286 research outputs found

    Some subsystems of constant-depth Frege with parity

    Get PDF
    We consider three relatively strong families of subsystems of AC0[2]-Frege proof systems, i.e., propositional proof systems using constant-depth formulas with an additional parity connective, for which exponential lower bounds on proof size are known. In order of increasing strength, the subsystems are (i) constant-depth proof systems with parity axioms and the (ii) treelike and (iii) daglike versions of systems introduced by Krajíček which we call PKcd(⊕). In a PKcd(⊕)-proof, lines are disjunctions (cedents) in which all disjuncts have depth at most d, parities can only appear as the outermost connectives of disjuncts, and all but c disjuncts contain no parity connective at all. We prove that treelike PKO(1)O(1)(⊕) is quasipolynomially but not polynomially equivalent to constant-depth systems with parity axioms. We also verify that the technique for separating parity axioms from parity connectives due to Impagliazzo and Segerlind can be adapted to give a superpolynomial separation between daglike PKO(1)O(1)(⊕) and AC0[2]-Frege; the technique is inherently unable to prove superquasipolynomial separations. We also study proof systems related to the system Res-Lin introduced by Itsykson and Sokolov. We prove that an extension of treelike Res-Lin is polynomially simulated by a system related to daglike PKO(1)O(1)(⊕), and obtain an exponential lower bound for this system.Peer ReviewedPostprint (author's final draft

    Resolution over Linear Equations and Multilinear Proofs

    Get PDF
    We develop and study the complexity of propositional proof systems of varying strength extending resolution by allowing it to operate with disjunctions of linear equations instead of clauses. We demonstrate polynomial-size refutations for hard tautologies like the pigeonhole principle, Tseitin graph tautologies and the clique-coloring tautologies in these proof systems. Using the (monotone) interpolation by a communication game technique we establish an exponential-size lower bound on refutations in a certain, considerably strong, fragment of resolution over linear equations, as well as a general polynomial upper bound on (non-monotone) interpolants in this fragment. We then apply these results to extend and improve previous results on multilinear proofs (over fields of characteristic 0), as studied in [RazTzameret06]. Specifically, we show the following: 1. Proofs operating with depth-3 multilinear formulas polynomially simulate a certain, considerably strong, fragment of resolution over linear equations. 2. Proofs operating with depth-3 multilinear formulas admit polynomial-size refutations of the pigeonhole principle and Tseitin graph tautologies. The former improve over a previous result that established small multilinear proofs only for the \emph{functional} pigeonhole principle. The latter are different than previous proofs, and apply to multilinear proofs of Tseitin mod p graph tautologies over any field of characteristic 0. We conclude by connecting resolution over linear equations with extensions of the cutting planes proof system.Comment: 44 page

    DRAT and Propagation Redundancy Proofs Without New Variables

    Get PDF
    We study the complexity of a range of propositional proof systems which allow inference rules of the form: from a set of clauses Γ\Gamma derive the set of clauses Γ{C}\Gamma \cup \{ C \} where, due to some syntactic condition, Γ{C}\Gamma \cup \{ C \} is satisfiable if Γ\Gamma is, but where Γ\Gamma does not necessarily imply CC. These inference rules include BC, RAT, SPR and PR (respectively short for blocked clauses, resolution asymmetric tautologies, subset propagation redundancy and propagation redundancy), which arose from work in satisfiability (SAT) solving. We introduce a new, more general rule SR (substitution redundancy). If the new clause CC is allowed to include new variables then the systems based on these rules are all equivalent to extended resolution. We focus on restricted systems that do not allow new variables. The systems with deletion, where we can delete a clause from our set at any time, are denoted DBC{}^-, DRAT{}^-, DSPR{}^-, DPR{}^- and DSR{}^-. The systems without deletion are BC{}^-, RAT{}^-, SPR{}^-, PR{}^- and SR{}^-. With deletion, we show that DRAT{}^-, DSPR{}^- and DPR{}^- are equivalent. By earlier work of Kiesl, Rebola-Pardo and Heule, they are also equivalent to DBC{}^-. Without deletion, we show that SPR{}^- can simulate PR{}^- provided only short clauses are inferred by SPR inferences. We also show that many of the well-known "hard" principles have small SPR{}^- refutations. These include the pigeonhole principle, bit pigeonhole principle, parity principle, Tseitin tautologies and clique-coloring tautologies. SPR{}^- can also handle or-fication and xor-ification, and lifting with an index gadget. Our final result is an exponential size lower bound for RAT{}^- refutations, giving exponential separations between RAT{}^- and both DRAT{}^- and SPR{}^-

    On the pigeonhole and related principles in deep inference and monotone systems

    Get PDF
    International audienceWe construct quasipolynomial-size proofs of the propositional pigeonhole principle in the deep inference system KS, addressing an open problem raised in previous works and matching the best known upper bound for the more general class of monotone proofs. We make significant use of monotone formulae computing boolean threshold functions, an idea previously considered in works of Atserias et al. The main construction, monotone proofs witnessing the symmetry of such functions, involves an implementation of merge-sort in the design of proofs in order to tame the structural behaviour of atoms, and so the complexity of normalization. Proof transformations from previous work on atomic flows are then employed to yield appropriate KS proofs. As further results we show that our constructions can be applied to provide quasipolynomial-size KS proofs of the parity principle and the generalized pigeonhole principle. These bounds are inherited for the class of monotone proofs, and we are further able to construct n^O(log log n) -size monotone proofs of the weak pigeonhole principle with (1 + ε)n pigeons and n holes for ε = 1/ polylog n, thereby also improving the best known bounds for monotone proofs

    The Complexity of Some Geometric Proof Systems

    Get PDF
    In this Thesis we investigate proof systems based on Integer Linear Programming. These methods inspect the solution space of an unsatisfiable propositional formula and prove that this space contains no integral points. We begin by proving some size and depth lower bounds for a recent proof system, Stabbing Planes, and along the way introduce some novel methods for doing so. We then turn to the complexity of propositional contradictions generated uniformly from first order sentences, in Stabbing Planes and Sum-Of-Squares. We finish by investigating the complexity-theoretic impact of the choice of method of generating these propositional contradictions in Sherali-Adams

    Count(q) versus the Pigeon-Hole Principle

    Get PDF
    For each
    corecore