same as ingp except it removes the tuples.

Figure 3.4: Local tuple space operations.

The operations in and rd block until a tuple matching the template is found in the

tuple space. When this occurs, in removes and returns the tuple, while rd returns

a copy without removing it. The operations inp and rdp are the same as in and

rd except they do not block. If no matching tuple exists within the tuple space, ε

is returned. The operations ing and rdg are similar to in and rd except they find

and return all matching tuples within the tuple space. Similarly, ingp and rdgp are

identical to ing and rdg except they do not block. If they do not find a matching

tuple, ε is returned. All of these operations are performed atomically, which is possible

because they are performed locally.

Remote Tuple Space Operations. To allow for inter-agent coordination, an agent

can request a remote agent to perform an operation on its tuple space. To do this,

Limone provides remote operations out, inp, rdp, ingp, and rdgp, as shown in Fig-

ure 3.5. These differ from the local operations in that they require an AgentLocation

parameter that specifies the target agent. When a remote operation is executed, the

reference agent sends a request to the remote agent specified by the AgentLocation,

sets a timer, and remains blocked till a response is received or the timer times out.

When the remote agent receives the request, it passes it to its operation manager,

which may reject or approve it. If rejected, an exception is returned to allow the

reference agent to distinguish between a rejection and a communication failure. If

29

INTERFACE SPECIFICATION:
void out(AgentLocation loc, Tuple t) — Asks the agent at loc to place a

tuple in its tuple space.
Tuple rdp(AgentLocation loc, Template template) — Asks the agent at loc to

perform a rdp operation. Returns the results, or ε if the operation times out.
Tuple[] rdgp(AgentLocation loc, Template template) — Asks the agent at loc to

perform a rdgp operation. Returns the results, or ε if the operation times out.
Tuple inp(AgentLocation loc, Template template) — Asks the agent at loc to

perform a inp operation. Returns the results, or ε if the operation times out.
Tuple[] ingp(AgentLocation loc, Template template) — Asks the agent at loc to

perform a ingp operation. Returns the results, or ε if the operation times out.

Figure 3.5: Operations on a remote tuple space.

accepted, the operation is performed atomically on the remote agent, and the results

are sent back. The timer is necessary to prevent deadlock due to message loss. If the

request or response is lost, the operation will time-out and return ε. To resolve the

case when an operation times out while the response is still in transit, each request

is enumerated and the remote agent includes this value in its response.

Reaction Mechanism. Reactions enable an agent to inform other agents within

its acquaintance list of its interest in tuples matching a particular template. A reac-

tion contains an application-defined call-back function that is executed by the agent

that created it when a matching tuple is found in a tuple space that the reaction

is registered on. Reactions fit particularly well with ad hoc networks because they

provide an asynchronous form of communication between agents by transferring the

responsibility of searching for a tuple from one agent to another, which eliminates the

need to continuously poll for data.

A reaction consists of a reactive pattern and a call-back function. The reactive pattern

contains a template that indicates which tuples trigger it and a list of profile selectors

that determine which agents the reaction should propagate to. The call-back function

executes when the reaction fires in response to the presence of a tuple that matches

its template in the tuple space it is registered on. The firing of a reaction consists

of sending a copy of the matching tuple to the agent that registered the reaction.

When the matching tuple is received, the reference agent executes the reaction’s

call-back function atomically. To prevent deadlock, the call-back function cannot

30

ABSTRACT STATE: — A set of reactions, {r, . . .}

INTERFACE SPECIFICATION:
ReactionID addReaction(Reaction rxn)— Adds a reaction to the reaction registry

and returns the reaction’s ReactionID.
Reaction removeReaction(ReactionID rID) — Removes and returns the reaction

with the specified ReactionID.
Reaction get(ReactionID rID) — Retrieves the reaction with the specified

ReactionID.
Reaction get(Profile profile) — Retrieves all reactions containing profile selectors

that match the given profile.

Figure 3.6: Reaction Registry.

perform blocking operations. Notice that the message containing the tuple may be

lost, meaning there is no guarantee that a reaction’s callback function will be executed

even if a matching tuple is found.

The list of profile selectors within the reactive pattern determines which agents it

should be propagated to. Implementation-wise, a profile selector is a template and

a profile is a tuple. They are subject to the same pattern matching mechanism but

are functionally different because profiles are not placed in tuple spaces. A reaction’s

reactive pattern propagates to a remote agent if the remote agent’s profile matches

any of the reactive pattern’s profile selectors. Multiple profile selectors are used to

lend the developer greater flexibility in specifying a reaction’s domain. For example,

returning to our universal remote example, a device would have the following profile:

profile{〈“type”, String, “Device”〉}

and a reaction created by the universal remote control would contain the following

profile selector to restrict its propagation to device agents:

profile selector{〈“type”, String, valEql(“Device”)〉}

This ensures that the reactive pattern only propagates to agents whose profile contains

a property called “type,” with a String value equal to “Device.”

31

As in Lime, reactions may be of two types: ONCE or ONCE PER TUPLE. The type

of the reaction determines how long it remains active once registered on a tuple space.

A ONCE reaction fires once and automatically deregisters itself after firing. When

a ONCE reaction fires and the agent that owns the reaction receives the resulting

tuple(s), it deregisters the reaction from all other agents, preventing the reaction

from firing later. If a ONCE reaction fires several times simultaneously on different

tuple spaces, the reference agent chooses one of the results non-deterministically and

discards the rest. This does not result in data loss because no tuples were removed.

ONCE PER TUPLE reactions remain registered after firing, thus firing once for each

matching tuple. These reactions are deregistered at the agent’s request or when

network connectivity to the agent is lost. To keep Limone as lightweight as possible,

no history is maintained regarding where reactions were registered. Thus, if network

connectivity breaks and later reforms, the formerly registered reactions will be re-

registered and will fire again.

Two additional state components, the reaction registry and reaction list, are required

for the reaction mechanism. The reaction registry, shown in Figure 3.6, holds all

reactions created and registered by the reference agent. An agent uses its reaction

registry to determine which reactions should be propagated following an engagement

and to obtain a reaction’s call-back function when a reaction fires.

The reaction list, shown in Figure 3.7, contains the reactive patterns registered on the

reference agent’s tuple space. The reactive patterns within this list may come from

any agent within communication range, including agents not in the acquaintance list.

Thus, to maintain the validity of the reaction list, the acquaintance handler notifies

its agent when any agent moves out of communication range, not just the agents

within its acquaintance list. The reaction list determines which reactions should fire

when a tuple is placed into the local tuple space or when a reactive pattern is added

to it.

Agent Mobility. Coordination within Limone is based on the logical mobility of

agents and physical mobility of hosts. Agents are logically mobile since they can

migrate from one host to another. Agent mobility is accomplished using µCode [142].

µCode provides primitives that support light-weight mobility preserving code and

state. Of particular interest is the µCodeServer and µAgent. A µAgent maintains

32

ABSTRACT STATE: — A set of reactive patterns, {rp1, rp2, . . .}

INTERFACE SPECIFICATION:
boolean addReactivePattern(ReactivePattern rp) — Adds a reactive pattern to the

reaction list, returns true if it was successfully added.
void clear() — Clears the reaction list by removing all reactive patterns within it.
ReactivePattern[] getApplicablePatterns(Tuple tuple) — Retrieves all of the

reactive patterns within the list that should fire on the specified tuple.
void removeReactivePattern(ReactivePattern rp) — Removes the specified reactive

pattern from the list if it is in the list.
void removeReactivePatterns(AgentID aID) — Removes all reactive patterns from

the list that were registered by the agent with the specified AgentID.

Figure 3.7: Reaction List.

a reference to a µCodeServer and provides a go(String destination) method that

moves the agent’s code and data state to the destination. The agent’s thread state

is not preserved because doing so would require modifying the Java virtual machine,

limiting Limone to proprietary interpreters. Thus, after an agent migrates to a new

host, it will start fresh with its variables initialized to the values they were prior to

migration.

Limone cooperates with µCode by running a µCodeServer alongside each Limone

server and having the Limone agent extend µAgent. By extending µAgent, the

Limone agent inherits the go(String destination) method. However, Limone ab-

stracts this into a migrate(HostID hID) method that moves the agent to the des-

tination host by translating the HostID to the string accepted by µCode. Prior to

migration, the agent first deregisters all of its reactive patterns from remote agents,

and removes its profile from the beacons. Once on the new host, the agent resumes

the broadcasting of its beacons. This allows remote agents to re-engage with the

agent at its new location.

3.4 Microbenchmarks

A prototype of Limone has been implemented in Java. The implementation adheres

to the model given in Section 3.2, where each construct is a distinct object that

33

Model Lines of Code Time (ms)
Limone 250 50.3
Lime 170 73.6
Raw Sockets 695 44.6

Figure 3.8: Application code size and round-trip message passing time using
reactions as a trigger, averaged over 100 rounds.

implements the interface and behavior described in Section 3.3. A LimoneServer

object serves as a foundation that listens for incoming messages and beacons. It

periodically broadcasts beacons containing the profiles of all agents residing on it.

An application can load its agents onto the LimoneServer by calling loadAgent(),

or by using a special Launcher object that communicates with the server through its

single-cast port. This allows new agents to be dynamically loaded, possibly from a

remote device.

As a testament to how lightweight Limone is, its jar file is only 111.7KB. To analyze

its performance, the round trip time for a tuple containing eight bytes of data to be

pulled onto a remote agent and back using reactions as triggers is calculated. The

test was performed using two 750MHz laptops running Java 1.4.1 in 802.11b ad hoc

mode with a one second beaconing period. The laptops were located in a “clean

room” environment where they are stationary and placed next to each other. To

compare Limone’s performance, we also performed the same operation using Lime

and raw TCP sockets. Averaged over 100 rounds, the results of our tests are shown

in Figure 3.8. They show that Limone adds some overhead over raw sockets, but not

as much as Lime. In this simple test, Limone requires more code than Lime because

of Limone’s more expressive pattern matching mechanism and engagement policy.

3.5 Application Case Study: Universal Remote

This section presents an application developed using Limone. The application is called

Universal Remote. It consists of a remote control held by the user that automatically

discovers devices within range and enables the user to control them. Limone is ideal

for this application because it automatically discovers all controllable devices within

34

(a) Before finding devices. (b) After finding devices. (c) Displaying device help.

Figure 3.9: The Universal Remote Application’s User Interface

range, allows the device’s state to be shared and controlled by multiple remotes, and

is lightweight enough to run on embedded devices like electrical appliances.

When the Universal Remote is started, it displays the notice shown in Figure 3.9(a)

while it finds devices in range. When it does, it displays them in a tabbed list shown

in Figure 3.9(b). Devices that come into range are added to the list, while devices

that go out of range are removed. This ensures that users cannot control devices

that are no longer available. In addition to the controls for each device, a fixed row

of controls along the bottom of the window enable the user to customize the display

and view the context-sensitive help, as shown in Figure 3.9(c).

Each device runs a LimoneServer and has an associated agent. These agents insert

information about the device into their local tuple space: namely, the advertised

list of controls (buttons, sliders, etc.), the “help text” associated with each of these

controls, and the current state of each control.

In order to further simplify the creation of device agents, we implemented

a GenericDeviceAgent class as well as a DeviceDefinition interface. The

GenericDeviceAgent is a Limone agent that accepts any DeviceDefinition inter-

face as a plug-in; this interface exposes information about the device (such as its ad-

vertised controls) to the GenericDeviceAgent as well as exposing specific operations

(i.e., pressed buttons or moved sliders) to the device. This allows the device-specific

code to be implemented with little to no knowledge of Limone.

35

As an example, we simulated a remotely-controllable stereo by writing a

WinampDeviceDef to control Winamp [179]. This required implementing the eleven

methods in the DeviceDefinition interface, which took about 250 lines of code and

about an hour to write. The agent is started by loading a GenericDeviceAgent onto

the device running Winamp, and instructing it to interface with the WinampDeviceDef

class.

The GenericDeviceAgent instantiates a WinampDeviceDef and obtains basic infor-

mation about the device such as its name, icon, functions, state, and help text.

Based on this information, the GenericDeviceAgent inserts advertisement, state,

and help text tuples into its tuple space using the local out operation, which the

UniversalRemoteAgent reacts to and uses to create its display.

When the UniversalRemoteAgent alters the state of a device (such as by toggling a

button), it creates an ActionTuple that describes the change and inserts it into the

device’s local tuple space using the remote out operation. The GenericDeviceAgent

reacts to this tuple and notifies the WinampDeviceDef, which handles the change

(such as by pausing the song if the pause button was toggled) and passes any

change to the device’s state (such as that the pause button is now lit) back to the

GenericDeviceAgent. The GenericDeviceAgent then encapsulates the information

in a StateTuple and inserts it into its local tuple space using the local out opera-

tion. The UniversalRemoteAgent reacts to this StateTuple and updates its display

accordingly.

Aside from the SWT graphics library, no third-party libraries were needed in the im-

plementation of the UniversalRemoteAgent, and no third-party libraries were needed

for the implementation of the device agents aside from libraries specific to each device

(e.g., an X10 communication library for the X10 agent). Further, since Limone uses

a small subset of the Java API, both the client and server could be run on a device

with limited Java support, like a PocketPC.

36

3.6 Chapter Summary

Limone is a lightweight but highly expressive coordination model and middleware

tailored to meet the needs of developers concerned with mobile applications over

ad hoc networks. Central to Limone is the management of context-awareness in a

highly dynamic setting. The context is managed transparently and is subject to

policies imposed by each agent in response to its own needs at a particular point in

time. Explicit manipulation of the context is provided by operations that access data

owned by agents in the acquaintance list. Each agent retains full control of its local

tuple space since all remote operations are simply requests to perform a particular

operation for a remote agent and are subject to policies specified by the operation

manager. This security provision encourages a collaborative type of interaction among

agents. An innovative adaptation of the reaction construct facilitates rapid response

to environmental changes. As supported by evidence to date, the result of this unique

combination of context management features is a coordination model and middleware

that promise to reduce development time for mobile applications.

37

Chapter 4

Agilla: A Mobile Agent

Middleware for Self-Adaptive

Wireless Sensor Networks

Agilla is the first mobile agent middleware to be successfully implemented and evalu-

ated on devices representative of those found in most modern WSNs. It differs from

Limone by focusing on the WSN platform, where devices are embedded and have less

computation, energy, and communication resources by several orders of magnitude.

The limited resources available in WSNs results in Agilla sharing Limone’s objec-

tive of being as lightweight as possible. Designed to support self-adaptive applica-

tions, Agilla provides a programming model in which applications consist of evolving

communities of agents that share a WSN and coordinate through device-level tuple

spaces. Agents can dynamically enter and exit a network and can autonomously clone

and migrate themselves in response to changes in the environment. Prior to Agilla,

WSNs usually ran statically-installed software, limiting their flexibility. Using Agilla,

a WSN is deployed with no pre-installed application. Instead, users inject mobile

agents that spread across nodes performing application-specific tasks. Each agent is

autonomous, allowing multiple applications to share a network. Implemented on top

of TinyOS [73], a popular event-based operating system used in WSNs, Agilla’s fea-

sibility and efficiency was demonstrated by experimental evaluation on two physical

testbeds consisting of Mica2 and TelosB WSN devices. In addition, Agilla’s ability to

support self-adaptive WSN applications has been demonstrated in the context of sev-

eral applications including fire detection and tracking, monitoring cargo containers,

and robot navigation.

38

4.1 Motivation

Prior to discussing the details motivating Agilla, first consider the following example

scenario demonstrating the need for a framework supporting self-adaptive applica-

tions.

In the remote arid forests of central Arizona, an ember glows in a

fire pit left by a careless hiker. A slight wind gives new life to the embers

while pushing dry leaves into the pit. The leaves start to burn and the fire

grows. After months of drought and years of accumulating underbrush,

the fire finds plenty of fuel and quickly spreads with the prevailing winds.

The remoteness of the region would allow the fire to burn undetected for

hours, virtually ensuring that it will soon rage out of control eventually

turning into a giant fire storm. Fortunately, the USDA Forest Service had

recognized this area as highly incendiary and deployed a WSN for detect-

ing fire. As the fire grows, nearby sensors quickly detect it and spawn

tracking agents that swarm around the fire, collecting information about

the exact location of the flames. The tracking agents form a dynamic

perimeter jumping away from the fire as it draws too near, and cloning

themselves onto neighbors to encompass the growing fire. Simultaneously,

they notify a base station that forwards the warning via the Internet to

the nearest fire fighters a hundred miles away. By the time they arrive,

the entire region is engulfed, burning with such intensity so as to be seen

and felt from miles away.

The fire fighters act quickly and make it their first priority to evacuate

the area. They inject search-and-rescue agents into the network that

spread and repeatedly clone themselves, scouring the region looking for

lost hikers trapped by the flames. Some of these agents find a group of

children and coordinate with the other agents to form a path of greatest

safety that the rescuers, carrying PDAs to access the path information,

use to reach the children and bring them to safety. Once everyone is

safe, the fire fighters query the tracking agents for the precise location

and dynamics of the fire. From this data, they are able to predict the

fire’s behavior and strategically control its movements, preventing it from

39

approaching populated areas where property can be damaged and people

injured.

As the fire dies and shifts positions, additional sensors are dropped

from airplanes in the regions previously engulfed to make up for lost nodes.

Within seconds, the existing agents discover the new nodes and clone

themselves onto them. Once the fire has died and the network has been

replenished, the application enters a low-overhead state where the tracking

agents also die leaving only small fire detection agents that periodically

search for fire. The minuscule amount of resources consumed by these

agents allow other applications to run, which biologists take advantage of

by injecting state-of-the-art habitat monitoring agents for learning about

the life cycle of coyotes.

As clearly shown by the scenario just presented, WSN applications must adapt to

changes in the physical environment because WSNs are embedded in and responsible

for monitoring a highly dynamic world. In the aforementioned scenario, the WSN

responsible for tracking wildfire must adapt to changes in the wildfire’s position.

Another example is a WSN that provides a robot with extended situational awareness.

In this case, it must adapt to the movements of the robot. New programming models

and middleware are needed to support application self-adaptability within WSNs.

To address this need, Agilla is a middleware specifically designed to support self-

adaptive applications in WSNs. Agilla structures an application as one or more mobile

agents, which are special processes that can explicitly migrate or clone from node to

node while maintaining their state. To ensure that agents remain autonomous while

enabling inter-agent coordination, Agilla provides localized device-level tuple spaces

that are remotely accessible. This allows agents to freely migrate while remaining

able to coordinate with other agents.

Agilla’s programming model, unique to those targeting WSNs, enables higher degrees

of application self-adaptability. By facilitating agent migration, an application can

restrict itself to reside only on relevant nodes. As the environment changes, the

application can self-adapt by migrating its agents to positions that best fulfill its goals.

Moreover, since tuple spaces facilitate spatiotemporal decoupling between agents,

each agent can be replaced without affecting the other agents in the network. This

40

allows the set of mobile agents belonging to an application to evolve, enabling the

application to adapt to changing requirements.

This chapter presents Agilla’s programming model and the various engineering deci-

sions that tailor Agilla to the WSN environment. Specifically, it makes the following

primary contributions.

• Agilla enables for the first time the use of mobile agents and tuple spaces as

fundamental programming models for self-adaptive applications in WSNs.

• Agilla includes the first implementation of a system supporting mobile agents

and inter-agent coordination in highly resource-constrained wireless sensor plat-

forms. Agilla’s middleware implementation consumes only 57KB of code and

3.3KB of data memory on Mica2 platforms, and 45KB of code and 3.4KB of

data memory on TelosB platforms.

• The efficiency of Agilla is evaluated via experiments on two physical WSN

testbeds. The results show that Agilla agents can reliably migrate one hop

every 0.3 seconds and perform remote tuple space operations within 55ms on

the Mica2 platform, which is sufficiently fast for many WSN applications.

• The generality and efficacy of the Agilla programming model for self-adaptive

applications is demonstrated via three application case studies. They include

wildfire tracking, cargo tracking, and robot navigation.

Mobile agents have previously been considered for use in WSNs. For example, mo-

bile agents can perform certain operations like data integration [148, 149, 150] and

tracking [167] better than traditional client/server message-passing mechanisms, and

can be made energy efficient [117, 166]. While these efforts promote the use of mo-

bile agents in WSNs, they were not actually deployed or evaluated in a real WSN.

Instead, they were evaluated theoretically, in simulation, or using networks consisting

of relatively resource-rich devices more akin to those found in MANETs.

Agilla is the first system to bring the mobile agent programming model into a real

WSN. By integrating the mobile agent and tuple space programming models, Agilla

41

enables applications to be locally and autonomously self-adaptive. The Agilla pro-

gramming model and middleware architecture meet the challenges unique to WSNs,

e.g., severe resource constraints and unreliable wireless connectivity. The novel spe-

cialization of the mobile agent and tuple space programming models combined with a

careful engineering effort resulted in the working Agilla middleware system described

in this chapter.

4.1.1 Adaptation through In-network Reprogramming

As previously mentioned, a primary objective of Agilla is to facilitate the creation

of adaptive WSN applications. One traditional approach for WSN adaption is to

reprogram it over the wireless network. Systems that enable this can be divided based

on what is reprogramed, i.e., native code, interpreted code, or both. Two systems that

reprogram native code are Deluge [77] and MOAP [163]. They are designed to transfer

large program binaries, enable the network to be arbitrarily reprogrammed, but incur

high overhead and latency. To address this, SOS [68], Contiki [48], and Impala [107]

are systems that enable partial reprogramming of binary code by providing a micro-

kernel that supports dynamically linked modules. Since modules are relatively small,

the cost of reprogramming is lower. Other systems that reprogram native code limit

overhead by only sending the changes as determined by the diff [151] and rsync [82]

algorithms.

Systems that reprogram interpreted code include Maté [98], application-specific vir-

tual machines (ASVM) [99], Melete [185], and SensorWare [25]. In Maté and its

successor, ASVM, applications are divided into capsules that are flooded throughout

the network. Each node stores the most recent version of a capsule and runs the

application by interpreting the capsules using a virtual machine (VM). Since capsules

are flooded throughout the network, Maté and ASVMs are installed network-wide.

Melete improves upon Maté by enabling multiple applications to co-exist within a

sensor network. It does this by providing groups of capsules in which each group con-

tains a different application. SensorWare allows users to dynamically inject mobile

scripts into the network, enabling multiple applications to run concurrently. Sensor-

Ware scripts only provide weak mobility, i.e., they must restart after each migration,

and the system was implemented for the relatively powerful iPAQ 3670 platform.

42

Strong mobility, in which a script maintains execution state across nodes, is useful

in simplifying application code when the application requires computations to span

multiple devices.

Hybrid systems that reprogram both native and interpreted code include VM∗ [90]

and dynamic virtual machine (DVM) [13]. Both systems allow the instruction set to

change, but do not focus on how applications adapt.

The aforementioned reprogramming systems share a common feature: the decision on

when and where to reprogram the network is determined centrally at a base station,

often by a human operator. In contrast, Agilla provides a fundamentally different

programming model based on mobile agents and tuple spaces that are especially well-

suited for self-adaptive applications in WSNs. Mobile agents can make adaptation

decisions locally and autonomously within the network via migration (i.e., moving

and cloning). Since network nodes are directly exposed to the environment, they

can more quickly detect changes and better determine when software adaptation is

necessary.

The remainder of the chapter is organized as follows. Section 4.2 presents Agilla’s

model and explains how it is tailored to WSNs. Section 4.3 discusses the various

engineering tradeoffs necessary to cope with limited resources and an unreliable net-

work. Section 4.4 presents the experimental results on Agilla’s performance in terms

of micro and macro-benchmarks. Section 4.5 discusses the use of Agilla to implement

a fire detection and tracking application. Section 4.6 discusses how Agilla is used

to guide a robot around dangerous areas by augmenting its onboard sensors. Sec-

tion 4.7 discusses how Agilla is integrated with Limone to create a platform in which

mobile agents can traverse multiple WSNs. Finally, a chapter summary is given in

Section 4.8.

4.2 Programming Model

Agilla’s model, shown in Figure 4.1, is designed to facilitate adaptive behavior within

a WSN. Each node supports multiple autonomous mobile agents that can move or

clone across nodes while carrying their state. Mobile agent interactions are facilitated

43

Node (1,1)

Tuple SpaceNeighborsNeighbors

Node (2,1)

NeighborsNeighbors

migration

remote
access

Tuple Space

Figure 4.1: The Agilla model. Each node in the network maintains a node neighbor
list, a discrete local tuple space, and multiple mobile agents. The mobile agents are

able to migrate between nodes, and access the tuple spaces belonging to remote
nodes.

by two basic data abstractions on each node: a neighbor list and a tuple space. Agilla

provides support for both local and remote tuple space operations. Furthermore, it

provides specialized reaction primitives that enable agents to efficiently respond to

changing state. Since the spatial orientations of WSN nodes are significant, Agilla

addresses them by their location, which allows applications to focus on their objective

(e.g., sense a phenomena at a particular location). Each of these features are described

later in this section.

Agilla’s model is designed for localized adaptation like fire tracking. It is not meant for

data collection applications that require deployment across the entire WSN. Agilla is

especially suitable for handling situations in which local decisions would significantly

reduce the amount of data wirelessly transmitted. For example, in a fire tracking

application, allowing mobile agents to autonomously and locally adapt to the changing

location of the fire prevents having to coordinate the application from a base station.

At the same time, it prevents the application from needing to be deployed on every

node in the network.

44

4.2.1 Mobile Agents

Mobile agents are special processes that can autonomously migrate across nodes. Ag-

illa provides two forms of migration, strong and weak, to support diverse application

needs for self-adaptation. Strong migration transfers both the code and state, al-

lowing the agent to resume execution at the destination. It is useful for performing

computations that span multiple nodes. Weak migration only migrates the code. It

exhibits less overhead since the state does not need to be transferred, but resets the

agent.

When an agent migrates, it can either clone or move. If an agent is cloned, a copy

of it arrives and starts executing at the destination while the original one resumes on

the original node. If an agent is moved, it will no longer exist on the original node

after it arrives at the destination.

An agent’s life cycle begins when it is either injected into the network from a base

station, or cloned from another agent already in the network. Each agent executes au-

tonomously, performing application-specific tasks, and multiple agents may reside on

the same node. When an agent completes its tasks, it dies, freeing the computational

resources it used.

4.2.2 Tuple Space

Agilla provides a tuple space [57] on each node, as shown in Figure 4.1. A tuple space

is a type of shared memory in which data is structured as tuples that are accessed

via pattern-matching. This enables a decoupled style of communication in which the

sender and receiver need not agree on a shared memory address, or even coexist,

for communication to occur. Using tuple spaces, agents can function autonomously

and migrate freely while still being able to communicate. It is further motivated

by the fact that WSN applications continuously evolve and the agents may change

over time, meaning a particular agent may not know with which other agents it must

communicate.

45

A tuple space in Agilla does not span multiple nodes to avoid the overhead of keeping

it consistent in a dynamic environment and to ensure scalability. If a shared data

abstraction spanning multiple nodes is necessary, it must be built on top of Agilla’s

primitives. Although a tuple space is contained on a single node, it can be accessed

by agents locally and remotely, and it is augmented with reactions that enable agents

to efficiently respond to changes in the tuple space state. Agilla tuple spaces also

provide a convenient way for agents to discover properties of their environment. This

is necessary because agents move and will encounter unfamiliar environments.

Agilla tuple spaces are accessible to agents residing on the same node via local oper-

ations, and to agents residing on different nodes using remote operations.

Local operations. An agent can save a tuple in the tuple space using the operation

out, and can either remove a tuple using the operation in or read a tuple using

operation rd (tuple space operations are named relative to the agent). The last two

operations are blocking; they will wait until a matching tuple appears before allowing

the agent to continue executing. Sometimes an agent may want to simply check

whether a certain tuple exists and not block. To enable this, Agilla also provides

probing operations inp (probing in), and rdp (probing rd). These operations are

identical to in and rd except instead of blocking, they return null if a matching

tuple does not exist.

All tuple space operations are performed atomically. This is feasible because a tuple

space resides on a single node. A queue is used to serialize the operations, ensuring

atomicity. If an operation blocks, it is placed in a separate wait queue to allow other

operations to execute. When a tuple is inserted into the tuple space, the operations in

the wait queue are placed in the regular queue, enabling them to search for a match.

Thus, blocking operations are atomically executed at the time a matching tuple is

found.

Remote operations. Agilla provides remote tuple space operations to enable agents

residing on different nodes to communicate. They include remote versions of all non-

blocking local operations, plus two special group operations, routg (remote group

out) and rrdpg (remote probing group rd), that operate on all neighboring nodes.

Remote operations are non-blocking to prevent an agent from deadlocking due to

message loss.

46

Most remote tuple space operations rely on unicast communication. These operations

are highly efficient since they only entail one network round trip, a request and a

reply. If an underlying multi-hop networking service is available, these operations

may be performed on tuple spaces residing on nodes multiple hops away. The only

exceptions are the group operations, which use single-hop broadcast. This is feasible

since wireless is a broadcast medium. Group operations are performed on a best-effort

basis.

Reactions. Reactions provide interrupt semantics and consist of a template and a

call-back function, which is executed when the reaction fires. Prior to firing, a reaction

must first be activated by a matching tuple in the local tuple space. When a reaction

fires, a copy of the matching tuple is given to the agent, and the agent executes

the reaction’s call-back function. Reactions allow an agent to indicate its interest in

tuples that match a particular template. They persist across agent migrations, but

do not maintain history across migrations. Thus, if an agent migrates away and then

back, it will re-react to all matching tuples in the local tuple space. From experience

developing applications on top of Agilla, this occurrence of re-reacting to the same

tuples is either useful or rare depending on the purpose of the reaction. For example,

in the fire tracking application, a reaction that is used to detect the presence of fire

should re-react each time the agent moves within range of the fire. However, if the

reaction is used for communication purposes, like notifying a tracking agent of where

the fire is located, the tuple itself is removed during the execution of the reaction’s

call-back function, preventing the reaction from re-reacting to the same tuple.

Agilla reactions can only react to tuples in the local tuple space. In addition, to

conserve memory, the call-back functions are not executed atomically relative to ac-

tivation. In Agilla, reactions eventually fire as long as the matching tuples remain

within a tuple space. While it is possible for a tuple to be inserted and removed with-

out a reaction firing, adopting these weaker semantics reduces middleware complexity

and overhead, which is necessary given the limited resources on a WSN node.

47

4.2.3 Location-Based Addressing

The spatial orientation of WSN nodes is important because they are embedded within

the environment. To capture this, Agilla enables nodes to be addressed by their lo-

cation, assuming such information is available. Thus, instead of performing a rout

on node 1, an agent performs it on a node at location (x, y). This simplifies pro-

gramming by allowing the developer to focus on what an agent does (e.g., measure

the temperature at location (x, y)) rather than how it does it (e.g., perform a search

for the node at location (x, y), then measure the temperature at that node). The

location coordinate system must ensure that every node has a unique address. If

there is no node present at a particular location, an acceptable error bound must be

specified. Agilla primitives can be generalized to enable operations on a region. For

example, a fire detection node may need to clone itself onto all or at least one node

in a particular geographic area.

The determination and selection of a destination location is application-specific and

must be specified by the application developer. For example, in an application that

detects forest fires, the agents may perform a random walk. In another application

involving a robot using mobile agents to discover its surroundings, the mobile agents

may be restricted to the region surrounding the robot. The decision on how agents

migrate impacts performance and should be a design criteria when developing an

application. As a generic framework for developing WSN applications, Agilla does

not control application-specific behavior like agent migration patterns.

The use of location-based addressing does not conflict with data-centric WSN applica-

tions [79]. Data centric applications route based on content. The same behavior can

be achieved using agents and tuple spaces. Specifically, agents can be programmed to

analyze a tuple and send the tuple to a particular neighbor based on its content. Ag-

illa provides location-based addressing because agents control their own movements

and the most natural and meaningful way to specify a destination is by location.

Location information can be obtained using GPS or various in-door localization sys-

tems [155, 76, 70, 164]. Obtaining location information does incur costs. If the cost is

too high, Servilla application can optionally address nodes by their network address.

48

1: BEGIN pushn fir
2: pusht LOCATION
3: pushc 2 // tuple <‘fir’, type:location> on stack
4: pushc FIRE // push reaction callback address
5: regrxn // register fire alert reaction
6: wait // wait for reaction to fire
7: FIRE pop
8: sclone // strong clone to the node that detected the fire
9: ... // fire tracking code

Figure 4.2: A portion of the FireTracker agent

4.2.4 Example

Figure 4.2 shows a portion of a FireTracker agent that notifies it of a fire’s location.

To reduce code size, Agilla agents utilize a stack architecture. Thus, the various push

instructions shown on lines 1-4 place items on the stack. The agent first registers a

reaction sensitive to tuples containing the string “fir” and a location, and waits for

the reaction to fire (lines 1-6). When a fire is detected, a matching tuple is inserted

into the tuple space, causing the agent to execute the code beginning on line 7.

Using the location stored within the tuple, the agent clones itself onto the node that

detected the fire (line 8), and proceeds to form a dynamic perimeter around the fire.

Note that FireTracker agents only reside on the nodes that are within the fire’s

vicinity, minimizing resource utilization. This differs from traditional deployments in

which the application is installed onto every node in the network.

While Agilla agents are written in an assembly-like language, developing a higher-

level language is a relatively straightforward extension of existing WSN scripting

languages like TinyScript [97]. For example, TinyScript supports functions, which is

a convenient way to access Agilla operations. Thus, instead of writing the instruc-

tions shown on lines 1-5 of Figure 4.2 that register a reaction, a high-level language

modeled after TinyScript could execute a function like registerReaction(FIRE,

〈”fir”,TYPE:LOCATION〉). The reason why a higher-level language is not provided

by Agilla is because the main contribution of Agilla is not the programming language,

but rather the programming model.

49

4.2.5 Scalability

Wireless sensor networks have the potential to grow in size [128], making scalability

an important attribute to consider. In fact, one reason Agilla maintains a separate

tuple space on each node is to ensure scalability. While scalability ultimately depends

on the way an application is designed, Agilla encourages scalable designs by promot-

ing localized interactions between agents via single-hop neighbor lists on each node.

Using this neighbor list and per-node tuple spaces, application algorithms must be

designed to only use local knowledge and interactions, thus ensuring scalability. For

example, in the fire tracking application, each FireTracker agent only needs to

check its clockwise and counter-clockwise directions to form a perimeter around the

fire. Complex application-wide behaviors like dynamic perimeter formation emerge

through these simple local decisions. This phenomena is characteristic of swarm-like

systems that exist for other types of networks [11]. Agilla provides a platform on

which these distributed algorithms can be implemented.

4.2.6 Adaptation to Node Failures

Node failures are a frequent occurrence in wireless sensor networks. When a node

fails, all tuples and mobile agents residing on that node are permanently lost. While

this may cause application failure, Agilla provides the capability for applications to

self-heal. Specifically, an application can self-heal by cloning or moving its agents onto

the replacement node when it is installed. Unlike other in-network reprogramming

systems, Agilla gives application developers control over the self-healing process. For

example, in the fire tracking application, a node will fail when it catches on fire. The

FireTracker agent self-heals by detecting this failure and cloning itself around the

failed node to ensure the integrity of the perimeter. Note that in other systems like

Trickle [101] and Deluge [77], the developer has less control since the application is

always flooded throughout the entire network.

50

Table 4.1: Memory Availability and Size of Agilla

Available Agilla
Platform ROM RAM ROM RAM

Mica2 128K 4K 57K 3.3K
TelosB 48K 10K 45K 3.4K

4.2.7 Security

Security is important to some applications of WSNs [141]. Mobile agents can in-

troduce security risks due to their mobility. Existing techniques can be used to

achieve various levels of security in Agilla. For example, wireless transmissions can

be encrypted [85], and each agent can be enclosed within a “sandbox” [143]. More

advanced techniques that are particularly useful in validating untrusted mobile code

include code verification [35] and proof-carrying code [129]. The current implementa-

tion of Agilla does not integrate all of these mechanisms, but they can be integrated,

assuming sufficient resource availability, to achieve the desired level of security.

4.3 Implementation

Agilla’s middleware is designed to meet the unique challenges of WSNs like severe

resource constraints and unreliable wireless networks. This section first presents the

target platform, then describes Agilla’s middleware architecture followed by its in-

struction set architecture.

4.3.1 Target Platform

Agilla was initially implemented on Mica2 nodes [38], which have an 8-bit 7.38MHz

Atmel ATmega128L microprocessor and a Chipcon CC1000 radio transceiver. The

radio communicates at up to 38Kbps over a range of up to 100m [186]. The nodes

have only 128KB of ROM and 4KB of RAM. Since its initial implementation, Agilla

has been ported to the MicaZ [39], Tyndall 25mm [170], and TelosB [144] nodes,

which have similar characteristics to the Mica2.

51

Neighbor List

Agent Sender Agent Receiver

Figure 4.3: Agilla’s middleware architecture

The severe resource constraints of WSN nodes require that Agilla be carefully en-

gineered. While the operating system does not affect Agilla’s basic programming

model, it does affect the implementation. Agilla can be implemented on many dif-

ferent operating systems. For this study, TinyOS [73] is used. TinyOS does not

support binary module updates like Contiki [48] or SOS [13]. However, this ability

is complementary to Agilla and may enhance Agilla’s flexibility. Through the careful

engineering described in this section, Agilla was able to fit in the limited resources

available, as shown in Table 4.1. Note that, due to limitations imposed by TinyOS,

all memory is statically allocated. Thus, Table 4.1 lists the total amount of memory

consumed by both the middleware and the potential applications executing on top of

the middleware.

4.3.2 Middleware Architecture

Agilla’s software architecture is divided into three layers, as shown in Figure 4.3. The

highest contains the agents and is discussed further in Section 4.3.3. The middle

contains the core Agilla middleware components, while the bottom is the operating

system.

The middleware consists of several components that are orchestrated by an Agilla

Engine, which is the virtual machine (VM) kernel that controls the concurrent ex-

ecution of all agents on a node. It implements a round-robin scheduling policy. If

52

Type Size (Bytes) Content
State 16 agent id, program counter, code size,

condition code, stack pointer
Code 26 one instruction block
Heap 26 four variables and their addresses
Stack 26 four variables

Reaction 26 one reaction

Figure 4.4: Messages used during migration

an agent executes a long-running instruction like sleep, sense, or wait, the engine

immediately switches agents.1 The VM’s scheduler is implemented as a TinyOS task

that is continuously posted. Each time the task is posted, it executes one instruction.

By switching agents in a round-robin fashion, the effect is concurrent execution of

all agents. Note that this design is due to TinyOS’s execution model, which is based

on tasks. If Agilla were implemented on an operating system supporting threads like

Contiki or SOS, the VM scheduler could be replaced by multiple concurrent threads

each executing a different agent.

The Agilla Engine also handles agent arrival and departure. When an agent migrates,

Agilla divides it into multiple types of messages as shown in Figure 4.4. The message

sizes are based on restrictions imposed by TinyOS’s network stack and do not limit

the size of an agent. Multiple messages will be used if necessary. For example, if an

agent has 30 bytes of code, two code messages will be used.

The highly unreliable nature of WSN wireless links may prevent agents from reliably

migrating. This is a problem since a WSN application may fail or perform poorly if it

looses an agent. To address this problem, an agent is migrated one hop at a time, and

is acknowledged after each hop. This technique is used by other transport protocols

within WSNs to increase reliability [173], but they focus on packet communication in

general while Agilla applies the approach to agent migration in particular.

When an agent fails to migrate, it resumes on the sender node with an error flag

set. The agent can then perform an application-specific response. While this may

result in duplicate agents when the migration was actually successful, the possibility

of duplicate agents is usually preferable to losing an agent. Consider the fire detection

1A large body of work exists on scheduling policies that provide real-time guarantees or multiple
priority levels [162]. These advanced scheduling policies may be incorporated into the Agilla Engine,
assuming sufficient resource availability.

53

application; it is better to have duplicate fire warnings rather than no warnings at

all. Of course, having duplicate agents wastes resources. To address this, agents

can be programmed to detect when a certain number of identical agents are present

and terminate when this threshold is reached. Note that when an agent attempts to

migrate a long distance, the agent may be resumed in the middle due to migration

failure. The programmer must determine what to do in this situation.

The Agilla Engine is supported by several components including the Agent, Code,

Context, Tuple Space, and Reaction Managers. Each manager provides a unique

service that collectively forms Agilla’s middleware. The Agent Manager maintains

agent execution state. The Code Manager dynamically allocates code memory for

each agent, and fetches instructions as the agent executes. The Context Manager

keeps an updated list of neighboring nodes. The Tuple Space Manager maintains

the local tuple space and implements the non-blocking operations (both local and

remote). Finally, the Reaction Manager stores the reactions registered by the local

agents and determines when a reaction should fire.

Agilla’s middleware is highly optimized to reduce memory consumption. Optimized

components include the Context, Tuple Space, and Reaction Managers. The Con-

text Manager uses a simple beaconing mechanism for neighbor discovery. Provided

enough resources and application requirements, more advanced protocols may be im-

plemented [178, 176, 180]. The Tuple Space Manager does not implement blocking

operations, which are implemented within the instructions themselves as described in

Section 4.3.4. The Reaction Manager operates asynchronously with the Tuple Space

Manager. This simplification reduces memory consumption, but weakens the seman-

tics of reactions slightly by only ensuring that a reaction will eventually fire provided

the matching tuple remains in the tuple space.

4.3.3 Agent

The architecture of an Agilla mobile agent is shown in Figure 4.5. It consists of a

stack, heap, and various registers. A stack architecture is used to enable higher code

density. Most Agilla instructions are a single byte. By default, the operand stack is

54

Figure 4.5: The mobile agent architecture

105 bytes, which is small enough to fit on the Mica2 platform. The heap is a random-

access storage area that allows each agent to store 12 variables. It is accessed by

instructions getvar and setvar. The operand stack and heap sizes are customizable

based on memory availability.

The agent also contains three 16-bit registers: the agent’s unique ID, the program

counter (PC), and the condition code. The agent ID is unique and is maintained

across move operations. A cloned agent is assigned a new ID. An agent ID is generated

by concatenating the least significant byte of the host address with a monotonically

increasing counter on the host.2 The PC is the address of the next instruction. Finally,

the condition code is a 16-bit register that records execution status. In addition

to recording the results of comparison instructions, this register records whether a

migration operation is successful, whether the agent is the original or clone, and if it

failed, why.

4.3.4 Instruction Set Architecture (ISA)

Agilla’s ISA is tailored to the unique properties of self-adaptive WSN applications

(e.g., localized interactions), and to the mobile agent computing model (e.g., agent

migration and the need for context information). Some of Agilla’s unique instructions

that achieve this are presented in Figure 4.6. A full listing is available on Agilla’s web-

site [52]. Agilla’s ISA can be divided into four categories: general purpose, extended,

tuple space, and migration. General-purpose instructions enable agents to perform

2Our current implementation assumes a maximum of 256 nodes and that each node may clone
up to 256 agents. Future implementations that require higher limits may increase the size of the
AgentID, or implement a mechanism that recycles old agent IDs belonging to agents that have
have already died. To prevent duplicate IDs due to node failure, the counter can be stored in flash
memory and restored when the node reboots.

55

Instruction Description
loc Pushes the current location onto the stack
aid Pushes the agent’s ID onto the stack

numnbrs Pushes the number of neighbors onto the stack
wait Stops agent execution, allows it to wait for a reaction
sleep Sleeps for the value * 8 ms
smove Strong move
wmove Weak move
sclone Strong clone
wclone Weak clone
getnbr Get a specific neighbor’s address
randnbr Get a random neighbor’s address
out Insert a tuple into the local tuple space
inp Non-blocking find and remove tuple from the local tuple space
rdp Non-blocking find tuple in tuple space
in Blocking find and remove tuple from tuple space
rd Blocking find tuple in the local tuple space
rout Insert a tuple into a remote tuple space
rinp Non-blocking find and remove tuple from a remote tuple space
rrdp Non-blocking find tuple in remote tuple space

regrxn Register a reaction on the local tuple space
deregrxn Deregister a reaction on the local tuple space

Figure 4.6: Noteworthy Agilla instructions

basic tasks like obtaining the neighbor list, sensing, periodically sleeping to conserve

energy, and continuously repeating certain application-specific operations. Extended

instructions are application-specific. They enable an agent’s efficiency to be signifi-

cantly increased by changing the virtual-native code boundary [99]. For example, in

the fire tracking agent, a helpful instruction is one that determines which neighbors

are on fire. Defining an extended instruction requires the application developer to

implement the instruction and wire it into the VM. Since TinyOS does not support

dynamically linked modules, adding an extended instruction can only be done offline.

The remainder of this section discusses the tuple space and migration instructions.

Tuple space instructions. Tuple space operations allow an agent to interact with

the tuple space on each host. These operations require a tuple or template parameter.

This is done by pushing each field followed by the number of fields onto the stack.

For example, in Figure 4.2, lines 1-3 push a template with two fields onto the stack.

Instructions out, in, rd, inp, and rdp access the local tuple space. The blocking in

and rd operations are implemented by having the agent repeatedly try the probing

56

inp or rdp operations. If no matching tuple is found, the agent is stored in a wait

queue. When a tuple is inserted, the agents in this queue are notified and re-check

for a match. The remote tuple space operations rout (remote out), rinp (remote

probing in), rrdp (remote probing rd), routg (remote group out), and rrdpg (re-

mote probing group rd) are non-blocking to avoid deadlock due to message loss and

disconnection. The group operations are done in a best-effort basis using wireless

broadcast. Applications must be engineered with these best-effort semantics in mind.

rrdpg relies on a time-out to determine when to stop waiting for replies. The tuple

space instructions also include regrxn (register reaction) and deregrxn (de-register

reaction).

Migration instructions. Migration instructions allow an agent to move or clone

to another node. Agilla provides four migration instructions: smove (strong move),

wmove (weak move), sclone (strong clone), and wclone (weak clone). Strong opera-

tions transfer both the state and code, while weak operations only transfer the code.

As mentioned in Section 4.2.1, strong migrations are more powerful since they allow

an agent to resume where it left off prior to migrating, but incur higher overhead.

Weak migrations are more efficient, but force agents to resume from the beginning

upon arrival at the destination.

4.4 Micro-benchmarks

This section presents micro-benchmarks demonstrating feasibility of Agilla’s program-

ming model in resource-constrained WSNs.

4.4.1 Micro-Benchmarks

The following micro-benchmarks are performed on a network of 25 Mica2 nodes ar-

ranged in a 5x5 grid. To achieve a multi-hop network, messages are filtered based on

the grid topology. Geographic routing [88] is used for remote tuple space operations

and agent migrations.

57

// The smove agent
1: pushloc 5 1
2 smove // move to node (5,1)
3: pushloc 1 1
4: smove // move to node (1,1)
5: halt

// The rout agent
1: pushc 1
2 pushc 1 // tuple <value:1> on stack
3: pushloc 5 1
4: rout // do rout on node (5,1)
5: halt

Figure 4.7: The agents that test smove (top) and rout (bottom)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5

Pe
rc

en
t S

uc
ce

ss

Number of Hops

rout
smove

Figure 4.8: smove vs. rout reliability

0

200

400

600

800

1000

1200

1 2 3 4 5

La
te

nc
y

(m
s)

Number of Hops

rout
smove

Figure 4.9: smove vs. rout latency

58

To test migration and tuple space operations, the agents shown in Figure 4.7 are used.

The strong move (smove) agent moves to a remote node and back while the remote

out (rout) agent places a tuple in a remote node’s tuple space. The distance between

the original and destination nodes is varied from 1 to 5 hops and each experiment

is repeated 100 times. The latency of each successful execution and the number of

failures are recorded. The results, shown in Figures 4.8 and 4.9, indicate that as the

distance increases, the probability of message loss also increases, which is reflected in

a decrease in reliability. The reason rout is less reliable than smove is because, in

these experiments, rout does not use ARQs for retransmitting lost packets. Note that

confidence intervals are not given in Figure 4.8 since it shows the percent success across

all experimental rounds. Figure 4.9 contains 95% confidence intervals calculated over

the successful rounds (the error margins are difficult to see because they are so small,

i.e., ±3.09ms for rout and ±43.79ms for smove).

The one-hop latencies of all remote operations are measured by timing each 100 times

and finding the average. The results, shown in Figure 4.10, are similar to that for

rout and smove and show that the agent migration instructions have higher overhead

than the remote tuple space operations. The figure also shows that the strong and

weak migration operations have approximately the same latency. This is because

the additional overhead of transmitting a few more packets containing the agent’s

state is small relative to the cost of performing hop-by-hop migration. Note that

the migration latencies have higher variance due to the use of ARQ. The results

suggest that an agent can reliably migrate one hop every 0.3s on the Mica2 platform.

Assuming the radio range is 50m, this means an agent can migrate across a network

at 600km/h (373mph), which is sufficient for tracking many interesting phenomena

like fire.

Local operations unique to Agilla are also benchmarked. Each local instruction is

benchmarked 100 times, and the average execution time is calculated. The results,

shown in Figure 11, indicate that local operations execute quickly relative to remote

operations. We did not directly compare Agilla’s instructions with other WSN VMs

like Maté [98] because many of Agilla’s instructions are higher level and do not have a

corresponding instruction against which to compare. However, the latency of simpler

Agilla instructions that execute within 100µs like get location (loc) and get agent ID

(aid) are comparable to corresponding Maté operations [98].

59

0

50

100

150

200

250

300

rou
t

rin
p

rrd
p

sm
ov
e

wm
ov
e
sc
lon
e

wc
lon
e

La
te

nc
y

(m
s)

Figure 4.10: Remote operation lantency

50

150

250

350

450

lo
c

ai
d

nu
m

nb
rs

ra
nd

nb
r

ge
tn

br

pu
sh

rt
pu

sh
t

pu
sh

n

pu
sh

cl

pu
sh

lo
c

re
gr

xn

de
re

gr
xn ou

t

in
p

(e
m

pt
y

TS
)

rd
p

(e
m

pt
y

TS
) in rd

tc
ou

nt

La
te

nc
y

(u
s)

Figure 4.11: Local operation latency

In summary, Agilla can perform one-hop remote tuple space operations within 55ms,

and migration operations in 225ms per hop on Mica2 nodes. The migration latency

scales linearly with the number of hops, and the additional overhead for reliable

operations is justified by their resilience to message loss across multiple hops. This

demonstrates the feasibility and efficiency of using mobile agents and tuple spaces in

a WSN.

The remainder of this section compares Agilla with two existing systems that pro-

vide in-network reprogramming, Maté [98] and Deluge [77]. Maté provides a virtual

machine that enables interpreted code updates, while Deluge enables native code up-

dates. Comparing Agilla to Maté and Deluge is not straightforward because of their

fundamentally different programming models. In Maté and Deluge, underlying ser-

vices handle the epidemic dissemination of code throughout the WSN, resulting in

every node running the exact same code. Application developers have no control over

where their code is installed. Agilla takes the opposite approach in which developers

have total control over where their code is installed, since mobile agents explicitly

control their migration patterns. Comparing Agilla to Maté and Deluge requires de-

ploying an application that can be implemented in all three systems. In this case,

the application pseudocode is shown in Figure 4.12. It periodically takes the temper-

ature and notifies the base station if it is above a threshold. Since Maté and Deluge

automatically spread the program throughout the WSN, the Agilla implementation

must do the same, but in the application layer using Agilla’s higher-level primitives.

Note that network-wide reprogramming is not in the spirit of Agilla’s programming

60

1: repeat every second
2: if (temperature > 100C) then
3: toggle red LED
4: send warning to base station
5: else
6: toggle green LED
7: end if
8: end repeat

Figure 4.12: Test program pseudocode

model, and is done only to compare the Agilla middleware’s overhead against that of

Maté and Deluge. Thus, this is not an evaluation of Agilla’s programming model.

The simplest implementation of epidemic code propagation using Agilla is to have an

agent immediately clone itself onto each neighbor upon arrival at a particular node.

This is inefficient since multiple copies of the agent may end up on the same node. To

avoid this, when an agent arrives, it first inserts a tuple containing one field, “mrk”,

into the local tuple space. This tuple indicates that the local node contains the agent.

Then, for each neighbor, it first checks for the presence of this tuple using a remote

probing read (rrdp). If the neighbor already has a “mrk” tuple, the agent does not

migrate to it. This reduces the likelihood that a node will end up with multiple copies

of the agent.

The code size of each implementation is as follows: Maté 26 bytes, Agilla 41 bytes, and

Deluge 24,866 bytes. The sizes of the Maté and Agilla implementations are platform

independent since both are based on virtual machines. The Deluge implementation

is platform-dependent and shows the size on the TelosB platform [144]. The code

sizes indicate that Agilla and Maté are comparable with Agilla taking slightly more

memory due to the application-level implementation of the epidemic spreading pro-

tocol. The Deluge implementation is significantly larger since it includes the entire

TinyOS, which must be re-transmitted each time a new program is deployed. This is

a function of TinyOS, which does not support the dynamic linking of modules. An

implementation on a different operating system like SOS that does support dynamic

linked modules will not require transferring the entire OS, but will most likely result

in larger code size than Maté or Agilla due to the use of lower-level instructions.

To evaluate the performance of the in-network reprogramming systems, a testbed

consisting of 31 TelosB nodes deployed throughout the fifth floor of the computer

61

Figure 4.13: The layout of the WSN testbed consisting of 31 TelosB nodes spread
across 1000 square meters. Red ‘x’ indicate node placement, the green ‘o’ marks the

gateway.

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

0  3  6  9  12  15  18  21  24 

%
 R
ep

ro
gr
am

m
ed

 

Time (seconds) 

Mate 
Agilla 

Figure 4.14: Maté and Agilla
reprogramming rates

0 

20 

40 

60 

80 

100 

95  110  125  140  155  170  185  200 

%
 R
ep

ro
gr
am

m
ed

 

Time (Seconds) 

Figure 4.15: Deluge reprogramming rate

science building at Washington University in St. Louis is used. The testbed’s layout

is shown in Figure 4.13. The TelosB nodes are represented by red ‘x’ marks and the

maximum network distance between any two nodes is three hops. The gateway node

is indicated by the green ‘o’, and is where the application is initially injected. The

testbed is instrumented with 8 Linksys NSLU2 micro-servers that have direct USB

connectivity to every TelosB node in the network and wired Ethernet connectivity to

a central server. This infrastructure is used to record when the application arrives

on each node. For each in-network reprogramming system, the program shown in

Figure 4.12 is injected ten times, and the rate of propagation is recorded. The results

of the experiments are shown in Figures 4.14 and 4.15.

62

1

2

3

Figure 4.16: An overview of the fire detection and tracking application. When a fire
breaks out, detection agents sense the fire (1) and send a message to a base station
(2), which injects a tracker agent into the network (3). This agent migrates to the
fire and clones itself to form a perimeter. The perimeter is continuously adjusted

based on the fire’s behavior.

Figure 4.14 shows that both Agilla and Maté are able to program the network quickly,

with Maté achieving 98 ± 2% coverage within 10s and Agilla achieving 94 ± 6% cov-

erage within 14 seconds. This makes sense since Agilla implements a relatively simple

spreading algorithm at the application level, whereas Maté natively implements the

sophisticated Trickle [101] algorithm. Figure 4.15 shows that Deluge takes signifi-

cantly longer to reprogram the testbed since it has to transfer the entire program and

operating system. It is able to program 90 ± 10% of the network in 185 seconds. The

results show that Agilla and Maté perform comparably, and both are significantly

faster than Deluge.

4.5 Application Case Study: Fire Detection

This section evaluates how Agilla enables developers to create highly adaptive appli-

cations in a dynamic environment. A fire detection and tracking application is used,

as shown in Figure 4.16. In this application, a WSN is deployed in a region suscep-

tible to fires. FireDetection agents are deployed and patrol the network for fires.

When they detect a fire, they notify a FireTracker agent, which moves to the fire

and repeatedly clones itself to form a perimeter. The tracker agents autonomously

adjust their numbers and locations to maintain a perimeter as the fire changes shape.

The remainder of this section presents the implementation and evaluation of the fire

detection and tracking application. The application consists of three types of agents:

Fire agents that emulate fire, FireDetection agents, and FireTracker agents.

63

1: BEGIN pushn fir
2: pushc 1
3: out // insert fire tuple
4: BLINK RED pushc 25
5: putled // toggle red LED
6: pushc 1
7: sleep // sleep for 1/8 second
8: rjump BLINK RED

Figure 4.17: The static Fire agent

1: BEGIN pushn fir
2: pushc 1
3: rdp // Search for fire tuple
4: rjumpc FIRE // jump if fire tuple found
5: SLEEP pushc 8
6: sleep // sleep for 1 second
7: rjump BEGIN // repeat
8: FIRE pop
9: pop // pop off fire tuple
10: loc
11: pushn fir
12: pushc 2 // tuple <“fir”, location>
13: pushloc 1 1 // assume fire tracker is at (1,1)
14: rout // send tuple to fire tracker
15: halt // die

Figure 4.18: A FireDetector agent

Fire Agents

Fire agents emulate fire by inserting the string “fir” into the local tuple space. Fire is

detected by searching for these tuples. Two types of Fire agents are used: static and

dynamic. A static Fire agent does not move and serves as a baseline on how quickly

the FireTracker agent can form a perimeter around a fire. Its code is shown in

Figure 4.17. Lines 1-3 insert the fire tuple, while lines 4-8 continuously blink the red

LED. By monitoring the LEDs, the application’s state is determined. Dynamic Fire

agents model a fire that spreads. It is implemented in a mere 47 bytes of instructions

and is available on Agilla’s website [52].

64

1: REG RXN pushn fir
2: pushc 1
3: pushc RXN FIRED
4: regrxn // register the reaction
5: ... // tracking code omitted
6: RXN FIRED pushc 9
7: putled // turn off LEDs
8: pushn trk
9: pushc 1
10: inp // remove tracker tuple
11: halt // die

Figure 4.19: The reaction registered by the FireTracker agent

Fire Detection Agents

FireDetector agents search for fire tuples, and notify the FireTracker agent when

a fire is found.3 The agent’s code is shown in Figure 4.18. It searches for a fire tuple

once per second (lines 1-7), and inserts a tuple containing its location and the string

“fir” onto the node hosting the FireTracker agent if a fire tuple is found (lines 8-14).

After it notifies the base station, it dies, freeing its resources (line 15).

Tracking Agents

FireTracker agents form and maintain a perimeter around the fire. They insert

a tuple containing the string “trk” into the local tuple space. Each FireTracker

agent periodically checks its clockwise and counter-clockwise neighbors (relative to

the position of the fire) for this tuple. Note that this is possible because Agilla

enables nodes to be addressed by location, meaning the relative position of a neighbor

is known. If they exist, the perimeter is considered intact. Otherwise, the agent

clones itself onto the neighbor that is missing the tuple to reestablish the perimeter.

This is repeated until the perimeter is fully formed. If the perimeter is breached,

the FireTracker agents next to the breach will detect the missing neighbor and

attempt to re-form the perimeter via cloning. Note that perimeter formation is an

emergent behavior based on local decisions, which ensures scalability. The actual

3In a real deployment, fire can be detected using sensors that give more details about the fire. This
would enable more sophisticated fire-tracking algorithms that consider the unique characteristics of
the fire.

65

Rxn Fires

Insert
Tracker
Tuple

Register
Fire

Reaction

Die

Find
Burning

Neighbors

Clone to
non-

burning
neighbor

Rxn Fires
Rxn Fires or

No Fire Present Found

Figure 4.20: The life cycle of a FireTracker agent

(a) (b) (c) (d)

Figure 4.21: The static fire test scenario, the star is the initial position of the
FireTracker agent

code for creating and maintaining this perimeter is omitted due to space constraints

and begins on line 5 of Figure 4.19. It consists of 58 lines of code, and is included

with Agilla’s distribution [52].

If a node hosting a FireTracker agent catches on fire, the FireTracker agent must

die. This is achieved by registering a reaction that kills the agent when a fire tuple

appears. The code for this is shown in Figure 4.19. Lines 1-4 register a reaction

sensitive to fire tuples, while lines 6-11 define the call-back function, which turns off

the LEDs (lines 6-7), removes the tracker tuple (lines 8-10), and kills the agent (line

11).

The life cycle of a FireTracker agent is shown in Figure 4.20. It works by repeatedly

checking whether the perimeter is breached, and cloning itself to re-create the perime-

ter if necessary. The periodic checking allows the perimeter to be adjusted as the fire

spreads, thus achieving self-adaptation. The FireTracker agent was implemented in

only 101 bytes of code, demonstrating the expressiveness of the Agilla programming

model.

66

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9

Time (s)

Pe
rc

en
t o

f P
er

im
et

er
 F

or
m

ed

Scene A
Scene B
Scene C
Scene D
Scene B (5,1)

Figure 4.22: The rate of forming a perimeter around static fires

The FireTracker agent was evaluated using both static and dynamic fires, using the

same network as was used in the micro-benchmarks. For the static fire tests, static

Fire agents are used to form fires of various shapes, and a FireTracker agent is

injected onto a node next to the fire. The time to form a perimeter is recorded. The

types of fires used are shown in Figure 4.21. The starting location of the FireTracker

agent is marked with a black star, and the arrows indicate where the agent must clone

to form the perimeter. Note that in scene B, node (5,1) in the lower-right corner also

has a star. This is to evaluate how the starting location of the FireTracker agent

impacts efficiency.

The results of the static fire tests are shown in Figure 4.22. In most cases the perimeter

is formed within 3 seconds. Scene A took longer because its shape limits the number

of FireTracker agents that can spread in parallel. For example, when a FireTracker

agent is at node (2,2), which is in the lower-left corner, it is the only agent that can

clone to (2,3). To test this, we re-ran scene B with the FireTracker agent initialized

at node (5,1), which is in the lower-right corner. The results, shown in Figure 4.22,

indicate that the initial point of FireTracker significantly impacts performance.

To evaluate Agilla’s ability to maintain a perimeter around a spreading fire, four

FireDetector agents are injected into the network at the positions marked with a

star in Figure 4.23. A dynamic Fire agent is then injected into node (5,5). Note

that FireDetector agents must first detect the fire and notify the FireTracker

67

(1,1) (5,1)

(1,5) (5,5)

Figure 4.23: Dynamic Fire Test
Settings

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80

Pe
rc

en
t P

er
im

et
er

 F
or

m
at

io
n

Time (seconds)

Slow Fire

Fast Fire

Figure 4.24: Dynamic Fire Perimeter
Formation

agent before perimeter formation can begin. The FireTracker agent is initially at

(1,1). Two tests are run: one with a slow Fire agent that spreads one-hop every 7

seconds, another with a fast one that spreads every 5 seconds. The results, shown in

Figure 4.24, indicate that the FireTracker agent does a reasonable job maintaining a

perimeter around the slow fire, but has difficulty with the fast one due to the network

being partitioned by the fire. The reason why both converge to 100% is because as

the fire spreads, the network eventually becomes saturated. While it is true that in

our limited network, every node will eventually be on fire, the FireTracker agents

were able to at least partially form a perimeter long before every node is engulfed.

This case study shows that Agilla provides a convenient programming model for

implementing highly adaptive applications in a dynamic environment. With Agilla,

we created a non-trivial self-adaptive application (fire-tracking) with minimal effort,

while achieving sufficient application-level performance.

4.6 Application case study: Robot Navigation

Consider a robot that needs to travel through a region while avoiding fires, as shown

in Figure 4.25. Since the robot’s on-board sensors have limited range, it uses the WSN

and a navigation service [22] to find a safe route around the fire. To ensure efficiency,

the possible routes are restricted to those on a roadmap [19], which is shown as an

68

Figure 4.25: The robot navigation problem. A roadmap graph is overlaid on the
WSN and mobile agents are used to query the temperature along the edges, which

helps the robot navigate around the fires.

overlay graph in Figure 4.25. The problem is how to determine which paths in the

roadmap are safe to traverse.

Assuming safe paths have maximum temperatures below a certain threshold, the

robot deploys network exploration agents to determine the maximum temperature

along a path. Once injected, the agent repeatedly clones itself onto nodes along the

path and sends back temperature information. To limit overhead, the agents spread

themselves out and filter data coming from further down the edge by filtering all

temperature readings less than the local temperature. Once the robot receives the

maximum temperature along the edges of the overlay graph, it can decide which route

to take.

The navigation service was implemented in only three days by developers who were

initially not familiar with Agilla’s middleware and evaluated using a testbed consisting

of 17 Mica2 motes and an ActiveMedia Pioneer-3 DX robot [22]. Empirical results

demonstrate the feasibility of using Agilla in this highly dynamic application. The

implementation demonstrates how Agilla enables non-trivial in-network processing

techniques to be implemented as mobile agents.

69

4.7 Agimone: Integrating Wireless Sensor Net-

works with IP Networks

The ability to create applications consisting of mobile agents that can migrate among

WSN devices and explicitly control their movements brings about the possibility of

expanding the domain in which the agent can migrate. For example, suppose an

agent can originate in WSN A, perform some computations, and then migrate onto

WSN B to complete the necessary computations. This is useful because many WSN

applications involve sensing regions too great or disjoint to be covered by a single

WSN.

For example, consider cargo container monitoring. In this application, WSN nodes are

deployed on cargo containers to monitor them as they travel around the world. The

motivation may be security, i.e., to ensure that the container is not opened enroute,

or contractual, i.e., to ensure the container is not exposed to temperatures above a

certain threshold. Cargo containers are continuously moved by many different forms

of transportation, including air, ship, rail, and truck. When they are not being moved,

they often reside at warehouses or shipping yards. Each of these modalities involve

physically separate WSNs. Having a system that enables a user to treat the numerous

disjoint WSNs as a single logical network is powerful, as it could orchestrate WSNs

scattered around the world to cooperate to acheive a common task. For example, it

would allow a user to search for a particular item among all cargo containers belonging

to a particular company, despite the fact that the containers are physically scattered

around the world.

Integrating WSNs with IP networks like the Internet can be done using gateway

devices like the Stargate [161], which translate between the WSN and IP network.

The key challenge is to develop a software framework that seemlessly integrates the

two forms of networks into one logical network. Two middleware frameworks that

appear to be good candidates for acheiving this include Agilla and Limone. Agilla

provides mobile agent and tuple space abstractions in WSNs, while Limone provides

similar abstractions in MANETs, which are often based on IP.

70

WSN Gateway

Agilla
Agent

Limone
TS

Agilla
TS

AgimoneAgent

Limone
TS

AgimoneAgent

Agilla
TS

IP

Agilla
TS

Limone
Registry

WSN Gateway

Agilla
Agent

Agilla
TS

Agilla
Agent

Agilla
TS Agilla

Agent

Agilla
TS

WSN 1 WSN 2

Figure 4.26: The Agimone system architecture. Each WSN has a gateway running
Limone. The gateways communicate using Limone, forming a bridge for Agilla

agents to migrate between WSNs. A Limone registry is used to discover available
WSNs

However, integrating the two middleware frameworks is not straightforward because

of the differences in the underlying platforms for which they were designed, resulting

in varying APIs and capabilities. For example, Limone agents maintain their own

tuple spaces while Agilla agents do not. In addition, Limone addresses a tuple space

based on the ID of the agent that owns it, whereas Agilla addresses tuple spaces

based on the location of the device that holds it. These differences require a software

translation layer between the two middleware systems. Traditionally, bridging gaps

between two middleware systems is application-specific and a costly and error-prone

process. For this reason, Agimone is developed that joins Agilla and Limone via a

thin but reusable integration layer, enabling applications to span both IP and sensor

networks.

71

4.7.1 System Architecture

Agimone’s system architecture is shown in Figure 4.26. It consists of multiple WSNs

running Agilla, each with a gateway running Limone. The gateway has a Limone

agent called AgimoneAgent, which acts as the arbiter between the WSN and IP net-

works. It is responsible for (1) discovering the presence of remote WSNs, (2) ad-

vertising these WSNs to agents within the WSN network, (3) forwarding incoming

agents from the WSN to the gateway of the destination WSN network, (4) injecting

agents arriving from remote WSNs into the local WSN, and (5) serving as a translator

between Limone and Agilla tuples.

The process of discovering remote WSNs can be done using a number of different

methods. One is to use simple beacons, assuming multicast routing between the

WSN gateways is enabled. Another is to use a centralized service registry, which is

what the current prototype system uses, as shown in Figure 4.26. The actual system

used for remote WSN discovery is interchangeable, so more sophisticated protocols

like Bonjour [32] can be used if necessary.

The version of Limone running on the gateway has a special tuple space called

AgillaTS. This tuple space adheres to the tuple formatting and API specifications of

the tuple spaces used by Agilla. It enables communication between IP networks and

WSNs. Through this tuple space, Limone agents can access sensor data produced by

the WSN, and Agilla agents can access computational resources available on the IP

network. To seemlessly integrate AgillaTS into Limone’s programming model, it is

revealed to AgimoneAgent as just another tuple space belonging to a normal agent

residing on the local device. The agent that owns the AgillaTS is actually hidden

because, in reality, it is virtual and only appears in AgimoneAgent’s acquaintance list.

For a Limone agent to send a tuple into the WSN, it simply inserts the tuple into

AgimoneAgent’s tuple space. AgimoneAgent will take this tuple, translate it into the

format used by Agilla, and insert it into AgillaTS. Likewise, whenever an Agilla agent

wishes to send a tuple to a Limone agent, it simply places the tuple into the AgillaTS

using a remote invocation to special location (UART X, UART Y). AgimoneAgent

will take any tuple placed in AgillaTS, translate it into Limone’s tuple format, and

place it in its own local tuple space. Thus, AgimoneAgent ensures that its own tuple

72

Limone
Registry

Agilla Agent

WSN Advertisement

AgimoneAgent

Limone TS Agilla TS

(5) migrate

(2) new advertisement

(3) out

Limone TS Agiila TS

(1) advertise

(7) out

(6) forward

(8) react

(9) forward

Agilla TS

(4) rd

WSN 1

IP

Agilla TS

(10) migrate

WSN 2

Figure 4.27: Agilla Agent Migration Across Different WSNs

space and AgillaTS are mirror-images of each other, enabling communication across

middleware boundaries.

The process of translating between Agilla and Limone tuples is non-trivial because

Agilla imposes many restrictions on the types of data a tuple can contain. For exam-

ple, if a Limone agent tries to place the tuple <“mark”, 1> into the AgimoneAgent’s

tuple space, an error condition will arise since Agilla does not support tuple fields

containing strings longer than three characters due to memory constraints. To resolve

this problem, AgimoneAgent uses Limone’s tuple space operation manager described

in Section 3.2 to filter incoming tuple space operations to those involving tuples that

are compatible with Agilla. The developer of the Limone agent must be aware of

Agilla’s limitations for communication to occur between Limone and Agilla agents.

73

4.7.2 Migration Across WSNs

In addition to enabling communication between Limone and Agilla networks, Agi-

mone also facilitates Agilla agent migration between two disjoint WSNs. This enables

applications to seamlessly execute across multiple WSNs. Before an agent can migrate

into a different WSN, it must first discover the identity of the destination WSN. To

achieve this, AgimoneAgent publishes a tuple describing properties of the WSN, like

its location, on the Limone Registry, which distributes it to all other AgimoneAgents

in the system. Upon receiving this tuple, AgimoneAgent places the tuple into the

local AgillaTS, thus revealing it to the Agilla agents within the WSN. This is shown

as steps 1-4 in Figure 4.27. Referring to the remaining steps in Figure 4.27, when an

Agilla agent wishes to migrate, it performs a remote rd operation on AgimoneAgent’s

tuple space to obtain the advertisement tuple (step 4). Using this tuple, the Agilla

agent migrates onto the gateway (step 5), where it is encapsulated in a Limone tuple

and forwarded to AgimoneAgent (step 6). Upon receiving this tuple, AgimoneAgent

sends it to the destination WSN (step 7). The AgimoneAgent at the destination re-

acts to the tuple (step 8), extracts the Agilla agent, and injects it into the destination

WSN (steps 9 and 10). This concludes the process of an agent migrating between

two WSNs.

4.7.3 Evaluation

Agimone is evaluated by deploying it on two WSNs connected by an IP network.

The WSNs are composed of Mica2 motes and are separated by using different radio

channels. Each WSN has a single gateway attached to an IBM R40 laptop via a

115.2Kbps serial link. The laptops are connected via a 100Mbps wired Ethernet link.

Since they are on the same subnet, discovery is performed using multicast beacons

rather than a Limone Registry. The laptops are configured with a 1.5GHz Intel

Pentium M processor, 512MB of RAM, Windows XP and Java Standard Edition 5.0.

Latencies are measured using Java’s System.nanoTime() method, which uses the

system’s most accurate timer. This section presents micro-benchmarks examining

the primitives that cross network boundaries. The benchmarks can be divided into

three categories: tuple space operations, agent migration, and overall performance.

74

Operation latency (ms)
(Mote-to-PC)
rinp 10.64± 0.15
rrdp 10.35± 0.06
rout 10.37± 0.07

Operation latency (ms)
(PC-to-Mote)
rinp 10.98± 0.17
rrdp 11.26± 0.19
rout 10.85± 0.07

Figure 4.28: The Latency of Remote Tuple Space Operations

Tuple Space Operations

In these benchmarks, the cost of tuple space operations that cross middleware bound-

aries is measured. Specifically, the following operations are evaluated: rinp (remote

probing remove tuple), rrdp (remote probing read tuple), and rout (remote insert tu-

ple). These operations can be executed in both directions; they may be performed by

the AgimoneAgent on the tuple space belonging to the WSN gateway (PC-to-Mote),

or by an Agilla agent on the base station’s tuple space (Mote-to-PC).

Mote-To-PC. The first set of benchmarks determine the latency of an Agilla agent

on the WSN gateway accessing AgimoneAgent’s Agilla tuple space. Three benchmark

agents are used, each of which performs one of the three remote tuple space opera-

tions being evaluated (rinp, rrdp, and rout) 100 times over which the average was

calculated. The average of these benchmarks, shown in Figure 4.28, indicate that the

operations have an average latency of 10 to 11 ms.

PC-To-Mote. The second set of benchmarks repeats the same operation in the

opposite direction: the AgimoneAgent performs operations on the WSN gateway’s

tuple space. In this case, since the latency can be directly measured, each experiment

calculates the latency of one operation execution. Figure 4.28 shows the average

results from 100 runs of each benchmark. Like in the Mote-to-PC benchmarks, the

average latency of PC-to-Mote tuple space operations is 10 to 11 ms.

Agent Migration Operations

As discussed in Section 4.7, agent migrations enable agents located in one WSN to

migrate across an IP network into another WSN. From an Agilla agent’s perspective,

an inter-WSN agent migration occurs in an atomic step, e.g., by executing the smove

operation. However, as discussed in Section 4.7.1, there are in reality many steps

75

Source Agilla
WSN

Destination
Agilla WSN

Agilla

Limone

Agilla

Limone

1) Mote-to-PC

Limone IP
Network2) Agilla-to-Limone

3) PC-to-PC

4) Limone-to-Agilla

5) PC-to-Mote

Figure 4.29: The Five Stages of an Inter-WSN Agent Migration Operation.
Stage Name Unfiltered Latency Filtered Latency # Points Filtered

1 Mote-to-PC 36.12± 1.19ms 35.56± 0.58ms 2
2 Agilla-to-Limone 1.03± 0.16ms 307.11± 1.59µs 182
3 PC-to-PC 19.45± 0.26ms 19.11± 0.15ms 19
4 Limone-to-Agilla 1.13± 0.16ms 830.05± 2.26µs 12
5 PC-to-Mote 28.16± 5.92ms 23.72± 0.56ms 3

Figure 4.30: The Latency of Each Agent Migration Stage (Average of 1000 Runs)

involved which are transparent to the agent. To provide greater insight into the cost

of agent migrations, the migration steps shown in Figure 4.27 are grouped into the

five distinct stages shown in Figure 4.29. Each state is benchmarked separately. A

brief description of these stages and the results of these benchmarks are discussed

below.

The results of these benchmarks are collected in Figure 4.30. All benchmark results

are presented as an average of 1000 runs. Note the column listing the number of

points filtered. These were outlier points with values orders of magnitude above the

mean. They are most likely caused by inaccuracies in Java’s System.nanoTime()

method and garbage collection. Since these points are relatively sparse, we filtered

them out when presenting the details of each stage below.

Stage 1: Mote-to-PC. In this stage, the agent moves from the source mote to the

base station. This procedure is measured by deploying an agent that searches the

AgimoneAgent’s tuple space for a WSN advertisement and then attempts to migrate

to the base station. The average latency of this stage is 35.56± 0.58ms.

76

Stage 2: Agilla-to-Limone. In the second stage, the agent is passed from the

Agilla middleware on the base station to the Limone middleware. The cost of crossing

middleware boundaries should be negligible, since it only involves a few local method

calls. This is borne out by our empirical measurements; the average latency is 307.11±
1.59µs.

Stage 3: PC-to-PC. In this stage, the AgimoneAgent encapsulates the migrating

agent into a Limone tuple and places it in the destination AgimoneAgent’s tuple space.

This stage is timed by repeatedly migrating an agent between two base stations, then

halving the round-trip time. This stage had an average latency is 19.11± 0.15ms.

Stage 4: Limone-to-Agilla. In this stage, the AgimoneAgent extracts the encap-

sulated agent from the Limone tuple and passes it to Agilla’s AgentInjector. As

in stage 2, this process only involves a few local method calls, so the latency should

be negligible. The time between placing the tuple in the tuple space to passing the

agent to the AgentInjector is recorded. The average latency is 830.05± 2.26µs; as

expected, this is negligible relative to the other stages.

Stage 5: PC-to-Mote. In the final stage, the agent is injected into the destination

WSN. Similarly to stage 1, we measured this latency by migrating an agent which

immediately reads an advertisement tuple from the base station, and measuring the

time between injection and receiving the tuple space request. The average latency of

this stage is 23.72± 0.56ms.

Overall Performance

The following benchmarks evaluate the latency of common sequences of operations.

The In-and-Out benchmark measures the minimum amount of time it will take for

an agent to enter a WSN and return. In a real-world scenario, the agent will perform

some application-specific operations while in the network. However, for evaluation

purposes, we inject an agent that immediately migrates back onto the base station

after it arrives on a mote. The second set of benchmarks (End-to-End) evaluates how

long it takes for an agent residing in one WSN to migrate into another WSN and back.

The previous section analyzed each stage of the migration process individually; the In-

and-Out and End-to-End delays should be the sum of their individual stages. These

77

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900 1000
Round

La
te

nc
y

(m
s)

Agimone
Native Implementation

Figure 4.31: The In-and-Out Agent
Migration Latency.

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700 800 900 1000
Round

La
te

nc
y

(m
s)

Agimone
Native Implementation

Figure 4.32: The End-to-End Migration
Latency

benchmarks validate the results of previous benchmarks. Again, unless otherwise

stated, the results presented are the average of 1000 runs.

While Agimone simplifies programming and increases network flexibility, its use of

virtual machines results in some overhead. To quantify this overhead, a native-code

implementation of In-And-Out and End-to-End is tested and the results are plotted

along with the Agimone results. To isolate the cost of message-passing from execution,

the native implementations exchange 36-byte data messages wherever the 36-byte

mobile agents would migrate.

All of the previous benchmarks used the same 36-byte agent. To gain insight into

how the size of the agent affects inter-WSN migration latency, the Exploding-Agent

benchmark repeats the End-to-End experiment with successively larger agents.

In-and-Out. This benchmark injects an agent that migrates repeatedly between two

WSNs, and measures the cost of moving the agent in and out of one WSN. When

the agent is injected into the WSN, it immediately performs a rrdp to find the other

WSN’s advertisement, and then attempts to migrate to it. Thus, this benchmark

measures the aggregate of the Mote-to-PC, PC-to-Mote, Limone-to-Agilla, and Agilla-

to-Limone migration operations, and the Mote-to-PC tuple space operation. The

results of this benchmark are shown in Figure 4.31. The average In-and-Out latency

is 62.18 ± 6.09ms, or 56.56 ± 0.27ms when outlying points are filtered out. This is

approximately the aggregate of the constituent stages (stages 1, 2, 3, and 4).

78

0

50

100

150

200

250

300

350

36 66 96 126 156 186 216

Size of Agent (Bytes)
La

te
nc

y
(m

s)

Figure 4.33: End-to-End Latency vs. Size of Agent

The native implementation of In-and-Out is a Java application that queries the base

station’s attached gateway sensor by sending it two TinyOS packets totalling 36 bytes;

the sensor immediately sends 36 bytes of data back. The benchmark measures the

time from sending the request to receiving the response. The native implementation

has an average latency of 30.09± 0.51ms, which is 27.39ms faster than the Agimone

implementation.

End-to-End. The End-to-End latency is measured by injecting the agent described

above and recording its round-trip time over the IP network. The results are shown

in Figure 4.32. The average end-to-end round trip time is 179.19± 9.96ms unfiltered,

and 164.75±0.96ms filtered. This closely matches the aggregate of the various stages

involved.

The native implementation of End-to-End adds to the In-And-Out benchmark by

sending a 36-byte packet over the IP network to a remote base station after receiving

a response from the WSN. The remote base station sends a 36-byte reply. The

benchmark measures the time from querying the sensor node to receiving a response

from the remote base station. The native implementation has an average latency of

86.36± 2.15ms, which is 78.39ms faster than the Agimone implementation.

Exploding-Agent. This benchmark repeats End-to-End with successively larger

agents. The agent’s round-trip time is recorded as it bounces between two WSNs 10

times. The results are shown in Figure 4.33. The cost of agent migration is roughly

linear with the agent’s size and is increasingly dominated by the slow mote-to-mote

and mote-to-PC stages.

79

The benchmarks presented in this section provide a general overview of Agimone’s

performance and overhead. All inter-network tuple space operations, regardless of

direction, take about 10.5ms. A mobile agent takes about 82.5ms to migrate from

one WSN to another. Of this, approximately 60ms is spent moving to and from the

WSN and its base station, and 20ms is spent traversing the IP network. The latency

of migrating into a WSN and back is about 60ms. Of this, most of the time (>57ms)

is spent on the serial link between the base station and WSN gateway. The actual

transition from Agilla to Limone takes about 307µs, while going from Limone to

Agilla takes about 830µs. The overhead of Agimone compared to native code varies

depending on the task. In the two operations presented, In-And-Out and End-to-End,

there was a 27.39ms and 78.39ms increase in execution time relative to native code,

respectively. Native code, however, is not nearly as flexible as mobile agents, and

presumably requires more development time. Finally, an agent’s migration latency

increases linearly with its size.

4.7.4 Application Case Study: Cargo Container Monitoring

Using the Agimone architecture, how can the cargo container monitoring application

mentioned in Section 4.7 be implemented?

As previously mentioned, WSNs can reduce the risk of importing cargo containers

by continuously monitoring every container and forming a wireless ad hoc network

for delivering alerts. However, developing an application on top of WSNs attached

to cargo containers is difficult due to the highly dynamic environment, and the fact

that containers tend to be spread around the world.

Agimone facilitates the development of this application by allowing users to inject

agents into the network that continuously monitor the sensors for anomalies. Alarms

can be raised by inserting a tuple describing the event into both the local tuple space

and the base station’s tuple space. Using Agimone, the AgimoneAgent residing on

the base station automatically translates this alert into a tuple that Limone agents

understand. Limone agents subscribe to reactions that are senstive to these alert

tuples, and notify the user.

80

To evaluate this application, a mock cargo container test bed was deployed. Each

container is given a Mica2 node with a MTS310 sensor board for sensing light, tem-

perature, and vibration, and a speaker for emitting an audible alert. An Agilla agent

is implemented that periodically accesses the light sensor to determine whether the

container’s door is open. If it is, it inserts an alert tuple both locally and in the base

station’s tuple space. A Limone agent is implemented that reacts to this tuple and

displays an alert on the user’s display. As a testament to Agimone’s expressiveness,

the Agilla agent only consists of 17 lines of code, and the Limone agent requires only

11 lines of code. The Agilla agent and the Limone client were developed in only a

few hours.

Instead of remotely inserting the the alert tuple into the base station’s tuple space,

suppose the aforementioned agent only inserts it in the local tuple space. This may be

because the container is on a ship in the middle of the ocean where there is no Internet

access, or because the alerts are not critical until the ship arrives at a port. In this

case, using Agimone, the user can deploy a search agent that traverses a WSN looking

for alert tuples and sending them back to the base station. As further testament

to Agimone’s expressiveness and flexibility, creating an agent exhibiting this search

behavior required adding only 23 lines of code to the previous agent. Finally, creating

this application spanning both WSNs and IP networks did not require any application-

specific integration code.

4.8 Chapter Summary

This chapter presented Agilla, a mobile agent middleware specifically designed for

resource-constrained WSNs, and Agimone, a lightweight integration layer that seam-

lessly merges the Agilla and Limone coordination models, enabling applications to

span IP and sensor networks. Agilla is the first working system to bring mobile

agents and a tuple space-based coordination model into WSNs. Agilla enhances

network flexibility and supports adaptive applications through mobile agents that

coordinate via localized tuple spaces. Agilla has been implemented on TinyOS and

multiple WSN hardware platforms. Empirical results on Mica2 and TelosB nodes

demonstrate the feasibility and efficiency of Agilla on resource-constrained WSNs.

81

Comparisons with native code-propagation systems indicate that Agilla is compa-

rable to other VM-based systems. Experiences with two adaptive applications, fire

tracking and robot guidance, demonstrate the expressiveness of Agilla’s programming

model. Experiences with a cargo container monitoring application demonstrate the

efficacy of Agimone.

82

Chapter 5

Servilla: Service Provisioning for

Wireless Sensor Networks

This chapter focuses on how middleware can address the challenges of programming

WSN applications due to network heterogeneity. It is motivated by the fact that

WSNs are becoming increasingly heterogeneous consisting of devices with a wide

range of capabilities. WSN applications are often optimized for energy efficiency in

platform-specific ways, preventing them from executing in heterogeneous networks.

The middleware presented in this section, called Servilla, addresses this problem

through service provisioning. Using Servilla, developers can construct platform-

independent applications over a dynamic and diverse set of devices. The middleware

automatically discovers local and remote services that perform platform-specific op-

erations and dynamically binds applications to these services to enable flexible and

energy-efficient in-network collaboration among heterogeneous devices. Furthermore,

Servilla provides a modular middleware architecture in which parts can be omitted,

lowering Servilla’s minimum system requirements. This enables applications to oper-

ate on powerful devices while leveraging the benefits of resource-constrained devices

like density and energy efficiency. Servilla has been implemented on TinyOS for two

disparate hardware platforms, the Imote2 and TelosB. Microbenchmarks demonstrate

the efficiency of Servilla’s implementation, while application case studies involving

structural health monitoring demonstrate the efficacy of its coordination model.

83

5.1 Motivation

There are two primary reasons why WSNs are becoming increasingly heterogeneous.

First, heterogeneity allows a network to be both computationally powerful and de-

ployed in high densities. Powerful devices can perform complex computations, but

are more expensive and energy inefficient preventing them from being deployed in

large numbers. Conversely, low power WSN devices have limited computational ca-

pabilities, but are relatively cheap and energy efficient, enabling higher deployment

densities and increased network lifetime. By integrating weak and powerful devices, a

heterogeneous WSN can combine the best features of each, i.e., high levels of compu-

tational power, network densities and lifetimes. Second, network heterogeneity follows

from the natural evolution of technological progress. WSN devices are embedded in

the environment and remain for long periods of time. During this time, new devices

and sensors are developed and deployed, resulting in network heterogeneity.

Network heterogeneity presents a formidable problem for application developers. Tra-

ditionally, to maximize energy efficiency and meet severe memory constraints, devel-

opers would hand-tune an application for a particular hardware platform. This was

possible since most WSNs at the time were homogeneous. With WSNs becoming in-

creasingly heterogeneous, this approach is no longer feasible since the target platform

may consist of many different types of devices. Furthermore, the continuous evolu-

tion of WSN technologies means that the actual platforms on which an application

will execute may not be known at the time the application is written. This sug-

gests that applications should be written in a platform-independent manner. Thus,

the challenge is how to ensure that the application remains efficient, despite being

platform-independent, while still able to access and fully exploit platform-specific

capabilities like sensing. These seemingly contradictory requirements complicate ap-

plication development and motivate the creation of a new coordination model.

To address the challenges of programming heterogeneous WSNs, we developed

Servilla, a middleware supporting a novel coordination model based on Service-

oriented computing (SOC) [136]. SOC is a programming model consisting of ser-

vice consumers and providers that are automatically matched and bound by the

system, enabling consumers to invoke the services provided. Servilla adopts this pro-

gramming model by structuring applications as a collection of platform-independent

84

mobile tasks (consumers) that are dynamically bound to platform-specific services

(providers). This is possible due to the decoupling of consumers and providers in

the SOC programming model. Servilla exploits this decoupling by enabling tasks

to seamlessly invoke bound services in a uniform manner regardless of whether they

are local or remote and the type of device that provides them. By facilitating re-

mote service access across heterogeneous devices, extremely resource-poor nodes can

still contribute by only providing services and not executing application tasks, thus

increasing the range of devices supported by the middleware. This is achieved by

modularizing Servilla’s middleware architecture, and supporting asymmetric middle-

ware configurations across heterogeneous devices.

Servilla’s coordination model tailors SOC to the WSN domain in multiple ways. New

forms of service bindings and invocation semantics are introduced that maximize

efficiency. For example, in addition to the consumer-initiated on-demand service

invocations provided by most traditional SOC middleware on the Internet, Servilla

provides two new forms of invocation that are initiated by the provider: periodic

and event-based. These forms of invocation facilitate the exploitation of network

heterogeneity to increase energy efficiency by allowing high-power nodes to offload

continuous but non-computationally-intensive duties like sensor monitoring onto low-

power nodes, thus enabling them to remain asleep a larger percentage of the time. In

addition, Servilla introduces specialized service specification and task programming

languages that capture the novel binding and invocation semantics, while enabling

the rapid development of complex applications. Servilla enables, for the first time,

in-network collaboration between heterogeneous WSN devices via service provisioning

SOC has long been used on the Internet and has recently been explored in the con-

text of WSNs. Two systems in particular are Tiny Web Services (TWS) [147] and

PhyNetTM [9]. TWS implements an HTTP server on each device and enables applica-

tions to invoke services using HTTP requests. PhyNetTMprovides a central gateway

that exposes WSN capabilities as web services. Unlike these systems, which treat the

WSN as a data source for applications residing outside of the network, Servilla takes

the SOC programming model inside a WSN. It exploits the loose coupling between

service consumers and providers to separate application-level platform-independent

logic from the low-level software components that exploit platform-specific capabili-

ties. Furthermore, by allowing application logic to execute inside a WSN, higher levels

85

of efficiency are obtainable via in-network processing [78]. For example, in a struc-

tural health monitoring application, a low-power device may use a simple threshold-

based algorithm to detect potentially damage-inducing shocks, and only activate more

powerful devices that perform the complex operations to localize damage when nec-

essary [66]. Or, in a surveillance application, low-power devices may sense vibrations

from an intruder and activate more powerful devices with cameras [72]. The ability

to support collaboration among heterogeneous devices inside a WSN is a key feature

that distinguishes this work from other SOC middleware for WSNs.

The remainder of this chapter is organized as follows. Section 5.2 presents related

work. Section 5.3 presents Servilla’s programming model. Section 5.4 presents

Servilla’s programming languages. Section 5.5 presents Servilla’s middleware archi-

tecture and implementation. Section 5.6 presents an empirical evaluation on two

representative sensor platforms with diverse resources. Section 5.7 evaluates the effi-

cacy of Servilla by using it to implement a structural health monitoring application.

The chapter ends with a summary in section 5.8.

5.2 Related Work

SOC has long been used on the Internet to enable independently-developed appli-

cations to interoperate. There are many SOC systems including SLP [86], Jini [92],

OSGi [134], CORBA [133], Salutation [31], and Web Services [3]. They provide

technologies that enable language-independent communication, which is essential for

interoperability. Some of these include SOAP [45], RPC [44], DCOM [45], and

WCF [121]. Servilla has three salient features that distinguish it from these SOC

frameworks. First, it focuses on how service-provisioning language and middleware

can be made extremely lightweight. This is necessary due to the limited resources

available on many WSN devices. Many previous SOC systems have been ported to

small PDA-class devices, which are still relatively powerful compared to the sensor

devices used by Servilla. Second, Servilla is specifically designed for localized service

binding which is a common case in WSNs due to limited energy resources. Finally,

Servilla provides a modular middleware architecture that can be configured for wire-

less sensor network platforms that consist of devices with a wider range of resources.

86

SOC is a topic of interest in the coordination community. For example, new languages

have been developed that enable formal reasoning about complex service interactions

and compositions [20, 1, 118, 5]. Calculi have been developed to model sessions

and multi-party dynamic interactions between service users and providers [120, 28].

New ways of specifying quality-of-service requirements and achieving higher levels of

reliability have been proposed [7, 24, 26, 131, 23]. SOC has even been used in non-

traditional environments like mobile ad hoc networks [69]. Recently, there has been

increased interest in context-aware applications [132, 55, 40]. WSNs, being embedded

and able to sense the environment, are inherently context-aware. This paper takes

the natural next step of applying SOC principles to WSNs. The key distinguishing

feature of Servilla lies in its capability to support both resource-constrained devices

and more powerful devices, and its light-weight language and middleware tailored for

in-network coordination among sensors.

Efforts to bring SOC technologies into the WSN domain include PhyNetTM [9], At-

las [89], and Tiny Web Services [147]. These platforms optimize Internet protocols to

function under the severe resource constraints of WSNs. They differ in that PhyNet

and Atlas merely provide the service provisioning interface as a translation layer on

the gateway device, whereas Tiny Web Services pushes service provisioning onto each

individual sensor network node. Unlike Servilla, they do not allow service consumers

to exist inside the WSN. Instead, they only enable language-independent communi-

cation between services inside the WSN and applications outside of the WSN. Servilla

is complementary to these efforts; Servilla may leverage off of these systems to expose

WSN services to applications external to the WSN, while these systems may rely on

Servilla to bring the full capabilities of SOC inside the WSN itself.

In addition to SOC, Servilla shares the common approach of using scripts in a

WSN, though for different reasons. Some scripting systems, including Maté [98],

ASVM [100], SwissQM [125], and Agilla, enable reprogramming. Other systems, in-

cluding Melete [185] and SensorWare [25], enable multiple applications to share a

WSN. All of these systems come with different scripting languages [97, 47, 62, 111,

184]. Servilla differs by focusing on challenges due to network heterogeneity and dy-

namics. Unlike other systems, Servilla allows scripts to remain platform-independent

and dynamically find and access platform-specific services. One scripting system,

DVM [14], explores the similar idea of integrating platform-independent scripts with

87

native services. It features a dynamically extensible virtual machine in which services

can register extensions. While this enables tuning the boundary between interpreted

and native code, DVM does not support flexible matching between scripts and ser-

vices.

Servilla provides a modular and configurable platform in which extremely resource-

poor devices only implement a fraction of the entire framework. This enables a hier-

archy in which weak devices serve more powerful devices. The idea of establishing a

hierarchy of devices inside a WSN is promoted by other systems. Tenet [60] promotes

this idea by creating a two-tired WSN in which the lower tier consists of resource-poor

devices that can accept tasks from higher-tier devices. It differs from Servilla in that

it does not support flexible service discovery and binding between different devices.

SONGS [106] is an architecture for WSNs that allows users to issue queries that are

automatically decomposed into graphs of services which are mapped onto actual de-

vices. SONG does not provide flexible service binding among heterogeneous devices.

Triage [16] is another system that uses low-power nodes to collect data and determine

how to optimally schedule more powerful devices that analyze the data. This differs

from Servilla in that the low power nodes manage the high-powered nodes, which is

the opposite in Servilla.

5.3 Programming Model

An overview of a WSN using Servilla is shown in Figure 5.1. It consists of devices,

tasks, and services. A key feature and novelty of Servilla is its support for service

provisioning inside the WSN. That is, both the service consumers (tasks), and service

providers (devices), reside within the WSN, and all of the responsibilities of service

provisioning, like service discovery, matching, and binding, are performed by the

WSN nodes. The ability to bring SOC within WSNs required overcoming significant

challenges like limited resource availability, but enhances system flexibility due to the

decoupling of service consumers and providers, and enables higher degrees of efficiency

via in-network processing.

88

WSN Device (MicaZ)

Task

service service

WSN Device (Stargate)

Task

service service

WSN Device (Imote2)

Task

service service

WSN Device (TelosB)

Task

service service

WSN Device (Imote2)

Task

service service

Remote
Invoke

Local
Invoke

bind

bind

Figure 5.1: Servilla targets heterogeneous WSNs in which different classes of devices
provide services that are used by application tasks either locally or remotely.

Services are platform-specific while tasks are platform-independent.

Servilla is meant for applications that run in heterogeneous WSNs with multiple

classes of devices. It is not intended for flat WSNs composed entirely of resource-

poor devices. Typical applications are long-lived, widespread, and involve many dif-

ferent tasks that vary in complexity. They are written once and continuously used

despite underlying hardware changes. For example, environmental monitoring and

target tracking applications are long-lived and usually involve both simple and com-

plex tasks. Simple tasks, like sensing, are usually widespread and performed by the

majority of nodes in the network, while complex tasks, like computations that pro-

cess the data, are less common and are performed by only a few of the more capable

network nodes. By integrating both resource-poor and resource-rich devices, Servilla

provides an ideal platform on which to build these types of applications. Specifically,

resource-poor devices are less costly and more energy efficient, meaning they can be

deployed in greater numbers at higher densities, and can run a larger percentage of

the time. Meanwhile, resource-rich devices are more expensive and limited in quantity

and energy, but offer computational power and advanced sensing capabilities.

Applications are implemented as tasks, which are platform-independent mobile pro-

cesses that contain code, state, and service specifications. To ensure platform-

independence, the code cannot contain instructions that access platform-specific ca-

pabilities like sensors. Instead, these capabilities are accessed as services that are

provided by a service provisioning framework. The service provisioning framework

takes a task’s service specifications, finds services that match them, and enables the

89

task to invoke the service. The service specifications describe both the service’s in-

terface and non-functional properties like energy efficiency. This enables a degree of

flexibility in selecting a provider. For example, an environmental monitoring applica-

tion can use the non-functional properties in the service specification to leverage off

the most energy-efficient sensors.

Since tasks are platform-independent, they can be mobile, i.e., they can migrate from

one node to another, even if the nodes differ in hardware characteristics. This is

useful in situations where the network needs to be reprogrammed, or changes in the

environment in which the network is deployed result in the need to reconfigure the

software executing within the network. For example, the wild fire tracking application

presented in Section 4.5 on page 63 needed to reconfigure its software in response to

changes in the fire’s location. Another scenario in which tasks are mobile is when

they execute on mobile nodes. For example, a task belonging to a medical patient

monitoring application may execute on a node that is attached to a mobile patient.

Task mobility results in the introduction of novel service binding semantics that are

described later in this section.

Services expose platform-specific capabilities, are implemented natively, and can thus

be fine-tuned for maximum efficiency. They provide a description that can be com-

pared with the service specifications provided by a task. When a match exists, the

service fulfills a task’s requirement and can be used by the task to perform platform-

specific operations. Services are able to maintain state, provide multiple methods,

and have their own thread of control, enabling them to operate in parallel with tasks.

This enables higher degrees of concurrency and efficiency. For example, in a structural

health monitoring application, a service provided by a low-power device can contin-

uously monitor an accelerometer and set a flag if the vibrations exceed a threshold.

Using this service, a task executing on a more powerful device can remain asleep most

of the time, only periodically waking to check for potential damage.

The mechanism by which tasks communicate are not shown in Figure 5.1 because

service provisioning is the focus and main contribution of this work. Tasks commu-

nicate via localized tuple spaces [57] that are structured in the same manner as in

Agilla. Specifically, each node maintains a separate tuple space that is accessible to

90

tasks that reside both locally and remotely. Tuple space coordination facilitates de-

coupled communication, allowing better adaptation to a changing network and task

mobility. They serve as a flexible means of communication between application tasks

and are orthogonal to service provisioning. While service provisioning messages could

be sent using tuple spaces, they are sent in an RPC-like [44] fashion in the current

implementation. Regardless of the underlying communication mechanism used by the

service provisioning framework, the application is presented with a simple interface

for binding to and invoking services, which is presented in Section 5.4.

Tasks remain platform-independent by delegating all platform-specific operations to

services. There are two essential steps for this to occur: binding and invocation.

Binding is the process of discovering and establishing a connection to the service.

Invocation is the process of accessing a service. The remainder of this section discusses

each of these steps.

5.3.1 Service Binding

Service binding consists of three-steps: discovery, matching, and selection. Discovery

involves finding available services. In many traditional SOC frameworks, this is done

by querying a central service registry. While this is sufficient in traditional networks,

it is not appropriate in WSNs. First, since most WSN devices operate on batteries,

accessing a distant registry is not energy efficient and can unacceptably reduce net-

work lifetime. Second, the spatial aspects of WSNs are relevant since closer services

are usually preferred, e.g., if a task wants to know the temperature, it usually wants

to know the local temperature rather than a distant location’s temperature. Third,

WSNs are ad hoc meaning wireless links are transient and opportunistically formed.

Thus, maintaining a route to a centralized registry may be difficult, if not impossible,

due to unreliable connectivity. For these reasons, Servilla is optimized for localized

coordination and does not rely on a centralized service registry. Instead, each device

has its own registry containing only a localized view of the services available.

During the service discovery process, the local registry is first checked for a match.

If no match is found, neighboring devices are checked. This increases a network’s

flexibility by allowing tasks to run on devices that do not fully satisfy the service

91

requirements, since missing services can be provided by neighboring devices. Further-

more, although accessing a remote service requires wireless communication, energy

efficiency can be increased overall by allowing high-power devices to use low-power

ones, enabling the devices that are less energy efficient to remain asleep longer.

Service matching involves finding a service that fulfills a task’s requirements. Recall

that tasks include specifications that can be compared to descriptions provided by

services. The matching process must be flexible since the service and tasks are usually

developed separately. Yet, it must be semantically correct to ensure that the service

behaves in a predictable manner. A service is minimally described by its interface.

Ideally, the names of the methods, the order, number, and types of their parameters,

and even the return types should not require an exact match for service binding for

maximum flexibility. To achieve this, large amounts of meta-data must be included

in the specification to describe the method names, input parameters, and return

values. Unfortunately, such a specification is verbose and requires a complex parser,

both of which consume sizable computational resources like memory that are not

available on many WSN devices. To account for this, Servilla compromises by dividing

specifications into functional and non-functional properties. Functional properties

include the interface and require an exact match. Nonfunctional properties describe

attributes like power consumption and do not require an exact match. For example,

suppose a FFT-calculating service has a non-functional attribute specifying that it

is version 5. Such a service can be bound to a task that specifies it requires at least

version 4. By enforcing an exact match between functional properties and an inexact

match between non-functional ones, Servilla provides a degree of flexibility when

binding services while still maintaining correct matching semantics and reasonable

resource requirements.

Once a matching service is found, the binding process is completed by selecting it.

Selection consists of informing the task of the chosen service, and is accomplished

by saving the provider’s network address in the task’s state. Once saved, the task is

able to access the service by invoking it. Note that this address is hidden from the

application developer, who is able to invoke the service based on its name, a process

that is described later in this section.

92

Eager Lazy
Persistent Immediate and frequent Eventual frequent invocation of a

invocation of a particular particular service without initially
service knowing which

Transient Immediate but infrequent Eventual infrequent invocation of
invocation of any matching any matching service
service

Table 5.1: Various service binding semantics and when they should be used.

5.3.2 Novel Binding Semantics

Servilla tailors the SOC programming model to WSNs by introducing new binding

semantics. This is necessary because of the resource scarcity and dynamics present

in most WSNs. Specifically, service bindings may be eager or lazy, and persistent

or transient. Each of the four combinations specify different binding semantics and

are useful in different scenarios that are summarized in Table 5.1. The eager/lazy

attribute controls how quickly Servilla performs service discovery after the task issues

a bind request. If eager, the discovery process is initiated immediately. If lazy, the

process is initiated upon first invocation. Eager binding is faster but may result

in needless service discovery if the service is not invoked for a long period of time,

especially if the wireless link to the service provider breaks between the time of service

discovery and invocation. Lazy binding does not incur any overhead until the service

is first invoked, but at the cost of higher initial latency due to the need to perform

service discovery.

In most circumstances, eager binding is used since an application usually needs to

invoke a service immediately after binding to it. However, in some situations, lazy

binding is preferred. For example, suppose a script binds to a service, but then

migrates onto a different node before it first invokes the service. In this case, eager

binding may result in a suboptimal service being selected since it was chosen based

on the original location of the task. Lazy binding is preferred in this situation since

the service will not be discovered and bound until the script has arrived at the new

node and actually needs to invoke the service.

The persistent/transient attribute specifies what happens after a service is invoked

or a task migrates. If persistent, the service remains bound until it is broken due to

93

network disconnection, node unavailability, or an explicit unbind operation executed

by the task. If transient, the service is unbound after being invoked or the task moves.

Persistent bindings enable tasks to invoke the same service multiple times and are

especially useful if the service must be invoked frequently since they do not require

that the service be rediscovered and rebound prior to each invocation. In contrast,

transient bindings are unbound after each invocation, freeing memory resources. They

are useful for one-time or infrequent invocations.

5.3.3 Service Invocation

Service invocations are the means by which services are executed. Servilla offers

three forms of service invocation: on-demand, periodic and event-based. On-demand

invocations are the simplest and are analogous to remote procedure calls (RPCs) [44].

They are the form offered by most traditional SOC systems that operate on the

Internet. To perform an on-demand service invocation, the task sends a message to

the provider containing the specification of which service to invoke and any necessary

input parameters. Upon receiving this message, the provider executes the service

and sends a reply containing the results of the invocation to the task. This form of

service invocation must be re-issued by the task each time it requires the service to be

executed. Upon receiving the invocation request, the service is immediately executed.

The service is not executed unless a service invocation request is received, thus the

name “on-demand.”

The other two forms of service invocation, periodic and event-based, are motivated by

the fact that on-demand invocations can be optimized in certain situations common

to WSN applications. Specifically, many WSN applications like habitat monitoring

require the same service to be repeatedly invoked using the same set of parameters for

extended periods of time. In this situation, requiring the task to resend the message

initiating the invocation each time it needs the service to be executed, as is the case

with on-demand invocations, is not energy-efficient. For this reason, Servilla intro-

duces periodic and event-based forms of service invocation. These two forms of service

invocation enable the provider to automatically execute the service for a consumer.

This is done by requiring the task to specify the period at which it needs the service

executed. The provider will then execute the task at the specified period. Periodic

94

and event-based invocations differ in terms of results delivery. Periodic invocations

send every invocation result back to the consumer whereas event-based invocations

only send “interesting” results. For example, a service that monitors the accelerom-

eter may consider the results of an invocation interesting if the recent acceleration

readings exceed a certain threshold. In the current model, the service itself deter-

mines whether the results of invoking it is interesting. An alternative is to enable the

consumer to specify which results it considers interesting, perhaps through predefined

parameters or the use of mobile code. Both forms of invocations are more energy ef-

ficient since they do not require the consumer to send the provider a message each

time the service is invoked. Event-based service invocations are even more efficient

than periodic invocations since they eliminate needlessly sending uninteresting results

back to the consumer task.

Since the task and service may be located on different devices, the service invocation

process may fail, e.g., due to message loss. To account for this, Servilla provides a

mechanism that notifies a task when and why an invocation fails. This is necessary

because service invocations may fail in many ways depending on whether the service

is local or remote, and tasks may want to handle various error conditions differently.

For example, local invocations may fail because the service is busy, in which case the

task may try again later, while remote invocations may fail due to disconnection, in

which case the task may want to abort and switch to a different provider.

5.4 Programming Languages

Servilla provides two light-weight programming languages tailored to support service

provisioning in WSNs. The first, ServillaSpec, is used to create service specifications

and descriptions that enable flexible matching between tasks and services. The sec-

ond, ServillaScript, is used to create tasks and is compiled into bytecode that runs

on a virtual machine, which is used to ensure platform-independence. Services are

implemented in NesC [56] on TinyOS [73] and compiled into native binary code for

runtime efficiency. Each of Servilla’s specialized languages are now described.

95

NAME = fft
METHOD = fft-real
INPUT = {int dir, int numSamples, float[] data}
OUTPUT = float[]
ATTRIBUTE Version = 5.0
ATTRIBUTE MaxSamples = 5000
ATTRIBUTE Power = 10

Figure 5.2: A specification describing a FFT service

5.4.1 ServillaSpec

The simplest language encapsulates the same amount of information as a typical

interface class provided by object-oriented programming languages like Java or C++.

The specification must include the name of the service followed by a sequence of

methods, where each method is specified by its name, input parameters, and return

type. While this is sufficient for establishing a compatible match, it requires an exact

match between the specifications provided by the service and task. This lack of

decoupling can lead to unexpected mismatches since services and tasks are usually

developed separately. A more flexible language that enables specifications to match in

an inexact manner is necessary to ensure interoperability between tasks and services.

On the opposite side of the flexibility spectrum is a very expressive language like that

provided by service specification languages used on the Internet. One example lan-

guage is the Web Services Description Language (WSDL) [171]. WSDL is written in

XML using vocabulary specified by an XML schema [172]. This combination is often

used to provide web services over the Internet. Using this language, a service specifi-

cation may contain as much metadata as necessary to fully describe the service. This

enables extremely flexible matching between tasks and services, but requires a com-

plex interpreter that consumes more memory than is available on WSN devices [147].

For example, WSDLInterpreter [87] is a program that interprets a WSDL document.

Its code is 48KB, which is the total amount of code memory on the TelosB [144]

platform.

ServillaSpec is used to describe services in Servilla and is needed to match services

required by tasks to those provided by devices. To support resource-constrained

devices, the service specification language must be compact and should not require

96

an overly complex matching algorithm. It attempts to strike a balance between service

matching flexibility and overhead. ServillaSpec avoids verbose syntax and limits the

types of properties that can be included in a service specification. An example is

shown in Figure 5.2. The first line specifies the name of the service. It is followed by

three-line segments each specifying the name, input parameters, and output results

of a method provided by the service. The remainder of the specification is a list of

attributes that specify non-functional properties of the service. They enable flexibility

in matching by defining a name, relation, and value. Possible relations include <,

>, <=, >=, and =. Using attributes, a task can, for example, require a floating

point FFT service that consumes at most 50mW. Such a specification would match

a service whose description is shown in Figure 5.2.

ServillaSpec achieves flexibility in two ways. First, the number of attributes and

methods provided by the service need not match the number provided by the task. A

match will occur so long as each attribute and method specified by the task is satisfied

by an attribute or method provided by the service. That is, the task specification

can be satisfied by a subset of the service’s specification. A service may have more

attributes and methods than is necessary for a match to occur. Second, attributes

contain relations that enable inexact matches. For example, the application devel-

oper may specify an attribute with a minimal value, while a matching service may

have a value that is greater than this minimum. The above two characteristics en-

able flexible matching between application tasks and services that have non-identical

specifications, which is essential in a dynamic and heterogeneous WSN.

Servilla relies on a globally-defined vocabulary that specifies the meaning of each at-

tribute. This ensures no confusion regarding, for example, the meaning of “MaxSam-

ples” in the specification shown in Figure 5.2. Servilla also requires that there be a

globally-defined manual that specifies the meaning of each unique service signature,

which consists of the name and method properties. For example, by looking up the

signature of the specification defined in Figure 5.2, the programmer will learn three

things: 1) The service performs a FFT and one of its methods does the FFT on

an array of real values, 2) The input parameters specify the FFT direction, number

of samples, and the samples on which to perform the FFT, respectively, and 3) the

output is the result of the FFT. If the service requires or outputs data with units,

97

NAME = Accel
METHOD = readx
INPUT =
OUTPUT = int
ATTRIBUTE Latency = 5
ATTRIBUTE Error = 2

Figure 5.3: Possible ambiguity: Does attribute Error modify the Latency attribute
or the readx output?

the manual must also include the unit specifications. For example, for a tempera-

ture sensing service, the manual must specify whether the output is in Fahrenheit or

Celsius. The service manual is necessary for developers to understand the semantics

of the specification’s signature and, ultimately, whether the service that advertises

such a specification meets the needs of the application. Once the developer decides

to use a certain specification, the matching between service specifications and script

specifications is done automatically.

By limiting the property types to be only the five shown in Figure 5.2 (i.e., name,

method, input, output, and attribute), and arranging them to always be in

the same order, the specification can be greatly compressed. For example, since the

service’s name property always appears first, the property’s identifier, name, can be

omitted. Thus, the name property in the specification shown in Figure 5.2 can be

compressed to just 4 bytes, “fft” followed by a null terminator. This compression

saves memory and enables greater matching efficiency.

When creating a service specification, care must be taken when including attributes

to prevent ambiguity. For example, consider the service specification shown in Fig-

ure 5.3. The specification describes a service that provides an acceleration reading

along the x-axis. There are two attributes, Latency and Error. The ambiguity arises

regarding whether the Error attribute modifies the latency, or the output of method

readx. To prevent this ambiguity, the name of the attribute must clearly indicate

what is being modified. For example, instead of “Error,” it should be renamed to

“Error-readx” to indicate that it specifies the maximum error of the acceleration

measurement.

98

import fft-v5
ATTRIBUTE Version = 6.0

Figure 5.4: ServiceSpec specifications are extensible using the import keyword

Service specifications must be extensible to adapt to new services that become avail-

able. A specification can inherit the properties of an existing specification using key-

word import, and override any of the inherited properties. For example, suppose a

new FFT algorithm is implemented. A service that provides this new FFT algorithm

can advertise the specification shown in Figure 5.4. Assuming the specification shown

in Figure 5.2 is saved in a file called “fft-v5,” this new specification will be identical

except its version attribute will have a value of 6. Note that all properties including

the optional attributes are inherited. This ensures that all children specifications are

at least as well specified as the parent.

While the ServillaSpec language does provide a mechanism for achieving a degree of

flexibility when determining a match between two specifications, in the form of at-

tributes, the supporting middleware can enhance this flexibility by providing simple

translation services. For example, suppose a task requires the temperature in Fahren-

heit but the only temperature sensing services in range provide the temperature in

Celsius. If the middleware could provide a translation service that automatically con-

verts the output of the services to Fahrenheit, a match could be established. Another

possibility is for the middleware to automatically build composite services that fulfill

a task’s requirement where each individual service does not. An example is a task

that requires a light sensing service that covers both the visible and invisible light

spectrum, but the only services that are available provide one or the other. There is

a large body of work related to service composition [145]. These efforts can be incor-

porated into the Servilla middleware framework to enhance the flexibility of service

matching.

5.4.2 ServillaScript

ServillaScript is the language used to create application tasks. Its syntax is similar

to other high level languages like JavaScript [51], but with key extensions for service

99

1. // Declare which services are required.
2. uses Accel;
3.
4. // Begin task execution.
5. void main() {
6. int count = 0; float accel;
7. bind(Accel, EAGER|PERSISTENT, 2); // bind to a service within 2 hops
8. while(count++ < 10) {
9. accel = invoke(Accel, “readx”); // invoke the service
10. send(accel);
11. }
12. unbind(Accel);
13. }

Figure 5.5: A task that invokes an accelerometer-sensing service 10 times

1. uses Accel as Accel1;
2. uses Accel as Accel2;
3. . . .

Figure 5.6: The uses keyword allows a script to use multiple services that have the
same specification.

provisioning. An example, shown Figure 5.5, implements an application that peri-

odically takes the acceleration reading and sends the reading to the base station. It

declares the name of the file containing the specification of the required service on

line 2, which in this case is an accelerometer-sensing service. The task initiates the

service binding process on line 7, and then invokes the service ten times (line 9), each

time sending the results of the accelerometer reading to the base station (line 10).

The task ends by unbinding from the service on line 12.

All tasks begin with a declaration of which services are required. This is done using

the uses keyword, which specifies the names of the files containing the specifications

of the required services. The same name is also used in the body of the task to

refer to the service during the binding, invoking, and unbinding operations. One

limitation of the uses syntax, as currently described, is that a task can only bind

to one of each type of service. To address this, a task can use the as keyword

to rename a service specification allowing it to bind to multiple services with the

same specification. For example, if a task requires two accelerometer-sensing services,

it can use the code shown in Figure 5.6. The body of the task can then bind to

100

and invoke two accelerometer-sensing services, which are referred to as Accel1 and

Accel2, separately. Note that there is no guarantee that the middleware will select

two physically different services. In the example above, it is possible for Temp1 and

Temp2 to be bound to the same physical sensor. However, the task may use each

service differently in terms of invocation times and binding semantics. The syntax

for specifying the binding semantics is discussed next.

An example of the binding syntax is shown on line 7 of Figure 5.5. It consists of

the keyword bind followed by three parameters: the name of the service to bind,

the binding semantics, and the number of hops to search. The first parameter cor-

responds to the name of the service, which was previously declared by the uses

keyword. The second parameter specifies whether the binding should be eager/lazy

and persistent/transient. The last parameter is an integer that controls how far the

service provider can be relative to the task. This is important to control the overhead

of service invocation. For example, if the task insists on a local service, it can set this

value to be zero.

The bind operation is performed synchronously with the task. That is, the task is

blocked while the middleware attempts to find a matching service provider, and can

only resume execution when a provider is found, or the service discovery process fails

to find a matching provider and aborts. To check whether a service was successfully

bound, the task can call isBound(service name), which returns a boolean value

indicating the success of the bind operation. For example, line 7 of Figure 5.5 can

be followed by if(isBound(Accel)){ . . .} to double check the success of the bind

operation before it starts to invoke the service. Another command the task can

execute is numHops(service name). This command returns the number of hops

away the service is relative to the task, and allows the task to control the overhead of

service invocation. For example, the task can throttle the service invocation frequency

based on the network distance to the service.

The actual service invocation is done using one of three keywords, invoke, invokePe-

riodic and invokeEvent, depending on the type of invocation being performed. The

invoke keyword performs on-demand service invocation, and an example of its use

is shown on line 9 of Figure 5.5. Its first parameter specifies the name of the service

being invoked, and the second parameter specifies the method within the service to

101

1. uses Accel;
2.
3. void main() {
4. int success;
5. success = invokePeriodic(Accel, “readx”, 1024, gotAccel);
6. if (success) { . . .}
7. }
8.
9. void gotAccel(int reading) { . . .}

Figure 5.7: The error keyword specifies an error callback function that is executed
when the invocation fails.

execute. If the service method requires input parameters, they would be in included

after the second parameter of the invoke command. Like bind, invoke is performed

synchronously meaning the task blocks until the invocation completes or fails. The

results of the invocation are returned by the invoke command itself.

The invokePeriodic and invokeEvent commands differ slightly from invoke in

that they are performed asynchronously with the task and use a callback function to

deliver the results of the service invocation. An example of how invokePeriodic is

used is shown on line 5 of Figure 5.7. The invokeEvent command is used in a similar

fashion as invokePeriodic. Like invoke, the first parameter of invokePeriodic

specifies the name of the service being invoked, and the second parameter specifies

the name of the method within the service to execute. In addition, invokePeriodic

takes two more inputs: the period at which the service should be invoked and the

name of the callback function that should be called each time the results of the

service invocation are received. In the example shown in Figure 5.7, the Accel service

is invoked periodically every second, and the gotAccel(int) method is called each

time the service is invoked. The execution of gotAccel(int) is analogous to that of

an interrupt. Specifically, it forces the task to pause its current execution, run the

invocation callback function to completion, and then resume where it left off. Note

that the parameters of the callback function must match the output of the method as

specified by its service specification. In this case, the parameter consists of a single

integer, which matches the output of method “readx” in the specification shown in

Figure 5.3. The return value of invokePeriodic and invokeEvent indicates whether

the invocation was successfully started.

102

1. uses Accel;
2.
3. void main() {
4. invoke(Accel, “get”) error invokeFailed;
5. // . . .
6. }
7.
8. void invokeFailed() { . . .}

Figure 5.8: The error keyword specifies an error callback function that is executed
when the invocation fails.

The dynamic nature of WSNs result in the possibility that service invocations fail.

This is due to the wireless disconnection between the task and the previously-bound

service. To handle these situations, ServillaScript provides the error keyword that

can be included in the invoke command. An example of its use is shown on line

4 of Figure 5.8. The error keyword specifies a callback function that should be

called in case the service invocation fails. In the example shown in Figure 5.8, the

error callback function is invokeFailed. It can also be included in the same manner

with the invokePeriodic and invokeEvent commands. After the callback function

executes, the script returns to the line following the invocation command. The error

keyword enables the application developer to account for situations where a service

provider unexpectedly disconnects during the service invocation process.

This concludes the discussion of Servilla’s programming languages. Servilla provides

two specialized programming languages, ServillaSpec and ServillaScript, that enable

the creation of service specifications and application tasks, respectively. ServillaSpec

enables flexible yet efficient matching between services and tasks. ServillaScript en-

ables platform-independent applications to be developed that rely on available ser-

vices to exploit platform-specific functionality and achieve high levels of efficiency.

The next section discusses Servilla’s middleware.

103

Servilla Middleware

Virtual
Machine

Service Provisioning Framework

Consumer Provider

Figure 5.9: Servilla’s middleware consists of a virtual machine and a service
provisioning framework (SPF). The SPF consists of a consumer and provider.

5.5 Middleware Architecture and Implementation

Servilla’s middleware architecture is shown in Figure 5.9. It consists of a virtual

machine (VM) and a service provisioning framework (SPF). The VM is responsible

for executing application tasks. The SPF consists of a consumer (SPF-Consumer)

that discovers and accesses services, and provider (SPF-Provider) that advertises and

executes services. A VM is used because WSN devices contain processors that have

non-uniform instruction sets. If a task were compiled for one WSN device, it may

not be able to execute on another device with a different instruction set, violating

the premise that tasks be platform-independent. Instead, tasks are compiled into

the VM’s instruction set, which is uniform across all hardware platforms, ensuring

that tasks are platform-independent. In addition, the VM facilitates the dynamic

deployment and mobility of tasks, further motivating the need for dynamic service

binding and the novel binding semantics. Any number of VMs for WSNs can be

used [14, 98, 100, 125, 185], so long as they can be extended to support services and

the SPF. Specifically, whenever a task performs an operation involving a service, the

VM passes the task to the SPF-Consumer, which is described next.

5.5.1 SPF-Consumer

The SPF-Consumer is responsible for discovering, matching, and invoking services on

behalf of tasks. As shown in Figure 5.10, the SPF-Consumer consists of a Service

Finder, Binding Table, and Service Scheduler. The Service Finder is responsible for

finding services that match a task’s specifications, and enforcing the binding semantics

104

Service Provisioning Framework

Service Registry
Service
Finder

Matchmaker

Service
Scheduler

Remote
Invocator

Services

Network Stack

Operating
System

Sensor
Drivers

Storage
Drivers

Platform-Specific
Services

Service
Discovery

Binding Table

SPF-Provider

SPF-
Consumer

Figure 5.10: The detailed architecture of the Service Provisioning Framework.

specified by the application task. It first searches locally and, if no matches are

found, searches neighboring devices. Note that while this increases the likelihood

of selecting a local service, it does not necessarily select the service that is most

energy-efficient. If a task wanted to consider energy-efficiency in the service selection

process, it can include an energy attribute in its service specification, forcing the SPF-

Consumer to select a service that meets the energy-efficiency specification. Through

this mechanism, energy-efficient service provisioning can be achieved.

When a provider is selected, its address is stored in the Binding Table. The Binding

Table maps the task’s service specification to the provider that will perform the

service. It is updated when the Service Finder discovers a new provider and when

a task explicitly unbinds from a service. A task can query the Binding Table to

determine whether it has access to a particular service.

The Service Scheduler carries out the actual invocation. It takes the invocation

specifications (e.g., type of invocation) and input parameters provided by the task,

sends them to the provider, and waits for the results to arrive. Once the results

arrive, it passes them to the task, which can then process the results. If the results

105

do not arrive within a certain time, the Service Scheduler aborts the operation and

notifies the task of the error. In the case of periodic invocations, the Service Scheduler

monitors the periodic reception of invocation results, and alerts the task if a failure has

occurred. For event-based invocations, the Service Scheduler monitors the continued

presence of the provider, and notifies the task if the provider is disconnected while

the service is still being invoked.

5.5.2 SPF-Provider

The SPF-Provider is responsible for providing and executing services. Its architecture,

shown in Figure 5.10, consists of a Service Registry, Matchmaker, Remote Invocator,

and Service Discovery component. The Service Registry contains the specifications of

all locally-provided services. It may also cache the specifications of services provided

by neighboring nodes that have recently been discovered. This reduces the overhead

of remote service discovery by increasing the likelihood that a matching service be

found in the local Service Registry. Note that each Service Registry is independent

and contains a different set of services based on what is locally available. This is

necessary to limit the overhead of storing and maintaining the Service Registry.

The Matchmaker is used to determine whether a service meets the task’s require-

ments. When the SPF-Consumer tries to find a service, the Matchmaker takes the

specification provided by the task, and compares it to the specification provided by

each service in the Service Registry. If it finds a matching specification, the Match-

maker returns a positive response. Note that in this architecture, the task’s specifi-

cation must be sent from the SPF-Consumer to the SPF-Provider since that is where

the Matchmaker is located. Alternatively, the Matchmaker can be moved onto the

SPF-Consumer to reduce the footprint of the SPF-Provider. However, this requires

all specifications belonging to all services to be sent to the SPF-Consumer for service

matching to be performed, a process that may incur higher communication cost since,

in most situations, there are more services provided than required by a task. Assum-

ing the Matchmaker is moved onto the SPF-Consumer on some devices, it is possible

to encounter a situation in which neither the SPF-Consumer nor SPF-Provider imple-

ment the Matchmaker. In this case, no service matching can occur and the services

provided by the SPF-Provider are not considered in the service discovery process. To

106

minimize the occurrence of this scenario, the Matchmaker should be implemented on

the SPF-Provider whenever possible.

When a script invokes a remote service, the SPF-Consumer sends the input parame-

ters to the SPF-Provider on the device that provides the service. The Remote Invo-

cator component within the SPF-Provider receives the input parameters and passes

them to the Service Registry, which executes the service. In the case of periodic and

event-based invocations, the Remote Invocator performs the periodic execution of the

service as specified by the task. Note that the services shown in Figure 5.10 access

platform-specific functions like sensor and storage drivers, as well as the network stack

for providing services that require network communication.

5.5.3 Middleware Modularity

WSNs are becoming increasingly diverse consisting of devices with resources that dif-

fer by several orders of magnitude [144, 37]. This will remain true even as technology

improves, since cost considerations ensure the continued presence of resource-limited

devices. To accommodate the wide range of devices, Servilla’s middleware is mod-

ularized and configurable such that a device need not implement every module to

participate in the network. For example, the following are three ways in which the

middleware can be configured. This list is not complete, but rather contain the most

commonly used middleware configurations.

• VM + SPF. This configuration provides the entire Servilla framework and can

only exist on relatively resource-rich devices like the Imote2 [37] and certain

configurations of the mPlatform [110]. It allows application tasks to execute on

the device and invoke both local and remote services.

• VM + SPF-Consumer. In this configuration, an application task can exe-

cute on a device, but only invoke remote services because a SPF-Provider is not

present locally. It frees up a significant amount of resources since it eliminates

half of the SPF and, more significantly, the services that may require complex

107

TelosB Imote2
Processor 8MHz 16-bit TI MSP430 13-416MHz 32-bit Intel PXA271 XScale
Radio IEEE 802.15.4 IEEE 802.15.4
Memory 48KB Code, 10KB Data 32MB Shared
Price $99 $299

Table 5.2: WSN devices vary widely in computational resources.

drivers for accessing platform-specific hardware. As mentioned previously, de-

pending on resource availability, the SPF-Consumer may or may not implement

the Matchmaker.

• SPF-Provider Only. This configuration is especially useful for severely

resource-poor devices. While it cannot host application tasks, it can dedicate

all of its resources to providing services. Scripts residing on remote devices may

then invoke these services, enabling even resource-poor devices to participate.

The smallest Servilla configuration is this configuration without a Matchmaker.

A detailed analysis of the memory consumed by each configuration is given in Sec-

tion 5.6.1. The configuration containing only the SPF-Provider is particularly inter-

esting because it allows resource-weak but energy-efficient devices to provide services

to more powerful devices. This can result in greater overall energy efficiency and, as-

suming the weak devices are less costly and more numerous, increase sensing density

while achieving greater sensing coverage. The various middleware configurations are

transparent to tasks due to the decoupled nature of the SOC model. For example,

a task need not know whether there is a local SPF-Provider. If a task requires a

service, it will be bound either locally or remotely depending on availability.

Servilla has been implemented on TinyOS 1.0 and two representative hardware plat-

forms shown in Table 5.2. It is divided into two levels as shown in Figure 5.11: a

lower level consisting of shared components and a higher level consisting of Servilla’s

VM and SPF. This section first discusses the lower level followed by the upper level.

It ends with a discussion of Servilla’s programming languages.

The shared components implement low-level mechanisms needed by most high-level

components. The dynamic memory manager makes more efficient use of mem-

ory. This is important because Servilla has several components that require varying

108

Service
Scheduler

Service
Registry

Binding
Table

Service
Finder

Service
Matchmaker

Services

Code
Manager

Stack
Manager

Error Manager

Gateway
Manager

Neighbor
List

Script
Manager

Receiver Sender

Script Migration

Script Execution

Script
Scheduler

Context
Discovery

VM

SPF-Consumer SPF-Provider

SPF

Shared Components

Dynamic Memory Manager

Specification
Table

Services

Figure 5.11: Servilla’s middleware components.

amounts of memory over time, and TinyOS does not support dynamic memory. The

dynamic memory manager provides just enough memory for each higher-level compo-

nent to complete their function and reclaims the memory when it is no longer needed.

It is shared by most components in Servilla’s middleware, maximizing the flexibility

of memory allocation. To aid in debugging, Servilla provides an error manager that

detects and sends summaries of problems to the base station. The error manager is

shared by all other components in Servilla’s middleware.

Servilla’s VM is based on the one provided by Agilla but modified to support the SPF.

Its components are shown in Figure 5.11. Unlike most WSN VMs, Agilla provides

a particularly powerful mobile agent abstraction in which application tasks are able

to explicitly migrate across nodes while maintaining their state. Applications whose

structures are static, evolving, and even mobile can be designed with equal ease and

can coexist on the same WSN. The Agilla VM is modified by augmenting it with a

service specification table and service provisioning instructions. When a task performs

an operation involving a service, the VM passes the task to the SPF-Consumer.

The SPF is implemented natively using NesC and is divided into two modules, the

SPF-Consumer and SPF-Provider, as shown in Figure 5.11. In the SPF-Consumer,

the implementation of the Service Scheduler is simplified by serializing service invo-

cations. This has the added benefit of avoiding saturation of the wireless channel. To

109

interface Service {
command result t isAvailable();
command void getSpec(uint8 t** spec, uint32 t* size);
command result t invoke(Script* s);
event result t done(Script* s, result t result, uint8 t isInteresting);

}

Figure 5.12: All services must provide this interface.

increase energy efficiency, the Service Finder first searches the local Service Registry,

if one exists, before searching those of one-hop neighbors. Currently, only one-hop

neighbors are supported, the implementation can be extended to support multi-hop

service discovery and invocation.

In the SPF-Provider, the Service Registry maintains a list of local services by ex-

ploiting TinyOS’ ability to parameterize interfaces. Every service provides at least

one instance of interface Service, which is shown in Figure 5.12. This is wired to

the Service Registry using an 8-bit parameter, meaning each node can support up to

256 local services. Currently, the Service Registry only records local services. Re-

mote services are discovered on-demand and must be re-discovered each time they

are bound. An enhanced implementation of the Service Registry would include a

cache for storing remote specifications to reduce wireless transmissions and service

discovery latency.

Servilla’s compiler translates tasks and service specifications written in ServillaScript

and ServillaSpec into a compact binary format. The compilers are implemented using

a scanner created by JLex [49] and a parser created by CUP [158]. The parse tree

created by CUP is used to generate the binary encoding of scripts and specifications.

Servilla’s compilers are able create compact code. For example, the task shown in

Figure 5.5 is compiled into 181 bytes of code and 30 bytes of specifications, and the

specification shown in Figure 5.2 is compiled into just 64 bytes. Both the Servilla

middleware and compiler have been released as open-source software available at

http://mobilab.wustl.edu/projects/servilla/.

110

0

5

10

15

20

25

30

35

40

45

50

VM-Only SPF Consumer Only SPF Provider Only

M
em

o
ry

 U
sa

g
e

(K
B
)

SPF Provider SPF Consumer

VM Shared

TinyOS

Figure 5.13: The code memory footprint of different Servilla configurations on the
TelosB platform.

5.6 Micro-benchmarks

This section presents empirical measurements of Servilla’s code size and performance

overhead on the TelosB [144] and Imote2 [37] platforms, which vary widely as shown

in Table 5.2. The evaluation consists of two parts. First, the memory footprint of the

middleware is measured. This determines how well the middleware accommodates

nodes with varying amounts of memory. Second, the efficiency of service discov-

ery and invocation is evaluated. The efficacy of the Servilla programming model is

demonstrated through an application case study in the next section.

5.6.1 Memory Footprint

The modularity of Servilla’s middleware architecture enables its memory footprint to

be adjustable. This is important because of the large variation in the amount of mem-

ory available on WSN nodes. For example, an Imote2 has 32MB of memory, which is

sufficient to hold the entire Servilla middleware. Compiled for the Imote2, the total

size without services is a mere 318KB. This is only about 1% of the total, leaving

plenty of memory for services. In contrast, TelosB devices only have 48KB of code

memory and 10KB of data memory. This is not enough to hold the entire Servilla

middleware, as shown in Figure 5.13. The figure shows the amount of code memory

consumed by three different configurations of Servilla on the TelosB platform. The

111

first configuration illustrates the amount of memory consumed on the TelosB when

just the VM is installed. In this case, it consumes 45KB on the TelosB. The second

configuration consists of just the SPF-Consumer. While this is an invalid configura-

tion (since no tasks can make use of the SPF-Consumer), it is given to illustrate why

TelosB nodes cannot include both the VM and the SPF-Consumer. Specifically, the

SPF-Consumer consumes 32KB, of which 5KB is unique. This additional 5KB on top

of the 46KB consumed by the VM exceeds the 48KB available on the TelosB node,

preventing the TelosB from running both the VM and SPF-Consumer. Although

TelosB devices do not have enough memory to hold the entire Servilla middleware,

it can support a configuration consisting of just the SPF-Provider, which only con-

sumes 32KB of code memory as shown by the right-most configuration in Figure 5.13.

This example shows how Servilla’s modular architecture enables support of diverse

hardware platforms.

By allowing computationally weak devices like the TelosB to join and contribute to

a WSN as service providers, they can be exploited by more powerful devices. This

is important because weaker devices tend to have higher energy efficiency and lower

monetary cost, which is the case with the TelosB relative to the Imote2. As shown in

previous work [60] and our case study presented in Section 5.7, effective integration of

resource-constrained and resource-rich devices can combine the advantages of perva-

sive low-power sensing with high computational ability, enabling complex applications

with enhanced energy efficiency.

5.6.2 Efficiency of Service Binding

Service binding consists of three parts: discovery, matching, and selection. This

study first focuses on discovery followed by matching and selection. Recall that, in

the current implementation, the Service Finder queries each neighbor individually for

a match. This is because the delivery of the service specifications used in determining

a match must be reliable, and the reliable network interface that Servilla uses does

not support wireless broadcasts. To optimize the selection, the Service Finder first

searches locally before remotely. Since the latency of a local search is negligible, we

evaluate the latency of a remote search.

112

Property Size (Bytes)
Signature 23
Attr. 1 14
Attr. 2 15
Attr. 3 12

Table 5.3: The size of the properties within service specification FFT

device CPU/Bus Sig. Attr. 1 Attr. 2 Attr. 3 Other Total Units
TelosB 8/8MHz 18 14 24 29 8 92 ms

Imote2 13/13 1569 1421 2642 3272 784 9688 µs

Imote2 104/104 198 180 330 408 94 1209 µs

Imote2 208/208 99 89 165 204 47 604 µs

Imote2 416/208 71 62 113 136 31 413 µs

Table 5.4: Service matching latency when comparing two FFT-real service
specifications

The latency of a remote search depends on the number of neighbors, the percentage of

them that provide a matching service, and the order in which they are queried. Since

each query is executed independently, this study evaluates a single query. Assuming

the Matchmaker is on the provider, an Imote2 is used to query a TelosB to determine

whether the TelosB provides a particular service. In this case, the service being

queried is FFT and the specification is shown in Figure 5.2. It is compiled into 64

bytes, a breakdown of which is shown in Table 5.3. Performing a remote search

requires the Imote2 to send the FFT service specification to the TelosB. Due to various

bookkeeping variables used in service provisioning, the size of the query message is

72 bytes, and the reply message is 16 bytes. The time between sending the query to

receiving a reply is measured by toggling a general I/O pin before and after the query,

and measuring the time using an oscilloscope. Averaged over 100 trials, the latency

and 90% confidence interval of determining whether a remote node has a match is

245.6± 1ms. This latency is acceptable to many WSN applications, especially since

it is done only done during the service discovery process. That is, the cost of service

discovery can be amortized over multiple invocations of the same service after it is

bound to the task.

The latency of service binding depends on many factors. They include how many

services must be considered before a match is found, the size and structure of the

113

specifications that are compared, where the services are located, the reliability of the

wireless network when the service discovery process executes, and even the speed of

the devices. Since many of these factors are unpredictable, this section analyzes the

latency of determining whether two specifications match on the TelosB and Imote2

platforms.

To evaluate the efficiency of service matching, the Matchmaker is used to compare

two copies of FFT, shown in Figure 5.2. This incurs the worst-case latency since every

property within the specification must be analyzed and compared. Each experiment

is repeated twenty times on both TelosB and Imote2 platforms running at all possi-

ble CPU speeds. The average latencies are calculated and the results are shown in

Table 5.4.4 The total latency consists of the latencies of comparing the service spec-

ification’s signature plus each of its attributes. The column labeled “other” is the

overhead incurred by the Matchmaker between comparing service specification prop-

erties. The results indicate that the TelosB takes about 92ms to perform a match,

while the Imote2 is at least ten times faster depending on the speed setting of the

CPU. As expected, the latency of comparing two specifications depends on the speed

and architecture of the processor, and is mostly inversely proportional to the CPU

speed, reflecting the CPU-bound nature of the comparison. The only exception is the

transition from a CPU speed of 208MHz to 416MHz on the Imote2, in which the pro-

cessor’s data bus is the bottleneck. In all cases, the latencies are small compared to

the execution times of certain VM instructions. Note that while service matchmaking

does introduce overhead, it is done infrequently relative to service invocation.

To determine how the specification’s size affects matching latency, FFT is compared to

versions of itself with one, two, and all three of its attributes removed. The matching

latencies is plotted against their sizes and the results are shown in Figure 5.14. For

brevity, only the Imote2 running at 13MHz is shown — the latencies when the Imote2

is running at higher CPU frequencies are significantly lower and appear near zero

in the figure. The results indicate that the latency is roughly proportional to its

size. It is not exactly proportional because of the additional overhead incurred with

the addition of each attribute, as indicated by the “other” column in Table 5.4.

4The confidence intervals are negligible since the experiment runs locally and the measurements
exhibit very low variance.

114

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

15  20  25  30  35  40  45  50  55  60  65 

La
te
nc
y 
(m

s)
 

Specifica1on Size (Bytes) 

TelosB  Imote2 (13MHz) 

Figure 5.14: The latency of comparing a
specification.

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

0  20  40  60  80  100  120  140  160  180  200 

La
te
nc
y 
(m

s)
 

Number of Bytes Searched 

TelosB  Imote2 (13MHz) 

Figure 5.15: The latency of obtaining a
service’s binding state.

Spec. Name # of Properties Size (Bytes)
1 FFT 3 64
2 light-tsr 2 46
3 accel-3d 5 85
4 flash mem 1 34

Table 5.5: The sizes of the specifications used to evaluate service invocation

The results demonstrate the feasibility of performing service matching on resource-

constrained WSN nodes.

5.6.3 Efficiency of Service Invocation

Service invocation latency can be divided into three components. The first is the

time spent retrieving the binding state, the second consists of the time spent com-

municating over the network, and the third is the actual execution of the service.

Among these, only the first two contribute to the overhead of service provisioning

since the third simply executes a service that is natively-implemented. Thus, this

section analyzes the latencies associated with first and second components.

The latency of obtaining a service’s binding state depends on the number of speci-

fications owned by the script, and their sizes and structure within the Specification

and Binding Tables. To measure the latency of obtaining the service specification’s

binding state, the Specification and Binding Tables are loaded with FFT followed by

115

Spec. 1 2 3 4 Units
TelosB 2 13 25 45 ms

13MHz Imote2 206 1571 3251 6785 µs

104MHz Imote2 26 196 406 849 µs

208MHz Imote2 13 98 203 424 µs

416MHz Imote2 9 67 133 265 µs

Table 5.6: The latency of obtaining the a service’s binding state

three other specifications whose properties are summarized in Table 5.5. The latency

of obtaining the binding information of each specification is measured using the same

technique described in Section 5.6.2, i.e., each experiment is repeated twenty times

on both Imote2 and TelosB devices using every CPU frequency supported by the

platform’s processor. Like before, since the operations are local, the variances of the

results are negligible and thus omitted. The results, shown in Table 5.6, indicate

that the latency is very small with the TelosB and Imote2 devices taking up to 45ms

and 6.8ms, respectively. Figure 5.15 shows the linear relationship between latency

versus the number of bytes searched to obtain the service’s binding state. The results

demonstrate the feasibility of obtaining the service binding state on a WSN node.

The overhead of network communication depends on the amount of data that needs

to be sent and the reliability of the wireless link. To evaluate the overhead associated

with network communication, Servilla’s SFP is instrumented with components that

measure the latency of sending a service invocation request to a device that is one

hop away and receiving a response. The remote device is configured to immediately

send a results message back upon receiving the request. This isolates the overhead

of network communication by eliminating variability associated with the latencies of

executing different services. Both the request and response contain the minimum

amount of information for the SPF to operate. Specifically, the request consists of a

service handle (two bytes), method handle (two bytes) and script ID (two bytes), for

a total of six bytes, and the response consists of a status field indicating whether the

invocation was successful (two bytes), and a script ID (two bytes), for a total of four

bytes. In a normal service invocation, these messages would also include the input

and output parameters of the service. In these experiments, no service is executed

and no parameters are passed to isolate the overhead of network communication and

eliminate service-specific overhead.

116

Network latency is measured by separating two devices, a service consumer (Imote2)

and provider (TelosB), by approximately 0.6m in the lab. The radio power and CPU

frequency are left at their default values. Averaged over 40 trials, the average and

95% confidence interval of network latency is 145± 1ms. The results exhibited very

low variability due to the “clean room” state provided by the lab. A deployment

in a harsh and dynamic environment will likely result in longer and more variable

network latencies. Note that the network latency of service invocation is less than

service discovery since less data needs to be transmitted, i.e., the service specification

is not transmitted when invoking a service.

5.7 Application Case Study: Structural Health

Monitoring

This section evaluates Servilla using an application case study involving structural

health monitoring [33]. Structural health monitoring is a general class of WSN ap-

plications that enable continuous and real-time evaluation of a structure’s integrity,

reducing manual inspection costs while increasing safety. In this case study, the ob-

jective of the application is to localize damage in a structure, e.g., a bridge, based

on accelerometer readings obtained from a WSN. Previously, WSNs have been used

to successfully localize damage in experimental structures using a homogeneous net-

work of Imote2 devices [66]. The implementation used an algorithm called Damage

Localization Assurance Criterion (DLAC), which was written natively using NesC

specifically for the Imote2 platform, meaning it is not easily ported to other plat-

forms and does not exploit the capabilities of other types of devices. This section

investigates how the application can be implemented using Servilla in a manner that

improves upon the original by making it platform-independent and increasing its

energy efficiency by exploiting network heterogeneity.

The heterogeneous WSN used in this study consists of TelosB and Imote2 devices. To

enable sensing, an EasySen SBT80 sensor board is attached to each TelosB device,

while an ITS400 sensor board is attached to each Imote2 device. Unfortunately, due to

insufficient memory on the TelosB, the DLAC algorithm can only run on the Imote2.

However, the TelosB can still be of use by monitoring whether damage is probable

117

NAME = AccelTrigger

METHOD = start

INPUT =

OUTPUT =

METHOD = stop

INPUT =

OUTPUT =

METHOD = check

INPUT =

OUTPUT =

ATTRIBUTE power = ...

Interface

Attributes

Name

(a) The specification of service AccelTrigger
provided by Imote2 and TelosB devices. The
power attribute specifies the amount of power
the service consumes. It is 242mW on the
Imote2, and 103mW on the TelosB.

NAME = AccelTrigger

...

ATTRIBUTE power < 50
Interface
Attributes

Name

(b) The specification of a low-power version of
service AccelTrigger, which is provided by the
application task. Its interface is omitted since it
is the same as the one in Figure 5.16(a). A high-
power version has attribute power ≥ 50 mW.

NAME = DLAC

METHOD = find

INPUT =

OUTPUT = float[25]

Interface

Name

(c) The specification of service DLAC provided
by Imote2 devices.

Figure 5.16: The services used by the damage localization application

based on the ambient vibration readings, thus enabling the Imote2 devices to remain

asleep so long as there is low probability of damage. Ideally, the Imote2 devices should

only be activated to perform the DLAC algorithm when the TelosB devices detect

that the ambient vibration levels exceed a threshold above which damage is likely to

occur. The dual-level nature of this configuration is common to other applications like

surveillance [71], and is essential for conserving energy and increasing network lifetime.

This section examines Servilla’s ability to facilitate this heterogeneous configuration.

The Servilla implementation relies on two services: AccelTrigger and DLAC. Ambient

vibrations are continuously monitored by AccelTrigger. When the vibrations exceed

a certain preset threshold, it sets a flag indicating the high probability of damage due

to the large vibrations. The specification of AccelTrigger is shown in Figure 5.16(a).

It has three methods: start, stop, and check. Methods start and stop control

when the service monitors the local accelerometer. Initially, and when the service is

stopped, it does not monitor the local accelerometer to save energy. Only after start

118

is called does the service access the accelerometer. The status of the flag is obtained

by invoking check. This method returns 1 if any of the ambient vibration readings

obtained since the service was started have exceeded the threshold, otherwise 0 is

returned. If the check method of this service is invoked in an event-based manner,

the results are considered interesting if a 1 is returned. Both the Imote2 and TelosB

devices provide AccelTrigger. They differ in their power attribute, since the Imote2

consumes more power than the TelosB (242mW vs. 103mW).

The specification of service DLAC is shown in Figure 5.16(c). It contains a single

method, find, that takes no parameters and returns an array of floating-point num-

bers that are used to localize damage to the bridge [66].

Two versions of the application’s task are shown in Figures 5.17 and 5.18. One version,

shown in Figure 5.17, makes use of on-demand service invocations while the second

version, shown in Figure 5.18, makes use of event-based service invocations. Note that

the task that uses event-based invocations can also be used with periodic invocations

by modifying lines 11 and 16 to call invokePeriodic rather than invokeEvent.

The first three lines of both versions of the task specify the names of the files con-

taining the specifications of the required services. The content of AccelTriggerLP is

shown in Figure 5.16(b), and the content of DLAC is shown in Figure 5.16(c). Notice

that AccelTriggerLP matches the TelosB version of the AccelTrigger service shown

in Figure 5.16(a) because its power attribute is less than 150mW. AccelTriggerHP

contains the same specification as AccelTriggerLP except its power attribute is≥ 150

mW, which matches the service provided by the Imote2. Note that while these service

specifications match the power characteristics of platforms specific to this evaluation,

they are still platform-independent in the sense that other platforms may later be

introduced that provide the same service, but with different power consumption prop-

erties. Despite these differences in the power consumption property, the application

can use the services provided by these new devices without modification.

The application attempts to reduce energy consumption by preferentially binding to

an Acceltrigger service that consumes less power. It does this by first attempting

to bind using the specification within AccelTriggerLP on line 8 of both versions of

the task, before using the specification within AccelTriggerHP on line 13 of both

versions of the task. Once an AccelTrigger service is bound, the two tasks differ

119

in how they invoke the service. The task shown in Figure 5.17 performs on-demand

service invocation, meaning it must periodically query the service to determine if the

acceleration readings are above a certain threshold (lines 21-37). If it is, as indicated

by a return result of 1, DLAC is invoked and the results are sent to the base station

(lines 39-43). The task shown in Figure 5.18 performs event-based service invocation,

meaning it does not need to periodically query the service. The key lines of code

are 11 and 16 of Figure 5.18. The lines specify that the “check” method of the

service should be invoked periodically once every second, as indicated by the 1024

parameter, and the name of the event-callback function that should be called when

“check” returns an interesting result. In this case, the event-callback functions for

the low and high power services are “lpEvent” and “hpEvent”, respectively. Both of

these callback functions verify that the return value of the service invocation is one

(lines 22 and 29). If it is, the AccelTrigger service is stopped (lines 23 and 30),

and the DLAC algorithm is invoked (lines 35-39). Note that another reason why the

event call-back functions check the flag is to enable the task to be easily modified to

use periodic invocations, as described above.

To evaluate the benefit of exploiting network heterogeneity on Servilla, the tasks

shown in Figures 5.17 and 5.18 are injected into two WSNs: a homogeneous network

consisting of only Imote2 devices, and a heterogeneous network consisting of both

Imote2 and TelosB devices. In addition, a modified version of the task shown in

Figure 5.18 that uses periodic service invocations is also used to enable comparisons

among all three forms of service invocation. Since the application is written using

Servilla, it is able to run on both types of networks without modification. In all

cases, DLAC is executed by the Imote2, meaning the power consumption of performing

damage localization is constant. However, the power consumption of AccelTrigger

varies because Servilla’s service provisioning framework enables an application to

exploit more energy-efficient services when possible in a platform-independent and

declarative fashion. Specifically, if TelosB devices are present, the service will be

executed on a TelosB device since its AccelTrigger service consumes less power,

otherwise it will be executed on the Imote2. We compare the power consumption of

invoking AccelTrigger in different network configurations and using different forms

of service invocations.

120

Action/State TelosB Imote2 Units
Idle Power (Sensor Off) 0.45 109.7 mW
Idle Power (Sensor On) – 204.83 mW
Sensing 102.9 241.83 mW
Sensing Latency 18.49 2.61 ms
Message Tx Power 51.82 184 mW
Message Tx Latency 725 506 ms
Message Rx Power 57.52 192.91 mW
Message Rx Latency 6.17 14.07 ms

Table 5.7: Power and latency attributes of TelosB and Imote2 platforms when radio
is operating at 1% duty cycle.

Since invoking AccelTrigger on the TelosB requires a remote invocation, the power

draw depends on the invocation period in addition to the sensing frequency. The

invocation period is the time between each invocation of the “check” method, while

the sensing frequency is the rate at which the accelerometer is accessed. If the service

is invoked too often, a larger percentage of energy will be spent on wireless communi-

cation. Likewise, if the sensor is accessed very infrequently, the benefits of the TelosB

is diminished since the devices will remain asleep a larger percentage of the time.

To determine how much energy savings are possible, the power draws and latencies

of performing various operations and operating in certain states are obtained. This

is done using a Tektronix TDS 2004B digital oscilloscope simultaneously measuring

the voltage across a high-accuracy resistor placed in parallel with the device, and

the voltage drop across the device itself. The measurements obtained and used in

the remainder of this section are shown in Table 5.7. As expected, the TelosB draws

far less power than the Imote2. In some cases, like idling, it draws several orders

of magnitude less power. Note that the Imote2 has two idle powers, one with the

sensor board on and another with the sensor board off. This is due to limitations of

the ITS400 driver that prevents the sensor from being turned off between readings.

The consequence is a magnification of the benefits of periodic and event-based invo-

cations, which require fewer message transmissions. All of the measurements when

the radio was being operated at a 1% duty cycle using an asynchronous duty cycling

mechanism, which is included in TinyOS. While this enables lower idling power, due

to the radio being turned off 99% of the time, it results in long latencies when sending

messages.

121

In this case study, the invocation period is varied between 1 to 120 seconds and sensing

frequency is varied between 1 and 14Hz. The selection of the invocation period range

is done mostly arbitrarily — the only restriction is that it not be less than the round-

trip communication time, which in this case is 725ms + 6.17ms = 731.17ms. The

selection of 14Hz as the maximum sensing frequency is to prevent overloading the

TelosB device, which operates slower than the Imote2. Consider the fastest service

invocation period of 1s. In this case, the percent utilization of the TelosB dedicated

to handling the invocation attempts is given by Equation 5.1.

Message Tx latency + Message Rx latency

invocation period
=

0.00617 + 0.725

1
= 0.7312 (5.1)

Equation 5.1 indicates that handling invocation requests utilizes a maximum of

73.12% of the processor. Thus, sensing can consume up to 100%− 73.12% = 26.88%

of the processor. The processor utilization of sensing is given by Equation 5.2.

Sensing Latency

Sensing Period
= 0.01849 · Sensing Frequency (5.2)

Setting Equation 5.2 to have a maximum value of 26.88% and solving for the sensing

frequency derives a maximum sensing frequency of 14.55Hz, thus the selection of 14Hz

as the maximum sensing frequency used in this case study.

The percent reduction in power utilization of using a heterogeneous versus a homoge-

neous network is calculated for the three service invocation techniques and the range

of invocation periods and sensing frequencies described above. The homogeneous

network configuration consists of the Imote2 invoking the service locally, while the

heterogeneous network consists of the Imote2 invoking the service on the TelosB.

All calculations assume that no vibrations exceeding the preset threshold have been

detected, meaning they reflect the power savings when the system is running in long-

term steady state. This is reasonable since exceptional events like damage-inducing

vibrations are expected to be rare. The results are shown in Figure 5.19. They show

that regardless of the type of invocation used, exploiting network heterogeneity using

Servilla results in a reduction in power utilization under most circumstances. The

122

only exception is when on-demand service invocations are issued at the fastest pe-

riod (1 second) and sensing frequency (14Hz), in which case a heterogeneous network

draws 6.8mW more power, as shown by the negative portion in Figure 5.19(a). In

all other configurations, using a heterogeneous network always results in significant

reductions in power consumption.

For example, on-demand and periodic service invocations both converge towards the

same reduction in power as the invocation period increases, with a power reduction

ranging from 33% to 45% depending on the sensing frequency. This is shown in

Figures 5.19(a) and 5.19(b). They converge because the only difference between

them is the need for the an invocation message to be sent each time the service

is invoked. This difference becomes increasingly negligible as the invocation period

increases. That is, there is a limit to the amount of energy that can be saved as

the service invocation period increases since it approaches the difference between the

energy consumed by the Imote2 versus the TelosB idling and sensing at the prescribed

rate. Note that the percent reduction in power consumption is less when the sensor is

accessed more rapidly. This is because accessing the sensor more often results in the

node being able to idle less, and the difference in the idle power draws of the TelosB

and Imote2 is greater than the difference in the sensing power draws.

Event-based invocations result in an even more significant reduction in power con-

sumption at 87% to 98.9%, as shown in Figure 5.19(c). Event-based invocations

result in large reductions in power draw since they do not require any messages to

be sent so long as no event of interest has occurred. Thus, the percent reduction in

power reflects the difference between the power draw of the Imote2 versus the TelosB

accessing the sensor. Note that the reduction in power consumption remains constant

regardless of the invocation period because invocations do not involve sending any

messages in either direction (this is assuming the system is operating in steady state

in which no interesting event has occurred).

To understand the relative differences between the various forms of remote invocation

in a heterogeneous network, the reduction in power consumption when selecting dif-

ferent forms of remote invocation are shown in Figure 5.20. Figure 5.20(a) and 5.20(b)

show the percent reduction in power utilization when using event-based invocations

123

relative to on-demand and periodic invocations. In both cases, event-based invoca-

tions result in significant energy savings since messages do not need to be transmitted

so long as no interesting event has been detected. This is reflected by the fact that

as the invocation period decreases, the percent savings increase due to the additional

messages being sent in the on-demand and periodic forms of invocation.

The similarities between Figures 5.19(a) and 5.19(b) and Figures 5.20(a) and 5.20(b)

may lead one to conclude that there is little difference between on-demand and per-

odic invocations in a heterogeneous WSN. To determine the difference between these

two forms of invocation, Figure 5.20(c) shows the percent reduction in power draw

when performing periodic invocations relative to on-demand invocations. It shows

that there always exists savings, and that the savings increase dramatically as the

invocation period decreases. This makes sense since decreasing the invocation period

increases the number of invocations per unit time. Since periodic invocations do not

need an invoke message to be sent each time the service is invoked, a greater reduction

in energy savings is obtained by using periodic invocations.

This case study demonstrates how Servilla enables platform-independent applications

that operate over a heterogeneous WSN, and how it facilitates in-network collabora-

tion between different types of devices to attain higher energy efficiency. Moreover, it

demonstrates that Servilla enables an application to bind to a more energy-efficient

service through service specification, and that the different forms of service invoca-

tion significantly impact the attainable energy savings. Note that this case study

demonstrated one of many implementations of the application. An alternative imple-

mentation is to divide the application into two tasks. One would run on a low-power

node and invoke AccelTrigger, while another would run on a high-power node and

execute DLAC when the low-power task notifies it of potential damage. This imple-

mentation requires that the low-power node be able to run a VM and SPF, which

would exclude the TelosB. Thus, the current implementation was selected since it

enables weaker nodes like the TelosB to contribute to the application. The analysis

demonstrated that the decision to include the weaker TelosB node results in signifi-

cant reductions in power consumption in most scenarios.

124

5.8 Chapter Summary

The increasing difficulty of developing applications for heterogeneous and dynamic

WSNs demands a new coordination model. Servilla provides this by introducing

a novel service provisioning framework that enables applications to be platform-

independent while still able to access platform-specific capabilities. A salient fea-

ture of Servilla lies in its capability to support coordination and collaboration among

heterogeneous devices inside a WSN. A specialized service description language is

introduced that enables flexible matching between applications and services, which

may reside on different devices. Servilla provides a modular middleware architecture

to enable resource-poor devices to participate by contributing services, facilitating

in-network collaboration among a wide range of devices. The efficiency of Servilla’s

implementation is established via microbenchmarks on two representative classes of

hardware platforms. The effectiveness of Servilla’s programming model is demon-

strated by a structural health monitoring application case study.

125

1. uses AccelTiggerHP;
2. uses AccelTiggerLP;
3. uses DLAC;
4.
5. void main() {
6. bind(DLAC, 0); // bind DLAC service
7. if(!isBound(DLAC)) exit(); // failed to bind DLAC
8. bind(AccelTriggerLP, 1); // bind low-power AccelTrigger service
9. if(isBound(AccelTriggerLP)) {
10. invoke(AccelTriggerLP, “start”);
11. waitForTrigger(1);
12. } else {
13. bind(AccelTriggerHP);
14. if(isBound(AccelTriggerHP)) {
15. invoke(AccelTriggerHP, “start”);
16. waitForTrigger(0);
17. }
18. }
19. }
20.
21. void waitForTrigger(int useLowPower) {
22. int vibration = 0;
23. while(vibration == 0) {
24. if (useLowPower)
25. vibration = invoke(AccelTriggerLP, “check”);
26. else
27. vibration = invoke(AccelTriggerHP, “check”);
28. if (vibration == 1) {
29. if (useLowPower)
30. invoke(AccelTriggerLP, “stop”);
31. else
32. invoke(AccelTriggerHP, “stop”);
33. doDLAC();
34. }
35. sleep(1024*60*5); // sleep for 5 minutes
36. }
37. }
38.
39. void doDLAC() {
40. float[25] dlac data;
41. dlac data = invoke(DLAC, “find”);
42. send(dlac data); // send DLAC data to base station
43. }

Figure 5.17: The damage localization application task using on-demand invocations

126

1. uses AccelTiggerHP;
2. uses AccelTiggerLP;
3. uses DLAC;
4.
5. void main() {
6. bind(DLAC, 0); // bind DLAC service
7. if(!isBound(DLAC)) exit(); // failed to bind DLAC
8. bind(AccelTriggerLP, 1); // bind low-power service
9. if(isBound(AccelTriggerLP)) {
10. invoke(AccelTriggerLP, “start”);
11. invokeEvent(AccelTriggerLP, “check”, 1024, lpEvent);
12. } else {
13. bind(AccelTriggerHP,1);
14. if(isBound(AccelTriggerHP)) {
15. invoke(AccelTriggerHP, “start”);
16. invokeEvent(AccelTriggerHP, “check”, 1024, hpEvent);
17. }
18. }
19. }
20.
21. void lpEvent(int flag) {
22. if(flag == 1) {
23. invoke(AccelTriggerLP, “stop”);
24. doDLAC();
25. }
26. }
27.
28. void hpEvent(int flag) {
29. if(flag == 1) {
30. invoke(AccelTriggerHP, “stop”);
31. doDLAC();
32. }
33. }
34.
35. void doDLAC() {
36. float[25] dlac data;
37. dlac data = invoke(DLAC, “find”);
38. send(dlac data); // send DLAC data to base station
39. }

Figure 5.18: The damage localization application task using event-based invocations

127

‐5 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

0  0.5  1  1.5  2 

Re
du

c&
on

 in
 P
ow

er
 C
on

su
m
p&

on
 (%

) 

Invoca&on Period (minutes) 

1Hz Sensing Frequency 

7Hz Sensing Frequency 

14Hz Sensing Frequency 

(a) On-Demand Service Invocation.

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

0  0.5  1  1.5  2 
Re

du
c&
on

 in
 P
ow

er
 C
on

su
m
p&

on
 (%

) 

Invoca&on Period (minutes) 

1Hz Sensing Frequency 

7Hz Sensing Frequency 

14Hz Sensing Frequency 

(b) Periodic Service Invocation.

86 

88 

90 

92 

94 

96 

98 

100 

0  0.5  1  1.5  2 

Re
du

c&
on

 in
 P
ow

er
 C
on

su
m
p&

on
 (%

) 

Invoca&on Period (minutes) 

1Hz Sensing Frequency 

7Hz Sensing Frequency 

14Hz Sensing Frequency 

(c) Event-Based Service Invocation

Figure 5.19: Percent power savings of heterogeneous vs. homogeneous WSNs.

128

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0  0.5  1  1.5  2 

Re
du

c&
on

 in
 P
ow

er
 C
on

su
m
p&

on
 (%

) 

Invoca&on Period (minutes) 

1Hz Sensing Frequency 

7Hz Sensing Frequency 

14Hz Sensing Frequency 

(a) Event-based versus on-demand

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0  0.5  1  1.5  2 
Re

du
c&
on

 in
 P
ow

er
 C
on

su
m
p&

on
 (%

) 
Invoca&on Period (minutes) 

1Hz Sensing Frequency 

7Hz Sensing Frequency 

14Hz Sensing Frequency 

(b) Event-based versus periodic

0 

5 

10 

15 

20 

25 

0  0.5  1  1.5  2 

Re
du

c&
on

 in
 P
ow

er
 C
on

su
m
p&

on
 (%

) 

Invoca&on Period (minutes) 

1Hz Sensing Frequency 

7Hz Sensing Frequency 

14Hz Sensing Frequency 

(c) Periodic versus on-demand

Figure 5.20: Relative power savings of different invocation types on heterogeneous
WSNs.

129

Chapter 6

Servilla Extension: Adaptive

Service Provisioning

The previous chapter presented Servilla, a middleware that simplifies application

implementation by exploiting the decoupling provided by service provisioning to ele-

gantly handle device heterogeneity in WSNs. This chapter further explores how this

decoupling can enhance applications in terms of their ability to adapt to network

dynamics and promote energy conservation. The key observation is that novel adap-

tive service binding strategies can cope with network dynamics and promote energy

conservation. To achieve this, Servilla is extended to include policies and algorithms

that automatically adapt application behavior when opportunities for energy savings

arise, and switch providers in response to network topology changes. The former is

accomplished by providing limited information about the energy consumption associ-

ated with using various services, by systematically exploiting opportunities for sharing

service invocations, and by exploiting the broadcast nature of wireless communication

in WSNs. The latter is accomplished by monitoring the performance of the current

and alternative service providers. The policies and algorithms have been implemented

and evaluated on two disparate WSN platforms, the TelosB and Imote2. Empirical re-

sults show that adaptive service provisioning can enable energy-aware service binding

decisions that result in increased energy efficiency and significantly increase service

availability, while imposing minimal additional burden on the application, service,

and device developers. The system’s efficacy is demonstrated through two applica-

tion case studies: medical patient monitoring and structural health monitoring.

130

6.1 Motivation

Service-Oriented Computing (SOC) [137] has traditionally been used to enable inde-

pendently created software to work together. In the context of WSNs, it was initially

used as a way to rapidly integrate data obtained by WSN nodes with Internet-based

applications [147, 9, 89]. More recently, SOC was used to facilitate the development

of applications that run within WSNs that consist of a heterogeneous mix of devices,

as described in Chapter 5 [157, 93]. While these usages of SOC are useful, the sys-

tems that implement them relied on traditional service binding schemes that were

originally designed for use on the Internet, though with significantly simplified im-

plementations. They are not tailored to the unique properties of WSNs like limited

energy and unreliable network connectivity. This chapter proposes novel service bind-

ing schemes that enhance energy efficiency and service availability in an autonomous

and application-transparent manner.

Two novel service binding schemes are proposed. First, novel service selection strate-

gies are developed that enhance the energy efficiency of a WSN. This is important

because when multiple providers are available in a heterogeneous network, each may

be configured differently resulting in the varying energy efficiencies. Thus, the se-

lection of a provider affects the energy footprint of an application. To make the

SOA energy-aware, a limited amount of information regarding a provider’s energy ef-

ficiency is included in the provider’s response to a service discovery request, allowing

the consumer to determine which provider will result in the highest energy efficiency.

Furthermore, opportunities for sharing service executions are automatically identified

and exploited to increase energy efficiency. This is particularly useful when combined

with the broadcast nature of wireless communication, which enables the results of a

single execution to be simultaneously delivered to multiple consumers.

Second, adaptive service binding strategies are developed to automatically adjust

the bindings between service providers and consumers in response to changes in the

network topology. This is important because WSNs exhibit high levels of dynamics

due to node mobility, exposure to a harsh and dynamic environment, and the use of

low-power radios susceptible to fluctuations in link quality [64]. A key advantage of an

adaptive service binding scheme is that it enables application-transparent handling of

131

network topology changes in a SOC framework, and thus greatly simplifies application

development despite network dynamics.

Significant contributions of this work also lie in the implementation of the adaptive

service binding strategies and comprehensive empirical evaluation through both mi-

crobenchmarks and two application case studies. Specifically, the adaptive service

binding strategies are implemented in an enhanced version of Servilla that runs on

TinyOS 2.1. It was evaluated on two disparate hardware platforms, the Imote2 [37]

and TelosB [144], which differ significantly in terms of energy efficiency motivating

the need for energy-aware adaptation mechanisms.

To evaluate the efficacy, feasibility, and usability of our adaptive SOA, a detailed

analysis of how the adaptation mechanisms are configured for the Imote2 and TelosB

platforms is performed. They indicate that the adaptation mechanisms do not impose

undue additional burden on the device, service, and application developers. In ad-

dition, two real-world application case studies involving medical patient monitoring

and structural health monitoring are implemented. The medical patient monitor-

ing application involves a user moving through a region covered by a 74-node WSN

testbed spread across two buildings at Washington University in St. Louis [175]

periodically invoking services provided by nodes in the testbed. Adaptive service

provisioning achieved 100% service invocation success rate despite frequent topol-

ogy changes caused by user mobility. The structural health monitoring application

involves a WSN dedicated to detecting and localizing damage in a structure. It

demonstrates the ability of adaptive service provisioning to enhance energy efficiency

through energy-aware service selection and sharing.

6.2 Related Work

SOC has been used in WSNs for various purposes [119]. One original use is to in-

tegrate WSNs with Internet applications [9, 147, 146, 102, 10, 160]. To do this, the

WSN is hidden behind services that provide sensor data. Using SOC, Internet ap-

plications can bind to these services and access information generated by the WSN.

Application development is simplified since developers are already familiar with SOC

132

programming. Systems that provide this differ in the degree to which SOC is in-

tegrated, and the operations that are performed. For example, PhyNetTM [9] and

TinySOA [10] implement a single provider as a translation layer on the WSN gate-

way, which interfaces between the WSN and an IP network. Prinsloo et. al. [146]

presents a system that provides the Open Service Gateway Initiative (OSGi) [135]

SOA on the gateway. Li et. al. [102] and Sommer et. al. [160] present advanced

query re-writing and code generation functionalities on the gateway for increasing

the energy efficiency of service invocations and service reuse. In these systems, the

protocols that transfer the sensor data from each WSN node to the gateway are pro-

prietary but hidden from the application developer. Tiny Web Services (TWS) [147]

implements service providers on each WSN node, enabling new types of services to

be added without modifying the gateway. While these systems represent major steps

toward the integration of WSNs with the Internet, they provide traditional service

binding schemes that are not specifically designed to enhance energy efficiency and

service availability, which are common concerns in WSNs.

In addition to integrating WSNs with traditional networks, SOC has also been used

for enabling adaptation to network heterogeneity. This is exemplified by Servilla, the

SOA that was described in Chapter 5. Its key idea was to present platform-specific

functionalities as services that are dynamically bound to platform-independent ap-

plications. Servilla differs from the system presented in this paper in that it does

not provide adaptive service provisioning. Service binding and unbinding is done ex-

plicitly by the application and energy efficiency is not automatically considered when

selecting a provider — the application had to include it as a required attribute in a

service specification, and manually select the most energy-efficient provider. This is

problematic because it assumes that the consumer has knowledge about the energy

consumption of the potential providers at the time the application is written. Other

systems that use SOC to adapt to network heterogeneity include eSOA [157] and OA-

SiS [93]. They differ from the system described in this chapter by performing service

matching and binding off-line on the base station.

In-network reprogramming [91, 101, 138, 115] enables adaptation via code updates.

By replacing the code in the WSN, almost any form of application behavior can be

added, resulting in maximum adaptation flexibility. However, they differ from the

system presented in this paper in that the adaptation decisions are made by the user

133

at a centralized gateway and require disseminating code from the gateway onto the

WSN nodes, which is an energy-intensive process. In contrast, the system presented

in this paper enables each consumer to automatically make local adaptation decisions

in an energy-efficient manner.

Macro-programming [74, 12, 63, 177] is another mechanism for adaptation in WSNs.

It enables application developers to treat the entire WSN as if it were a single device

by automatically decomposing the application written by the developer into micro-

programs that are distributed among the WSN nodes. Adaptation capabilities are

achieved via the decomposition process, i.e., it adjusts the decomposition based on the

WSN topology in a manner that is transparent to the user. A key difference between

macro-programming systems and the system presented in this chapter is the fact that

the adaptation is done at compile-time before the micro-programs are deployed onto

individual WSN nodes. The adaptive SOA presented in this chapter performs on-line

adaptation within the WSN.

Energy efficiency is another key focus of this paper. It is so important in the context

of WSNs that nearly every aspect of the WSN software stack, from the MAC layer

via duty cycling to the application layer via data aggregation and adaptive sensor

sampling rates, contains mechanisms for increasing energy efficiency [4]. Numerous

WSN systems focus on energy efficiency. For example, Santini et. al. [156] presents

an adaptive algorithm for predicting sensor data readings, enabling energy to be con-

served by decreasing the amount of sensor data that needs to be transmitted. It differs

from the system presented in this paper by focusing on optimizing a specific type of

data (sensor readings), whereas an adaptive SOA optimizes operations performed by

services in general. Given the necessity to consider energy consumption in all aspects

of WSNs, making the SOA energy-aware is essential. Unlike previous systems that

increase energy efficiency, the system presented in this paper uniquely focuses on how

energy can be saved through careful service selection and opportunistically merging

service executions.

134

6.3 Problem Definition

The two problems addressed in this chapter are how SOC can be used to enable

applications to 1) conserve energy, and 2) transparently adapt to changing network

topologies. This section explains the system model and presents the design goals.

6.3.1 System Model

The system consists of a WSN in which there are consumers and providers. Consumers

are controlled by applications that require and invoke services. Providers provide

services that are dynamically discovered, bound to, and invoked by consumers. The

consumers and providers communicate locally when they share the same node, or

over a wireless link when they are located on different nodes. The limited wireless

range results in a consumer only being able to communicate with a subset of all

matching providers in the network. Since wireless links change over time, this subset

of matching providers is dynamic. Currently only single-hop service invocations are

supported.

Once a consumer binds to a provider, it can invoke the provider’s service by sending

an “invoke message” that initiates the invocation. Upon receiving this message, the

provider executes the service, and replies with a “results message” that contains the

invocation results. Depending on the type of invocation being performed, the provider

may repeat this process a certain number of times.

Switching providers is assumed to involve no state transfer from the old provider to

the new. This simplifies the SOA by eliminating any intrinsic overhead associated

with switching providers. That is, assuming the set of matching providers is known,

the SOA can arbitrarily switch between any provider within the set without incurring

additional energy relative to using the same provider continuously. Furthermore, this

assumption enables the SOA to react to network disconnection, which is important

for ensuring energy efficiency. Many services like sensing and data routing can be of-

fered in a manner that meets this assumption, though some services like data storage

cannot. In the future, this assumption can be removed by including the overhead of

135

state transfer in the energy consumption computations, and implementing a mech-

anism that determines when a provider is about to disconnect so the data can be

transferred before actual disconnection occurs.

WSNs are different from traditional networks in that they are energy-limited and

rate-based. They often remain idle until a particular event like the detection of a

phenomenon occurs. To account for these differences, SOC in WSNs have three

forms of service invocations: on-demand, periodic, and event-based. On-demand is

what is traditionally provided by most SOAs in which an invocation is similar to

a remote procedure call. That is, the consumer initiates a service invocation by

sending the provider a message, and waits for the provider to respond with results.

Unfortunately, the two-way message exchange is energy inefficient if the service needs

to be invoked many times. To account for this, periodic and event-based invocations

involve the provider automatically invoking the service periodically. They differ in

that periodic invocations send every result back whereas event-based invocations only

send interesting results, as defined by the provider, back to the consumer. Both forms

of invocations are more energy efficient since they do not require the consumer to send

the provider a message each time the service is invoked.

While most nodes operate on batteries and are energy-constrained, some nodes are

not. For example, in a medical patient monitoring application, a network of nodes

that relay data from the patient to the nurse’s central monitoring station can be

embedded in the walls and ceilings of the hospital, enabling them to be powered by

the building’s electrical grid [34]. Since not all nodes are energy-constrained, the SOA

must consider this fact when accounting for energy costs. Clearly, nodes that are not

energy constrained should not be included in the energy cost calculations.

6.3.2 Design Goals

The following are the primary objectives of the adaptive SOA presented in this chap-

ter.

• Reduce energy consumption through energy-aware service selection and sharing.

The selection of a particular provider affects the amount of energy consumed

136

due to device heterogeneity and differences in wireless link qualities between

the consumer and provider. Achieving this objective involves developing an

algorithm that determines which provider to select when switching providers.

• Enhance service availability through application-transparent service rebinding.

This is necessary due to the transient connectivity between the consumers and

providers. Achieving it requires developing an algorithm that determines when

to switch providers.

The objective of the adaptation mechanism is to hide provider disconnection from

the application. Thus, the adaptation mechanism should prevent the application

from being exposed to service invocation failure when other potential providers exist

within its neighborhood. Achieving this requires solving different problems depending

on the invocation type. Specifically, a successful adaptation mechanism must ensure

that the results of an on-demand invocation are always returned successfully. For

periodic invocations, the number of invocation results received must be the number

expected. For event-based invocations, the service must be continuously invoked in a

periodic manner despite changes in the actual provider providing the service.

In addition to network topology changes, the adaptive mechanism should also conserve

energy. In this chapter, this is done by reducing an application’s “energy footprint,”

which is the total energy an application consumes invoking services. This includes

the energy spent on wireless communication and service execution on all nodes in

the network (including the hosts of both consumers and providers) that are energy-

constrained.

So far, the only problems identified are those related to the adaptation algorithms

themselves. A few additional problems must be solved in terms of the SOA’s overall

usability and practicality. The first is how to ensure the system is responsive in terms

of adapting to network topology changes. Second, the problem of additional overhead

for achieving adaptation must be addressed. Specifically, it must not outweigh the

energy efficiency gained through adaptation. Finally, the problem of additional bur-

den imposed on the application, device, and service developers must be addressed.

Ideally, their software components can be integrated with the adaptive SOA without

any changes.

137

6.4 Adaptation Mechanisms

This section presents the adaptation mechanism developed and integrated into a SOA

for WSNs. Before presenting the details, an overview of the basic service selection

and binding process is given. Service selection is the process of selecting one provider

from among the set of all known providers that provide the desired service. It in-

volves the consumer analyzing the properties of each provider and selecting the one

that it believes best meets its requirements. Upon selecting a particular provider,

the consumer binds to it by noting the provider’s address. This address is used to

communicate with the provider when the consumer invokes the service. Note that

the address of the provider is hidden from the application by the SOC middleware.

The application is presented with a simple interface enabling it to invoke the service.

The remainder of this section is divided into three parts: 1) selecting the most energy-

efficient provider, 2) optimizing energy efficiency via shared service invocations, and

3) increasing service availability by adapting to network topology changes.

6.4.1 Energy-Aware Provider Selection

This section describes which provider to select. Provider selection must be energy-

aware since it impacts energy consumption due to differences in hardware architec-

tures and wireless link qualities. For example, the Imote2 and TelosB differ widely

in terms of power draw, i.e., 145mW versus 9mW. Thus, binding to an Imote2 can

potentially result in an order of magnitude greater energy consumption relative to a

TelosB.

Fundamentally, deciding which provider to select is simple: choose the one that re-

sults in the smallest energy footprint. The problem is how the energy footprint of a

particular binding can be determined. Doing this requires analyzing the various steps

of invocation, which depends on the type of invocation being performed and whether

the provider is local or remote.

First consider on-demand and periodic invocations. On-demand invocations are a

special case of periodic invocations in which the number of periods is one. Thus,

138

Consumer

Provider

Service

invoke

execute

Time

step 1 step 2 step 3

invoke period

Figure 6.1: The actions performed during periodic invocations.

both forms of invocation share the same three basic steps: 1) initiation, 2) execution,

and 3) results delivery. Figure 6.1 contains a visualization of these steps. Initiation

involves the consumer telling the provider that it wants to invoke the service. If the

provider is local, this consumes negligible energy since it essentially amounts to a

method call. However, if the service is remote, this involves the consumer sending

an invoke message to the provider. Execution involves actually running the service.

This includes all energy associated with executing the service. Finally, results delivery

involves the provider sending the results of the invocation to the consumer. Like the

first step, the energy consumption is negligible if the provider is local, but involves

one message transmission if it is remote. For periodic invocations, the last two steps

are repeated as specified by the consumer.

To determine the energy footprint of a particular binding state, each step of the

service invocation process must be analyzed. The variables used in the analysis are

shown in Table 6.1, and the energy footprint for on-demand and periodic invocations

is given by Equation 6.1. Note that the values of the variables in Table 6.1 are based

on the specific hardware used, the derivation of which will be described in Section 6.5.

Eperiodic = Etx,c + Erx,p + (InvokeCount) · (Pidle,c · Tinvoke (6.1)

+ Tinvoke · Pinvoke + Erx,c + Etx,p) + (InvokeCount− 1)

· (Pidle,c · (InvokePeriod− Tinvoke − Trx,c)

+ Pidle,p · (InvokePeriod · Tinvoke − Ttx,p))

139

Application Developer

Symbol Meaning Units
InvokePeriod Invocation Period ms
InvokeCount Number of invocations n/a

Service Developer

Symbol Meaning Units
Tinvoke Latency of one service execution ms
Pinvoke Power during service execution mW

Device Developer

Symbol Meaning Units
Trx,c Latency of consumer receiving a ms

packet
Ttx,p Latency of provider sending a packet ms
Pidle,c Power when consumer is idle mW
Pidle,p Power when provider is idle mW
Etx,c Energy cost of consumer sending a µJ

message
Etx,p Energy cost of provider sending a µJ

message
Erx,c Energy cost when consumer receives µJ

a message
Erx,p Energy cost when provider receives µJ

a message

Table 6.1: Variables for deriving the energy cost of service invocation, and who
must supply them.

The first two variables of Equation 6.1 account for the energy in step one of the service

invocation process, i.e., when the consumer sends a message to the provider indicating

that the service should be invoked. The middle part of Equation 6.1 consists of a

product capturing the energy consumed by both the consumer and provider when

the service is actually invoked. This includes both the energy to execute the service

and deliver the results to the consumer. Note that it is multiplied by InvokeCount

since that is the number of times the service is invoked. Finally, the last part of

Equation 6.1, accounts for the energy consumed when the consumer and provider is

idling between service invocations. It is multiplied by (InvokeCount − 1) because

after the last invocation is completed, the process is considered completed.

140

Consumer

Provider

Service

invoke

execute

Time

step 1 step 2 step 3

invoke period

Figure 6.2: The actions performed during event-based invocations.

When the binding is local, equation 6.1 can be simplified. This is because in this

case there is no energy cost associated with wireless communication. Specifically, the

equation for local invocation is as follows:

Elocal = InvokeCount · Tinvoke · Pinvoke+ (6.2)

(InvokeCount− 1) · (InvokePeriod− Tinvoke) · Pidle

There is no designation of whether Pidle in Equation 6.2 is a consumer or provider,

since the same node plays both roles in a local invocation. In addition, equation 6.2

captures the energy footprint of all forms of local invocation, including event-based

invocations, since there is no network communication cost.

The energy cost of remote event-based service invocations is different from that of re-

mote periodic invocations since uninteresting results are not sent to the consumer. To

visualize the difference, the sequence of actions performed during remote event-based

service invocations is shown in Figure 6.2. The first step consists of the consumer

sending a message to the provider that initiates the service invocation process. Upon

receiving this message, the provider periodically executes the service on behalf of the

consumer, but analyzes the results and avoids sending those that are uninteresting.

This process repeats until an interesting result is obtained, which is sent back to the

consumer, concluding the invocation process. Note that in an actual deployment,

the number of invocations that must occur before an interesting one is found may

not be known. In this case, the application programmer must estimate the likely

141

number of service executions necessary before one of interest occurs. The equation

for deriving the energy footprint of remote event-based service invocations is given

by Equation 6.3.

Eevent = Etx,c + Erx,p + Etx,p + Erx,c (6.3)

+ InvokeCount · (Pidle,c · Tinvoke + Tinvoke · Pinvoke)

+ (InvokeCount− 1) · (InvokePeriod− Tinvoke) · (Pidle,c + Pidle,p)

The first line of equation 6.3 captures the energy consumed during steps one and three

of the service invocation process in which the initial message initiating the invocation

is sent and the results are delivered back to the consumer. The second line captures

the energy spent in step two where the service is executed by the provider. Finally,

the third line captures the energy spent idling between service invocations.

By implementing equations 6.1, 6.2, and 6.3 and integrating it into the middleware’s

service discovery and selection mechanism, the set of matching providers can be au-

tomatically sorted based on the amount of energy they will consume if selected. This

enables the adaptation mechanism to select the provider that will result in the small-

est energy footprint, which is essential in energy-constrained WSNs.

To capture situations in which a node is not energy-constrained, the energy cost of the

node can simply be set to zero. Equations 6.1, 6.2, and 6.3 can still be used without

modification. For example, if the provider is line-powered, Etx,p, Erx,p, and Pinvoke

should be set to zero. This will effectively remove non-power-constrained nodes from

the energy cost calculation.

As mentioned in Section 6.3, an important requirement of the adaptive middleware

is that it does not impose too much burden on the device, application, and service

developers. In this case, the additional burden is the derivation of the variables

shown in Table 6.1. To understand the actual amount of additional work required

of each party, the variables shown in Table 6.1 are divided based on who needs to

provide them. The device developer needs to specify eight variables related to the

energy efficiency and latency of wireless communication and idling. This only needs

142

1 2 3 4 5 6 7 8 9 10 11 12 . . .

(a) P1 = 4, P2 = 6

1 2 3 4 5 6 7 8 9 10 11 12 . . .

(b) P1 = 4, P2 = 6, P3 = 2

Figure 6.3: A visualization of how service utilization is calculated.

to be done once for each platform type. The service and application developers each

need to specify only two additional variables. In the application developer’s case,

the two variables, InvokeCount and InvokePeriod, need to be specified anyway

when invoking a service periodically or in an event-based manner. In other words, in

most circumstances, there is no additional burden placed on the application developer

when enabling adaptive capabilities. The feasibility of deriving these values is shown

in Section 6.5, while the validity of the equations are shown in Section 6.6.

6.4.2 Efficiency Through Invocation Sharing

Periodic and event-based invocations execute a service once every period, making

the timing of the next invocation predictable. This enables a novel mechanism for

saving energy: service invocation sharing. The idea is that in certain situations

multiple service execution requests can be combined into one. In addition, depending

on whether reliability is needed, the results of the single service execution can be

delivered to multiple consumers simultaneously via wireless broadcast. By reducing

the number of times a service needs to be executed and the results delivered, energy

savings is possible. This section investigates this possibility.

143

To understand how energy can be saved via service sharing, consider the impact

a particular invocation has on a service’s utilization assuming sharing is possible, as

shown in Figure 6.3. Time is discretized into an array of boxes in which each box may

or may not execute the service. Thus, when a consumer invokes a service periodically

or in an event-based manner, each service execution will fall into a unique box in the

array. If a least one invocation occurs during the interval of time that is represented

by a box, the box is shaded gray. The number of arrows pointing at each box is the

number of consumers that are sharing the same service execution. Thus, the more

arrows pointing at a box, the greater the degree of sharing, and the more energy is

saved.

Figure 6.3(a) shows the service utilization when there are two consumers, C1 and C2,

invoking at periods P1 = 4 and P2 = 6, respectively. C1 thus executes the service at

times 4, 8 and 12, as indicated by the blue arrows, while C2 executes the service at

times 6 and 12, as indicated by the green arrows. Note that the length of the array

is equal to the least common multiple of 4 and 6 because beyond this, the invocation

pattern repeats. Thus, service utilization can be calculated by only considering the

block of times leading up to the least common multiple.

Calculating service utilization involves dividing the number of shaded boxes by the

total number of boxes, which in this case is 4
12

= 1
3
. Figure 6.3(b) shows the utilization

when a new consumer, C3, invoking with period P3 = 2, arrives. With this additional

consumer, the new utilization is 1
2
, representing an increase of 1

2
− 1

3
= 1

6
. Note that

this is less than an increase of 1
2
, which would be the case if service invocations could

not be shared, further demonstrating the benefits of service sharing.

The visual method of calculating service utilization shown in Figure 6.3 depicts a

relatively simple scenario in which the least common multiple is small. Unfortunately,

aside from trivial simplifications like identifying periods that are multiples of each

other or a period of 1, calculating the utilization of a service in general is complex.

For example, consider a näıve brute-force method for calculating utilization shown in

Figure 6.4. Each position in time up to the least common multiple of all periods, lcm,

is compared against each period. If at least one period evenly divides into the time

interval being considered, an invocation occurs and a counter for the time interval is

incremented. Thus, after considering every time interval up to lcm, the utilization is

144

1. Given n periods: P1, P2, . . ., Pn;
2. Let lcm = Least Common Multiple of P1, P2, . . ., Pn;
3. Let count = 0;
4. for i = 0 to lcm− 1
5. for j = 1 to n
6. if (i mod Pj) == 0 do
7. count++;
8. break; // out of inner for-loop
9. end do
10. utilization = count/lcm

Figure 6.4: A näıve brute-force method for calculating utilization.

the count divided by lcm. Since each position in time from zero to lcm is compared

against each of the n periods, the computational time complexity is O(lcm ·n), which

is exponential in the number of periods. The memory complexity is O(1) since there

is only one variable, count, being maintained.

A key problem with the algorithm presented in Figure 6.4 is the fact that it considers

every interval of time from zero to lcm regardless of whether an invocation actually

occurs at that point in time. If the service executions are sparse, there will be long

stretches in time in which no executions occur. An algorithm that only considers the

time intervals where executions occur is shown in Figure 6.5. It maintains a sorted

list, list, that initially contains each service invocation period, P1, P2, . . ., Pn. This

initial value is the “base amount” that is continuously added to itself until it reaches

lcm. With each round, the list is sorted and, if the smallest values are less than the

least common multiple, they are incremented by their base amount. This process

repeats until all values in list equal lcm. The number of rounds in the algorithm is

equal to the number of positions in the timeline in which a service execution occurs,

meaning the utilization is the number of rounds divided by lcm. The time complexity

of this algorithm is O(lcm ·utilization ·n · log(n)), which is exponential in the number

of invocations. However, it is proportional to the utilization, which is usually small in

WSNs, and the number of consumers is also expected to be small due to the limited

wireless range of WSN nodes, meaning this algorithm is feasible in most situations.

The memory complexity is O(n) since it only needs to remember list.

In the current implementation, the savings achieved through service sharing is incor-

porated by the provider into Pinvoke and Etx,p, which are included in the response to

145

1. Given n periods: P1, P2, . . ., Pn;
2. Let lcm = Least Common Multiple of P1, P2, . . ., Pn;
3. Let list = [P1, P2, . . ., Pn];
4. Let count = 0;
5. sort(list);
6. while smallest value(s) in list are less lcm
7. increment smallest value(s) in list by base amount;
8. sort(list);
9. count++;
10. utilization = count/lcm

Figure 6.5: A algorithm for calculating service utilization when service sharing is
possible.

a service discovery message. For example, if adding a consumer results in no change

in the utilization of the service, and the results can be delivered via broadcast, then

Pinvoke = 0 and Etx,p = 0 for that consumer. This results in consumers being biased

towards providers that are better able to share service executions and thus save en-

ergy. One limitation to this approach is that it does not account for future changes to

the set of bound consumers. To account for this, the provider can notify its consumers

that the degree of sharing has decreased.

6.4.3 Adapting to Network Topology Changes

The mechanism for adapting to network topology changes runs on the consumer and

is responsible for automatically switching providers to enhance service availability. It

is necessary due to the transient connectivity between nodes in a WSN. As shown

in Figure 6.6, the adaptation mechanism has only four states, imposing minimal

overhead. The system maintains a list of known providers in a provider list, and

a count of the number of consecutive failures using the providers in the list. The

system begins in the Init state in which the provider list is empty. From this state,

the system instantly transitions to the Collect Providers state while transmitting

a service discovery message and setting timer Twait, which controls the amount of

time the consumer waits for matching providers to respond.

The service discovery message contains the specification of the required service and at-

tributes indicating how the service is going to be invoked. That is, it specifies whether

146

Init

Collect
Providers

Provider
Selection

Invoke

Provider List Empty
Broadcast Service

Discovery Message,
Start Twait Timer

Receive Reply from
Service Provider

Twait Timer Expires

Sort Providers Based
On Idealness

Best Provider Selected

Invoke Success

1st or 2nd Consecutive
Invocations Fail
Remove Failed

Provider

3rd Consecutive
Invocations Fail
Flush Provider

List

Figure 6.6: A finite state machine capturing the behavior of the adaptation
mechanism used to adapt to network topology changes.

the service will be invoked on-demand, periodically, or in an event-based manner. If

invoked periodically, it also specifies the period and duration of the invocations. If

invoked in an event-based manner, only the period is specified. The contents of the

service discovery message are used by the service provider to determine whether it

is able to provide the necessary service and if so calculate the energy footprint the

consumer will have on the provider. Assuming the provider is a match, the energy

footprint is calculated and sent to the consumer. The consumer records this informa-

tion in its provider list, and uses it to select the “best” provider, which is by default

the one with the smallest energy footprint. The actual criteria for determining which

provider is best can be customized via pluggable software modules.

After broadcasting the service discovery message, the consumer remains in the

Collect Providers state accepting and recording responses from service providers

until Twait expires. When this occurs, the consumer sorts the list based on the

aforementioned criteria for selecting the best provider, and enters the Provider

Selection state. From this state, the consumer either selects the best provider

and transitions into the Invoke state, or transitions back into the Init state if the

provider list is empty.

147

Once in the Invoke state, the consumer invokes the service while remaining in the

same state so long as the invocation remains successful. If the invocation fails, the

current provider is discarded and the system returns to the Provider Selection

state where it selects the next-best provider. This process of switching providers

can repeat up to N consecutive times before the consumer gives up by flushing the

provider list and returning to the Init state. The reasoning behind this is that N

consecutive failures is indicative of a major change in network topology, e.g., when the

consumer moves out of range of all previous providers. When this happens, the most

logical action is to clear the provider list and re-discover new providers. The value N

is exposed as a tunable parameter. It reflects the expected reliability of receiving a

response from a provider, assuming one exists.

The entire adaptation mechanism shown in Figure 6.6 is performed by the middleware

in a manner hidden from the application, except for a few tunable parameters. Specif-

ically, the adaptive SOC middleware allows the developer to specify the algorithm for

determining which provider is best and the values of Twait and N . By presenting such

a simple interface, application development is simplified.

The method of detecting invocation failure differs depending on the type of invocation

being performed. On-demand invocations fail if a provider does not respond within

a certain amount of time after an invoke message is sent. Periodic invocations fail

if the consumer does not receive the expected number of invocation results at the

requested frequency. Event-based invocations fail if the system does not continue to

send interesting events back to the consumer. This can be detected when the current

provider is removed from the neighbor list, which is maintained by lower-level services

like a link estimator [54].

One important aspect of the adaptation mechanism is the fact that it is reactive.

That is, it does not actively seek to change providers so long as the current provider

remains available. The reasoning behind this is the fact that energy efficiency is

of paramount importance to most WSN nodes, and needlessly searching for new

providers when the current one is still available wastes energy. In addition, there is

no guarantee that a more efficient provider exists, so proactively searching for another

provider when the current one is available is risky in terms of waisting energy. Finally,

some applications like habitat monitoring may infrequently invoke services. In this

148

case, proactive adaptation is wasteful if the application doesn’t invoke the service

between multiple adaptations. For these reasons, a passive mechanism that reacts to

application invocations and provider disconnections is preferred.

6.5 Evaluation

The actual implementation of the adaptive SOA imposes minimal overhead in terms

of memory and network bandwidth. On the TelosB, it consumes 20kb of ROM and

6.5kb of RAM, while on the Imote2, it consumes 187kb of ROM and 10kb of RAM.

These are small relative to the amounts of memory available.

In terms of network bandwidth overhead, the adaptive SOA requires additional in-

formation related to energy efficiency to be included in certain messages. The service

discovery message must contain four additional variables: the invocation type, pe-

riod, and count, and whether the invocation results should be delivered reliably. This

amounts to 8 bytes of data. The reply message to a service discovery must include

six additional variables: Ttx,p, Etx,p, Pidle,p, Erx,p, Tinvoke, and Pinvoke. This amounts

to 12 bytes of data and can easily fit within a single TinyOS packet. To support

the adaptive SOA, the service specifications must include three additional variables:

whether it is sharable, Tinvoke, and Pinvoke. This amounts to six bytes of data, and

can also fit in a single packet.

The remainder of this section evaluates the additional burden placed on the appli-

cation, service, and device developers in terms of what they must do to use the

adaptive SOA presented in this chapter. Understanding the SOA’s ease-of-use is im-

portant since a primary objective is to maintain usability and simplify application

development. In the process, the values of the variables defined in Section 6.4 are

derived. These variables will be used in Section 6.6.

Two types of nodes are examined in this evaluation: the Imote2 [37] and TelosB [144].

They represent two extremes in energy consumption among current WSN devices

and are often used in today’s WSNs. In addition, one service called AccelTrigger is

evaluated. It involves sensing the accelerometer and is used by the structural health

monitoring application discussed in Section 6.6.1. By deriving the properties of these

149

devices and service, a general idea of the burden placed on the application, service,

and device developers is obtained.

Using the adaptive SOA consists of determining the latency, power, and energy val-

ues listed in Table 6.1. Other parameters like InvokePeriod, InvokeCount, Twait,

whether a service sharable, and whether reliable results delivery is required, do not

impose significant burden since they can be directly specified and do not require

derivation. The remainder of this section analyzes how these values can be derived.

It is divided in to four parts: the derivation of the variables associated with idling,

sending, receiving, and sensing.

6.5.1 Energy Efficiency when Idling

Let Pidle be the amount of energy a device consumes when idle. A device is idle when

it is not performing any application task like sending a message, taking a sensor

reading, or performing computations. It is affected by DutyCycle, the duty cycle at

which the radio operates since the radio continues to turn on and off even when the

device is idle. To determine Pidle and how it is affected by DutyCycle, each device is

attached to an oscilloscope and the power draw at various duty cycles is measured.

For all measurements, the oscilloscope is set to sample at 250Hz (4ms per sample)

enabling the power draw measurements to be averaged over 10 second intervals. For

details on how the oscilloscope is used to measure the energy consumption of a WSN

device, see Appendix A.

The results for the TelosB node are shown in Figure 6.7(a). In addition to the

actual measurement, a theoretical value is also plotted for comparison purposes. The

theoretical value will be discussed later in this section. By fitting a linear trend line

to the measured data, the idle power of the TelosB relative to duty cycle is given by

equation 6.4.

Pidle,telosb ≈ 0.5168 · DutyCycle + 0.0407 (6.4)

150

y = 0.5168x + 0.0407 

0 

10 

20 

30 

40 

50 

60 

0  20  40  60  80  100  120 

Po
w
er
 (m

W
) 

Duty Cycle (%) 

Theore5cal 

Actual 

(a) TelosB with sensor board disabled

y = ‐5E‐06x4 + 0.0011x3 ‐ 0.096x2 + 3.7959x + 168.49 

y = ‐4E‐06x4 + 0.0009x3 ‐ 0.0821x2 + 3.4427x + 106.7 

0 

50 

100 

150 

200 

250 

300 

0  20  40  60  80  100  120 

Id
le
 P
ow

er
 (m

W
) 

Duty Cycle (%) 

Theore8cal, Sensor Off 

Actual, Sensor Off 

Theore8cal, Sensor On 

Actual, Sensor On 

(b) Imote2

Figure 6.7: Measured and theoretical Pidle of Imote2 and Telosb devices

The results for the Imote2 platform are shown in Figure 6.7(b). Two sets of measure-

ments are shown: one when the sensor board is enabled, another when it is disabled.

This is because when the Imote2 invokes the service locally, it must keep the sensor

board enabled even when idling between service invocations. This is because driver

limitations prevent disabling the sensor board between sensor readings. The TelosB,

on the other hand, can turn its sensor board off when it is idle, thus saving energy.

As mentioned previously, a theoretical value is also included for comparison purposes,

which is discussed later in this section.

On the Imote2, the relationship between Pidle and DutyCycle is not linear. Instead

it has a parabolic shape that is most likely due to latencies in switching on and off

the radio on the Imote2 platform. Using a fourth-degree parabolic best-fit curve on

the measured data, the equation for the Imote2’s idle power when its sensor board

disabled is as follows:

Pidle,imote2,sensor-off ≈ −4 · 10−6 · DutyCycle4 + 0.0009 · DutyCycle3 (6.5)

− 0.0821 · DutyCycle2 + 3.4427 · DutyCycle + 106.7

And when the sensor board is enabled, the idle power is:

151

0 

50 

100 

150 

200 

250 

0  10  20  30  40  50  60 

Id
le
 P
ow

er
 D
ra
w
 (m

W
) 

Time (ms) 

Imote2 radio off, sensor off: 115.03 ± 0.08 mW 

TelosB radio off: 0.334 ± 0.026 mW 

TelosB radio on: 55.21 ± 0.28 mW 

Imote2 radio on, sensor off: 182.41 ± 1.03 mW 

Imote2 radio on, sensor on: 204.83 ± 0.16 mW 

Imote2 radio off, sensor on: 146.41 ± 0.10 mW 

Figure 6.8: The power draw of the TelosB and Imote2 when idling with the radio on
and off.

Pidle,imote2,sensor-on ≈ −5 · 10−6 · DutyCycle4 + 0.0011 · DutyCycle3 (6.6)

− 0.096 · DutyCycle2 + 3.7959 · DutyCycle + 168.49

Equations 6.4, 6.5, and 6.6 capture the actual Pidle of the TelosB and Imote2 plat-

forms. Obtaining them is not difficult, as it only requires attaching the device to an

oscilloscope and measuring their idle power draws with the radio set to various duty

cycles. The developer of the device is responsible for determining Pidle. No additional

burden is placed on the application programmer.

As previously mentioned, Figure 6.7 also includes the theoretical Pidle assuming the

radio was duty cycled in an ideal manner. If the radio could be duty cycled in an

ideal manner, Pidle should be a function of the power consumed when the radio is

on, Pradio−on, and the power consumed when the radio is off, Pradio−off , as shown in

equation 6.7.

Pidle,ideal ≈
DutyCycle

100
· Pradio−on +

(
1− DutyCycle

100

)
· Pradio−off (6.7)

152

However, due to hardware-specific properties like latencies when turning on and off

the radio, the actual power consumed is different from the ideal. To determine how

far off the theoretical value is relative to the actual value, Pradio−on and Pradio−off are

measured using an oscilloscope. Figure 6.8 shows the amount of power drawn by the

TelosB and Imote2 when the radio is on and off. Two measurements are given for the

Imote2 depending on whether the sensor board is enabled. This is included because

enabling the sensor board on the Imote2 consumes significant energy even when the

node is idle. This is unlike the TelosB which can power down its sensor board between

sensor readings. The results show that the TelosB consumes 0.334 ± 0.026mW and

55.21± 0.28mW when idle with the radio off and on, respectively. When the Imote2

sensor board is disabled, the Imote2 consumes 115.03±0.08mW and 182.41±1.03mW

when the radio is off and on, respectively. When the sensor board is enabled, the

Imote2 consumes 146.41 ± 0.10mW and 204.83 ± 0.16mW of power, respectively.

Thus, the theoretical Pidle for the Imote2 when its sensor board is disabled is:

Pidle,imote2,sensor-off,ideal ≈
DutyCycle

100
· 182.41 +

(
1− DutyCycle

100

)
· 115.03 (6.8)

≈ 0.6738 · DutyCycle + 115.03

When the Imote2’s sensor board is enabled, it’s theoretical Pidle is:

Pidle,imote2,sensor-on,ideal ≈
DutyCycle

100
· 204.83 +

(
1− DutyCycle

100

)
· 146.41 (6.9)

≈ 0.5842 · DutyCycle + 146.41

And the theoretical Pidle for the TelosB is:

Pidle,telosb,ideal ≈
DutyCycle

100
· 55.21 +

(
1− DutyCycle

100

)
· 0.334 (6.10)

≈ 0.54876 · DutyCycle + 0.334

153

Comparing the actual Pidle (Equations 6.5, 6.6, and 6.4) to the theoretical Pidle (Equa-

tions 6.8, 6.9, and 6.10), it is clear that the TelosB follows closely to the ideal, while

the Imote2 does not. Thus, Pidle should be measured directly.

6.5.2 Energy Efficiency of Wireless Transmission

This section describes how to determine the amount of energy a device consumes

when transmitting a message. It is used for specifying Etx,c, Etx,p, and Ttx,p in Ta-

ble 6.1. The key factors that influence the amount of energy consumed during message

transmissions are: (1) the number of messages transmitted, (2) the amount of network

bandwidth available, (3) the reliability of the wireless link over which the transmission

is occurring, and (4) the type of duty cycling employed.

For the purpose of this analysis, the following two simplifying assumptions are made.

First, a message consisting of one packet is used for all message exchanges, i.e.,

the initiation of the service invocation, and the delivery of the results, can all be

done using one message. This assumption can later be removed by having the service

specify another parameter – the number of messages necessary to invoke it and return

the results. The second assumption is that there are no message retransmissions. This

can be removed by having the devices specify the expected number of transmissions

necessary to successfully send a packet over a particular link, which can be done using

a variety of link estimators [54]. Both assumptions are not intrinsic to the adaptive

SOA middleware model, and can be later removed.

The media access control (MAC) protocol has a significant impact on the efficiency

of wireless transmission. In TinyOS 2.1, the default MAC layer is called BoxMAC-

2 [124]. It uses asynchronous duty cycling, which reduces overhead by not using a

global clock to synchronize the duty cycling of all nodes in the network. It results in

a node having to first synchronize with the receiver before it can transmit a message.

This is done by having the sender wait for the receiver to wake up before transmitting

the message. Figure 6.9 shows the power draw of sending a message consisting of five

packets when a 1% duty cycle is used. It was obtained using an oscilloscope and

shows that there are three distinct stages to message transmission: search, send, and

wait. The search stage consists of the device continuously retransmitting the first

154

sleep 

search 

send 

wait 

Figure 6.9: The power draw of an Imote2 when it transmits 5 packets.

packet until it is acknowledged by the receiver. This synchronizes the sender with the

receiver. The second stage, send, consists of sending the four remaining messages.

The last stage, wait, notifies the receiver of the end of the transmission.

For the remainder of this analysis, let Ei, Ti and Pi be the energy, latency, and power

draw of performing task i. Using this nomenclature, the goal is then to find Etx,

the energy consumed during transmission, and Ttx, the transmission latency. From

the sequence of steps for message transmission shown in Figure 6.9, equations 6.11

and 6.12 are derived.

Etx = Psearch · Tsearch + Psend · Tsend + Pwait · Twait (6.11)

Ttx = Tsearch + Tsend + Twait (6.12)

Among the time variables used in equations 6.11 and 6.12, the only one that is

dependent on the duty cycle is Tsearch, which has a range of 0 to DutyCycle. This

is because in a best-case scenario the receiver will have its radio on when the sender

initiates the search phase, and in the worse case the sender must wait an entire

duty cycle before the receiver turns on. The other time variables are not dependent

on DutyCycle. Specifically, Tsend is a function of the network bandwidth since the

155

0 

100 

200 

300 

400 

500 

600 

700 

800 

0%  10%  20%  30%  40%  50%  60%  70%  80% 
Se
ar
ch
 L
at
en

cy
 (m

s)
 

Radio Duty Cycle 

Actual 

Theore7cal 

Figure 6.10: Tsearch versus the duty cycle, both actual and theoretical. The results
indicate that, on average, Tsearch is half of the duty cycle period.

search phase ensures that the radios of both the sender and receiver are on, and Twait

is hard-coded into the MAC layer.5

Assuming a normal distribution of radio wake up times among nodes in a WSN, the

average Tsearch is given by Equation 6.13.

Tsearch =
DutyCycle

2
(6.13)

To determine whether Equation 6.13 is true, the following experiment is performed.

A WSN device is configured to periodically send a packet. Each time a packet is

sent, Tsearch is recorded using an oscilloscope. After collecting data from ten packet

transmissions, the radio duty cycle is changed. The results of this experiment, along

with the theoretical value derived from equation 6.13, are shown in Figure 6.10.6 The

results show that equation 6.13 is a valid characterization of Tsearch in the current

system configuration.

The remaining variables in equations 6.11 and 6.12 can be measured using the same

technique as that used in to evaluate Tsearch. Specifically, a node is configured to

5See $TOSROOT/tos/chips/cc2420/lpl/DefaultLpl.h, constant DELAY AFTER RECEIVE.
6In TinyOS 2.1, the equation for deriving the duty cycle period given the duty cycle is:

DutyCyclePeriod (ms) = 11·(10000−DutyCycle·100)
DutyCycle·100 + 10, where DutyCycle is expressed in percent

form. For example, when the duty cycle is 50%, the period is 11 · 11·(10000−50·100)
50·100 + 10 =

21ms. For the actual code, see $TOSROOT/tos/chips/cc2420/lpl/DefaultLplP.nc, command
LowPowerListening.dutyCycleToSleepInterval(...)

156

Variable TelosB Imote2 Unit

Psearch 51.49± 0.11 184.44± 0.24 mW
Psend 0 0 mW
Tsend 0 0 ms
Pwait 54.56± 0.06 182.81± 0.29 mW
Twait 78.43± 2.59 86.5± 1.71 ms

Table 6.2: The timing and power attributes of sending one acknowledged packet.
The numbers are obtained using an oscilloscope and averaged over ten packet

transmissions. The average and 95% confidence intervals are shown.

periodically transmit a packet, and an oscilloscope is used to record the power draw

and timing of the operation. Table 6.2 contains the results of the measurements. Note

that Psend and Tsend are both zero. This is because only one packet is being trans-

mitted, and it is repeatedly transmitted during the search phase, which by definition

ends when the first packet is delivered.

By plugging in the values of Table 6.2 and equation 6.13 into equations 6.11 and 6.12,

the following equations for Etx and Ttx are obtained:

Etx,imote2 = Psearch · Tsearch + Psend · Tsend + Pwait · Twait (6.14)

= 184.44 · DutyCyclePeriod
2

+ 0 · 0 + 182.81 · 86.5

= 184.44 · DutyCyclePeriod
2

+ 15813.1

Etx,telosb = 51.49 · DutyCyclePeriod
2

+ 0 · 0 + 54.56 · 78.43 (6.15)

= 51.49 · DutyCyclePeriod
2

+ 4279.14

157

sleep 

receive 

wait 

Figure 6.11: The power draw of a TelosB receiving 5 packets.

Ttx,imote2 = Tsearch + Tsend + Twait (6.16)

=
DutyCyclePeriod

2
+ 86.5

Ttx,telosb =
DutyCyclePeriod

2
+ 78.43 (6.17)

The validity of Equations 6.14, 6.15, 6.16, and 6.17 will be established in the appli-

cation case studies presented in Section 6.6, which use them to select energy efficient

service providers. The task of obtaining equations for Etx and Ttx is the responsibility

of the device developer. It does not impose additional burden on the service or device

developers.

6.5.3 Energy Efficiency of Wireless Reception

Figure 6.11 shows the power draw of a TelosB device during the reception of a 5-

packet message when the radio duty cycle is set to 1%. Based on the figure, the

receive operation can be divided into two parts: (1) receive, and (2) wait. The receive

step is when the packets are actually be received. The wait step is a length of time the

consumer remains awake after the reception of the last packet to ensure no additional

158

Variable TelosB Imote2 Unit

Preceive 53.63± 0.60 194.18± 0.38 mW
Treceive 16.45± 1.51 22.99± 2.13 ms
Pwait 54.03± 0.09 182.22± 0.15 mW
Twait 93.25± 0.45 99.64± 0.33 ms

Table 6.3: The latency and power attributes of receiving a packet.

packets are destined for it. Thus, the following equations can be created for Erx and

Trx, the energy and latency of reception, respectively.

Erx = (Preceive · Treceive) + (Pwait · Twait) (6.18)

Trx = Treceive + Twait (6.19)

Using an oscilloscope, the power draws and latencies of the Imote2 and TelosB receiv-

ing a message can be measured. The results are shown in Table 6.3. By plugging in

the values shown in Table 6.3 into equations 6.18 and 6.19, the energy cost and latency

of message reception is obtained. The results are given in Equations 6.20, 6.21, 6.22,

and 6.23.

Erx,imote2 = (Preceive · Treceive) + (Pwait · Twait) (6.20)

= 194.18 · 22.99 + 182.22 · 99.64

= 22620.6

Erx,telosb = 53.63 · 16.45 + 54.03 · 93.25 (6.21)

= 5920.51

159

(a) Imote2 (b) TelosB

Figure 6.12: The power draw of taking an accelerometer reading.

Trx,imote2 = Treceive + Twait (6.22)

= 22.99 + 99.64

= 122.63

Trx,telosb = 16.45 + 93.25 (6.23)

= 109.7

This task of obtaining equations for Erx and Trx is the responsibility of the device

developer. It does not affect the service or device developers.

6.5.4 Energy Efficiency of Sensing

Recall from Section 5.7 that the AccelTrigger service is used to detect whether there

is potential damage, and as a low-power monitoring state for the damage localization

application. Each time the service is invoked, an acceleration reading is obtained,

and the value is compared against a service-specific threshold. If the threshold is

exceeded, the invocation is considered “interesting” and, assuming the service was

invoked in an event-based manner, an event is signaled to the consumer.

The actual energy cost and latency of accessing the accelerometer sensor can be

obtained using the oscilloscope and the technique described at the beginning of this

160

Variable TelosB Imote2 Unit

Psense 102.90± 0.31 176.67± 0.45 mW
Tsense 18.49± 0.07 21.87± 1.28 ms

Table 6.4: The timing and power attributes of sensing.

Section. Two example oscilloscope traces, one for the Imote2, another for the TelosB,

are shown in Figure 6.12. From the figure, the sensing operation can be represented

in a single phase, thus let Psense be the average power while sensing, and Tsense be

the average latency of sensing. Using the oscilloscope, the accelerometer is accessed

ten times and the average power and latency are computed. The results are shown

in Table 6.4.

Since the sensing operation represents the vast majority of the cost of providing the

AccelTrigger service (i.e., the computation to determine threshold is insignificant), the

values shown in Table 6.4 are equal to Pinvoke and Tinvoke. In other words, Pinvoke =

Psense and Tinvoke = Tsense.

This section has described how every variable in table 6.1 on page 140 except

InvokePeriod and InvokeCount can be derived using an oscilloscope and a series

of experiments. The two remaining variables are defined by the application devel-

oper. This section demonstrates that the additional attributes necessary for enabling

energy-awareness can be obtained and that the process is feasible.

6.6 Applications

This section evaluates the adaptive SOA presented in this chapter using two appli-

cation case studies: medical patient monitoring and structural health monitoring.

They are used to evaluate the efficacy of our adaptation mechanism in terms of ad-

justing to network topology changes and increasing energy efficiency. Specifically,

the medical patient monitoring application focuses on the ability to adapt to chang-

ing network topologies, while the structural health monitoring application focuses on

energy-awareness.

161

Figure 6.13: A map of the WSN testbed used in the medical patient monitoring
application. The testbed nodes provide relay services for delivering medical patient

data to the base station, which is represented as a red triangle. The dotted lines
marks the 358.71m route the patient traveled during each experimental round.

6.6.1 Medical Patient Monitoring

The medical patient monitoring application consists of a mobile user (patient) wearing

a WSN device that monitors vital signs and periodically delivering the data to a

central monitoring station. The delivery of the data from the patient to the base

station is done via a fixed WSN infrastructure consisting of relay nodes embedded

within the hospital building. As the patient moves, the set of relay nodes within range

of the patient changes, requiring that the monitoring device adapt to the changing

network topology. If it fails to adapt, critical patient data may not be delivered,

jeopardizing the patient’s life. The following evaluation determines how well the

adaptive SOA presented in this chapter adapts to the changing network topology.

A similar clinical monitoring system has been deployed at the Barns and Jewish

Hospital in St. Louis, and a clinical trial with real patients is currently underway.

While the system deployed in the hospital was implemented in native nesC, reimple-

menting the system using the adaptive SOA demonstrated the efficacy of the simple

programming model enabled by the middleware.

For this evaluation, the WSN testbed at Washington University in St. Louis [175]

serves as the relay network for delivering patient data to the base station. It consists

162

of 73 TelosB nodes and spans the 5th floors of Jolley and Bryan Halls. A map of the

testbed is shown in Figure 6.13. Each node in this network is line-powered, meaning

they are not energy-constrained. Other than to provide power, the back-channel

is used solely for debugging. For this evaluation, the radio power was set to 4 (∼
-20dBm) for all experiments.

Within the relay network, the delivery of patient data is done using the Collection

Tree Protocol (CTP) [59]. CTP is a many-to-one routing protocol for delivering data

across a multi-hop network to a central base station that is included with TinyOS

2.1. Within the relay network used in this evaluation, it exhibited reasonably high

reliability delivering messages from any node in the network to the base station with

a reliability upwards of 90%. Given this relay network, the primary responsibility of

the adaptive SOA is to successfully deliver all patient data to a relay node in the

WSN testbed infrastructure. This is because, once delivered, CTP is responsible for

delivering the data to the base station. To integrate CTP’s relaying service with the

adaptive SOA, CTP’s interface is exposed as a service that is provided by each relay

node. In all experiments, the medical patient traversed a fixed 358.71m long path

that is indicated by the dotted lines in Figure 6.13. To determine the effects of patient

speed, two speeds of walking were used, a slow walk averaging 0.6755 ± 0.009 m/s,

and a fast walk averaging 1.333± 0.03 m/s.

Programming the medical patient monitoring application is straightforward. It con-

sists of a single loop in which the patient data is obtained, followed by a single line

invoking the relay service. The adaptive SOC programming model hides the com-

plexity of adapting to network topology changes, enabling the application to remain

simple.

For a base-line comparison, the medical patient monitoring application was also im-

plemented using just CTP. This represents a native implementation that involves no

SOC. By default, CTP uses the 4-bit link estimator (4BLE) and an exponentially-

decaying algorithm for determining beaconing frequency, both of which are included

with TinyOS 2.1. For this evaluation, all default settings and configurations were

used. Since CTP technically does not invoke a service, this study focuses on how

reliably the patient node is able to send patient data to its parent, which is a relay

163

Adaptive SOA 4BLE

Fast Walk 100%± 0% 31.16%± 7.6%
Slow Walk 100%± 0% 40.47%± 11.2%

Table 6.5: The success rate of service invocation of the medical patient monitoring
application.

node. Since the 4BLE decide’s CTP’s parent, the remainder of this section compares

our adaptive SOA to the 4BLE.

Both the 4BLE and adaptive SOA versions of the application were run using fast

and slow walks along the path shown in Figure 6.13. While traversing this path, the

medical patient’s node would attempt to send patient vital sign information consisting

of a single 28-byte packet to the base station every 15 seconds, which is sufficient for

monitoring most vital signs [34]. Each experiment was run ten times, enabling the

calculation of average statistics and 95% confidence intervals.

The success rates of the adaptive SOA and 4BLE implementations are shown in

Table 6.5. In both the fast and slow walk scenarios, the adaptive SOA was able to

maintain 100% success rate, while the 4BLE failed a significant percentage of times

(its success rate was only 40.4 ± 11.2% and and 31.2 ± 7.5% for the slow and fast

walking scenarios, respectively). The 4BLE performs poorly because it does not

incorporate mechanisms for quickly adapting to network topology changes. Using

the exponentially-decaying beaconing algorithm, after its initial rapid broadcasts of

beacons, its latency of discovering new relay nodes increases into the range of several-

minutes, with a maximum of 8.5 minutes. While this is acceptable in a stable (i.e,

non-mobile) network, for which the 4BLE was originally intended, it is not acceptable

when mobile nodes are involved since the set of nodes that are within wireless range of

the mobile node change faster than the 4BLE is able to discover them. The adaptive

SOA clearly outperforms the 4BLE, demonstrating the need to adapt to changing

network topologies, and the efficacy of the middleware’s adaptation mechanism.

In addition to success rate, consider the network bandwidth overhead as defined by

the number of packets transmitted by the patient’s device per service invocation. The

non-beacon portion of the network bandwidth overhead is shown in Figure 6.14. The

overhead imposed by beacons is discussed later in this section. The average and 95%

164

0 

5 

10 

15 

20 

25 

30 

35 

1  2  3  4  5  6  7  8  9  10 

A
ve
ra
ge
 N
um

be
r 
of
 M

es
sa
ge
 T
ra
ns
m
is
si
on

s 
Pe

r 
In
vo
ca
6
on

 

Experiment Round 

Adap0ve SOA‐Slow  4BLE‐Slow  Adap0ve SOA‐Fast  4BLE‐Fast 

Figure 6.14: The average number of messages transmitted per invocation.

Adaptive SOA 4BLE

Fast Walk 0.79± .03 2.41± 0.80
Slow Walk 0.47± .05 2.38± 0.55

Table 6.6: The average number of beacons transmitted per invocation over all
experimental rounds.

confidence interval over 10 experimental rounds are shown. Note that the adaptive

SOA out-performs the 4BLE transmitting less than ten packets per invocation while

the 4BLE transmits about 15-25. This indicates that the adaptive SOA saves energy

by transmitting fewer packets, while providing higher service availability.

The reason for the variance in the number of packets transmitted per invocation is

due to the changes in connectivity to service providers. For example, if the original

service provider is still within range, the adaptive SOA may be able to invoke the

service using a single packet transmission. Otherwise, it will have to perform service

discovery, which consists of broadcasting a 5 packets. The 4BLE attempts to send

the message to the parent up to 30 times, after which it drops the packet. It does

not attempt to discover different parents if the currently-selected one fails. Thus, the

number of messages it sends is between 1 and 30, depending on whether the parent

is within range.

165

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

1  2  3  4  5  6  7  8  9  10 

A
ve
ra
ge
 L
at
en

cy
 (m

s)
 

Experiment Round 

Adap0ve SOA‐Slow  4BLE‐Slow  Adap0ve SOA‐Fast  4BLE‐Fast 

Figure 6.15: The latency of invoking the relay service.

The average number of beacons emitted per invocation is shown in Table 6.6. Clearly,

the 4BLE emits many more beacons than the adaptive SOA, while delivering lower

success rate. The 4BLE emits more beacons because it uses the link estimator for

discovering the parent, which rapidly re-broadcasts beacons whenever it detects dy-

namics in the network. As the patient node moves, the link estimator running on

the node may detect changes in the network (based on beacons from new providers)

resulting in additional beacons being emitted. More importantly, CTP tells the 4BLE

every time it fails to invoke the service, causing the link estimator to emit beacons at

a faster rate. The net result is the 4BLE sending about 1.77 additional beacons per

service invocation relative to the adaptive SOA.

The average latency of invoking the relay service is shown in Figure 6.15. 95% con-

fidence intervals are included based on the ten experimental rounds. The results

indicate that the adaptive SOA has higher latency than the 4BLE. This is because

the adaptive SOA has an adaptation mechanism that continuously retries the service

invocation with different relay nodes until it succeeds. Since this process may take

many rounds depending on whether any providers are within range, its latency may

occasionally be high. However, from the application’s perspective, the higher latency

is justified by the 100% success rate of invoking services and lower network overhead

provided by the adaptive SOA.

166

6.6.2 Structural Health Monitoring

Structural health monitoring (SHM) is a class of WSN applications that use WSNs

to monitor the health of structures like buildings and bridges. A key challenge of

SHM applications is the need to run for long periods of time, ideally for the life of

the structure, despite having limited energy. The fact that most SHM algorithms

are computationally heavy and energy intensive only magnifies the problem. To

address this, one solution is to integrate energy-efficient nodes that simply monitor

the vibrations in the building, and signals an event whenever the vibrations are large

enough to result in structural damage. Using these low-power nodes, the energy-

intensive algorithms do not have to continuously run on the high-powered nodes,

thus saving energy.

While the application case study described in Chapter 5 demonstrated that this tech-

nique can save energy, the process of selecting the node that performs the low-power

monitoring was done manually, and the system did not automatically determine the

energy cost of selecting a particular node. This section presents how an adaptive SOA

can improve on this technique by automatically determining the energy footprint of

selecting a particular node. The results are validated by comparing the estimated

energy consumption to the actual energy consumption.

The system configuration is as follows. There are two nodes in the network, an Imote2

and a TelosB. The Imote2 is a high-powered but energy-inefficient node that is both

a consumer and provider, while the TelosB is a low-powered but energy-efficient node

that is just a provider. Both nodes provide a service called AccelTrigger, which

performs the low-power monitoring. As a consumer, the Imote2 must bind to and

invoke the AccelTrigger service to save energy. Given this setup, there are two

binding states: 1) the Imote2 can bind to the AccelTrigger service locally, or 2) it

can bind to the service remotely by using the one provided by a TelosB. In addition,

there are two variables that need to be supplied by the consumer, InvokePeriod,

and InvokeCount, as specified in Table 6.1. The challenge, then, becomes how to

determine the energy footprint in terms of the binding state, InvokePeriod, and

InvokeCount.

167

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

2000 

0  2  4  6  8  10 

En
er
gy
 F
oo

tp
ri
nt
  (
m
J)
 

Count (Number of Service Execu:ons) 

Local Invoke ‐ (Predicted)  Remote Invoke (Predicted) 

Local Invoke (Actual)  Remote Invoke (Actual) 

Remote Invoca>on 

Local Invoca>on 

Figure 6.16: The predicted and actual energy footprints of the structural health
monitoring application scenario when DutyCycle = 10 and InvokePeriod = 1000 in.

Predicting the energy footprint requires using equations 6.3 and 6.2 with values spe-

cific to the Imote2 and TelosB platforms, which were derived in Section 6.5. Assuming

DutyCycle = 10 and InvokePeriod = 1000, the question is what is the energy foot-

print of each binding state relative to InvokeCount, and when are remote invocations

more energy-efficient than local invocations? The results are shown in Figure 6.16.

The actual values were obtained by directly measuring the energy consumption of the

system using an oscilloscope. The predicted values were obtained using the values

derived in Section 6.5, the details of which are given in Appendix B. Note that the

predicted energy footprints closely match the actual energy footprints, and that both

result in the same conclusion: that InvokeCount must be at least 4 for remote binding

to be more energy efficient than local binding. Specifically, the measured intersection

point between the energy footprint of local vs. remote binding is InvokeCount = 3.45,

which is close to the predicted 3.95.

Implementing this application using the adaptive SOA is simple. It consists of a single

call to invoke the AccelTrigger service, followed by a callback function implementing

the normal energy-intensive structural health monitoring application. As intended,

the process of selecting and binding to the most energy efficient provider is hidden

from the application.

168

6.7 Chapter Summary

This chapter presented an adaptive service provisioning framework that enhances ser-

vice availability and energy efficiency transparently from applications. The framework

features three novel adaptation strategies specifically designed for service provisioning

in WSNs: 1) energy-aware service selection, 2) opportunistic service sharing, and 3)

adaptive service rebinding in response to network dynamics. Naturally incorporated

into an SOC paradigm, the adaptive strategies are hidden from the device, service,

and application developers and thereby simplify application development. Empiri-

cal results from implementations on TelosB and Imote2 platforms and an evaluation

of two applications, medical patient monitoring and structural health monitoring,

demonstrate the systems efficiency and efficacy.

169

Chapter 7

Future Work

The work presented in this dissertation represents the first steps towards achieving

adaptive middleware for resource-constrained mobile ad hoc and wireless sensor net-

works. There is still much additional work to be done. Clearly, additional application

case studies can be run to better evaluate the middleware systems presented in this

dissertation. More work needs to be done testing, validating, and improving the

power equations used in Section 6.4. For example, the equations can be improved

by accounting for messages of different sizes and network link qualities to vary. The

semantics of the service invocation operations can be further developed. For example,

perhaps they can be modified to provide “group” operations in which multiple iden-

tical services are redundantly invoked to increase reliability. The current evaluations

primarily focus on two types of devices: the TelosB and Imote2. In the future, a

wider range of devices must be analyzed to verify the energy equations apply to a

wider set of devices. In addition, all of the work done on WSNs used TinyOS as

the underlying operating system. While TinyOS is sufficient, there are many other

operating systems for WSNs that provide different services like dynamic memory. A

direction of future work involves investigating how the operating system affects the

programming models and their implementations described in this dissertation. These

are just some examples of the ways in which the existing middleware systems can be

improved. Many other possibilities exist.

One area of future work is the development of novel coordination middleware in to

address challenges unique to new forms networks and application domains. For ex-

ample, body sensor networks and augmented reality applications are rapidly evolving

and will require the development of middleware to assist application development.

170

They exhibit different characteristics they may require the middleware to be tailored

to their intricacies. For example, body sensor networks are deployed on the human

body instead of in an environment. Because of this, the behavior of the network

links in terms of reliability and dynamics differs from that of traditional WSNs. Aug-

mented reality involves overlaying virtual data on top of the physical world. They

require high levels of context awareness and to be able to quickly detect changes in

the context. Developing novel middleware systems that address these and other needs

as they present themselves is a subject of future work.

Regarding Limone, a primary objective was to minimize the number of assumptions

made about the behavior of the underlying network. It achieved this by providing

a lightweight coordination model that does not require distributed transactions or

predictable network connectivity. The result is a coordination model that does not

provide any guarantees regarding the success of an operation. While this is sufficient

for certain non-critical applications, it is insufficient for others. Other coordination

models like Limone do provide additional guarantees about atomicity and more pow-

erful group operations, but fail to function in highly dynamic networks that do not

meet the underlying assumptions of the coordination model. Developing a hybrid

coordination model that is able to adapt to degree of unpredictability in the network

and application demands is a subject of future work. For example, if the network is

behaving unpredictability and the applications do not require certain guarantees on

the successful execution of certain operations, the middleware can adapt to provide

the minimal level of service required to save resources. Identifying the interface that is

expressive enough to enable this variability in middleware functionality is the subject

of future work.

Nearly all coordination models to date assume that network links are bidirectional.

This is made possible by implementing a layer of software that filters out asymmetric

links, in which messages can be transmitted in one direction only. An interesting

avenue of future work is to investigate middleware that can make use of asymmetric

links, perhaps by using them to increase the communication bandwidth between two

points in the network. Determining the proper high-level abstraction for enabling

applications to make use of these asymmetric links is the subject of future work.

171

A key contribution of Servilla is the modularity of the middleware that enables the

inclusion of even extremely weak devices. The current implementation divides the

service provisioning framework (SPF) into two relatively course modules: the SPF-

Provider and SPF-Consumer. While this was sufficient to enable the inclusion of

TelosB devices, there will certainly be devices that remain too weak to be included.

The future research involves identifying novel ways in which the middleware can be

decomposed or rearranged to enable support for even weaker devices. For example,

the current architecture forces every SPF-Provider to publish the specifications of the

services it provides. Suppose the device is so weak that it does not even have enough

memory to hold the service specifications. Perhaps a 3rd party service registry can

hold the service specifications, and vouch for these extremely resource-poor devices.

Another area of future work lies in the integration of the various middleware systems

discussed in this dissertation. For example, perhaps Agilla can be integrated with

Servilla. Agilla would enable applications to be self-adaptive by reconfiguring their

code in response to changing network conditions. Servilla would enable applications

to operate in WSNs consisting of heterogeneous devices, adapt to changing network

topologies, and optimize for energy efficiency. Merging Agilla with Servilla would

facilitate the development of self-adaptive applications in heterogeneous WSNs.

A phenomenon of potential interest was discovered while performing the energy mea-

surement experiments for the adaptive SOA. Specifically, there are collateral costs as-

sociated with wireless transmission. Most systems today assume that when a packet is

sent, the only nodes affected are the sender and receiver. While this is approximately

true in traditional networks, extremely low-energy and low-duty cycle networks like

those created by WSNs are effected in significant ways by collateral cost due to a node

overhearing a packet that is not destined for it. In fact, for the cc2420 radios, which

are used by the TelosB and Imote2 devices, the costs of overhearing a packet is equal

to the cost of receiving it as it were the intended recipient. This is because cc2420

are packet level radios, meaning they must receive the whole packet before they can

determine if they are the intended recipient. Collateral energy costs depends on the

number of nodes within range of the sender, which varies across nodes and varies

over time. More investigation is necessary to determine how these variable collat-

eral energy costs can be quantitified and how existing energy-aware communication

protocols are affected.

172

Chapter 8

Conclusions

This dissertation presented three middleware platforms, Limone, Agilla, and Servilla,

that address different challenges present in mobile ad hoc networks (MANETs) and

wireless sensor networks (WSNs). Limone is a lightweight coordination middleware

for MANETs. It showed how lightweight coordination primitives are useful in facili-

tating the development of certain applications like a universal remote control even if

they do not provide strong functional guarantees. Agilla is a middleware for WSNs

that enables application developers to structure their applications as collections of

mobile agents that communicate through localized tuple spaces. In doing so, Agilla

enables applications to self-adapt by restructuring the locations of their code in re-

sponse to changes in the environment, which reduces an application’s overhead and

increases the utility of the WSN by enabling additional applications to run. Example

application case studies involving wildfire tracking and cargo container monitoring

demonstrated how the Agilla middleware simplifies the development of complex ap-

plications by enabling the code to self-adapt. In addition, by combining Agilla with

Limone, WSNs can be seamlessly integrated with traditional networks by enabling

mobile agents to travel from one type of network into another, enabling computations

to span networks. This was demonstrated through the development of the Agimone

middleware system. Servilla is a middleware that address challenges due to net-

work heterogeneity in dynamics within a WSN. It demonstrated that service-oriented

computing (SOC) can be used to enable applications to be platform-independent

while still able to access the full functionality of the underlying hardware. In addi-

tion, it showed how the middleware can exploit the decoupling of service consumers

and providers established by the SOC programming model to enable applications to

automatically adapt to changing network conditions and increase energy efficiency.

173

Accomplishing this required minimal additional effort from the developer, who only

needs to specify a limited set of variables characterizing the energy efficiency of a de-

vice and service. This was demonstrated using two application case studies: medical

patient monitoring and structural health monitoring. In all, the systems described in

this dissertation represent the first steps towards providing adaptive middleware for

resource-constrained MANETs and WSNs.

174

Appendix A

Measuring the Energy

Consumption of WSN Devices

This appendix describes how the energy consumption of a WSN device is measured.

Determining the amount of energy used by WSN devices is important due to the

scarcity of energy available. Most WSN devices operate on batteries that cannot be

easily recharged or replaced since the devices themselves are embedded within the

environment.

Measuring the amount of energy a device consumes requires determining the power

draw of the device and the duration over which the power is drawn. By taking a se-

quence of instantaneous power readings P1, P2, . . . , Pn at fixed intervals in which each

interval is of length ∆t, the total energy, E, consumed during the period measured is

given by equation A.1.

E =

(
n∑

i=1

Pi

)
·∆t (A.1)

The power draw of the WSN device can be determined by measuring the current draw

and the voltage drop across the device. The circuit used to obtain these measurements

is shown in Figure A.1. A high-accuracy resistor, R1, is put in parallel with the WSN

device. By measuring the voltage across the resistor (V 1), the current flowing through

the device can be derived using the formula I = V 1
R1

. In addition to the voltage across

the resistor, the voltage across the device, V 2, is measured directly. Once these values

are obtained, they can be used to compute the energy using equation A.1.

175

R1

WSN
Device

J1J2

J3

V1

V2

Figure A.1: The circuit used to measure the power draw of a WSN device. Two
probes from the same oscilloscope simultaneously measure voltages V 1 and V 2 at
junctions J2 and J3, respectively. Both are grounded at junction J1. V 1 measures
the voltage across resistor R1 and is used to calculate the instantaneous current,
i = V 1

R1
. V 2 measures the voltage across the WSN device. The power, P , of the

WSN device is thus P = i · V 2

A Tektronix TDS 2004B digital oscilloscope is used to obtain V 1 and V 2 for all

measurements presented in Chapter 6. The channel 1 probe is attached to junction

J2, while the channel 2 probe is attached to J3. Both probes are grounded at J1 to

provide a common point of reference. Thus, the channel 1 probe measures the voltage

across resistor R1, which is then used to calculate the current flowing through the

circuit. The channel 2 probe measures the voltage drop across the device. To derive

the energy, the measurements are processed using a Java application that reads the

raw measurements obtained from the oscilloscope. The oscilloscope’s buffer allows

capturing 2500 instantaneous voltage readings, each separated by an equal amount

of time. Depending on the time-scale settings of the oscilloscope, the time between

each measurement is anywhere between 0.01ms to 4ms. Since most operations be-

ing measured have latencies of tens of milliseconds, the resolution provided by the

oscilloscope is sufficient in most scenarios.

Since the oscilloscope is limited in the number of data points it can measure, and

the longer the period the coarser the energy calculations, the intervals over which

energy utilization is calculated must be carefully selected. Naturally, the selection

should be based on the variables that need to be measured to enable energy-aware

service adaptation in Servilla, which are shown in Table 6.1. Some of the variables

are actually functions of the duty cycle requiring each variable to be evaluated with

the device set to various duty cycles.

176

Appendix B

Derivation of the Energy

Utilization Equations for the

Structural Health Monitoring

AccelTrigger Service

This section describes how the middleware can automatically calculate the energy con-

sumption of different states of the structural health monitoring application described

in Section 6.6.2. The system consists of two nodes, an Imote2 and a TelosB. The

Imote2 is both a service consumer and provider, while the TelosB is just a provider.

The service used is called AccelTrigger. It periodically senses the accelerometer

and sends the consumer an event whenever the acceleration reading exceeds a certain

value. The purpose of using AccelTrigger is to save energy. Instead of continuously

running the complex and energy-intensive damage localization task, the application

can run AccelTrigger during periods in which it is not sure the building is damaged.

Relative to the damage localization task, AccelTrigger consumes much less energy,

thus motiving its use during quiescent periods.

The following analysis derives the equations used to determine whether the consumer,

a high-powered Imote2 node, should invoke the service locally or remotely on a low-

power TelosB node. The equations used are those described in Section 6.4, but

integrated the device-specific equations and attributes collected from actual hardware,

as described in Section 6.5. Using these equations, the consumer node can decide

whether invoking locally or remotely is more energy efficient.

177

The remainder of this appendix is organized as follows. First, the energy cost of

invoking locally will be presented. Second, the energy costs of invoking remotely

will be presented. The third section calculates the potential energy savings, and

what its ramifications are in terms of when invoking remotely is better than locally.

The macro-level experiments on actual hardware that validate the conclusions of the

algorithms presented in this appendix are described in Section 6.6.2.

B.1 Local Invocation

When the service is invoked locally, the Imote2 is invoking the service that it provides

itself. Thus, only the energy incurred by the Imote2 is considered.

Energy Consumption on Imote2:

The basic equation for determining the total energy consumption on the Imote2 when

it invokes the service locally is given by equation 6.2 on page 141. For convenience,

itInvokeCount is repeated here.

Elocal = InvokeCount · Tinvoke · Pinvoke+ (B.1)

(InvokeCount− 1) · (InvokePeriod− Tinvoke) · Pidle

Since the Imote2 is invoking the service locally, it must have its sensor board on.

Thus, Pidle is specified by equation 6.6 on page 152, and the values of Pinvoke and

Tinvoke are given in Table 6.4 on page 161. The resulting equations are as follows:

Tinvoke = 21.87 (B.2)

Pinvoke = 176.67 (B.3)

Pinvoke = −5 · 10−6 · DutyCycle4 + 0.0011 · DutyCycle3 (B.4)

− 0.096 · DutyCycle2 + 3.7959 · DutyCycle + 168.49

178

The total energy cost is thus equations B.2 through B.4 plugged into equation B.1.

B.2 Remote Invocation

Since the AccelTrigger service is being invoked in an event-based manner, equa-

tion 6.1 on page 139 is used.

Eremote,event = Etx,c + Erx,p (B.5)

+ InvokeCount · (Pidle,c · Tinvoke + Tinvoke · Pinvoke)

+ (InvokeCount− 1) · (InvokePeriod− Tinvoke)

· (Pidle,c + Pidle,p)

+ Etx,p + Erx,c

where

Etx,c = Etx,imote2 (B.6)

= 184.44 · DutyCyclePeriod
2

+ 15813.1

Etx,p = Etx,telosb (B.7)

= 51.49 · DutyCyclePeriod
2

+ 4279.14

Erx,c = Erx,imote2 (B.8)

= 22620.6

179

Erx,p = Erx,telosb (B.9)

= 5920.51

Pidle,c = Pidle,imote2,sensor-off (B.10)

= −4 · 10−6 · DutyCycle4 + 0.0009 · DutyCycle3

− 0.0821 · DutyCycle2 + 3.4427 · DutyCycle + 106.7

Pidle,p = Pidle,telosb = 0.5168 · DutyCycle + 0.0407 (B.11)

Tinvoke = Tsense,telosb = 18.49 (B.12)

Pinvoke = Psense,telosb = 102.90 (B.13)

The total cost when invoking remotely is thus equations B.6 through B.13 plugged

into equation B.5.

B.3 Local vs. Remote Invocation

To determine when invoking a remote service is better than invoking a local service,

the difference in energy cost between local vs. remote invocation must be calculated.

This is done by subtracting equation B.5 from B.1. That is,

Esavings = Elocal − Eremote,event (B.14)

Energy savings is possible when Esavings > 0, since that would imply that remote

invocation is less costly than local invocation.

180

B.4 Example Scenario 1

Understanding when energy savings is possible is difficult when there are three vari-

ables (DutyCycle, InvokePeriod, and InvokeCount). Thus, to gain a better under-

standing of when energy savings is possible, the following is an example when the

radio duty cycle and service invocation period are fixed. It derives the energy cost

equations and generates a conclusion regarding the number of service invocations

that must occur before a net energy-savings is achieved. This is what the middleware

does when it makes a decision regarding whether to bind to a local or remote service.

After deriving the costs and conclusion that Servilla would make, an actual system

is evaluated and used to validate the decision.

B.4.1 Energy-Aware Calculations

Suppose the radio is operating on a 10% duty cycle (DutyCycle = 10), and the sensor

is accessed once per second (InvokePeriod = 1000). The energy savings is calculated

by plugging these values into equation B.14. This is done as follows. First, determine

Elocal, the energy cost when invoking the service locally.

Elocal = InvokeCount · Tinvoke · Pinvoke (B.15)

+ (InvokeCount− 1) · (InvokePeriod− Tinvoke) · Pidle

= InvokeCount · 21.87 · 176.67

+ (InvokeCount− 1) · (1000− 21.87) · 197.90

= 197436 · InvokeCount− 193572

Next, determine Eremote, the energy cost when invoking the service remotely.

181

Eremote,event = (Etx,c + Erx,p) (B.16)

+ InvokeCount · (Pidle,c · Tinvoke

+ Tinvoke · Pinvoke)

+ (InvokeCount− 1) · (InvokePeriod− Tinvoke)

· (Pidle,c + Pidle,p)

+ (Etx,p + Erx,c)

Equation B.16 can be divided into two parts: (1) the energy associated with network

communication, and (2) the energy associated with executing the service.

Eremote,event = Enetwork + Eexecution (B.17)

Enetwork = (Etx,c + Erx,p) + (Etx,p + Erx,c) (B.18)

Eexecution = InvokeCount · (Pidle,c · Tinvoke + Tinvoke · Pinvoke) (B.19)

+ (InvokeCount− 1) · (InvokePeriod− Tinvoke)

· (Pidle,c + Pidle,p)

Deriving the equation for Enetwork consists of plugging in the equations for the energy

cost of transmission and reception given in Sections 6.5.2 and 6.5.3.

Enetwork =

(
184.44 · 1000

2
+ 15813.1

)
+ 5920.51 (B.20)

+

(
51.49 · 1000

2
+ 4279.14

)
+ 22620.6

= 166, 598µJ

182

Deriving the equation for Eexecution requires first calculating Pidle,c and Pidle,p. This is

done by plugging in DutyCycle = 10 into equations 6.5 and 6.4.

Pidle,c = Pidle,imote2,no-sensor = 133.78µJ

Pidle,p = Pidle,telosb = 5.3087µJ

Thus,

Eexecution = InvokeCount · (133.78 · 18.49 + 18.49 · 102.90) (B.21)

+ (InvokeCount− 1) · (1000− 18.49)

· (133.78 + 5.3087)

= 140893 · InvokeCount− 136517

From equation B.17, adding equations B.20 and B.21 results in Eremote,event, the

amount of energy consumed when the service is invoked remotely.

Eremote,event = Enetwork + Eexecution (B.22)

= 166598 + (140893 · InvokeCount− 136517)

= 140893 · InvokeCount + 30081.1

Thus, the potential energy savings is equation B.22 subtracted from equation B.15,

as given by equation B.14.

183

Esavings = Elocal − Eremote,event (B.23)

= (197436 · InvokeCount− 193572)

− (140893 · InvokeCount + 30081.1)

= 56542.8 · InvokeCount− 223653

Setting equation B.23 to equal zero and solving for InvokeCount gives InvokeCount =

3.955. This means that energy savings is possible when invoking the service remotely

relative to locally if the service is invoked at least 4 times. The cost of invoking

the service locally versus remotely and the potential energy savings is shown in Fig-

ure 6.16.

B.4.2 Validation of Equations

To validate the equations and conclusions of Section B.4.1, the system is deployed on a

network consisting of one Imote2 device and one TelosB device. The same parameters

from Section B.4 are kept, specifically DutyCycle = 10 and InvokePeriod = 1000.

Since Servilla concluded that at least 4 invocations must occur before a net savings is

achieved when invoking remotely versus locally, InvokeCount is varied from 2 through

10. Both local invocations and remote invocations are evaluated. Each configuration

and InvokeCount combination is evaluated 5 times, enabling the calculation of the

average and 95% confidence interval. The results are plotted in Figure 6.16.

The results indicate that the equations derived in Section B.4.1 successfully determine

when invoking a service remotely results in energy-savings. Specifically, the measured

results also conclude that the remote service must be invoked at least four times for

energy savings to occur. The calculated results and measured results do differ slightly

in that the point of intersection for the calculated results is 3.95, while the point of

intersection for the measured data is 3.45. One possible reason for this discrepancy is

due to the limitations of the oscilloscope, which must be configured at a significantly

coarser resolution (i.e., 4ms versus 0.1ms per sample) to capture the entire service

invocation process, which may last up to 10 seconds.

184

References

[1] João Abreu and José Luiz Fiadeiro. A coordination model for service-oriented
interactions. In Lea and Zavattaro [95], pages 1–16.

[2] Anurag Acharya, M. Ranganathan, and Joel Saltz. Sumatra: A Language for
Resource-aware Mobile Programs. In J. Vitek and C. Tschudin, editors, Mobile
Object Systems: Towards the Programmable Internet, volume 1222, pages 111–
130. Springer-Verlag: Heidelberg, Germany, 1997.

[3] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Ser-
vices. Springer, 2003.

[4] Giuseppe Anastasi, Marco Conti, Mario Di Francesco, and Andrea Passarella.
Energy conservation in wireless sensor networks: A survey. Ad Hoc Netw.,
7(3):537–568, 2009.

[5] Anupriya Ankolekar, Frank Huch, and Katia P. Sycara. Concurrent semantics
for the web services specification language daml-s. In Arbab and Talcott [8],
pages 14–21.

[6] Th. Arampatzis, J. Lygeros, and S. Manesis. A survey of applications of wireless
sensors and wireless sensor networks. In Proc. of the 13th Med. Conf. on Control
and Automation, pages 719–724, June 2005.

[7] Farhad Arbab, Tom Chothia, Sun Meng, and Young-Joo Moon. Component
connectors with qos guarantees. In Murphy and Vitek [127], pages 286–304.

[8] Farhad Arbab and Carolyn L. Talcott, editors. Coordination Models and Lan-
guages, 5th International Conference, COORDINATION 2002, YORK, UK,
April 8-11, 2002, Proceedings, volume 2315 of Lecture Notes in Computer Sci-
ence. Springer, 2002.

[9] Arch Rock. Arch Rock PhyNetTM. http://www.archrock.com/product/.

[10] Edgardo Avilés-López and J. Garćıa-Maćıas. Tinysoa: a service-oriented archi-
tecture for wireless sensor networks. Service Oriented Computing and Applica-
tions, April 2009.

185

[11] Özalp Babaoglu, Hein Meling, and Alberto Montresor. Anthill: A framework for
the development of agent-based peer-to-peer systems. In ICDCS ’02: Proceed-
ings of the 22 nd International Conference on Distributed Computing Systems
(ICDCS’02), page 15, Washington, DC, USA, 2002. IEEE Computer Society.

[12] Amol Bakshi, Viktor K. Prasanna, Jim Reich, and Daniel Larner. The abstract
task graph: a methodology for architecture-independent programming of net-
worked sensor systems. In EESR ’05: Proceedings of the 2005 workshop on
End-to-end, sense-and-respond systems, applications and services, pages 19–24,
Berkeley, CA, USA, 2005. USENIX Association.

[13] Rahul Balani, Chih-Chieh Han, Ram Kumar Rengaswamy, Ilias Tsigkogiannis,
and Mani Srivastava. Multi-level software reconfiguration for sensor networks.
In EMSOFT ’06: Proceedings of the 6th ACM & IEEE International conference
on Embedded software, pages 112–121, New York, NY, USA, 2006. ACM.

[14] Rahul Balani, Chih-Chieh Han, Ram Kumar Rengaswamy, Ilias Tsigkogiannis,
and Mani Srivastava. Multi-level software reconfiguration for sensor networks.
In EMSOFT ’06: Proceedings of the 6th ACM & IEEE International conference
on Embedded software, pages 112–121, New York, NY, USA, 2006. ACM.

[15] Mario Baldi and Gian Pietro Picco. Evaluating the tradeoffs of mobile code de-
sign paradigms in network management applications. In ICSE ’98: Proceedings
of the 20th international conference on Software engineering, pages 146–155,
Washington, DC, USA, 1998. IEEE Computer Society.

[16] Nilanjan Banerjee, Jacob Sorber, Mark D. Corner, Sami Rollins, and Deepak
Ganesan. Triage: balancing energy and quality of service in a microserver. In
MobiSys ’07: Proceedings of the 5th international conference on Mobile systems,
applications and services, pages 152–164, New York, NY, USA, 2007. ACM.

[17] M. A. Batalin, M. Rahimi, Y.Yu, D.Liu, A.Kansal, G.S. Sukhatme, W.J. Kaiser,
M.Hansen, G. J. Pottie, M. Srivastava, and D. Estrin. Towards event-aware
adaptive sampling using static and mobile nodes. Technical Report 38, Center
for Embedded Networked Sensing, 2004.

[18] J. Baumann, Hohl K. Rothermel, M. Strasser, and W. Theilmann. Mole: A
mobile agent system. Softw. Pract. Exper., 32(6):575–603, 2002.

[19] O. Burchan Bayazit, Jyh-Ming Lien, and Nancy M. Amato. Roadmap-based
flocking for complex environments. In Proceedings of the 10th Pacific Conference
on Computer Graphics and Applications (PG’02), pages 104–121, 2002.

[20] Lorenzo Bettini, Rocco De Nicola, and Michele Loreti. Implementing session
centered calculi. In Lea and Zavattaro [95], pages 17–32.

186

[21] Sangeeta Bhattacharya, Nuzhet Atay, Gazihan Alankus, Chenyang Lu, O. Bur-
chan Bayazit, and Gruia-Catalin Roman. Roadmap query for sensor network
assisted navigation in dynamic environments. Technical Report WUCSE-05-41,
Washington University in St.Louis, 2005.

[22] Sangeeta Bhattacharya, Nuzhet Atay, Gazihan Alankus, Chenyang Lu, O. Bur-
chan Bayazit, and Gruia-Catalin Roman. Roadmap query for sensor network
assisted navigation in dynamic environments. In Proceedings of the Interna-
tional Conference on Distributed Computing in Sensor Systems (DCOSS), pages
17–36, 2006.

[23] Laura Bocchi, Paolo Ciancarini, and Davide Rossi. Transactional aspects in
semantic based discovery of services. In Jacquet and Picco [80], pages 283–297.

[24] Laura Bocchi and Roberto Lucchi. Atomic commit and negotiation in service
oriented computing. In Ciancarini and Wiklicky [36], pages 16–27.

[25] Athanassios Boulis, Chih-Chieh Han, and Mani B. Srivastava. Design and im-
plementation of a framework for efficient and programmable sensor networks. In
MobiSys ’03: Proceedings of the 1st international conference on Mobile systems,
applications and services, pages 187–200, New York, NY, USA, 2003. ACM.

[26] Mario Bravetti and Gianluigi Zavattaro. A theory for strong service compliance.
In Murphy and Vitek [127], pages 96–112.

[27] Antonio Brogi, Jean-Marie Jacquet, and Isabelle Linden. On modeling coordi-
nation via asynchronous communication and enhanced matching. In Antonio
Brogi and Jean-Marie Jacquet, editors, Electronic Notes in Theoretical Com-
puter Science, volume 68. Elsevier, 2003.

[28] Roberto Bruni, Ivan Lanese, Hernán C. Melgratti, and Emilio Tuosto. Multi-
party sessions in soc. In Lea and Zavattaro [95], pages 67–82.

[29] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A programmable coordina-
tion architecture for mobile agents. Internet Computing, 4(4):26–35, 2000.

[30] Alberto Cerpa, Jeremy Elson, Deborah Estrin, Lewis Girod, Michael Hamilton,
and Jerry Zhao. Habitat monitoring: application driver for wireless communica-
tions technology. SIGCOMM Comput. Commun. Rev., 31(2 supplement):20–41,
2001.

[31] Dipanjan Chakraborty and Harry Chen. Service discovery in the future for
mobile commerce. Crossroads, 7(2):18–24, 2000.

[32] Stuart Cheshire. DNS-based service discovery. Technical report, Apple Com-
puter, Inc., 2005.

187

[33] Krishna Chintalapudi, Tat Fu, Jeongyeup Paek, Nupur Kothari, Sumit Rang-
wala, John Caffrey, Ramesh Govindan, Erik Johnson, and Sami Masri. Monitor-
ing civil structures with a wireless sensor network. IEEE Internet Computing,
10(2):26–34, 2006.

[34] Octav Chipara, Christopher Brooks, Sangeeta Bhattacharya, Chenyang Lu,
Roger Chamberlain, Gruia-Catalin Roman, and Thomas C. Bailey. Reliable
data collection from mobile users for real-time clinical monitoring. Technical
Report WUCSE-2008-25, Washington University in St. Louis, December 2008.

[35] Young-Geun Choi, Jeonil Kang, and DaeHun Nyang. Proactive code verifica-
tion protocol in wireless sensor network. Lecture Nodes in Computer Science,
4706(6):1085–1096, 2007.

[36] Paolo Ciancarini and Herbert Wiklicky, editors. Coordination Models and Lan-
guages, 8th International Conference, COORDINATION 2006, Bologna, Italy,
June 14-16, 2006, Proceedings, volume 4038 of Lecture Notes in Computer Sci-
ence. Springer, 2006.

[37] Crossbow Technologies. Imote2 datasheet. http://tinyurl.com/5jrw85.

[38] Crossbow Technology. Mica2 wireless measurement system.
http://www.xbow.com/Products/productdetails.aspx?sid=174, February
2005.

[39] Crossbow Technology. MicaZ wireless measurement system.
http://www.xbow.com/Products/productdetails.aspx?sid=164, February
2005.

[40] Javier Cubo, Gwen Salaün, Javier Cámara, Carlos Canal, and Ernesto Pi-
mentel. Context-based adaptation of component behavioural interfaces. In
Murphy and Vitek [127], pages 305–323.

[41] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The JEDI event-
based infrastructure and its application to the development of the OPSS WFMS.
IEEE Transactions on Software Engineering, 27(9):827–850, September 2001.

[42] Gianpaolo Cugola and Gian Pietro Picco. Peerware: Core middleware support
for peer-to-peer and mobile systems. Technical report, Politecnico di Milano,
2001.

[43] David Culler, Deborah Estrin, and Mani Srivastava. Overview of sensor net-
works. IEEE Computer, 37(8):41–49, 2004.

[44] Dave Marshall. Remote procedure calls (rpc). http://www.cs.cf.ac.uk/

Dave/C/node33.html.

188

[45] Alexander Davis and Du Zhang. A comparative study of soap and dcom. J.
Syst. Softw., 76(2):157–169, 2005.

[46] Jessie Dedecker. Ambient-oriented programming in ambienttalk: combining
mobile hardware with simplicity and expressiveness. In OOPSLA ’05: Com-
panion to the 20th annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages 196–197, New York, NY,
USA, 2005. ACM.

[47] Adam Dunkels. A low-overhead script language for tiny networked embedded
systems. Technical Report T2006:15, Swedish Institute of Computer Science,
September 2006.

[48] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In LCN ’04: Proceedings of
the 29th Annual IEEE International Conference on Local Computer Networks,
pages 455–462, Washington, DC, USA, 2004. IEEE Computer Society.

[49] Elliot Berk. Jlex: A lexical analyzer generator for java. http://www.cs.

princeton.edu/~appel/modern/java/JLex/.

[50] R. Englemore and T. Morgan. Blackboard systems. Addison-Wesley Publishing
Company, 1988.

[51] David Flanagan. JavaScript: The Definitive Guide, 4th Ed. O’REILLY, Inc.,
2001.

[52] Chien-Liang Fok. Agilla Website. http://mobilab.wustl.edu/projects/agilla.

[53] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Mobile agent mid-
dleware for sensor networks: an application case study. In IPSN ’05: Proceed-
ings of the 4th international symposium on Information processing in sensor
networks, page 51, Piscataway, NJ, USA, 2005. IEEE Press.

[54] Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson, and Philip Levis. Four
bit wireless link estimation. In In Proceedings of the Sixth Workshop on Hot
Topics in Networks (HotNets VI), 2007.

[55] Davide Frey and Gruia-Catalin Roman. Context-aware publish subscribe in
mobile ad hoc networks. In Murphy and Vitek [127], pages 37–55.

[56] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and
David Culler. The nesc language: A holistic approach to networked embedded
systems. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, pages 1–11, New York, NY,
USA, 2003. ACM.

189

[57] D. Gelernter. Generative communication in Linda. ACM Trans. on Prog. Lan-
guages and Systems, 7(1):80–112, 1985.

[58] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip
Levis. Ctp: Robust and efficient collection through control and data plane inte-
gration. Technical Report SING-08-02, Stanford Information Networks Group,
February 2008.

[59] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip
Levis. Collection Tree Protocol. In Proceedings of the 7th ACM Conference on
Embedded Networked Sensor Systems (SenSys’09), November 2009.

[60] Omprakash Gnawali, Ki-Young Jang, Jeongyeup Paek, Marcos Vieira, Ramesh
Govindan, Ben Greenstein, August Joki, Deborah Estrin, and Eddie Kohler.
The tenet architecture for tiered sensor networks. In SenSys ’06: Proceedings of
the 4th international conference on Embedded networked sensor systems, pages
153–166, New York, NY, USA, 2006. ACM.

[61] R. Gray. Agent Tcl. Dr. Dobb’s Journal of Software Tools, 22(3):18–71, 1997.

[62] Ben Greenstein, Eddie Kohler, and Deborah Estrin. A sensor network appli-
cation construction kit (snack). In SenSys ’04: Proceedings of the 2nd inter-
national conference on Embedded networked sensor systems, pages 69–80, New
York, NY, USA, 2004. ACM.

[63] Ramakrishna Gummadi, Nupur Kothari, Ramesh Govindan, and Todd Mill-
stein. Kairos: a macro-programming system for wireless sensor networks. In
SOSP ’05: Proceedings of the twentieth ACM symposium on Operating systems
principles, pages 1–2, New York, NY, USA, 2005. ACM.

[64] Gregory Hackmann, Octav Chipara, and Chenyang Lu. Robust topology control
for indoor wireless sensor networks. In SenSys ’08: Proceedings of the 6th ACM
conference on Embedded network sensor systems, pages 57–70, New York, NY,
USA, 2008. ACM.

[65] Gregory Hackmann, Chien-Liang Fok, Gruia-Catalin Roman, Chenyang Lu,
Christopher Zuver, Kent English, and John Meier. Demo abstract: Agile cargo
tracking using mobile agents. In Proceedings of the 3rd Annual Conference on
Embedded Networked Sensor Systems (SenSys’05), page 303. ACM, November
2005.

[66] Gregory Hackmann, Fei Sun, Nestor Castaneda, Chenyang Lu, and Shirley
Dyke. A holistic approach to decentralized structural damage localization us-
ing wireless sensor networks. In RTSS ’08: Proceedings of the 2008 Real-Time
Systems Symposium, pages 35–46, Washington, DC, USA, 2008. IEEE Com-
puter Society.

190

[67] Brian Hall. Beej’s Guide to Network Programming. Jorgensen Publishing, Jan-
uary 2009.

[68] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivastava.
A dynamic operating system for sensor nodes. In MobiSys ’05: Proceedings of
the 3rd international conference on Mobile systems, applications, and services,
pages 163–176, New York, NY, USA, 2005. ACM.

[69] Radu Handorean and Gruia-Catalin Roman. Service provision in ad hoc net-
works. In Arbab and Talcott [8], pages 207–219.

[70] Tian He, Chengdu Huang, Brian M. Blum, John A. Stankovic, and Tarek F. Ab-
delzaher. Range-free localization and its impact on large scale sensor networks.
ACM Trans. Embed. Comput. Syst., 4(4):877–906, 2005.

[71] Tian He, Sudha Krishnamurthy, Liqian Luo, Ting Yan, Lin Gu, Radu Stoleru,
Gang Zhou, Qing Cao, Pascal Vicaire, John A. Stankovic, Tarek F. Abdelzaher,
Jonathan Hui, and Bruce Krogh. Vigilnet: An integrated sensor network system
for energy-efficient surveillance. ACM Trans. Sen. Netw., 2(1):1–38, 2006.

[72] Tian He, Sudha Krishnamurthy, John A. Stankovic, Tarek Abdelzaher, Liqian
Luo, Radu Stoleru, Ting Yan, Lin Gu, Gang Zhou, Jonathan Hui, and Bruce
Krogh. Vigilnet:an integrated sensor network system for energy-efficient surveil-
lance. ACM Transactions on Sensor Networks (under submission), 2004.

[73] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System architecture directions for networked sensors. SIG-
PLAN Not., 35(11):93–104, 2000.

[74] Timothy W. Hnat, Tamim I. Sookoor, Pieter Hooimeijer, Westley Weimer, and
Kamin Whitehouse. Macrolab: a vector-based macroprogramming framework
for cyber-physical systems. In SenSys ’08: Proceedings of the 6th ACM con-
ference on Embedded network sensor systems, pages 225–238, New York, NY,
USA, 2008. ACM.

[75] Tim Tau Hsieh. Using sensor networks for highway and traffic applications.
IEEE Potentials, 23(2):13–16, Apr-May 2004.

[76] Lingxuan Hu and David Evans. Localization for mobile sensor networks. In Mo-
biCom ’04: Proceedings of the 10th annual international conference on Mobile
computing and networking, pages 45–57, New York, NY, USA, 2004. ACM.

[77] Jonathan W. Hui and David Culler. The dynamic behavior of a data dissemina-
tion protocol for network programming at scale. In SenSys ’04: Proceedings of
the 2nd international conference on Embedded networked sensor systems, pages
81–94, New York, NY, USA, 2004. ACM.

191

[78] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed
diffusion: a scalable and robust communication paradigm for sensor networks.
In MobiCom ’00: Proceedings of the 6th annual international conference on
Mobile computing and networking, pages 56–67, New York, NY, USA, 2000.
ACM.

[79] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Hei-
demann, and Fabio Silva. Directed diffusion for wireless sensor networking.
IEEE/ACM Trans. Netw., 11(1):2–16, 2003.

[80] Jean-Marie Jacquet and Gian Pietro Picco, editors. Coordination Models and
Languages, 7th International Conference, COORDINATION 2005, Namur,
Belgium, April 20-23, 2005, Proceedings, volume 3454 of Lecture Notes in Com-
puter Science. Springer, 2005.

[81] Peter Janacik and Tales Heimfarth. Cross-layer architecture of a distributed os
for ad hoc networks. In ICAS ’06: Proceedings of the International Conference
on Autonomic and Autonomous Systems, page 52, Washington, DC, USA, 2006.
IEEE Computer Society.

[82] Jaein Jeong. Incremental network programming for wireless sensors. Master’s
thesis, EECS Department, University of California, Berkeley, 2005.

[83] Dag Johansen, Robbert van Renesse, and Fred B. Schneider. An introduction
to the TACOMA distributed system—version 1.0. Technical Report 95-23,
University of Tromsø, Tromsø, Norway, June 1995.

[84] Christine Julien and Gruia Catalin Roman. Egocentric context-aware program-
ming in ad hoc mobile environments. SIGSOFT Softw. Eng. Notes, 27(6):21–30,
2002.

[85] Chris Karlof, Naveen Sastry, and David Wagner. Tinysec: a link layer security
architecture for wireless sensor networks. In SenSys ’04: Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages 162–175,
New York, NY, USA, 2004. ACM.

[86] James Kempf and Pete St. Pierre. Service location protocol for enterprise net-
works: implementing and deploying a dynamic service finder. John Wiley &
Sons, Inc., New York, NY, USA, 1999.

[87] Kevin Vaughan. Wsdlinterpreter. http://tinyurl.com/67wh2w.

[88] Young-Jin Kim, Ramesh Govindan, Brad Karp, and Scott Shenker. Geographic
routing made practical. In NSDI’05: Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation, pages 217–230,
Berkeley, CA, USA, 2005. USENIX Association.

192

[89] Jeffrey King, Raja Bose, Hen-I Yang, Steven Pickles, and Abdelsalam Helal.
Atlas: A service-oriented sensor platform. In Proceedings of the first IEEE
International Workshop on Practical Issues in Building Sensor Network Appli-
cations (SenseApp 2006), pages 630–638, Washington, DC, USA, 2006. IEEE
Computer Society.

[90] Joel Koshy and Raju Pandey. VMSTAR: synthesizing scalable runtime environ-
ments for sensor networks. In SenSys ’05: Proceedings of the 3rd international
conference on Embedded networked sensor systems, pages 243–254, New York,
NY, USA, 2005. ACM.

[91] Mark D. Krasniewski, Rajesh Krishna Panta, Saurabh Bagchi, Chin-Lung Yang,
and William J. Chappell. Energy-efficient on-demand reprogramming of large-
scale sensor networks. ACM Trans. Sen. Netw., 4(1):1–38, 2008.

[92] Ilango Kumaran and S. Ilango Kumaran. Jini Technology: An Overview. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[93] Manish Kushwaha, Isaac E Amundson, Xenofon Koutsoukos, Sandeep Neema,
and Janos Sztipanovits. Oasis: A programming framework for service-oriented
sensor networks. In IEEE/Create-Net COMSWARE 2007, January 2007.

[94] Danny B. Lange and Mitsuru Oshima. Seven good reasons for mobile agents.
Commun. ACM, 42(3):88–89, 1999.

[95] Doug Lea and Gianluigi Zavattaro, editors. Coordination Models and Lan-
guages, 10th International Conference, COORDINATION 2008, Oslo, Norway,
June 4-6, 2008. Proceedings, volume 5052 of Lecture Notes in Computer Sci-
ence. Springer, 2008.

[96] Philip Levis. Tinyos 2.0 overview. http://www.tinyos.net/tinyos-
2.x/doc/html/overview.html.

[97] Philip Levis. The tinyscript language. http://www.cs.berkeley.edu/˜pal/mate-
web/files/tinyscript-manual.pdf, July 2004.

[98] Philip Levis and David Culler. Maté: a tiny virtual machine for sensor networks.
In ASPLOS-X: Proceedings of the 10th international conference on Architectural
support for programming languages and operating systems, pages 85–95, New
York, NY, USA, 2002. ACM.

[99] Philip Levis, David Gay, and David Culler. Active sensor networks. In NSDI’05:
Proceedings of the 2nd conference on Symposium on Networked Systems Design
& Implementation, pages 343–356, Berkeley, CA, USA, 2005. USENIX Associ-
ation.

193

[100] Philip Levis, David Gay, and David Culler. Active sensor networks. In NSDI’05:
Proceedings of the 2nd conference on Symposium on Networked Systems Design
& Implementation, pages 343–356, Berkeley, CA, USA, 2005. USENIX Associ-
ation.

[101] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: a self-
regulating algorithm for code propagation and maintenance in wireless sensor
networks. In NSDI’04: Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation, pages 2–2, Berkeley, CA, USA,
2004. USENIX Association.

[102] Lily Li and Kerry Taylor. A framework for semantic sensor network services.
In ICSOC ’08: Proceedings of the 6th International Conference on Service-
Oriented Computing, pages 347–361, Berlin, Heidelberg, 2008. Springer-Verlag.

[103] Tsung-Hsien Lin. http://www.janet.ucla.edu/WINS/.

[104] Tsung-Hsien Lin, Henry Sanchez, William J. Kaiser, and Henry Marcy. Wireless
integrated network sensors (wins) for tactical information systems. In Proc. of
the 1998 Government Microcircuit Applications Conference, 1998.

[105] Hongzhou Liu, Tom Roeder, Kevin Walsh, Rimon Barr, and Emin Gün Sirer.
Design and implementation of a single system image operating system for ad
hoc networks. In MobiSys ’05: Proceedings of the 3rd international conference
on Mobile systems, applications, and services, pages 149–162, New York, NY,
USA, 2005. ACM.

[106] Jie Liu and Feng Zhao. Towards semantic services for sensor-rich information
systems. In 2nd Int. Conf. on Broadband Networks, pages 44–51, 2005.

[107] Ting Liu and Margaret Martonosi. Impala: a middleware system for managing
autonomic, parallel sensor systems. In PPoPP ’03: Proceedings of the ninth
ACM SIGPLAN symposium on Principles and practice of parallel programming,
pages 107–118, New York, NY, USA, 2003. ACM.

[108] Konrad Lorincz, David Malan, Thaddeus R. F. Fulford-Jones, Alan Nawoj,
Antony Clavel, Victor Shnayder, Geoff Mainland, Steve Moulton, and Matt
Welsh. Sensor networks for emergency response: Challenges and opportunities.
IEEE Pervasive Computing, Special Issue on Pervasive Computing for First
Response, pages 16–23, Oct-Dec 2004.

[109] Dimitrios Lymberopoulos, Bodhi Priyantha, Michel Goraczko, and Feng Zhao.
Towards energy efficient design of multi-radio platforms for wireless sensor net-
works. In IPSN’08. IEEE, April 2008.

194

[110] Dimitrios Lymberopoulos, Nissanka B. Priyantha, and Feng Zhao. mplatform:
a reconfigurable architecture and efficient data sharing mechanism for modular
sensor nodes. In IPSN ’07: Proceedings of the 6th international conference
on Information processing in sensor networks, pages 128–137, New York, NY,
USA, 2007. ACM.

[111] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.
Tag: a tiny aggregation service for ad-hoc sensor networks. SIGOPS Oper.
Syst. Rev., 36(SI):131–146, 2002.

[112] Pattie Maes, Robert H. Guttman, and Alexandros G. Moukas. Agents that buy
and sell. Commun. ACM, 42(3):81–ff., 1999.

[113] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John
Anderson. Wireless sensor networks for habitat monitoring. In Proc. of the
1st ACM Workshop on Wireless Sensor Networks and Applications, September
2002.

[114] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The flooding
time synchronization protocol. In SenSys ’04: Proceedings of the 2nd inter-
national conference on Embedded networked sensor systems, pages 39–49, New
York, NY, USA, 2004. ACM.

[115] Pedro José Marrón, Matthias Gauger, Andreas Lachenmann, Daniel Minder,
Olga Saukh, and Kurt Rothermel. Flexcup: A flexible and efficient code update
mechanism for sensor networks. In Römer et al. [154], pages 212–227.

[116] Pedro José Marrón, Daniel Minder, Andreas Lachenmann, and Kurt Rother-
mel. TinyCubus: An adaptive cross-layer framework for sensor networks. it -
Information Technology, 47(2):87–97, 2005.

[117] David Marsh, Donal O’Kane, and G. M. P. O’Hare. Agents for wireless sensor
network power management. In ICPPW ’05: Proceedings of the 2005 Interna-
tional Conference on Parallel Processing Workshops, pages 413–418, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[118] Manuel Mazzara and Sergio Govoni. A case study of web services orchestration.
In Jacquet and Picco [80], pages 1–16.

[119] Elena Meshkova, Janne Riihijarvi, Frank Oldewurtel, Christine Jardak, and
Petri Mahonen. Service-oriented design methodology for wireless sensor net-
works: A view through case studies. Sensor Networks, Ubiquitous, and Trust-
worthy Computing, International Conference on, 0:146–153, 2008.

[120] Leonardo Gaetano Mezzina. How to infer finite session types in a calculus of
services and sessions. In Lea and Zavattaro [95], pages 216–231.

195

[121] Microsoft. Windows communication foundation. http://msdn2.microsoft.

com/en-us/library/ms735119.aspx.

[122] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-
cesses, i. Inf. Comput., 100(1):1–40, 1992.

[123] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-
cesses, ii. Inf. Comput., 100(1):41–77, 1992.

[124] David Moss and Philip Levis. BoX-MACs: Exploiting physical and link layer
boundaries in low-power networking. Technical Report SING-08-00, Rincon
Resarch Corporation and Stanford University, 2008.

[125] René Müller, Gustavo Alonso, and Donald Kossmann. A virtual machine for
sensor networks. SIGOPS Oper. Syst. Rev., 41(3):145–158, 2007.

[126] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. Lime: A coor-
dination model and middleware supporting mobility of hosts and agents. ACM
Trans. Softw. Eng. Methodol., 15(3):279–328, 2006.

[127] Amy L. Murphy and Jan Vitek, editors. Coordination Models and Languages,
9th International Conference, COORDINATION 2007, Paphos, Cyprus, June
6-8, 2007, Proceedings, volume 4467 of Lecture Notes in Computer Science.
Springer, 2007.

[128] Rohan Murty, Abhimanyu Gosain, Matthew Tierney, Andrew Brody, Amal
Fahad, Josh Bers, and Matt Welsh. Citysense: A vision for an urban-scale
wireless networking testbed. Technical Report 13-07, Harvard University, 2007.

[129] George C. Necula. Proof-carrying code. In POPL ’97: Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 106–119, New York, NY, USA, 1997. ACM.

[130] Yang Ni, Ulrich Kremer, Adrian Stere, and Liviu Iftode. Programming ad-
hoc networks of mobile and resource-constrained devices. SIGPLAN Not.,
40(6):249–260, 2005.

[131] Mart́ın López Nores, Jorge Garćıa Duque, and José J. Pazos Arias. Managing
ad-hoc networks through the formal specification of service requirements. In
Ciancarini and Wiklicky [36], pages 164–178.

[132] Angel Núñez and Jacques Noyé. An event-based coordination model for context-
aware applications. In Lea and Zavattaro [95], pages 232–248.

[133] Object Management Group. Corba basics. http://www.omg.org/

gettingstarted/corbafaq.htm.

196

[134] OSGi. Open source gateway initiative. http://www.osgi.org.

[135] OSGi Allance. Open service gateway initiative. http://www.osgi.org.

[136] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Ley-
mann. Service-oriented computing: State of the art and research challenges.
Computer, 40(11):38–45, 2007.

[137] Mike P. Papazoglou. Service -oriented computing: Concepts, characteristics and
directions. Web Information Systems Engineering, International Conference on,
0:3, 2003.

[138] Animesh Pathak and Viktor K. Prasanna. Energy-efficient task mapping for
data-driven sensor network macroprogramming. In DCOSS ’08: Proceedings
of the 4th IEEE international conference on Distributed Computing in Sensor
Systems, pages 516–524, Berlin, Heidelberg, 2008. Springer-Verlag.

[139] P.E.Clements, Todd Papaioannou, and John Edwards. Aglets: Enabling the
virtual enterprise. In Proc. of the Int. Conf. on Managing Enterprises - Stake-
holders, Engineering, Logistics and Achievement, 1997.

[140] H. Peine and T. Stolpmann. The architecture of the Ara platform for mobile
agents. In Radu Popescu-Zeletin and Kurt Rothermel, editors, First Interna-
tional Workshop on Mobile Agents MA’97, volume 1219 of Lecture Notes in
Computer Science, pages 50–61, Berlin, Germany, April 1997. Springer Verlag.

[141] Adrian Perrig, John Stankovic, and David Wagner. Security in wireless sensor
networks. Commun. ACM, 47(6):53–57, 2004.

[142] Gian Pietro Picco. ucode: A lightweight and flexible mobile code toolkit. In
Kurt Rothermel and Fritz Hohl, editors, Proceedings of the 2nd International
Workshop on Mobile Agents, Lecture Notes in Computer Science, pages 160–
171, Berlin, Germany, 1998. Springer-Verlag.

[143] Eric Platon and Yuichi Sei. Security engineering in wireless sensor networks.
Progress in Informatics, 5(3):49–64, 2008.

[144] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: enabling ultra-
low power wireless research. In IPSN ’05: Proceedings of the 4th international
symposium on Information processing in sensor networks, page 48, Piscataway,
NJ, USA, 2005. IEEE Press.

[145] Lucia Del Prete and Licia Capra. Reliable discovery and selection of composite
services in mobile environments. In EDOC ’08: Proceedings of the 2008 12th
International IEEE Enterprise Distributed Object Computing Conference, pages
171–180, Washington, DC, USA, 2008. IEEE Computer Society.

197

[146] Jaco M. Prinsloo, Christian L. Schulz, Derrick G. Kourie, W. H. Morkel The-
unissen, Tinus Strauss, Roelf Van Den Heever, and Sybrand Grobbelaar. A
service oriented architecture for wireless sensor and actor network applications.
In SAICSIT ’06: Proceedings of the 2006 annual research conference of the
South African institute of computer scientists and information technologists on
IT research in developing countries, pages 145–154, , Republic of South Africa,
2006. South African Institute for Computer Scientists and Information Tech-
nologists.

[147] Nissanka B. Priyantha, Aman Kansal, Michel Goraczko, and Feng Zhao. Tiny
web services: design and implementation of interoperable and evolvable sensor
networks. In SenSys ’08: Proceedings of the 6th ACM conference on Embedded
network sensor systems, pages 253–266, New York, NY, USA, 2008. ACM.

[148] Hairong Qi, S. S. Iyengar, and Krishnendu Chakrabarty. Multiresolution data
integration using mobile agents in distributed sensor networks. IEEE Trans. on
Systems, Man, and Cybernetics – Part C, 31(3):383–391, August 2001.

[149] Hairong Qi, Xiaoling Wang, S. Sitharama Iyengar, and Krishnendu
Chakrabarty. Multisensor data fusion in distributed sensor networks using mo-
bile agents. In In Proceedings of 5th International Conference on Information
Fusion, pages 11–16, August 2001.

[150] Hairong Qi, Yingyue Xu, and Xiaoling Wang. Mobile-agent-based collaborative
signal and information processing in sensor networks. In Proc. of the IEEE,
volume 91, pages 1172–1183. IEEE, August 2003.

[151] Niels Reijers and Koen Langendoen. Efficient code distribution in wireless
sensor networks. In WSNA ’03: Proceedings of the 2nd ACM international
conference on Wireless sensor networks and applications, pages 60–67, New
York, NY, USA, 2003. ACM.

[152] Gruia-Catalin Roman, Qingfeng Huang, and Ali Hazemi. Consistent group
membership in ad hoc networks. In ICSE ’01: Proceedings of the 23rd Interna-
tional Conference on Software Engineering, pages 381–388, Washington, DC,
USA, 2001. IEEE Computer Society.

[153] Gruia-Catalin Roman, Peter J. McCann, and Jerome Y. Plun. Mobile UNITY:
reasoning and specification in mobile computing. ACM Transactions on Soft-
ware Engineering and Methodology, 6(3):250–282, 1997.

[154] Kay Römer, Holger Karl, and Friedemann Mattern, editors. Wireless Sen-
sor Networks, Third European Workshop, EWSN 2006, Zurich, Switzerland,
February 13-15, 2006, Proceedings, volume 3868 of Lecture Notes in Computer
Science. Springer, 2006.

198

[155] Masoomeh Rudafshani and Suprakash Datta. Localization in wireless sensor
networks. In IPSN ’07: Proceedings of the 6th international conference on
Information processing in sensor networks, pages 51–60, New York, NY, USA,
2007. ACM.

[156] Silvia Santini and Kay Rmer. An adaptive strategy for quality-based data
reduction in wireless sensor networks. In Proceedings of the 3rd International
Conference on Networked Sensing Systems (INSS 2006), pages 29–36, Chicago,
IL, USA, June 2006. TRF.

[157] Andreas Scholz, Christian Buckl, Stephan Sommer, Alfons Kemper, Alois Knoll,
Jrg Heuer, and Anton Schmitt. esoa - service oriented architectures adapted for
embedded networks. In IDIN 2009: 7th International Conference on Industrial
Informatics, pages 599–605, Los Alamitos, CA, USA, June 2009. IEEE.

[158] Scott Hudson. CUP LALR Parser Generator for Java. http://www2.cs.tum.

edu/projects/cup/.

[159] B. Sklar. Rayleigh fading channels in mobile digital communication systems .i.
characterization. Communications Magazine, IEEE, 35(7):90–100, 1997.

[160] Stephan Sommer, Christian Buckl, and Alois Knoll. Developing service oriented
sensor/actuator networks using a tailored middleware. Information Technology:
New Generations, Third International Conference on, 0:1036–1041, 2009.

[161] SourceForge. http://platformx.sourceforge.net/.

[162] William Stallings. Operating Systems 4th Ed. Pretence Hall, New Jersey, 4
edition, 2001.

[163] Thanos Stathopoulos, John Heidemann, and Deborah Estrin. A remote code
update mechanism for wireless sensor networks. Technical Report CENS-TR-
30, UCLA CENS, 2003.

[164] Radu Stoleru, Tian He, John A. Stankovic, and David Luebke. A high-accuracy,
low-cost localization system for wireless sensor networks. In SenSys ’05: Pro-
ceedings of the 3rd international conference on Embedded networked sensor sys-
tems, pages 13–26, New York, NY, USA, 2005. ACM.

[165] Streeline. Parking management. http://www.streetlinenetworks.com.

[166] Lang Tong, Qing Zhao, and Srihari Adireddy. Sensor networks with mobile
agents. In in Proc. 2003 Military Communications Intl Symp, pages 688–693,
2003.

199

[167] Yu-Chee Tseng, Sheng-Po Kuo, Hung-Wei Lee, and Chi-Fu Huang. Location
Tracking in a Wireless Sensor Network by Mobile Agents and Its Data Fusion
Strategies. The Computer Journal, 47(4):448–460, 2004.

[168] Yu-Chee Tseng, Sheng-Po Kuo, Wung-Wei Lee, and Chi-Fu Huang. Location
tracking in a wireless sensor network by mobile agents and its data fusion strate-
gies. The Computer Journal, 47(4):448–460, 2004.

[169] Richard Tynan, Antonio G. Ruzzelli, and O’Hare G. M. P. A methodology for
the development of multi-agent systems on wireless sensor networks. In Proc.
the 17th International Conference on Software Engineering and Knowledge En-
gineering, July 2005.

[170] Tyndall National Institute. The 25mm cube module.
http://www.tyndall.ie/research/mai-group/25cube mai.html, September
2005.

[171] W3C. Web services description language (wsdl). http://www.w3.org/TR/wsdl.

[172] W3C Architecture Domain. Xml schema. http://www.w3.org/XML/Schema.

[173] Chieh-Yih Wan, Andrew T. Campbell, and Lakshman Krishnamurthy. PSFQ:
a reliable transport protocol for wireless sensor networks. In WSNA ’02: Pro-
ceedings of the 1st ACM international workshop on Wireless sensor networks
and applications, pages 1–11, New York, NY, USA, 2002. ACM.

[174] Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer S. J. Pister. Smart
dust: Communicating with a cubic-millimeter computer. Computer, 34(1):44–
51, 2001.

[175] Washington University in St. Louis. WSN testbed. http://tinyurl.com/

yjuctmb.

[176] Matt Welsh and Geoff Mainland. Programming sensor networks using abstract
regions. In NSDI’04: Proceedings of the 1st conference on Symposium on Net-
worked Systems Design and Implementation, pages 3–3, Berkeley, CA, USA,
2004. USENIX Association.

[177] Matt Welsh and Geoff Mainland. Programming sensor networks using abstract
regions. In NSDI’04: Proceedings of the 1st conference on Symposium on Net-
worked Systems Design and Implementation, pages 3–3, Berkeley, CA, USA,
2004. USENIX Association.

[178] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. Hood: a
neighborhood abstraction for sensor networks. In MobiSys ’04: Proceedings of
the 2nd international conference on Mobile systems, applications, and services,
pages 99–110, New York, NY, USA, 2004. ACM.

200

[179] Winamp. http://www.winamp.com/.

[180] Alec Woo, Terence Tong, and David Culler. Taming the underlying challenges
of reliable multihop routing in sensor networks. In SenSys ’03: Proceedings of
the 1st international conference on Embedded networked sensor systems, pages
14–27, New York, NY, USA, 2003. ACM.

[181] Michael Wooldridge and Nick Jennings. Intelligent agents: Theory and practice.
IEEE Trans. on Knowledge Engineering Review, 10(2):115–152, 1995.

[182] Qishi Wu, Nageswara Rao, Jacob Barhen, S. Sitharama Iyengar, Vijay Vaish-
navi, Hairong Qi, and Krishnendu Chakrabarty. On computing mobile agent
routes for data fusion in distributed sensor networks. IEEE Trans. on Knowl-
edge and Data Engineering, 6(16):740–753, June 2004.

[183] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan, Alan
Broad, Ramesh Govindan, and Deborah Estrin. A wireless sensor network for
structural monitoring. In Proc. of the 2nd Int. Conf. on Embedded Networked
Sensor Systems (SenSys ’04), pages 13–24. ACM Press, 2004.

[184] Yong Yao and Johannes Gehrke. The cougar approach to in-network query
processing in sensor networks. SIGMOD Rec., 31(3):9–18, 2002.

[185] Yang Yu, Loren J. Rittle, Vartika Bhandari, and Jason B. LeBrun. Supporting
concurrent applications in wireless sensor networks. In SenSys ’06: Proceed-
ings of the 4th international conference on Embedded networked sensor systems,
pages 139–152, New York, NY, USA, 2006. ACM.

[186] Jerry Zhao and Ramesh Govindan. Understanding packet delivery performance
in dense wireless sensor networks. In SenSys ’03: Proceedings of the 1st inter-
national conference on Embedded networked sensor systems, pages 1–13, New
York, NY, USA, 2003. ACM.

201

Vita

Chien-Liang Fok

Date of Birth March 16, 1980

Place of Birth New York, New York

Degrees B.S. Magna Cum Laude, Computer Science and Engineering,

May 2002

Ph.D. Computer Science, December 2009

Publications Fok, C., Roman, G., and Lu, C. Agilla: A Mobile Agent Mid-

dleware for Self-Adaptive Wireless Sensor Networks. In ACM

Trans. Auton. Adapt. Syst. Special Issue on Self-Adaptive

and Self-Organizing Wireless Networking Systems. 4, 3 (Jul.

2009), 1-26.

Bhattacharya, S., Fok, C., Lu, C., and Roman, G. MLDS:

A Flexible Location Directory Service for Tiered Sensor Net-

works. In Computer Communications. 31, 6 (Apr. 2008),

1160-1172.

Fok, C.-L., Roman, G.-C., and Lu, C. Enhanced Coordination

in Sensor Networks through Flexible Service Provisioning. In

Proceedings of the 11th International Conference on Coordi-

nation Models and Languages (Coordination09), June 2009.

Note: Invited to a special issue of Science of Computer Pro-

gramming on the Best Papers from Coordination’09.

Bhattacharya, S., Fok, C.-L., Lu, C., and Roman, G.-C. De-

sign and Implementation of a Flexible Location Directory Ser-

vice for Tiered Sensor Networks. In Proceedings of the 3rd In-

ternational Conference on Distributed Computing in Sensor

Systems (DCOSS’07), June 2007.

202

Hackmann, G., Fok, C.-L., Roman, G.-C., and Lu, C. Agi-

mone: Middleware Support for Seamless Integration of Sen-

sor and IP Networks. In Proceedings of the Second Interna-

tional Conference on Distributed Computing in Sensor Sys-

tems (DCOSS’06), June 2006.

Massaguer, D., Fok, C.-L., Venkatasubramanian, N., Roman,

G.-C., and Lu. Exploring Sensor Networks using Mobile

Agents. In Proceedings of the Fifth International Joint Con-

ference on Autonomous Agents and Multiagent Systems (AA-

MAS06), May 2006.

Fok, C.-L., Roman, G.-C., and Lu, C. Mobile Agent Middle-

ware for Sensor Networks: An Application Case Study. In Pro-

ceedings of the 4th international Symposium on Information

Processing in Sensor Networks (IPSN05), April 2005. Google

Citation count: 116, Acceptance Ratio: 20.6

Fok, C.-L., Roman, G.-C., and Lu, C. Rapid Development and

Flexible Deployment of Adaptive Wireless Sensor Network

Applications. In Proceedings of the 25th IEEE international

Conference on Distributed Computing Systems (ICDCS05),

June 2005. Note: One of 5 papers nominated for Best Paper

Award (543 papers submitted). Google Citation Count: 191,

Acceptance Ratio: 13.8

Lu, C., Xing, G., Chipara, O., Fok, C.-L., and Bhattacharya,

S. A Spatiotemporal Query Service for Mobile Users in Sen-

sor Networks. In Proceedings of the 25th IEEE international

Conference on Distributed Computing Systems (ICDCS05),

June 2005.

E.H. Clayton, B.H. Koh, G. Xing, C.-L. Fok, S.J. Dyke and

C. Lu. Damage Detection and Correlation Based Localiza-

tion Using Wireless Mote Sensors. In Proceedings of the 13th

IEEE Mediterranean Conference on Control and Automation

(MED05), June 2005.

203

Fok, C.-L., Roman, G.-C, and Hackmann, G., A Lightweight

Coordination Middleware for Mobile Computing. In Proceed-

ings of the 6th International Conference on Coordination

Models and Languages (Coordination04), February 2004.

Fok, C.-L., Roman, G.-C., Lu, C. 2006. Software Support

for Application Development in Wireless Sensor Network. A.

Corradi and P. Bellavista (editors), Handbook of Mobile Mid-

dleware, CRC Press, September 2006.

Fok, C., Roman, G., and Lu, C. 2007. Towards a Flexible

Global Sensing Infrastructure. In SIGBED Rev. 4, 3 (Jul.

2007), 1-6.

December 2009

204

Towards Adaptive Ad Hoc Networks, Fok, Ph.D. 2009

	Washington University in St. Louis
	Washington University Open Scholarship
	January 2009

	Adaptive Middleware for Resource-Constrained Mobile Ad Hoc and Wireless Sensor Networks
	Chien-Liang Fok
	Recommended Citation

	tmp.1328375329.pdf.rimtF

