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Abstract

Machine Learning (ML) is widely used in solving optimization problems
nowadays. However, applying standard-compatible ML techniques to tele-
com network optimization is still in its exploratory phase. This dissertation
aims to address network flow (traffic) optimization problems in a telecom-
munication network, leveraging Reinforcement Learning (RL) as an ML tech-
nique to extract knowledge from observations within the network and ap-
proximate optimal solutions.

Optimal solutions in a telecommunication network involve achieving spe-
cific objectives while efficiently utilizing network resources. This dissertation
proposes a feasible RL paradigm with efficient algorithms to optimize data
flows in telecommunication networks in near real-time. Specifically, the first
research work focuses on optimizing the uplink transmission under a 5G
network, and the objectives of the optimization are minimizing the age of
information (AoI) and maximizing network throughput. The trade-off be-
tween AoI minimization and network throughput maximization is formu-
lated and solved using the proposed RL paradigm, employing the Proximal
Policy Optimization (PPO) algorithm. Furthermore, the second research ad-
dresses the joint periodic and burst traffic scheduling problem and proposes
an RL paradigm that outperforms classical methods without prior knowl-
edge of arriving traffic. The results demonstrate a tangible solution to deal
with the joint network traffic and obtain robust uplink scheduling policies.

Additionally, this dissertation explores applying RL in online network
slice provisioning (ONSP) optimization. The ONSP optimization can be for-
mulated as a Multi-Objective Integer Programming problem and solved by
predicting the incoming traffic demand under an RL framework. The re-
search result contributes to optimizing end-to-end NSP in a telecommuni-
cation network. The efficiency of the RL approach was shown via numer-
ical simulations. Moreover, we evaluate the performance gain by the com-
putational complexity and the competitive ratio. Finally, this dissertation
presents the optimal solution and concludes an RL-augmented framework
with a standard-compatible design for the network’s control and user planes.
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Resumé

Machine Learning (ML) er meget brugt til at løse optimeringsproblemer i
dag. Anvendelsen af standardkompatible ML-teknikker til optimering af
telekommunikationsnetværk er dog stadig i sin udforskningsfase. Denne
afhandling har til formål at adressere netværksflow (trafik) optimeringsprob-
lemer i et telekommunikationsnetværk ved at udnytte Reinforcement Learn-
ing (RL) som en ML-teknik til at udtrække viden fra observationer inden for
netværket og tilnærme optimale løsninger.

Optimale løsninger i et telekommunikationsnetværk involverer opnåelse
af specifikke mål, samtidig med at netværksressourcer udnyttes effektivt.
Denne afhandling foreslår et gennemførligt RL-paradigme med effektive al-
goritmer til at optimere datastrømme i telekommunikationsnetværk i næsten
realtid. Specifikt fokuserer det første forskningsarbejde på at minimere infor-
mationsalderen (AoI) og maksimere netværksgennemstrømningen i et fjern-
styringsmiljø over et 5G-netværk. Afvejningen mellem AoI-minimering og
netværksgennemstrømningsmaksimering er formuleret og løst ved hjælp af
det foreslåede RL-paradigme, ved at anvende algoritmen Proximal Policy Op-
timization (PPO). Ydermere adresserer det andet forskningsarbejde det fælles
periodiske og burst-trafikplanlægningsproblem og foreslår et RL-paradigme,
der udkonkurrerer klassiske metoder uden forudgående kendskab til ank-
ommende trafik. Resultaterne viser den håndgribelige optimering af ra-
dioadgangsnetværk i telekommunikation ved hjælp af RL med robusthed.

Derudover udforsker denne afhandling anvendelsen af RL i Online Net-
work Slice Provisioning (ONSP) optimering. ONSP-optimeringen er et prob-
lem med Multi-Objective Integer Programming, og det kan løses ved at forud-
sige den indkommende trafikefterspørgsel under en RL-ramme. Forskn-
ingsresultatet bidrager til at optimere end-to-end NSP i et telekommunika-
tionsnetværk. Vi bruger numeriske simuleringer til at verificere effektiviteten
af RL-tilgangen. Desuden evaluerer vi præstationsgevinsten ud fra den bereg-
ningsmæssige kompleksitet og konkurrenceforholdet. Til sidst præsenterer
denne afhandling den optimale løsning og afslutter et RL-augmented frame-
work med et standardkompatibelt design for netværkets kontrol- og bruger-
plan.
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Chapter 1

Introduction

This chapter has four distinct sections. The first section discusses the char-
acteristics and challenges of network flow optimization in detail. The sub-
sequent section presents a brief introduction of the potential benefits and
opportunities associated with using a learning-based approach for flow opti-
mization in next-generation telecommunication networks. The third section
presents the research objectives and methodologies used in this PhD research.
At last, the fourth section summarizes the contributions of the doctoral re-
search and outlines the structure of the dissertation.

1 Network Flows Optimization

Telecommunication networks serve an essential role in contemporary soci-
ety. The significance of telecommunication networks is contingent upon en-
hancing network hardware and software functionality. Network software
functions’ improvement supports the core competency of telecommunication
networks, enabling them to operate with increased speed, reduced power
consumption, and boosted reliability. Such improvements facilitate the evo-
lution of telecommunication networks from existing generations (e.g., 5G and
6G) to next-generation and future networks. A telecommunication network
flow refers to the transmission of data or information between network nodes
via interconnecting links. The departure node is called the sender, while the
destination node is called the receiver. A network flow can be further classi-
fied into different types according to some specific properties. For example,
the network flow can be unidirectional or bidirectional between the sender
and receiver, depending on the nature of the transmission.

The next-generation networks include many types of network flows. Those
divergent network flows often derive complex Quality of Service (QoS) re-
quirements (for example, delay and packet loss). In particular, the networks’
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Chapter 1. Introduction

operational complexity is high if the network operators consider maintaining
an end-to-end QoS guarantee within all routing links betweem the sender
and the receiver. The IEEE 802.1Q Standard [3] and ITU-T Standard [1] de-
fined eight types of network flow to simplify the operation and preserve the
high-speed, low-cost characteristics within the network. This PhD research
further categorizes the eight network types into four fundamental classes:
Non-Sensitive, Loss-Sensitive, Time-Sensitive, and Joint-Sensitive (i.e., time-
sensitive and loss-sensitive) network flows.

In the modern digital telecommunication network, one network flow can
be generated via packets transmitted with the same communication protocol
and IP addresses (and ports) from the same source and destination. There-
fore, a tuple with the five properties above can independently and identically
represent the network flow. More properties, such as QoS constraints, can
also be added to the tuple representation for a specific flow classification at
the application level. Network flow optimization involves the management
and control of different types of flow to improve network performance, min-
imize congestion, and ensure efficient resource utilization. The optimization
research in this dissertation covers three primary tasks: bandwidth allocation,
flow routing, and flow scheduling. Based on the above definition of network
flow and optimization, this section organized the following four subsections
for advanced discussion: Non-Sensitive, Loss-Sensitive, Time-Sensitive Joint-
Sensitive. The last subsection then summarizes the optimality conditions in
different flow scenarios.

1.1 Non-Sensitive Network Flows

This type of flow has the least constraining regarding packet loss and delay.
For example, a network application of static web page browsing generates a
typical non-sensitive network flow. However, the type has less necessary to be
optimized because it is generally used for low-priority traffic or applications.
The non-sensitive network applications include email or short messages.

1.2 Loss-Sensitive Network Flows

The need for more reliable transmissions over the next-generation networks
has recently become more urgent. These flows prioritize minimizing data
loss during transmission. Applications like file transfer and banking trans-
actions require to transmit data over loss-sensitive network flows. In order
to guarantee reliability over loss-sensitive flows, protocols like Transmission
Control Protocol (TCP) use error correction or retransmission to recover the
lost packets. Those recovery methods (e.g., Hybrid Automatic Repeat re-
Quest [11]) lead to inevitable delays on top of the existing transmission de-
lays of the network flows. Hence, the effect of packet loss in network flows

4



1. Network Flows Optimization

can be transformed to its dual effect, which is the delay penalty in network
flows.

1.3 Time-Sensitive Network Flows

Time-Sensitive (or Delay-Sensitive) network flows evolved to encompass the
development of multimedia applications. These flows prioritize minimizing
latency and delay. Time-sensitive flows focus on delivering data packets as
quickly as possible, even at the cost of occasional data loss. Examples of time-
sensitive flows include video conferencing, online gaming, and virtual reality.
In order to ensure data delivery with low delay (latency), low packet loss, and
low jitter (i.e., guaranteed upper bound), standardization organizations (e.g.,
3GPP, NGMN, IEEE) agree on some advanced implementations for traffic-
aware scheduling and network resource management [8] [27] [6]. Protocols
like User Datagram Protocol (UDP), which do not include error-checking or
retransmission mechanisms, are suitable for handling time-sensitive traffic.
However, the aforementioned implementations focus only on partial network
scenarios for improved solutions, and this leaves room for optimizations.

1.4 Joint-Sensitive Network Flows

Joint-sensitive flows are sensitive to both packet loss and delay. This type
of flow focuses on providing low latency while maintaining data reliability.
These flows require timely delivery of all packets to maintain their QoS per-
formance. An important application using Joint-sensitive flows is URLLCs
(Ultra-Reliable and Low Latency Communications, i.e., a category of com-
munication with significantly stringent constraints in reliability and latency).
Applications that require real-time communication and high data reliability,
such as remote control, teleoperated vehicles, or remote surgery, typically use
Joint-sensitive flows.

Table 1.1 summarizes the sensitivity and the typical applications in differ-
ent network flow categories.

Category Latency Sensi-
tivity

Packet-Loss
Sensitivity

Typical Applications

Non-sensitive Tolerant Tolerant Email transfers
Loss-sensitive Tolerant Sensitive File transfers
Time-sensitive Sensitive Tolerant Video conferencing
Joint-sensitive Sensitive Sensitive Remote control

Table 1.1: Summary of Network Flow Categories

5



Chapter 1. Introduction

1.5 Optimality Conditions

Next-generation communication networks strive to accommodate diverse net-
work flows. However, as initially designed, the communication networks
needed to distinguish between the priority of every traffic flow. Each net-
work flow shall not be often treated identically, regardless of whether it is
critical or not. For example, although the current network standards define
nine different flow categories [7] [9], mapping a suitable number of catego-
rizations for flow transmission is still an open question. The classical com-
munication networks are ill-suited for supporting the optimal transmission
of diverse flows (i.e., transmitting the maximized amount of flows by us-
ing minimal network resources). Consequently, the need for optimality has
arisen to tackle the restrictions of prior design, and it is particularly enticing
for shaping the next-generation networks.

Age-of-information (AoI) was defined as a latency-related performance
index in [28] for evaluating time-sensitive network flows optimization results.
For example, a general link scheduling problem in 5G communications aims
to determine how many links that can simultaneously schedule to transmit
flows. Or the link scheduler should decide how many network resources
should be allocated at each link. The optimal scheduling policy usually de-
termines the policy parameters using objectives such as the minimum AoI or
maximum throughput for all the links. Moreover, applying Network Func-
tion Virtualization (NFV) [18] and Software Defined Networking (SDN) [23]
concepts to telecommunication networks can construct flexible network flows
management for optimization. For instance, network slicing leverages NFV
and SDN to transmit time-sensitive traffic and provides flexibility in network
resource allocation. Each slice reserves enough network resources to guaran-
tee the desired delay or jitter requirements. Proper slice allocation leads to a
potential opportunity to reach optimality in the network.

An additional argument can be made regarding the prediction of user be-
havior. The accurately predicted user behavior can reduce the minimal task
achievement delay (latency) to zero and progressively decrease to less than
zero. For example, in some remote control scenarios, a robot can preserve
a certain amount of network resources via prediction and avoid the waiting
time for just-in-time scheduling with no preservation. Achieving negative
delay would involve allocating sufficient network resources in advance to
circumvent waiting for resource scheduling. By accurately forecasting user
behavior, next-generation networks could further optimize resource manage-
ment, enhancing the overall performance of time-sensitive network flows.
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2. Learning-Based Optimization Approach

2 Learning-Based Optimization Approach

Numerous network optimization problems exhibit complex objective or con-
straint functions. Those functions often include intricate properties such as
high dimensionality, nonlinearity, discontinuity, undifferentiability, convex-
ity, and multimodality. Consequently, traditional optimization techniques
like gradient descent, dynamic programming, or linear programming face
significant challenges when addressing these complex properties and solving
the problems. For example, optimization algorithms that rely on gradient in-
formation as inputs may struggle with non-differentiable objective functions.
As a result, these conventional optimization methods often fail to deliver
optimal solutions for complex optimization problems [15].

To tackle such complex problems, researchers have proposed some learning-
based optimization algorithms [24]. One category includes heuristic opti-
mization techniques like the Social-spider optimization algorithm [14], ant
colony optimization algorithm [16], Krill herd algorithm [17], genetic algo-
rithm [20], artificial bee colony algorithm [21], particle swarm optimization
algorithm [22], and Greywolf optimization algorithm [26]. But these algo-
rithms require experts to transform the physical network operation into a
mathematical model and fulfill the formulation of algorithms.

Besides, machine learning (ML) methods are popular in reducing the in-
herent complexity of network optimization problems. These ML approaches
can make predictions about incoming network flows based on historical net-
work traffic data [13]. For instance, reinforcement learning (RL), particularly
deep reinforcement learning (DRL), has garnered significant interest due to
its efficiency and robustness. However, some existing RL approaches consider
only under an individual base station and are ill-suited to network-wide man-
agement. A feasible RL approach should be embedded in telecommunication
networks as Fig. 1.1 and fit its legacy architecture or future evaluation.

3 Research Objectives and Methology

Several international standard bodies have established latency and reliability
requirements for next-generation communication services [5] [2] [4]. These
stringent requirements make the next-generation mobile networks totally dif-
ferent from the former generation. Furthermore, Ultra-Reliable Low-Latency
Communication (URLLC) services have been perceived as the catalyst for
mission-critical use cases, including industrial automation, tele-operated con-
trol, and consumer-oriented services such as virtual reality/augmented real-
ity (VR/AR) gaming. Consequently, these evolving requirements prompt
new research questions and challenges, a warranting investigation into di-
verse solutions tailored to various scenarios.
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Fig. 1.1: An Example of Feasible RL-embedded Network Model

The PhD research objectives are explained in the following four paragraphs.

Objective 1: Investigate URLLC network flows in mobile networks The
first research objective aims to devise a viable data model for URLLC traffic
within mobile networks, which additionally functions as a surrogate model
for forthcoming networks beyond the 6G. Owing to privacy and deployment
concerns, obtaining URLLC traffic from actual networks poses significant
challenges. Therefore, a network simulation platform (e.g. NS3 [19]) is used
to construct flows and evaluate network performance.

Objective 2: Exploit the correlations in network traffic The second re-
search objective investigates recurrent flow properties across diverse applica-
tions and network scenarios. In addition, the properties exhibit correspond-
ing data and metadata flows between UEs and the network. The investigation
lies in optimising control-plane procedures, such as radio resource manage-
ment, connection establishment, and mobility management. Subsequently,
the investigation is to devise methodologies for detecting and estimating pat-
terns in the transmission of network traffic.

Objective 3: Design ML frameworks to optimize URLLC network traffic
This objective focuses on the development and implementation of machine
learning (ML) frameworks that can be incorporated into existing and future
networks, to enhance the efficiency of URLLC network flows. The optimiza-
tion targets various aspects, including signaling, power consumption, latency
reduction, and reliability enhancement.
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Objective 4: Evaluate the improvement of URLLC traffic flows The goal
is to evaluate the advantages of the developed ML models in improving the
URLLC network flows, particularly by reducing the transmission cost such
as time and energy consumption. This evaluation process aims to demon-
strate the practical benefits of implementing ML in modern communication
systems.

Upon elucidating the PhD research objectives, the research methods em-
ployed in this doctoral study are summarized as follows:
This PhD investigation employs learning-based approaches to address the
stochastic network environment, stemming from the dynamic and intricate
nature in a practical mobile network. Traditional learn-based methods, how-
ever, prove to be ill-suited for mobile networks due to their considerable com-
putational requirements, substantial memory consumption, and performance
limitations. Consequently, the research methods adopted in this PhD study
jointly consider optimization and learning technologies, diverging from prior
art research.

The methods explore temporal and spatial correlations among flows within
the mobile network. These correlations are utilized to optimize the latency
and reliability of flows across the mobile network. To ensure the deployed
ML methods reach a convergent state, a necessary procedure for the imple-
mentation conducted in this dissertation, it is crucial to ascertain that: (i)
observations of network environments, such as received signal power, traffic
load, and users’ mobility intentions, are obtained to facilitate the appropriate
training of the ML algorithm, and (ii) the number of network nodes remains
bounded.

The employed methods predominantly rely on network simulations for
system modeling and, potentially, on statistical data analysis. The support-
ing network simulation is divided into an ML module and a network module.
The network module is either adapted from an open-source project, such as
NS-3, or individually implemented by the author based on standard docu-
ments. Conversely, the ML module is implemented by the author by extend-
ing from the open-source ML library such as OpenAI Gym, PySyft, Pytorch,
or Tensorflow [12] [25] [10]. The network and ML modules aim to execute on
a virtual (or physical) computing platform with storage resources.

4 Dissertation Contribution

This PhD research developed models of network flows and techniques for
optimizing network flow transmission. The optimization techniques include
an optimization solver and a standard-compatible ML module for the existing
mobile networks.

9
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This dissertation concludes this PhD research and organizes the main con-
tributions in the following four perspectives: (1) investigating user behavior
for the user-plane network flows’ construction and control-plane signaling in
mobile networks, (2) simulating network flows based on the user behavior
statistics models in mobile networks, (3) integrating the Machine Learning
(ML) framework and optimization algorithms with a network simulator, and
(4) optimizing the network resource management policy for network flows
using the ML framework and optimization algorithm.

In the first perspective, this PhD research investigated user behaviors and
derived the dynamic nature of those behaviors with a statistical model. The
user-plane network flows in relation to user behavior models, such as the
Poisson Pareto Burst Process model under a base station and a large-scale
model under a nationwide mobile network, had been implemented for the
network flow simulation in this PhD study. In particular, the large-scale
model implementation demonstrates that ten percent of the users generate
sixty percent of network traffic (i.e., within one standard deviation of the
mean in a standard normal distribution). In addition, the control-plane sig-
naling, such as network slice requests, had also been simulated to model the
network traffic generation.

Regarding the second perspective, this PhD research includes a survey
of cutting-edge ML techniques and results in an implementation of an RL
module that can be embedded in existing and future mobile networks. The
main achievement in this perspective is extending a network simulator with
RL capabilities and establishing the Proximal Policy Optimization.

For the third perspective, an RL paradigm was constructed for network
traffic optimization without additional data collection signaling. This RL
paradigm is integrated with a software implementation of an optimization
solver. The paradigm also focuses on the combination of training, testing,
and deployment in a telecommunication network.

Finally, in the fourth perspective, the PhD research investigated RAN-
scale optimization regarding AoI minimization and throughput maximiza-
tion (Paper A and Paper B). Next, this PhD research studied end-to-end
optimization for network slicing provisioning (Paper C and Paper D). The
optimal provisioning has the efficiency of network flows in terms of the en-
hancements in network operation cost, SLA violation rate, and computation
time. The two scenarios are investigated with statistical flow models and
entail a deep RL module using the existing protocol signaling without ex-
tra message overheads. Both investigations also concluded that the network
flow optimization using deep RL module has no closed-form representation.
Hence, the evaluation was verified by numerical simulations and compar-
isons of competitive ratio and time complexity analysis.
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5 Dissertation Outline

This dissertation consists of two parts. The first part presents the introduc-
tory chapters. This chapter provides an overview of the dissertation, includ-
ing the backgrounds, objectives, methodologies, contributions, and outlines
of the PhD research. The other two chapters of the first part are listed below.

Chapter 2 summarizes the prior arts and provides a detailed survey for the
joint research between Machine Learning, Optimation, and Telecommunica-
tion Networks. The first session contains the analysis of telecommunication
networks. This analysis studied and compared network flow characteris-
tics in the latency and packet-loss aspects. The second session discusses the
primary optimization methods that can be used to solve network flow opti-
mization problems for transmission efficiency. The last session covers the ML
techniques to enable the learning-based optimization approach in telecom-
munication networks. This session demonstrates a feasible Reinforcement
Learning (RL) embedding in existing and potentially novel telecommunica-
tion networks (e.g., 5G and 6G).

Chapter 3 concludes the first part with a detailed discussion and future works
in network flow optimizations using RL.

The second part of the dissertation is a collection of the public publications
and organized as follows. The part plans to present the case study using RL
approaches in the network flows optimization. Various scenarios with appli-
cations to support this PhD research are presented in the following papers:

Paper A In this research [31], the Age of Information (AoI) was defined the
time passed from generating a packet by an user equipment (UE) to its recep-
tion by a base station under the 5G networks. This metric is crucial for eval-
uating the temporal information in modern wireless networks, particularly
for time-sensitive applications. This work proposes a reinforcement learning
(RL) method to implement an AoI-aware radio resource scheduler for UEs.
The AoI-aware radio resource scheduler was designed for a remote control
environment wherein multiple UEs transmit latency-sensitive measurements
to a remote controller. The AoI in the overall transmission should be mini-
mized. It can be formulated as a trade-off between maximizing the network
throughput and minimizing the average AoI for all UEs. Motivated by the
success of RL in addressing significant network optimization problems with
low complexity, an RL-based method was developed to tackle the formulated
problem. We also compare the performance of state-of-the-art scheduling
algorithms with our solution. Simulation results demonstrate that the RL-
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based method outperforms the state-of-the-art in minimizing the expected
AoI while maintaining network throughput. This simulation highlights the
potential of RL-based methods for AoI-aware radio resource scheduling in
5G networks, paving the way for more efficient and timely information de-
livery in time-critical applications.

Paper B The rapid proliferation of time-sensitive wireless applications leads
to optimizing network radio scheduling algorithms. In this study [32], a
scheduling problem for joint periodic and burst traffic transmission within
a 5G network was considered, designing a reinforcement learning method
to optimize the age of information and network throughput. The periodic
traffic flow is generated at a fixed frequency, while the Poisson Pareto Burst
Process governs the generation of burst traffic flow. We initially formulated
the scheduling problem as a non-linear integer programming problem. Sub-
sequently, we implementated a reinforcement learning framework using the
Proximal Policy Optimization algorithm. At last, the numerical simulation
indicates that the proposed reinforcement learning algorithm outperforms
traditional solutions, even without an input of the arriving traffic. This find-
ing underscores the potential of reinforcement learning in optimizing the age
of information and throughput in 5G networks, enabling more effective radio
scheduling for time-sensitive applications.

Paper C Network Slicing (NS) plays a vital role in efficiently facilitating di-
verse network applications in next-generation networks. However, the intri-
cate Quality of Service (QoS) requirements and the heterogeneous nature of
network services cause high complexity in Network Slice Provisioning (NSP)
optimization. Traditional optimization methods struggle to address various
low-latency and high-reliability requirements stemming from network appli-
cations. Therefore, an Online Network Slice Provisioning (ONSP) scenario
was devised to enable NSP in a real-time manner [30]. Specifically, the ONSP
problem was modeled as a Multi-Objective Integer Programming Optimiza-
tion (MOIPO) problem. Next, to solve the MOIPO problem, an RL framework
was proposed for predicting traffic demands. Simulation outcomes demon-
strate the proposed method’s effectiveness compared to state-of-the-art meth-
ods, as evidenced by a reduced Service-Level Agreement (SLA) violation rate
and lower network operating costs. The research highlights the potential of
leveraging PPO for real-time network slice provisioning in next-generation
networks, improving the management of diverse QoS requirements and het-
erogeneous network services.

Paper D Network Slicing has emerged in next-generation networks to sup-
port mobile operators in isolated logical networks (slices) construction over
the shared physical networks. While Network Slicing Provisioning (NSP)
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provides fundamental support for slice management, solutions for optimal
NSP are still at an initial stage. In order to deploy optimal NSP solutions to a
network environment where a time horizon is considered, augmented learn-
ing capabilities are needed to make the NSP optimization adopt the dynamic
nature of the real network. The paper [29] designed a fast reinforcement
learning framework to solve the NSP optimization problem while achieving
robustness against user traffic uncertainties and reserving effective provision-
ing. A theoretical analysis based on competitive ratios has been carried out
to investigate the performance of algorithms. Furthermore, numerical simu-
lations have been conducted to evaluate the designed reinforcement learning
framework.
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Chapter 2

Machine Learning,
Optimization and
Telecommunication
Networks

This chapter firstly discusses the historical background and emerging devel-
opment of the mobile communication systems in Section 1. Next, Section 2
presents the fundamental principles for network flow optimization. In addi-
tion, Section 3 introduces some machine learning approaches in designing a
framework for managing network flows. The proposed framework considers
the heterogeneity in the mobile networks formed by a range of user equip-
ment and base stations. At last, Section 4 summarizes the main contributions
in this chapter.

1 Telecommunication Networks

Telecommunication networks have evolved tremendously over the last thirty
years to satisfy increasing demands having high-reliability and low-latency
requirements. Regarding next-generation telecommunication networks, a
machine learning management component and three generic connectivity
scenarios were introduced as in Fig. 2.1: Ultra-Reliable Low Latency Com-
munications (URLLC), enhanced Mobile Broadband (eMBB), and massive
Machine-Type Communication (mMTC). On top of next-generation commu-
nications, many novel applications, such as tele-operated robots, remote surgery,
and vehicle-to-everything (V2X) network, all have stringent requirements for
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Fig. 2.1: Applications in Next-Generation Telecommunication Networks

transmission latency and reliability, which are difficult to be fulfilled by the
legacy systems in a Heterogeneous Networks (HetNets) environment such
as multi-mode and multi-RAT [5] [9]. 5G-ACIA describes various scenarios,
aiming to satisfy some cyber-physical applications with high reliability and
low latency requirements [2]. This research studied some typical scenarios
and listed them as follows:

Scenario 1: Ultra Broadband Communication
This usage scenario extends the eMBB scenario of 5G. The typical applica-
tions are such as immersive XR and holographic communications. The sce-
nario will require extremely high data rates but only using enough latency
and system capacity. This scenario aims to cover all deployments from dense
urban hotspots to rural areas.

Scenario 2: Ubiquitous Sensing
This usage scenario refers to the technologies that combine Sensing and
Communication Systems to realize ubiquitous sensing. The typical usages
are advanced localization, positioning, posture/gesture recognition, track-
ing, imaging, and mapping, applied to the use cases such as automatic con-
struction, warehouse management, and automated driving. Integration of
sensing with communication provides real-time interaction between virtual
and physical worlds.

Scenario 3: Mission Critical Communication
This usage scenario applies to cases typically with very stringent transmis-
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sion reliability and latency requirements, i.e., extending the URLLC of 5G to
extreme URLLC. The typical use cases include full automation and remote
control, remote teleoperation, robotics collaboration, autonomous driving,
remote medical surgery, etc., envisioned for the Beyond 5G era. This set of
use cases is characterized by situations where a failure of the communication
service can have severe consequences for safety-related applications.

Scenario 4: Universal Coverage
This scenario tends to cover all humanity’s footprints by providing universal
coverage. For example, the typical use cases are supposed to provide essen-
tial MBB services everywhere people live. This usage scenario requires inter-
working between non-terrestrial networks and terrestrial cellular networks,
such as Very Low Earth Orbit (VLEO) and High Altitude Platform Station
(HAPS). In that way, this scenario can also support the rescue and recovery
efforts in the event of natural disasters with disaster-resilient infrastructures.

Scenario 5: Ultra Massive Connection
This usage scenario extends the scenario of mMTC of 5G. The typical appli-
cations include remote meter reading, environmental monitoring, and con-
necting the massive amount of wearable devices, electronic devices or sensors
with sporadic traffic in daily life. This usage scenario may also require sup-
porting the massive connectivity simultaneously.

Scenario 6: Intelligent Connection
This usage scenario is characterized by incorporating AI-Native functional-
ity into future beyond-5G networks and supports AI-powered applications in
conjunction with the in-device and in-network AI capabilities. It will lever-
age local compute offload, distributed learning/inference and training of AI
models performed jointly with many intelligent agents in the network. Typi-
cal applications include: Training and inference for collaborative robots. Dis-
tributed learning and inference for automated driving. Autonomous collab-
oration between devices with zero-touch. Another important aspect of this
usage scenario is using AI/ML tools to optimize Beyond 5G systems in all
network layers to improve performance and efficiency, such as the air inter-
face and network itself.

The predominant design in next-generation telecommunication networks
is the Heterogeneous Networks (HetNets) architecture [3], which provides
a versatile environment for accommodating various cyber-physical appli-
cations. Numerous existing solutions have been used to enhance network
resource management strategies in HetNets by utilizing deterministic algo-
rithms and parameters [18], but the machine learning methods also start to
be adopted [1].

In these next-generation networks, the overall architecture is divided into
three layers: Core Network (CN), Transport Network (TN), and Radio Access
Network (RAN). Fig. 2.2 illustrates the functional components and interfaces
between CN, RAN, and TN. Several functional components within these lay-
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Fig. 2.2: Illustration of 5G CN functional components and interfaces with RAN and TN

ers present opportunities to implement optimization techniques aimed at im-
proving network performance. However, a unified optimization framework
that spans across different network layers is rarely documented in the exist-
ing literature.

The new network services with extreme latency and reliability demands
have shown an urgent need for optimizing the entire network. The most cru-
cial procedure in network flow optimization is to monitor the network status
without generating redundant network traffics. Therefore, the ideal solution
is leveraging the active devices in the telecommunication network to mea-
sure the network status continuously and only report some measurements
back to the network orchestrator within standard protocols. These piggyback
measurements can be applied to resource allocation and network flow opti-
mization without additional communication signaling exchanges. Using pig-
gyback measurements for flow optimization leads to efficient network flow
optimization. This dissertation illustrates how classical and measurements-
driven solutions can be applied in network flow optimization in the next two
sections, Section 2 and Section 3 respectively.

2 Optimization Technologies

This section introduces the classical network optimization approaches while
reserving the discussion on machine learning-specific optimization techniques
for the subsequent section. Network optimization comprises a collection of
technologies to improve network performance. Fig. 2.3 depicts the classical
optimization technologies organized in a tree structure. The optimization
tree presents the primary characteristics utilized to classify these optimiza-
tion technologies. The optimization technologies can be broadly categorized
into two groups: those that deal with uncertainty (stochastic) and those that
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are deterministic. The examples of the relevant methods within each group
are also presented.

First, stochastic optimization methods are used when there is randomness
or uncertainty in the problem parameters or constraints. These methods help
find the best solution considering the probabilities or likelihoods associated
with data inputs. For instance, the Stochastic Gradient Descent is a popular
optimization method that adjusts the model’s parameters by minimizing an
objective function that incorporates random data samples.

Second, deterministic optimization methods assume that all the problem
parameters and constraints are known and fixed. These methods can be fur-
ther divided into various subcategories, such as: a. Integer Programming:
This method deals with optimization problems where a part of or all of the
decision variables are required to be integers. Examples include 0-1 (binary)
integer programming and mixed-integer programming, which combines float
and integer variables. b. Linear Programming: This method is used for prob-
lems where the objective and constraint functions are linear expressions. It
aims to find the optimal solution within the feasible region defined by the
constraints, typically using methods like the Simplex algorithm or interior-
point methods. c. Nonlinear Programming: This method addresses opti-
mization problems with nonlinear objective functions or constraints. Non-
linear programming techniques can be further classified into unconstrained
and constrained optimization methods. Common solution methods include
gradient descent, Newton’s method, and sequential quadratic programming.
d. Mixed Integer Programming: This method combines elements of both
integer programming and linear programming, where some variables are re-
quired to be integers, while others are continuous. Mixed Integer Linear
Programming (MILP) and Mixed Integer Nonlinear Programming (MINLP)
are classic methods of this technique. e. Constrained Optimization: This
type of optimization method deals with problems where the decision vari-
ables are subject to certain constraints or limitations. This can include linear
constraints, nonlinear constraints, or a mix of both. f. Multiobjective Opti-
mization: This method is used when there are multiple objectives that need to
be optimized simultaneously. The number of optimal solutions may lasrger
than one, called Pareto Front that represent trade-offs between those objec-
tives. Common techniques include the epsilon-constraint and weighted-sum
methods, and evolutionary algorithms [13].

An optimization method constitutes a systematic process of discovering
the optimal system design, subject to a set of constraints. Optimization prob-
lems are generally formulated as mathematical representations encompass-
ing objective and constraint functions. A typical optimization problem can
be expressed in (2.1):
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minimize f (x)

subject to x ∈ X
(2.1)

where f (x) represents the objective function to be minimized, and the con-
straint x ∈ X defines the feasible region for the decision variable x.

The optimal solution to an optimization problem is the objective func-
tion’s global minima (in primary condition) or maxima (in dual condition).
Employing an optimization algorithm facilitates the gradual enhancement of
the design until either the objective function can no longer be improved (i.e.,
attaining the minimum or maximum) or the pre-allocated constraints have
been exhausted.

Fig. 2.3: Optimization Technologies

Network optimization organizes a series of technologies to improve net-
work performance. Because of new users and applications, the network flows
are inevitably increasing. The increasing network flows require expanding
network capabilities, such as more bandwidth or base stations, resulting in
more network operation costs. Network optimization cost-effectively offers
various benefits such as more significant throughput, eliminating service vio-
lations and reducing the delay of application and network. Without network
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optimization, the network operators cannot accommodate advanced users
and new applications while maintaining or improving network performance.

Due to the broad range of optimization technologies, this chapter struc-
tures the related work in network optimization into three classes: Gradient-
based, Linear Programming, and Non-Linear Programming methods.

2.1 Gradient-based Methods

Gradient-based methods represent a well-established category of optimiza-
tion strategies. They primarily rely on the derivatives of objective functions,
such as the first-order or second-order derivatives of a given function f . The
term gradient originates from the derivative of a multidimensional function,
f (x⃗). For example, ∇ f (x⃗) =< ∂ f

∂x1
, . . . , ∂ f

∂xn
> represents a vector that each el-

ement is a slope of x⃗ in the corresponding dimension [28]. The fundamental
concepts underpinning gradient-based methods are straightforward.

For instance, given a polynomial function, f (x), in one variable, x. The
concept starts by computing the gradient at any initial value of x and then
iteratively adds to or subtracts from a relevant small positive value at x until
reaching the minimal value of f (x). The process denotes as equation (2.2):

x = x− β f ′(x) (2.2)

where β represents a small enough positive value, and f ′(x) denotes the
first-order derivative of f (x). As a result, a positive slope leads x to decrease,
while a negative slope will cause x to increase. Because the process above
aims to find the minimal f (x), it is also called gradient descent. From the
illustration in Fig. 2.4, f ′(x) is negative, Hence, x will progressively descend
the function until reaching its minimal value, at which point f ′(x) becomes
zero, halting its progress.

However, gradient-based methods are unsuitable for tackling optimiza-
tion problems with unknown step lengths that take a long time to converge.
For instance, as gradient descent approaches a function minimum, an unfea-
sible step length may be too large to reach the minimum and move forward
in the wrong direction. On the other hand, in the subsequent step, slowly
move toward the target in a “zig-zag” manner from the other side of the min-
imum point. This behavior is intrinsically connected to the function’s slope
at a particular point, meaning that a steeper slope corresponds to a more
significant leap, which can be mitigated by a small modification of the value
of β. Nevertheless, some functions (or function regions) necessitate smaller
values, while others require larger values. Newton’s method enhances this
process by considering the function’s second derivative, f ′′(x), as follows:

x = x− β
f ′(x)
f ′′(x)

, (2.3)
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Fig. 2.4: An example of derivative and x is increased by a negative derivative

thereby modifying the value of β as it converges towards a point with zero
slope [28].

Another concern was identifying points other than the maximum or min-
imum points. The reason is that many functions may encompass saddle
points (i.e., inflection points in one-dimensional functions) besides maxima
and minima. For example, in Fig. 2.5, the first derivative of a saddle point
is zero, so the gradient descent will cease searching for the minimum at the
saddle point despite not reaching it. In this case, Newton’s method does
not offer assistance, even attempting to divide by zero. The case explicitly
demonstrates how gradient descent becomes trapped in local optima. Local
optima of a function are defined as the optimal value (or minimum value in
this case) of a local region. Similarly, global optima are defined as the opti-
mal value of the entire domain of a function. It can be inferred that gradient-
based methods, such as gradient descent or Newton’s method, operate as
local optimization algorithms [28].

The last but not most minor design requirement is that the gradient-based
methods leverage the derivable property of a function to find an optimal
solution. This assumption is valid only when optimizing functions with good
mathematical properties. Unfortunately, this condition is often not satisfied,
as the gradient is generally non-computable in most cases due to the complex
function. Consequently, numerous researchers continue to refine gradient-
based optimization techniques.

2.2 Linear Programming Methods

The most widely used optimization techniques is linear programming, which
were originally developed in the field of Operations Research to solve various
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Fig. 2.5: An example for a saddle point (inflection point)

logistical optimization problems.
In the linear programming optimization model, the given objective func-

tion f and constraint functions are all linear. These constraints impose limita-
tions on x⃗, necessitating adherence to specific conditions such as conforming
to restricted resource availability. A linear programming optimization prob-
lem can be modeled in (2.4) and (2.5).

min f (x⃗) = c⃗ · x⃗ (2.4)

subject to

A · x⃗ ≤ b⃗

x⃗ ≥ 0⃗ (2.5)

The inequalities defined in Equation (2.5) constitute the constraints for
the linear program specified in Equation (2.4). Fig. 2.6 demonstrates a linear-
programming example with several constraints. In order to address contin-
uous and linear optimization problems, there are efficient exact algorithms
from the prior arts, such as the ellipsoid method [31], the criss-cross method [23],
or the interior-points method [21].

In fact, linear programming represents one of the most well-established
methods for resolving optimization problems, because the linear objective
function and constraints compose a convex property. Consequently, the fea-
sible region of the problem solutions is also convex, and the global optimum
corresponds to a vertex of the polytope that can be found in the feasible
region [35].
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Fig. 2.6: A two-dimension example of linear-programming with constraints, c1 and c2. The
region of feasible solutions is marked by the grayed polytope area.

2.3 Nonlinear Programming Methods

Nonlinear programming methodologies aim to solve optimization problems
characterized by nonlinear objective functions or constraints [8]. Existing
techniques that try to simplify these nonlinear objective functions or con-
straints introduce additional variables and a certain degree of approxima-
tion [15]. Furthermore, properties such as high dimensionality and multi-
modality reduce these techniques’ efficiency. In recent telecommunication re-
search, the latest results have concentrated on devising more efficient nonlin-
ear programming methods. These advancements have led to improvements
in several areas, and the selected topics in recent research are listed below:

• Resource allocation: Nonlinear programming has been applied to re-
source allocation problems in telecommunication networks, including
power control, beamforming, and scheduling [42]. By optimizing the
allocation of limited resources, these methods aim to maximize net-
work capacity, throughput, and energy efficiency while maintaining the
quality of service (QoS) requirements.

• Network Planning: Network planning is complex to adaptively co-
ordinates base stations and antennas to satisfy the QoS requirements
from user equipment. This research [24] addresses the non-line-of-sight
(NLOS) problem and transforms it into a mixed-integer second-order
cone programming, effectively solving NLOS issues and enabling ubiq-
uitous coverage in a telecommunication network.

• Cross-layer optimization: In order to account for the interactions be-
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tween different layers of the network components, cross-layer optimiza-
tion techniques have been developed. For example, a method integrate
multiple layers’ objectives and constraints into a mixed-integer nonlin-
ear programming problem, allowing for a more holistic optimization
approach [36].

In the context of real-world problems, the availability of an analytical
objective function is not always held. In certain instances, simulations or
physical models objective-function evaluation [14]. In these cases, machine
learning technologies emerge as promising candidates for addressing various
instance sizes of this class of problems.

In conclusion, recent advancements in nonlinear programming for telecom-
munication have fostered the development of more sophisticated and efficient
techniques, expanding the range of problems that can be effectively solved.
For example, the research in [40], integrating these innovations with machine
learning technologies has significantly increased the potential for tackling
complex, real-world optimization challenges.

3 Machine Learning Technologies

Massive-connected devices generate data and require network transmissions
under stringent latency, throughput or reliability performance. In order to
fulfill the divergent requirements, next-generation networks must increas-
ingly adapt autonomous and cognitive capabilities. For instance, the network
edge entities need to spontaneously make decisions using their observation
of network states to increase the efficiency and reduce the complexity of the
network controller. Those cognitive decision scheme can be used in network
flow optimization such as maximizing the network throughput under dy-
namic network environments without slow manual configurations. On the
other hand, the cognitive decision scheme is an integral aspect of machine
learning, as it facilitates decision-making processes by leveraging the dataset
or observations derived from network environments.

Machine learning algorithms [20] [29] [32] are designed to mimic human
cognitive decision-making capabilities such as sensing, mining (e.g., flow
classification), prediction (e.g., forecasting future traffic demands), and in-
ference. These algorithms adaptively learn from experience and data pat-
terns, enabling them to make increasingly better decisions over time. The
cognitive decision scheme thus serves as a foundation for optimizing net-
work systems that can autonomously analyze complex flows, solve problems,
and then make optimal choices, all while continuously refining their under-
standing of the network environment and improving their decision-making
capabilities.
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The authors in [19] [10] [4] investigate different ML solutions in solv-
ing network optimization problems such as mobility management, resource
management and traffic classification. The solutions could be classified as
Un-supervised Learning, (Semi-) supervised learning, and Reinforcement
Learning (RL) with different implementation such as neural network or de-
cision tree. Moveover, a distributed version on top of the previous three
algorithms is discussed in an individual subsection. The four main ML al-
gorithms present their features for the network optimization in the following
subsections. This section outlined the primary ML categories listed in the
following sub-sections.

3.1 Supervised Learning

Supervised learning extracts input data and output labels from training data
and thus expects to map new input data to correctly predicted outputs. How-
ever, the Supervised Learning approach has fewer applications over online
data flows compared to the other ML categories because this learning al-
gorithm requires labelled data. The data flows are difficult to label in a
dynamic network environment, and the existing flows are often encrypted
during transmissions. The two reasons above prevent the Supervised Learn-
ing approach from distinguishing different flows. In addition, supervised
learning may encounter difficulties in attaining satisfactory processing per-
formance when dealing with a complex problem. For example, Mohseni et
al. [26] and Hendrycks et al. [16] attributed the performance gap to the po-
tential inability of the method to construct a suitable representation of the
data distribution, which is essential for effectively facilitating discriminative
tasks.

3.2 Reinforcement Learning

Reinforcement Learning is a machine learning paradigm where an agent
strives to find optimal decisions by interactive learning from its environment,
receiving feedback in the form of rewards or penalties based on the actions
it selects, and striving to find a balance between exploration and exploita-
tion [33]. For instance, an ultra-reliable low-latency communication (URLLC)
service implementation employs reinforcement learning to allow network en-
tities to ascertain the optimal policy, including decisions and actions, given
their states in scenarios with finite state and action spaces [22]. However, in
intricate and large networks, such as heterogeneous networks (HetNets), the
large state and action spaces may hinder reinforcement learning from identi-
fying the optimal policy within a reasonable timeframe. Consequently, deep
reinforcement learning, which melds reinforcement learning with deep learn-
ing, has been developed to address these limitations. A pioneering deep rein-
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forcement learning framework is proposed to facilitate model-free URLLC in
the downlink of an orthogonal frequency division multiple access (OFDMA)
system [38].

In addition, some researches consider the optimization of rare network
error events (e.g. burst errors, traffic jam and signal shadowing), whose be-
haviour cannot be exactly modelled, but mostly affect the URLLC reliabil-
ity [22]. Such events can potentially be detected and monitored, while also
building methods against them through repetitions in time/frequency and
higher SNR [27]. On the other hand, the user equipment association and
resource allocation could also be determined by each base station through
a deep reinforcement learning method [34]. Similarly, in [12], the authors
study the UE handover optimization from real 5G traffic and develop a ML
approach to reorganize the distributed unit grouping and then reduce some
control messages between the distributed units.

3.3 Unsupervised Learning

Despite the prevalence of human learning through supervision (e.g., man-
ual guidance) or reinforcement (e.g., environmental interaction), unsuper-
vised learning remains a crucial technique [17]. Algorithms within unsuper-
vised learning can autonomously self-organize networks, considering fea-
tures such as online network congestion statistics and QoS requirement of
applications [30]. Unsupervised learning is also used in some network opti-
mization scenarios due to its ability to operate without labeled data, which
can be costly and challenging to obtain scalably. For example, the authors
in [11] employed a scalable Bayesian network for network flow monitoring
and analysis. Furthermore, the authors from [37] implemented a hybrid ar-
chitecture combining unsupervised learning with supervised feature classifi-
cation to enhance the radio resource management and the QoE-based admis-
sion control for a video service.

3.4 Distributed Learning

Some literature extends the centralized ML paradigm to the distributed or
federated paradigm [25] [39]. Since ML in telecommunication networks some-
times incurs high costs or privacy issues while persistent data collection, a
distributed ML approach [7] is introduced to avoid such conditions. In the
distributed ML paradigm, mobile devices train their ML models locally us-
ing on-device data without a parameter server. The training procedure is re-
peated in multiple epoches until a desirable model accuracy is achieved. The
procedure can be easily implemented in a distributed network and imply that
distributed ML can be embedded in a distributed network with cost-saving
and privacy protection.
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Fig. 2.7: Federated RL Paradigm

Based on the distributed ML concepts, a federated RL paradigm for telecom-
munication networks has also been proposed [41] [6], as shown in Fig. 2.7.
The paradigm only considers reducing the data collection overhead in the
network. During the federated RL training, mobile devices send the local
model updates (e.g. the model’s weights), to a global trainer for aggregation
(e.g., to average the weights from users). A RAN consists of base stations, de-
noted as gNBs. A gNB includes multiple distributed units (DUs) and a cen-
tralized unit (CU). UEs download and improve the latest model by learning
from data (e.g., downlink signal strength, channel quality) in the local envi-
ronment and then summarize the model differences in a single update. Only
the model updates can be sent to the global trainer to improve the model.
All the training data remains on the local device, and the global trainer does
not need to keep individual updates. Therefore, only the smallest amount
of signaling will be generated in the network and can limit the explosion of
communication costs during the RL training.

4 Discussion

This chapter introduced cutting-edge telecommunication network develop-
ment, optimization techniques, and the most crucial Machine Learning (ML)
technologies. Various techniques have been incorporated into contemporary
telecommunication networks to enable a flexible orchestration or a robust
management for complex flow requirements, such as those embodied by the
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Approach Pros Cons

Deterministic
Algorithm

Obtain optimal solutions for a
specific problem

Often difficult to design an algo-
rithm and to accomodate new con-
straints

(Non-)Linear
Programming
(LP)

1.Provides optimality gap 2.Can
be very efficient

Requires unique optimization mod-
eling expertise to model and tune

Metaheuristics
Algorithm

1.Easy to create running model
2.Can be significantly more effi-
cient than LP for some problem
types

1.Requires deep understanding of
specific algorithm to provide good
solution

2.No theoretical optimality gap
3.Often less suitable for continuous
decision variables

Reinforcement
Learning

1.Use comprehensive abstrac-
tion (states/actions/rewards)
2.Inherent handling of uncer-
tainty

1.struggle to handle high-
dimensional data/extensive hy-
perparameter and algorithm
tuning 2.Incorporating constraints
3.Inherent uncertainty makes ex-
plainability more difficult

Table 2.1: Comparison of Optimization Techniques

Software-Defined Networking (SDN) and Network Function Virtualization
(NFV) paradigms. In particular, Reinforcement Learning (RL) has been ad-
vocated as the vital building block for network flow optimization and has
shown that RL in telecommunication networks has a wave of success in im-
proving network performance. A comparison of classical optimization and
RL techniques is listed in the Table 2.1.

The doctoral research investigates some preliminary examples of the po-
tential network flow optimization, including Quality of Service (QoS) im-
provement, Quality of Experience (QoE) enhancement, and network resource
management. The subsequent chapters will present additional optimization
research findings to substantiate this doctoral study.
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Chapter 3

Conclusions

This dissertation covers the research topics related to fast and reliable trans-
missions over telecommunication networks. In particular, the dissertation
focuses on solving optimization problems in those topics via reinforcement
learning. The optimization procedure can be generalized in three research
questions below: how to optimally balance the latency and throughput trade-
off in the URLLC service (Q1), how to optimize the network resource reser-
vation across different objectives (Q2), and how to analyze the optimization
performance and provide end-to-end robustness using reinforcement learn-
ing (Q3). The three research questions are concluded below based on theo-
retical analysis and numerical simulations in this dissertation.

Q1: How to optimally balance the latency and throughput tradeoff in
the URLLC service? The optimality between two primary network per-
formance metrics: latency and throughput, had been investigated in Paper
A and Paper B for a RAN-level scenario. In general, the network operator
needs to schedule network resources to fulfill the performance requirements
of data flow transmission in a dynamic network environment. The schedul-
ing tradeoff between the latency and throughput requirements comes from
the discontinuity of traffic flows. This PhD research studied the periodic and
burst data flows generated from the Poisson Pareto Burst stochastic model.
In addition, a deep reinforcement learning framework was designed to learn
the optimal URLLC uplink scheduling based on the flows’ temporal-spatial
patterns. The deep reinforcement learning method can adopt different flow
patterns from the user behaviour changes in the network environment with-
out prior knowledge of the flow model. Therefore, the proposed deep rein-
forcement learning method is suitable for solving the tradeoff optimization
problem in the dynamic network environment.
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Q2: How to optimize the online network resource scheduling across dif-
ferent optimization objectives? Several performance metrics measure the
optimality of online network resource scheduling. The different performance
metrics turn into multiple complex optimization objectives, and sometimes
those objectives are in conflict. Although the network resource scheduling
scenario is challenging, there exists a statistical relationship between the re-
source requests. Hence, the proposed reinforcement learning method can
still learn an optimal representation of scheduling policies for all objectives
over the solution space. The objectives of this PhD research include latency,
data rate, fairness (in Paper C), and SLA (Service-Level Agreement) violation
rate (in Paper D). This PhD research has designed a reinforcement learning
method to find optimal scheduling for multi-objective optimization in net-
work resource scheduling.

Q3: How to analyze the performance of optimization and provide end–
to-end robustness using reinforcement learning? The attainment of an op-
timal solution for both RAN-level and end-to-end network transmissions is
paramount. The proposed reinforcement learning framework has been ex-
tended to optimize the entire transmission route, encompassing Radio Access
Network (RAN), Transport Network (TN), and Core Network (CN). Rather
than solely concentrating on optimization within the RAN domain, this end-
to-end optimization approach guarantees network performance in real-world
use cases and facilitates unbounded network connectivity. The findings of
this research not only consider the physical scenarios but also extend beyond
simplified modeling by incorporating mathematical formulations. The worst-
case comparison of computational complexity and competitive ratio proves
the performance guarantee of the proposed method. In addition, the exper-
iments demonstrate that the proposed algorithms exhibit effective solutions
and policy approximation to adapt and elicit unknown traffic in the network.

According to the research findings in this dissertation, some potential
directions may be valuable to work on in the future. First, instead of focus-
ing on the network traffic flows in a single-machine version algorithm, in
the distributed version algorithm, we may deduce the computational time
consumption while keeping the accuracy of optimal solutions. In addition,
more network topologies can be investigated to identify the impacts of net-
work scale corresponding to the accuracy of optimal solutions. On the other
hand, the optimization was inspired by the URLLC scenario sharing similar
network traffic with the different connectivity scenarios such as eMBB and
mMTC. The prior model can be applied to those scenarios via the transfer
learning method.
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1. Introduction

Abstract

Age of Information (AoI) reflects the time that is elapsed from the generation of a
packet by a 5G user equipment (UE) to the reception of the packet by a controller. A
design of an AoI-aware radio resource scheduler for UEs via reinforcement learning
is proposed in this paper. In this paper, we consider a remote control environment
in which a number of UEs are transmitting time-sensitive measurements to a remote
controller. We consider the AoI minimization problem and formulate the problem as a
trade-off between minimizing the sum of the expected AoI of all UEs and maximizing
the throughput of the network. Inspired by the success of machine learning in solving
large networking problems at low complexity, we develop a reinforcement learning-
based method to solve the formulated problem. We used the state-of-the-art proximal
policy optimization algorithm to solve this problem. Our simulation results show that
the proposed algorithm outperforms the considered baselines in terms of minimizing
the expected AoI while maintaining the network throughput.

1 Introduction

Many emerging services and systems such as Autonomous Driving, Indus-
trial Automation, and Tactile Internet require real-time monitoring and low-
latency information delivery. The growth of time-sensitive information led to
a new data freshness measure named Age of Information (AoI). AoI evalu-
ates the time elapsed from the generation of the last update at a source that
was received at the destination [1]. Consider a cyber-physical system such
as an automated factory where many robots are transmitting time-sensitive
information to a remote observer through a wireless network. Each robot
continuously samples the environment at the physical factory and transmits
the sample data to the monitoring observer. Due to inevitable bandwidth
limitations, the network may not be able to transmit all the data to the ob-
server. Consequently, each robot may be allocated a part of the transmission
bandwidth that does not completely satisfy its requests. In such cases, the
latest generated data can not be transmitted immediately and will be accu-
mulated at the robot’s queue, resulting in the AoI increase. A way to mitigate
such scenarios is to optimize the operation of the network scheduler.

In the literature, many works are investigating the time-average AoI [1]
and aims to achieve the minimum time-average AoI. If the network traffic
from each node is known, the optimal scheduling policy for minimizing time-
average AoI can be derived with low computation complexity [2]. However,
the computation complexity of finding an optimal scheduling policy without
any prior knowledge of the network traffic is high.

In this paper, leveraging the success of machine learning in solving many
of the online large-scale networking problems [3], we propose a method
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based on Reinforcement Learning (RL) to solve an optimization problem that
combines network utility (a measure of matching between the required and
allocated resources per user) and minimization of AoI. In the training phase,
the RL agent starts to capture network state in terms of the number of user
equipments (UEs) and traffic volume of each UE. Then, at the given state, the
RL agent is trained to choose a scheduling action that maximizes the total
reward. The RL agent continuously interacts with the environment and tries
to find the best policy based on the reward fed back from the environment.
In the testing phase, obtain a policy capable of optimizing the transmission
schedule.

As already hinted, the reward of the minimization problem considered in
the paper combines two objective functions. The first is the expected AoI of
each node (i.e., user) and the second is the utility of each node.

These two objectives can be juxtaposed, as maximizing utility may ad-
versely affect AoI and vice versa. For example, consider a network with two
nodes A and B, sharing the same wireless channel that can accommodate
L > 1 packets per time slot. Node A and node B have a fixed size queue of
length L. Assume that node A generates L packets per timeslot, while node
B only generates 1 packet per timeslot. The scheduling policy selects which
node is allowed to transmit packets at a given timeslot. Policy p1 alternates
between node A and node B. Policy p2 selects node B every L slots and se-
lects node A otherwise. Policy p2 has larger throughput than Policy p1 (i.e.,
every slot is fully used). But Policy p1 has lower AoI than Policy p2, as node
B waits less for the transmission opportunities. In the paper, we consider a
generalization of the problem, in which the nodes are generating traffic with
an a priori unknown statistics, and design an agent to learn the scheduling
strategy that maximizes the reward based on the RL paradigm.

The rest of this paper is organized as follows. Section 2 presents a brief
overview of the related work. The system model and the problem formula-
tion are described in Section 3. The proposed learning algorithm is presented
in Section 4, whereas the numerical simulations are given in Section 5. Fi-
nally, the conclusions are drawn in Section 6.

2 Related Work

Recently, a number of papers tackled the problem of minimizing the AoI of
many sources that are competing for the available radio resources. [2] consid-
ers the problem of many sensors connected wirelessly to a single monitoring
node and formulate an optimization problem that minimizes the weighted
expected AoI of the sensors at the monitoring node. The authors of [4] also
consider the sum expected AoI minimization problem when constraints on
the packet deadlines are imposed. In [5], the minimization of the sum ex-
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pected AoI is considered in cognitive shared access.
The scheduling decisions with multiple receivers over a perfect channel

are investigated in [6, 7], where the goal is to learn data arrival statistics. Q-
learning is used for a generate-at-will model in [6], while policy gradients and
DQN methods are used for a queue-based multi-flow AoI-optimal scheduling
problem in [7]. In addition, AoI in multi-user networks has been studied
in [6] [8]. The authors in [9] show that finding an optimal scheduling decision
that minimizes AoI is an NP-hard problem.

Scheduling transmissions to multiple receivers is investigated in [6], fo-
cusing on a perfect transmission medium, and the optimal scheduling algo-
rithm is shown to be of threshold type on the AoI. Average AoI has also been
studied when status updates are transmitted over unreliable multiple-access
channels [10] or multicast networks [11]. In addition, Peak AoI has also been
jointly considered with Average AoI in [12] and a UAV’s trajectory and aver-
age peak AoI optimization problem has been studied at [13]. A source node
sending time-sensitive information to several users through unreliable chan-
nels is considered in [14], where the problem is formulated as a multi-armed
bandit (MAB), and a suboptimal Whittle Index (WI) policy is proposed.

Most literature working on AoI minimization problems assumes perfect
statistical knowledge of the random processes governing the status update
system. However, in most practical systems (e.g., heterogeneous UEs with
different mission-critical traffic co-located in the same network), the charac-
teristics of the system, e.g., mobility pattern, traffic distribution, etc, are not
known a priori and must be learned. A limited number of recent works con-
sider the unknown or time-varying characteristics of status update systems,
and apply a learning-theoretic approach [7, 15]. To the best of our knowl-
edge, the scheduling for a tradeoff between average AoI minimization and
throughput maximization via utility modeling is studied for the first time at
a multi-user system.

3 System Model

In this paper, we consider a mission-critical system consisting of a 5G net-
work with one base station (gNB), N UEs and UE’s controller as illustrated in
Fig. A.1. The figure depicts a centralized autonomous-control factory, which
is a mission-critical system. The centralized controller monitors the state of
each UE/robot through the 5G wireless network at the remote side. The
robots connect to the controller via the base station. The connection between
a robot and the controller can be modeled as a virtual link. Since the robots
briskly operate at the production line, to keep the system reacting in time,
robots shall transmit fresh data such as sensor information or velocity to
the controller and fetch control signals back to maintain the system opera-
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Mission-Critical System

Fig. A.1: An autonomous control factory

tion. All the UE-generated data can be carried in one or multiple packets
and transmitted to the controller individually via the wireless link. For the
packet transmission scheduling over a link, a time-slotted system is consid-
ered, where scheduling decisions are made and transmitted to the UEs at
the beginning of each time slot t. Each time slot has a duration of τ, e.g., 1
ms or even smaller by using dynamic transmission time intervals. The total
channel bandwidth is limited to B units, where 0 < B < N. Due to the net-
work resource limitation, the network only allows a subset of UEs (denote
as m, 0 < m ≤ N) at a timeslot t to send packets to the central controller.
Denote by Sn(t) be a random variable that indicates the selection of UE n
by the gNB at time slot t, i.e., Sn(t) = 1 if the controller selects UE n at
time slot t, and Sn(t) = 0 otherwise. When Sn(t) = 1, UE n sends a subset
of the packets, depending on the amount of allocated resource, to the con-
troller. Otherwise, the UE cannot send any packets to the controller. If the
user (say user n) is selected for transmission at slot t, the allocation of chan-
nel bandwidth at time slot t to UE n is denoted by bn(t), where bn(t) is an
integer number of units, 0 < bn(t) ≤ B and ∑n∈I(t) bn(t) = B, where I(t)
is the set of selected users in slot t. The schedule at moment t is denoted
by S(t) = {S1(t), S2(t), . . . Sn(t), . . . SN(t)}, which belongs to the set of all
possible schedules S.

The number of packets generated at time slot t by user n is denoted by
Xn(t), following a memoryless arrival process that is independent and iden-
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tically distributed over users. The generated packets are stored at UE trans-
mitters’ queues, following the first-come-first-serve (FCFS) policy. The queue
length is fixed and initialized to 0.

The AoI of each UE n is defined as the time elapsed between the current
time and the generation of the latest packet that departed from the transmit-
ter; we assume that all the packets that are transmitted are also successfully
received. The AoI is computed by the formula:

An(t) := t−max
i
{tn

G(i))|tn
G(i)) ≤ t} (A.1)

where tn
G(i)) and tn

D(i) are the moments of generation and departure of the
ith packet of UE n. Due to the slotted time assumption, AoI is changing in
integer units (i.e., number of slots). If no packet from UE n is received by the
controller in time slot t, An(t) is increased by 1. Otherwise, if at time slot t,
a packet from UE n is successfully received by the controller, the AoI will be
updated below:

An(t + 1) =

{
An(t) + 1 if Xn(t)bn(t)Sn(t) = 0
t− tn

G(i) if Xn(t)bn(t)Sn(t) > 1
(A.2)

where tn
G(i) is the generation moment of the latest packet that was success-

fully received in slot t (denoted by the dummy index i).
Further, the node and network utility per slot are defined, respectively, as:

Un(t) =
1

1 + e−(1.5×bn(t)−Xn(t))
Sn(t), 0 ≤ n ≤ N (A.3)

U(t) =
N

∑
n=1

Un(t) (A.4)

Un(t) is a sigmoid function, while the network utility U(t) is the summation
of all node utility values at time slot t. The higher network utility means a
higher network throughput [12].

Our goal is to find suitable scheduling policies for a set of UEs, which
attempt to maximize network utilization while minimizing the aggregate AoI.
Specifically, we formulate our goal via the function given below. In each time
slot t, select a schedule S(t) s.t.

S(t) = argmax
S(t)∈S

N

∑
n=1

[Un(t)− βAn(t)] (A.5)

where β ∈ R is a scalar control parameter. If β is larger, the scheduling
will be more sensitive than a small β. Problem (A.5) is a non-linear integer
programming (NLIP) that is generally complicated to solve [16]. Actually,
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the optimization variables in (A.5) include sequential decisions. It was re-
cently shown that Deep RL (DRL) achieves high performance on the long-
term sequential decision-making problems without human knowledge [17–
19]. Moreover, DRL-based solutions can provide the decisions in an au-
tomatic and zero-touch manner. In addition, benefiting from deep neural
networks, DRL is capable of handling high-dimensional observation-action
spaces. These motivate us to propose policy-based model-free DRL solutions,
discussed in the next section.

4 Proposed Model and Algorithm

We assume an RL agent interacting with a network environment to learn a
scheduling policy without prior information.1 To deal with the unknown
information in the network environment, an RL agent gradually learns the
scheduling policy from the network environment observations. We define
the scheduling policy as π(ot, θt) that returns a schedule S(t) as an action at
to satisfy ∑N

n=1 bn(t) ≤ B. The action at represents which UEs are selected
to transmit their packets. For example, if only S1(t) = S2(t) = 1 in S(t), it
means that only UE1 and UE2 are selected to transmit data with their allo-
cated bandwidth b1(t) and b2(t). The other UEs are not allowed to transmit
data and have to wait for the next action. In the time-slotted system, every in-
teraction between the agent and the network environment happens at the be-
ginning of a time slot. In each interaction, the agent samples the environment
to get an observation ot and performs an action at based on the scheduling
policy. After performing the action, the agent receives a reward rt. Then the
agent waits for the time slot t + 1 to interact with the network environment.
The learning process repeats the interactions continuously to approximate
the optimal scheduling policy which obtains the maximal reward. Hence, the
objective of learning is to maximize the expected cumulative reward.

The optimization goal is defined as

J := max
πk

E

[
N

∑
n=1

(Un(t)− βAn(t))

]
(A.6)

s.t. ∑N
n=1 bn(t) ≤ B, πk = S(t)

Our RL agent exploits the Proximal Policy Optimization (PPO) Algorithm [17,
18]. This PPO algorithm has become one of the most widely used algorithms
in RL due to its better sample efficiency than other tabular-based RL algo-
rithms.

1If the base station has prior information such as the incoming traffic from the UEs or the
AoI evolution, the base station scheduler can find the optimal scheduling policy by conventional
algorithms.
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Reinforcement Learning Configuration

Fig. A.2: A Flowchart of the Reinforcement Learning Method

As shown in Fig. A.2, the learning process is a finite loop of K iterations.
In the beginning, the agent will fetch an initial environment observation,
ot=0 = {o1(t = 0)), o2(t = 0)), . . . on(t = 0))}, from the network environment.
The agent observes a set of metrics from on(t) including the buffer status, AoI
value of every UE, and the throughput achieved in the last k iterations. Then
the agent feeds these values to the neural network, which will output the
next action. The next action is defined by which UEs are to be chosen for the
next iteration k + 1, as well as how much bandwidth they will be allocated, at
time slot t+ 1. The scheduling policy is transformed from the action obtained
from the trained neural network. If a UE is selected to transmit packets then
the corresponding bandwidth will be reserved for the UE. After the new
scheduling is deployed to all the UEs, a reward is observed and fed back to
the agent. The agent uses the reward information to train and improve its
neural network model.

Our implementation of the PPO algorithm in the scheduling problem is
detailed in Algorithm 1. Starting from the initial parameters, the PPO algo-
rithm optimizes its policy, π, until converges or reaches K iterations. At each
iteration k, the PPO agent collects observation of a time slot. Next, it selects
an action with the current policy. After the agent takes the selected action, the
agent obtains a reward based on the reward function. The reward function
is defined as R(ot, at). In addition, we formulate a Q-value function, a value
function and an advantage function which use to compute the intermediate
values in each iteration:

Qπ(ot, at) = Eot+1,at+1 [γ
tR(ot+1)|ot = o0] (A.7)
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Vπ(ot) = Eot+1,at [γ
tR(ot+1)|ot = o0] (A.8)

where γ is a discount factor, γ ∈ [0, 1], and

Aπ(ot, at) = Qπ(ot, at)−Vπ(ot) (A.9)

Then we construct the surrogate loss on these observations and optimize
policy with SGD for e epochs and minibatch size B.

Algorithm 1: Proximal Policy Optimization Algorithm
Input: An initial policy with parameters θ0 and initial observation o0
for k = 1, 2, 3, · · · until k = K or convergence do

Update age and bandwidth request based on observation ok.
Take scheduling action using policy π = π(θk).
Compute advantage estimation based on the value function.
Optimize surrogate function ∇J with respect to θk using e epochs
and minibatch size B.

θk ← θk+1
end

5 Simulation

In this section, we provide illustrate the performance of the scheme proposed
in Section 4. To evaluate the scheme in a realistic cellular network, the simula-
tion is performed in the network simulator (NS3) [20]. In addition, we select
the round-robin algorithm as baseline 1 and a proportional-fair algorithm as
baseline 2 [21]. The simulation parameters in NS3 are listed in Table A.1.

Table A.1: Simulation Parameters

Parameter Name Value
Number of UEs N 20
Slot Duration τ 1 ms
Packet Size (d) 2048 bytes
Numerology 0
Duplexing TDD
Bandwidth 20 MHz
Transmission Power 20 dBm
Propagation Model TR 38.901
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5.1 Simulation Setup

We revised the NS3 LTE module to implement a 5G environment. The modu-
lation and coding scheme and the resource block allocation are chosen based
on the standard [22–26], and [2]. Users are distributed uniformly in the ser-
vice area of 80*80 meters, while the base station is placed at a fixed location in
the service area. The simulation time was chosen to be 900 seconds which en-
sures that enough training samples were collected. For each UE n, the packet
arrival rate is randomly set with a normal distribution which has a mean
frequency range between [60Hz, 1300Hz]. The variance of packet arrival rate
is 9000 Hz. The packet distribution will only be used in the Proportional-
Fair algorithm as a known parameter. Regarding the parameters of the actor,
we set the batch size B = 80. Then, we set the step size as 0.6 and use a
three-layer DNN with hyperbolic tangent (Tanh) activation function, Adam
optimizer, and initial learning rate 0.0003. On the other hand, the neural net-
work structure of critic starts with an action-appended input layer. Then, it
connects to a fully connected hidden layer and an output layer with N out-
puts. The critic also uses the Tanh activation function and Adam optimizer.
Additionally, the initial critic learning rate is set to 0.001.

5.2 Simulation Results

The proposed scheme is assessed in terms of the average AoI and average UEs
throughput. Based on those two metrics, the following scheduling schemes
are compared:

1. Round-Robin (RR), where all RBs are evenly allocated to each UE;

2. Proportional-Fair (PF), where all RBs that are allocated depend on the
known arrival traffic distribution;

3. Proximal Policy Optimization (PPO), where all RBs are allocated by the
prediction from our RL agent.

We now present our simulation results based on the two baseline algo-
rithms and the proposed PPO algorithm 1. Fig. A.3 shows the average AoI
and Fig. A.4 presents the network throughput as functions of the mean traffic
generation frequency. The RR algorithm has the worst AoI performance and
the lowest throughput due to the full fairness for each UE. The PF algorithm
has the best AoI and throughput performance because the data generating
distributions over the network nodes are known parameters. It can be seen
that the PPO algorithm outperforms the round-robin algorithm at the heavy
traffic condition without any proprietary parameters from the UEs. Finally, in
the PPO algorithm, the scheduler outperforms the RR algorithm and achieves
almost as good performance as the PF algorithm, despite the lack of knowl-
edge of the data generating distributions.
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Fig. A.3: Average AoI in different Packet Generation Rates

Fig. A.4: Average Throughput in different Packet Generation Rates
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5.3 Discussions

If the network bandwidth is larger than the total traffic requirements, there
is no network backlog. Thus, any scheduler can achieve the same AoI per-
formance. Therefore, all the algorithms have the same AoI performance at
low traffic conditions, as illustrated in Fig. A.3. However, when the total traf-
fic requirements exceed the available bandwidth, the individual traffic from
each UE starts backlogging, and AoI starts to increase. This happens in our
evaluation when the data generation rate surpasses 120 Hz. The RR algo-
rithm has the worst AoI performance and the lowest throughput because the
RR algorithm does not consider the individual traffic load. The PF algorithm
has better AoI and throughput performance due to the pre-configured traffic
generation distribution. However, in the practical system, the traffic distribu-
tion may not be obtained. It can be seen in Fig. A.3 and Fig. A.4 that the PPO
algorithm achieves the high throughput while keeping the low AoI without
the knowledge of the traffic distribution. Since the PPO algorithm adapts to
the traffic generation and AoI evolution, the PPO agent flexibly allocates the
network bandwidth.

6 Conclusion

In this paper, we designed a model-free deep reinforcement learning (DRL)
method for optimizing the uplink scheduler. DRL agent guided the sched-
uler to deal with network utilization and UEs age minimization in a sce-
nario with unknown traffic generation. The problem formulation and op-
timization process of AoI provided a theoretical basis for future studies on
next-generation network radio resource management. Moreover, the pro-
posed learning framework of centralized estimation and execution could be
deployed in the real network environment. For our future work, we will
consider learning-based scheduling in heterogeneous network architectures.
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1. Introduction

Abstract

The fast growth of time-sensitive wireless applications motivates us to optimize the
network radio scheduling algorithm. We consider a joint periodic and burst traffic
scheduling problem over a 5G network and design a reinforcement learning method
for the age of information and throughput optimization. The periodic traffic flow is
generated with a fixed frequency, and the Poisson Pareto Burst Process generates
the burst traffic flow. We firstly formulate the scheduling problem as a non-linear
integer programming problem. Then, we focus on the reinforcement learning method
modelling and solve it via the Proximal Policy Optimization algorithm. Our sim-
ulation shows that the suggested reinforcement algorithm outperforms the classical
algorithms without any prior knowledge of the arriving traffic.

1 Introduction

Rapidly growing time-sensitive applications, such as virtual reality, autonomous
vehicles, and tactile internet, raise the importance of network latency in 5G
and beyond 5G mobile communications [1] [2]. One of 5G pillar technologies,
Ultra-Reliable Low-Latency Communication (URLLC) requires fresh data ar-
rival at the destination within a certain period [3]. Due to stringent require-
ments in terms of latency, the network is requested to keep the data at the
destination as fresh as possible. The data "freshness" is evaluated by a new
metric called Age of Information (AoI) [3]. AoI is defined as the time elapsed
since the generation of the status update that was most recently received by
a destination.

In time-sensitive multi-users applications, it is of paramount importance
to optimize resource-allocation such that AoI is minimized across users. A
pivotal aspect to consider in this regard is the nature of the traffic arrivals in
the application, where the basic categories are (quasi-)periodic and burst traf-
fic. Fig. B.1 depicts such a mobile virtual reality scenario that users generate
the burst traffic from their motions and sensors on their VR glass generate
the periodic traffic. Note that most of the available literature on resource al-
location that optimizes AoI assumes homogeneous traffic arrivals; a notable
exception is presented in [4].

Another key parameter of interest in multi-user scenarios is the network
throughput, reflecting the efficiency of the resource use. In practical scenar-
ios, throughput should be taken along the latency-related metrics when op-
timizing the resource allocation [5]. In the context of AoI, resource allocation
that also includes throughput considerations has been seldom investigated.

In this work, we consider a network that serves multiple, time-sensitive
users that generate packets to be transmitted in the uplink according to a hy-
brid arrival model. Each user asynchronously communicates with the base
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Time-Sensitive System

Fig. B.1: Periodic and Burst Traffic over Mobile VR Scenario

station to obtain transmission grants and the corresponding radio resources
for a specific transmission. Our goal is to minimize the average AoI while
maximizing the network throughput. A key problem is how to allocate com-
munication resources such that the goal is met. To this end, we propose a
proactive radio resource allocation method dispatching radio resources ac-
cording to traffic prediction.

Unlike traditional radio resource allocation, our solution does not need
to gather historical traffic information and analysis offline. In contrast, the
base station gradually learns the required radio resources online, relying on
exploration and exploitation in the context of reinforcement learning. Specif-
ically, we propose that base stations utilize the observations from clients as
a guide when making a final resource selection. Based on the observations,
base stations gradually improve the AoI and throughput performance over
the mobile network. To sum up, our contribution in this paper is to design
an age-throughput scheduler using Reinforcement Learning (RL), suitable
for the multi-source hybrid traffic scenario with no provision of the traffic
models at the server.

The rest of this paper is organized as follows. Section 2 presents a brief
overview of the related work. The system model and the problem formula-
tion are described in Section 3. The proposed learning algorithm is presented
in Section 4, whereas the numerical simulations are given in Section 5. Fi-
nally, the conclusions are drawn in Section 6.
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2 Related Work

Recently, AoI modeling and optimization problems for time-sensitive services
have been extensively studied [3] [6]. The existing analytical models formu-
late AoI optimization by considering scheduling policies, packet generation
control, or queue management [3]. Especially for the AoI optimization prob-
lem under throughput constraints [7], [8], prior AoI studies can be classified
into two main categories, single-source traffic and multi-source traffic.

2.1 Single-Source Traffic

The optimal scheduling for a single-source traffic system had been well-
studied. The first AoI paper [6] considered a single-source traffic scenario
with different queue models, FCFS (First Come First Serve) infinite buffer.
The authors in [9] obtain a gamma distribution from Average AoI and Peak
AoI at a single-source node network with an LCFS (Last Come First Serve)
queue. Average Peak AoI expressions are derived for a queueing system
with packet transmission errors with various buffer management schemes
in [10]. Expressions for the steady-state distributions of AoI and Peak AoI
are derived in [11] for a wide range of single-source systems.

2.2 Multi-Source Traffic

The optimal scheduling for a multi-source traffic system had been discussed
in recent research. The analytical results are obtained and the proposed al-
gorithm achieves a desirable optimal solution among known traffic assump-
tions. At [7], the authors propose an optimal transmission scheduling policy
to minimize the average AoI with throughput constraints in a multi-source
system with an always-on traffic assumption. The authors in [12] consider
the problem of minimizing the age of information in a multi-source sys-
tem and they show that for any given sampling strategy, the Maximum Age
First (MAF) scheduling strategy provides the best age performance among
all scheduling strategies. In the paper [13], an age-based scheduler was pro-
posed to combine age with the interarrival times of incoming packets in its
scheduling decisions; consequently, the scheduler can achieve improved in-
formation freshness at the receiver. The authors of [3] and [8] consider a
network serving multi-source traffic using per-source queueing under the as-
sumption of synchronized and random information packet arrivals, respec-
tively, and propose a nearly optimal scheduler. For the particular random
arrivals as this paper, the authors in [3] analyze a stationary randomized pol-
icy for the single-buffer case with optimal scheduling probabilities depending
on the source weights and source success probabilities through a square-root
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relationship. Moreover, they propose an age-based Max-Weight scheduler for
the same system whose performance is better and close to the lower bound.

3 System Model

3.1 Network Model

We assume a time slotted 5G network consists of N UEs which are served
by a single base station (BS). Every UE runs a time-sensitive application that
generates uplink traffic according to the model described in 3.2. Without loss
of generality, we assume that each UE n ∈ N has a limited size of uplink
queue. Let c denote the size of uplink queue in bytes. Each UE notifies the
BS about the size of uplink queue via the 5G New Radio control signal [14]
when requesting uplink transmission in the beginning of a time slot. The BS
allocates the corresponding radio resources to UEs via its resource allocation
algorithm and then reply to the UEs the control information regarding the
granted radio resources. The total radio resources in the BS defined as the
total B bytes. Due to the radio resource limitation, the BS only allows a subset
of m, 0 < m ≤ N, of UEs at a timeslot t to send packets to the server.

3.2 Traffic Model

Data packets that used for time-sensitive services considered in this paper
are divided into two types. The first type refers to periodic packets, contain-
ing some sensory information that should be regularly reported and whose
generation instances are controlled by the users. Specifically, user n gener-
ates periodic packets with a fixed frequency fn, whose value is drawn from
a Gaussian distribution and which are independently and identically dis-
tributed over users. The size of the periodic packets is also fixed on user
basis, and its value for each user is uniformly randomly drawn in the inter-
val [1, d] bytes. Denoting by xn(t) the size of the periodic data generated by
user n in slot t, we have

xn(t) =


dn if

t
fn
∈ Z+

0 if
t
fn

/∈ Z+
(B.1)

where dn ∼ U (1, d).
The other type of packets are burst packets; the bursts are occurring ac-

cording to a Poisson Pareto Burst Process (PPBP) model developed in [15].
The model’s parameters are (r; v; l). Specifically, bursts arrive according to a
Poisson process with rate r, and their lengths are independent and identically
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distributed random variables following a Pareto distribution with parameter
v. Finally, parameter l specifies the data packet length l, which is a constant
value, same for all users. The arrival rate of the burst traffic λ generated from
a PPBP model can be calculated from the variables above:

λ = v× r× l (B.2)

We denote x′n(t) as the size of the bursty data generated by user n in slot t,1

where

x′n(t) =

{
l user n has a burst packet arrival in slot t
0 otherwise

(B.3)

The total amount of data generated by user n in time slot t is xtot
n (t) =

xn(t) + x′n(t), following a memoryless arrival process that is independent
and identically distributed over users. The generated packets are stored at
UE transmitters’ queues, following the FCFS policy. The queue length is fixed
to c and initialized to 0.

3.3 Age of Information

The AoI of each UE is defined as the time elapsed between the current time
and the generation of the latest packet that departed from its transmitter; we
assume that all transmitted packets are successfully received.

We express AoI in number of slots. Specifically, the value of AoI is up-
dated after every slot in the following way. If no packet from UE n is received
by the server in time slot t, AoI is increased by 1. Formally

An(t) = An(t− 1) + 1 (B.4)

where An(t) denotes the value of AoI of user n. Otherwise, if at time slot
t, a packet from UE n is successfully received by the server, the AoI will be
updated as follows

An(t) = t− tG
n (i) (B.5)

where tG
n (i) is the generation moment of the packet that was received in slot

t (denoted by the dummy index i).

3.4 Hybrid Traffic Multiplexing

Given N UEs with different PPBP model parameters and periodic frequency
fn, we assume that each UE has a fixed length queue to store a mix of periodic
and burst traffic. The packet enqueue also follows the FCFS policy. Each UE

1We assume that only a single burst packet can be generated in a slot, which can be justified
by a small slot duration. Effectively, the burst duration is then given in number of slots which is
determined by the burst duration.
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transmits its packets to BS based on the allocated time-slots from the BS
scheduler. If an UE obtains transmission time slots, the UE dequeues at least
one packet to transmit with a first-in-first-out (FIFO) rule. Otherwise, the
UE needs to wait for next time-slots allocation. If the queue was full, all the
incoming packets will be dropped until empty spaces available. In addition,
given a link-layer transmitter buffer size at each UE, the schedule must ensure
that no transmitter buffer violations happen at any UE. For instance, if a UE
was selected to transmit, it must have data in its buffer to be transmitted.

3.5 Radio Resource Allocation Algorithm

The radio resource allocation algorithm aims to schedule the BS radio re-
source blocks to UEs. The scheduling decisions are acknowledged to UEs
right after the uplink transmission requests from the UEs. We define that
Sn(t) is a random variable which indicates the UE n selection result at the
time slot t. To be more specific, Sn(t) = 1 if the BS selects UE n at time slot t,
otherwise Sn(t) = 0. When Sn(t) = 1, UE n transmits a subset of the packets
to the server via the scheduled resource blocks. If an user is selected for trans-
mission at slot t, the allocated channel bandwidth at time slot t to UE n is de-
noted by bn(t), where bn(t) is an integer number of bytes, 0 < bn(t) ≤ B and
∑n∈{S(t)=1} bn(t) = B, where n is the index of selected users in slot t. A fea-
sible schedule at slot t is denoted by S(t) = {S1(t), S2(t), . . . Sn(t), . . . SN(t)},
which belongs to the set of all schedules S.

4 Proposed Model and Algorithm

The goal of our radio resource allocation algorithm is to find an optimal
transmission schedule of all clients to maximize the system-wide utility (i.e.
throughput) as well as minimize the average AoI. Formally, the goal is to
select a schedule S(t) in each time slot t such that

S(t) = argmax
S(t)∈S

N

∑
n=1

[Un(t)− βAn(t)] (B.6)

where β ∈ R is a control parameter; Un(t) is the utility of UE n at time slot t.
The UE and network utility per slot are defined as:

Un(t) =
1

1 + e−(1.5×bn(t)−Xn(t))
Sn(t), 0 ≤ n ≤ N (B.7)

U(t) =
N

∑
n=1

Un(t) (B.8)
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The optimization problem in (B.6) is a non-linear integer programming
problem [16]. Further, the optimization variables in (B.6) include sequential
decisions, which invokes the idea to apply an RL method to solve (B.6). In
this respect, deep reinforcement learning (DRL) was shown to achieve a high
performance on the long-term sequential decision-making problems without
supervision [17–19]. Moreover, DRL-based solutions can provide the deci-
sions in an automatic and zero-touch manner. In addition, DRL is capable of
handling high-dimensional observation-action spaces. These motivate us to
propose a policy-based model-free DRL solution to (B.6), as elaborated next.

We assume a reinforcement learning (RL) agent interacting with a net-
work environment to learn a scheduling policy without prior information.2

To deal with the unknown information in the network environment, an RL
agent gradually learns the scheduling policy by constructing the policy pa-
rameters θt from the network environment observations ot.

In addition, we define the scheduling policy as π(ot, θt) that returns a
schedule S(t) as an action at to satisfy ∑N

n=1 bn(t) ≤ B. The action at repre-
sents which UEs are selected to transmit their packets. For example, if only
S1(t) = S2(t) = 1 in S(t), it means that only UE1 and UE2 are selected to
transmit data with their allocated bandwidth b1(t) and b2(t). The other UEs
are not allowed to transmit data and have to wait for the next action. In
the time-slotted system, every interaction between the agent and the network
environment happens at the beginning of a time slot. In each interaction,
the agent samples the environment to get an observation ot and performs an
action at based on the scheduling policy. After performing the action, the
agent receives a reward rt. Then the agent waits for the time slot t + 1 to
interact with the network environment. The learning process repeats the in-
teractions continuously to approximate the optimal scheduling policy which
obtains the maximal reward. Hence, the objective of learning is to maximize
the expected cumulative reward.

The optimization goal is defined as

J := max
πk

E

[
N

∑
n=1

(Un(t)− βAn(t))

]
(B.9)

s.t. ∑N
n=1 bn(t) ≤ B, πk = S(t)

Our RL agent uses the Proximal Policy Optimization (PPO) Algorithm [17,
18]. This PPO algorithm has become one of the most widely used algorithms
in RL due to its better sample efficiency than other tabular-based RL algo-
rithms.

2If the base station has prior information such as the incoming traffic from the UEs or the
AoI evolution, the base station scheduler can find the optimal scheduling policy by conventional
algorithms.
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Reinforcement Learning Method

Fig. B.2: A Flowchart of the Reinforcement Learning Method

As shown in Fig. B.2, the learning process is a finite loop of K iterations.
In the beginning, the agent will fetch an initial environment observation,
ot=0 = {o1(t = 0)), o2(t = 0)), . . . on(t = 0))}, from the network environment.
The agent observes a set of metrics from on(t) including the buffer status, AoI
value of every UE, and the throughput achieved in the last k iterations. Then
the agent feeds these values to the neural network, which will output the
next action. The next action is defined by which UEs are to be chosen for the
next iteration k + 1, as well as how much bandwidth they will be allocated, at
time slot t+ 1. The scheduling policy is transformed from the action obtained
from the trained neural network. If a UE is selected to transmit packets then
the corresponding bandwidth will be reserved for the UE.

After the new scheduling is deployed to all UEs, a reward is observed
and fed back to the agent. The agent uses the reward information to train
and improve its neural network model.

Our implementation of the PPO algorithm in the scheduling problem is
detailed in Algorithm 2. Starting from the initial parameters, the PPO algo-
rithm optimizes its policy, π, until converges or reaches K iterations. At each
iteration k, the PPO agent collects observation of a time slot. Next, it selects
an action with the current policy. After the agent takes the selected action, the
agent obtains a reward based on the reward function. The reward function
is defined as R(ot, at). In addition, we formulate a Q-value function, a value
function and an advantage function which use to compute the intermediate
values in each iteration:

Qπ(ot, at) = Eot+1,at+1 [γ
tR(ot+1)|ot = o0] (B.10)

Vπ(ot) = Eot+1,at [γ
tR(ot+1)|ot = o0] (B.11)

where γ is a discount factor, γ ∈ [0, 1], and

Aπ(ot, at) = Qπ(ot, at)−Vπ(ot) (B.12)
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Then we construct the surrogate loss on these observations and optimize
policy with stochastic gradient descent (SGD) for e epochs and minibatch size
B.

Algorithm 2: Proximal Policy Optimization Algorithm
Input: An initial policy with parameters θ0 and initial observation o0
for k = 1, 2, 3, · · · until k = K or convergence do

Update age and bandwidth request based on observation ok.
Take scheduling action using policy π = π(θk).
Compute advantage estimation based on the value function˙

Optimize surrogate function ∇J with respect to θk using e epochs
and minibatch size B.

θk ← θk+1
end

5 Simulation

The performance of our method presented in Section 4 by simulation. The
simulation is implemented using the network simulator (NS3) [20] to obtain
the system-level performance. Furthermore, we use a round-robin method as
baseline 1 and a proportional-fair approach as baseline 2 [21]. Table B.1 lists
the simulation parameters in NS3.

Table B.1: Simulation Parameters

Parameter Name Value
Number of UEs N 20
Slot Duration τ 1 ms
Periodic Packet Size (d) 2048 bytes
Burst Packet Size (l) 1024 bytes
Numerology 0
Duplexing TDD
Bandwidth 20 MHz
Transmission Power 20 dBm
Propagation Model TR 38.901

5.1 Simulation Environment

To construct a 5G environment, we updated the NS3 LTE module. The mod-
ulation and coding schemes, as well as the assignment of resource blocks
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(RBs), are all based on the standard [22–24]. The base station is installed at
a permanent point in the service area, and users are scattered evenly in an
80*80 meter service area. The N users will be randomly assign high-load
burst traffic according to the ratio of high-load users in total users. A simu-
lation time was set to 900 seconds guarantee that sufficient training samples
were gathered. The periodic packet arrival rate for each UE n is a random
variable using a normal distribution with a mean frequency range between
[60Hz, 1300Hz]. The periodic packet arrival rate variance is 9000 Hz. On the
other hand, the mean burst traffic duration is v = 0.6 seconds. Both of the pe-
riodic and burst packet distribution will be used as a known parameter only
in the Proportional-Fair algorithm. In terms of the actor’s parameters, we set
the batch size to B = 80. Then, to implement the Proximal Policy Optimiza-
tion (PPO) algorithm, we are using a three-layer deep neural network (DNN)
with hyperbolic tangent (Tanh) activation function, Adam optimizer, and ini-
tial learning rate of 0.0003. Critic’s neural network topology, on the other
hand, begins with an action-appended input layer. It then links to a fully
connected hidden layer and an N-output output layer. The critic also uses
the Tanh activation function and Adam optimizer; the initial critic learning
rate is set to 0.001.

5.2 Simulation Results

We compare the performance difference between our method and the fol-
lowing two scheduling algorithms in terms of the average network AoI and
average network throughput.

1. Round-Robin (RR), where all RBs are evenly allocated to each UE;

2. Proportional-Fair (PF), where all RBs that are allocated depend on the
known arrival traffic distribution;

3. Proximal Policy Optimization (PPO), where all RBs are allocated by the
prediction from our RL agent.

We now present our simulation results based on the two baseline algo-
rithms and the proposed PPO algorithm 2. Fig. B.3 shows the average AoI
and Fig. B.4 presents the network throughput as functions of the mean traffic
generation frequency. The RR algorithm has the worst AoI performance and
the lowest throughput due to the full fairness for each UE. The PF algorithm
has better AoI and throughput performance than RR algorithm because the
data generating distributions over the network nodes are known parameters.
It can be seen that the PPO algorithm outperforms the RR and PF algorithms
at the heavy traffic condition without any proprietary parameters from the
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Fig. B.3: Average AoI in different Packet Generation Rates

UEs. Finally, in the PPO algorithm, the scheduler outperforms the RR al-
gorithm and achieves better performance than the PF algorithm, despite the
lack of knowledge of the data generating distributions.

5.3 Discussions

If the BS can provide enough radio resources per time slot to satisfy the traf-
fic requirements from all UEs, there is no network backlog. However, if the
number of heavy-load UE increases, the network performance becomes worse
due to congestion. As illustrated in Fig. B.3, while the congestion condition
happened, the RR scheduler allocated bandwidth sequentially that caused
the worse AoI and throughput performance under network backlog. From
our simulation, when the ratio of heavy traffic UEs achieves 20%, the RR al-
gorithm has the lowest throughput and the highest AoI performance because
the RR algorithm does not allocate radio resources reflecting the individual
traffic load. The PF algorithm has a better AoI and throughput performance
than the RR algorithm due to the proper radio resource allocation from the
known network traffic distribution. But in the practical system, it is difficult
to obtain the timely traffic distribution in advance. It can be seen in Fig. B.3
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Fig. B.4: Average Throughput in different Packet Generation Rates

68



6. Conclusion

and Fig. B.4 that the PPO algorithm achieves the highest throughput while
keeping the lowest AoI without the knowledge of the traffic distribution.
The PPO agent can approximate the optimal network bandwidth allocation
because the agent predicts the AoI evolution and future traffic generation and
mitigate the network backlogging.

6 Conclusion

The wireless resource allocation method is investigated in this study in the
context of the AoI and utility trade-off. The suggested technique uses deep
reinforcement learning to gradually learn from previous transmissions in or-
der to optimize the clients’ radio resource occupancy decisions. In addition,
a strategy model combining neural networks and reinforcement learning was
developed. When compared to a decision algorithm with known traffic pat-
terns, this strategy model can effectively minimize the AoI. The simulation
also demonstrates that this technique outperforms the two benchmarks in
terms of the minimum AoI and the maximum throughput. Our next step is
to explore switching alternative resource management techniques to build a
full solution for proactive network resource management based on diverse
network conditions. In the future, we’ll look at optimizing models for var-
ious reinforcement learning approaches depending on the data available on
the network.
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1. Introduction

Abstract

Network Slicing (NS) is crucial for efficiently enabling divergent network appli-
cations in next-generation networks. Nonetheless, the complex Quality of Service
(QoS) requirements and diverse heterogeneity in network services entail high com-
plexity for Network Slice Provisioning (NSP) optimization. The legacy optimization
methods are challenging to meet various low latency and high-reliability require-
ments from network applications. To this end, we model the real-time NSP as an
Online Network Slice Provisioning (ONSP) problem. Specifically, we formulate the
ONSP problem as an Multi-Objective Integer Programming Optimization (MOIPO)
problem. Then, we approximate the solution to the MOIPO problem by applying
the Proximal Policy Optimization (PPO) method to the traffic demand prediction.
Our simulation results show the effectiveness of the proposed method compared to
the state-of-the-art methods with a lower SLA violation rate and network operation
cost.

1 Introduction

Network Slicing (NS) is essential in the next-generation mobile wireless net-
works [1]. It enables efficient connectivity to various services with diverse
requirements by instantiating multiple logical networks on top of the sub-
strate, i.e., the physical network infrastructure. Note that some emerging 5G
services, such as those related to the Ultra-Reliable Low Latency Commu-
nication (URLLC), require dedicated network resources to achieve the strin-
gent quality of service (QoS) requirements. NS can offer dedicated network
resources for multiple network services mapped and managed over a phys-
ical wireless network infrastructure [2]. In that respect, a network slice can
be considered as a self-contained logical network with its physical network
resources, topology and traffic flows with established QoS requirements [3].

In addition, Virtual Network Functions (VNFs) bring higher levels of flex-
ibility as VNFs can be anchored at different network locations and scaled
flexibly with NS to meet the fluctuating user traffic demands, thus allowing
for efficient on-demand Network Slice Provisioning (NSP). A network slice
incorporates a set of VNFs organized in different suitable locations across the
transportation paths and depending on the needs of the service. However,
real-time and high-quality resource provisioning for multiple network slices
is a formidable task, proved to be NP-hard [4].

In order to address this hurdle, the Cloud-native Network Functions (CNFs)
have been actively considered and standardized within the 3rd Generation
Partnership Project (3GPP) [5]. According to the latest 3GPP architecture [6–
8], We construct slices as CNFs’ interconnections in our NS paradigm, which
align with the conventional notion of VNFs.
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Fig. C.1: Example of a slice constructed from the source node to the destination node.

Within the paradigm, a slice instance should be constructed by related
CNFs’ interconnections for a user traffic demand request. We further separate
the CNFs’ interconnections into the data rate and delay arrangements over
the physical network infrastructure. Fig. C.1 presents how the network slice
controller constructed a network slice via associating network resources with
a suitable route. Without loss of generality, a network service provider can
append more network resource variables other than the data rates and delays
to the paradigm.

This paper investigates efficient slice provisioning as the CNFs’ network
resource provisioning in the NS paradigm. We focus on the data rate and
delay arrangements for the slice provisioning. Our contributions include
formulating a multi-objective optimization model and subsequent deep re-
inforcement learning framework to optimize the network slices provision
whilst being robust to unknown traffic demand fluctuation of the users. The
robustness in provisioning is achieved by providing a probabilistic guarantee
that the amount of provisioned slices will meet the slice QoS requirements.
We implement the deep reinforcement learning framework by using Proximal
Policy Optimization (PPO) algorithm [9] with two neural networks as a value
function and a policy function pair. Under this framework, the network slice
controller determines its slice provisioning by the optimal QoS-dependent
policy from the PPO algorithm. The problem is then solved by approxi-
mately the optimal solution with the joint slices allocation and demands pre-
diction. To illustrate the distinction of the computational performance, we
implement a suboptimal approach as a performance benchmark where slice
provisioning demands are considered in a batch form, i.e., as several groups
sequentially. Both solutions are compared to a nominal provisioning scheme
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that only processes the current user demand without considering relations
between the slice provisioning demands. Through extensive simulations, we
show that our proposed algorithm can reduce the network operation cost
while keeping a low Service-Level Agreement (SLA) violation rate.

The rest of this article is structured as follows. Section 2 analyzes related
work and highlights our contributions. The mobile network model, user de-
mand requests and the network slices are presented in Section 3. The online
NSP problem with uncertainties in the number of users and the associated
traffic demands is then formulated in Section 4. Next, we present the existing
approaches and our reinforcement learning method to solve the robust NSP
problem in Section 5. Section 6 presents numerical results. Finally, Section 7
concludes our perspectives.

2 Related Work

Software-Defined Network (SDN) uses programmable controllers to provide
flexible and cost-effective network services in next-generation networks. NSP
is a crucial function of SDN for supporting dynamic user demands in differ-
ent network services. The main challenge for the NSP is to optimize the
deployment of slices across the physical infrastructures matching network
services constraints. Therefore, we review the existing NSP design and orga-
nize the related solutions to the NSP optimization problem.

A slice is realized as a concatenation of communication (wired-cum wire-
less links) and computing resources that can span across the Radio Access
Network, Transport Network, or Core Network [10]. In the context of rule-
based solutions, the authors in [11] propose a practical NS implementation.
The proposed model provides an efficient solution by analyzing historical
NS information but the network slices assigned to the same tenant cannot
overlap in time. The research in [12] considers the slice provision with VNF
placement for the SDN-based 5G mobile-edge cloud. Their algorithm pro-
vides a flexible slice provision by placing VNFs in distributed data centers.
Similarly, the work in [13] describes a VNF placement algorithm with empha-
sis on the mobile core network, exploiting the cost of placement to allocate
the VNFs. Their problem formulation takes physical network constraints into
account for different network service capacity and connectivity.

On the other hand, the deep reinforcement learning solutions for dynamic
demand optimization continuously attract the attention of researchers. The
authors of [14] propose a novel framework that uses assured resources which
are offered based on the forecast of the user demands. According to the
framework, the designed stochastic algorithm can handle the trade-off be-
tween the traffic uncertainty in the forecast and overbooking. The work [15]
designed a hybrid machine learning model for spatiotemporal prediction,
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where an autoencoder models the spatial dependence, and the temporal de-
pendence is captured by a Long Short Term Memory neural network. We
also mention [16] that proposes a heuristically-controlled A3C algorithm to
demonstrate network slice provision with dynamic traffic.

To the best of our knowledge, this work presents the first attempt to use
Proximal Policy Optimization (PPO) algorithm in multi-objective network
slice provisioning. More specifically, we formulate the network slice pro-
visioning problem as a multi-objective integer programming optimization
problem. Then we propose a deep reinforcement learning framework that
allows for online provisioning, which jointly considers the fairness of slice
provision and the cost of network operation.

3 System Model

We assume the system is time-slotted. Each action, such as time increment
or user demand request arrival, happens at the beginning of a slot and com-
pletes before the end of that slot.

Network Model

The network is modeled as an undirected graph G = (V ,L), where V denotes
the set of network nodes and L is the set of undirected wired-cum-wireless
links that constitute the deployed physical infrastructure in the network. By
li,j ∈ L we denote a link between nodes vi and vj (vi, vj ∈ V). The nodes
in the graph represent either a radio access network component, e.g., a base-
station (BS), a transportation regional network component or a core network
element. We assume that all network nodes are virtualized, which means
that they are capable of running virtual machines and/or containers over the
corresponding physical (bare metal) machine capabilities. Furthermore, we
denote the available link capacity as a vector C = [C1,1, . . . , Ci,j, . . . , CV,V ],
where each element Ci,j ≥ 0 is the capacity of direct link li,j between nodes vi
and vj; if there is no link between vi and vj, then the value of Ci,j is zero. We
also denote the occupied link capacity as a function

0 ≤ α(i, j) ≤ Ci,j. (C.1)

The delay of the links is given in the vector D = [D1,1, . . . , Di,j, . . . , DV,V ],
where each element Di,j ≥ 0 express the delay between vi, and vj.
The active network operation cost of links in L is given by the vector P =
[P1,1, . . . , Pi,j, . . . , PV,V ], where each element Pi,j ≥ 0 is the active operation
cost between nodes vi and vj.1

1If there is no link between vi and vj, then we assign the maximum available integer value to
Di,j and Pi,j in our simulations to represent the disconnected scenario.
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User Demand Model

We assume that the user demand requests at a time slot t is a set, denoted
by R(t). Each request r, r ∈ R(t), comes from a network application of
an user, asking for a network slice template at time slot t. All requests are
generated according to a Poisson arrival model determined by a aggregate
arrival rate λ (requests/slot). A user demand request is represented as a
tuple r = {vs, vu, br, dr, Tr, ar, hr}. where vs and vu denote the source and
destination nodes respectively, br is the required data rate, dr denotes the
delay requirement, and the demand type is expressed as Tr. Further, the
initial time slot of the demand is ar and the demand life time is hr slots. Thus,
the demand will start from the time slot ar, continue for hr slots, and becomes
terminated at the time slot t = ar + hr. We assume there are finite number
of demand types and network nodes. When the network slice controller
receives a request, the controller decides whether to accept or reject it in an
online manner.

For example, at a time slot t = t1, request set R(t1) is handled by the
slice controller and then the appropriate network slices are constructed for
the requests. If a request r ∈ R(t1) cannot be served at t1, it will be stored in
a queue until the time reached the time slot (t = ar + hr). Thus, at any time
slot t there are a set of requests, R(t), that includes both new arrived requests
as well the backlogged requests (i.e. the requests that are in the queue, which
currently cannot be served and whose termination time has not yet expired).

Network Slice Model

Each slice n can be denoted as

n = {vn,s,r, vn,u,r, En,r, yn,r, Tn,r} (C.2)

where s is the index of source node vn,s,r, u is the index of destination node
vn,u,r; (vn,s,r, vn,u,r ∈ V). Further, En,r is a set of virtual links En,r = {en,r

i,j } with
defined provisioning resources. Each virtual link en,r

i,j ∈ En,r can be mapped
to one and only one physical link li,j between node vi and node vj, and En,r
is a loop-free path, starting from vn,s,r and ending at vn,u,r. The loop-free
path represents the connectivity constraints of the slice n. The capacity and
delay constraints of a virtual link en,r

i,j are the same as the ones of the mapped
physical link li,j. The slice load is yn,r, which means each en,r

i,j ∈ En,r occupies
yn,r capacity of link li,j; therefore en,r

i,j = yn,r yn,r ≤ min∀en,r
i,j ∈En,r

αi,j. The type

of slice is denoted as Tn,r which is allocated according to the demand type.
Finally, the slice delay is ∑∀en,r

i,j ∈En,r
Di,j, where i, j are in en,r

i,j ∈ En,r. A feasible

slice can only be provided by its slice controller by fulfilling the connectivity,
capacity and delay constraints.
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Fig. C.2: Network Slices Mapping Demonstration

4 Problem Formulation

Our goal is to generate network slices that accommodate the underlying user
requests in terms of data-rate and latency whilst maximizing the deployment
fairness and minimizing the deployment cost, formally defined later in the
section. In particular, we avoid network congestion at some links by maxi-
mizing the deployment fairness. To this end, we fairly distribute requests to
the whole network. We also consider the co-existence of multiple slices on
the same physical network and assume that each slice serves network traffic
from a single source to a single destination, and therefore we represent a slice
by a source-destination pair.

For each user traffic demand r, the NS controller aims to generate an
appropriate network slice n to serve r. For example, in Fig. C.2, there is user
request set R and link set L. The NS controller aims to construct a set of
network slices N to serve R using (a part of) link set L. A request r, ∀r ∈ R,
can only be served by a single slice n, n ∈ N, and each n consists of a subset
of L. A virtual link en,r

i,j comes from slice n and request r. Moreover, the
virtual link en,r

i,j is made by the physical link li,j between node vi and node vj
in L.

The slice generation procedure can be decomposed into two steps. The
first step is to find potential end-to-end routes which can be utilized for re-
quest r from its source node vn,s,r to its destination node vn,u,r. The second
step is to find a route which can minimize the objective function while satis-
fying the constraints. To represent the link utilization, we define a utilization
matrix X: for each matrix element, xn,r

i,j , if slice n from request r utilizes link
li,j, then xn,r

i,j = 1, otherwise, xn,r
i,j = 0. Since multiple slices share the same

physical network, the bandwidth allocation at each virtual link shall not ex-
ceed the available physical link bandwidth. We formulate the global network
constraint as

∑
∀n∈N
∀r∈R(t)

xn,r
i,j · e

n,r
i,j ≤ Ci,j. (C.3)

In addition, each virtual route in slice n mapped onto the physical links
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should satisfy the requested user traffic volume

min
∀en,r

i,j ∈En,r
α(i, j) ≥ br. (C.4)

Moreover, each virtual route in slice n should also satisfy the requested user
traffic latency

∑
∀n∈N
∀r∈R(t)

xn,r
i,j · Di,j ≤ dr. (C.5)

From the above constraints and matrices, we formulate the Online Net-
work Slicing Provisioning (ONSP) problem as: Given the user demand requests,
R(t), how to generate a set of slices N with minimum cost and maximum fairness
to transmit the user traffic?

Specifically, the cost objective function is defined as the summation of all
the slices’ cost in Eq. (C.6) below.

f1 = min ∑
∀n∈N
∀li,j∈L

xn,r
i,j · Pi,j (C.6)

The cost optimization strategy tends to prioritize the low-cost virtual links
during slice provisioning. However, the priority of low-cost links should be
limited within a proper level. Therefore, we refer [17] to define the fairness
objective function as the ratio of allocated data rate and available data rate
Eq. (C.7) below.

f2 = max

(
∑ ∀n∈N
∀li,j∈L

α(i, j)
Ci,j

)2

|N|∑ ∀n∈N
∀li,j∈L

(
α(i, j)

Ci,j

)2 . (C.7)

The ONSP problem is then reformulated as a Multi-Objective Integer Pro-
gramming Optimization (MOIPO) problem to construct a route for a slice,
and Breadth-First Search (BFS) search algorithm is used to find the minimal
cost paths through the network. In general, at a timeslot t, given a set of user
demand requests, R(t) as an input, our algorithm aims to generate a set of
network slices N and keep the related bandwidth and latency guarantees for
every network slice.

5 Proposed Framework and Algorithms

Greedy Approach

The greedy algorithm is used as a less computationally intensive benchmark
because it only considers one possible provisioning sequence when allocating
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virtual links. The computational complexity is O(V + L+R). Algorithm 3
shows a greedy ONSP algorithm. An undirected graph, G, and user demand
requests set, R(t), are given as input. We use the cardinality of a set such
as |R(t)| and |Ω| to measure the number of elements in the set |R(t)| and
the set |Ω| respectively. From the graph G and the set R(t), we can ob-
tain the bandwidth constraint functions and latency constraint functions, see
Eq. C.3, C.4 and C.5. Then, the greedy algorithm iterates all requests in R(t)
by a loop with finite steps. For each user demand request r ∈ R(t), we use
the BFS algorithm to search the graph for all possible sets of links that satisfy
the connectivity constraint of r.

A set of links can construct a unique path with a fixed sequence from the
BFS algorithm. If a path can satisfy the connectivity constraint of r, we define
the path is a feasible path. Otherwise, the path is not feasible. Next, we
consider all feasible paths and check the link availability of each path based
on the given bandwidth and latency constraints. If a link is not available, the
corresponding path is skipped. Otherwise, we continue to the next step.

Next, we calculate the cost and fairness values based on the objective
functions. After that, we compare the cost value and fairness value in the
current step with the cost value in the previous step. If the cost value in the
current step is less than the cost value in the previous step and the fairness
value in the current step is higher than the fairness value in the previous
step, we assign the path ω to be a candidate for slice n with respect to the
request r. Next, to generate a slice n by a non-empty candidate. Otherwise,
move to the next feasible path. Finally, we aggregate each slice n as a set N
for output.

Integer Programming Approach

Integer Programming (IP) was introduced to model a series of optimization
problems. Many algorithms had tried to efficiently solve the Integer Pro-
gramming problem such as the Constraint Integer Programming (CIP) [18].
In addition, The CIP method had been proven to be able to obtain the optimal
solution in [18]. The general form of CIP is the following: given an finite set
H of constraints hi : Rn → Z , i = {1, . . . , m}, a variable set X , x ∈ Z , ∀x ∈ X ,
and a vector of objective functions f ∈ Rn, derive an optimal solution θ from
X if the CIP is satisfiable as θ = min{ f TX |hi(X) = true, ∀hi ∈ H}. Each re-
quest at a specific timeslot t in the ONSP problem in Section 4 can be written
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Algorithm 3: Greedy Algorithm
Input: A undirected graph G = (V ,L) and user demand requests, R
Output: network slices, N
Sort the set R by the initial time
for r = 1, 2, 3, · · · until r = |R| do

Find all feasible paths, Ω, based on the BFS algorithm
for ω = 1, 2, 3, · · · until ω = |Ω| do

Check the link availability in ω based on the constraint functions.
Calculate the cost value and fairness value based on the objective

functions.
Compare with the previous cost value and fairness value.
if current value is better than previous value then

Assign the current ω to candidate
end

end
if candidate is not empty then

Generate a network slice n by the candidate
end

end
Aggregate all network slices to N

in the CIP form:

minimize
2

∑
k=1

|N|

∑
n=1

|V|

∑
i=1

|V|

∑
j=1

fk · xij

subject to ∑
n=1,...,|N|

α(i, j) · xij ≤ Ci,j{i, j : eij ∈ L}

∑
∀n∈N

Di,j · xij ≤ di,j {i, j : eij ∈ L}

xi,j ∈ {0, 1}, i, j = 1, . . . , |V|

The considered optimization problem is indeed an integer programming
problem [18]. In each time slot, the slice controller receives a set of user
demands as a request instance, R(t). The goal of IP algorithm is to construct
a set of slices and to satisfy all or part of the requests. The computational
complexity for IP algorithm to search for the optimal solution is equal to
O((V + L)×R(t)×R(t)) [19] .

Deep Reinforcement Learning Approach

Deep Reinforcement Learning (DRL) had been discussed in [20] to solve IP
optimization problems. Hence, we enhance the DRL framework to solve
the formulated ONSP problem under the IP model. The framework aims to
construct an agent in the slice controller for the network slices provisioning.
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The agent will not only learn to find an optimal solution at a specific NSP
instance, but reuse what it has learned in previous instances. In such cases,
the PPO algorithm has been shown to achieve a higher performance than the
other DRL algorithms [21]. This motivates us to embed the PPO algorithm to
our framework.

We assume an PPO agent interacting with a network environment to learn
a provisioning policy without prior information. The state space only in-
cludes the demand requests and network graph. Given a set of demand
requests R(t) the provisioning policy π(ot, θt) returns a subset of R(t) as
an action at to satisfy the network constraints in Eq. (C.3) and (C.4) and the
traffic demand constraints in Eq. (C.5).

The action space consists of a set of actions at to represent which requests
are accepted to transmit in a network slice in slot t. For example, if only
rt

1 = 1 for all rt
i ∈ R(t), it means that only request 1 is accepted to obtain

network resources and to transmit traffic network slice at a time slot t. The
requests for which rt

i = 0 are rejected to construct their network slices and
have to wait for the next action.

Every interaction between the agent and the network environment hap-
pens at the beginning of a slot. In each interaction, the agent samples the
environment to get an observation ot and performs an action at based on the
provisioning policy. After performing the action, the agent receives a reward
R(t). Then the agent waits for the time slot t + 1 to interact with the network
environment. The learning process repeats the interactions continuously to
approximate the optimal provisioning policy, which obtains the maximal re-
ward.

The reward function is defined as follows. If the request r is accepted, the
reward function is

R(t) = ∑
∀n∈N
∀li,j∈L

xn,r
i,j · Pi,j, ∀rt

i = 1. (C.8)

Otherwise, the reward function is

R(t) = ∑
∀n∈N
∀li,j∈L

xn,r
i,j · Pi,j · (−1), ∀rt

i ∈ R(t). (C.9)

In the beginning, the agent will fetch an initial environment observation
o0 from the network environment. The agent observes a set of metrics in each
slot t, ot, including the links’ capacity, bandwidth and latency requirements
of received user demands, and the cost achieved in the last k iterations. Then
the agent feeds these values to the neural network, which outputs the next
action. The next action is defined by which requests are to be chosen for the
next iteration k + 1, as well as how much bandwidth they will be allocated,
at time slot t + 1. The provisioning policy is transformed from the action
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obtained from the trained neural network. If a request is selected to transmit
packets, the required bandwidth will be fully reserved. Otherwise, the re-
quest waits until it gets allocated. After the new provisioning is deployed to
all requests, a reward is observed and fed back to the agent. The agent uses
the reward information to train and improve its model. Our implementation
of the PPO algorithm in the provisioning problem is detailed in Algorithm 4.
Starting from the initial parameters, the PPO algorithm optimizes its policy π
until converging or reaching K iterations. At each iteration k, the PPO agent
collects observation of a time slot. Next, it selects an action with the current
policy. After the agent takes the selected action, the agent obtains a reward
based on the reward functions in Eq. (C.8) and (C.9).

In addition, we formulate a Q-value function, a state value function and
an advantage function, used to compute the intermediate values in each iter-
ation.

Qπ(ot, at) = Eot+1,at+1 [γ
tR(t)] (C.10)

Vπ(ot) = Eot+1,at [γ
tR(t)] (C.11)

Aπ(ot, at) = Qπ(ot, at)−Vπ(ot) (C.12)

where γ is a discount factor, γ ∈ [0, 1].
Then we construct the surrogate loss on these observations and optimize

policy with stochastic gradient descent (SGD) for e epochs and minibatch size
B. The computational complexity of PPO algorithm in testing phase is also
O(V + L+R).

Algorithm 4: Proximal Policy Optimization Algorithm
Input: An initial policy with parameters θ0 and initial observation o0, a set of

user demand requests R(t)
Output: A set of neural network parameters
for k = 1, 2, 3, · · · until k = K or convergence do

Fetch user demand requests, R(t), based on observation ok.
Take action to select user demand requests using policy π = π(θk).
Compute advantage estimation based on the value function.
Optimize surrogate function ∇R(t) with respect to θk using e epochs and

minibatch size B.
θk ← θk+1

end
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Table C.1: Simulation Parameters

Parameter Name Value/Distribution(mean, variance)
Number of Nodes |V| 8
Number of Physical Links |L| 12
Capacity of Links Uniform Distribution (100, 200)
Latency of Links Uniform Distribution (1, 10)
Cost of Links Uniform Distribution (1, 20)
Simulation Duration 1000 slots
Request Demand Requirement (b) Normal Distribution (0, 0.1)
Request Latency Requirement (d) Normal Distribution (1, 0.1)
Request Initial Time ar Normal Distribution (0, 0.1)
Request Life Time hr Normal Distribution (1, 0.1)
Request Arrival Model Poisson Process

6 Numerical Investigations

Simulation Environment

Our simulation is executed on a desktop PC with an Intel i7 CPU and 8
GB memory. To construct a general simulation environment, we refer to the
model in [22] to construct the network graph in our simulation. Because the
MOIPO problem is NP-hard and intractable in a network with large network
node sets and edge sets, we verify the proposed approximate method with
the other two benchmarks on a reduced network scale. Some algorithms
using high-performance computing clusters have been used to solve large-
scale problems, but it is beyond the scope of this paper. Table C.1 lists the
environment parameters in our implementation.

Simulation Results

We validate the performance of the PPO method in terms of the SLA violation
rate and network operation cost. We define the network operation cost is the
summation of all the slices’ costs with respect to the their physical links and
average the cost by all requests. In addition, we define the SLA violation rate
as the ratio between the number of the provisioning requests and the number
of all requests. We also compare the results of the PPO method with the two
benchmarks, Greedy and IP. Fig. C.3 shows the comparison of slice operation
cost, and Fig. C.4 presents the performance difference of SLA violation rate.
The Greedy algorithm has the worst cost performance and the highest SLA
violation rate because the sequential requests processing cannot closely ap-
proximate the optimal solution. The IP algorithm has better performance in
terms of the cost and SLA violation rate as it considers the complete request
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Fig. C.3: Slices Operation Cost with Different User Request Arrival Rate

Fig. C.4: SLA Violation Rate with Different User Request Arrival Rate

set in the course of optimization. On the other hand, we verify the PPO algo-
rithm can learn to approximate the similar network operation cost and SLA
violation rate as the IP algorithm without any prior information used in the
IP algorithm. From Fig. C.4, the reduction in SLA violation rate compared
between CIP and PPO algorithms was ranging from 1.15 to 1.28 times.

7 Conclusion

We studied the NSP optimization problem by considering the cost of network
operation and the fairness of slice provisioning in a virtualized network. To
minimize the network operation cost while maximizing the provisioning fair-
ness, we implement the PPO algorithm in our DRL framework to predict the
incoming user demand and search for the optimal solution to the optimiza-
tion problem. We also implemented two benchmark algorithms to demon-
strate the performance difference. Simulation shows the effectiveness of our
DRL framework compared with the benchmarks.
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1. Introduction

Abstract

Network Slicing has emerged in next-generation networks, enabling a logical net-
work (slice) construction and isolation over shared physical infrastructures. While
Network Slicing Provisioning (NSP) provides fundamental support for slice manage-
ment, solutions for optimal NSP are still at an initial stage. To deploy optimal NSP
solutions to a network environment where a time horizon is considered, augmented
learning capabilities are needed to make the NSP optimization adopt the dynamic
nature of the real network. This paper proposes a reinforcement learning framework
to solve an online NSP optimization problem while achieving robustness against
user traffic uncertainties and reserving effective provisioning. A theoretical analysis
based on competitive ratios has been carried out to investigate the performance of al-
gorithms. Furthermore, we conduct numerical simulations to evaluate the designed
reinforcement learning framework.

1 Introduction

Contemporary telecommunication networks are challenged to simultaneously
satisfy the different quality of service (QoS) requirements from their users.
Communications service providers need to evolve their network implemen-
tations and management protocols to meet those emerging requirements and
then be able to fulfill service-level agreements (SLA) for the users. The chal-
lenges come from the ‘elastic’ user traffic demand where the user traffic loads
and arrivals are dynamic and stochastic. Network Slicing (NS) is a crucial
mechanism enabled by Software Defined Networking (SDN) to allow for flex-
ible network resource reservations and to accommodate the elastic user traffic
demand [1], and [2]. Under the NS framework, service providers can manage
their networks by exploiting NS for proper SLA fulfillment [3]. Within that
context, Network Slicing Provisioning (NSP) is then designed to support the
fundamental NS operations at a slice controller. As illustrated in Fig. D.1,
the slice controller has to consider multiple functional groups, including the
radio access networks (RANs), transport networks (TNs), and core networks
(CNs) to establish end-to-end network slices. The NSP optimization aims to
offer robust NS service which can keep low network operation costs and SLA
violations when the traffic load or arrivals change frequently. Whilst the pro-
posed approaches towards the optimal NSP problem under stochastic traffic
demand are at an embryonic stage, previous literature proved that the NSP
optimization is an NP-hard problem [4].

One of the major NSP research challenges is how to construct the slices
for different user demands while keeping optimal network operation cost
and demand acceptance rate. For example, over-provisioning allocates all
resources to concurrent slices and incurs a high costs. On the other hand,
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Fig. D.1: An illustration of end-to-end network slices

under-provisioning leaves more resources to future slices and thus might
incurs a low demand acceptance rate and a QoS degradation. NSP optimiza-
tion in this regard was studied using a static optimization approach, which
is inadequate when there is uncertainty in user traffic. Such rule-based ap-
proaches cannot adequately adapt to the temporal dynamic traffic changes.

Williamson et al. [5] studied that daily user traffic repeats with some pat-
terns that depend on the weekday. These results have been verified by [6–9]
and [10]. Their results inspire us to exploit the user traffic prediction using
reinforcement learning approaches for NSP optimization as outlined in the
following. The slice controller can learn to construct the slices based on dif-
ferent user demands, where the historical user traffic guides the controller
toward an optimal slicing provisioning policy. We leverage this observation
in that work, showing that reinforcement learning could be one of the solu-
tions to approximate the optimal NSP.

Specifically, the contributions of this paper are summarized as follows:

1. We formulate the NSP optimization problem as an online multi-objective
integer programming problem.

2. We implement a reinforcement learning framework to approximate the
optimal solutions under stochastic user traffic demands.

3. We provide a theoretical analysis based on competitive ratios and show
the error-dependent performance guarantee for all methods under in-
vestigation.

4. From a discrete event simulation, we verify that the proposed frame-
work provides a faster approximation to the solutions from the integer
programming method.
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The rest of this paper is organized as follows: Section 2 discusses related
works. The telecommunication network model, user request model, and net-
work slice model are presented in Section 3. The online network slice pro-
visioning problem is formulated in Section 4. Next, the existing approaches
and the proposed reinforcement learning framework are introduced to solve
the online network slice provisioning problem in Section 5. Section 6 shows
theoretical analysis based on competitive ratios. Section 7 presents numerical
results. Finally, Section 8 concludes this research.

2 Related Work

2.1 Slice Provisioning Problem

In [11], the authors have demonstrated their network slicing implementation.
Their suggested model offers an effective slice provisioning solution by ana-
lyzing historical network slice requests. The paper in [12] considers an NSP
problem with partially unknown resources and user demands. Their model
defined the available network resources and slice resource utilization as a
normal distribution. A customizable factor is then provided to manage the
likelihood of the NSP solution. Instead of providing a sub-optimal method
for the NSP problem, this research investigates algorithms to approximate
the optimal solution to adaptively provision network resources for elastic
user traffic.

2.2 Slice Provisioning Optimization

Due to the variations in slice requests, the NSP optimization problem usu-
ally considers the Virtual Network Functions (VNFs) migration and virtual
links’ construction. Many algorithms were used to approximate the opti-
mal solutions of NSP [4]. Some approximated or heuristic algorithms, such
as differential evolution (DE), particle swarm optimization (PSO), or genetic
algorithm (GA) have been used to solve the NSP optimization problem. How-
ever, the existing research has a few discussions on the topic of online NSP
optimization.

The study in [13] suggested where the VNFs placement should be opti-
mized for the edge part in a telecommunication network. Their optimization
approach aims to distribute VNFs optimally among several data centers. In
addition, the authors in [14] also provided the optimal VNF placement for
the core network. The VNFs were distributed based on the optimal place-
ment cost. During their VNFs allocation, they generally considered physical
network constraints such as processing time, storage capacity, switching ca-
pacity, and services in the physical substrate network. The authors in [15]
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suggested using a GA approach to minimize the compute cost required to
solve the resilient NSP problem, which was demonstrated to outperform the
existing Mixed-Integer Linear Programming solver.

This study extends from the first work delineated in [16], while supple-
menting it with rigorous theoretical analysis and an additional set of perfor-
mance evaluations. The method presented in [16] conceptualizes the migra-
tion of Virtual Network Functions (VNFs) as a merged process of constructing
virtual links. The proposed DRL framework is designed to efficiently approx-
imate an optimal Network Service Provider (NSP) solution for dynamic user
traffic in an online fashion. Hence, we continue the prior research and pro-
vide detailed analysis and findings in this article.

3 System Model

The notations used in this research article have been itemized in Table D.1.
The system was defined as a time-slotted system, and each action, such as
the arrival of a user demand request, occurs at the commencement of a slot
and completes before the termination of that slot.

3.1 Network Model

We assume the network is an undirected graph G = (V ,L), where V repre-
sents the set of network nodes and L signifies the set of undirected wired
and wireless links that comprise the deployed physical infrastructure in the
network. A link between nodes vi and vj (vi, vj ∈ V) is denoted by li,j ∈ L.
The nodes in the graph embody either a radio access network component,
such as a base station (BS), a transportation regional network component, or
a core network element (e.g. IMS or PGW). Specifically, we assume that all
network nodes are virtualized, indicating that they possess the capacity to
operate virtual machines or containers atop the corresponding physical (bare
metal) machine capabilities. Moreover, we denote the available link capacity
as a vector C = [C1,1, . . . , Ci,j, . . . , CV,V ], where each element Ci,j > 0 repre-
sents the capacity of the direct link li,j between nodes vi and vj. If no link
exists between vi and vj, then the value of Ci,j is −1.

We also denote the occupied link capacity as α(i, j), where

0 ≤ α(i, j) ≤ Ci,j. (D.1)

The delay of the links is provided in the vector D = [D1,1, . . . , Di,j, . . . , DV,V ],
where each element Di,j > 0 expresses the delay between vi and vj. The
active network operation cost of links in L is given by the vector: P =
[P1,1, . . . , Pi,j, . . . , PV,V ], where each element Pi,j > 0 constitutes the active op-
eration cost between nodes vi and vj. If there is no link between vi and vj, we
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assign the maximum available integer value to Di,j and Pi,j in our simulations
to represent the disconnected scenario.

3.2 User Demand Model

The set of user demand requests received by the slice controller at the time
slot t is denoted byR(t), comprising both newly arrived request set at t, A(t),
and the active backlogged request set, Q(t− 1).1 According to the standard
document [17], each request r, r ∈ R(t), represents a network slice demand
of a network application from a user at the time slot t. A user demand
request is represented as a septuple r = {vs, vu, br, dr, ιr, ar, hr}, r ∈ R(t),
where vs and vu denote the source and destination nodes respectively. br is
the required data rate, dr denotes the delay requirement, and the demand
type is expressed as κr. The request’s initial time slot is ar and the request life
time is hr slots. All the parameters of user demand requests are unknown in
advance.

A request’s life cycle follows the following procedure. When a request
arrives at a time slot t′, the slice controller must make an irrevocable decision
of whether to (1) accept, (2) buffer, or (3) reject the request at t′. If the request
can be accepted at t′, then the slice controller must construct a slice to serve it.
Then the request will be served starting from the time slot t′ and continue for
hr slots (i.e. if the request can be served at t′, the request will be terminated
at the time slot t = t′ + hr). Otherwise, if the request cannot be accepted at t′

and t′ < ar, the request will be buffered in a queue to wait for a provisioning
opportunity at the next time slot t′ + 1. In the last case, if the request cannot
be served before t′ ≥ ar (i.e. the request expired), the request will be rejected.

All requests arrive according to a Poisson arrival model determined by an
arrival rate λt = λ (requests/slot). In addition, the requests’ parameters are
determined when the requests are generated. We assume that user demand
requests’ generation follows regular temporal patterns [6] and the parameter
generation at every user is based on a priori unknown distribution drawn
from the aforementioned regular temporal patterns. But we assume that the
value of each parameter lies in a range known as a priori. To this end, we have
bmin ≤ br ≤ bmax, dmin ≤ dr ≤ dmax, amin ≤ ar ≤ amax, and hmin ≤ hr ≤ hmax,
for some known constants: bmin, bmax, dmin, dmax, amin, amax, hmin and hmax.

A network slice controller can accept, buffer or reject the user demand
requests by its decisions in an online manner. For example, at a time slot
t = t1, we assume that a request set R(t1) is handled by the slice controller.
And if the appropriate network slices can be constructed for all the requests
in R(t1), the network slice controller accepts the set R(t1). On the other

1The backlogged requests are buffered in a queue at the NS controller if they cannot be served
in the previous time slots. The queue size at the NS controller is large enough to avoid overflow.
A backlogged request is active if its initial time has not yet expired.
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Fig. D.2: Network Slices Mapping Demonstration

hand, if a request r ∈ R(t1) cannot be served at t1, it can be buffered in a
queue and waits for a provisioning opportunity at the next time slot until
the time slot (t = ar). Furthermore, the request will be rejected if the request
cannot be served after the time slot (t = ar).

3.3 Network Slice Model

Each slice n can be denoted by

n = {vn,s, vn,u, En, yn, κn, ιn} (D.2)

where vn,s is the source node and vn,u is the destination node, vn,s, vn,u ∈ V .
En = {en

i,j} is a set of virtual links, with corresponding network resource
reservations. Each virtual link en

i,j ∈ En can be mapped to one and only one
physical link li,j between node vi and node vj, and En is a loop-free path,
starting from vn,s and ending at vn,u. If the loop-free path exists between the
source node and destination node, then the connectivity constraints of the
slice n can be satisfied. If there is no loop-free path between the source node
and destination node, then the slice n cannot be created. 2

As presented in Fig. D.2, each slice n consists of at least one physical link
l and can carry exactly one request r. The capacity and delay constraints of a

2The loop-free path search doesn’t include the capacity and delay constraints of the path.
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Fig. D.3: Time Series of Network Slices Provisioning

virtual link en
i,j are the same as the ones of the mapped physical link li,j. The

slice load is yn, which means that each en
i,j ∈ En occupies yn capacity of link

li,j. Therefore
yn ≤ min

∀en
i,j∈En

α(i, j) (D.3)

The slice delay κn is ∑i,j s.t. en
i,j∈En Di,j. The slice type is denoted as ιn,

allocated as the same as the demand type. A feasible slice can only be pro-
vided by its slice controller by fulfilling the connectivity, capacity and delay
constraints of its user demand request.

In addition, we assume the coexistence of multiple slices on the same
physical network, and each slice serves network traffic from a single user
demand request. Therefore, we represent a slice by a path containing the
source-destination of the request.

4 Online Network Slice Provisioning Problem For-
mulation

This section introduces the formulation for generating network slices that
accommodates the underlying user requests regarding data rate and latency
while minimizing the network operation cost and SLA violation rate.

4.1 Time Series Model

The network operates in a time-slotted environment, and the entire time in-
terval is divided into T short time slots. For each time slot t = 1, 2, . . . T ,
the new user demand requests dynamically arrive according to an unknown
independently and identically distributed (i.i.d) Poisson distribution with ar-
rival rate λt = λ.

For each user demand request r at a specific time slot t, the NS controller
aims to generate a network slice n to serve r. If a request is unserved at
t, it will be buffered at the controller’s queue until its initial time expires.
The new arrival requests at time slot t + 1 and buffered requests at time
slot t compose an artificial arrival rate, λ̃t+1. The buffered requests at the
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controller’s queue are denoted by the backlogged request set, Q(t), which
can be carried to time slot t + 1. In addition, we define the backlog rate as ϱt,
which means the rate of unserved requests buffering at the NS controller’s
queue. Let Pt(Q) be the probability of user requests being buffered at the NS
controller under a network environment in time slot t.

Hence, the backlog rate ϱt is given by

ϱt = λ̃tPt(Q) (D.4)

We assume that λ0 = ϱ0 = 0 in slot t = 0 and λt = λ and then we can get
the total rate recursively through

λ̃t+1 = λt+1 + ϱt = λ + λ̃tPt(Q) (D.5)

Fig. D.3 illustrates four instances of user demand requests with the time
slots are displayed on the x-axis. We assume the arrival rate, λt, and the
backlog rate, ϱt, are zero in the beginning (i.e. λ0 = ϱ0 = 0). We expect λ1

requests arrived at slot t = 1 and therefore the artificial arrival rate λ̃1 = λ1. If
ϱ1 = λ̃1P1(Q) requests are buffered, we will have ϱ1 requests to be conveyed
to the next time slot t = 2. Such iterations will continuously repeat until time
slot T .

By using the adjusted Pollaczek-Khinchin’s equation [18], the expected
queue length, E[R(t)], at the NS controller can be estimated. We assume the
effective service rate of the NS controller is µ, and µ > λ̃t(1 + Pt(Q)). More-
over, the utilization of the NS controller is denoted by ρ = 1/(1 + Pt(Q)).
Because of ρ < 1, the expected queue length is finite. The accurate value of
queue length will be statistically calculate by simulations.

In order to construct numerical simulation, we define the number of re-
quests at time slot t is |R(t)|, and the number of slices at time slot t is |Nt|.
We derive the constraint functions as following: since multiple slices share
the same physical network, the data rate allocation at each virtual link shall
not exceed the available physical link data rate. We can obtain the global
network data rate constraint in Equation (D.6)

|Nt |

∑
n=1

ynxn
i,j ≤ Ci,j, ∀li,j ∈ L. (D.6)

Furthermore, for the slice n of request r, at each time slot t, every virtual
route mapped to the physical links should satisfy the volume of traffic re-
quested by the user. Hence, the data rate constraint for each link is shown in
Equation (D.7)

min
∀en

i,j∈En
α(i, j) ≥ yn, ∀n ∈ Nt. (D.7)
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On the other hand, in the slice n of request r, each virtual route assigned
to the physical links should also satisfy the requested user traffic latency.

∑
∀en

i,j∈En

Di,jxn
i,j ≤ κn, ∀n ∈ Nt. (D.8)

The network operation cost objective function is defined as

f1 = min ∑
∀li,j∈L

Pi,jxn
i,j, ∀n ∈ Nt (D.9)

Next, we can define the SLA violation rate as

|R(t)| − |Nt|
|R(t)| (D.10)

And the SLA objective function is defined as

f2 = min
|R(t)| − |Nt|
|R(t)| (max

∀i,j∈PPP
Pi,j)|V||R(t)| (D.11)

The SLA objective function demonstrates the penalty of the rejected re-
quests at the NS Controller. We use the maximum link operation costs to
normalize the value difference between SLA violation rates and network op-
eration costs. Therefore, we can incorporate SLA violation rate into an unified
evaluation of the ONSP optimization problem.

The NSP optimization problem is then formulated as a multi-objective
optimization problem to construct a route for a slice. Moreover, the details of
online optimization will be elaborated in the next section.

4.2 Online NSP Optimization Problem

The user demand requests are indeterminate before they arrive at the NS con-
troller; thus, Network Slice Provisioning (NSP) requires online optimization
to process the uncertainty of requests. Specifically, we consider the uncer-
tainty in the number of requests per time slot |R(t)|, as well as the requests’
source node, destination node, required data rate, delay, and the requests’
initial time and life time. The NS controller generates network slices to serve
the user demand requests and the slice generation procedure can be decom-
posed into two steps. The first step aims to find potential end-to-end routes
which can be utilized for request r from its source node vs to its destination
node vu. Then a slice’s source and destination nodes can be determined as
vn,s and vn,u accordingly. The second step is to find the optimal route that
can minimize the objective function while satisfying the constraints. To this
end, we define the matrix X, and for each element of the matrix, xn

i,j, if slice
n utilizes the link li,j, then xn

i,j = 1, otherwise xn
i,j = 0.
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From the above steps, we can further construct the NSP optimization
problem as follows: given a set of user demand requests, R(t) = A(t) +
Q(t − 1), at time slot t, how can a set of slices Nt be generated with the
minimum cost and minimum SLA violation to transmit user traffic satisfying
network constraints?

If we jointly consider a series of time slots, T , in the practical network
environment, the NSP optimization problem can be cast as an online NSP
(ONSP) optimization problem. Because of the total network capacity limita-
tion or the bottleneck over a period of time, there may be only a subset of user
demand requests that can be served by the slice controller (i.e. |Nt| ≤ |R(t)|).
In this ONSP problem, we use z to represent a decision vector at each time
slot t. For each vector element, zr, is a binary variable representing the deci-
sion of request r such that

zr =

{
1 if request r is selected to be served
0 otherwise

(D.12)

For every time slot in a period, T , each arrival request has input param-
eters about its demand information; the slice controller then processes each
of its demand and reserves network resources for the corresponding network
slice. The decisions to be made at every time slot are which requests are
being processed and which slices are being constructed. A solution must
satisfy the slice demands and the network constraints, while minimizing the
network operation cost and the SLA violation rate. We can further formulate
the ONSP problem via a set of objectives and constraints as follows in (D.13).
The summation (D.13a) represents a joint objective function of this problem
where each slice n is associated with its rate and latency requirements. In ad-
dition, the inequalities in (D.13b) and (D.13c) express that no slice data rate
allocation can exceed the available physical link data rate, and no slice delay
is larger than the user-tolerable delay. The constraints from (D.13d) to (D.13f)
limit the size of solutions.
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minimize
T
∑
t=0

(|Nt |

∑
n=1

f1 + f2

)
(D.13a)

subject to
li,j∈L

∑
i,j

|Nt |

∑
n=1

ynxn
i,j ≤ Ci,j (D.13b)

∑
∀en

i,j∈En

Di,jxn
i,j ≤ κn (∀n ∈ Nt) (D.13c)

|R(t)|

∑
r=1

zr = |Nt| (∀r ∈ R(t)) (D.13d)

xn
i,j ∈ {0, 1} (∀n ∈ Nt; i, j : li,j ∈ L) (D.13e)

zr ∈ {0, 1} (∀r ∈ R(t)) (D.13f)

The ONSP problem in (D.13) has only a theoretical interest since it as-
sumes that we have arrivals information in each timeslot. Hence, it can be
solved by an oracle (i.e., the demand arrivals are fixed in every slot, or all
the demands can be obtained offline when the provisioning is decided), and
the solution will be optimal. Hereafter, we propose a reinforcement learning
framework in Section 5 to approximate the optimal solution derived by the
oracle.

5 Methods in the Proposed Framework

5.1 Reinforcement Learning Framework

We propose an Reinforcement Learning (RL) framework (shown in Fig. D.4)
to approximate the optimal solution of ONSP problem, i.e., the solution after
checking all requests in all timeslots. The RL framework is used to predict
the information of future request arrivals which an optimization solver re-
quired in each timeslot. The framework operates as follows. Users send
varied network slice requests to the slice controller. The slice controller con-
sists of an agent, an optimization solver (e.g. integer programming solver
or greedy solver). Next, the agent determines the batch size of integer pro-
gramming solver by deploying an RL agent. The agent calculates the batch
size according to the batch size prediction model. Then, the integer program-
ming solver uses the agent’s outputs to provision network slice requests. The
model should achieve the network operation cost objective and SLA viola-
tion objective. The agent learns to decide the batch size that minimize the
network operation cost and the penalty of SLA violation by considering the
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Fig. D.4: The Proposed Reinforcement Learning Framework

information on states and rewards from interaction with the network by the
reinforcement algorithm in Section 5.4.

5.2 Greedy Approach

The most rudimentary algorithm to address the ONSP problem is the greedy
algorithm, as demonstrated in Algorithm 5. A bidirected graph, G, and a
user demand request set, R(t), are provided as inputs. We further define Ω
as the set of all feasible paths originating from R(t). The cardinality of a set,
such as |R(t)| and |Ω|, indicates the number of elements in the set R(t) and
the set Ω, respectively.

For each user demand request r ∈ R(t), we employ the Breadth-First
Search (BFS) algorithm to search in G for all feasible paths that satisfy the
connectivity constraint of r. If a path fulfills the connectivity constraint of
r, we designate the path as a feasible path; otherwise, the path is deemed
infeasible. Furthermore, from the graph G and the set R(t), we can derive
the data rate constraint functions and latency constraint functions, as shown
in Equation (D.6), (D.7), and (D.8). Next, we consider all feasible paths and
evaluate the link availability of each path based on the given data rate and
latency constraints. If a link is unavailable, the corresponding path is pruned;
otherwise, we proceed to the subsequent step. The greedy algorithm then
iterates all requests in |R(t)| within a loop containing a finite number of
steps.

Subsequently, we calculate the cost value and SLA violation rate based on
the objective functions. We then compare the cost value and SLA violation
value in the current step with the cost value in the previous step. If the
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cost value in the current step is lower than the cost value in the previous
step and the SLA violation value in the current step is higher than the SLA
violation value in the previous step, we assign the path ω to be a candidate
for slice n with respect to request r. Next, we generate a slice n with a non-
empty candidate; otherwise, we advance to the next feasible path. Finally, we
aggregate each slice n to form a set Nt for output.

Algorithm 5: Greedy Algorithm
Input: Given a set of user demand requests, R(t) and a bidirected graph

G = (V ,L)
Output: a set of network slices, Nt
Sorting the set R(t)
for r = 1, 2, 3, · · · until r = |R(t)| do

Find all feasible paths, Ω, based on a searching algorithm
for ω = 1, 2, 3, · · · until ω = |Ω| do

Check the link availability in ω based on the constraint functions.
Calculate the cost value and SLA violation value based on the

objective functions.
Compare with the previous cost value and SLA violation value.
if current value is better than previous value then

Assign the current ω to candidate
end

end
if candidate is not empty then

Generate a network slice n by the candidate
end

end
Aggregate all network slices to Nt

5.3 Integer Programming Approach

Integer Programming (IP) is a mathematical formulation model to solve op-
timization problems. Many algorithms have been proposed to efficiently
solve the IP problem such as the Constraint Integer Programming (CIP)
algorithm [19]. In particular, the CIP method was proven to be able to
obtain the optimal solution for an IP problem [19]. The general form of
CIP is the following: given a finite set H of constraints hi : Rn → Z,
i = {1, . . . , m}, a variable set X , x ∈ Z, ∀x ∈ X , and a vector of objective
functions fff ∈ Rn, derive an optimal solution θ from X if the CIP is satisfiable
as θ = min{ fff TX |hi(X ) = true, ∀hi ∈ H}.

In addition, at each time slot t, the ONSP problem in Section 4, can be
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presented in the IP form with two constraint functions as following:

minimize
|Nt |

∑
n=1

f1 + f2

subject to ∑
∀n∈Nt

ynxn
i,j ≤ Ci,j {∀i, j : li,j ∈ L}

∑
∀en

i,j∈En

Di,jxn
i,j ≤ κn{∀n ∈ Nt}

xn
i,j ∈ {0, 1} {∀n ∈ Nt; i, j : li,j ∈ L}

(D.14)

As a result, we implement the IP algorithm as a benchmark method for
solving the ONSP problem. The complete IP algorithm is presented as Algo-
rithm 6.

Algorithm 6: Integer Programming Algorithm
Input: An initial state with batch size β, a set of user demand requests R(t)
Output: A set of slices
for k = β, β− 1, β− 2, · · · until k = 0 or found optimal solution do

Fetch user demand requests, R(t), based on k
Solve problem (D.14)

end

In each time slot t, the slice controller receives a set of user demands
as a request instance, R(t) and executes the IP algorithm to construct a set
of slices to serve the request instance. However, the IP algorithm can only
construct a set of slices within its predefined batch size and satisfy all or a
part of the request instance. The time complexity of search for the optimal
solution in the predefined batch is exponential [20] [21], causing a significant
processing delay in the controller.

5.4 Deep Reinforcement Learning Approach

Deep Reinforcement Learning (DRL) was discussed in [22] to solve IP opti-
mization problems. An agent from the DRL-based approach could directly
learn policies based on the rewards by interacting with the network envi-
ronment. Hence, we enhance the general DRL-based approach to solve the
formulated ONSP optimization problem under the IP model. As shown in
Fig. D.4, our DRL approach aims to construct an agent in the slice controller
for the decisions of network slice provisioning. The agent could not only
learn to find a solution at a specific NSP instance but also reuse what it
has learned in previous instances to approximate a nearly optimal solution.
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In particular, we implement the Proximal Policy Optimization (PPO) algo-
rithm [23] in our DRL approach because PPO has been shown to achieve
higher performance than the other Actor-Critic based algorithms [24].

PPO algorithm leverages the advantages of the policy-based and value-
based DRL algorithms, and therefore, it is suitable in the network slicing
environment with a discrete state space and a continuous action space. On
the contrary to the classical DRL algorithms, the PPO algorithm can share
parameters for both policy and value functions to reduce the computational
complexity in the slice controller. The complexity enhancement is crucial be-
cause the slice controller could respond to slice requests quickly using less
computing resources. Our goal is to exploit the advantages of the PPO algo-
rithm to approximate the optimal solution to the ONSP optimization prob-
lem. To the best of our knowledge, this approach is the first work to embed
the PPO algorithm in the slice controller for solving the ONSP optimization
problem.

In the following paragraphs, we define the state space, action space, re-
ward function and PPO implementation in our DRL approach.

State Space

The PPO agent learns to provision the slice requests from the network en-
vironment without any prior traffic information. The agent only needs the
current network state information as follows:

1. the set of physical network nodes (V): the nodes represent either a radio
access network component, a transportation regional network compo-
nent, or a core network component.

2. the set of wired-cum-wireless links (L): the links include the informa-
tion about 1. the available link capacity, 2. link delay, and 3. link
operation cost.

3. a set of user demand requests, R(t): the user demand requests in-
clude the information about 1. the source and destination node 2. the
requested data rate, 3. the delay requirement, 4. demand type, 5. de-
mand’s initial time slot, and 6. demand’s life time

Action Space

The agent’s learning process includes a series of interactions with the network
environment. In each interaction, the agent obtains an observation ot from
the environment’s state sampling and takes action at based on the provision-
ing policy, π() and policy parameters, θt. The provisioning policy π(ot, θt)
returns an action at, including a subset of R(t), to satisfy the network con-
straints in Equation (D.6) and (D.7) and the user traffic demand constraints

107



Paper D.

in Equation (D.8). The action at represents which requests are accepted to be
served in a network slice in slot t. For example, if at time slot t, only z1 = 1
for all zr ∈ zzz, it means that only request r = 1 is accepted to obtain network
resources and to transmit network traffic at a time slot t. The other requests
in R(t) for which zi = 0 are rejected to construct their network slices and
have to wait for the next action or be removed from the slice controller.

Upon completion of the action, the agent gets a reward rewardt and fin-
ishes an interaction. Then the agent waits for the time slot t + 1 to interact
with the network environment again. After that, the agent starts another
interaction with the network environment until reaching the next time slot
t + 1. The agent repeats the learning process to obtain the optimal provision-
ing policy.

Reward Function

Equation (D.15) and Equation (D.16) are the defined reward functions. At
every time slot t, if the request r is accepted, the reward function is

rewardt = ∑
∀n∈Nt
∀li,j∈L

Pi,j · xn
i,j, ∀zr = 1, r ∈ R(t) (D.15)

Otherwise, the reward function is

rewardt = ∑
∀n∈Nt
∀li,j∈L

(−1) · Pi,j · xn
i,j, ∀zr = 0, r ∈ R(t) (D.16)

PPO Implementation

In Algorithm 7, we describe how we implemented the PPO algorithm with
respect to the ONSP problem. Starting with the default parameters, the agent
uses an initial environment observation o0 from default system inputs as the
first observation. Afterwards, the agent fetches the environment observation
ot in each slot t, including the links’ capacity, data rate and latency require-
ments of received user demands, and the cost obtained in the previous time
slots. Next, the neural network receives these values from the agent and gen-
erates the subsequent action. The policy-compliant action is formulated by
selecting requests for the following time slot t + 1 and how much data rate
will be allotted to them at time slot t + 1. The provisioning policy is then
derived from the action. The slice controller will reserve the necessary data
rate if a request is selected to be severed. Otherwise, the request is buffered
until it is allocated. Following the deployment of the updated provisioning
to all requests, a reward is captured and returned to the agent. The reward is
obtained from the reward functions in Equation (D.15) and (D.16). The agent
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uses the reward to train and enhance its neural network for the provision-
ing policy, π. The agent optimizes its policy, π, iteratively until it reaches
convergent conditions or K iterations.

For each iteration, we compute intermediate values using the following
state-action value function, Qπ(ot, at), state value function, Vπ(ot), and ad-
vantage function, Aπ(ot, at).

Qπ(ot, at) = Eot+1,at+1 [
∞

∑
l=0

γl(rewardt+l)] (D.17)

Vπ(ot) = Eot+1,at [
∞

∑
l=0

γl(rewardt+l)] (D.18)

Aπ(ot, at) = Qπ(ot, at)−Vπ(ot) (D.19)

where γ is a discount factor and γ ∈ [0, 1].
After that, we calculate the surrogate loss based on these observations and

use stochastic gradient descent (SGD) to optimize the policy for e epochs and
minibatch sizes, B.

Algorithm 7: Proximal Policy Optimization
Input: A default policy with initial parameters θ0 and initial network

observation o0, a set of user demand requests R(t)
Output: A set of neural network parameters
Set counter t← 0
for k = 1, 2, 3, · · · until k = K or convergence do

Fetch user demand requests, R(t) and observation ot.
Take action, at, to select user demand requests using policy π = π(θt).
Compute advantage estimation, Aπ(ot, at), based on the value function,

Vπ(ot).
Update the policy using optimize surrogate loss with ∇rewardt and θt in

e epochs and minibatch size B.
t← t + 1
θt ← θt+1

end

6 Performance Analysis

In this section, we state the sufficient conditions for the optimality of the
ONSP optimization problem. We also analyze our algorithms’ computa-
tional complexity and competitive ratio concerning at the ONSP optimization
problem. Our analysis starts by estimating the computational complexity of
the ONSP optimization problem. First of all, the classical NSP optimization
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problem has been proven to be NP-hard [4]. Because the classical NSP opti-
mization problem is a special case of the ONSP optimization problem with
deterministic user demand arrivals, finding optimal solutions to the ONSP
optimization problem is still NP-hard. Then we compared the greedy and
integer programming methods proposed in [25] and modified their objective
functions for our problem formulation. Specifically, our problem formulation
can be solved by a greedy algorithm (Section 5, Algorithm 5) and a constraint
integer programming algorithm (Section 5, Algorithm 6) which tend to mini-
mize network operation costs and SLA violation rates. The constraint integer
programming algorithm can obtain a nearly optimal solution to the ONSP
problem, but the constraint integer programming algorithm has exponential-
worse time complexity [20] [21]. On the other hand, the greedy algorithm
can achieve polynomial time complexity but produce a non-optimal solution.
Both methods do not suffice to quickly approximate a nearly optimal solu-
tion. Therefore, we design the reinforcement learning framework to reduce
the solution searching time of integer programming algorithm using Algo-
rithm 7 presented in Section 5. The PPO algorithm has a constant time com-
plexity during the prediction phase. In addition, the proofs for the optimality
criterion and competitive ratio are established in the following theorem.

Theorem 6.1
Assume that we are given a finite set of user demand, R. The parameters of
demands sample from a vector of random variables with corresponding prob-
ability density functions. Let |N | = |R|. For a given network, G = (V ,L)
with Pi,j, Ci,j, and Di,j > 0, a slice provisioning strategy in problem (D.13)
is optimal if and only if there exists an integer ζ, (1 ≤ ζ ≤ |N |) to construct
a subset M where |M| = ζ, such that all of the following constraints are
satisfied:

∑
n=1,...,ζ

ynxn
i,j ≤ Ci,j {∀i, j : li,j ∈ L}

∑
i,j:en

i,j∈En

Di,jxn
i,j ≤ κn{n = 1 . . . ζ}

xn
i,j ∈ {0, 1}, {∀n ∈ M; i, j : li,j ∈ L}

The proof of the theorem is given in the appendix.
Further, recall that an algorithm for solving an online optimization prob-

lem is evaluated by a competitive ratio ς, i.e., it is said to be ς-competitive
if the algorithm’s objective is at least ς times the objective obtained by the
optimal solution from the oracle using an offline calculation removing all un-
certainties [26]. For the ONSP problem, a worst case instance denoted by
ϕ ∈ Φ can be defined as an input series of user demand requests over a
period of time T with the minimal value from its objective function Obj()

ϕ = min[Obj(R(t))](t = T)
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and Φ is used to denote the set of all possible instances, i.e.,

Φ = [Obj(R(t))](t = T)

Given the definition of instance, the performance of an online algorithm can
be measured using the competitive ratio, ς, which is referred to as the max-
imum ratio of the cost earned by the offline oracle, OPT(), and a solution
from a particular online approximation algorithm, ALG().

We define OPT(ϕ) = minϕ∈Φ Obj(ϕ) and ALG(ϕ) = minϕ∈Φ Obj(ϕ). And
an approximation algorithm may return ϕ′ ∈ Φ such that Obj(ϕ′) ̸= OPT(ϕ).
According to the definition, we have

ς = max
Φ,Obj

OPT(ϕ)
ALG(ϕ)

(D.20)

Therefore the best and also the maximum competitive ratio is ς = 1. A better
algorithm has a higher competitive ratio because we want to find a minimal
value of the objective function.

Using the definition above, we can derive the following theorems. Their
proofs are exposed in the appendix.

Theorem 6.2
Algorithm 5.2 has a competitive ratio of ςgreedy = Ω( |V|+λT

(1+λT |V|) ) to the optimal
solution, where T > 0 is a fixed period, |V| is the number of nodes and λ > 0
is the arrival rate.

Theorem 6.3
Algorithm 5.3 has a competitive ratio of ςip = Ω( 1+T −|V|+T |V|

−1+T +|V|+T |V| ) to the opti-
mal solution, where T > 0 is a fixed period, |V| is the number of nodes and
λ > 0 is the arrival rate.

Theorem 6.4
Algorithm 5.4 has a competitive ratio of ςrl = Ω( 1−|V|+T +|V|T

1−|V|+T +T |V|+2ϵ(|V|−1) ) to
the optimal solution, where T > 0 is a fixed period, |V| is the number of
nodes, ϵ is the prediction error (0 < ϵ < 1) and λ > 0 is the arrival rate.

From the competitive ratios of the three algorithms, derived in Theo-
rem 6.2, 6.3 and 6.4, we are able to compare their performance. We firstly
compare the Greedy algorithm and IP algorithm. It is clear that the compet-
itive ratio of the IP algorithm, ςip, is closer to one than competitive ratio of
the Greedy algorithm, ςgreedy, under the same environment parameters such
as |V| and T . Next, we note that, the PPO algorithm in the proposed RL
framework has a bounded competitive ratio, ςrl . The ratio ςrl is almost the
same as ςip when the prediction error approximates to zero. Therefore, the
proposed RL framework is verified to reach similar performance in terms of
the bounded competitive ratio.
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7 Simulation

We analyze the performance of our proposed framework using simulations
and show that it achieves better performance than the benchmark methods
that do not consider the time-series relationship between users in terms of
CPU time, network operation cost and SLA violation rate. In our simulation,
two different algorithms (i.e., Greedy and IP) were used as the benchmark
methods under our proposed framework.

7.1 Simulation Environment

Our simulation is implemented on a laptop computer with an NVIDIA GPU,
an Intel Core i7 CPU, and 16 GB RAM. We refer [27] to provide a general
network model and construct a random network topology for a scalable sim-
ulation. We also assume our simulation’s network topology parameters, |V|
vertices and |L| edges, are static during our simulation. Then all possible
graphs can be obtained from the combinations of |V| and |L| but exclude the
graphs with wrong orders between RANs, TNs and CNs. The network topol-
ogy is then selected from all possible graphs and randomly assigned latency,
capacity and cost with their corresponding distributions. Moreover, we sim-
ulate the user demand request from different mobile applications with dif-
ferent resource demands and latency metrics. We further emulate those user
requests asynchronously reach the slice controller, and the controller serves
user requests in parallel. The arrival model follows the Poisson process with
a mean arrival rate where the intervals between arrival requests are sampled
from an exponential distribution. Table D.2 lists the environment parameters
in our simulation.

In addition, our IP algorithm solver uses the optimization library from the
Google OR-tool [28]. The library is well-verified and tuned by much exist-
ing research and often outperforms a solver using self-implemented heuristic
parameters. Therefore, we use the Google OR-tool library to implement our
IP algorithm solver. Moreover, our PPO algorithm implementation consists
of an actor neural network and a critic neural network. The actor neural net-
work comprises an input layer, three hidden layers, and two fully connected
layers. On the other hand, the critic neural network consists of two hidden
layers, and three fully connected layers. The input layer transfers the fea-
tures of the slicing network state to the hidden layers, whereas the output of
the input layer is forwarded to the fully connected layers. All hidden layers
use 64 neurons and are designed by the hyperbolic tangent (Tanh) activation
function. The other parameters of the PPO algorithm list in Table D.3.

The actor network computes, π(ot, θt), the probability distribution across
the available actions (a subset ofR(t)) for all user demand requests. The critic
network evaluates the expectation value, Vπ(ot) for the action taken by the
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actor. According to this evaluation, the policy function is updated to increase
the reward. Indeed, the learning process is a mutual interaction where the
actor continuously explores to obtain a higher probability of selecting suitable
actions in different states, and the critic keeps assessing to return a more
accurate value evaluation. And the agent learns the policy and stops the
learning process when the reward converges.

7.2 Simulation Results

In this section, we introduce our simulation result to validate the performance
of our framework in terms of the CPU time, SLA violation rate and network
operation cost. We use the network slice controller’s CPU time to evaluate
the computational performance in different approaches without the impact
from other components in our simulation. We define the network operation
cost as the summation of all the slices’ costs with respect to their physical
links and average the cost by all requests as, Costavg, in Equation (D.21).

Costavg =
T
∑
t=0

∑
∀n∈Nt
∀li,j∈L

Pi,jxn
i,j

|R(t)| , ∀r ∈ R(t) (D.21)

In addition, we define the SLA violation rate as the ratio between the
number of provisioning requests and the number of all requests.

SLA =
T
∑
t=0

|R(t)| − |Nt|
|R(t)|T (D.22)

After defining the performance metrics, we can compare our framework
with the Greedy-only and IP-only benchmarks. The results demonstrate that
our framework can fast approximate the optimal solution from the IP-only
algorithm. Fig. D.5 presents the performance difference of CPU time to solve
the ONSP problem. The results also show that our framework obtains a better
solution than the Greedy-only algorithm. Fig. D.6 shows the comparison of
slice operation cost, and Fig. D.7 presents the performance difference of SLA
violation rate. In addition, Fig. D.8 presents the average waiting time in
different traffic loads under different algorithms.

The Greedy algorithm has the worst cost performance and the highest
SLA violation rate for two reasons. First, the iterative processing in the
Greedy algorithm is sub-optimal because it ignores the dependency between
requests. Second, the greedy solution only considers the slice provisioning
within a time slot and neglects the time-series relations between time slots.
The IP algorithm performs better than the Greedy algorithm regarding the
cost and SLA violation rate in both low and high demands scenarios as it
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Fig. D.5: CPU Time Evaluation when Network Traffic Load Changing

considers the complete request set in the same time slot during optimiza-
tion. However, the IP algorithm is proven to consume pseudo-polynomial
time to search for the optimal solution. Comparing all the presented results,
we demonstrate that our DRL framework has the lowest time consumption
(see Fig. D.5). In addition, the DRL approach performs similarly to the IP
algorithm regarding the SLA violation rate and network operation costs. Our
framework can also mitigate the jitter of average waiting time between the
different traffic loads (see Fig. D.8).

8 Conclusion

This research studied the Online Network Slicing Provisioning (ONSP) opti-
mization problem and proposed a reinforcement learning framework to min-
imize network operation costs and Service-Level Agreements (SLA) violation
rates. The reinforcement learning framework provides an improved slice con-
troller based on a dynamic batch size prediction model. More specifically,
the Proximal Policy Optimization (PPO) algorithm is used to learn the pro-
posed model. A user demand pattern aims to be predicted from the model
to obtain a suitable batch size for the ONSP optimization. Our framework ef-
ficiently approximates the solutions offered by an integer programming (IP)
algorithm, albeit at a less computational time than the IP algorithm. More-
over, we evaluated the performance of the PPO algorithm and other bench-
marks and derived the lower bound of algorithm performance. Numerical
results also demonstrate the proposed reinforcement learning framework can
approximate a similar performance with less computational time.

114



8. Conclusion

Fig. D.6: Slices Operation Cost Evaluation when Network Traffic Load Changing

Fig. D.7: SLA Violation Rate Evaluation when Network Traffic Load Changing
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Fig. D.8: Wait Time Evaluation when Network Traffic Load Changing

9 Appendix

9.1 Proof of Theorem 6.1

Proof. To prove the theorem, we can firstly define the total network operation
cost by calculating the function as: f (z, P) = ∑∀r∈R ∑∀n∈N

∀li,j∈L
xn

i,jPi,jzr. Since the

two objectives are linearly independent, the Lagrange multipliers exist. Let
|z| = ∑zr=1∈z zr. Then, we can consider its Lagrange function and therefore
we will have two cases:

Case 1: There exists a vector z such that |z| > |N |. If we consider |z| =
|N |+ 1, then the network operation cost is larger due to Pi,j > 0. Hence, the
objectives cannot be satisfied in case 1.

Case 2: There exists an vector z such that |z| < 1. If we consider |z| = 0,
then the network utilization is also zero and SLA is fully violated. Hence, the
objectives cannot be satisfied in case 2.
According to the two cases, the optimal solutions can only validate when
|z| = ζ.

9.2 Proof of Theorem 6.2

Proof. To prove the theorem, we consider a worst case that many user de-
mands request the same source and destination nodes and exhaust the ca-
pacity at a link of network (i.e. generate a bottleneck). For example, a
request with the demand value Ci,j and the life time T slots comes be-
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fore λT requests with the demand value
Ci,j
λT and the life time 1 slot (i.e.

[(Ci,j, T ), (
Ci,j
λT , 1), . . . , (

Ci,j
λT , 1)]). We use a link li,j as an example but the exam-

ple can be applied to all links in all slices. The greedy algorithm can only
admit the first request and will miss the rest, since the network already offer
all the link capacity to admit the first request. Therefore, the cost obtained
from the greedy algorithm is:

ALG(ϕ) = Pi,j + λT |V|Pi,j (D.23)

On ther other hand, the cost of the optimal algorithm is:

OPT(ϕ) = λT Pi,j + Pi,j|V| (D.24)

In this way, we show that the competitive ratio of the greedy algorithm is
at least Ω( |V|+λT

(1+λT |V|) )

9.3 Proof of Theorem 6.3

Proof. To prove the theorem, we can construct the worst case of the ONSP
problem that repeat for every 2T period if we assume the algorithm batch
size is T − 1. Hence, we aim to have 2λT requests in that period. Then
the worst case condition can be that the slice controller firstly receives the
first λ(T − 1) requests in the first T − 1 slots where the ith request’s de-

mand value and life time value are
Ci,j
λT and T respectively. (i.e. [r1 =

(
Ci,j
λT , T ), . . . , ri, . . . , rT −1 = (

Ci,j
λT , T )]|i = 1 . . . T − 1). Next, the rest of λ(T +

1) requests arrive in the slice controller within the next T + 1 slots. Those
λ(T + 1) requests contain demand value and life time value are larger than
2Ci,j
λT (at i = T ) or

Ci,j
λT (others) and 1, respectively, i.e. [rT = (

2Ci,j
λT , 1), rT +1 =

(
Ci,j
λT , 1), . . . , ri = (

Ci,j
λT , 1), . . . , r2T = (

Ci,j
λT , 1)]|i = T . . . 2T . The IP algorithm

can only admit the first λ(T − 1) requests and will miss the rest, since the
network already uses all the link capacity to admit the first λ(T − 1) requests.
Hence, the IP algorithm can only obtain the cost Pi,jλ((T − 1) + |V|(T + 1)).

ALG(ϕ) = (T − 1)λPi,j + (T + 1)λ|V|Pi,j

= (T |V|+ |V|+ T − 1)λPi,j
(D.25)

However, the optimal algorithm should reject the first λ(T − 1) requests
and admit the next λ(T + 1) requests. Therefore, the optimal cost should be
Pi,jλ((T − 1)|V|+ (T + 1))

OPT(ϕ) = (T − 1)λ|V|Pi,j + (T + 1)λPi,j

= (T |V| − |V|+ T + 1)λPi,j
(D.26)

To this end, we show that the competitive ratio of the IP algorithm is at
least Ω( 1+T −|V|+T |V|

−1+T +|V|+T |V| ).
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9.4 Proof of Theorem 6.4

Proof. To prove the theorem, we can also construct the worst case of the ONSP
problem that repeat for every 2kT slots, where k ≥ 1. In addition, we assume
the optimal cost value in the problem (D.13) is α

OPT(ϕ) = α (D.27)

and therefore each request expects to spend average cost α
2kT λ

.

E[ALG] =
2kT λ

∑
i=1

(1− ϵ)(
α

2kT λ
)+

ϵ((
α

2kT λ
)(
−1 + |V|+ T + |V|T
1− |V|+ T + |V|T ))

= 2kT λ
α + αT − α|V|+ αT |V|(1− ϵ)− αϵ− αϵT + αϵ|V|

2kT λ(1 + T − |V|+ |V|T )

+ 2kT λ
−αϵ + αϵT + αϵ|V|+ αϵ|VT |

2kT λ(1 + T − |V|+ |V|T )

=
α(1− |V|+ T + T |V|+ 2ϵ(|V| − 1))

1 + T − |V|+ |V|T

(D.28)

In this way, we can estimate the cost from the reinforcement learning
algorithm, ALG, with a small prediction error, ϵ. Refer the result from the
Theorem 6.3, we can expect the average cost is at least ( α

2kT λ
)(−1+|V|+T +T |V|

1−|V|+T +T |V| )

if the request was not served in a correct batch. The expected cost of ALG

denoted as E[ALG] should be
2kT λ

∑
i=1

(1− ϵ)( α
2kT λ

) + ϵ(( α
2kT λ

)(−1+|V|+T +T |V|
1−|V|+T +T |V| ).

And thus the competitive ratio of algorithm 5.4 is

OPT(ϕ)
ALG(ϕ)

=
α

E[ALG]
=

1− |V|+ T + |V|T
1− |V|+ T + T |V|+ 2ϵ(|V| − 1)

(D.29)
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Table D.1: Notations

Notation Description
G network graph
V the set of network nodes
vi different network nodes
L the set of wired-cum-wireless network links
li,j a link between nodes vi and vj
C the vector of available link capacity
Ci,j the available capacity of direct link li,j
α(i, j) the occupied capacity of direct link li,j
D the vector of the link delay
Di,j the delay of direct link li,j
P the vector of the link active network operation cost
Pi,j the active operation cost of direct link li,j
A(t) the set of new arrival user demand requests at t
R(t) the set of all user demand requests at t
Q(t) the set of backlog user demand requests at t
r a user demand request in the set R(t)
vs the source node of a user demand request
vu the destination node of a user demand request
br the required data rate of a user demand request
dr the delay requirement of a user demand request
ιr the demand type of a user demand request
ar the initial time slot of a user demand request
hr the number of slots of a user demand request life time
n a network slice
vn,s the source node of a network slice
vn,u the destination node of a network slice
En a set of virtual links of a network slice
κn slice delay of a network slice
yn slice load of a network slice
ιn the slice type of a network slice
X a slice provisioning matrix
xn

i,j an element of the matrix X
T a slotted time interval
Pt(Q) the buffering probability at t
λt arrival rate at t
λ̃t artificial arrival rate at t
ϱt backlog rate at t
zr a decision variable for request r
zzz a vector of decision variables
Υt a set of reject request at t
Nt a set of network slice
fk objective function k
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Table D.2: Simulation Parameters

Parameter Name Value/Distribution(mean, var)
Number of Nodes |V| 8
Number of Physical Links |L| 12
Capacity of Links Uniform Distribution (100, 200)
Latency of Links Uniform Distribution (1, 10)
Cost of Links Uniform Distribution (1, 20)
Simulation Duration T 5000 slots
Request Demand Requirement (b) Normal Distribution (0, 0.1)
Request Latency Requirement (d) Normal Distribution (1, 0.1)
Request Initial Time ar Normal Distribution (0, 0.1)
Request Life Time hr Normal Distribution (1, 0.1)
Request Source/Destination Nodes Normal Distribution draw from |V|
Request Arrival Model Poisson Process

Table D.3: Hyperparameters of PPO Algorithm

Parameter Name Value
Number of epochs 10
Number of minibatch size B 32
Discount (γ) 0.90
Number of iterations K 8000
Initial parameters θ0 0
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