
Some subsystems

of constant-depth Frege with parity

Michal Garĺık∗ and Leszek Aleksander Ko lodziejczyk†

Institute of Mathematics
University of Warsaw

Banacha 2
02-097 Warszawa, Poland

email: mgarlik,lak@mimuw.edu.pl

July 26, 2018

Abstract

We consider three relatively strong families of subsystems of AC0[2]-
Frege proof systems, i.e. propositional proof systems using constant-
depth formulas with an additional parity connective, for which expo-
nential lower bounds on proof size are known. In order of increasing
strength, the subsystems are: (i) constant-depth proof systems with
parity axioms and the (ii) treelike and (iii) daglike versions of systems
introduced by Kraj́ıček which we call PKc

d(⊕). In a PKc
d(⊕)-proof,

lines are disjunctions (cedents) in which all disjuncts have depth at
most d, parities can only appear as the outermost connectives of dis-
juncts, and all but c disjuncts contain no parity connective at all.

We prove that treelike PK
O(1)
O(1)(⊕) is quasipolynomially but not

polynomially equivalent to constant-depth systems with parity axioms.
We also verify that the technique for separating parity axioms from par-
ity connectives due to Impagliazzo and Segerlind can be adapted to give

∗Partially supported by Polish National Science Centre grant no.
2013/09/B/ST1/04390; by European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme, grant agreement ERC-2014-
CoG 648276 (AUTAR); and by ERC Advanced Grant 339691 (FEALORA). Most of
this work was carried out during the tenure of an ERCIM ‘Alain Bensoussan’ Fellowship
Programme.
†Partially supported by Polish National Science Centre grant no.

2013/09/B/ST1/04390.

1

The final publication is available at ACM via http://dx.doi.org/10.1145/3243126

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/294830127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a superpolynomial separation between daglike PK
O(1)
O(1)(⊕) and AC0[2]-

Frege; the technique is inherently unable to prove superquasipolyno-
mial separations.

We also study proof systems related to the system Res-Lin intro-
duced by Itsykson and Sokolov. We prove that an extension of tree-
like Res-Lin is polynomially simulated by a system related to daglike

PK
O(1)
O(1)(⊕), and obtain an exponential lower bound for this system.

1 Introduction

The work presented in this paper is inspired by the following long-standing
open problem in propositional proof complexity:

Prove superpolynomial or better lower bounds
on proof size for AC0[2]-Frege.

Here AC0[2]-Frege systems are proof systems in which lines are constant-
depth formulas in the language of ¬, unbounded fan-in ∧ and ∨, and an
unbounded fan-in parity connective ⊕. The survey paper [8] considers this
to be one of the two main challenges currently facing Cook’s programme of
approaching the NP = coNP problem via lower bound proofs for increasingly
strong proof systems.

Our point of departure is the observation that there are relatively strong
families of subsystems of AC0[2]-Frege, combining the full power of AC0-
Frege with some ability to reason about parity, for which good lower bounds
are known. The most familiar of these is AC0-Frege with parity axioms,
which requires exponential size to prove the counting mod 3 principle Count3

[11] and the pigeonhole principle PHP [5].
Two other families consist of the treelike and daglike versions of sys-

tems studied by Kraj́ıček [22] which we call PKc
d(⊕), where c, d ∈ N are

constants. The intuitive idea behind PKc
d(⊕) is that lines of the proof are

⊕’s of constant-depth De Morgan formulas, but insisting on that particu-
lar restricted form of lines would require inference rules that are hard to
understand. In [22], lines were obtained by substituting ⊕’s of De Morgan
formulas of constant depth (as measured by d) into De Morgan formulas of
constant size (as specified by c). We use a somewhat modified definition, in
which:

– lines are disjunctions (cedents) of formulas,

– each cedent may contain arbitrarily many constant-depth De Morgan
formulas,

2

– in addition, each cedent may contain a constant number of ⊕’s of
constant-depth De Morgan formulas.

(See Section 2 for details.) Both in Kraj́ıček’s version and in ours, a line
can be translated into an equivalent single ⊕ at the cost of a polynomial
increase in size (the depth of inputs to ⊕ will increase by a constant).

Already the treelike version of PK
O(1)
O(1)(⊕) polynomially simulates AC0-

Frege with parity axioms (see Section 3 below). On the other hand, by [22],

treelike PK
O(1)
O(1)(⊕) needs exponential size to prove PHP. Moreover, daglike

PK
O(1)
O(1)(⊕) needs exponential size to prove Count3 ([22] combined with [9]).
It is natural to ask whether lower bounds for systems such as these could

“already imply” lower bounds for AC0[2]-Frege. For instance, one could en-
vision a scenario in which the already known result on the unprovability of
Count3 (or some other principle not mentioning ⊕) in the bounded arith-

metic theory corresponding to PK
O(1)
O(1)(⊕) is extended to a strengthening of

the theory by a suitable variant of the weak pigeonhole principle for func-
tions defined by formulas with no nested occurrences of ⊕. By [12], this
would give an unprovability result for the theory corresponding to AC0[2]-
Frege. If the unprovability result is obtained in a sufficiently general way
(i.e. holds for a sufficiently large class of models), it will actually yield the
elusive lower bound for AC0[2]-Frege.

In the authors’ opinion, scenarios like the one above are probably wishful

thinking. PK
O(1)
O(1)(⊕) is likely to be much weaker than AC0[2]-Frege, even

as a system for proving DNF’s/refuting CNF’s. However, what concrete
arguments can one give to justify this opinion? The ideal argument would
be to exhibit a family of CNF’s (or at least formulas in the language of

¬,∧,∨) giving a strong separation of PK
O(1)
O(1)(⊕) from AC0[2]-Frege. Note

that if no such family of tautologies exists, then AC0[2]-Frege has no short
proofs of Count3.

So far, there is only one method known to be useful for separating AC0[2]-
Frege and AC0-Frege with parity axioms—namely, the switching lemma-
based technique used by Impagliazzo and Segerlind [17] to exhibit a family
of CNF’s with polysize refutations in AC0[2]-Frege but not in AC0-Frege
with parity axioms. Unfortunately, this technique has a serious limitation,
in that it can only prove barely superpolynomial separations.

In this paper, we obtain the following results about PK
O(1)
O(1)(⊕):

– we verify that the method of [17] can be adapted to give a super-

polynomial separation between AC0[2]-Frege and daglike PK
O(1)
O(1)(⊕)

3

as systems for refuting CNF’s,

– we also verify that standard techniques give an exponential separation

between AC0[2]-Frege and daglike PK
O(1)
O(1)(⊕) as systems for refuting

formulas with ⊕,

– (our main result) we prove that AC0-Frege with parity axioms and

treelike PK
O(1)
O(1)(⊕) are quasipolynomially equivalent, even though they

are not polynomially equivalent.

Our proof of the main theorem is inspired by another paper of Impagliazzo
and Segerlind [18], which proves that AC0-Frege with parity axioms simu-
lates the algebraic proof system known as Nullstellensatz over F2. The idea
of [18] is to show that if the algebraic translation of a Boolean formula ϕ
has a low-degree Nullstellensatz refutation, then there is a small AC0-Frege
proof that ϕ implies the existence of perfect matchings on two sets differ-
ing by exactly one element. Our basic idea is similar, but the argument is
considerably more complicated. The reason for this is that the definitions
of our matchings have to mimic the structure not of a Nullstellensatz proof

(a single polynomial equation), but a treelike PK
O(1)
O(1)(⊕) proof. That proof

may consist of multiple lines derived from one another by means of various
inference rules formalizing both algebraic and Boolean reasoning.

The current state of knowledge about the (families of) subsystems of
AC0[2]-Frege we consider, viewed as systems for proving formulas in the De
Morgan language, can therefore be summarized in Figure 1. The striking
feature of Figure 1 is the lack of any superquasipolynomial separations—at
this point, even a quasipolynomial simulation of AC0[2]-Frege by AC0-Frege
with parity axioms has not yet been ruled out.

In the context of constant-depth systems, it often seems that the “right”
notion of simulation is at least quasipolynomial rather than polynomial.
For instance, the Paris-Wilkie translation from relativized bounded arith-
metic theories to constant-depth proofs (see e.g. [20, Corollary 9.1.4]) leads
to quasipolynomial-size proofs when applied to Buss’ theories Si2(α), T i2(α).
Hence, collapses in arithmetic often translate into quasipolynomial simu-
lations. In general, the area abounds in results on quasipolynomial-size
provability and/or simulation that are either open or false in the polysize
case, e.g. [26, 16, 6, 1, 12]. Of course, if AC0[2]-Frege systems were to

be quasipolynomially equivalent to, say, PK
O(1)
O(1)(⊕)—a seemingly farfetched

scenario, but not disproved—then the known lower bounds for the latter
would imply strong lower bounds also for the former. Thus, one of the aims
of this paper is to encourage the study of the following open problem:

4

AC0[2]-Frege

daglike PK
O(1)
O(1)(⊕)

treelike PK
O(1)
O(1)(⊕)

AC0-Frege w/ parity axioms

<

p

6 p

<

p

6 qp

6 qp

≡ qp

Figure 1: Known simulations between some subsystems of AC0[2]-Frege
w.r.t proving formulas without ⊕. Quasipolynomial simulations denoted by
6qp. Use of < rather than 6 indicates simulation is known not to reverse.

Open Problem. Prove a superquasipolynomial separation between AC0[2]-
Frege and a subsystem containing AC0-Frege with parity axioms on a family
of formulas without ⊕.

The paper is organized as follows. We introduce the necessary definitions
and background in Section 2. In Section 3, we prove some basic properties

of PK
O(1)
O(1)(⊕), including the polynomial simulation of parity axioms and the

fact that treelike PK
O(1)
O(1)(⊕) can be balanced at the cost of allowing loga-

rithmically rather than constantly many ⊕’s per line. Section 4 introduces
and studies an auxiliary proof system which allows just one ⊕ per line, but
has some additional rules.

Our main result, the quasipolynomial simulation of treelike PK
O(1)
O(1)(⊕)

by AC0-Frege with parity axioms, is proved in Section 5. The proof is
preceded by a rather detailed informal overview of the argument, which also
explains the role played by the one-parity system.

In Section 6, we give easy proofs of exponential separations between

treelike and daglike PK
O(1)
O(1)(⊕) and AC0[2]-Frege as refutation systems for

formulas with ⊕. We also outline a proof of the superpolynomial separations
without ⊕. Some more details on that argument are given in a separate
Appendix.

In Section 7, we consider the loosely related topic of a refutation system
introduced by Itsykson and Sokolov [19] in which proof lines are disjunctions
of parities of literals. In [19], a lower bound on the treelike version of this
system is proved. We point out that even a generalization of the treelike
system in which the parities can have arbitrary constant-depth De Morgan

5

formulas as inputs is unable to give short proofs of Count3. We also comment
on why such a result might be difficult to obtain for the daglike case.

2 Preliminaries

For a number n, the symbol [n] stands for the set {1, . . . , n}. For a set S, the
symbol

(
S
2

)
stands for the set of two-element subsets of S. For a sequence

S, the symbol lh(S) stands for the length of S.
Propositional formulas are built up from Boolean variables x and their

negations x using the unbounded fan-in connectives
∨
,
∧
,⊕0,⊕1. The input

to an unbounded fan-in connective is a sequence of formulas. We allow the
input to be the empty sequence, ∅, in which case we will write ⊥ and >
for

∨
∅ and

∧
∅, respectively. The parity connective ⊕b, for b ∈ {0, 1}, is

interpreted to be true if the number of its true inputs is congruent to b
modulo 2. The negation operator is extended to all formulas by defining
x to be x for a variable x, and inductively defining

∨
i∈I ϕi,

∧
i∈I ϕi and

⊕bi∈Iϕi to be
∧
i∈I ϕi,

∨
i∈I ϕi and ⊕1−b

i∈I ϕi, respectively. The depth, dp(ϕ),
of a formula ϕ, is the maximum number of alternating blocks of connectives
along any branch in ϕ (viewed as a tree), except that we consider ⊥ and >
to have depth 0 and extend that to formulas containing ⊥ and >.

The propositional proof systems we consider are Tait-style systems, i.e.,
the lines in a proof are cedents. Our convention is that a cedent is a sequence
(rather than set) of formulas. We use capital Greek letters Γ,∆, . . . as
names for both cedents and inputs to the unbounded fan-in connectives.
The intended meaning of a cedent Γ is that of the disjunction

∨
Γ.

The logical axioms are:

⊕0∅ and x, x

for a propositional variable x.
The inference rules are:

6

Γ Weakening
Γ,∆

Γ,∆,Λ,Ψ
Exchange

Γ,Λ,∆,Ψ

Γ,∆
OR

Γ,
∨

∆

Γ, ϕi for all i ∈ I
AND

Γ,
∧
i∈I ϕi

Γ, ϕ, ϕ
Contraction

Γ, ϕ

Γ, ϕ Γ, ϕ
Cut

Γ

Γ,⊕aΦ Γ,⊕bΨ
Add

Γ,⊕a+b(Φ,Ψ)

Γ,⊕a(Φ,Ψ) Γ,⊕bΨ
Subtract

Γ,⊕a−bΦ

Γ, ϕ,⊕b−1Φ Γ, ϕ,⊕bΦ
MOD

Γ,⊕b(Φ, ϕ)

for each a, b ∈ {0, 1}.
The unorthodox form of the exchange rule is intended to make the height

of proofs (see below) a more useful measure. The form of some of the rules,
for instance Subtract, is inspired by [25].

Let A be a set of non-logical axioms, that is, A is a set of cedents. The
intended meaning of A is

∧
{
∨

Ξ : Ξ ∈ A}. A PK(⊕)-derivation of Γ from
A is a finite sequence Θ1, . . . ,Θk of cedents such that the last cedent Θk is
Γ and every Θi either is a logical or non-logical axiom or is inferred from
some of the earlier cedents Θj (j < i) using one of the inference rules. If Γ
is the empty cedent, then the derivation is called a PK(⊕)-refutation of A.
We mostly think of PK(⊕) and its subsystems as refutation systems, i.e. we
view a refutation of an unsatisfiable set of non-logical axioms A as a proof
of the tautology

∨
{
∨

Ξ : Ξ ∈ A}.
A PK(⊕)-derivation Θ1, . . . ,Θk is called treelike if every Θi is a premise

of at most one inference in the derivation.
The complexity of derivations will be measured in three ways. We define

the size of a derivation P , denoted by s(P), to be the number of symbols
in P . By the cedent-number of P , denoted by cn(P), we mean the number
of occurrences of cedents, i.e. the number of steps, in P . The height of P is
the maximum number h such that there is a sequence Φ0, . . . ,Φh of cedents
in P in which Φi is a premise of the inference yielding Φi+1, for each i < h.

We are interested in subsystems of PK(⊕) which we call PKc
d(⊕), where

7

c, d are natural number constants. The systems PKc
d(⊕) are a variant of the

family of proof systems introduced in [22]1. A PK(⊕)-derivation is called a
PKc

d(⊕)-derivation if each formula in the derivation is of depth at most d,
and further, each cedent in the derivation contains at most c formulas of the
form ⊕bΨ, where b ∈ {0, 1}, and no other ⊕ connectives appear. In other
words, a line in a PKc

d(⊕)-derivation has the form

ϕ1, . . . , ϕ`,⊕b1Ψ1, . . . ,⊕bkΨk,

where k ≤ c, the ϕi’s are formulas of depth ≤ d without ⊕, and the Ψj ’s are
sequences of formulas of depth ≤ d−1 without ⊕.

We can generalize the systems PKc
d(⊕) to PKf

d(⊕) for various functions

f : N → N. In a PKf
d(⊕) derivation P , each cedent may contain up to

f(s(P)) parities; the other syntactic conditions are as for PKc
d(⊕). For

instance, if id : N→ N is the identity function, a line in the system PKid
d (⊕)

may again look like

ϕ1, . . . , ϕ`,⊕b1Ψ1, . . . ,⊕bkΨk,

with the same restrictions as for PKc
d(⊕), except that k can now be arbi-

trary. In a PKlog
d (⊕) derivation, we could use disjunctions/cedents of at

most logarithmically (in the derivation size) many parities per line.
Subsystems of PK(⊕) in which there is an O(1) bound on the depth of

formulas, but there is no additional bound on the nesting of
∧
,
∨

, and ⊕
connectives, are collectively known as constant-depth Frege with parity or
AC0[2]-Frege. The systems PK0

O(1)(⊕) are collectively known as constant-

depth Frege or AC0-Frege. An important family of systems intermediate
between AC0- and AC0[2]-Frege is AC0-Frege with parity axioms, in which
the syntactic conditions on cedents are as in AC0-Frege, but a derivation
from the set of non-logical axioms A is allowed to use additional parity
axioms, which are cedents of the form(∧

e3i
¬ϕe : 1 ≤ i ≤ n

)
,

(
ϕe ∧ ϕf : e, f ∈

(
[n]

2

)
such that e⊥f

)
.

1The systems Fcd(MODp) of [22] are Hilbert-style rather than Tait-style, and the restric-
tion on the shape of lines determined by c is somewhat more liberal than in our setting.
Besides, [22] does not explicitly consider the systems as refutation systems. Despite these

differences, our main results about PK
O(1)

O(1)(⊕)—Proposition 3, Theorems 15, 16, and 17—

hold for F
O(1)

O(1)(MODp) modulo the translation of cedents in one kind of system into lines
in the other.

8

whenever n is some odd number, the ϕe’s are indexed by elements of
(

[n]
2

)
,

and the entire cedent satisfies the appropriate condition on depth. Here
e⊥f stands for ∅ (e ∩ f (e. Note that since cedents are interpreted
as disjunctions, the axiom says that the ϕe’s do not define a partition of
the odd-sized set [n] into two-element subsets: either there is some element
i∈ [n] such that ¬ϕe holds for each subset e containing i, or there are two
overlapping sets e and f such that ϕe and ϕf both hold.

We will need to refer to some results on the algebraic proof system known
as Polynomial Calculus over F2, first introduced under a different name
in [14]. This is a system for refuting unsatisfiable families of polynomial
equations over F2. Lines in a derivation are multivariate polynomials; each
such polynomial p is understood to represent the equation p = 0. In addition
to a given set of non-logical axioms A, a Polynomial Calculus derivation may
use axioms of the form x2−x for any variable x. The rules are: from p derive
xp where x is a variable; and from p, q derive p+q. The degree of a derivation
is the highest total degree of a line in it as a formal polynomial. A refutation
is a derivation whose last line is the constant polynomial 1.

3 Basic properties

The purpose of this section is to verify that the PKc
d(⊕) systems have some

basic desirable properties.

3.1 Completeness

The first property we need to check is that each PKc
d(⊕) is a complete proof

system, in a reasonably strong sense of the term.

Proposition 1. For all c, d ≥ 0, the system PKc
d(⊕) is implicationally

complete, in the sense that if A is a set of PKc
d(⊕) cedents, Γ is a PKc

d(⊕)
cedent, and A |= Γ, then there is a PKc

d(⊕) proof of Γ from A.

Proof. Let A be a set PKc
d(⊕) cedents and Γ a cedent such that A |= Γ. We

prove that Γ can be derived from A using a somewhat technical claim.

Claim. There exists a PKc
d(⊕) derivation of Γ from some set of cedents

{∆1, . . . ,∆n} such that for each i = 1, . . . , n, the cedent ∆i has the following
properties:

(i) ∆i either is the logical axiom ⊕0∅ or contains no formulas with ⊕,

(ii) Γ |= ∆i,

9

(iii) at most one assignment to the variables of A ∪ {Γ} falsifies ∆i.

Proof of the Claim. Let p1, . . . , pm be all the variables appearing in A∪{Γ}.
We build the claimed PKc

d(⊕) derivation backwards from the endcedent Γ.
First, using a series of cuts on p1, . . . , pm, we derive Γ from the set of

cedents of the form
Γ, p

b(1)
1 , p

b(2)
2 , . . . , pb(m)

m , (1)

for all b ∈ {0, 1}n, where p0
j is pj and p1

j is pj . Such cedents clearly satisfy
property (ii), since they extend Γ, and property (iii), since there is only one

assignment falsifying p
b(1)
1 ∨ . . . ∨ pb(m)

m .
Using a series of MOD inferences (and exchanges), each cedent of the

form (1) is derived from a set of PKc
d(⊕) cedents containing no formulas

with ⊕ other than ⊕0∅ or ⊕1∅. The conclusion of a MOD inference implies
each of its premises, so properties (ii) and (iii) are preserved.

Finally, each cedent containing ⊕0∅ is derived by weakening from a log-
ical axiom, and each remaining cedent containing ⊕1∅ is derived by weak-
ening from a semantically equivalent cedent without ⊕1∅. This preserves
properties (ii), (iii) and also gives (i), thus proving the claim.

Now assume A |= Γ and let ∆1, . . . ,∆n be a set of cedents with the
properties from the claim. It suffices to describe a derivation of ∆i from A
for each i. Property (ii) implies A |= ∆i, and property (iii) implies that ∆i

either is tautological or has exactly one falsifying assignment. In the former
case, property (i) and the completeness of PK0

d(⊕) ensure that ∆i has a
PKc

d(⊕) derivation without any non-logical axioms.
In the latter case, since A |= ∆i, the unique falsifying assigment for

∆i must also falsify some cedent Ξ ∈ A, and therefore Ξ |= ∆i. Let Ξ be
ξ1, . . . , ξk. Using a series of cuts on ξ1, . . . , ξk, we can derive ∆i from the
cedent ∆i,Ξ and cedents of the form ∆i, ξ1, . . . , ξj−1, ξ̄j for j = 1, . . . , k.
This is a PKc

d(⊕) derivation because ∆i contains no ⊕’s and there are at
most c parities among ξ1, . . . , ξk. Now, ∆i,Ξ follows from Ξ by weakening.
On the other hand, the claim implies that each of the tautological cedents
∆1, ξ1, . . . , ξj−1, ξ̄j can be derived in PKc

d(⊕) from a set of tautological ce-
dents without parities, which are derivable in PK0

d(⊕) by the completeness
of the latter system.

3.2 Short proofs of some tautologies

Another property we check is that the treelike version of PK
O(1)
O(1)(⊕) poly-

nomially simulates AC0-Frege with parity axioms. This follows immediately

10

from Proposition 3 below. In proving the proposition, we will make use of
the following lemma, the proof of which is left as an exercise to the reader.

Lemma 2. There is a polytime procedure which given a depth-d formula
⊕b(Γ, ϕ, ψ,∆) with no nesting of ⊕ and the index of ϕ among the inputs to
⊕b produces a treelike PK3

d(⊕) derivation of this formula from ⊕b(Γ, ψ, ϕ,∆).

Proposition 3. For each d ≥ 1, there is a polynomial-time procedure which,
given a PK0

d(⊕) cedent Γ which is a parity axiom, outputs a treelike PK3
d(⊕)

derivation P (Γ) of Γ.

Proof. Let Γ be (∧
e3i

ϕe : 1 ≤ i ≤ n

)
, (ϕe ∧ ϕf : e⊥f) .

Recall that the indices e and f range over
(

[n]
2

)
, the set of two-element

subsets of [n]. Note also that each ϕe contains no parity connectives and
that it has depth at most d−1 (otherwise Γ would not be a PK0

d(⊕) cedent).
We will show that treelike PK3

d(⊕) can carry out a standard double counting
argument in polynomial size.

Informally, if G = ([n], {e ∈
(

[n]
2

)
: ϕe is satisfied}) is a graph, we can

count the sum of the degrees of all its vertices in two different ways. First,
we count edge-by-edge and we get an even number; in symbols, we obtain
the cedent ⊕0(ϕe : e∈

(
[n]
2

)
, i∈ e). Second, assuming Γ fails (which means

the edges of G form a perfect matching on [n]), we count vertex-by-vertex
and, because n is odd, we end up with an odd number; that is, we obtain
the cedent Γ,⊕1(ϕe : i∈ [n], e3 i). We conclude that Γ is true. The details
of our formalization of this argument in treelike PK0

d(⊕) follow.
The final inference of P (Γ) is:

Γ,⊕0(ϕe : i ∈ [n], e 3 i) Γ,⊕1(ϕe : i ∈ [n], e 3 i)
Cut

Γ

The cedent Γ,⊕0(ϕe : i∈ [n], e3 i) follows by weakening from the cedent
⊕0(ϕe : i∈ [n], e3 i), which can be derived by permuting the formulas inside
⊕0 (using Lemma 2 repeatedly) from ⊕0(ϕe : e ∈

(
[n]
2

)
, i ∈ e). The latter

cedent is obtained by a tree of additions from the cedents ⊕0(ϕe, ϕe) for
e ∈

(
[n]
2

)
, each of which has an easy treelike polynomial-size proof.

On the other hand, the cedent Γ,⊕1(ϕe : i∈ [n], e3 i) can be derived by
a tree of additions from the cedents of the form Γ,⊕1(ϕe : e3 i) for i ∈ [n]

11

(recall that n is odd!). Thus, for each fixed i ∈ [n] we need to give a treelike
polynomial-size proof of the cedent Γ,⊕1(ϕe : e3 i).

Each ϕe for e 3 i is actually ϕ{i,j} for some j ∈ [n]\{i}. The cedents
ϕ{i,j},⊕1(ϕ{i,j}) and ϕ{i,j}∧ϕ{i,k}, ϕ{i,j},⊕0(ϕ{i,k}) for k 6= j are very easy
to derive. Some weakenings and a tree of additions give

Γ, ϕ{i,j},⊕1(ϕe : e3 i)

for each j. The desired Γ,⊕1(ϕe : e3 i) follows by an AND inference and a
contraction.

The following technical lemma shows that PK0
d(⊕) proves some basic

tautologies in a reasonable size and height. The lemma will be used many
times throughout the paper.

Lemma 4. Let Φ be a cedent of length ` of formulas which do not contain
parity connectives and have depth d. Let ϕ be a formula in Φ. Let S and
Sϕ be the sizes of Φ and ϕ, respectively. There exist:

(a) a treelike PK0
d(⊕)-derivation of ϕ,ϕ of height O(d) and size O(S2

ϕ),

(b) a treelike PK2
d(⊕)-derivation of ⊕0ϕ,⊕1ϕ of height O(d) and size

O(S2
ϕ),

(c) a treelike PK3
d(⊕)-derivation of ⊕0Φ,⊕1Φ of height O(d + log `) and

size O(`log 3S2).

Proof. Using the first four rules of inference it is easy to construct (a). There
is a height O(1) size O(Sϕ) treelike PK2

d(⊕)-derivation of ⊕0ϕ,⊕1ϕ from
ϕ,ϕ. Together with (a) this gives (b). Let Φ be Φ1,Φ2 where the length
of Φ1 is b`/2c. There is a height O(1) size O(S) treelike PK3

d(⊕)-derivation
of ⊕0Φ,⊕1Φ which has six initial cedents: three copies of ⊕0Φ1,⊕1Φ1 and
three of ⊕0Φ2,⊕1Φ2. Iterating this dlog `e times gives a height O(log `)
size O(S`log 3) treelike PK3

d(⊕)-derivation of ⊕0Φ,⊕1Φ which has as initial
cedents O(`log 3) copies of ⊕0ψ,⊕1ψ for each occurrence of ψ in Φ. Together
with (b) this gives (c).

3.3 Balancing

To conclude the section, we show by a standard argument that a treelike
PKc

d(⊕) refutation can be transformed into a balanced treelike refutation
at the cost of allowing logarithmically many ⊕’s per cedent rather than a
constant number.

12

Lemma 5. Suppose that c ≥ 1 and P is a treelike PKc
d(⊕)-derivation of

Γ from A. Suppose further that P has size s and cedent-number t. Then
there is a treelike PK2c+log t

d+1 (⊕)-derivation of Γ from A which has height

O(d+ c log s) and size slogO(c).

With the help of Lemma 4 from the previous subsection, Lemma 5 follows
easily from Lemma 8, which is stated and proved below. The proof of Lemma
8 is based on the usual divide-and-conquer idea dating back to Spira [30],
but some effort is required to get the technical details right.

Definition 6. Let P be a PKc
d(⊕)-derivation. Define sa(P) to be the set of

cedents having one of the following forms:

(i) Λ,Ξ, where Ξ is an initial cedent of P and Λ is arbitrary,

(ii) Λ,⊕aΦ,Λ′,Ψ, where Ψ is a cedent in P such that ⊕aΦ is an element
of Ψ, and Λ,Λ′ are arbitrary,

(iii) Λ,
∧`
i=1 γi,Λ

′,Ψ, where Ψ is a cedent in P such that γ1, . . . , γ` is the
subsequence of Ψ consisting of all formulas that do not contain any
parity connective, and Λ,Λ′ are arbitrary.

Definition 7. Define P -ic to be P with all initial cedents removed from it.

Recall that s(P), the size of the derivation P , denotes the number of
symbols in it, and that cn(P), the cedent-number of P , denotes the number
of occurrences of cedents in P .

Lemma 8. Suppose that c ≥ 1 and P is a treelike PKc
d(⊕)-derivation of Γ

from A. Suppose that P has size s and cedent-number t. Then there is a

treelike PK
2c+log(t−1)
d+1 (⊕)-derivation P ′ of Γ from sa(P) such that the height

of P ′ is at most (2c+ 6) log(t−1), cedent-number of P ′ is at most tlog(2c+2),
and the size of each cedent in P ′ is at most s+ 2 · s(P -ic).

Proof. We shall prove the lemma by induction on t. (In this proof we write
log t to mean max{1, log2 t}.)

The lemma is obviously true for t small enough that t ≤ (2c+6) log(t−1),
since in this case P already satisfies what is asked of P ′. In the inductive
step, we take an inference I in P with the following properties:

(a) for each premise Π of I, the subderivation PΠ of P with endcedent Π
has cedent-number ≤ dt/2e,

13

(b) if we remove from P the subderivation ending with I, leaving the
conclusion Ψ of I as an initial cedent, then the resulting derivation
(call it D) has cedent-number ≤ t/2.

(I can be found by constructing a path through P from the root upwards
that eventually reaches an inference such that (b) is satisfied by its conclu-
sion but not by any of its premises.) Denote

v := log(2c+ 2)

(v will often appear in the exponent of some expressions). By the induc-
tion hypothesis, for each premise Π of the inference I there is a treelike

PK
2c+log(t−1)−1
d+1 (⊕)-derivation of Π from sa(PΠ) which has height

≤ (2c+ 6)(logdt/2e − 1) ≤ (2c+ 6)(log(t− 1)− 1),

cedent-number ≤ (cn(PΠ))v, and the size of each cedent bounded by s(PΠ)+
2 · s(P -ic

Π). Put these derivations together with the inference I, and let Q

denote the resulting derivation. Q is a treelike PK
2c+log(t−1)−1
d+1 (⊕)-derivation

of Ψ from sa(P) with height

≤ (2c+ 6)(log(t− 1)− 1) + 1 = (2c+ 6) log(t− 1)− 2c− 5.

The size of each cedent in Q is bounded by s+ 2 · s(P -ic), and we bound the
cedent-number of Q as follows:

cn(Q) ≤ 1 +
∑

Π

(cn(PΠ))v ≤ 1 + (
∑

Π

cn(PΠ))v ≤ 1 + (t− cn(D))v,

where Π in the sums ranges over the premises of the inference I.
We move on to the other part of the derivation P , namely D. As defined

in (b), D is a treelike derivation of Γ from the hypotheses A ∪ {Ψ}, and
1 ≤ cn(D) ≤ t/2. In the case where cn(D) = 1, we have Ψ = Γ, and we
define the desired derivation P ′ to be just Q. Assume cn(D) > 1. By the

induction hypothesis, there is a treelike PK
2c+log(t−1)−1
d+1 (⊕)-derivation R of

Γ from sa(D) of height ≤ (2c+6)(log(t−1)−1), cedent-number ≤ (cn(D))v,
and the size of each cedent in R is at most s(D) + 2 · s(D -ic).

The idea now is to transform R into several derivations from the hypothe-
ses sa(P) and combine them with Q by a repeated use of the cut rule to
derive Γ. To this end, we introduce some notation. Let ∆ be the subsequence
δ1, . . . , δm of Ψ consisting of all formulas that do not contain any parity con-
nective. Denote by ∆′ the sequence δ1, . . . , δm. Let ⊕a1Φ1, . . . ,⊕akΦk be

14

R1
. . .

... . .
.

Γ,Θ0,⊕a1Φ1

Rk−1
. . .

... . .
.

Γ,Θk−2,⊕ak−1Φk−1

Rk . . .
... . .

.

Γ,Θk−1,⊕akΦk

R′ . . .
... . .

.

Γ,Θk,
∧

∆′

Q . . .
... . .

.

Ψ
at most k

exchanges

Θk,∆

Θk,∆,Γ

Γ,Θk,∆

Γ,Θk,
∨

∆

Γ,Θk

Γ,Θk−1

Γ,Θk−2

. .
.

Γ,Θ1

Γ

Figure 2: The derivation P ′.

the subsequence of Ψ consisting of all formulas with parities. We have k ≤ c.
For i ∈ {0, . . . , k} denote the sequence ⊕a1Φ1, . . . ,⊕aiΦi by Θi. (Hence Θ0

is the empty sequence.) We modify R to construct derivations R′ and Ri,
i = 1, . . . , k, of Γ,Θk,

∧
∆′ and Γ,Θi−1,⊕aiΦi, respectively.

R′ (resp. Ri, i = 1, . . . , k) is constructed by adding the formula
∧

∆′

(resp. ⊕aiΦi) to the left of each cedent in R, and by applying one weak-
ening and one exchange to the endcedent

∧
∆′,Γ (resp. ⊕aiΦi,Γ) to derive

Γ,Θk,
∧

∆′ (resp Γ,Θi−1,⊕aiΦi). Note that in the process of constructing
R′ and Ri, all initial cedents in R contained in sa(D) \ sa(P) are replaced
by cedents in sa(P).

We combine the derivations Q,R′ and Ri, i = 1, . . . , k with k + 1 cut
inferences to get the desired derivation P ′, as shown in Figure 2. Notice that
just below the endcedent of Q we inserted some exchanges, a weakening, and
an
∨

-inference to make the cedent ready for applications of the cut rule.

It is easy to verify that P ′ is a treelike PK
2c+log(t−1)
d+1 (⊕)-derivation of Γ

from sa(P) and the height of P ′ is at most (2c + 6) log(t − 1). Also, the
size of each cedent in P ′ is at most s(P) + 2 · s(P -ic) (due to the bound on
the size of cedents in R and the fact that Ψ is in P -ic \ D -ic). The same
conclusions are of course true in the case cn(D) = 1 (which has P ′ = Q).

15

It remains to bound the cedent-number of P ′. Each of R′, Ri, i =
1, . . . , k, has cedent-number ≤ cn(R) + 2. Hence, by construction,

cn(P ′) ≤ cn(Q) + (c+ 1)(cn(R) + 2) + 2c+ 4

≤ (t− cn(D))v + (c+ 1)(cn(D))v + 4c+ 7.
(2)

This is true in the case cn(D) = 1 as well. Recall that v = log(2c + 2).
Consider the last expression in (2) as a function of cn(D) and denote it
by f(cn(D)). It is not difficult to verify that f(cn(D)) is convex on the
interval [1, . . . , t/2]. Thanks to our assumption that t is large enough (t >
(2c+ 6) log(t− 1)), another straightforward calculation gives f(1) > f(t/2).
It remains to obtain an upper bound on f(1).

tv − (t− 1)v ≥ tv − tv + vtv−1 −
(
v

2

)
tv−2 = tv−2v(t− (v − 1)/2)

= tlog(2c+2)−2 log(2c+ 2) (t− log(c+ 1)/2) ≥ 5c+ 8.

The last inequality follows from our assumption on t, and it gives f(1) ≤ tv.
Thus, cn(P ′) ≤ tv.

Proof of Lemma 5. Take the derivation P ′ provided by Lemma 8. We need
to derive the initial cedents of P ′ in the required size and height. Definition
6 lists their possible forms. Form (i) is derived easily from A, form (ii)
follows from Lemma 4 part (c), and form (iii) is obtained using Lemma 4
part (a).

4 The one-parity system

In this section, we introduce an auxiliary proof system that only allows one
⊕ per line. The idea is that the system treats ⊕’s of constant-depth formu-
las more or less as polynomials, and we do have to introduce extra rules,
including one analogous to polynomial multiplication, to make the system
strong enough. However, to make the interaction between the polynomial-
style rules and traditional logical rules clearer, we allow the lines in the
system to contain some constant-depth formulas outside the unique ⊕.

Below, we prove two main results about the one-parity system. The first
is that a PKid

O(1)(⊕) derivation can be translated into a derivation in the one-
parity system with an increase in size that depends on the number of ⊕’s per

line in the original derivation: it is polynomial for a PK
O(1)
O(1)(⊕) derivation

and quasipolynomial for the PKlog
O(1)(⊕) derivations produced by balancing.

16

Moreover, the translation preserves treelikeness and, in the cases of our
interest, leads only to a modest increase in height. The second result is that,
given a derivation of ⊕Φ in the one-parity system, we can “delay subtraction
until the end”, i.e. avoid using the Subtract rule and derive ⊕ (Θ,Θ,Φ) for
some sequence of formulas Θ, at the cost of a blowup which is exponential
in the height of the original derivation; in particular, quasipolynomial if the
derivation had polylog height.

The role of these two results in our simulation of treelike PK
O(1)
O(1)(⊕) by

parity axioms is explained in some detail at the beginning of Section 5. The
curious reader may want to take a look at that explanation before reading
on.

Definition 9 (Conjuncts of a formula, product of sequences of formulas).
Let ϕ be a formula. Define cnj(ϕ) (the sequence of conjuncts of ϕ) to be Θ
if ϕ is of the form

∧
Θ, and to be the one-element sequence (ϕ) otherwise.

If Φ and Ψ are (ϕi)i∈I and (ψi)i∈J , respectively, define Φ×Ψ to be the
sequence (

∧
(cnj(ϕi), cnj(ψj)))i∈I,j∈J . Further, define recursively

0∏
i=1

Φi = (
∧
∅) = (>) and

k∏
i=1

Φi =

(
k−1∏
i=1

Φi

)
× Φk

for sequences Φ1, . . . ,Φk of formulas.

The idea is that for any assignment, the number of satisfied formulas in∏k
i=1 Φi is even exactly if the number of satisfied formulas in Φi is even for

at least one i.

Example. Let Φ be (p1, p2) and let Ψ be (p3 ∧ p4), where all the pi are
variables. Then Φ×Φ is the sequence (p1∧p1, p1∧p2, p2∧p1, p2∧p2), while
Φ×Ψ is the sequence (p1 ∧ p3 ∧ p4, p2 ∧ p3 ∧ p4).

The depth d one-parity system, denoted by PKone⊕
d , has lines of the form

Γ,⊕Φ

where Γ and Φ are sequences of formulas that do not contain parity connec-
tives and have depth at most d, and moreover the formulas in Φ have

∧
as

their topmost connective. The intended meaning is
∨

(Γ,⊕0Φ).
The logical axioms are:

∅,⊕∅ and x, x,⊕(>)

for a propositional variable x.
The inference rules are:

17

Γ,⊕Φ
Weakening

Γ,∆,⊕Φ

Γ,∆,Λ,Ψ,⊕Φ
Exchange

Γ,Λ,∆,Ψ,⊕Φ

Γ,∆,⊕Φ
OR

Γ,
∨

∆,⊕Φ

Γ, ϕi,⊕Φ for all i ∈ I
AND

Γ,
∧
i∈I ϕi,⊕Φ

Γ, ϕ, ϕ,⊕Φ
Contraction

Γ, ϕ,⊕Φ

Γ, ϕ,⊕Φ Γ, ϕ,⊕Φ
Cut

Γ,⊕Φ

Γ,⊕Φ Γ,⊕Ψ
Add

Γ,⊕ (Φ,Ψ)

Γ,⊕ (Φ,Ψ) Γ,⊕Ψ
Subtract

Γ,⊕Φ

Γ, ϕ,⊕Φ Γ, ϕ,⊕ (Φ,>)
MOD

Γ,⊕ (ϕ,Φ,>)

Γ,⊕Φ
Multiply

Γ,⊕ (Φ×Ψ)

Γ,⊕Φ
Permute

Γ,⊕π(Φ)

where π(Φ) is a permutation of the formulas in Φ. Note that in MOD
inferences, ϕ is required to have

∧
as its topmost connective (formulas of

other forms have to be turned into single-argument conjunctions by AND
inferences before entering inside ⊕).

Lemma 10. Each of the following cedents of the system PKone⊕
d has a

treelike PKone⊕
d -derivation of height O(d) and size O(S2), where S is the

size of the cedent.

(a) ϕ,ϕ,⊕(>)

(b) ∅,⊕ (
∧

(Γ,Φ),
∧

(Γ,Φ,Φ))

(c) ∅,⊕ (
∧

(Γ,Φ,Ψ),
∧

(Γ,Ψ,Φ))

(d)
∧

Φ,⊕ (
∧

(Ψ,Φ),
∧

Ψ)

(e)
∧

Φ,⊕
∧

(Ψ,Φ)

Proof. (a) is proved in the same way as Lemma 4 (a). Each of (b) - (e)
reduces by a height O(1) size O(S) treelike PKone⊕

d -derivation to constantly
many cedents of the form ∅,⊕(>,>) or of the form (ϕi)i∈I ,

∧
i∈I ϕi,⊕(>);

the latter are proved in the same way as (a).

18

4.1 Translating derivations into PKone⊕
O(1)

Definition 11 (Translation of cedent to PKone⊕
O(1)). We map each cedent Γ

of the system PKid
d (⊕) to a cedent (Γ)one⊕ of the system PKone⊕

d+1 in the

following way. Let ΓM be the subsequence of Γ consisting of all formulas
that do not contain any parity connective (M stands for De Morgan), and
let ⊕a1Γ1, . . . ,⊕akΓk be the subsequence of Γ consisting of all formulas with
parities. (Γ)one⊕ is the cedent

ΓM,⊕
k∏
i=1

ΓP
i

where for i = 1, . . . , k we put ΓP
i to be Γi if ai = 0 and Γi,> if ai = 1.

Example. If Γ is ⊕0Φ,⊕1Φ for Φ equal to (p1, p2), then (Γ)one⊕ is

∅,⊕(p1 ∧ p1, p1 ∧ p2, p1, p2 ∧ p1, p2 ∧ p2, p2).

Note the additional copies of the pi’s compared to the example after Def-
inition 9: these are formally one-argument conjunctions, and they arise as
conjunctions of pi with the empty sequence of conjuncts of >.

Lemma 12. Let P be a (treelike) PKid
d (⊕)-derivation of Ω from A. Suppose

that P has size s, height h, and at most t parities per line. Then there is a
(treelike) PKone⊕

d+1 -derivation of (Ω)one⊕ from {(Ξ)one⊕ : Ξ ∈ A} which has
size O(s2t) and height O(h+ d+ t log s).

Proof. Let P ′ be the result of replacing each cedent Γ of P with its transla-
tion (Γ)one⊕. Note that the logical axioms in P translate into logical axioms
of PKone⊕

d+1 . To make P ′ into a PKone⊕
d+1 -derivation, we need to derive, for

each inference rule of PKid
d (⊕), the translation of its conclusion from the

translations of its premises.
The Contraction rule either translates into Contraction or, if a parity is

being contracted, becomes

ΓM,⊕
((∏k−2

i=1 ΓP
i

)
× ΓP

k−1 × ΓP
k

)
ΓM,⊕

((∏k−2
i=1 ΓP

i

)
× ΓP

k

) (3)

where ΓP
k−1 = ΓP

k . Denote
∏k−2
i=1 ΓP

i by Θ and let ΓP
k be (ϕj)j∈I . By Lemma

10 (b), for each γ in Θ and j ∈ I, there is a treelike PKone⊕
d+1 -derivation of

∅,⊕
(∧

(cnj(γ), cnj(ϕj)) ,
∧

(cnj(γ), cnj(ϕj), cnj(ϕj))
)
.

19

Put these derivations together with a balanced tree of Adds and one Permute
to derive the cedent

∅,⊕
(

Θ× ΓP
k ,Θ× (cnj(ϕj) ∧ cnj(ϕj))j∈I

)
.

Call this derivation Q1. Similarly, for each γ in Θ and i < j ∈ I, there is,
by Lemma 10 (c), a treelike PKone⊕

d+1 -derivation of

∅,⊕
(∧

(cnj(γ), cnj(ϕi), cnj(ϕj)) ,
∧

(cnj(γ), cnj(ϕj), cnj(ϕi))
)
.

Put these derivations together with a balanced tree of Adds and one Permute
to derive

∅,⊕
(

Θ× (cnj(ϕi) ∧ cnj(ϕj))i<j∈I ,Θ× (cnj(ϕj) ∧ cnj(ϕi))i<j∈I

)
.

Denote this derivation by Q2. We derive (3) by:

Q1
. . .

... . .
. Q2

. . .
... . .

.

Add & Permute
∅,⊕

(
Θ× ΓP

k ,Θ× ΓP
k × ΓP

k

)
Weakening

ΓM,⊕
(
Θ× ΓP

k ,Θ× ΓP
k × ΓP

k

)
ΓM,⊕

(
Θ× ΓP

k × ΓP
k

)
Subtract

ΓM,⊕
(
Θ× ΓP

k

)
One of the two MOD rules translates into

ΓM, ϕ,⊕
((∏k

i=1 ΓP
i

)
× Φ

)
ΓM, ϕ,⊕

((∏k
i=1 ΓP

i

)
× (Φ,>)

)
ΓM,⊕

((∏k
i=1 ΓP

i

)
× (ϕ,Φ,>)

) (4)

The other MOD rule translates into

ΓM, ϕ,⊕
((∏k

i=1 ΓP
i

)
× (Φ,>)

)
ΓM, ϕ,⊕

((∏k
i=1 ΓP

i

)
× Φ

)
ΓM,⊕

((∏k
i=1 ΓP

i

)
× (ϕ,Φ)

) (5)

Denote
∏k
i=1 ΓP

i by Θ. Let us derive (4) first. We use Lemma 10 (d) and
(e) to get for each γ in Θ a treelike PKone⊕

d+1 -derivation of

ϕ,⊕
(∧

(cnj(γ), cnj(ϕ)) ,
∧

cnj(γ)
)

and ϕ,⊕
∧

(cnj(γ), cnj(ϕ)) ,

20

respectively. Using each of these two sets of derivations and a balanced tree
of Adds, we obtain derivations Q3 and Q4 of

ϕ,⊕ (Θ× (ϕ,>)) and ϕ,⊕ (Θ× (ϕ)) ,

respectively. Denote the left premise of (4) by L and the right premise by

R . We can derive (4) by:

Q3
. . .

... . .
.

ϕ,⊕ (Θ× (ϕ,>))
Weak.

ΓM, ϕ,⊕ (Θ× (ϕ,>)) L
Add

ΓM, ϕ,⊕ (Θ× (ϕ,>),Θ× Φ)
Perm.

ΓM, ϕ,⊕ (Θ× (ϕ,Φ,>))

Q4
. . .

... . .
.

ϕ,⊕ (Θ× (ϕ))
Weak.

ΓM, ϕ,⊕ (Θ× (ϕ)) R
Add

ΓM, ϕ,⊕ (Θ× (ϕ),Θ× (Φ,>))
Perm.

ΓM, ϕ,⊕ (Θ× (ϕ,Φ,>))
Cut

ΓM,⊕ (Θ× (ϕ,Φ,>))

To derive (5), we can proceed (up to some permutations and weakenings) as
follows: first add ⊕ (Θ× (>,>)) to its right premise, then use the derivation
of (4) (with Φ replaced by Φ,>), and then subtract ⊕ (Θ× (>,>)).

Deriving the translations of the remaining rules is easier. The translation
of the Exchange rule is derived with the help of Lemma 10 (c) together with
a balanced tree of Adds to deal with the parity part of the premise and using
one Exchange for the part outside parity. The translation of the Weakening
rule is derived by one Weakening and one Multiply. The Cut rule either
becomes Cut or, if the cut formula contains a parity, is derived by one
Permute and one Subtract. The translations of the Add rules and Subtract
rules are derived using the corresponding rule and Permute, possibly also
requiring an addition and subtraction of ⊕ (Θ× (>,>)).

Fill P ′ with the described derivations to obtain a treelike PKone⊕
d+1 -derivation

P ′′. Note that for any cedent Γ in P of size S the size of (Γ)one⊕ is O(St).
Consider the inference J in P of which Γ is the conclusion. Any balanced tree
of Adds that we had to attach to the translation of J has height O(log(St))
and size O(St log(St)). To the leaves of this tree we appended derivations
of height O(d) and of total size O(S2t). Hence, what we added to the trans-
lation of J has height O(d + t logS) and size O(S2t). Thus, P ′′ has the
required properties.

4.2 Delaying subtractions

Lemma 13. Let P be a treelike PKone⊕
d -derivation of Γ,⊕Φ from A. Sup-

pose that P has size s and height h. Then for some sequence of formulas

21

Θ there is a treelike PKone⊕
d -derivation of Γ,⊕ (Θ,Θ,Φ) from A which does

not use the Subtract rule and which has size O(sh) and height O(h).

Proof. The idea is extremely simple: instead of using Subtract to derive
⊕Φ from ⊕(Φ,Ψ) and ⊕Ψ, we use Add and derive ⊕(Φ,Ψ,Ψ). Such mod-
ifications, of course, must be applied to P inductively, with the instances
of Subtract appearing earlier in the derivation dealt with before moving on
the later ones. As a result, formulas start to accumulate inside ⊕’s: in a
derivation with no Subtract rules, once a formula enters the ⊕, it can never
leave it. Some additional syntactic manipulations are needed to make the
idea work.

We proceed by induction on height. The lemma is clear for h = 1, when
Γ,⊕Φ is either a logical or a non-logical axiom or a cedent including >
derived by the AND rule with empty set of premises; in each case, Θ is the
empty sequence. Let h > 1 and let J be the last inference of P . Assume
that J has k premises. First, we apply the induction hypothesis to each of
the subderivations Pi of the premises Γi,⊕Φi of J , for i = 1, . . . , k, to obtain
derivations P ′i of Γi,⊕ (Θi,Θi,Φi) for some Θi. Then we form the desired
derivation P ′ by putting the derivations P ′i together with a small derivation
Q which depends on J .

If J is Weakening, Exchange, OR, Contraction, or Permute, then we
apply the same rule to Γ1,⊕ (Θ1,Θ1,Φ1) to derive Γ,⊕ (Θ1,Θ1,Φ) and we
let Θ be Θ1.

If J is Add, apply Add to the premises Γ,⊕ (Θi,Θi,Φi), i = 1, 2, and
use one Permute to derive Γ,⊕ (Θ,Θ,Φ), where Θ is Θ1,Θ2.

If J is Subtract with premises Γ,⊕ (Φ,Ψ) and Γ,⊕Ψ, then Q is

Γ,⊕ (Θ1,Θ1,Φ,Ψ) Γ,⊕ (Θ2,Θ2,Ψ)
Add

Γ,⊕ (Θ1,Θ1,Φ,Ψ,Θ2,Θ2,Ψ)
Permute

Γ,⊕ (Θ1,Θ2,Ψ,Θ1,Θ2,Ψ,Φ)

So Θ is Θ1,Θ2,Ψ.
If J is Multiply with premise Γ,⊕Φ1 and conclusion Γ,⊕ (Φ1 ×Ψ), then

Q is

Γ,⊕ (Θ1,Θ1,Φ1)
Multiply

Γ,⊕ (Θ1 ×Ψ,Θ1 ×Ψ,Φ1 ×Ψ)

So Θ is Θ1 ×Ψ.
For the remaining rules, AND, Cut and MOD, we obtain Γ,⊕ (Θ,Θ,Φ)

by the same rule (plus one Permute in the case of MOD), but in order

22

to use this rule we must first equalize the overheads Θi (for if Θi and Θj

differ for some i 6= j, the premises do not have the correct form to apply
the rule right away). Let us consider only the AND rule with premises
Γi,⊕Φ, i = 1, . . . , k; Cut and MOD are easier. Let Θ̃i denote the sequence
Θ1, . . . ,Θi−1,Θi+1, . . . ,Θk and let Θ be Θ1, . . . ,Θk. Define Q to be the
following derivation:

Γi,⊕ (Θi,Θi,Φ)

R . . .
... . .

.

Γi,⊕
(

Θ̃i, Θ̃i

)
Add & Permute

Γi ⊕ (Θ,Θ,Φ) i = 1, . . . , k
AND

Γ,⊕ (Θ,Θ,Φ)

Here R is a short derivation which first derives ⊕(>,>) and then applies
Multiply and Weakening to it.

The size and height bounds on P ′ follow easily from the construction.

5 Simulation by parity axioms

We are now ready to describe our quasipolynomial simulation of treelike

PK
O(1)
O(1)(⊕) by AC0-Frege with parity axioms. More specifically, we ob-

tain a polynomial simulation of PKone⊕
O(1) refutations with delayed subtraction

(i.e. derivations not using the Subtract rule and ending in ⊕(Θ,Θ,>) for
some Θ) by constant-depth proofs with parity axioms. The quasipolynomial
blowup appears at earlier steps: first, in translating the derivations with log-
arithmically many parities per line that arise from balancing into PKone⊕

O(1)

(Lemma 12), and second, in delaying subtractions (Lemma 13).
Before we present the technical aspects, let us give a relatively detailed

overview of the intuition behind the construction. The main idea is as
follows. We are given a PKone⊕

O(1) derivation P from some set of axioms A
that do not contain ⊕. For each line C in P , we construct a small AC0-
Frege derivation (without parity axioms) that uses A as non-logical axioms
and derives a constant-depth formula γC that “directly witnesses that C is
true”. For the last line of P , namely ∅,⊕(Θ,Θ,>), this means that we will
have used A to derive a constant-depth formula that witnesses an obvious
falsehood—moreover, it does it in a way that can be seen to contradict a
parity axiom. This yields a small refutation of A in AC0-Frege with parity
axioms.

23

Now, how does one write an AC0-Frege formula that witnesses a cedent
C := Ω,⊕Ξ, or in other words, witnesses that either Ω is satisfied or an even
number of the formulas in Ξ are satisfied?

– The first disjunct is easy to express: we simply need a disjunction of
all formulas in Ω.

– To deal with the second disjunct, we will want to say that there is a
perfect matching on the set of satisfied elements of Ξ.

To this end, for each e ∈
(

[k]
2

)
, where k is the length of Ξ, we introduce a

formula µCe that intuitively says “the two formulas ξi, ξj in Ξ with e = {i, j}
are matched to one another”. This will be an AC0-Frege formula in the
variables of P and its shape will depend on how C is derived in P . The
formula γC will then say:

“If all formulas in Ω are false, then:
for each e, if µCe holds, then ξi holds for i∈e;
for each i ∈ [k], if ξi holds then some µCe for e3 i holds;
finally, for e⊥f at least one of µCe , µ

C
f fails to hold”.

Note that γC will be a constant-depth formula if the µCe ’s are as well.
The difficulty of course is that we have to make both the γC ’s and their

AC0-Frege derivations have small size. This brings us to the reasons for

translating PK
O(1)
O(1)(⊕) derivations into PKone⊕

O(1) and for avoiding the Subtract
rule.
Reason for translation to PKone⊕

O(1) . Consider the PK2
1(⊕) cedent

⊕0(p1, . . . , pn),⊕1(p1, . . . , pn),

which has a small proof. We cannot hope to witness the validity of this
cedent by:

– writing down a small AC0-Frege formula γ0 that logically implies the
existence of a perfect matching on the set of the satisfied pi’s,

– writing down a small AC0-Frege formula γ1 that logically implies the
existence of a perfect matching on the set of the satisfied pi’s together
with an extra element >,

– and then giving a proof (of any sort) of γ0 ∨ γ1.

24

This cannot be done because if it could, then γ1 would be a small constant-
depth formula for parity. However, we can write down and prove a small
formula witnessing the validity of the (·)one⊕ translation of our cedent (cf. the
example below Definition 11): the formula says that if pi is satisfied, then
pi ∧ pi is matched to pi, and if both pi and pj are satisfied, then pi ∧ pj is
matched to pj ∧ pi. In general, to witness provable disjunctions of parities
we have to think of them as single parities, and the translation makes that
explicit.
Reason for avoiding Subtract. We have to say something about how the
matchings given by the µCe ’s are defined as we progress through P .

When a formula first enters inside ⊕, which can only happen at a MOD
inference, it can be matched to the final > inside the same ⊕. So, for
instance, for an inference

Ω, ϕ,⊕∅ Ω, ϕ,⊕(>)

Ω,⊕(ϕ,>)

the formula γC corresponding to the conclusion of the inference will say
that if ϕ holds, then ϕ is matched to >; otherwise, there are no edges in
the matching at all (in which case, γC claims that Ω is satisfied). In other
words, the formula µC{1,2} corresponding to the unique possible edge in the
conclusion is simply ϕ.

Then, the matchings are propagated from premises to conclusions of
inferences. For example, at a cut inference, say

ϕ,⊕Ξ ϕ,⊕Ξ
Cut∅,⊕Ξ

we will want to use the matching from the right premise CR if ϕ holds and
the one from the left premise CL if ϕ fails (recall that e.g. γCL only claims
to have a matching on Ξ if ϕ fails). Thus, the formula µC{i,j} stating that
two formulas ξi, ξj ∈ Ξ are matched at the conclusion of the inference will

have to be equivalent to (ϕ ∧ µCR{i,j}) ∨ (¬ϕ ∧ µCL{i,j}). At an Add inference,
we will take the disjoint union of the matchings corresponding to the two
premises, etc.

For all inferences except Subtract (and the special case of MOD outlined
above), we are able to ensure that if two formulas ξi and ξj are to be matched
at the conclusion of the inference, then there is a premise of the inference
such that some ancestors of ξi and ξj are both inside ⊕ in that premise and
are already matched there (and some side conditions are satisfied telling us
that this is the premise to look at—cf. the cut example). For this reason, if

25

C := Ω,⊕Ξ was derived without using subtraction, each potential scenario
justifying that ξi and ξj are matched at C looks like this:

ϕ,>

ξi, ξj

Here some ancestors of ξi, ξj having the form ϕ,> are first matched by
an edge at a MOD inference and this edge propagates downwards along
a path in P satisfying some conditions. There are at most as many such
scenarios above as there are MOD inferences above C, and the formula µC{i,j}
is basically a disjunction over those scenarios.

The Subtract rule presents a problem, as some arguments of ⊕ in the
left premise disappear in the conclusion2. If those arguments of ⊕ that were
matched to the disappearing arguments in the premise are still present in the
conclusion, we have to find new matches for them. We could try something
like:

⊕0(ξ1, ξ2, ξ3, ξ4, ψ1, ψ2, ψ3, ψ4) ⊕0(ψ1, ψ2, ψ3, ψ4)

⊕0(ξ1, ξ2, ξ3, ξ4)

In other words, match ξi, ξj at C if they were matched at CL to some formu-
las ψk, ψ` that were themselves matched at CR. However, when we actually
try to write down a formula that describes when ξi, ξj are to be matched at
C, this becomes problematic. There are many possibilities for what ψk, ψ`
could have been. Essentially, we have to take a disjunction over all possi-
bilities. To make matters worse, for each possibility we are now faced with
the task of justifying why some formulas were matched at CL and why some
other formulas were matched at CR. If CL, CR were again derived using

2Note that in PK(⊕) there are two rules that do not have the subformula property:
Cut and Subtract. In the translation to the one-parity system, applications of these two
rules to ⊕’s are both translated into Subtract.

26

subtractions, and so on, the number of potential scenarios that could lead
to ξi, ξj being matched at C becomes doubly exponential in the height of
the derivation above C—in other words, exponential even if the derivation is
balanced. Hence, the Subtract rule is best avoided, for instance by replacing
it with Add in the way provided by Lemma 13.

We now give the technical details of the simulation.

Lemma 14. Let A be a set of cedents consisting of formulas which do not
contain parity connectives. Let Θ be a sequence of depth ≤ d formulas
without ⊕ and let P be a treelike PKone⊕

d -derivation of ∆,⊕ (Θ,Θ,>) from
{(Υ)one⊕ : Υ ∈ A} which does not use the Subtract rule. Suppose that P has
size s. Then there is an AC0-Frege with parity axioms derivation of ∆ from
A with size polynomial in s.

Proof. Throughout the proof, we will write any given cedent C in P as
C = Ω,⊕Ξ where Ω and Ξ contain no ⊕’s, and we will write ξCu to stand
for the u-th element of Ξ. As explained above, for each C in P we will give
a polysize AC0-Frege proof of the formula γC , which states that either Ω
holds or the formulas µCe , for e ∈

(
[lh(Ξ)]

2

)
, define a matching on the satisfied

elements of Ξ.
In the particular case of the final cedent ∆,⊕ (Θ,Θ,>), we will be able to

conclude that if ∆ is false, then there is a matching on the satisfied elements
of (Θ,Θ,>). However, there is an obvious matching on the satisfied elements
of (Θ,Θ): if we write θu for the u-th element of Θ, the matching is defined by
formulas νe = θu for e = {u, u+lh(Θ)}, u ∈ [lh(Θ)], and νe = ⊥ for all other
e. It is not difficult to rule out the coexistence of these two contradictory
matchings by a polysize proof in AC0-Frege with parity axioms (see [18]—
this is actually the only place where we use the parity axioms), which gives
a proof of ∆.

We now describe how to construct the formulas defining the matchings.
It will be clear from the construction that we need only a polynomial number
of polysize constant-depth formulas, and that the proofs of their properties
also need only size poly(s).

First, we define the intuitively obvious concept of one formula inside ⊕
being a (tacitly: direct) predecessor of another such formula in the derivation
P . The formula ξC

′
u′ is a predecessor of ξCu if C ′ is a premise and C the

conclusion of some inference in P , the inference uses some rule J , and one
of the following happens (referring to the rules as stated in Section 4):

• J is one of Weakening, Exchange, OR, AND, Contraction, Cut and
u = u′,

27

• J is Add and either u = u′ and C ′ is the left premise, or u = u′+lh(Φ)
and C ′ is the right premise,

• J is MOD and u = u′ + 1,

• J is Multiply and du/ lh(Ψ)e = u′,

• J is Permute and u = π(u′).

Observe that a formula is identical to its predecessor with the exception
of Multiply inferences, in which it is the conjunction of the predecessor (or
the sequence of its conjuncts) with another formula. The shift by 1 in MOD
inferences is related to the new formula entering ⊕ as ξC1 (the new formula
has no predecessor).

A matching witness branch for a pair of formulas ξCu , ξ
C
v (also referred

to below as a matching witness branch for (C, e) where e = {u, v}) is a
sequence

(ξC1
u1
, ξC1
v1

), (ξC2
u2
, ξC2
v2

), . . . , (ξCmum , ξ
Cm
vm), (6)

where

• (ξCmum , ξ
Cm
vm) = (ξCu , ξ

C
v),

• C1 is obtained by a MOD inference, u1 = 1, and v1 = lh(Ξ1),

• for i < m, ξCiui and ξCivi are the predecessors of ξ
Ci+1
ui+1 , ξ

Ci+1
vi+1 , respectively,

• for i < m, if Ci+1 is obtained by Multiply applied to Ci and to some
sequence of formulas Ψ, then ui+1 ≡ vi+1 (mod lh(Ψ)).

So, a matching witness branch for ξCu , ξ
C
v (intuitively: a potential reason

why ξCu , ξ
C
v might be matched to each other) is a sequence of formula pairs

that begins at a MOD with the formula entering ⊕ and the final > inside ⊕,
then progresses along the proof from a given pair of formulas at a premise
of an inference to a pair of its successors at the conclusion of the inference,
and ends in ξCu , ξ

C
v . If the (i+1)-th cedent along the branch is obtained

using Multiply, the additional condition ui+1 ≡ vi+1 (mod lh(Ψ)) ensures

that ξ
Ci+1
ui+1 is equivalent to ξCiui ∧ ψ and ξ

Ci+1
vi+1 to ξCivi ∧ ψ for the same ψ ∈ Ψ.

Let B be the set of all matching witness branches for ξCu , ξ
C
v . We want

the formula µC{u,v} to be

ξCu ∧ ξCv ∧
∨
B∈B

βB,

28

where βB is a formula describing some additional conditions on B, defined
below. In other words, we want an edge to appear between a satisfied
formula entering inside ⊕ at MOD and the last > inside that ⊕, and then
we want this edge to propagate from premises to conclusions along B if some
additional conditions on B are satisfied. To appreciate the last point, note
that we should prefer propagating edges from premises in which the non-⊕
part is false, since otherwise a perfect matching on the satisfied inputs to ⊕
might not even exist. Furthermore, even when there is no obvious reason
to prefer some premise we must have a way of choosing just one of them in
order to avoid propagating conflicting edges.

Let B be a matching witness branch as in (6). For 1 < i ≤ m, let Ji be
the rule used to derive Ci in P . Define βB to be:∧

1<i≤m
αJi,Ci−1 ,

where αJi,Ci−1 is a formula justifying the choice of premise Ci−1 made by B.
If Ji is one of the rules Cut, MOD, AND, the formula αJi,Ci−1 is defined as
follows:

αCut,C′ =

{
ϕ if C ′ is the right premise

ϕ if C ′ is the left premise

αMOD,C′ =

{
ϕ if C ′ is the left premise

ϕ if C ′ is the right premise

αAND,C′ = ϕ` ∧
`−1∧
j=1

ϕj if C ′ is the `th premise.

Here ϕ is, respectively, the cut formula in case of Cut and the formula
entering inside ⊕ in case of MOD; and ϕj is the jth auxiliary formula of the
AND rule. If Ji is any rule other than Cut, MOD, AND, then αJi,Ci−1 is >.
Roughly speaking, the conditions expressed by the αJi,Ci−1 formulas make
sure that the edges in a matching for Ci come from the correct premise: a
premise for which it is most likely that the edges actually defined a matching
(and from the first such premise in the case of AND).

This completes the description of the formulas µCe and thus also of γC .
Now it remains to show that for each line C of P the formula γC has a small
AC0-Frege proof from A. If C = Ω,⊕Ξ in P with k = lh(Ξ) ≥ 2, this comes

29

down to proving the following cedents:

Ω, µCe , ξ
C
u for each u ∈ e ∈

(
[k]

2

)
, (7)

Ω, ξCu , (µ
C
e)e3u for each u ∈ [k], (8)

Ω, µCe , µ
C
f for each e, f ∈

(
[k]

2

)
such that e⊥f. (9)

Using Lemma 4 (a) we derive ξCu , ξ
C
u from which (7) follows easily. We

construct polysize AC0-Frege derivations of (8) and (9) from A by induction
on C.

If C is an axiom, both (8) and (9) are obvious.
Suppose that (8), (9) hold for the premises of the rule used to derive

line C. If C is obtained from C ′ = Ω′,⊕Ξ′ by one of the rules Weakening,
Exchange, OR, Contraction, then for u ∈ [k] we have µCe = µC

′
e for each

e ∈
(

[k]
2

)
with u ∈ e, so (8) and (9) are easily obtained from the induction

hypothesis.
Below, we focus on the case in which C = Γ,

∧
i∈[n] ϕi,⊕Ξ is obtained by

the AND inference

Γ, ϕ1,⊕Ξ · · · Γ, ϕn,⊕Ξ

Γ,
∧
i∈[n] ϕi,⊕Ξ

in the nontrivial situation where n ≥ 1 and k = lh(Ξ) ≥ 2. The cases for
Cut, Add, MOD, Multiply, Permute are easier and use similar ideas, so we
leave them to the reader.

Let u ∈ e ∈
(

[k]
2

)
. Notice that given any ` ∈ [n], to each matching witness

branch B′ of (C`, e) there is a unique matching witness branch B of (C, e)
such that βB is identical to βB

′ ∧ αAND,C` . Denote the set of matching
witness branches of (C`, e) by Be` .

To obtain (8), one may use, for each ` ∈ [n], the induction hypothesis

Γ, ϕ`, ξCu ,

ξCu ∧ ξCv ∧ ∨
B∈B{u,v}`

βB

v∈{u,v}∈([k]

2)

to derive

Γ, αAND,C` , ξ
C
u ,

ξCu ∧ ξCv ∧ αAND,C` ∧
∨

B∈B{u,v}`

βB

v∈{u,v}∈([k]

2)

.

30

Cutting these n cedents against the tautology αAND,C1 , . . . , αAND,Cn ,
∧
`∈[n] ϕ`,

which has a small proof, we obtain

Γ,

 ∧
`∈[n]

ϕ`

 , ξCu ,

ξCu ∧ ξCv ∧ αAND,C` ∧
∨

B∈B{u,v}`

βB

v∈{u,v}∈([k]

2),
`∈[n]

from which the desired

Γ,

 ∧
`∈[n]

ϕ`

 , ξCu ,

ξCu ∧ ξCv ∧ ∨
`∈[n]

∨
B∈B{u,v}`

αAND,C` ∧ β
B

v∈{u,v}∈([k]

2)

follows using OR rules and some easily derivable regrouping and distribu-
tivity properties.

To obtain (9), let e = {u, v}⊥f = {u,w} ∈
(

[k]
2

)
and use the induction

hypothesis

Γ, ϕ`, ξCu ∧ ξCv ∧
∨
B∈Be`

βB, ξCu ∧ ξC,w ∧
∨
B∈Bf`

βB.

for every ` ∈ [n], to derive

Γ, ξCu , ξ
C
v ,

∨
B∈Be`

αAND,C` ∧ βB, ξCu , ξCw ,
∨
B∈Bf`

αAND,C` ∧ βB. (10)

For ` 6= `′, the tautology αAND,C` , αAND,C`′ has a small proof, and we can
use it to derive

Γ, ξCu , ξ
C
v ,

∨
B∈Be`

αAND,C` ∧ βB, ξCu , ξCw ,
∨

B∈Bf
`′

αAND,C`′ ∧ βB. (11)

Applying the AND rule n + 1 many times to the sets of cedents (10), (11)
and the OR rule twice, we obtain

Γ, ξCu ∧ ξCv ∧
∨
`∈[n]

∨
B∈Be`

αAND,C` ∧ βB, ξCu ∧ ξCw ∧
∨
`∈[n]

∨
B∈Bf`

αAND,C` ∧ βB,

from which (9) follows by a weakening with
∧
`∈[n] ϕ`.

31

Theorem 15. For each c, d ∈ N, there is a quasipolynomial-time proce-
dure which, given a treelike PKc

d(⊕) refutation of a set of ⊕-free cedents A,
produces a refutation of A in AC0-Frege with parity axioms.

Proof. Assuming that A has a treelike PKc
d(⊕) refutation of size s:

(i) apply Lemma 5 to obtain a treelike PK
log s+O(1)
d+1 (⊕) refutation of A of

size sO(1) and height O(log s),

(ii) apply Lemma 12 to obtain a treelike PKone⊕
d+2 refutation of {(Ξ)one⊕ :

Ξ ∈ A} of size sO(log s) and height O(log2 s),

(iii) apply Lemma 13 to obtain a treelike PKone⊕
d+2 derivation of ⊕(Θ,Θ,>)

from {(Ξ)one⊕ : Ξ ∈ A} which has size sO(log3 s), height O(log2 s) and
does not use the Subtract rule,

(iv) apply Lemma 14 to obtain a refutation of A in AC0-Frege with parity

axioms which has size polynomial in sO(log3 s).

All the results used in the simulation are proved by explicit constructions
which can be carried out in time polynomial in sO(log3 s).

Remark. By part (b) of Theorem 17, the simulation in Theorem 15 cannot
be improved to polynomial.

6 Separations

In this section we study the question to what extent known methods can

give separations between subsystems of PK
O(1)
O(1)(⊕) and AC0[2]-Frege. It

turns out that the answer depends on whether the separating formulas are
allowed to contain parity connectives. It is easy to prove exponential separa-

tions between treelike and daglike PK
O(1)
O(1)(⊕) and AC0[2]-Frege as refutation

systems for sets of cedents containing ⊕. On the other hand, if we consider
just refutations of CNF’s, we verify that the Impagliazzo-Segerlind tech-

nique of [17] can be used to separate PK
O(1)
O(1)(⊕) from AC0[2]-Frege—but

this technique gives only superpolynomial separations, which, as Theorem
15 witnesses, leave quite a lot to be settled.

6.1 Exponential separations for formulas with
⊕

Theorem 16. There exist families {An}n∈ω and {Bn}n∈ω of unsatisfiable
sets of PK1

2(⊕) cedents such that:

32

(a) each An has a poly(n)-size refutation in PKid
2 (⊕), but requires 2n

Ω(1)
-

size refutations in PKc
d(⊕) for any constants c, d,

(b) each Bn has a poly(n)-size refutation in PK
O(1)
O(1)(⊕), but requires 2n

Ω(1)
-

size refutations in treelike PKc
d(⊕) for any constants c, d.

Proof. We prove (a). The idea is to take a family of narrow CNF’s which
have small constant-depth Frege refutations but no low-degree Polynomial
Calculus refutations, and to replace each variable by a parity of fresh vari-
ables. For concreteness, consider the ordering principle restricted to an ex-
pander graph as formulated in [15] (weak PHP would do just as well except
that it is only known to have a quasipolynomial-size constant-depth proof).
Given a degree 9 expander G = (V,E) on n vertices, the CNF GOP(G)
consists of the following clauses in the variables xij , i<j∈ [n]:

xij , xjk, xik, i<j<k∈ [n],

xij , xjk, xik i<j<k∈ [n],

(xji : (i, j)∈E, j<i) , (xij : (i, j)∈E, j>i) i∈ [n]

Intuitively, if we think of the variables as describing a linear ordering on
[n], where xij means that i is below j in the ordering, GOP(G) says that
each element of [n] is smaller than one of its neighbours in G. The algebraic
reformulation of GOP(G) is the following set of polynomials over F2:

xijxjk(1 + xik), i<j<k∈ [n],

(1 + xij)(1 + xjk)xik, i<j<k∈ [n],∏
(i,j)∈E
j<i

xji ·
∏

(i,j)∈E
j>i

(1 + xij) i∈ [n]

We obtain An by replacing each xij with
∑

` xij` for distinct fresh variables
xij`, `∈ [n], and rewriting the resulting polynomials as ⊕’s of conjunctions.

33

So, An consists of the formulas:

⊕0({xij`1 ∧ xjk`2 : `1, `2∈ [n]},
{xij`1 ∧ xjk`2 ∧ xik`3 : `1, `2, `3∈ [n]}),

i<j<k∈ [n],

⊕0({xik`3 : `3∈ [n]},
{xij`1 ∧ xik`3 : `1, `3∈ [n]},
{xjk`2 ∧ xik`3 : `2, `3∈ [n]},
{xij`1 ∧ xjk`2 ∧ xik`3 : `1, `2, `3∈ [n]}),

i<j<k∈ [n],

and the somewhat messy formulas corresponding to the width-9 clauses of
GOP(G).

A polysize refutation of An in PKid
2 (⊕) can be obtained by first deriving

the clauses of the CNF statement of GOP(G) with ⊕1
`xij`’s substituted for

the xij ’s, and then performing the same substitution in a polysize resolution
refutation of GOP(G) [31].

On the other hand, any PKc
d(⊕) refutation of An requires size 2n

Ω(1/d)
.

To see this, let P be a PKc
d(⊕) refutation of size S = 2n

a·(1/d)
where the

constant a is small enough, as determined by the argument below. Let
n0 =

(
n
2

)
n and ni+1 = ni/(O(logS)). Apply a series of random restrictions

ρ1 . . . ρd+1 as in [2, Sections 2 and 6.1], with ρi leaving ni out of ni−1 variables
unassigned. Assuming S is small enough, w.h.p. ρ = ρ1 . . . ρd+1 switches all
⊕-free subformulas of formulas appearing in P , as well as all the formulas∨

Γ for Γ,⊕Ψ1, . . . ,⊕Ψc a cedent in P , into canonically defined decision
trees of height logS = na·(1/d). Also w.h.p. assuming S is small enough,
ρ1 . . . ρd+1 leaves at least one xij` unassigned for each i<j∈ [n]. Apply an
additional restriction τ which for each i and j sets all xij`’s except one, for
instance to 0. Simplify the decision trees accordingly.

As a result of the above procedure, each cedent Γ,⊕Ψ1, . . . ,⊕Ψc in P
gets mapped to a product of canonically defined polynomials pΓpΨ1 . . . pΨc

obtained from the decision trees for
∨

Γ�ρτ and for the restrictions of ele-
ments of Ψ1, . . . ,Ψc: pΓ is 0 exactly if

∨
Γ�ρτ holds, and pΨm is 0 exactly

if ⊕(Ψm�ρτ) holds for m∈ [c]. Each polynomial pΓpΨ1 . . . pΨc has degree at
most h = (c + 1)na·(1/d). Moreover, a tedious but straighforward verifica-
tion reveals that for every inference in P , the polynomial representing the
conclusion can be derived from the polynomials representing the premises
in degree-O(h) Polynomial Calculus (in fact, these derivations are treelike
and their number of lines is polynomial in max(number of premises, 2h)).

34

This gives a degree-O(h) PC refutation of An�ρτ . However, An�ρτ is (up to
renaming variables and replacing some xij` by 1 + xij`) GOP(G), which by
[15, Theorem 2] has no Polynomial Calculus refutation of degree less than
n/108—a contradiction if a was chosen small enough.

Part (b) is proved analogously, except that to define Bn we need to re-
place variables with sums of variables in (negations of) tautologies that have
polysize constant-degree refutations in Polynomial Calculus but require large
degree to refute in the Nullstellensatz proof system of [3]—for instance, the
housesitting principles of [14, 10]. Then, on the one hand, the obvious substi-
tution into the original PC refutations gives polysize PC refutations (which

can be easily translated into polysize PK
O(1)
2 (⊕) refutations) of Bn. On the

other hand, applying switching as above to a size-2n
a·(1/d)

treelike PKc
d(⊕)

refutation of Bn would give rise to a size-2O(na·(1/d)), degree-O(na·(1/d)) tree-
like PC refutation of the original principle. By the known translation of
treelike PC into Nullstellensatz [11, Theorem 5.4], such a refutation does
not exist if a is small enough.

6.2 Separations without ⊕: the Impagliazzo-Segerlind argu-
ment

Theorem 17. There exist families {An}n∈ω and {Bn}n∈ω of unsatisfiable
CNF’s such that:

(a) each An has a poly(n)-size refutation in AC0[2]-Frege, but requires
nω(1)-size refutations in PKc

d(⊕) for any constants c, d,

(b) each Bn has a poly(n)-size refutation in treelike PK
O(1)
O(1)(⊕), but re-

quires nω(1)-size refutations in AC0-Frege with parity axioms.

Both parts of Theorem 17 are proved using a method of Impagliazzo and
Segerlind presented in [17] and described in full detail in [29, Chapter VI].
We expect the reader to have those two texts at hand. Part (b) actually
follows more or less directly from the work of [17, 29]. As for part (a), the
idea is also essentially the same, but we need to verify that the method still
applies. In the proof sketch below, we focus on describing the family of
CNF’s witnessing part (a). The upper bound in (a) is easy to prove. We
explain some of the modifications and fixes to [29] needed to prove the lower
bound in a separate appendix. Even in the appendix, the lower bound proof
is only outlined, since the technical part of the argument is quite involved3

3Chapter VI of [29] is almost 60 pages.

35

but conceptually almost identical to the one described by Impagliazzo and
Segerlind. The details are outsourced to [29, Chapter VI].

Proof sketch. Part (b) is witnessed by Bn = IS(U), where U is what [17]
would call an (n, n)-universe and the IS(U)’s are the CNF’s used in [17]
to separate constant-depth Frege with parity axioms from constant-depth
Frege with parity gates. For a fixed n, the formula Bn has variables xi` for
i, `∈ [n] as well as some auxiliary variables, and claims in an obfuscated way
(with no explicit use of ⊕) that all of the cedents

⊕0(x1` : `∈ [n]), (12)

⊕1(xi` : `∈ [n]),⊕0(x(i+1)` : `∈ [n]), i∈ [n], (13)

⊕1(xn` : `∈ [n]), (14)

are satisfied. Note that (12)-(14) are obtained by substituting parities of
variables for individual variables in the obvious propositional induction prin-
ciple: “p0 holds, and if pi holds then so does pi+1, but pn does not hold”.

If (12)-(14) are rewritten as a set of polynomial equations over F2, the set
has polysize constant-degree Polynomial Calculus refutations, but by [13] re-
quires logarithmic-degree Nullstellensatz refutations. This is used in [17, 29]
to show that each Bn has size poly(n) and a polysize PC refutation (hence
also a polysize AC0[2]-Frege refutation), but requires superpolynomial-size
refutations in AC0-Frege with parity axioms. However, it is also straight-
forward to give a polysize treelike PK5

2(⊕) refutation of Bn: first, derive the
formulas (12)-(14) from the clauses of Bn, and then arrange a refutation of
(12)-(14) into a balanced tree of cuts.

To prove (a), we need to apply a modification similar to the one used to
produce Bn from the propositional induction principle—however, this time,
in analogy to Theorem 16 part (a), our starting point should be a family of
tautologies that has small proofs in AC0[2]-Frege but no low-degree proofs
in Polynomial Calculus. Once again, we want to replace individual variables
by parities, but since the resulting formulas are not allowed to contain ⊕
connectives, every statement of the form “an even number of ϕ1, . . . , ϕk are
true” will have to be reexpressed using auxiliary variables that give a perfect
matching on the satisfied elements of {ϕ1, . . . , ϕk}. Moreover, in doing this
we have to avoid making too many parity statements implicitly definable by
constant-depth formulas in the new variables; otherwise, An will be easy for
AC0-Frege.

As our underlying family of tautologies, we choose the weak pigeonhole

36

principle PHP2m
m . As a set of polynomials, this consists of:

1 +
∑
j∈[m]

xij , i∈ [2m],

xi1j · xi2j , i1<i2∈ [2m], j∈ [m]

The main reason for preferring weak PHP to the GOP formulas used in
Theorem 16 is that the degree of weak PHP as a set of polynomials is only
2. Any higher degree would make the eventual formulas An quite hard to
write down, not to mention work with. Moreover, weak PHP is defined in a
very clear, explicit way, with no dependence on the structure of an expander
graph (the restriction to a constant-degree expander in GOP is crucial to
have any control over the degree of the polynomials). On the other hand, the
fact that GOP has slightly smaller constant-depth refutations is no longer
important because we are only proving a superpolynomial separation.

Now, given n, where w.l.o.g. n is even, choose m quasipolynomially
smaller than n such that there exist AC0-Frege refutations of PHP2m

m of
size n. Replacing each xij by a sum of n variables xijk, k∈ [n], and rewriting
the polynomials as ⊕’s of conjunctions, leads to the set of formulas:

⊕1 ({xijk : j∈ [m], k∈ [n]}) , i∈ [2m], (15)

⊕0 ({xi1jk ∧ xi2j` : k, `∈ [n]}) , i1<i2∈ [2m], j∈ [m] (16)

To obtain An, we introduce an additional set of nm + 1 “type-1 extra
points” for each i, and a set of n2 “type-2 extra points” for each triple
(i1, i2, j); note that nm + 1 is an odd number and n2 is even. We then
reexpress (15) for a given i by saying that there is a perfect matching on the
union of the set of type-1 extra points and the set of xijk’s with value 1. We
reexpress (16) for (i1, i2, j) by saying that there is a perfect matching on the
union of the set of type-2 extra points and the set of pairs (k, `) such that
both xi1jk and xi2j` evaluate to 1. In both cases, it helps to simplify things
if all edges in the matchings are required to contain at least one extra point.

In more detail, An is a CNF in the variables:

xijk, i∈ [2m], j∈ [m], k∈ [n],

yijkp, i∈ [2m], j∈ [m], k∈ [n], p∈ [mn+ 1],

vie, i∈ [2m], e∈
(

[mn+ 1]

2

)
,

zi1i2jk`q, i1<i2∈ [2m], j∈ [m], k, `∈ [n], q∈ [n2],

wi1i2jf , i1<i2∈ [2m], j∈ [m], f ∈
(

[n2]

2

)
.

37

Intuitively, yijkp says that xijk is matched to the type-1 extra point p; vie
says that the two type-1 extra points in e are matched for the given i; zi1i2jk`q
says that the pair of xi1jk and xi2j` is matched to the type-2 extra point
q; and wi1i2jf says that the two type-2 extra points in f are matched for
(i1, i2, j). The clauses of An are:

xijk ∨
∨

p∈[nm+1]

yijkp i∈ [2m], j∈ [m], k∈ [n], (17)

yijkp ∨ xijk i∈ [2m], j∈ [m], k∈ [n], p∈ [mn+ 1], (18)∨
j∈[m],k∈[n]

yijkp ∨
∨
e3p

vie i∈ [2m], p∈ [mn+ 1], (19)

yijkp ∨ yij′k′p i∈ [2m], (j, k) 6= (j′, k′), p∈ [mn+ 1], (20)

yijkp ∨ yijkp′ i∈ [2m], j∈ [m], k∈ [n], p 6=p′, (21)

yijkp ∨ vie i∈ [2m], j∈ [m], k∈ [n], p∈e, (22)

vie ∨ vie′ i∈ [2m], e⊥e′, (23)

xi1jk ∨ xi2j` ∨
∨

q∈[n2]

zi1i2jk`q i1<i2∈ [2m], j∈ [m], k, `∈ [n], (24)

zi1i2jk`q ∨ xi1jk i1<i2∈ [2m], j∈ [m], k, `∈ [n], q∈ [n2], (25)

zi1i2jk`q ∨ xi2j` i1<i2∈ [2m], j∈ [m], k, `∈ [n], q∈ [n2], (26)∨
k,`∈[n]

zi1i2jk`q ∨
∨
f3q

wi1i2jf , i1<i2∈ [2m], j∈ [m], q∈ [n2], (27)

zi1i2jk`q ∨ zi1i2jk′`′q i1<i2∈ [2m], j∈ [m], (k, `) 6=(k′, `′), q∈ [n2], (28)

zi1i2jk`q ∨ zi1i2jk`q′ i1<i2∈ [2m], j∈ [m], k, `∈ [n], q 6=q′, (29)

zi1i2jk`q ∨ wi1i2jf i1<i2∈ [2m], j∈ [m], k, `∈ [n], q∈f, (30)

wi1i2jf ∨ wi1i2jf ′ i1<i2∈ [2m], j∈ [m], f⊥f ′. (31)

Clauses (17)-(18) say that each xijk with value 1 is matched to some
type-1 extra point corresponding to pigeon i, while xijk’s with value 0 are
not matched to type-1 extra points. Clauses (19) say that each type-1
extra point is matched to either an x variable or another type-1 extra point
corresponding to the same pigeon. Clauses (20)-(23) rule out, respectively:

38

two x’s matched to the same type-1 extra point; two type-1 extra points
matched to the same x; a type-1 extra point matched both to an x and to
another type-1 extra point; a type-1 extra point matched to two different
type-1 extra points. Altogether, clauses (17)-(23) say that, for each pigeon
i, there is a perfect matching on the set of x variables set to 1 and the type-1
extra points corresponding to the pigeon. Clauses (24)-(31) say something
similar about pairs of x’s and type-2 extra points corresponding to a pair of
pigeons and a hole.

A poly(n)-size AC0[2]-Frege refutation of An can be obtained by first
deriving the clauses of PHP2m

m with ⊕1({xijk : k∈ [n]}) substituted for xij ,
and then making the same substitution in the size-n AC0-Frege refutation

of PHP2m
m . For an outline of the lower bound on proof size in PK

O(1)
O(1)(⊕),

see the Appendix.

Remark. The reader may have noticed that Theorem 17 does not contain
an analogue of Theorem 16 part (b), that is, a superpolynomial separation

between treelike and daglike PK
O(1)
O(1)(⊕) on refutations of CNF’s. In all like-

lihood, applying the techniques of [17] to a suitable family of formulas that
have polynomial size constant-degree Polynomial Calculus refutations but
do not have logarithmic-degree Nullstellensatz refutations would give a fam-

ily of CNF’s with polysize refutations in daglike but not treelike PK
O(1)
O(1)(⊕).

However, we have not investigated this in enough detail to claim it as a
result.

7 A constant-depth extension of Res-Lin

In [19], Itsykson and Sokolov study a refutation system they call Res-Lin in
which lines are cedents of ⊕’s of literals. (The system is inspired by a similar
one of Raz and Tzameret [27] which has cedents of sums over Z instead of
⊕’s.) They obtain strong lower bounds on refutation size for the treelike
version of their system, but leave lower bounds for the daglike version as an
open problem. Kraj́ıček [23] has recently developed a randomized version of
the feasible interpolation method aimed at attacking the problem.

In this section, we prove a simple result that illustrates a difference be-
tween the treelike and daglike versions of systems like Res-Lin in which lines
express disjunctions of parities. Namely, we show that treelike PKid

O(1)(⊕),
which strengthens treelike Res-Lin by allowing arbitrary constant-depth for-
mulas rather than just literals as inputs to the ⊕ connectives, is simulated
by (daglike) PKlog

O(1)(⊕). This yields lower bounds proved in more or less

39

the same way as for PK
O(1)
O(1)(⊕): as an example, we show that Count3 needs

exponential-size refutations in treelike PKid
O(1)(⊕) and thus (unsurprisingly)

in treelike Res-Lin4. As we explain in a remark below, such lower bounds
are unlikely to be easily provable for daglike PKid

O(1)(⊕), so a lower bound
for daglike Res-Lin will likely require taking advantage of the particularly
simple form of the inputs to ⊕.

The following theorem is yet another instance of the well-known general
phenomenon that the lines in a treelike derivation can be simplified at the
cost of making the derivation daglike. Our proof is modelled quite closely
after those of [21, 24]. (In rudimentary form, the idea can also be found
in the treelike case of the “short proofs are narrow” argument of [7].) Here
we want to trade treelikeness of a PKid

d (⊕)-refutation for a small number of
parities per line.

Theorem 18. Suppose that A is a set of PKid
d (⊕) cedents each of which con-

tains at most p formulas with an ⊕ connective. If A has a treelike PKid
d (⊕)-

refutation of size s and cedent-number t, then it also has a PKlog t+p+3
d (⊕)-

refutation of size poly(s).

Proof. Let us refer to the number of formulas with ⊕ occurring in the ce-
dent as the ⊕-width of the cedent. For a set of cedents A and a PKid

d (⊕)-
derivation P we define AP to be the set of all cedents having one of the
following forms:

• Θ,Ω, where Ω ∈ A and each element of Θ occurs (possibly negated)
as an element of a line in P ,

• Θ, ϕ, ϕ, where ϕ and each element of Θ occurs (possibly negated) as
an element of a line in P .

By induction on t we prove the following: if A is a set of cedents of ⊕-
width p and Ξ = ξ1, . . . , ξk has a treelike PKid

d (⊕)-derivation P from A of

size s and cedent-number t, then there is a PKlog t+p+3
d (⊕)-refutation P ′ of

AP ∪ {(ξi) : i ∈ [k]} of cedent-number 5st, such that the size of each cedent
in P ′ is at most 2s.

4In fact, the proof of Theorem 18 below, specialized to the very simple case of treelike
Res-Lin, gives a translation of refutations in that system into daglike Res-Lin refutations
with logarithmically many ⊕’s per line, which are in turn easy to simulate in logarithmic-
degree Polynomial Calculus over F2. This makes it possible to derive treelike Res-Lin size
lower bounds immediately from PC degree lower bounds.

40

In the base case for t = 1 and Ξ ∈ A, we obtain a refutation of ⊕-width
at most p by cutting Ξ against each (ξi). The other base case, where Ξ is a
logical axiom, is obvious.

For the inductive step, if Ξ is derived by Weakening, Exchange, or Con-
traction, then the induction hypothesis applied to the premise of the rule
already gives the refutation P ′ we need.

We will describe only how to treat the case where Ξ is derived by a
MOD inference. The remaining cases (AND, OR, Cut, Add, Subtract) use
similar ideas and are no harder to deal with. We write Γ to stand for the
side formulas of Ξ and assume that Γ = γ1, . . . , γk.

If Ξ = Γ,⊕b(Φ, ϕ) is derived by the MOD rule, let Q1 and Q2 de-
note, respectively, the subderivations of P with endcedent (Γ, ϕ,⊕b−1Φ)
and (Γ, ϕ,⊕bΦ). Suppose that cn(Q1) ≤ cn(Q2) (the opposite case is
treated analogously). Because P is treelike, Q1 and Q2 are disjoint and
so cn(Q1) < t/2 and cn(Q2) < t − 1. By the induction hypothesis, there

is a PKlog t+p+2
d (⊕)-refutation Q′1 of AQ1 ∪ {(γi) : i ∈ [k]} ∪ {(ϕ), (⊕bΦ)},

and there is a PK
log(t−1)+p+3
d (⊕)-refutation Q′2 of AQ2 ∪ {(γi) : i ∈ [k]} ∪

{(ϕ), (⊕b−1Φ)}. Obtain a derivation Q′′1 of ϕ by adding ϕ in front of every
line in Q′1, and similarly obtain a derivation Q′′′1 of ⊕b−1Φ by adding ⊕b−1Φ
in front of each line in Q′1. Note that the ⊕-width of Q′′′1 is one greater than
the ⊕-width of Q′1, hence it is at most log t+ p + 3. Also, because the size
of each cedent in Q′1 is bounded by 2s(Q1) (by the induction hypothesis)
and it is increased when constructing Q′′1 by less than 2(s(P)− s(Q1)), the
size of each cedent in Q′′1 is bounded by 2s(P) = 2s (and similarly for Q′′′1).

Attach Q′2 to Q′′1 and Q′′′1 , forming a PKlog t+p+3
d (⊕)-refutation P̃ of

AP ∪ {(γi) : i ∈ [k]} ∪ {(ϕ, γi) : i ∈ [k]}
∪ {(⊕b−1Φ, γi) : i ∈ [k]} ∪ {(ϕ,⊕bΦ), (⊕b−1Φ, ϕ)}.

Since the axioms of the desired refutation P ′ can only be from the set
AP ∪ {(γi) : i ∈ [k]} ∪ {(⊕b−1(Φ, ϕ))}, we need to add some derivations to
P̃ .

Add at most 3k cedents to P̃ so that each axiom (ϕ, γi), i ∈ [k], and
(⊕b−1Φ, γi), i ∈ [k], of P̃ is derived from (γi) by a weakening and exchange.
Attach 9 cedents to the axiom (ϕ,⊕bΦ) of P̃ to form its derivation from the
cedent (⊕b−1(Φ, ϕ)), the cedent (⊕bΦ,⊕b−1Φ) and the cedent (ϕ,ϕ). Simi-
larly, attach 6 cedents to the axiom (⊕b−1Φ, ϕ) of P̃ to form its derivation
from the same set of cedents. Call the resulting refutation P ′. Because
of the assumption cn(Q1) ≤ cn(Q2) and because P is treelike, we have
cn(P ′) ≤ cn(Q′2) + 2cn(Q′1) + 3k+ 15 ≤ 5s(Q2)cn(Q2) + 10s(Q1)cn(Q1) +

41

3k+15 ≤ 5(s(Q2)+s(Q1)+s(Ξ))(1+cn(Q2)+cn(Q1)) = 5st. The ⊕-width
of the cedents added to P̃ to form P ′ is not greater than the ⊕-width of P̃ .
A bound on the sizes of these additional cedents can be obtained similarly to
the bound on sizes of cedents in Q′′1. Hence P ′ is a PKlog t+p+3

d (⊕)-refutation
with the required properties. This concludes the inductive step.

Taking for P the refutation from the statement of the theorem, we thus
obtain a PKlog t+p+3

d (⊕)-refutation P ′ of AP of cedent-number 5st, such that
each line has size at most 2s. Attach to each axiom of P ′ at most two cedents
forming its derivation from A ∪ {(ϕ,ϕ) : ϕ is an element of a cedent in P}.
Finally, derive each axiom of the form (ϕ,ϕ) using Lemma 4. The resulting

PKlog t+p+3
d (⊕)-refutation has size ≤ 5st · 2s · 3 + 5st ·O(s4) = O(s6).

Theorem 18 implies:

Corollary 19. For every d there is some ε > 0 such that formulas ex-
pressing the counting principle Countn3 require 2n

ε
-size refutations in treelike

PKid
d (⊕).

Proof. For an appropriate δ, a 2n
δ

lower bound on PKlog
d (⊕) refutations of

Countn3 can be obtained by combining an argument analogous to that of [22]
with the degree lower bounds of [9].

Namely, given a PKlog
d (⊕) refutation of Countn3 smaller than 2n

δ
for

sufficiently small δ, apply the switching lemma associated with Count3

(cf. e.g. [2, Section 6.3]) to turn the refutation into a refutation of Countn
γ

3

(for some γ > 0) in Polynomial Calculus over F2 with degree o(nγ). (This
part of the argument is analogous to [22], but a similar argument involving
a simpler switching lemma is described in the proof of our Theorem 16 part
(a).) However, by [9, Corollary 20], any refutation of Countn

γ

3 in PC over
F2 must have degree Ω(nγ).

Remark. It would be possible to prove Corollary 19 via a quasipolynomial
simulation of treelike PKid

d (⊕) by daglike PK3
O(1)(⊕)—in other words, by

decreasing the number of ⊕’s per line to a constant at the cost of making the
derivation somewhat bigger. To obtain the simulation, one first applies the
simulation of Theorem 18 and then the translation (·)one⊕ of Section 4. The
result is a sequence of PKone⊕

O(1) (⊕), which can also be viewed as PK1
O(1)(⊕)

cedents in the obvious way. The sequence can be made into a PK3
O(1)(⊕)-

derivation by adding a polysize derivation of the (·)one⊕-translation of the
conclusion of each inference from the (·)one⊕-translations of the premises.

42

Remark. We do not expect that a result analogous to Corollary 19 can be
easily obtained for daglike PKid

O(1)(⊕). In fact, already bounds for a subsys-

tem of PKid
2 (⊕) in which the inputs to ⊕ are log-sized conjunctions will prob-

ably be hard to prove. That system corresponds to the apparently strong
bounded arithmetic theory T 2,⊕P

2 (α) [12], which has not been separated
from full bounded arithmetic with parity quantifiers. In particular, the sys-
tem has quasipolynomial-size refutations of the surjective weak pigeonhole
principle for functions defined in terms of ⊕’s of log-sized conjunctions—a
principle which seems to be a major source of the strength of AC0[2]-Frege.

Acknowledgement. The authors are grateful to the two anonymous re-
viewers of the paper, whose detailed comments made it possible to improve
the presentation considerably.

References

[1] Albert Atserias, Moritz Müller, and Sergi Oliva. Lower bounds for
DNF-refutations of a relativized weak pigeonhole principle. Journal of
Symbolic Logic, 80(2):450–476, 2015.

[2] Paul Beame. A switching lemma primer. Technical Report UW-CSE-
95-07-01, University of Washington, Department of Computer Science
and Engineering, 1994.

[3] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi, and
Pavel Pudlák. Lower bounds on Hilbert’s Nullstellensatz and proposi-
tional proofs. Proceedings of the London Mathematical Society, 73(3):1–
26, 1996.

[4] Paul Beame, Russell Impagliazzo, Jan Kraj́ıcek, Toniann Pitassi, Pavel
Pudlák, and Alan R. Woods. Exponential lower bounds for the pigeon-
hole principle. In Proc. 24th ACM Symposium on Theory of Computing,
pages 200–220. ACM, 1992.

[5] Paul Beame and Søren Riis. More on the relative strength of counting
principles. In P. Beame and S. Buss, editors, Proof Complexity and Fea-
sible Arithmetics, pages 13–36. American Mathematical Society, 1997.

[6] Arnold Beckmann and Jan Johannsen. An unexpected separation result
in linearly bounded arithmetic. MLQ. Mathematical Logic Quarterly,
51(2):191–200, 2005.

43

[7] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow – resolution
made simple. Journal of the ACM, 48(2):149–169, 2001.

[8] S. R. Buss. Towards NP-P via proof complexity and search. Annals of
Pure and Applied Logic, 163(7):906–917, 2012.

[9] Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi.
Linear gaps between degrees for the polynomial calculus modulo dis-
tinct primes. Journal of Computer and System Sciences, 62(2):267–289,
2001.

[10] Samuel R. Buss. Lower bounds on Nullstellensatz proofs via designs.
In Proof complexity and feasible arithmetics (Rutgers, NJ, 1996), vol-
ume 39 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages
59–71. Amer. Math. Soc., Providence, RI, 1998.

[11] Samuel R. Buss, Russell Impagliazzo, Jan Kraj́ıček, Pavel Pudlák,
Alexander A. Razborov, and Jǐŕı Sgall. Proof complexity in algebraic
systems and bounded depth Frege systems with modular counting.
Computational Complexity, 6:256–298, 1996/1997.

[12] Samuel R. Buss, Leszek Aleksander Ko lodziejczyk, and Konrad
Zdanowski. Collapsing modular counting in bounded arithmetic and
constant depth propositional proofs. Transactions of the American
Mathematical Society, 367(11):7517–7563, 2015.

[13] Samuel R. Buss and Toniann Pitassi. Good degree bounds on nullstel-
lensatz refutations of the induction principle. Journal of Computer and
System Sciences, 57(2):162–171, 1998.

[14] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the
Groebner basis algorithm to find proofs of unsatisfiability. In Proceed-
ings of STOC 1996, pages 174–183. ACM, 1996.

[15] Nicola Galesi and Massimo Lauria. Optimality of size-degree tradeoffs
for polynomial calculus. ACM Transactions on Computational Logic,
12(1):Article 4, 2010.

[16] Russell Impagliazzo and Jan Kraj́ıček. A note on conservativity rela-
tions among bounded arithmetic theories. Math. Log. Q., 48:375–377,
2002.

44

[17] Russell Impagliazzo and Nathan Segerlind. Counting axioms do not
polynomially simulate counting gates. In Proceedings of FOCS 2001,
pages 200–209. IEEE, 2001.

[18] Russell Impagliazzo and Nathan Segerlind. Constant-depth Frege sys-
tems with counting axioms polynomially simulate Nullstellensatz refu-
tations. ACM Transactions on Computational Logic, 7(2):199–218,
2006.

[19] Dmitry Itsykson and Dmitry Sokolov. Lower bounds for splittings by
linear combinations. In E. Csuhaj-Varjú, M. Dietzfelbinger, and Z. Ésik,
editors, Proceedings of MFCS 2014, Part II, volume 8635 of Lecture
Notes in Computer Science, pages 372–383. Springer, 2014.

[20] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity
Theory. Cambridge University Press, 1995.

[21] Jan Kraj́ıček. Lower bounds to the size of constant-depth propositional
proofs. The Journal of Symbolic Logic, 59(1):73–86, 1994.

[22] Jan Kraj́ıček. Lower bounds for a proof system with an exponential
speed-up over constant-depth Frege systems and over polynomial cal-
culus. In Proceedings of MFCS ’97, volume 1295 of Lecture Notes in
Computer Science, pages 85–90. Springer, 1997.

[23] Jan Kraj́ıček. Randomized feasible interpolation and
monotone circuits with a local oracle, 2016. Preprint,
https://arxiv.org/abs/1611.08680.

[24] Massimo Lauria. A note about k-DNF resolution. Information Pro-
cessing Letters, 137:33 – 39, 2018.

[25] Alexis Maciel, Phuong Nguyen, and Toniann Pitassi. Lifting lower
bounds for tree-like proofs. Computational Complexity, 23(4):585–636,
2014.

[26] Alexis Maciel, Toniann Pitassi, and Alan R. Woods. A new proof of the
weak pigeonhole principle. Journal of Computer and System Sciences,
64:843–872, 2002.

[27] Ran Raz and Iddo Tzameret. Resolution over linear equations and
multilinear proofs. Annals of Pure and Applied Logic, 155(3):194–224,
2008.

45

[28] A. A. Razborov. Lower bounds for the polynomial calculus. Computa-
tional Complexity, 7:291–324, 1998.

[29] Nathan Segerlind. New Separations in Propositional Proof Complexity.
PhD thesis, University of California, San Diego, 2003.

[30] P. M. Spira. On time hardware complexity tradeoffs for boolean func-
tions. In Proceedings of the Fourth Hawaii International Symposium on
System Sciences, pages 525–527, 1971.

[31] Gunnar St̊almarck. Short resolution proofs for a sequence of tricky
formulas. Acta Informatica, 33(3):277–280, 1996.

A The Impagliazzo-Segerlind lower bound argu-
ment: some details

We outline a proof of the lower bound in Theorem 17 part (a). For definitions
of the family of formulas An and related notation, see Section 6.1. The proof
is a switching lemma argument closely modelled after the one in [29, Chapter
VI].

As usual in this sort of argument, we want to show that after a restriction
of one kind or another, each constant-depth De Morgan formulas in a hy-
pothetical polynomial-size PKc

d(⊕) proof can be translated into a low-depth
decision tree. As in [29] (and in classical lower-bound proofs for e.g. PHPn+1

n

[4]), the decision trees we use are allowed to make queries other than just
the truth value of variables and receive answers other than yes/no. More
specifically, a decision tree can make the following queries:

• Is xijk true? This is answered with either a “yes” or a “no”.

• Which type-1 extra point is xijk is matched to? This is answered either
with “xijk is false” (and hence, it is not matched to anything) or “xijk
is true and it is matched to p” (which means yijkp is also true).

• (For some given i) What is the type-1 extra point p is matched to?
This is answered either by “p is matched to the extra point p′” (which
means that vie is true, for e = {p, p′}) or by “p is matched to the
variable xijk” (which means that both xijk and yijkp are true).

• Which type-2 extra point is the pair (xi1jk, xi2j`) matched to?. This
is answered in one of four ways: “xi1jk, xi2j` are both false”, “xi1jk is
true, but xi2j` is false”, “xi2j` is true, but xi1jk is false”, or “xi1jk, xi2j`

46

are both true and the pair is matched to q” (which means that zi1i2jklq
is also true).

• (For some given i1, i2, j) What is the type-2 extra point q matched to?
This is answered either by “q is matched to the extra point q′” (which
means that wi1i2jf is true for f = {q, q′}) or by “q is matched to
the pair (xi1jk, xi2j`)” (which means that all of xi1jk, xi2j`, zi1i2jklq are
true).

Each leaf of a decision tree corresponding to a formula in the hypothetical
refutation is labelled by 0 or 1. A decision tree strongly represents a DNF
ϕ if each 1-branch of the tree contains a term of ϕ and each 0-branch is
inconsistent with each term of ϕ (in the natural loose sense of inconsistency
where a y or w variable can be inconsistent with a negated x variable, two
y’s can be inconsistent with each other etc.).

As in [29], in order to make the switching work, we have to consider
not just random restrictions but random simplifications, which allow some
variables to be replaced by other variables rather than by 0, 1 values. More
specifically, we consider random (n, nε)-simplifications, where ε is sufficiently
small and it is assumed w.l.o.g. that n − nε is divisible by 4. Performing
such a simplification splits into the following steps:

(i) for each i, j:

(a) set n−nε
2 randomly chosen xijk’s to 1 and n−nε

2 randomly chosen
xijk’s to 0; set all y, z variables involving the latter xijk’s to 0;
leave the nε remaining xijk’s unset;

(b) choose at random a perfect matching on the set of xijk’s that
have been set to 1;

(ii) for each i:

(a) choose at random an injection which assigns a type-1 extra point
to each pair (j, k) such that xijk has been set to 1; set all corre-
sponding y variables to 1 and all conflicting y and v variables to
0;

(b) choose at random a set of mn−nε
2 hitherto unused type-1 extra

points and a perfect matching on it; set all corresponding v vari-
ables to 1 and all conflicting y and v variables to 0; thus, mnε+1
type-1 extra points remain unmatched;

(iii) for each i1, i2, j:

47

(a) choose at random an injection which assigns a type-2 extra point
to each pair (k, `) such that both xi1jk and xi2j` have been set to
1; set all corresponding z variables to 1 and all conflicting z and
w variables to 0;

(b) choose at random an injection which assigns a type-2 extra point
to each pair (k, `) such that one of xi1jk and xi2j` has been set
to 1 and the other is unset; set all conflicting z variables to 0 (w
variables are dealt with in steps (c), (d) below);

(c) for each k such that xi1jk remains unset: for each ` such that
xi2j` has been set to 1, substitute xi1jk for zi1i2jk`q, where q is
the extra point assigned to (k, `) in step (b); substitute ¬xi1jk
for the wi1i2jf such that f consists of the extra points assigned
to (k, `) and (k, `′) where xi2j`′ has been set to 1 and xi2j`, xi2j`′

are matched in step (i)(b); set all wi1i2jf ′ variables for f⊥f ′ to 0;

(d) perform a step analogous to (c) with the roles of i1 and i2 inter-
changed;

(e) choose at random a set of n2−
(

(n−nε)2

4 + nε(n− nε) + n2ε
)

hith-

erto unused extra points and a perfect matching on it; set all
corresponding w variables to 1 and all conflicting z and w vari-
ables to 0; thus, n2ε extra points remain unmatched through steps
(a)-(e).

The result of applying an (n, nε)-simplification ρ to An is a formula An�ρ
which looks just like An except that nε now plays the role of n (also, some
clauses of An become `, ¯̀ for a literal ` instead of becoming 1 directly).

The aim then is to prove the following switching lemma.

Switching Lemma (analogous to Theorem 83 of [29]). Let r, t and ε∈ (0, 1]
be constants. Let σ be an (n, nε)-simplification and let ϕ be an r-DNF in
the variables of An�σ. There exist constants δ ∈ (0, ε) and h such that the
probability, over randomly chosen (n, nδ)-simplifications ρ extending σ, that
ϕ�ρ has no decision tree of height at most h, is at most n−t.

To prove the switching lemma, one introduces a notion of independent
terms in a DNF in the variables of An�σ w.r.t. ρ (very roughly, terms which
after restriction by ρ can still be satisfied/falsified independently of each
other; the actual definition is more subtle, see [29, Definition VI.G.10]).
One then shows that for a sufficiently small δ and sufficiently large constant
s, the probability that a given DNF has a set of independent terms of size
at least s is below n−t. This involves three main steps (the constants in the
O and Ω notation below can be chosen independently of ε, δ, s):

48

• (analogous to [29, Lemma 89]) The probability, over random ρ and
random (n, nδ − 2rs)-simplifications κ extending ρ, that a given pro-
cedure taking κ as input and outputting s literals of the form x, x̄, v
or w actually outputs only literals satisfied by κ but not set in ρ, is
≤ (2rs/nε)Ω(s).

• (analogous to [29, Lemma 90]) Given ρ and an independent set of size
s w.r.t. ρ, the probability over κ as above that κ makes all terms in
the independent set satisfied is ≥ (n−δr

2
)O(s2) (a closer analogue to

[29] would have (n−δr)O(s), but see Remark below).

• (analogous to [29, Lemma 91]) There is a randomized procedure which,
for κ as above satisfying an independent set of size s w.r.t. ρ, outputs
s literals of the form x, x̄, v or w satisfied by κ but not set in ρ with
probability ≥ (1/r)O(s).

Putting these three steps together, one concludes that the probability of
selecting ρ with an independent set of size s is

≤ (2rs/nε)Ω(s)(nδr
2
)O(s2)rO(s),

which can be made smaller than n−t by first choosing the constant s suf-
ficiently large w.r.t. ε, t and then δ sufficiently small w.r.t. ε, s, r. Finally
one shows (in analogy to [29, Theorem 93]) that an r-DNF formula with no
set of independent terms of size more than s is strongly represented by a
decision tree of height O(r4s2).

Remark. At this point, we have to mention two apparent issues with [29], at
least one of which is not addressed in [17]. Firstly, the definition of simplifi-
cation in [29] (more precisely, the definition of presimplification, Definition
VI.G.2) is missing a step analogous to our (i)(b).

To use our setting and notation, this is as if instead of (iii)(c) we had
the following (iii)(c’): for each k such that xi1jk remains unset: for each `
such that xi2j` has been set to 1, substitute xi1jk for zi1i2jk`q, where q is the
extra point assigned to (k, `) in step (b); pick a random matching F on the
set of extra points q assigned to (k, `) for some ` in step (b); for each f ∈ F ,
substitute ¬xi1jk for wi1i2jf and set all wi1i2jf ′ variables for f⊥f ′ to 0. (And
define (iii)(d’) instead of (iii)(d) similarly—cf. [29, Definition VI.G.2, part
7].)

The effect is that the first paragraph of the proof of [29, Lemma 89]—
specifically, the claim “the number of L-presimplifications which are ex-
tended by a given (L−e)-presimplification depends only on L and e”—fails,

49

and the statement of that lemma is actually false. The fix we know is to
add a step analogous to (i)(b): in the language of [29], this would mean
ensuring that the matching on 1’s induced by the partition Ejρ is the same
for all unset Xj (and similarly for the partitions F iρ for all unset Xi). This

leads to a factor of 1
2 appearing in the statement of the corrected version of

[29, Lemma 89], but that has no bearing on the eventual statement of [29,
Theorem 83].

The other issue is possibly fixed to some extent in [17], but some of the
details are not present in that extended abstract. We explain the problem in
the language of [29]. The proof of [29, Lemma 91], specifically the argument
justifying the claim “there is a literal of Tt+1 not set by Bρ”, does not
seem to work under the current definitions of independent set and of s-
encoding [29, Definitions VI.G.10, VI.G.11]. A solution is to change those
definitions by requiring the terms in a “B-independent set for F with respect
to ρ” to be ρ-consistent with B and not just with each other (this change
is already made in [17, Definition 7.3.5]) and requiring an “s-encoding for ρ
with respect to F” to satisfy not just the s terms of an independent set but
also the associated set B (this is not discussed in [17]). However, the size of
B—w.l.o.g., at most O(r2s2)—must then be taken into account in the proof
and statement of [29, Lemma 90]. Eventually, this results in much worse
bounds in [29, Lemma 84]: the term LCr has to be replaced by LCr

2s. Once
again, though, no changes to the statement of [29, Theorem 83] are needed.

Now assume that P is a polysize PKc
d(⊕) refutation of An. Choosing a

sufficiently large t dependent on the size of P , we apply the switching lemma
d+1 times to the ⊕-free formulas appearing in lines of P . Let ρ = ρ1 . . . ρd+1

stand for the simplification built during the iteration of the lemma. Then ρ
induces a mapping from all ⊕-free subformulas of formulas in P , as well as
all formulas

∨
Γ for Γ the ⊕-free part of a cedent in P , to constant-height

decision trees. Given a bound k ∈N on the height of the decision trees, it
is possible to verify the mapping is a k-evaluation, in a sense analogous to
[29, Definition VI.H.1].

As in the proof of Theorem 16 part (a), each line of P �ρ can be viewed
as a degree-k polynomial. Moreover, using the properties of k-evaluations,
one verifies that for each inference in P , the polynomial representing the
conclusion restricted by ρ can be derived in constant-degree Polynomial
Calculus from the polynomials representing the premises restricted by ρ
and from An�ρ. Apply a further substitution of variables by constants, τ ,
so that An�ρτ becomes identical to PHP2m

m . Now P �ρτ is a constant-degree
Polynomial Calculus refutation of PHP2m

m , which does not exist by [28].

50

