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Chapter 1

Introduction

The research contained here is housed within the field called proof complexity.

Here we are concerned with the complexity of refuting, i.e. proving the unsatisfiability

of, statements given in some formal language. More specifically, we are in the realm of

propositional proof complexity, and we try to understand the complexity of proving true

statements given in propositional (quantifier free) language.

There are many different measures of the ‘complexity of a proof’. We have to first

define what it means to be a proof at all, and this is done by fixing some given axioms

and some permitted rules of inference. Then we must pick a measure of complexity –

we could, for example, investigate the number of lines in a proof, or maybe, the total

number of characters needed to specify the proof, perhaps, the number of applications

of a certain inference rule used in any given proof, usually the inference rule that is most

computationally costly to simulate - there are many such metrics that could be said to

capture a sort of complexity.

We have much choice and making different choices gives us differing readouts of complex-

ity. Propositional proof complexity theorists enlighten us to the consequences of these

decisions by relating these differing ideas of complexity. And by linking these ideas to-

gether, they create an impression of what the ‘true, inherent complexity’ of proving a

certain thing should be.

The general definition of a proof system given in the seminal paper by Cook and Reck-

how [20] is a function from strings in some alphabet onto the set of all propositional

tautologies that is computable in time polynomially bounded in the size of its input.

The intended meaning is that f takes as an input a proposed proof and produces as an

output the tautology demonstrated by the proof. Then the function f being surjective

means that it is complete, as any tautology is reached by at least one proof, and its

1



1. Introduction 2

being computable in polynomial time means that a proof can be vetted efficiently.

We can now define precisely our first notion of the complexity of a proof of a tautology

T relative to some proof system f as the bitsize of the smallest proof:

min |p| : f(p) = T .

The proof system f is said to be polynomially bounded if there exists some polynomial

p such that for any tautology T there exists an x such that T = f(x) satisfying |x| ≤
p(|T |). It is quickly seen that a polynomially bounded proof system exists if and only

if NP = co-NP - as the problem of deciding tautologicity is co-NP complete, and the

(apparently always polynomially sized) proof of tautologicity can be nondeterministically

divined by a nondeterministic Turing machine - therefore proving that no such system

can exist will separate NP from co-NP and and so P from NP. This is one of the main

original motivations behind the field of propositional proof complexity.

A proof system f p-simulates another proof system g if there exists a polynomial time

computable function t such that g(x) = f(t(x)) for all strings x. We can now prove

that two proof systems are polynomially equivalent, in the sense that they polynomially

simulate each other, or we could prove that they are incomparable, in the sense of

no such simulation existing in either direction, or we could exponentially separate the

two, by showing that one system has only exponentially sized proofs for some family of

tautologies exhibiting efficient (polynomially sized) proofs in the other. A major open

question concerns the existence of a p-optimal proof system - that is, a proof system

that p-simulates every other proof system. The resolution of this question has a number

of complexity and proof-theoretic implications. For example, showing the existence of

such a system would imply the existence of a language complete for the intersection

NP ∩ co-NP, whereas proving that such systems dont exist would separate NEXP

from co-NEXP [47, 56].

Classifying and comparing these algorithms comes down to proving separation and prov-

ing p-simulation. Proving efficient simulation is (usually) relatively straightforward and

the majority of effort in proof complexity is spent on demonstrating separation. This is

most often done by showing upper and lower bounds for ‘benchmark’ tautologies, which

we turn to next.
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1.1 Combinatorial contradictions

Here we define and collect a few of the tautologies appearing most often in proof com-

plexity. Their relevance will be revealed in the next section, where they will be used to

demonstrate the relative strengths of the proof systems appearing in this thesis.

It might be startling to see the following contradictions described as tautologies. But

note that to prove that some ϕ is a tautology is the same as to prove its negation ¬ϕ
is a contradiction. Therefore (despite their being opposites) we will use ‘tautology’ and

‘contradiction’ interchangeably throughout this thesis, which is completely customary

in the field of proof complexity.

1.1.1 Uniform generation of propositional contradictions

Definition 1.1. A language is a set of non-logical atomic symbols with an associated

arity. Zero arity is allowed, and in this case the symbol is simply a constant. Arity

greater than zero corresponds to a relation.

Definition 1.2. A first order (FO) formula over a language L is any of the following:

1. An atomic symbol R(x), where R ∈ L, and x is a tuple of length the arity of R,

consisting of free variables and constants from L,

2. ϕ1□ϕ2, where □ is any boolean logical connective from {∧,∨, =⇒}, and ϕ1, ϕ2

are FO formulae,

3. ¬ϕ, ϕ a FO formula, or

4. Qxϕ, where Q ∈ {∀, ∃} is a quantifier and ϕ is a FO formula. In this case, we say

every appearance of x in ϕ is bound.

We say that a FO formula is a sentence if every variable appearing in that formula is

bound.

Definition 1.3. A structure M of some language L is a pair, consisting of (1) a domain

of discourse D being any set containing the constant symbols from L, and (2) an inter-

pretation of every nonlogical symbol in L, being an assignment of true or false to every

instantiation of every relation R ∈ L with elements from D of the appropriate arity.

Such a structure is said to be a model of some FO formula T in the language of L
if it satisfies that formula, where any unbound variables are taken to be universally

quantified.
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In this section we show how to uniformly (that is, computably) generate from any FO

sentence T , a propositional (quantifier-free) claim that it has a model of some finite size,

in the manner first introduced by [78].

We are given some FO sentence T consisting of (without loss of generality prenex)

formulas

∀x1∃y1, . . . ,∀xk∃yk F (x1, . . . , xk, y1, . . . , yk), (1.1)

where F is quantifier free and in CNF. For any natural number n ∈ N we can uniformly

produce a system of propositional formulae which are feasible if and only if Equation (1.1)

has a model of size n. This transformation proceeds along the following steps:

Firstly we eliminate the existential clauses with a sort of Skolemization. Introduce for

each existentially quantified yi a Skolem variable Si(x1, . . . , xi, yi). Ask that a witness

to the existential demand always exists in the finite domain of discourse {1, 2, . . . , n} by

including the Skolem clauses

n∧
x1,x2,...,xi=1

n∨
yi=1

Si(x1, . . . , xi, yi)

asking that every x1, . . . , xi taking values from [n] has a witness in [n] (here [n] =

{1, 2, . . . , n}). Express Equation (1.1) in the now purely universal form

∀x1, . . . , xk, y1, . . . , yk

(
k∧

i=1

Si(x1, . . . , xi, yi)

)
=⇒ F (x1, . . . , xk, y1, . . . , yk). (1.2)

We then eliminate the remaining universal quantifiers by replacing Equation (1.2) with

the n2k clauses resulting from instantiating the x, y with all possible values from [n].

This process concludes with a propositional statement in CNF, and it is plain to see

that the output is satisfiable if and only if the input had a finite model of size n.

We now exemplify this transformation by deriving some the most famous principles

appearing in propositional proof complexity, which will appear many times throughout

this thesis.

1.1.2 Ordering Principles

The Ordering Principle (OP) asks for an order with no minimal element. It is the

conjunction of the following sentences, over a language containing a binary relation ‘<’,
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written here as infix:

self: ∀x ¬(x < x)

trans: ∀x, y, z (x < y) ∧ (y < z) =⇒ (x < z)

lower: ∀x∃y (y < x).

The Linear Ordering Principle (LOP) asks further that this order is total, or linear, by

also including the following axiom:

total: ∀x, y (x < y) ∨ (y < x).

This is, of course, not yet a contradiction - the integers are an example model. However

there can be no finite model, and so the translation of these sentences produces the

following contradiction, Pxy having the intended interpretation x < y, and the Si,j are

the Skolem variables resultant from the transformation just described:

¬Pi,i ∀i ∈ [n]

¬Pi,j ∨ ¬Pj,k ∨ Pi,k ∀i, j, k ∈ [n]

¬Si,j ∨ Pi,j ∀i, j ∈ [n]∨
i∈[n] Si,j ∀j ∈ [n].

1.1.3 The Pigeonhole Principle

The Pigeonhole Principle PHP is the conjunction of the following FO sentences, over

the single binary relation P and constant 1:

holed: ∀x ∃yP (x, y)

inj: ∀x, y, z, x = y ∨ ¬P (x, z) ∨ ¬P (y, z)

first: ∀x¬P (x, 1)

The translation gives us something basically equivalent to the following propositional

axioms, which we call the PHPn:

holed: ∀x ∈ [n]
∨
y∈[n]

Pxy

inj: ∀x ̸= y ∈ [n], z ∈ [n] \ {1} ¬Pxz ∨ ¬Pyz

first: ∀x ∈ [n] ¬Px1
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We say basically equivalent because here, and elsewhere, we have made a simplification

in the translation just given in Section 1.1.1: when taken literally, we should have

introduced a Skolem variable Sij , and the jth existential holed axiom should actually

become
∨n

i=1 Sji. However, Equation (1.2) would also give us Sji =⇒ Pji, and as

propagating this Horn clause is done at no real complexity cost in all the proof systems

and metrics we consider in this thesis, it makes no difference to apply it a priori to the

principle at hand.

1.1.4 Tseitin contradictions

The Tseitin contradictions are not necessarily generated from FO sentences, but never-

theless, are just as important. They are important historically (see, eg, Section 1.2.1 in

the sequel), but perhaps more usefully they are also important practically, as the struc-

ture of each contradiction as a propositional formula reflects the structure of the graph

from which it is generated. For example, we will see in Chapter 2 that a parameter

of the graph, the so called circuit rank, tells us something about the complexity of the

Tseitin formula that we generate from it.

Definition 1.4. Let G = (V,E) be a graph and ω a charging function ω : V → {0, 1}
that is odd, that is,

∑
v∈V ω(v) = 1 mod 2. The Tseitin contradiction Ts(G,ω) is the

CNF resultant from the translation of the parity constraint

∑
e∈E
e∋v

xe = ω(v) mod 2. (1.3)

We have one such constraint for every v ∈ V , and the variables xe range over the edges

e ∈ E.

That this is indeed a contradiction is just the handshaking lemma - if we sum up all

the neighbourhoods of all nodes, each edge is counted exactly twice. Here we collect

some facts that will be used later in Chapter 2. The following trick is due to [85] but

we include the proof as it is instructive.

Lemma 1.1. Let b be a boolean assignment to the variables in Ts(G,ω), where G is

some connected graph. If b falsifies the parity constraints for exactly some set of vertices

V ′ ⊆ V (G) with |V ′| ≥ 2, then for any v1, v2 ∈ V ′, we can find a boolean assignment b′

falsifying the parity constraints only for the set of vertices V ′ \ {v1, v2}.

Proof. We simply take any path p connecting two distinct vertices v1 and v2 in G and flip

the assignment b gives to the edges in p. The endpoints see their parity flipped, as they



1. Introduction 7

are adjacent to exactly one flipped edge, and their previously violated parity constraints

are now satisfied. The vertices en route on p between v1 and v2 have unaffected parity,

as they are adjacent to exactly two flipped edges. And the remaining vertices not on p

altogether have their incident variables completely untouched.

Corollary 1.1. Let ω be an odd charging of some graph G. For any v ∈ V (G), we can

find a boolean assignment b falsifying only the parity constraint for v.

Proof. Pick any boolean assignment that falsifies the parity constraint at v. There must

be an odd number of nodes B with violated parity constraint, as otherwise (by the

previous fact) we can find a boolean assignment satisfying all the constraints of what

was meant to be a contradiction.

So, while |B| ≥ 3, pick two v1, v2 ̸= v ∈ B and apply the previous fact.

1.2 Proof systems

In this section we describe the proof systems that are addressed in this thesis. There

are, of course, excellent surveys on the topic of these systems and on proof complexity

in general - see, for example, [57, 58, 80] for more on Sums Of Squares, [36] for a more

recent survey focussing on Tseitin contradictions and the more recent Stabbing Planes

proof system, and [8] for a general view of proof complexity as a whole.

1.2.1 Resolution

Resolution is without a doubt the oldest and most well studied propositional proof

system. It is also the only proof system discussed in this thesis that is not inherently

‘geometric’ (in a sense defined after this subsection), but rather it works directly against

the CNF in question.

It was introduced by Blake in 1937 in his PhD thesis ([11]) and modernised as a refutation

system in a series of papers by Davis, Putnam, Logemann, and Loveland [30, 31]. The

DPLL algorithm, which to this day forms the basis of many widely used SAT solvers, is

essentially an implementation of Resolution.

Definition 1.5. The Resolution proof system has the single inference rule (the ‘Reso-

lution rule’)

A ∨ x, B ∨ ¬x =⇒ A ∨B

where A,B are clauses and x a variable. A sequence of clauses R1, . . . , Rk is a Resolution

refutation of a set of clauses (axioms) C1, . . . , Ca if Rk = ⊥ is an empty clause and each
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Ri is either some axiom Cj or is derived from two previous Rl, Rm (l,m < k) by the

Resolution inference rule. The size of the Resolution refutation is k.

The refutation is said to be treelike if each Ri that is derived by an application of

the Resolution rule itself only appears once as an antecedent in an application of the

Resolution rule.

The meaning of treelike comes from viewing the refutation, as we will often do, as a

graph, with a directed edge from the two antecedent clauses to the consequent clause.

Then this graph is acyclic, with every non-axiom clause having indegree exactly two,

but technically unlimited outdegree (in the non-treelike case).

Resolution is clearly sound - as the Resolution rule preserves satisfiability and unsat-

isfiability - and its completeness can be easily shown by induction on the number of

variables. The proof is roughly as follows: given a set of contradictory clauses C, pick

any variable x appearing in C and partition C into three sets P,N,A, where x appears

positively, negatively, and is altogether absent, respectively. If one of P or N is empty,

x is a pure literal and can be removed from C without affecting its satisfiability. Oth-

erwise, we resolve all pairs of clauses from P and N finding a contradiction missing x

entirely [45].

The first lower bounds for Resolution were given by Tseitin in 1968 [84], for a principle

that became eponymous - the Tseitin principle defined just above in Section 1.1.4. He

gave there a subexponential size lower bound. This lower bound for Tseitin was later

improved to an exponential lower bound for regular Resolution, which is a weakened

form of Resolution where each variable is resolved upon at most once on any path from

a clause to the contradictory root of the refutation, by Galil in his PhD thesis [38].

However, the first exponential lower bound for size in general Resolution, and arguably

the most famous result in Propositional Proof Complexity as a whole, was given by

Haken [45] in 1985, for a different principle:

Theorem 1.1 ([45], Section 2). The PHPn requires size 2Ω(n) to refute in Resolution.

A crucial innovation in that paper, reflected in many subsequent Resolution lower bounds

(including our own in Chapter 4) is that if one aims to show a size lower bound, one

might benefit from first demonstrating a width lower bound, and then showing that a

width lower bound implies a size lower bound.

Definition 1.6. The width of some clause x1 ∨ x2 ∨ . . . ∨ xw made up of the literals xi

is w, and the width of a refutation R1, . . . , Rk is the maximum width of the clauses Ri.



1. Introduction 9

Typically a width lower bound is easier to show than a direct size lower bound and is

often given by a relatively straightforward prover-adversary argument (see e.g. [72]).

Sometimes this is even enough, for Resolution enjoys a size-width tradeoff:

Theorem 1.2 ([9], Theorem 3.5). Let C := C1, . . . , Ca be a set of contradictory axioms

over n variables and maximum width wa. Let w be the minimum width of a Resolution

refutation of C and s the minimum size. Then

w ≤ wa +
√
n log(s).

It turns out that this tradeoff is tight. In [14], the following is proven:

Theorem 1.3 ([14], Theorem 3.1). LOPn, even when converted into 3-CNF, requires

width Ω(n) to refute in Resolution, but still has refutations of polynomial size.

1.2.2 Geometric proof systems

Definition 1.7. A set X ⊆ Rn is called semialgebraic if it is exactly the set of solutions

to some finite set of polynomial inequalities q1 ≥ 0, q2 ≥ 0, . . . , qk ≥ 0. If the qi are

linear, so X is an intersection of halfspaces, we call X a polytope.

A crucial theme appearing often in proof complexity is that, given some CNF sentence C

over propositional variables V , we can find a set of linear inequalities P over continuous

variables V ′, whose simultaneous binary solutions (that is, every variable substituted

with a 0 or 1) correspond exactly to satisfying assignments of C. The transformation

itself is straightforward: for every clause x1∨x2∨ . . .∨xp∨¬y1∨ . . .∨¬yn over variables

xi, yj ∈ V we emit the inequality
∑p

i=1 x
′
i+
∑n

j=1(1− y′j) ≥ 1, over the primed variables

x′i, y
′
j ∈ V ′. We also emit the bounds 0 ≤ v′ ≤ 1 for all v′ ∈ V ′. This means that

any algorithm capable of proving infeasibility of an Integer Linear Program (ILP) is now

a proof system - instead of proving unsatisfiability of the CNF formula C, we instead

prove integer freeness of P , or equivalently, the emptiness of the integer hull R ⊆ P (see

e.g., [43]). In this context we will call these ILP solvers geometric proof systems, for that

is what they now do.

These algorithms often work by constructing relaxations Rt of R parameterized by some

tightness (or rank) parameter t ∈ O(|V |), with the properties

1. (Monotonicity.) Rt+1 ⊆ Rt.

2. (Soundness.) If Rt is empty for some t, then R is empty.
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3. (Completeness.) If R is empty, then Rt is empty for some t.

These Rt will be linear or semidefinite programs, or something otherwise much easier

to solve than the original ILP. If P ̸= NP then the time-complexity of producing the

relaxation Rt is at least exponential in the parameter t, and one proves complexity lower

bounds for the procedure by proving nonemptiness of Rt for the largest possible t.

1.2.3 Sums Of Squares over the boolean hypercube

The Positivstellensatz proof system is one such geometric proof system. If we are

promised, for some finite set of polynomials pi, qi, that p1 ≥ 0, p2 ≥ 0 . . . pm ≥ 0, q1 =

0, q2 = 0 . . . qn = 0 (over variables restricted to 0/1) we can infer that

∑
I⊆{1...m}

(∏
i∈I

pi

)∑
j

(aI,j)
2

+

n∑
i=1

biqi ≥ 0 (1.4)

where the aI,j and bi are arbitrary polynomials and the empty product is read as 1.

This is because the nonnegativity of the pi implies the nonnegativity of their products,

which are then multiplied by the sums of squares
∑

j(aI,j)
2, which are all nonnegative

everywhere as we are only working with real numbers, and finally, each qi multiplied by

anything at all gives 0, and therefore so does their sum. The given set of polynomial

inequalities is refuted if we derive an obvious contradiction such as −1 ≥ 0, in which

case we call (1.4) a Positivstellensatz refutation. The Sum Of Squares (SOS) proof

system is the special case where the indices I under the first summation are restricted

to singletons.

The system is obviously sound. (That the system is essentially complete is not as

obvious, and this will discussed below.) The degree of the refutation is the maximum

degree of the polynomials (ai)
2, (bI,j)

2
∏

i∈I pi, ciqi, and will be the complexity measure

focused on later in this thesis.

Sum Of Squares based techniques have recently come to the interest of researchers due

to its potential use in a refutation of the unique games conjecture [6]. As will be seen

later, SOS based algorithms are optimal for a variety of problems assuming the UGC -

so beating SOS would refute the UGC.

We might also consider a dynamic system with the following rules:

1. f2 ≥ 0 for any polynomial f .



1. Introduction 11

2. a = 0 =⇒ a ≥ 0.

3. a ≥ 0, b ≥ 0 =⇒ va+ wb ≥ 0 for any polynomials a, b and SOS v, w.

4. a = 0, b = 0 =⇒ va+ wb = 0 for any polynomials a, b, v, w.

It is worth pointing out that the =⇒ here is meant as a syntactic production rule and

not logical implication, although, as the production rules are sound by inspection, the

logical implication is valid (over the reals).

We can convert a dynamic proof into a static one by induction on the height of the tree.

In the case of production rule 3, we have two SOS derived polynomials

a =
∑
i

(ai)
2 +

n∑
i=1

ca,iqi ≥ 0 b =
∑
i

(bi)
2 +

n∑
i=1

cb,iqi ≥ 0

Just multiplying and adding gives

va+ wb =
∑
i

v(ai)
2 +

∑
i

w(bi)
2 +

n∑
i=1

(vca,i + wcb,i)qi ≥ 0

The case 4 is similar - we interpret strict equality as having l = 0 in Equation (1.4). In

this case the degree is only the maximum of the two premises.

Notation We work with n variables x := x1, . . . , xn. Given a vector α ∈ Nn (N
including 0), we define xα := xα1

1 . . . xαn
n , and in this context we call α a degree vector.

The degree |α| of xα is the sum of the coordinates
∑n

i=1 αi. Polynomials p ∈ R[x] will
be expressed as

∑
α pαx

α, i.e. pα is the coefficient of the monomial xα in p.

If q is some vector, by νd(q) we mean the vector consisting of all products of the co-

ordinates of q of degree up to d. s(d) represents the dimension of this vector and is

calculated as
(
n+d−1

d

)
.

For any n ∈ N, [n] denotes the set {1, . . . , n}.

For matrices A and B we use the notation A ⪰ 0 to mean A is positive semidefinite

and A ⪰ B to mean A−B ⪰ 0. We will use the Frobenius inner product of two m× n

matrices ⟨A,B⟩ :=
∑m

i=1

∑n
i=j AijBij , i.e. the dot product of the matrices laid out as

vectors.

Polynomial optimization as a search for a probability measure A polynomial

optimization problem (POP) is a problem of the form
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min
x

o(x)

s.t. gi(x) ≥ 0 ∀i ∈ [c]
(1.5)

for a collection of polynomials o, gi, . . . gc. It is very hard in general - for example, the

constraints x2i − xi ≥ 0, xi − x2i ≥ 0 force xi to be binary.

We can turn any POP into a convex optimization problem by instead considering prob-

ability measures. Consider the problem

min
µ

∫
K
o(x)dµ

s.t.

∫
K
1dµ = 1

(1.6)

Where K is the feasible region of (1.5) defined by the gi. These problems have the

same optimal value - any solution x∗ to (1.5) can be converted into an equally valuable

solution to (1.6) which is the probability measure with its entire mass concentrated at

x∗. In the reverse direction, the fact that µ is a probability measure means
∫
K p(x)dµ

is at least the minimum value of p on K and so the values coincide.

Moment relaxations We are given an infinite vector y indexed by degree vectors in

Nn. We are also told that y is the vector ofmoments under some hypothetical probability

measure µ supported on a semialgebraic set of interest K – that is, yα =
∫
K xαdµ is

a mixed moment of order |α|, or the expectation of the monomial xα according to µ.

What properties should we expect y to satisfy?

Firstly, as
∫
K 1dµ should be 1, so should y0.

Secondly, for every p ∈ R[x],

0 ≤
∫
K
p2dµ =

∫
K

∑
α,β

pαpβx
α+βdµ =

∑
α,β

pαpβ

∫
K
xα+βdµ.

Then the infinite moment matrix My indexed by degree vectors defined by Mµ(α, β) :=

yα+β should be positive semidefinite.
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Similarly, given any g ∈ R[x] nonnegative on K and any p ∈ R[x]

0 ≤
∫
K
gp2dµ =

∫
K

(∑
α

gαx
α

)∑
α,β

pαpβx
α+β

 dµ

=
∑
α,β

pαpβ
∑
γ

gγ

∫
K
xα+β+γdµ.

Therefore the localizing matrix for g defined as My,g(α, β) :=
∑

γ gγyα+β+γ should also

be positive semidefinite.

The Lasserre relaxation, defined imminently, is simply the semidefinite program got by

making truncated versions of these demands.

Definition 1.8. Let d be the maximum degree of the o, gis in (1.5), and let t ≥ d. The

level-t Lasserre relaxation of the equivalent problem (1.5) is

min
y∈RN2t

y · o

s.t. y0 = 1

(My|2t) ⪰ 0

(My,gi |2t) ⪰ 0 ∀i ∈ [c]

where (M |x) is the finite principal submatrix of the infinite matrix M indexed by degree

vectors of degree at most x.

(This area suffers from an unfortunate lack of standardization in terminology - the terms

Sum Of Squares, Positivstellensatz, and Lasserre have all been used almost interchange-

ably by different authors. We have defined our versions of SOS and Positivstellensatz

above, and for us Lasserre refers to the optimization program just defined. The relation

between Lasserre and the other two follows next.)

Semidefinite programming and duality. The standard primal and dual forms for

semidefinite programs are

max ⟨C,X⟩

s.t. ⟨Ai, X⟩ = bi i ∈ [m]

X ⪰ 0

(SDP-P)

min b · y

s.t.
m∑
i=0

yiAi ⪰ C
(SDP-D)
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In SDP-P, the decision variable is a matrix X, SDP-D, the vector y, and b is the m

dimensional vector of the bi.

We will rephrase Definition 1.8 as a SDP in the dual form. To do so we slice up the

moment matrices by using the symmetric matrices indexed by degree vectors

(Bκ)α,β =

yk if α+ β = κ

0 otherwise
(Bκ,g)α,β =

gκ if α+ β ≤ κ

0 otherwise

This gives us

My =
∑
κ

Bκ My,gi =
∑
κ

Bκ,gi

We now rewrite the problem in Definition 1.8 as

min
y∈RN2t

y · o

s.t.
∑

|α|≤2t,α ̸=0

yαBα ⪰ −B∅

∑ ∑
|α|≤2t,α ̸=0

yαBα,gi ⪰ −B∅,gi ∀i ∈ [c].

(1.7)

We can combine the two linear matrix inequalities into one by using block diagonal

matrices, bringing it into the form (SDP-D). In this case we can split the primal decision

variableX into Y and Zi, Y and Zi corresponding to the diagonal blocks of the coefficient

matrices. In this case the primal problem is

max ⟨−B∅, Y ⟩+
m∑
i=0

⟨−B∅,gi , Zi⟩

(i.e. min Y1,1 +

m∑
i=0

(gi,∅(Zi)1,1) )

s.t. ⟨X,Bα⟩+
m∑
i=0

⟨Zi, Bα,gi⟩ = oα |α| ≤ 2t, α ̸= 0

Y,Zi ⪰ 0

(1.8)

Interpretation of the primal
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Theorem 1.4. A degree 2d polynomial p is a Sum Of Squares (is SOS) if and only if

there exists a positive semidefinite k × s(d) matrix C such that p(x) = vd(x)
⊤Cvd(x).

Proof. (⇐) The positive semidefiniteness of C guarantees a square root S such that

S⊤S = C. So

p(x) = vd(x)
⊤S⊤Svd(x) = (Svd(x)) · (Svd(x)).

The ith coordinate of the vector Svd(x) is
∑

|α|≤d Siαx
α and so the right hand side is

SOS.

The reverse is very similar.

Definition 1.9. The quadratic module Q(G) generated by a set of polynomials G =

{g1, . . . , gm} is the set of all polynomials of the form

σ0 +

m∑
i=1

σ2
i gi

where the σi are all SOS.

Any p ∈ Q(G) is non-negative on the semialgebraic set satisfying g1 ≥ 0, . . . , gm ≥ 0.

This leads to an alternate relaxation of (1.5):

max
λ∈R

λ

s.t. o(x)− λ ∈ Q(G).
(1.9)

We want to solve this relaxation with a semidefinite program. To do this, we introduce

positive semidefinite matrices Y, Zi(i ∈ [m]) with the goal of having

o(x)− λ = vd(x)
⊤Y vd(x) +

m∑
i=1

(
vd(x)

⊤Zivd(x)gi

)
We write this as a semidefinite program by comparing the coefficients on each side of the

equality using the matrices Bκ defined above. This gives us exactly the primal program

(1.8) - that is, the Lasserre relaxation is dual to the SDP computing SOS certificates!

SDPS do not generally exhibit strong duality. In [50] the following is proven:

Theorem 1.5 ([50], Theorem 1). If the POP (1.5) contains a ball constraint R −∑
x∈V x2 ≥ 0 with R > 0, then the dual relaxations (1.8), (1.9) exhibit strong duality.

That is, if both are feasible, both share the same optimum value, and if one is unbounded,

the other is infeasible.
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As we will focus on binary optimisation problems (containing the constraints x2 = x or

x2 = 1 for every variable x) we can without loss of generality assume all of our problems

contain the ball constraint f(x) = n −
∑

x∈V x2 ≥ 0 and therefore these programs are

strongly dual.

Pseudodistributions. We have just seen that the Lasserre program is dual to the

program computing SOS certificates. The feasibility of the Lasserre program at a certain

degree can then be used to certify nonexistence of SOS certificates - and this can be seen

more directly, without resorting to SDPS.

We are about to introduce pseudodistributions, the main device used to prove lower

bounds for SOS. A degree-d pseudodistribution is just a feasible point for the d-th level

Lasserre relaxation, and the fact (proven just above) that this relaxation is dual to the

semidefinite program calculating SOS certificates already tells us that there can be no

SOS refutation of degree-d if a degree-d pseudodistribution exists.

But for the sake of intuition, we point out that a pseudodistribution ‘acts like’ it is dis-

tributed over actual solutions of a polynomial optimisation problem, in a manner made

precise below in Theorem 1.8. The higher the degree, the better the acting, and then

the harder any refutation has to work in order to show that there are no actual solu-

tions over which this pseudodistribution is distributed across. (This is where the term

moment comes from - the value of this pseudodistribution for a monomial is pretending

to be the expectation of that monomial according to some fictitious distribution.) We

want to prove the existence of pseudodistributions for as high a degree as possible.

Definition 1.10. A degree d pseudodistribution L for a set of polynomial axioms h1 ≥
0, . . . , hx ≥ 0, f1 = 0, . . . , fy = 0, all in R[V ] and assumed to contain the boolean

constraints x2 = x for all x ∈ V , is a linear mapping R[V ] → R such that:

1. The moment matrix M(α, β) := L[α ∪ β] indexed by pairs of monomials α, β, is

PSD, wherever the degree of α and β is restricted to be at most d/2,

2. for every axiom of the form f = 0 and any polynomial p with degree bounded by

d− deg(f) we have L[pf ] = 0,

3. for every axiom of the form q ≥ 0, its localizing matrix

Mq(α, β) :=
∑

γ∈P(V,≤d)

qγL[α ∪ β ∪ γ],

is PSD, whenever |α| and |β| are at most (d−deg(q))/2, where qγ is the coefficient

of q in front of the monomial γ, and
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4. L[1] = 1.

(Due to the boolean constraints multiplication is idempotent, whence the union vs ad-

dition, and sets vs monomials.) A degree d pseudodistribution L immediately gives a

degree d lower bound on a SOS refutation. This is because if we apply L to both sides

of Equation (1.4) we find −1 on the left hand side but

1. If deg(q2) ≤ d then

L[q2] = L

 ∑
α∈P(V,≤d/2)

qαα

2 =
∑

α,β∈P(V,≤d/2)

qαqβL[α ∪ β] = q⊤Mq ≥ 0,

with the last inequality coming from the PSDness of M,

2. for every axiom of the form f = 0 and any polynomial p with degree bounded by

d− deg(f) we have L[pf ] = 0,

3. for every axiom of the form q ≥ 0 and any polynomial p such that deg(p2q) ≤ d,

we have

L[p2q]

= L

 ∑
α,β∈P(V,≤((d−deg(q))/2)

pαpβ (α ∪ β)

 ∑
γ∈P(V,≤deg(q))

qγγ


=

∑
α,β∈P(V,≤((d−deg(q))/2)

pαpβ

 ∑
γ∈P(V,≤deg(q))

qγL[α ∪ β ∪ γ]

 = p⊤Mqp ≥ 0,

with the last inequality coming from the PSDness of Mq.

SOS relaxations have found many successful applications. To name a few:

1. The Goemans-Williamson algorithm is a SDP giving an approximate solution to

the max-cut problem. It can be rephrased as the degree 2 SOS SDP. This algo-

rithm is optimal assuming the Unique Games Conjecture holds. For more, see, for

example, [68].

2. Given some graph G, the Lovasz theta function θ(G) is the solution to an SDP

given by Lovasz in [63], and satisfies

ω(G) ≤ θ(G) ≤ χ(G)
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where ω(G) is the size of the largest clique in G and χ(G) is the smallest number of

colours used in any proper colouring ofG. The class of perfect graphs are the graphs

where ω and χ coincide, and for these graphs θ(G) is just the clique/chromatic

number of the graph. Again, it turns out to be captured by the degree 2 SOS

SDP [3], therefore SOS gives an efficient algorithm to solve the clique/k-colouring

problem for perfect graphs. In fact, a long-standing open problem in graph theory

is to find a more combinatorial algorithm for computing these numbers in perfect

graphs that do not resort to semidefinite programming.

3. Sparse principal component analysis can be carried out using semidefinite pro-

gramming. Again, it turns out that the basic SDP approach, which requires k2

samples, is equivalent to the degree 2 SOS SDP.

4. An extremely successful application of SOS is given in [61]. There it is proven

that any polynomial size SDP that approximates some max-CSP is equivalent in

power to some constant degree SOS SDP.

Despite its power, there are some existing lower bounds:

1. 3-XOR. Refuting a randomly generated 3-XOR instance (which is unsatisfiable

w.h.p) is hard for SOS. A linear lower bound is given in [42]. Note that this is

doable with Gaussian elimination, in polynomial time!

2. Planted clique. A series of works, culminating in the following result:

Theorem 1.6 ([4], Theorem 1.1, informal.). Let d ∈ o(log n). Then, with high

probability, the degree d SOS for max-clique will return an optimal value of Ω(
√
n)

for an Erdős-Rényi random graph with edge probability 1/2 - although such a graph

only has a clique of size more than 2 log n with probability exponentially diminshing

in n.

3. The so-called ‘Knapsack’ contradiction, which is just that if we have some boolean

variables x1, . . . , xn and some non-integral r, we can never have
∑n

i=1 xi = r. In

[41] the following linear lower bound is given:

Theorem 1.7 ([41], Proposition 1). If r ≤ n/2 then the Knapsack problem only

has SOS refutations of degree Ω(r).

4. Sparse PCA [65]. Here it is proven that the degree 4 SOS algorithm for sparse

PCA does not require many fewer samples than the degree 2 SOS algorithm.

5. The Least Ordering Principle [71]. Here a O(
√
n log n) upper bound, and a

non-constant lower bound, is given for the Least Ordering Principle.
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The existence of a degree O(n) SOS refutation for some simultaneously unsatisfiable

polynomials, that is, the completeness of SOS as a proof system, can be shown in

different ways. For example, it can follow from the strong duality of theorem 1.5. We

state here instead a result given in [58, 80] that is stronger than completeness:

Theorem 1.8 ([80], Theorem 9). Suppose you are given a point x feasible for the tth

level Lasserre relaxation. Then, for any S ⊆ [n] with |S| ≤ t, x is a convex combination

of points feasible for the (t− |S|)th Lasserre relaxation which are all 0/1 on the indices

S.

1.2.4 Sherali-Adams

The Sherali-Adams (SA) proof system was introduced first by Sherali and Adams [83] as

a means of solving ILPs, and then later considered as a propositional refutation system

in [24]. Since then it has been considered as a refutation system in the further works

[2, 29].

Definition 1.11. Let A,B ⊆ V with A ∩ B = ∅ and |A ∪ B| ≤ t for some t ∈ N.
Denote by PA,B the product

∏
xi∈A xi

∏
xj∈B(1− xj). A Sherali-Adams (SA) refutation

of {f1 = 0, . . . , fl = 0h1 ≥ 0, . . . , hr ≥ 0} is an identity of the form

∑
(aI,JPAI ,BJ

hi) +
∑

(pifi) +
∑

qi(x
2
i − x) = −1 (1.10)

where aI,J ∈ R are nonnegative and the pi, qi are arbitrary polynomials. The degree of

this proof is the maximum degree of any of the PAI ,BJ
, pifi, qi(x

2
i − x).

Similarly as for SOS, the coefficients in Equation (1.10) can be found by linear program-

ming. When proving lower bounds (which we do in Chapter 4) we will actually show

that the dual of this LP is feasible - this is analogous to finding a pseudodistribution for

SOS. We describe now the dual LP.

Let C be some CNF using variables v1, . . . , vm. We generate the following LP over the

2m variables Zvi , Z¬vi , 1 ≤ i ≤ m. For each clause (l1 ∨ . . . ∨ lt) in C we have the

constraining inequality

Zl1 + . . .+ Zlt ≥ 1.

We also have, for each λ ∈ [m], the equalities of negation

Zvλ + Z¬vλ = 1 (1.11)
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together with the bounding inequalities

0 ≤ Zvλ ≤ 1 and 0 ≤ Z¬vλ ≤ 1.

Let PC
0 be the polytope specified by these constraints on the real numbers. We noted

above that this polytope contains integral points if and only if the formula C is satisfiable.

However even if C is unsatisfiable, PC
0 may be non-empty; in fact, if F is a contradiction

that does not admit refutation by unit clause propagation, this is the case (we may use

unit clause propagation to assign 0 − 1 values to some variables, thereafter assigning

1/2 to those variables remaining). Note that it follows that any unsatisfiable Horn

CNF C (i.e., where each clause contains at most one positive variable) has SA rank 0,

since C must then admit refutation by unit clause propagation (which may be used to

demonstrate PC
0 empty).

Sherali-Adams provides a static refutation method that takes the polytope PC
0 and r-

lifts it to another polytope PC
r in

∑r+1
λ=0

(
2m
λ

)
dimensions. Specifically, the variables

involved in defining the polytope PC
r are Zl1∧...∧lr+1 (l1, . . . , lr+1 literals of C) and Z∅.

We say that the term Zl1∧...∧lr+1 has rank r. Note that we accept commutativity and

idempotence of the ∧-operator, e.g. Zl1∧l2 = Zl2∧l1 and Zl1∧l1 = Zl1 . Also ∅ represents

the empty conjunct, which is boolean true; hence we set Z∅ := 1. For literals l1, . . . , lt,

s.t. (l1 ∨ . . . ∨ lt) is a clause of C, we have the constraining inequalities

Zl1∧D + . . .+ Zlt∧D ≥ ZD,

for D any conjunction of at most r literals of C. We also have, for each λ ∈ [m] and D

any conjunction of at most r literals, the equalities of negation

Zvλ∧D + Z¬vλ∧D = ZD

together with the bounding inequalities

0 ≤ Zvλ∧D ≤ ZD and 0 ≤ Z¬vλ∧D ≤ ZD.

For r′ ≤ r, the defining inequalities of PC
r′ are consequent on those of PC

r . Equivalently,

any solution to the inequalities of PC
r gives rise to solutions of the inequalities of PC

r′ ,

when projected on to its variables. If D′ is a conjunction of r′ literals, then ZD∧D′ ≤ ZD

follows by transitivity from r′ instances of the bounding inequalities defined last. We

refer to the property ZD∧D′ ≤ ZD as monotonicity. Finally we note that Zv∧¬v = 0

holds in PC
1 and follows from a single lift of an equality of negation.

The SA rank of the polytope PC
0 is the minimal i such that PC

i is empty. Thus, the
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notation rank is overloaded in a consistent way, since PC
i is specified by inequalities in

variables of rank at most i. The largest r for which PC
r need be considered is 2m − 1,

since beyond that there are no new literals to lift by. Even that is somewhat further

than necessary, largely because, if the conjunction D contains both a variable and its

negation, it may be seen from the equalities of negation that ZD = 0. In fact, it follows

from [58] that the SA rank of PC
0 is always ≤ m− 1 (for a contradiction C).

The number of defining inequalities of the polytope PC
r is exponential in r; hence a naive

measure of SA size would see it grow more than exponentially in rank. However, not all

of the inequalities may be needed to specify the empty polytope. We therefore define

the SA size of the polytope PC
0 to be the size (of an encoding) of a minimal subset of

the inequalities in PC
2m needed to specify the empty polytope.

1.2.5 Cutting Planes

Cutting Planes was introduced by Gomory in [39, 40] as a method of solving ILPs, and

formalised later as a proof system in [18, 21].

Definition 1.12. A linear integer inequality in the variables x1, . . . , xn is an expression

of the form
∑n

i=1 aixi ≥ b, where each ai and b are integral. A set of such inequalities

is said to be unsatisfiable if there are no 0/1 assignments to the x variables satisfying

every inequality simultaneously.

Note that we reserve the term infeasible, in contrast to unsatisfiable, for (real or rational)

linear programs.

Definition 1.13. The Cutting Planes (CP) proof system is equipped with boolean

axioms and two inference rules:

Boolean axioms: 0 ≤ x ≤ 1 for any variable x

Linear combination: a · x ≥ c,b · x ≥ d =⇒ αa · x+ βb · x ≥ αc+ βd

Rounding: αa · x ≥ b =⇒ a · x ≥ ⌈b/α⌉

where α, β, b ∈ Z+ and a,b ∈ Zn. A CP refutation of some unsatisfiable set of integer

linear inequalities F is a derivation of 0 ≥ 1 by the aforementioned inference rules from

the inequalities in F .

A CP refutation is treelike if the directed acyclic graph underlying the proof is a tree.

The length of a CP refutation is the number of inequalities in the sequence. The depth
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is the length of the longest path from the root to a leaf (sink) in the graph. The rank of

a CP proof is the maximal number of rounding rules used in a path of the proof graph.

The size of a CP refutation is the bit size required to represent all the inequalities in

the proof.

It is sometimes convenient, as was the case in e.g. [15], to think about Cutting Planes

from a ‘dual’ aspect, in terms of the application of a closure operator on some polytope.

Definition 1.14. Given some polytope P ⊆ Rn, we let P ′ be the set of points in P that

‘survive all cutting planes’:

P ′ := {x ∈ P : a · x ≥ ⌈b⌉ for all a ∈ Zn, b ∈ R satisfying a · y ≥ b ∀y ∈ P}.

Given the infinite quantification over the a ∈ Zn, it is certainly not obvious that P ′

should be a polytope if P is. Schrijver shows in [81] that if P is a rational polytope, in

the sense that it is specified by finitely many linear inequalities with rational coefficients,

then so is P ′. This result was generalised to the irrational (real) case by Dunkel in her

PhD thesis [32].

Now we give an equivalent definition of Cutting Planes rank:

Definition 1.15. Let P be a polytope. Letting P (0) := P , P (i+1) := P (i)′, and PI be

the convex hull of integral points in P , the rank of P is the r ∈ N with P (r) = PI .

That this measure is even well defined, in the sense that this operator converges onto

the integer hull after finitely many cuts, was shown in Chvatal in [19]. We state here

a quantitative completeness given in [33] most relevant to the polytopes appearing in

proof complexity:

Theorem 1.9 ([33], Section 3). If P ⊆ Rn is a polytope contained in the unit hypercube

[0, 1]n, then its CP rank is at most O(n2 log n).

1.2.6 Stabbing Planes

Stabbing Planes, introduced recently in [7] by Beame, Fleming, Impagliazzo, Kolokolova,

Pankratov, Pitassi and Robere, is another algorithm for refuting unsatisfiable ILPs.

DPLL, perhaps the most famous approach to SAT solving, searches for an assignment

satisfying some CNF by choosing some variable x and then recursively solving the two

problems gotten for each possible boolean setting of x. Of course, turning some DPLL

execution trace upside-down gives you a (treelike) Resolution refutation, so long as your

instance was indeed unsatisfiable. Stabbing Planes might be described as a geometric
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edition of DPLL - instead of asking about the boolean truth value of some variable

and eventually proving some CNF unsatisfiable, we ask if some integer sum
∑

i zivi,

zi ∈ Z, of some continuous real variables vi is at least some b ∈ Z or at most b− 1, and

eventually prove some polytope integer free. In [7] this description is made precise: SP

is polynomially equivalent to the proof system treelike Res(CP), introduced by Kraj́ıček

in [54], where clauses are now disjunctions of linear inequalities.

Definition 1.16. Fix some variables x1, . . . , xn. A Stabbing Planes (SP) refutation of

an unsatisfiable set of integer linear inequalities F is a binary tree T , with each node

labeled by a query (a, b) with a ∈ Zn, b ∈ Z. Out of each node we have an edge labeled

with a · x ≥ b and the other labeled with its integer negation a · x ≤ b− 1. Each leaf ℓ

is labeled with an infeasible LP system Pℓ made by a nonnegative linear combination of

inequalities from F and the inequalities labelling the edges on the path from the root of

T to the leaf ℓ.

The length of a SP refutation is the number of queries in the proof tree. The depth of a

SP refutation T is the longest root-to-leaf path in T . The size (respectively depth) of

refuting F in SP is the minimum size (respectively depth) over all SP refutations of F .

Note that here we do not care about the complexity of actually witnessing the infeasibil-

ity of the Pℓ, which is itself (anything up to a) polynomial. Often a proof system (such

as Resolution) will come with trivial and immediate linear size lower bound because,

for example, every axiom should be downloaded at least once somewhere, but even if

the input is minimally unsatisfiable this is not necessarily true for SP. For example,

a minimally unsatisfiable Horn-CNF will have a size 1 SP refutation but only linearly

sized SA refutations (albeit 0 rank).

Definition 1.17. The slab corresponding to a query Q = (a, b) is the set slab(Q) =

{x ∈ Rn : b− 1 < a · x < b} satisfying neither of the associated inequalities.

Since each leaf in a SP refutation is labelled by an infeasible LP, in this thesis we will

often use the following geometric observation about SP refutations T : the set of points

in Rn that are not already ruled out by an axiom must all be ruled out by a query

somewhere in T . In particular this will be true for those points in Rn which satisfy a

set of integer linear inequalities F and which we call feasible points for F .

Lemma 1.2. The slabs associated with a SP refutation must cover the feasible points of

F . That is,

{y ∈ Rn : a · y ≥ b for all (a, b) ∈ F} ⊆
⋃

(a,b)∈T

{x ∈ Rn : b− 1 < a · x < b}
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Figure 1.1: A diagram of the relative strengths of the proof systems discussed in this
thesis. A solid directed edge indicates that the source is exponentially weaker than the
sink. A dashed directed edge indicates that the source is simulated by the sink, but that
no exponential separation is known. An undirected edge indicated incomparability.

1.3 Thesis outline

This thesis comes in three main chapters. In the first and last, we are mostly focused on

the proof complexity of some particular proof system, and in the second, the complexity

in general of principles given in FO language.

In the following Chapter 2 we investigate the proof complexity of the recently introduced

Stabbing Planes proof system. The strongest lower bounds known for this system are

‘indirect’, in the sense of their appealing to simulations and to results in communication

complexity. We introduce a number of methods of proving lower bounds, all of which

have some geometric flavour, and all working directly against the proof system in ques-

tion.

In the sequel Chapter 3, we make progress towards proving broad lower bounds for

principles specified in FO logic. We start by using machinery from Chapter 2 to show

that any FO principle with only infinite models requires polynomial size (and therefore

logarithmic rank) to refute in Stabbing Planes. In doing so, we generalise a subset of

the results from Chapter 2. We then turn to a stronger proof system, Sum Of Squares,

and while we do not achieve the same sort of lower bound, we provide some results we

believe are insightful.

In Chapter 4, we investigate the the effect of choosing alternative encodings (as proposi-

tional formulae) for some FO principles which at this point we now find familiar. These

encodings differ mainly in how they deal with the translation of existential demands.

We find some results that, at least to the author, seem counter-intuitive.

The thesis then concludes by indicating some natural further directions.

Chapter 2 was published in paper form as ‘Depth Lower Bounds in Stabbing Planes

for Combinatorial Principles’ in STACS [25], and is joint work with the authors there.
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A prior version of Chapter 4 was published in paper form as ‘Sherali-Adams and the

Binary Encoding of Combinatorial Principles’ in LATIN [27] and is likewise joint work

with the authors there. Chapter 3 remains unpublished.



Chapter 2

Stabbing Planes

Stabbing Planes (also known more commonly outside of proof complexity as Branch

and Cut) is a proof system introduced very recently which, informally speaking,

extends the DPLL method by branching on integer linear inequalities instead of

single variables. The techniques known so far to prove size and depth lower bounds

for Stabbing Planes are generalizations of those used for the Cutting Planes proof

system established via communication complexity arguments. As such they work

for composed versions of combinatorial statements. Rank lower bounds for Cutting

Planes are also obtained by geometric arguments called protection lemmas.

In this work we introduce two new geometric approaches to prove size/depth lower

bounds in Stabbing Planes working for a wide range of principles: (1) the antichain

method, relying on Sperner’s Theorem and (2) the covering method which uses results

on essential coverings of the boolean cube by linear polynomials, which in turn relies

on Alon’s combinatorial Nullenstellensatz.

We demonstrate their use on classes of combinatorial principles such as the Pigeon-

hole Principle, Tseitin Priniples, and the Linear Ordering Principle. By the first

method we prove almost linear size lower bounds and optimal logarithmic depth

lower bounds for the Pigeonhole Principle, analogous lower bounds for the Tseitin

Principles over the complete graph, and for the Linear Ordering Principle. Via the

covering method we obtain a superlinear size lower bound and a logarithmic depth

lower bound for Stabbing Planes proof of Tseitin Principles over a grid graph.

Finally, as a specific result, we prove that for any graph G, any SP refutation of a

Tseitin Principle for G has length at least the so called circuit rank of G, which, if

G has c connected components, is E(G)− V (G) + c.

26
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2.1 Introduction

Finding a satisfying assignment for a propositional formula (SAT) is a central component

for many computationally hard problems. Despite being older than 50 years and expo-

nential time in the worst-case, the DPLL algorithm [30, 31] is the core of essentially all

high performance modern SAT-solvers. DPLL is a recursive boolean method: at each re-

cursive call, one variable x of the formula F is chosen and the search recursively branches

into the two cases obtained by setting x respectively to 1 and 0 in F . The worst cases

for DPLL are unsatisfiable instances, as there it must explore every possible assignment,

and it is well-known that the execution trace of the DPLL algorithm running on an un-

satisfiable formula F is nothing more than a treelike refutation of F in the proof system

of Resolution [79]. Since SAT can be viewed as an optimization problem the question

whether Integer Linear Programming (ILP) can be made feasible for satisfiability testing

received a lot of attention and is considered among the most challenging problems in

local search [51, 82]. One proof system capturing ILP approaches to SAT is Cutting

Planes, a system whose main rule implements the rounding (or Chvátal cut) approach

to ILP. Cutting planes works with integer linear inequalities of the form ax ≤ b, with

a, b integers, and, like Resolution, is a sound and complete refutational proof system for

CNF formulas: indeed a clause C = (x1 ∨ . . . ∨ xr ∨ ¬y1 ∨ . . . ∨ ¬ys) can be written as

the integer inequality y − x ≤ s− 1.

Beame et al. [7] extended the idea of DPLL to a more general proof strategy based

on ILP. Instead of branching only on a variable as in Resolution, in this method one

considers a pair (a, b), with a ∈ Zn and b ∈ Z, and branches limiting the search to the

two half-planes: ax ≤ b− 1 and ax ≥ b. A path terminates when the LP defined by the

inequalities in F and those forming the path is infeasible. This method can be made

into a refutational treelike proof system for unsatisfiable CNFs called Stabbing planes

(SP) ([7]) and it turns out that it is polynomially equivalent to the treelike version

of Res(CP), a much older proof system introduced by Kraj́ıček [54] where clauses are

disjunctions of linear inequalities. The Stabbing Planes proof system is defined precisely

in Section 1.2.6.

In this work we consider the complexity of proofs in SP focusing on the length, i.e. the

number of queries in the proof, and the depth (called rank in [7]), i.e. the length of the

longest path in the proof tree. Note that the length metric is at least as strong as the

size metric (appearing in [35]), which is the bit size of all the coefficients appearing in

the proof. The results in this chapter are stated for size, however, note that they are

actually (stronger) length lower bounds.
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2.1.1 Previous works and motivations

After its introduction as a proof system in the work [7], Stabbing Planes received great

attention. The quasipolynomial upper bound for the size of refuting Tseitin contra-

dictions in SP given in [7] was surprisingly extended to CP by of Dadush and Tiwari

[22] refuting a long-standing conjecture. Recently in [35], Fleming, Göös, Impagliazzo,

Pitassi, Robere, Tan and Wigderson developed on the ideas given in [7] making im-

portant progress on the question whether all Stabbing Planes proofs can be somehow

efficiently simulated by Cutting Planes.

Significant lower bounds for size can be obtained in SP, but in a limited way, using mod-

ern developments of a technique for CP based on communication complexity of search

problems introduced by Impagliazzo, Pitassi, Urquhart in [49]: in [7] it is proven that

size S and depth D SP refutations imply treelike Res(CP) proofs of size O(S) and width

O(D); Kojevnikov [53], improving the interpolation method introduced for Res(CP) by

Kraj́ıček [54], gave exponential lower bounds for treelike Res(CP) when the width of

the clauses (i.e. the number of linear inequalities in a clause) is bounded by o(n/ log n).

Hence these lower bounds are applicable only to very specific classes of formulas (whose

hardness comes from boolean circuit hardness) and only to SP refutations of low depth.

Nevertheless SP appears to be a strong proof system. As noted in Section 1.2.6, the

condition terminating a path in a proof is not a trivial contradiction like in Resolution,

but is the infeasibility of an LP, which is only a polynomial time verifiable condition.

Hence linear size SP proofs might be already a strong class of SP proofs, since they

can hide a polynomial growth into one final node whence to run the verification of the

terminating condition.

Rank and depth in CP and SP

It is known that, contrary to the case of other proof systems like Frege, neither CP nor

SP proofs can be balanced (see [7]), in the sense that a depth-d proof can always be

transformed into a size 2O(d) proof. The depth of CP-proofs of a set of linear inequalities

L is measured by the Chvátal rank of the associated polytope P . It is known that rank

in CP and depth in SP are separated, in the sense that Tseitin Principles can be proved

in depth O(log2 n) depth in SP [7], but are known to require rank Θ(n) to be refuted in

CP [15].

Rank lower bound techniques for Cutting Planes are essentially of two types. The main

method is by reducing to the real communication complexity of certain search problem

[49]. As such this method only works for classes of formulas lifted by certain gadgets
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capturing specific boolean functions. A second class of methods have been developed

for Cutting Planes, which lower bound the rank measures of a polytope. In this setting,

lower bounds are typically proven using a geometric method called protection lemmas

[15]. These methods were recently extended in [35] also to the case of Semantic Cutting

Planes (a strengthened version of Cutting Planes, where from any two inequalitiesA,B ≥
0, you may infer any C ≥ 0 that is a sound inference assuming 0/1 assignments). In

principle this geometric method can be applied to any formula and not only to the lifted

ones, furthermore for many formulas (such as the Tseitin Principles) it is known how

to achieve Ω(n) rank lower bounds in CP via protection lemmas, while proving even

ω(log n) lower bounds via real communication complexity is impossible, due to a known

folklore upper bound.

Lower bounds for depth in Stabbing Planes, proved in [7], are instead obtained only as a

consequence of the real communication approach extended to Stabbing Planes. In this

chapter we introduce several geometric approaches to prove depth lower bounds in SP.

Specifically the results we know at present relating SP and CP are:

1. SP polynomially simulates CP (Theorem 4.5 in [7]). Hence in particular the PHPm
n

can be refuted in SP by a proof of size O(n2) ([21]). Furthermore it can be refuted

by a O(log n) depth proof since polynomial size CP proofs, by Theorem 4.4 in [7],

can be balanced in SP 1.

2. Beame et al. in [7] proved the surprising result that the class of Tseitin contradic-

tions Ts(G,ω) over any graph G of maximum degree D, with an odd charging ω,

can be refuted in SP in size quasipolynomial in |G| and depth O(log2 |G|+D).

Depth lower bounds for SP are proved in [7]:

1. a Ω(n/ log2 n) lower bound for the formula Ts(G,w) ◦ VERn, composing Ts(G,ω)

(over an expander graph G) with the gadget function VERn (see Theorem 5.7 in

[7] for details); and

2. a Ω(
√
n log n) lower bound for the formula Peb(G)◦INDn

l over n5+n log n variables

obtained by lifting a pebbling formula Peb(G) over a graph with high pebbling

number, with a pointer function gadget INDn
l (see Theorem 5.5. in [7] for details).

1Another way of proving this result is using Theorem 4.8 in [7] stating that if there are length L
and space S CP refutations of a set of linear integral inequalities, then there are depth O(S logL) SP
refutations of the same set of linear integral inequalities; and then use the result in [37] (Theorem 5.1)
that PHPm

n has polynomial length and constant space CP refutations.
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Similar to size, these depth lower bounds are applicable only to very specific classes of

formulas. In fact they are obtained by extending to SP the technique introduced in

[49, 55] for CP of reducing shallow proofs of a formula F to efficient real communica-

tion protocols computing a related search problem and then proving that such efficient

protocols cannot exist.

Despite the fact that SP is at least as strong as CP, in SP the known lower bound

techniques are derived from those of treelike CP. Hence finding other techniques to

prove depth and size lower bounds for SP is important to understand its proof strength.

For instance, unlike CP where we know tight Θ(log n) rank bounds for the PHPm
n [15, 76]

and Ω(n) rank bounds for Tseitin contradictions [15], for SP no depth lower bound is at

present known for purely combinatorial statements.

In this chapter we address such problems.

2.1.2 Contributions and techniques

The main motivation of this work is to study size and depth lower bounds in SP through

new methods, possibly geometric. Differently from weaker systems like Resolution,

except for the technique highlighted above and based on reducing to the communication

complexity of search problems, we do not know of other methods to prove size and

depth lower bounds in SP. In CP and Semantic CP instead geometrical methods based

on protection lemmas were used to prove rank lower bounds in [15, 35].

Our first steps in this direction were to set up methods working for truly combinatorial

(so, uncomposed and gadget-free) statements, like Ts(G,w) or PHPm
n , which we know

to be efficiently provable in SP, but on which we cannot use methods reducing to the

complexity of boolean functions, like the ones based on communication complexity.

We present two new and fairly general methods for proving depth lower bounds in SP

which in fact are the consequence of proving length lower bounds that do not depend

on the bit-size of the coefficients.

As applications of our two methods we respectively prove:

1. An exponential separation between the rank in CP and the depth in SP, using a

new counting principle which we introduce and that we call the Simple Pigeonhole

Principle (SPHP). We prove that the SPHP has O(1) rank in CP and requires

Ω(log n) depth in SP. Together with the results proving that Tseitin formulas

requires Ω(n) rank lower bounds in CP ([15]) and O(log2 n) upper bounds for the

depth in SP ([7]), this proves an incomparability between the two measures.
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2. An almost linear lower bound for the size of SP proofs of the PHPm
n and for Tseitin

Ts(G,ω) contradictions over the complete graph. These lower bounds immediately

give optimal Ω(log n) lower bound for the depth of SP proofs of the corresponding

principles.

3. A superlinear-in-n lower bound for the size of SP proofs of Ts(G,ω), when G is a

n×n grid graph Hn. In turn this implies an Ω(log n) lower bound for the depth of

SP proofs of Ts(Hn, ω). Proofs of depth O(log2 n) for Ts(Hn, ω) are given in [7].

4. Finally we prove linear lower bound for the size and O(log n) lower bounds of the

depth for the the Linear Ordering Principle LOP.

All of our results are derived from the following initial geometrical observation: let S
be a space of admissible points in {0, 1, 1/2}n satisfying a given unsatisfiable system of

integer linear inequalities F(x1, . . . , xn). In a SP proof for F , at each branch q = (a, b)

the set of points in the slab(q) = {s ∈ S : b− 1 < ax < b} does not survive in S. At the
end of the proof on the leaves, where we have infeasible LP’s, no point in S can survive

the proof. So it is sufficient to find conditions such that, under the assumption that a

proof of F is ‘small’, even one point of S survives the proof. In pursuing this approach

we use two methods.

The antichain method. Here we use a well-known bound based on Sperner’s Theorem

[17, 87] to upper bound the number of points in the slabs where the set of non-zero

coefficients is sufficiently large. Trading between the number of such slabs and the

number of points ruled out from the space S of admissible points, we obtain the lower

bound.

We initially present the method and the Ω(log n) lower bound on a set of unsatisfiable

integer linear inequalities - the Simple Pigeonhole Principle (SPHP) - capturing the core

of the counting argument used to prove the PHP efficiently in CP. Since SPHPn has

rank 1 CP proofs, it entails a strong separation between CP rank and SP depth. We

then apply the method to PHPm
n and to Ts(Kn, ω).

The covering method. The antichain method appears too weak to prove size and depth

lower bounds on Ts(G,w), when G is for example a grid, or a pyramid, or some bounded

degree graph. To solve this case, we consider another approach that we call the covering

method: we reduce the problem of proving that one point in S survives from all the

slab(Q) in a small proof of F , to the problem that a set of polynomials which essentially

covers the boolean cube {0, 1}n requires at least
√
n polynomials, which is a well-known

problem faced by Alon and Füredi in [1] and by Linial and Radhakrishnan in [62]. For

this reduction to work we have to find a high dimensional projection of S covering the
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boolean cube and defined on variables effectively appearing in the proof. We prove that

cycles of distance at least 2 in G work properly to this aim on Ts(G,ω). Since the grid

Hn has many such cycles, we can obtain the lower bound on Ts(Hn, ω). The use of

Linial and Radhakrishnan’s result is not new in proof complexity. Part and Tzameret

in [69], independently of us, were using this result in a completely different way from us

in the proof system Res(⊕) handling clauses over parity equations, and not relying on

integer linear inequalities and geometrical reasoning.

The results in Section 2.4 below originally appealed to a lower bound on the size of

‘essential covers’ given in [62]. Yehuda and Yehudayoff in [88] slightly improved the

results of [62] with the consequence, noticed in their paper too, that our size lower

bounds for Ts(Hn, ω) over a grid graph by what we call the covering method is in fact

superlinear in n.

This chapter is organized as follows: We give the preliminary definitions in the next

section and then we move to other sections: one on the lower bounds by the antichain

method and the other on lower bounds by the covering method. We then give a more

specific result for Tseitin Principles, and then finish by pointing out room for improve-

ment.

2.2 Preliminaries

We use [n] for the set {1, 2, . . . , n}, Z/2 for Z ∪ (Z+ 1
2) and Z+ for {1, 2, . . .}.

2.2.1 Restrictions

Let V = {x1, . . . , xn} be a set of n variables and let ax ≤ b be a linear integer inequality.

We say that a variable xi appears in, or is mentioned by a query Q = (a, b) if ai ̸= 0 and

does not appear otherwise.

A restriction ρ is a function ρ : D → {0, 1}, D ⊆ V . A restriction acts on a half-plane

ax ≤ b setting the xi’s according to ρ. Notice that the variables xi ∈ D do not appear

in the restricted half-plane.

By T ↾ρ we mean to apply the restriction ρ to all the queries in a SP proof T . The tree

T ↾ρ defines a new SP proof: if some Q↾ρ reduces to 0 ≤ −b, for some b ≥ 1, then that

node becomes a leaf in T ↾ρ. Otherwise in T ↾ρ we simply branch on Q↾ρ. Of course the

solution space defined by the linear inequalities labelling a path in T ↾ρ is a subset of the
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solution space defined by the corresponding path in T . Hence the leaves of T ↾ρ define

an infeasible LP.

We work with linear integer inequalities which are a translation of families of CNFs F .

Hence when we write F ↾ρ we mean the applications of the restriction ρ to the set of

linear integer inequalities defining F .

2.3 The antichain method

This method is based on Sperner’s theorem. Using it we can prove depth lower bounds

in SP for PHPm
n and for Tseitin contradictions Ts(Kn, ω) over the complete graph. To

motivate and explain the main definitions, we use as an example a simplification of the

PHPm
n , the Simplified Pigeonhole Principle SPHPn, which has some interest since (as we

will show) it exponentially separates CP rank from SP depth.

2.3.1 Simplified Pigeonhole Principle

As mentioned in Section 2.1.2, the SPHPn intends to capture the core of the counting

argument used to efficiently refute the PHP in CP.

Definition 2.1. The SPHPn is the following unsatisfiable family of inequalities:

∑n
i=1 xi ≥ 2

xi + xj ≤ 1 for all i ̸= j ∈ [n]

0 ≤ xi ≤ 1 for all i ∈ [n].

Lemma 2.1. SPHPn has a rank 1 CP refutation, for n ≥ 3.

Proof. For brevities sake let S :=
∑n

i=1 xi (so we have S ≥ 2 as the first axiom). We fix

some i ∈ [n] and sum xi + xj ≤ 1 over all j ∈ [n] \ {i} to find

∑
j∈[n]\i

(xi + xj) = (n− 2)xi + (xi +
∑

j∈[n]\i

xj) = (n− 2)xi + S ≤ n− 1.

We add this to the first axiom −S ≤ −2 to get

xi ≤
n− 3

n− 2

which becomes xi ≤ 0 after a single cut. We do this for every i and find S ≤ 0 - a

contradiction when combined with the axiom S ≥ 2.
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It not hard to see that SPHPn has depth O(log n), length O(n) proofs in SP. We are

about to give a direct proof, if not just purely for a first informative example of the

mechanics of a SP refutation, but please do note that this also follows by appealing to

the polynomial size refutations in CP for the PHPm
n ([21]) and then using Theorem 4.4

in [7] informally stating that ‘CP proofs can be balanced in SP’.

Theorem 2.1. The SPHPn has a SP refutation of size O(n) and depth O(log(n)).

Proof. Note that no admissible point for the SPHPn has any xi set to 1, as then every

other variable is immediately forced to zero and the existential axiom is violated. So

then our SP refutation just performs a binary search looking for an xi set to 1 – if it

cannot find such an xi, we contradict the axiom
∑n

i=1 xi ≥ 2,

In more detail, the root asks if
∑n

i=1 xi is at least 1 or at most 0. The at most 0

branch directly contradicts the axiom
∑n

i=1 xi ≥ 2, and so terminates as a leaf (as it

is inconsistent as a linear program). The at least 1 branch asks if
∑⌊n/2⌋

i=1 xi is again

at least 1 or at most 0. If this is at most 0, we must have that
∑n

i=⌊n/2⌋+1 xi ≥ 1,

and so in either case we have halved the range of the summation containing some xi

hypothetically set to 1.

We will now prove that this depth lower bound is tight.

2.3.2 Sperner’s Theorem

Let a ∈ Rn. The width w(a) of a is the number of non-zero coordinates in a. The width

of a query (a, b) is w(a), and the width of a SP refutation is the minimum width of its

queries.

Let n ∈ N. Fix W ⊆ [0, 1] ∩Q+ of finite size k ≥ 2 and insist that 0 ∈ W . The W ’s we

will work with here are {0, 1/2} and {0, 1/2, 1}.

Definition 2.2. A (n,W )-word is an element in Wn.

For two vectors x, y ∈ Rd, say that x ≤ y in the pointwise ordering if xi ≤ yi for all

1 ≤ i ≤ d. We consider the following extension of Sperner’s theorem.

Theorem 2.2 ([66], Theorem 1.4). Fix any t ≥ 2, t ∈ N. For all f ∈ N, with the

pointwise ordering of [t]f , any antichain has size at most tf
√

6
π(t2−1)f

(1 + o(1)).

We will use the simplified bound that any antichain A has size |A| ≤ tf√
f
.
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Lemma 2.2. Let a ∈ Zn and |W | = k ≥ 2. The number of (n,W )-words s such that

as = b, where b ∈ Q, is at most kn√
w(a)

.

Proof. Define Ia = {i ∈ [n] : ai ̸= 0}. Let ⪯ be the partial order over W Ia where x ⪯ y

if xi ≤ yi for all i with ai > 0 and xi ≥ yi for the remaining i with ai < 0. Clearly

the set of solutions (restricted to indices in Ia) to as = b forms an antichain under ⪯.

Noting that ⪯ is isomorphic to the typical pointwise ordering on W Ia , we appeal to

Theorem 2.2 to upper bound the number of solutions in W Ia by kw(a)√
w(a)

, each of which

corresponds to at most kn−w(a) vectors in Wn.

2.3.3 Large admissibility

A (n,W )-word s is admissible for an unsatisfiable set of integer linear inequalities F over

n variables if s satisfies all constraints of F . A set of (n,W )-words is admissible for F if

all its elements are admissible. A(F ,W ) is the set of all admissible (n,W )-words for F .

The interesting sets W for an unsatisfiable set of integer linear inequalities F are those

such that almost all (n,W )-words are admissible for F . We will apply our method on

sets of integer linear inequalities which are a translation of unsatisfiable CNF’s generated

over a given domain. Typically these formulas on a size n domain have a number of

variables which is not exactly n but a function of n, ν(n) ≥ n. (For example, the PHPn

has ν(n) = n2 variables.) Hence for the rest of this section we consider F := {Fn}n∈N
as a family of sets of unsatisfiable integer linear inequalities, where Fn has ν(n) ≥ n

variables. We call F an unsatisfiable family.

Consider then the following definition (recalling that we denote k = |W |):

Definition 2.3. F is almost full if |A(Fn,W )| ≥ kν(n)−o(kν(n)) = (1−o(1))kν(n), that

is, if (asymptotically) almost every point is feasible.

Notice that, because of the o notation, Definition 2.3 might be not necessarily be mean-

ingful for all n ∈ N, but only starting from some nF .

Definition 2.4. Given some almost full family F (over ν(n) variables) we let nF be

the natural number with

kν(n)

|A(Fn,W )|
≤ 2 for all n ≥ nF .

As an example we prove SPHP is almost full (notice that in the case of SPHPn, ν(n) = n).



2. Stabbing Planes 36

Lemma 2.3. SPHPn is almost full when W = {0, 1/2}.

Proof. Let U be the set of all (n,W )-words with at least four coordinates set to 1/2. U

is admissible for SPHPn since inequalities xi+xj ≤ 1 are always satisfied for any value in

W and inequalities x1+. . .+xn ≥ 2 are satisfied by all points in U which contain at least

four 1/2s. By a simple counting argument, in U there are at least 2n− 4n3 = 2n− o(2n)

admissible (n,W )-words.

Lemma 2.4. Let F = {Fn}n∈N be an almost full unsatisfiable family, where Fn has

ν(n) variables. Further let T be a SP refutation of F of width w. If n ≥ nF then

|T | = Ω(
√
w).

Proof. We estimate at what rate the slab of the queries in T rule out admissible points

in U . Let ℓ be the least common multiple of the denominators in W . Every (n,W )-word

x falling in the slab of some query (a, b) satisfies one of ℓ equations ax = b+i/ℓ, 1 ≤ i < ℓ

(as a is integral). Note that as |W | is a constant independent of n, so is ℓ.

Since all the queries in T have width at least w, according to Lemma 2.2, each query

in T rules out at most ℓ · kν(n)
√
w

admissible points. By Fact 1.2 no point survives at the

leaves, in particular the admissible points. Then it must be that

|T |ℓ · k
ν(n)

√
w

≥ |A(Fn,W )| which means |T |ℓ · kν(n)

|A(Fn,W )|
≥

√
w

We finish by noting that, by the assumption n ≥ nF , and then by Definition 2.4, we

have 2 ≥ kν(n)

|A(Fn,W )| , so |T | ≥
√
w/(2ℓ) ∈ Ω(

√
w).

2.3.4 Main theorem

We focus on restrictions ρ that after applied to an unsatisfiable family F = {Fn}n∈N,
reduce the set F to another set in the same family.

Definition 2.5. Let F = {Fn}n∈N be an unsatisfiable family and c a positive constant.

F is c-self-reducible if for any set V of variables, with |V | = v < n/c, there is a restriction

ρ with domain V ′ ⊇ V , such that Fn↾ρ= Fn−cv (up to renaming of variables).

Let us motivate the definition with an example.

Lemma 2.5. SPHPn is 1-self-reducible.

Proof. Whatever set of variables xi, i ∈ I ⊂ [n] we consider, it is sufficient to set xi to

0 to fulfil Definition 2.5.
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Theorem 2.3. Let F := {Fn}n∈N be an unsatisfiable set of integer linear inequalities

which is almost full and c-self-reducible, for some constant c. If Fn defines a feasible

LP whenever n > nF , then for n large enough, the shortest SP proof of Fn is of length

Ω( 4
√
n).

Proof. Take any SP proof T refuting Fn and fix t = 4
√
n.

The proof proceeds by stages i ≥ 0 where T0 = T . The stages will go on while the

invariant property (which at stage 0 is true since n > nF and c a positive constant)

n− ict3 > max{nF , n(1− 1/c)}

holds.

At the stage i we let Σi = {(a, b) ∈ Ti : w(a) ≤ t2} and si = |Σi|. If si ≥ t the claim is

trivially proven. If si = 0, then all queries in Ti have width at least t2 and by Lemma

2.4 (which can be applied since n− ict3 > nF ) the claim is proven (for n large enough).

So assume that 0 < si < t. Each of the queries in Σi involves at most t2 nonzero

coefficients, hence in total they mention at most sit
2 ≤ t3 variables. Extend this set

of variables to some V ′ in accordance with Definition 2.5 (which can be done since, by

the invariant, ict3 < n/c). Set all these variables according to self-reducibility of F in

a restriction ρi and define Ti+1 = Ti ↾ρi . Note that by Definition 2.5 and by that of

restriction, Ti+1 is a SP refutation of Fn−ict3 and we can go on with the next stage.

(Also note that we do not hit an empty refutation this way, due to the assumption that

Fn defines a feasible LP.)

Assume that the invariant does not hold. If this is because n− ict3 < nF then, as each

iteration destroys at least one node,

|T | ≥ i >
n− nF

ct3
∈ Ω(n1/4).

If this is because n− ict3 < n− n/c, then again for the same reason it holds that

|T | ≥ i >
n

c2n3/4
∈ Ω(n1/4).

Using Lemmas 2.3 and 2.5 and the previous Theorem we get:

Corollary 2.1. The length of any SP refutation of SPHPn is Ω( 4
√
n). Hence the minimal

depth is Ω(log n).
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2.3.5 Lower bounds for the Pigeonhole Principle

We present a lower bound for PHPm
n closely following that for SPHPn, in which we

largely ignore the diversity of different pigeons (which makes the principle rather like

SPHPn).

In this subsection we fix W = {0, 1/2}, and for the sake of brevity refer to (n,W )-words

as biwords.

In this section we fix m to be n+ d, for any fixed d ∈ N at least one.

Lemma 2.6. The PHPn+d
n is almost full (as defined in Definition 2.3).

Proof. We show that there are at least 2mn−1 admissible biwords (for sufficiently large

n). For each pigeon i, there are admissible valuations to holes so that, so long as at

least two of these are set to 1/2, the others may be set to anything in {0, 1/2}. This

gives at least 2n − (n+1) possibilities. Since the pigeons are independent, we obtain at

least (2n−(n+1))m biwords. Now this is 2mn
(
1− n+1

2n

)m
where

(
1− n+1

2n

)m ∼ e
−(n+1)m

2n

whence,
(
1− n+1

2n

)m ≥ e
−(n+2)m

2n for sufficiently large n. It follows there is a constant c

so that:

2mn

(
1− n+ 1

2n

)m

≥ 2mn− c(n+2)m
2n ≥ 2mn−1

for sufficiently large n.

Lemma 2.7. The PHPn+d
n is 1-self-reducible.

Proof. We are given some set I of variables from PHPn+d
n . These variables will mention

some set of holes H := {j : Pi,j ∈ I for some i} and similarly a set of pigeons P . Each

of P , H have size at most |I| and we extend them both arbitrarily to have size exactly

|I|. Our restriction matches P and H in any way and then sets any other variable

mentioning a pigeon in P or a hole in H to 0.

Theorem 2.4. The length of any SP refutation of PHPn+d
n is Ω(n1/4).

Proof. Note that the all 1/2 point is feasible for PHPn+d
n . Then with Lemma 2.6 and

Lemma 2.7 in hand we meet all the prerequisites for Theorem 2.3.

By simply noting that a SP refutation is a binary tree, we get the following corollary.

Corollary 2.2. The SP depth of the PHPn+d
n is Ω(log n).
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2.3.6 Lower bounds for Tseitin contradictions over the complete graph

Definition 2.6. Recall from section 1.1.4 that, for a graph G = (V,E) along with

a charging function ω : V → {0, 1} satisfying
∑

v∈V ω(v) = 1 mod 2, the Tseitin

contradiction Ts(G,ω) is the set of linear inequalities which translate the CNF encoding

of ∑
e∈E
e∋v

xe = ω(v) mod 2. (2.1)

for every v ∈ V , where the variables xe range over the edges e ∈ E.

The following fact comes from the observation that, when expanding Equation (2.1) into

CNF, every clause mentions every variable:

Fact 2.1. Let e, e′ be incident to a vertex v in G, and ω an odd charging function. For

any nonnegative assignment to the variables of Ts(G,ω) setting xe, xe′ to 1/2, the parity

constraint at v is satisfied.

In this subsection we consider Ts(Kn, ω) and ω will always be an odd charging for Kn.

We let N :=
(
n
2

)
and we fix W = {0, 1/2, 1}, k = 3 and for the sake of brevity refer

to (n,W )-words as triwords. We will abuse slightly the notation of Section 2.3.3 and

consider the family {Ts(Kn, ω)}n∈N, ω odd as a single parameter family in n. The reason

we can do this is because the following proofs of almost fullness and self reducibility do

not depend on ω at all (so long as it is odd, which we will always ensure).

Lemma 2.8. Ts(Kn, ω) is almost full.

Proof. We show that Ts(Kn, ω) has at least c3N admissible triwords, for any constant

0 < c < 1 and n large enough. We define the assignment ρ setting all edges (i.e. xe) to

a value in W = {0, 1, 1/2} independently and uniformly at random, and inspecting the

probability that some fixed constraint for a node v is violated by ρ.

Clearly if at least 2 edges incident to v are set to 1/2 its constraint is satisfied. If none

of its incident edges are set to 1/2 then it is satisfied with probability 1/2. Let A(v)

be the event “no edge incident to v is set to 1/2 by ρ” and let B(v) be the event that

“exactly one edge incident to v is set to 1/2 by ρ”. Then:

Pr[v is violated] ≤ 1

2
Pr[A(v)] + Pr[B(v)] =

1

2

2n−1

3n−1
+

(n− 1)2n−2

3n−1
= n

2n−2

3n−1
.

Therefore, by a union bound, the probability that there exists a node with violated

parity is bounded above by n2 2n−2

3n−1 , which approaches 0 as n goes to infinity.
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Lemma 2.9. Ts(Kn, ω) is 2-self-reducible.

Proof. We are given some set of variables I. Each variable mentions 2 nodes, so extend

these mentioned nodes arbitrarily to a set S of size exactly 2|I|, which we then hit

with the following restriction: if S is evenly charged, pick any matching on the set

{s ∈ S : w(s) = 1}, set those edges to 1, and set any other edges involving some vertex

in S to 0. Otherwise (if S is oddly charged) pick any l ∈ {s ∈ S : w(s) = 1} and

r ∈ [n] \S and set xlr to 1. {s ∈ S : w(s) = 1} \ l is now even so we can pick a matching

as before. And as before we set all other edges involving some vertex in S to 0. In the

first case the graph induced by [n]\S must be oddly charged (as the original graph was).

In the second case this induced graph was originally evenly charged, but we changed

this when we set xlr to 1.

Lemma 2.10. For any oddly charged ω and n large enough, all SP refutations of

Ts(Kn, ω) have length Ω( 4
√
n).

Proof. We have that the all 1/2 point is feasible for Ts(Kn, ω). Then we can simply

apply Theorem 2.3.

Corollary 2.3. The depth of any SP refutation of Ts(Kn, ω) is Ω(log n).

2.3.7 Lower bound for the Least Ordering Principle

Lemma 2.11. For any X ⊆ [n] of size at most n − 3, there is an admissible point for

LOPn integer on any edge mentioning an element in X.

Proof. Let ⪯ be any total order on the elements in X. Our admissible point x will be

x(Pi,j) =


1 if i, j ∈ X and i ⪯ j, or if i ̸∈ X, j ∈ X

0 if i, j ∈ X and j ⪯ i, or if i ∈ X, j ̸∈ X

1/2 otherwise (if i, j ̸∈ X).

The existential axioms
∑n

i=1,i ̸=j Pi,j are always satisfied - if j ∈ X then there is some

i ̸∈ X with Pi,j = 1, and otherwise there are at least two distinct i, k ̸= j ∈ X with

Pi,j , Pk,j = 1/2. For the transitivity axioms Pi,k −Pi,j −Pj,k ≥ 1, note that if 2 or more

of i, j, k are not in X there are at least 2 variables set to 1/2, and otherwise it is set in

a binary fashion to something consistent with a total order.
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We will assume that a SP refutation T of LOPn only involves variables Pi,j where i < j

- this is without loss of generality as we can safely set Pj,i to 1 − Pi,j whenever i > j,

and will often write P{i,j} for such a variable. We consider the underlying graph of the

support of a query, i.e. an undirected graph with edges {i, j} for every variable P{i,j}

that appears with non-zero coefficient in the query.

For some function f(n), we say the query is f(n)-wide if the smallest edge cover of its

graph has at least f(n) nodes. A query that is not f(n)-wide is f(n)-narrow. The next

lemma works much the same as Theorem 2.3.

Lemma 2.12. Fix ϵ > 0 and suppose we have some SP refutation T of LOPn, where

|T | ≤ n
1−ϵ
4 . Then, if n is large enough, we can find some SP refutation T ′ of LOPc·n,

where c is a positive universal constant that may be taken arbitrarily close to 1, T ′

contains only n3/4-wide queries, and |T ′| ≤ |T |.

Proof. We iteratively build up an initially empty restriction ρ. At every stage ρ imposes

a total order on some subset X ⊆ [n] and places the elements in X above the elements

not in X. So ρ sets every edge not contained entirely in [n] \ X to something binary,

and LOPn↾ρ= LOPn−|X| (up to a renaming of variables).

While there exists a n3/4-narrow query q ∈ T ↾ρ we simply take its smallest edge cover,

which has size at most n3/4 by definition, and add its nodes in any fashion to the total

order in ρ. Now all of the variables mentioned by q ∈ T ↾ρ are fully evaluated and q

is redundant. We repeat this at most n
1−ϵ
4 times (as |T | ≤ n

1−ϵ
4 and each iteration

renders at least one query in T redundant). At each stage we grow the domain of the

restriction by at most n3/4, so the domain of ρ is always bounded by n1−ϵ/4. We also

cannot exhaust the tree T in this way, as otherwise T mentioned at most n1−ϵ/4 < n−3

elements and by Lemma 2.11 there is an admissible point not falling in any slab of T ,

violating Lemma 1.2.

When this process finishes we are left with a n3/4-wide refutation T ′ of LOPn−n1−ϵ/4 . As

ϵ was fixed we find that as n goes to infinity n− n1−ϵ/4 tends to n.

Lemma 2.13. Let d ≤ (n−3)/2. Given any disjoint set of pairs D = {{l1, r1}, . . . , {ld, rd}}
(where without loss of generality li < ri in [n] as natural numbers) and any binary as-

signment b ∈ {0, 1}D, the assignment xb with

xb(P{i,j}) =

b({lk, rk}) if {i, j} = {lk, rk} ∈ X for some k

1/2 otherwise
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is admissible.

Proof. The existential axioms
∑n

i=1,i ̸=j Pi,j are always satisfied, as for any j there are

at least n − 2 i ∈ [n] different from j with Pi,j = 1/2. For the transitivity axioms

Pi,k − Pi,j − Pj,k ≥ 1, note that due to the disjointness of D at least two variables on

the left hand side are set to 1/2.

Theorem 2.5. Fix some ϵ > 0 and let T any SP refutation of LOPn. Then, for n large

enough, |T | ∈ Ω(n
1−ϵ
4 ).

Proof. Suppose otherwise - then, by Lemma 2.12, we can find some T ′ refuting LOPcn,

with |T ′| ≤ |T |, every query n3/4-wide, and c independent of n. We greedily create a set

of pairs D by processing the queries in T ′ one by one and choosing in each a matching

of size n1/2 disjoint from the elements appearing in D - this always succeeds, as at every

stage |D| ∈ O(n
1−ϵ
4 · n1/2) and involves at most O(2n

3−ϵ
4 ) < n3/4 − n1/2 elements.

So by Lemma 2.13, after setting every edge not in D to 1/2, we have some set of

linear polynomials R = {a(x) = ax − b − 1/2 : (a, b) ∈ T ′} covering the hypercube

{0, 1}D, where every polynomial p ∈ R mentions at least n1/2 edges. By Lemma 2.2

each such polynomial in R rules out at most 2|D|/n1/4 points, and so we must have

|T | ≥ |T ′| ≥ |R| ≥ n1/4.

2.4 The covering method

Definition 2.7. A set L of linear polynomials with real coefficients is said to be a cover

of the cube {0, 1}n if for each v ∈ {0, 1}n, there is a p ∈ L such that p(v) = 0.

In [62] Linial and Radhakrishnan considered the problem of the minimal number of

hyperplanes needed to cover the cube {0, 1}n. Clearly every such cube can be covered

by the zero polynomial, so to make the problem more meaningful they defined the notion

of an essential covering of {0, 1}n.

Definition 2.8 ([62]). A set L of linear polynomials with real coefficients is said to be

an essential cover of the cube {0, 1}n if

(E1) L is a cover of {0, 1}n,

(E2) no proper subset of L satisfies (E1), that is, for every p ∈ L, there is a v ∈ {0, 1}n

such that p alone takes the value 0 on v, and
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(E3) every variable appears (in some monomial with non-zero coefficient) in some poly-

nomial of L.

They then proved that any essential cover E of the hypercube {0, 1}n must satisfy

|E| ≥
√
n. We will use the slightly strengthened lower bound given in [88]:

Theorem 2.6. Any essential cover L of the cube with n coordinates satisfies |L| ∈
Ω(n0.52).

We will need an auxiliary definition and lemma.

Definition 2.9. Let L be a cover of {0, 1}I for some index set I. Some subset L′ of L

is an essentialisation of L if L′ also covers {0, 1}I but no proper subset of it does.

Lemma 2.14. Let L be a cover of the cube {0, 1}n and L′ be any essentialisation of L.

Let M ′ be the set of variables appearing with nonzero coefficient in L′. Then L′ is an

essential cover of {0, 1}M ′
.

Proof.

(E1) Given any point x ∈ {0, 1}M ′
, we can extend it arbitrarily to a point x′ ∈ {0, 1}M .

Then there is some p ∈ L′ with p(x′) = 0 - but p(x′) = p(x), as p doesn’t mention

any variable outside of M ′.

(E2) Similarly to the previous point, this will follow from the fact that if some set T
covers a hypercube {0, 1}I , it also covers {0, 1}I′ for any I ′ ⊇ I.

Suppose some proper subset L′′ ⊂ L′ covers {0, 1}M ′
, then it covers {0, 1}M - but

we picked L′ to be a minimal set with this property.

(E3) We defined M ′ to be the set of variables appearing with nonzero coefficient in L′.

2.4.1 The covering method and Tseitin

Let Hn denote the n×n grid graph. Fix some ω with odd charge and a SP refutation T
of Ts(Hn, ω). Lemma 1.2 tells us that for every point x admissible for Ts(Hn, ω), there

exists a query (a, b) ∈ T such that b < ax < b+ 1. In this section we will only consider

admissible points with entries in {0, 1/2, 1}, turning the slab of a query (a, b) into the

solution set of the single linear equation a · x = b + 1/2. So we consider T as a set of

such equations.
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We say that an edge of Hn is mentioned in T if the variable xe appears with non-zero

coefficient in some query in T . We can see Hn as a set of (n−1)2 squares (4-cycles), and

we can index them as if they were a Cartesian grid, starting from 1. Let S be the set of

⌊(n/3)2⌋ squares in Hn gotten by picking squares with indices that become 2 (mod 3).

This ensures that every two squares in S in the same row or column have at least two

other squares between them, and that no selected square is on the perimeter.

We will assume without loss of generality that n is a multiple of 3, so |S| = (n/3)2. Let

K =
⋃

t∈S t be the set of edges mentioned by S, and for some s ∈ S, let Ks :=
⋃

t∈S,t̸=s t

be the set of edges mentioned in S by squares other than s.

Lemma 2.15. For every s ∈ S we can find an admissible point bs ∈ {0, 1/2, 1}E(Hn)

such that

1. bs(xe) = 0 for all e ∈ Ks, and

2. bs is fractional only on the edges in s.

Proof. We state a specialization of Corollary 1.1.

Fact 2.2. For each vertex v in Hn there is a totally binary assignment, called v-critical

in [85], satisfying all parity axioms in Ts(Hn, ω) except the parity axiom of node v.

Pick any corner c of s. Let bs be the result of taking any c-critical assignment of the

variables of Ts(Hn, ω) and setting the edges in s to 1/2. bs is admissible, as c is now

adjacent to two variables set to 1/2 (so its originally falsified parity axiom becomes

satisfied) and every other vertex is either unaffected or also adjacent to two 1/2s. While

bs sets some edge e ∈ Ks to 1, flip all of the edges in the unique other square containing

e. This other square always exists (as no square touches the perimeter) and also contains

no other edge in Ks (as there are at least two squares between any two squares in S).

Flipping the edges in a cycle preserves admissibility, as every vertex is adjacent to 0 or

2 flipped edges.

Definition 2.10. Let VS := {vs : s ∈ S} be a set of new variables. For s ∈ S define the

substitution hs, taking the variables of Ts(Hn, ω) to VS ∪ {0, 1/2, 1}, as

hs(xe) :=

bs(e) if e is not mentioned in S, or if e is mentioned by s,

vt if e is mentioned by some square t ̸= s ∈ S.

(where bs is from Lemma 2.15).



2. Stabbing Planes 45

Definition 2.11. Say that a linear polynomial p = c+
∑

e∈E(Hn)
µexe with coefficients

µe ∈ Z and some constant part c ∈ R has odd coefficient in X ⊆ E(Hn) if
∑

e∈X µe is an

odd integer, and otherwise, we say it has even coefficient. Given some polynomial p in

the variables xe of Tseitin, and some square s ∈ S, let ps be the polynomial in variables

VS gotten by applying the substitution xe → hs(xe). Also, for any set of polynomials T
in the variables xe let Ts := {ps : p ∈ T , p has odd coefficient in s}.

Given some assignment α ∈ {0, 1}VS\{vs}, and some hs as in Definition 2.10, we let

α(hs) be the assignment to the variables of Ts(Hn, ω) gotten by replacing the vt in the

definition of hs by α(vt).

Lemma 2.16. Let s ∈ S. For all 2|S|−1 settings α of the variables in VS \ {s}, α(hs) is
admissible.

Proof. When α(vt) is all 0, hs = bs is admissible (by Lemma 2.15). Toggling some vt

only has the effect of flipping every edge in a cycle, which preserves admissibility.

Lemma 2.17. Ts covers {0, 1}VS\{s}.

Proof. For every setting of α ∈ {0, 1}VS\{s}, α(hs) as defined above is admissible and

therefore covered by some p ∈ T , which has constant part 1/2 + b for some b ∈ Z.
Furthermore, as α(hs) sets every edge in s to 1/2, every such p must have odd coefficient

in front of s - otherwise

p(α(hs)) = 1/2 + b+ (1/2)

(∑
e∈s

µe

)
+
∑
e ̸∈s

µeα(hs)(xe)

can never be zero, as the 1/2 is the only non integral term in the summation.

Theorem 2.7. Any SP refutation T of Ts(Hn, ω) must have |T | ∈ Ω(n1.04).

Proof. We are going to find a set of pairs (L1,M1), (L2,M2), . . . , (Lq,Mq), where the Li

are pairwise disjoint nonempty subsets of T , the Mi are subsets of VS , and for every i

there is some si ∈ S \
⋃q

j=1Mj such that |(Li)si | ≥ |Mi|0.52. These pairs will also satisfy

the property that

{si : 1 ≤ i ≤ q} ∪
q⋃

i=1

Mi = S. (2.2)

As |S| = (n/3)2 this would imply that
∑q

i=1 |Mi| ≥ (n/3)2 − q. If q ≥ (n/3)2/2, then

(as the Li are nonempty and pairwise disjoint) we have |T | ≥ (n/3)2/2 ∈ Ω(n1.04).

Otherwise
∑q

i=1 |Mi| ≥ (n/3)2/2, and as (by Theorem 2.6, and because |Li| ≥ |(Li)si |)
each |Li| ≥ |Mi|0.52,
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|T | ≥
q∑

i=1

|Li| ≥
q∑

i=1

|Mi|0.52 ≥

(
q∑

i=1

|Mi|

)0.52

≥
(
(n/3)2/2

)0.52 ∈ Ω(n1.04). (2.3)

We create the pairs by stages. Let S1 = S and start by picking any s1 ∈ S1. By

Lemma 2.17 Ts1 covers {0, 1}VS1
\{s1} and has as an essentialisation E, which will be an

essential cover of {0, 1}V ′
for some V ′ ⊆ VS1 \ {s1}. We create the pair (L1,M1) = ({p :

ps1 ∈ E}, V ′) and update S2 = S1 \ (V ′ ∪ {s1}). (Note that V ′ could possibly be empty

- for example, if the polynomial xe = 1/2 appears in T , where e ∈ s1. In this case

however we still have |L1| ≥ |M1|0.52. If V ′ is not empty we have the same bound due

to Theorem 2.6.) If S2 is nonempty we repeat with any s2 ∈ S2, and so on.

We now show that as promised the left hand sides of these pairs partition a subset of

T , which will give us the first inequality in Equation (2.3). Every polynomial p with

psi ∈ Li has every vt mentioned by psi removed from Sj for all j ≥ i, so the only way

p could reappear in some later Lj is if psj ∈ Tsj , where vsj does not appear in psi . Let

µe, e ∈ sj be the coefficients of p in front of the four edges of sj . The coefficient in front

of vsj in psi is just
∑

e∈sj µe. As vsj failed to appear this sum is 0 and p does not have

the odd coefficient sum it would need to appear in Tsj .

Corollary 2.4. Any SP refutation of Ts(Hn, ω) requires depth Ω(log n) to refute in

Stabbing Planes.

2.5 Tseitin Principles and circuit rank

Here we describe another method of showing lower bounds for the size of SP refutations

of Tseitin Principles. It is simpler than the method of essential coverings just described,

and in many cases (such as for the grid) it is stronger - however, it is entirely specific to

Tseitin Principles, and shows no obvious potential to generalise.

Definition 2.12. Let G be a graph. A subgraph E ⊂ E(G) is Eulerian if every node

in G is adjacent to an even number of edges in E.

Fact 2.3. Let G be a graph. Given two Eulerian subgraphs E1, E2 ⊆ E(G), not neces-

sarily induced, their symmetric difference E1△E2 is also Eulerian.

Proof. In general the symmetric difference of two sets of even cardinality, in this case

two sets of edges adjacent to some node, remains even.
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Definition 2.13. A cycle basis B of a graph G is a minimal set of simple cycles such that

every Eulerian subgraph of G can be expressed as a symmetric difference of elements in

B. The size of any cycle basis, called the circuit rank of G, is equal to |E(G)|−|V (G)|+c,

where c is the number of connected components in G.

A comprehensive survey on cycle bases is [52].

The cycle basis is literally a basis of a vector space (the so-called cycle space, with

operation △ over the two element field) and so any product π = b1△b2△ . . .△bk of

distinct elements from B with k ≥ 1 is nonempty. It follows from the definition of

symmetric difference that every node in G has even degree in π. So, as before (i.e., as in

Section 2.3.6 and Lemma 2.15), by picking a critical assignment failing only the parity

clause for a vertex v adjacent to π, we get an admissible point bπ, as every vertex in G

is adjacent to an even number of edges in π. In particular, every vertex is adjacent to

either 0 such edges, in which case it is not v and has its parity constraint satisfied by bπ

being v-critical originally, or is adjacent to at least two edges that are set to 1/2. (We

actually have many candidate bπ, as there are many consistent settings of the integer

part of bπ, but we only need one, and any will work for the following proof.)

Theorem 2.8. Any SP refutation T of Ts(G,ω) must have size at least the circuit rank

of G, for any odd charging ω.

Proof. The proof proceeds in stages, where at the ith stage, we have maintained the

invariant that some set of polynomials Ti covers the set of admissible points {bπ : π ∈
Bi} for some set of Eulerian cycles Bi. Initially we set T0 to be the set of linear equalities

associated with the slabs in T just as before, that is,

T0 = {q(x) = r + 1/2 : (q, r) ∈ T }

and we let B0 be any cycle basis of G. As the bπ are triwords, the invariant starts off

true (because again as before, if a triword bπ falls in the interval r < q · bπ < r + 1, we

must have q · bπ = r + 1/2).

Suppose we are at the ith stage. We pick any Eulerian cycle π ∈ Bi. By the invariant,

some polynomial p ∈ Ti must kill the point bπ, and in therefore this p must have odd

total coefficient in front of the edges in π. (For the sake of clarity, we remind the reader

that the bπ are indexed by the original variables of Tseitin, which is to say, edges not

cycles. The polynomial p is similarly considered as a linear polynomial in variables

corresponding to edges.) Let B′ := Bi \ {π} be the remaining elements of Bi and let

Sp ⊆ B′ be the other elements µ of the cycle basis such that p has odd total coefficient

in front of µ. Note:
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� if p has odd coefficient in front of some cycle γ, it has even coefficient in front of

π△γ, as p had odd coefficient in front of π,

� if p has even coefficient in front of two cycles γ and γ′, it has even coefficient in

front of γ△γ′, and

� if p has even coefficient in front of some cycle γ, it cannot evaluate to anything

noninteger on an admissible point gotten by setting exactly the edges in γ to 1/2.

So we ‘co-sacrifice’ π and p by using the single cycle π to render all the other cycles odd

for p even instead. We set Bi+1 = (B′ \ Sp) ∪ {π△γ : γ ∈ Sp}, which has size |Bi| − 1,

as π△γ = π△γ′ if and only if γ = γ′. Every element in Bi+1, and therefore all of

their products, has even coefficient in front of p, so p can never be involved in destroying

admissible points noninteger only on these subgraphs. Furthermore, a nonempty product

can never become the empty graph (as we started with a cycle basis). Then the set

Ti+1 := Ti \ {p}, with cardinality exactly |Ti| − i, must cover Bi+1, and therefore cannot

become empty until Bi+1 becomes empty. We finish by noting that this only happens

when the stage i becomes the circuit rank |B0|.

2.6 Conclusions and acknowledgements

All of the methods here have a glaring weakness - they all ignore the entire structure

of the SP tree and flatten it into a disordered set of linear equations. Hence, they can

never produce more than a polynomial length lower bound (as the supposed refutation

might have a slab 0 < x < 1 for each variable x in the principle). Given this, it is

surprising to the author that the lower bounds produced are ever tight at all, and we

believe that incorporating the recursive structure in any way is bound to lead to much

stronger length and depth lower bounds. We speculate that one method of correcting

this weakness would be to adapt the Res(Lin) prover-delayer game from [69], already

working with essential covers, to work for Stabbing Planes. However, we do not attempt

this in the present thesis.

We would like to thank Noah Flemming for answering some questions on his paper [7],

sending us his manuscript [35], and for comments on a preliminary version of this chapter

as it was being prepared for publication.



Chapter 3

Lower bounds for some First

Order theories

Let T be a First Order principle. In the manner described in Section 1.1.1, for every

n ∈ N we can generate uniformly a propositional CNF T n which is satisfiable if and

only if T has a model of size n. If T has no finite models, which for us will always

be the case, we generate propositional contradictions, and can now investigate how

the model theory of T affects the propositional proof complexity of T n.

A very archetypal result along these lines is the following ‘gap theorem’, which comes

in two parts, a lower bound and an upper bound.

Theorem 3.1 ([28], Theorem 1.2). Let T be a first-order principle admitting no

finite models. Then, if T has infinite models, the SA rank of T n is Ω(nϵ), for some

ϵ > 0 independent of n. Otherwise, if T has no models at all, T n has constant SA

rank.

In the first section of this chapter, we use machinery from the previous chapter to

prove an analogy of this lower bound for SA in SP.

Then, in the second section, we turn to the more powerful Sum Of Squares proof

system, and, while we do not have the same success, we do establish some general

framework - in particular, we provide some ‘canonical’ pseudodistribution and find

some equivalent conditions for its positive semidefiniteness.

49
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3.1 Stabbing Planes

In this Section we generalise the SP lower bounds for the LOP (Theorem 2.5) and PHP

(Theorem 2.4) given in the previous chapter. The generalisation comes from viewing

these two principles as just two of many principles that are generated from some FO

sentence T as mentioned in the abstract of this chapter.

In the following Section 3.1.1, we begin by undergoing a number of steps to transform the

principle T into one vulnerable to the antichain framework established in the previous

chapter. We call this a ‘sanitisation’ of the theory. We use this sort of language because,

as we will show, any obstacle to the application of the antichain method must come

from a type of redundancy or wastefulness in the principle, which we straightforwardly

remove. For example, in Lemma 3.1, we show that if the situation in some small finite

part of a model fixes some relation to be constant outside of that finite part, then that

relation only ever needed to be defined with respect to that small finite part (which

we name as constants), and not generically. This allows us to manipulate variables

independently and nets us a hypercube.

As we transform the principle T into some principle T ′ by sanitisation, we also transform

any refutation D of Tn into a refutation D′ of T ′
cn, with |D′| ≤ |D| and c > 0 a constant

independent of n. After sanitisation T will almost full as defined in Definition 2.3, as we

now find in its solution spaces large hypercubes. Then, in Section 3.1.2, we lower bound

the size of |D′|, which is now almost susceptible to attack by the antichain method from

the previous chapter, but not quite.

To wit, the remaining problem is this: in for example Lemma 2.12, there was a straight-

forward restriction for the LOP that showed self-reducibility - we just placed the elements

we wished to eliminate above all the other elements, rendering any variable mention-

ing those elements constantly integral, and effectively removing them from D. But for

generic T it is not obviously the case that Tn is self-reducible in the same way. This was

a crucial part of the antichain method.

We work around this in Lemma 3.8 by running a ‘bounded re-sanitisation’ - instead of

immediately making redundant a query with low covering number, we name that cover

as a set of constants and re-establish disjointness (which we will note has bounded cost).

This may not already destroy the query as it did for the PHP and LOP in the previous

chapter, but it does reduce the effective arity of every single variable in that query (as

they now must all touch a constant), and for a given query this can only happen a

constant number of times (bounded by the arity of the principle).
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A note on the aesthetics of the proof. T ′ is gotten from T by addition of some

finite number of axioms and a finite extension of the language of T . However all of

our axioms are very simple and only ever name constants or set single literals, and the

extensions are a similarly simple replacement of literals (see Fact 3.1 and the discussion

following Lemma 2.11 for a specific case). In the ‘propositional’ world of Tn this is

just selecting a slice of the polytope in which we can locate a useful hypercube. An

equivalent, more verbose, but perhaps more simplistic proof could show the same lower

bound from this angle.

3.1.1 Sanitising the theory

In this section, unemboldened arguments (like the τ1 in R1(τ1)) are to be read as fixed,

and can be thought of as the ‘concrete arguments’ in the literals of the CNF produced

by the procedure described in Section 1.1.1, instantiated with elements from N, unless
a quantifier claims otherwise. Emboldened parameters are to be read as free variables.

Definition 3.1. Let L be some vocabulary and let R = {R1(τ1), . . . , Rk(τk)} be some

set of relations from L instantiated with parameters in [n], for some n ∈ N. Let M be

an L-structure and ρ ∈ {0, 1}R be an assignment to R. An injection ι : [n] → M is

consistent with ρ if the interpretation by M of Ri(ι(τi)) agrees with ρ(Ri(τi)) for all

1 ≤ i ≤ k (interpreting 1 as true).

In the previous chapter, it was useful (for example in Lemma 2.13) that variables with

disjoint subscripts could be set independently. This is not obviously true for all prin-

ciples, but we will show that it is ‘effectively true infinitely often’ in some subset of

models, which will give us a set of admissible points containing actionable hypercubes.

Definition 3.2. Let T be a theory with some finite set of constants C ⊂ N. A set

of relations R = {Ri(τi) : 1 ≤ i ≤ k} instantiated with parameters in N is said to

be disjoint if (a) every tuple τi mentions nothing in C and (b) the tuples τi, τj are

pairwise disjoint. A theory T is said to be disjoint if for any disjoint set of relations

R = {Ri(τi) : 1 ≤ i ≤ k} and any assignment b ∈ {0, 1}R, there is some model M |= T
such that M |= b(Ri(τi)) for all 1 ≤ i ≤ k.

Lemma 3.1. Let T have only infinite models. Suppose, after Skolemization, T is not

disjoint. Then there exists some T ′, gotten from T by addition of a finite number of

axioms and constants, that is disjoint and has only infinite models.

Proof. If T is not disjoint, then there exists a disjoint set of relations R = {Ri(τi) :

1 ≤ i ≤ k}, which will involve some finite subset T ⊂ N \ C as arguments, as well as a
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forbidden assignment b ∈ {0, 1}R, such that every injection ι : T → M into every model

M |= T disagrees with b. We will take R to be minimal inclusion wise. Then letting

T ′ ⊂ T be the elements mentioned by R′ = R \ {Rk(τk)} there exists a model M |= T
and injection ι : T ′ → M agreeing with b on R′ (even if T ′ is empty). Let E ⊂ M be

the (finitely many) elements in the image of ι. Then, for any δ sending the elements in

T \ T ′ mentioned by Rk(τk) to M \ E, Rk(δ(τk)) is forced to the opposite of b(Rk(τk)).

So we add to the principle the constants E and the axioms Ri(ι(τi)) = b(Ri(τi)), for

1 ≤ i ≤ k − 1. This new principle has at least one infinite model (to wit, M), and any

instantiation Rk(yk) of Rk mentioning no elements in E is redundant (as its value is

forced). We can only repeat this procedure finitely many times, as each relation starts

off with some fixed arity, and any relation playing the role of Rk above from then on is

only ever instantiated with at least one more constant than it was before.

In the proof of Lemma 3.1, we showed that if we were in a particularly difficult situation,

like a lack of disjointness, then there must be an actionable type of logical redundancy

modulo some finite number of axioms, and that this type of redundancy can only be

rectified some finitely many times, so eventually we should land in a more favourable sit-

uation. The steps below often work similarly - we will find and remove redundancies like

∀x, y P (x, y) =⇒ P (y, x) (the redundancy here being the order implicit in the ordering

of the arguments, and later on after transformation, the order implicit in subscript of a

variable of a linear program) or that ∀x, y, z(R(x, y, z) =⇒ ∀wR(x, y, w)) (so we did

not need the last coordinate). In order to more obviously show finite progress, we first

will convert any given SP refutation D of (the n-th CNF translation of) some theory T
into a refutation D′ of a related T ′. T ′ has an expanded vocabulary (but no constants)

and will enable us to view the refutation D′ as only mentioning relations with distinct

parameters, instantiated in order as natural numbers, and crucially, we will have that

|D′| ≤ |D|.

Definition 3.3. Fix some theory T over some language L. A subset L′ ⊆ L will be

called sufficient if, for all literals R(τ), there is a literal R′(τ ′) instantiated from L′ such

that T |= R(τ) ⇔ R′(τ ′), and the elements mentioned by R′(τ ′) are a subset of those

mentioned by R(τ).

By simply replacing literals we get the following fact:

Fact 3.1. Given any SP refutation D refuting Tn and any sufficient J , there is a D′ with

|D′| ≤ D refuting Tn and only mentioning variables in J .

Lemma 3.2. For any theory T over some language L, and for any set C of forbidden

constants, we can find an expanded theory T ′ over some expanded language L′, such that

relations instantiated without any constants are sufficient.
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Proof. To achieve this we include, for every k-ary relation R(x1, . . . ,xk), (|C|+1)k new

relations, one for each partial assignment of constants to the parameters. Given some

partial assignment ρ : Xρ → C defined on some subset Xρ ⊆ {x1, . . . ,xk}, we enumerate

{x1, . . . ,xk} \Xρ as xi1 , . . . ,xik−|Xρ|
and include in T ′ the axiom

Rρ(xi1 , . . . ,xik−|Xρ|
) ⇔ R(γ1, . . . , γk)

where γi = ρ(xi) if xi ∈ Xρ, otherwise, it is xi, which is free.

Note that if we were to name a generic constant and apply the procedure just described

we might actually lose disjointness. This happens for example in the PHP, which is dis-

joint, but if we were to name a constant α and then introduce the relation Rj equivalent

to Pjα, we find that any Rj being set to 1 forces the remaining to 0. However if we were

to name one more constant, say β, and say that Pβα = 1, the new relation R effectively

disappears outside of {β}. The number of new constants required in naming a constant,

forbidding it, and then re-establishing disjointness, is bounded by a universal constant

which we call the cost of disjointness.

Lemma 3.3. For any theory T over some language L, we can find an expanded theory

T ′ over some expanded language L′, such that only relations with distinct parameters

are sufficient.

Proof. For k ∈ N let Ek be the set of equivalence classes, or partitions, of [k]. We define

an additional set of relations like

L1 := {Rη(x1, . . . ,x|η|) : R(x1, . . . ,xk) ∈ L, η ∈ Ek}

and include in T ′ the axioms

Rη(x1, . . . ,x|η|) ⇔ R(γ1, . . . , γk)

where γi = xj for the partition j into which i falls.

Lemma 3.4. For any theory T over some language L equipped with a binary predicate

≺ along with the axioms of a total order, we can find an expanded theory T ′ over some

expanded language L′, such that relations instantiated only in an order consistent with

≺ are sufficient.

For example, as we always consider our countable domains as the natural numbers,

the reader could take ≺ as just being the standard ordering of N. This lemma is a
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generalisation of the discussion following Lemma 2.11, where we show we might as well

take subscripts to be unordered.

Proof of Lemma 3.4. Let Sk be the set of permutations of [k]. We define an expanded

set of relations like

S(L) := {Rπ(x1, . . . ,xk) : R(x1, . . . ,xk) ∈ L, π ∈ Sk}

and include in T ′ the axioms

R(x1, . . . ,xk) ⇔ Rπ−1
(xπ1, . . . ,xπk)

letting us replace any R(x1, . . . ,xk) with Rπ−1
(xπ1, . . . ,xπk), where π is the unique

permutation bringing the xi into agreement with ≺, and πk is the application of π to

k.

Note that as we are interested in infinite models it does no harm to include such a ≺.

Note also that each process in the previous two Lemmas preserves the property gained by

the prior - Lemma 3.3 and Lemma 3.4 do not reintroduce any constants, and Lemma 3.4

does not introduce repeated parameters, so we get the following corollary:

Corollary 3.1. For any theory T over some language L equipped with a binary predicate

≺ along with the axioms of a total order and any set of named constants C, we can find

an expanded theory T ′ over some expanded language L′, such that there is a sufficient

set of instantiated relations MC ⊆ L′ where

1. nothing in MC is ever instantiated with any constants in C,

2. nothing in MC is ever instantiated with repeated parameters, and

3. all the parameters in MC are given in order of ≺.

Definition 3.4. Given some relation R(x1, . . . ,xk) and some subset X ⊆ {x1, . . . ,xk},
we define the ‘unlabeling’ to be the formula gotten by universally quantifying over the

variables in X:

UX(R(x1, . . . ,xk)) := ∀(yi : xi ∈ X)R(y1, . . . , yk)

where the yi for xi ̸∈ X are just set to xi.



3. Lower bounds for some First Order theories 55

Definition 3.5. A theory T will be called distilled if, for every relation R and nonempty

X,

T ,A ̸|= R(x1, . . . ,xk) =⇒ UX(R(x1, . . . ,xk)).

where A is any finite number of axioms consistent with T .

Lemma 3.5. Given some D refuting some theory T , we can produce some D′ refuting

some distilled theory T ′ with |D′| = |D|.

Proof. While T is not already distilled, we have, for some finite number of axioms A,

that

T ,A |= R(x1, . . . ,xk) =⇒ ∀xl, . . . ,xkR(x1, . . . ,xl−1,xl, . . . ,xk)

where we have assumed (purely to simplify the exposition) that the xi with xi ∈ X are

xl, . . . ,xk for some l. But this clearly implies

T ,A |= ¬R(x1, . . . ,xk) =⇒ ∀xl, . . . ,xk¬R(x1, . . . ,xl−1,xl, . . . ,xk)

(as, if for some instantiation of xl, . . . ,xk there exists a further instantiation of xl, . . . ,xk

rendering R(x1, . . . , xk) true, then any instantiation of xl, . . . ,xk would have done the

same) and that any instance of R(x1, . . . ,xl−1,xl, . . . ,xk) in T (and D) can be re-

placed with some smaller R′(x1, . . . ,xl−1), and for any M |= T consistent with A
(of which there are at least one), there is some M′ |= T ∪ A of the same cardinal-

ity that interprets R′(x1, . . . ,xl−1) as true if and only if M interpreted any (and all)

R(x1, . . . ,xl−1,xl, . . . ,xk) as true. Of course this process can only be repeated finitely

many times, as we permanently reduce the finite arity of one of finitely many rela-

tions.

3.1.2 The lower bound

Definition 3.6. Given some theory T with constants in N, n ∈ N, and assignment

ρ = {R1(τ1) → b1, . . . , Rk(τk) → bk} where the τi are instantiated with parameters

from [n], we let hρ(T , n) be the injections of [n] into some model M of T that are

consistent with ρ.

Definition 3.7. Fix some ambient n ∈ N. Given some consistent assignment ρ to some

set of variables {R1(τ1) = b1, . . . , Rk(τk) = bk}, where every τi mentions elements in

[n], and some subset N ⊆ L, we define FN (ρ) to be the literals in N ‘that follow from’,

or are forced by, ρ:

FN (ρ) := {R(τ) : R(τ) ̸= Ri(τ i) for any i but every ι ∈ hρ(T , n) also satisfies R(ι(x))}.
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where the τ in R(τ) are instantiated with elements from [n].

We let F (ρ) := FL(ρ) (where L is the entire language of T ). We will also identify FN (ρ)

with the conjunction of its elements (which is a finite conjunction because we draw the

arguments from some finite set [n]).

Lemma 3.6. Let T be a Skolemized theory over a language L. Let a be an upper bound

on the arity of any relation in L (including the Skolem ones) and d be the number of con-

stants in T . Suppose we have some binary assignment ρ = {R1(τ1) → b1, . . . , Rk(τk) →
bk} of some instantiated relations from the language of T , and where the τi all mention

elements in [n] but leave at least d + a + 2 elements of [n] unmentioned. If hρ(T , n) is

nonempty, the assignment

αρ(R(τ)) :=



bi if R(τ) = Ri(τi) for some i,

1 if R(τ) ∈ F (ρ),

0 if ¬R(τ) ∈ F (ρ),

1/2 otherwise

is admissible.

Proof. First we show that all the small clauses are satisfied. If every variable R =

{Ri(xi) : 1 ≤ i ≤ c} in a small clause is set to something binary, then that small clause

must be satisfied. This is because there exists at least one model M |= T and some

ι :∈ hρ(T , n) such that Ri(τi) is set to the interpretation in M of Ri(ι(τi)), and because

we were given that ρ was consistent.

If there are two or more elements set to 1/2 then the clause is already satisfied. So the

last real case is if only a single variable v is set to 1/2. In this case every other variable

appearing in the clause is binary, which means its value is forced by every ι : [n] → M

consistent with ρ, for every M |= T . If an assignment falsifies such a clause its because

v is forced to 0 or 1, and not both because ρ was promised to be consistent - but then

v ∈ F (ρ) should have already been forced to the correct value.

For the Skolem clauses

n∑
i=1

S(τ, i) ≥ 1

there are at least two elements e1, e2 ∈ [n] not appearing in ρ, in τ or as constants in

T , as ρ involves at most d + a + 2 elements. If τ does not already have a S-witness in
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[n] \ {e1, e2} then we must have S(τ, e1) and S(τ, e2) set to 1/2 - given any ι : [n] → M

consistent with ρ, we simply change ι(e1) to point to the S witness of τ in M.

Corollary 3.2. For every T and n ∈ N, there is a constant cT such that any SP

refutation D of Tn must mention at least n− cT elements.

Proof. Let cT := d+a+2, where d and a are as in the setup to the previous Lemma 3.6.

Let E ⊂ N be all the elements mentioned by D. Let ρE be any ‘full assignment’ - pick

a model M |= T , ι any injection of the elements E into M, and for every relation R

in the language of T and every tuple τ of mentioned elements M of the appropriate

arity, set R(τ) to be the interpretation by M of R(ι(τ)). Then these ρE ,M, and ι meet

the prerequisites of Lemma 3.6 and we receive an admissible point fully integral on all

variables contained in E, including every variable appearing in a query in D - but then

this admissible point can fall into no slab of D.

We give an illustrative example for PHP. Note it is already disjoint- the first pigeon

roosting or not roosting in the second hole doesn’t force the third pigeon to roost or

not roost in the fourth hole. Let R = {P1,2, P3,4, . . . P2k−1,2k} be a disjoint set and ρ be

anything in {0, 1}R. Then

αρ(Pa,b) =


ρ(P2i−1,2i) if a, b = 2i− 1, 2i for some 1 ≤ i ≤ k

0 if ρ(Pa′,b) = 1 for some a′ ̸= a

1/2 otherwise

is admissible. In this case, F (ρ) are the variables in the middle line, aka the Pj,2i for

j ̸= 2i− 1 that are forced to 0 by P2i−1,2i being set to 1.

As in the previous Chapter, we would like to find a large hypercube in some set of

admissible points. So far we have shown that given some relations instantiated with

disjoint parameters we can assume that they can take any truth value independently,

however there is still some work to do, as non-hypercube coordinates might depend too

much on the assignment to the hypercube ones.

As an example, take the functional PHP4, which asks that every pigeon is assigned to

exactly one hole (classically the PHP asks only for at least one hole per pigeon). The

variables P12 and P34 can consistently take any of four assignments ρ ∈ {0, 1}2. However,
the value of αρ(P13) depends on the value of ρ(P12) (it’s 0 if P12 is set to 1, otherwise

it’s 1/2). In examples with higher arity, non-hypercube variables may have a nonlinear

dependence on multiple hypercube variables. Still in the functional PHP we can find

a ‘scaled hypercube’ - if we set P12, P34 to 0 we receive an admissible point (the aρ)
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where every other variable is set to 1/2, and importantly, which remains admissible for

all 4 ways of setting any of P12, P34 to 1/2. This is not true for any binary assignment,

however - if we had set P12 to 1, then P13 and P14 would be forced to 0, which themselves

force P12 to 1, preventing us from finding a hypercube. We show now that we can always

find an assignment that isn’t, in this sense, ‘self reinforcing’.

Lemma 3.7. Let T be disjoint and distilled. Given any disjoint set of instantiated

literals R = {R1(x1), . . . Rf (xf )} ⊆ M , where M = MC for any C as defined in Corol-

lary 3.1, and the xi althogether mention fewer than n−cT elements (where cT is defined

in the body of Corollary 3.2), there exists a consistent assignment σ of R such that for

all 2|R| subsets K of R, the assignment ασ,K gotten by taking the assignment ασ from

Lemma 3.6 and setting the elements in K to 1/2, that is,

ασ,K(v) :=

ασ(v) if v ̸∈ K

1/2 otherwise

is admissible.

Proof. Fix any assignment σ of R, necessarily consistent by disjointness. We one by

one set the elements of R in ασ to 1/2. If we remain admissible no matter how we go

about this then the lemma is proven (we can always set any K to 1/2). However if at

some point we find we cannot set some Ri(xi) to 1/2 in ασ whilst remaining admissible,

then Ri(xi) is forced by the remaining assignment to its current assignment, that is,

T |= σ(R′
i)∧FM (σ) =⇒ σ(Ri(xi)), where R′

i contains all the elements in R aside from

Ri(xi) that were not set to 1/2. Letting Ri = R\{Ri(xi)} and noting (as R′
i ⊆ Ri) that

then T |= σ(Ri) ∧ FM (σ) =⇒ σ(Ri(xi)), to prove the Lemma, it would be enough to

give an assignment σ such that, for all 1 ≤ i ≤ f , T ̸|= σ(Ri) ∧ FM (σ) =⇒ σ(Ri(xi)).

Suppose we cannot - then for each of the {0, 1}R assignments σ to R, there exists at

least one Ri(xi) ∈ R, which we will call problematic for σ, such that we have the pair

of implications (in T )

σ =⇒ FM (σ) and FM (σ) ∪ σ(Ri) =⇒ Ri(xi).

(But note that the first implication is anyway always true by definition, and here we

have used the sufficiency of M .) Starting from any σ, flip the value of σ(Ri) for some Ri

problematic for σ, and repeat. Either we eventually find some nonproblematic assign-

ment or we flip some R ∈ R twice. In the second case let σ1 be the working assignment

the first time we flip R and σk+1 the assignment the second time. Without loss of gener-

ality, R = R1(x1) was the variable flipped twice and the other variables flipped exactly
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once between σ1 and σk+1 were R2(x2) . . . , Rk(xk) in that order. So, to illustrate, σ1 =

σ(R1(x1)), σ(R2(x2)) . . . , σ(Rk(xk)), σ
′, and σ3 = ¬σ(R1(x1)),¬σ(R2(x2)) . . . , σ(Rk(xk)), σ

′,

and σk+1 = ¬σ(R1(x1)), . . . ,¬σ(Rk(xk)), σ
′, where σ′ :=

∧f
i=k+1 σ1(Ri(xi)) are the un-

flipped variables.

Then we have the following set of implications, all apparently consequences of T :

FM (σ1) ∧ σ1(R1) =⇒ R1(x1) (3.1)

FM (σ2) ∧ σ2(R2) =⇒ R2(x2)

FM (σ3) ∧ σ3(R3) =⇒ R3(x3)

...

FM (σk+1) ∧ σk+1(R1) =⇒ ¬R1(x1) (3.2)

(where we have assumed, for simplicity and without loss of generality, that σ1 is the

all-true assignment). For all 2 ≤ i ≤ k we pick two injections πi, µi of xi into N, and for

all k < i ≤ f , we pick a single injection γi of xi → N. We pick these injections such that

the images of all πi, µi, and γi are pairwise disjoint. We add said images as constants,

add the axioms Ri(π(xi)) ∧ ¬Ri(µ(xi)) for all 2 ≤ i ≤ k, and the axiom σ′(Ri(γi(xi)))

for the remaining k < i ≤ f . This expanded T ′ makes sense by disjointness of T , and

in T ′ we have

R1(x1) ⇔ F ′(σ1) and ¬R1(x1) ⇔ F ′(σk+1),

where F ′(σi) is the result of taking FM (σi) and setting the xj for j ≤ k to πj or µj

when σi(Rj(xj)) is positive or negative, respectively, and the remaining xj , j > k, to γj .

This is because, essentially, σ1(R1) in Equation (3.1) becomes a conjunction of axioms,

giving the direction F ′(σ1) =⇒ R1(x1). For the other direction, as the implication

σ1 =⇒ Fm(σ1) was already true in T , after viewing all conjuncts in σ1 aside from

R1(x1) as axiomatic, we see that R1(x1) =⇒ F ′(σ1). The right hand side of the ‘and’,

where R1 is negated, is in like case.

Say F ′(σ1) fails to mention R1 at all. Then, considering F ′(σ1) as a formula F ′
σ1
(x1)

in the free variables x1, we can remove R1 from L and replace every instance of R1(y)

with F ′
σ1
(y). Now say F ′(σ1) does mention R1 - then it has to mention some R1(y)

where y mentions something in N outside of x1 (as otherwise y is a permutation of x1,

or contains repetitions, both of which are impossible by the assumption of R1(x1) being

a member of the M from Corollary 3.1). If R1(y) is mentioned positively, we have

R1(x1) =⇒ F ′(σ1) ∧ UA1(FM (x1)) =⇒ UA1(FM (x1))
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where A1 is the (nonempty) set of coordinates on which y is not contained in x1. To sum-

marise, then, R1(y) is mentioned negatively in F ′(σ1), and as the situation is analogous,

R1(y) is mentioned positively in F ′(σk+1). But then

¬R1(x1) =⇒ F ′(σk+1) ∧ UAk+1
(R1(x1)) =⇒ UAk+1

(R1(x1)), and

R1(x1) =⇒ F ′(σ1) ∧ UA1(¬R1(x1)) =⇒ UA1(¬R1(x1)) =⇒ UA1(UAk+1
(R1(x1))))

=⇒ UA1∪Ak+1
(R1(x1)),

where the second to last implication follows from the chain of implications on the line

above, contradicting the idea that T was reduced.

Definition 3.8. Given some linear polynomial q in the variables associated with Tn, we
say that q is covered by a set B ⊆ [n] if every variable appearing with nonzero coefficient

in q mentions an element in B, and we say that q has covering number k if every the

minimally sized such B has cardinality k.

Here we diverge in notation and nomenclature of the previous chapter - given some

function f(n), we say that a query q is f(n)-wide if its covering number is at least f(n),

and that a query is f(n)-narrow if it is not f(n)-wide. (Recall that previously we said

instead that a polynomial was narrow if it was contained fully in the set, rather than

just covered by it.)

Lemma 3.8. Let T be some FO principle. Suppose we have some SP refutation D of

Tn where |D| < n1/4. Then, if n is large enough, we can find some SP refutation D′ of

T ′
m, where m ≥ n/2 , D′ contains only νn3/4-wide queries for some constant ν, T ′ is

disjoint, and |D′| ≤ |D|.

Proof. Let c be the cost of disjointness as defined in the discussion following Lemma 3.8

and let a be the maximum arity of any relation in the principle under attack. Due to

Fact 3.1 we will assume without loss of generality that the variables in D are all in the

sufficient MC as defined in Corollary 3.1, and where initially C = ∅ (so no constants are

forbidden yet).

Let ν be (2ac)−1 which as promised is independent of n. Suppose there exists a query

q ∈ D that is νn3/4 narrow. Then there is some set B ⊆ [n] with |B| ≤ νn3/4 touching

every variable in q. We forbid this set B, updating the subscript C in MC as B ∪ C,

and re-establish disjointness as in Lemma 3.1. As every variable in q was touched by B

we drop the maximum arity of a variable appearing in q by at least one, and so we do

this at most an1/4 times (as it was claimed that there at most n1/4 many q ∈ D). So
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we consume in this way at most an1/4 · cνn3/4 ≤ acν · n = n/2 elements, the remaining

q ∈ D (if there are any) refuting T ′
(1−acν)n and all νn3/4-wide.

We finally arrive at our Theorem.

Theorem 3.2. Let T be some sanitised theory with only infinite models. Then any SP

refutation D of Tn has size Ω(n1/4).

Proof. Assume the opposite. Then, for any fixed κ > 0 of our choosing, for large enough

n, there is D with |D| < κ(n/4)1/4 refuting Tn. By Lemma 3.8, we can find some D′

refuting T ′
m, with T ′ disjoint, |D′| ≤ |D|, m ≥ n/2, every query νn3/4-wide, and ν a

positive constant independent of n.

Let a be the maximum arity of any relation in the language of T ′. We initialise an

empty hypercube H and process the queries q1, . . . , q|D| in any order. When processing

qi we pick νa−1
√

n/4 disjoint variables, disjoint from everything in H - we can always

do this as there are at most κ(n/4)1/4 · νa−1(n/4)1/2 = κνa−1(n/4)3/4 variables in H,

mentioning then at most κν(n/4)3/4 elements, and q is ν(n/3)3/4-wide (and we will be

careful to choose κ ≤ 1). Then, by Lemma 3.7, we find a hypercube of size 2H covered

by D′ where every q ∈ D′ has effective width at least νa−1
√
n/4. Then, by Lemma 2.2,

every q ∈ D′ rules out at most

2|H|√
νa−1 ·

√
n/4

= (ν/a)−1/2 2|H|

(n/4)1/4

elements in 2H , and so by choosing κ <
√
ν/a we see that altogether they kill strictly

less than

|D′| · (ν/a)−1/2 2|H|

(n/4)1/4
< κ(ν/a)−1/22|H| < 2|H|

points, contradicting Lemma 1.2.

3.1.3 Conclusions

We began this section by showing that we can assume the ability to find certain useful

structure in the solution space of Tn, for any principle T admitting only infinite models.

We then took advantage of this structure to show a polynomial sized lower bound for

Stabbing Planes. However, this raises two questions:

Firstly, what is the situation of the matching upper bound? In [28], a similar lower

bound to Theorem 3.2 is given - there the authors show that, if T admits only infinite

models (but at least one), then every SA refutation of Tn has polynomial rank. They
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then continue to completely classify every relevant principle T , by then showing that

if T has no models at all, finite or infinite, then it has constant rank SA refutations.

This complementary upper bound is currently missing for SP. Corollary 2.1 suggests

the mirrored upper bound cannot be the same for SP, however, the principle concerned

(the SPHP) is not obviously the result of the transformation of some FO principle.

Secondly, what is the situation for other geometric proof systems, such as CP? As SA

simulates CP in terms of size, Theorem 3.2 actually also applies to CP - but there a poly-

nomial sized lower bound is much less meaningful. However, the results of Section 3.1.1

are quite general, being model-theoretic in nature. We harnessed them against SP, but

one could imagine their application to a proof system like CP, perhaps replacing the

final application of the antichain method with the method of the protection lemma used

in [15] and elsewhere, giving a similar lower bound, but for CP rank (instead of size).
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3.2 Sum of Squares

Let T be a consistent FO formula and Tn be the propositional formula claiming T has a

model of finite size n, always presumed to be contradictory. A natural pseudodistribution

appearing often in the literature is a ‘pseudomodel-counting’ distribution, where, for each

clause C, we count the number of size-n substructures of any model of T , labeled by

elements in [n], consistent with C, and then normalise to generate a probability. The

‘pseudo’ prefix is important, as there no actual models of any finite size n by assumption.

(The term pseudomodel here is used vaguely but is defined precisely in Definition 3.13.)

For example, the pseudodistribution used in [71] to give a a Ω(n1/2−ϵ) lower bound

for the LOP (any ϵ > 0) is an example of a pseudomodel-counting argument - every

clause can be identified with a partial order, and the pseudodistribution used counts the

number of linear extensions of this partial order - that is, it counts pseudomodels. For

illustration, the degree-2 clause P1,2P3,4 would receive the valuation 1/4 - exactly half of

all linear orderings of [n] place 1 before 2, and out of these, exactly half place 3 before

4.

A further example is in [29] which gives uses a pseudomodel counting argument for

a different principle - the PHP. This time, a clause mapping some pigeons to holes

invectively is valued proportionately to the number of matchings on the domain that

are consistent with this mapping (this valuation is in fact exactly the valuation defined

and used later in Lemma 4.1, albeit in a different context). And perhaps the example

closest to the theme of this section is [28], where it is shown that this generic counting

distribution gives, for all relevant FO principles T , a polynomial in n SA rank lower

bound for Tn.

In this section, we begin the task of bringing this sort of lower bound to SOS. We first

show in the discussion following Definition 3.13 that this generic pseudodistribution

immediately works at any degree for all parts of the principle, apart from matrices

generated from the existential Skolem clauses.

Then we appeal to well-known results regarding symmetry and SOS. For every principle

T , Tn as a set of clauses or linear inequalities is actually symmetric with respect to

perumutation of the labels in [n] (apart from perhaps a universally bounded number of

constants which we can ignore - see Lemma 3.2 from the previous chapter, for example),

In [70, 73] it is shown that to a large extent we can expect this symmetry of Tn to

actually be reflected in the structure of any SOS refutation of Tn (see Corollary 3.3 for

the precise result).
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The main thrust of this section is the recognition that as a consequence of this symmetry,

pseudomodel counting amounts to a counting of embedding from small pseudomodels

into larger ones. Essentially, as we can identify clauses in the same orbit (with respect

to some permutation group G), we can identify the models consistent with those clauses

(aka, the objects we count to produce the pseudodistribution) according to the same

symmetry. Then, elements in [n] subject to the symmetry of G are free to ‘float around’,

and we find ourselves counting partially labelled embeddings (this is the content of

Lemma 3.10). We use this observation to reduce the PSDness of the final remaining

matrix into a condition on a summation of these counts (Corollary 3.4).

Let P(X,≤ d) denote the subsets of X of size at most d, P(X, d) those of size exactly d,

and P(X) the usual power set of X. The element in the mth row and ith column of a

matrix M is denoted M(m, i). In this section our matrices will be always indexed by sets

of variables (aka. square-free monomials) and will obey M(α, β) = M(α′, β′) whenever

α ∪ β = α′ ∪ β′ so sometimes we will index them as if they are one dimensional. Given

some fixed ambient ‘relational formal variables’ A,B, . . . with arities mA,mB, . . ., we

let Vn be the set of variables {Aa1,...,amA
, . . . , Bb1,...,bmB

, . . .} where the subscripts range

over [n]. R[Vn] is the set of formal polynomials with variables in Vn. Given a product of

variables I =
∏

x∈J⊆Vn
x and a polynomial p ∈ R[Vn] we let p[I] denote the coefficient in

p before I. We will often in this way identify a polynomial with its vector of coefficients.

3.2.1 Symmetry

We need some standard group-theoretic definitions and concepts. From now on, we will

let an element σ ∈ S[n] act on monomials in R[Vn] like

σ(Pl1r1 · · ·Plmrm) → Pσ(l1)σ(r1) · · ·Pσ(lm)σ(rm). (3.3)

Here a permutation σ is viewed as an injective function.

(For expository purposes we have assumed only one binary relation in our language -

this action very straightforwardly applies to the more general case.)

Definition 3.9. Some vector x, indexed by monomials in atomic variables, is said to be

symmetric with respect to some permutation group G if, for all σ ∈ G and α indexing x:

x(σ(α)) = x(α).

Definition 3.10. Fix some permutation group G. The orbit of β, denoted O(β), is

O(β) := {π(β) : π ∈ G}.
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If some x is symmetric with respect to some G, every coordinate in the same orbit is

given the same value, and we may index vectors by orbits.

3.2.2 Representation theory of the symmetric group

Definition 3.11. A representation (V, θ) of some group G over some vector space V is

a group homomorphism θ : G → GL(V ) (the group of invertible linear operators from

V to itself).

Note that Equation (3.3) gives such a representation of permutation groups over R[Vn],

where some permutation is sent to the corresponding permutation matrix. As we are

only interested in this action we henceforth omit θ and assume V ⊆ R[Vn].

Definition 3.12. A representation V is said to be irreducible if it has no proper non-

trivial subrepresentations, i.e., the only W ⊆ V fixed by the action of G is the zero space

and V itself.

The representation theory of the symmetric group is well understood, and it reveals that

this representation of Sk (or any representation of any finite group over a field of zero

characteristic) breaks up into a direct sum of irreducible components.

For Sk these components are indexed by so called Young tableaux. These tableau have

a shape which is a partition of k - a nonincreasing list of numbers λ = (λ1, . . . , λm) that

sum up to k (denoted λ ⊢ k). A tableau of shape λ is a filling of λ by some elements of

[k]. An example tableau for the partition (3, 2, 2) ⊢ 7 is

1 3 5
2 4
6 7 .

A tableau is called standard if it is increasing along rows and down columns (like this

example tableau).

So we have something like

R[Vn] =
⊕
λ⊢k

Vλ

with each Vλ being a further sum of irreducible components indexed by tableau of shape

λ: Vλ =
∑mλ

i=1 V
i
λ for some multiplicities mλ, and ⊕ is the direct sum.
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For some space U acted on by a group G, let UG be the subspace of U fixed by the

action of G:

UG := {u ∈ U : g · u = u for all g ∈ G}.

The following is summarising almost verbatim from [73]. We fix any group G. Let

(Sλ)λ∈Λ be an enumeration of inequivalent irreducible representations ofG. Let HomG(U,W )

be the vector space of ‘intertwining operators’: R-linear maps ϕ : U → W such that

ϕ(g · u) = g · ϕ(u) for all u ∈ U .

Define

Vλ = span{ϕ(s) : ϕ ∈ HomG(Sλ, V ), s ∈ Sλ} (3.4)

Wsλ := {ϕ(sλ) : ϕ ∈ HomG(Sλ, V )} ⊆ Vλ. (3.5)

Theorem 3.3 (Theorem A.8 from [73]). Let V be a finite-dimensional G-invariant

subspace of R[x]/I with isotypic decomposition V =
⊕

λ∈Λ Vλ and corresponding multi-

plicities mλ. For each λ ∈ Λ, fix a non-zero element sλ ∈ Sλ. Let b1, . . . , bmλ
be a basis

for the subspace Wsλ. Define for each λ ∈ Λ

Y λ
ij = sym(bi · bj) :=

1

|G|
∑
σ∈G

σ(bi) · σ(bj)

for i, j ∈ [mλ]. Suppose p ∈ R[x]/I is invariant under the action of G and is V -SOS (a

sum of squared polynomials all living in V ). Then there exist mλ × mλ PSD matrices

Qλ such that

p =
∑
λ∈Λ

∑
i,j∈[mλ]

Qλ
ijY

λ
ij .

Theorem 3.4 (Corollary 2.6 in [73]). Let Λ := {λ ⊢ n : λ ≥lex (n− 2d, 12d)}. Suppose

p ∈ R[V ] is S[n]-invariant and d-SOS (a sum of squared polynomials, all of degree up to

d). For each partition λ ⊢ n, fix a tableau τλ of shape λ and choose a vector space basis

{bτλ1 , . . . , bτλmλ
} for Wτλ. Then for each partition λ ∈ Λ, there exists a mλ × mλ PSD

matrix Qλ such that

p =
∑
λ∈Λ

tr(Qλ Y
τλ).

Theorem 3.4 is useful for the following reason, given in [70]. Suppose we have some linear

operator E : R[V ] → R which is symmetric with respect to S[n], and we are interested

in the sign of E[g2] for some degree-d polynomial g. Due to the symmetry of E we have

E[g2] = E[ 1n!
∑

σ∈S[n]
(σ(g2))]. The polynomial on the right hand side is S[n]-invariant
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and a d-SOS, and therefore we can invoke Theorem 3.4 and find

E

 ∑
σ∈S[n]

(σ(g2))

 = E

[∑
λ∈Λ

tr(Qλ Y
τλ)

]
=
∑
λ∈Λ

E [tr(Qλ Y
τλ)] .

Now, again due to the symmetry of E, the Y matrices can be ‘desymmetrized’ and

written as B⊤
τλ
Bτλ (for some matrices Bτλ), and due to the PSDness of the Q matrices

we can also write Qλ = K⊤
λ Kλ. We then end up with

E [tr(Qλ Y
τλ)] =

∑
E

[(∑
cib

τλ
i

)2]
i.e., we are applying the operator to a sum of squared polynomials in the subspaces Wτλ ,

which are symmetric with respect to (at least) permutations of the head of τλ, which is

of size at least n− 2d. In summary,

Lemma 3.9. In order to check whether or not E[p2] ≥ 0 for some degree d polynomial

p and some linear operator E : R[V ] → R symmetric with respect to S[n], it suffices to

only check polynomials symmetric with respect to permutations of all but 2d elements of

[n].

Corollary 3.3. Let M be some matrix symmetric with respect to S[n]. In order to show

that x⊤Mx ≥ 0 for every x mentioning at most d elements, it is enough to show that

x⊤Mx ≥ 0 for every x symmetric with respect to the permutation group fixing [2d].

3.2.3 The pseudodistribution

Fix some first order sentence T having at least one infinite model and no finite models.

(If there are finite models then we either do not produce contradictions, and if there

are no infinite models there are constant degree Sherali-Adams [23] refutations, and

therefore the same for SOS, as SOS simulates SA [10].)

Let k, d ∈ N, where k ≥ d. Let Ak denote the set of monomials mentioning up to k

elements. (These are in the relational variables associated with T in the sense defined in

Section 1.1.) A lower bound on the number of elements mentioned gives a degree lower

bound, as the monomials of degree up to d can mention up to md elements, m being

the maximum arity of a relation in our language, which we assume to be a constant

independent of n.

Definition 3.13. A T -substructure of size n ∈ N is any size-n substructure of some

(by assumption infinite) model satisfying T , labeled with elements from [n]. A size-n

T -substructure is called a A T -pseudomodel if it is maximal with respect to the partial
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order ⪯ defined on size-n T -substructures like

A ⪯ B if for all relations R in our language and all tuples a = (a1, . . . , am) ∈ [n]m,

RA(a) =⇒ RB(a),

where RA(a) is the interpretation by A of RA(a).

We say that a pseudomodel satisfies a monomial if it assigns true to all variables ap-

pearing in that monomial. Given some monomial C mentioning only elements in [n], let

ΛX(C) be the set of pseudomodels labeled by X and satisfying C, and Λn(C) = Λ[n](C).

ΛX = ΛX(∅) denotes all X-labeled pseudomodels. Finally, for some pseudomodel σ, we

let E(σ) denote the atoms true in σ.

We define our generic pseudodistribution to be

L[C] :=
|Λn(C)|
|Λn|

. (3.6)

(So the pseudodistribution is just the probability that a pseudomodel chosen at random

from |Λn| is consistent with C.)

We perhaps have gotten ahead of ourselves by calling L a pseudodistribution already. In

order to do so legitimately we must show that it satisfies the conditions of Definition 1.10.

For the PSDness of the moment matrix M(α, β) = L[α ∪ β], denote the vectors σρ ∈
{0, 1}Ad for each ρ ∈ Λn by σρ(α) = 1 if and only if ρ ∈ Λn(α) and 0 otherwise. Then

M =
∑
ρ∈Λn

σρσ
⊤
ρ

is obviously PSD.

In the unary case we have to show the PSDness of the the localising matrix arising from

some instantiation x, y of the universal clause Equation (1.2):

C =
∑
i∈V

(1− Si(x1, . . . , xi, yi)) + F (x, y) ≥ 1

With the characteristic vectors σµ defined as before, this localising matrix is by definition

Y =
∑
µ

(∑
i∈V

(1− Sµ
i (x1, . . . , xi, yi)) + Fµ(x, y)

)
σµσ

⊤
µ
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where, given some formula or relation F (v), Fµ(v) is 0/1 depending on whether F (v) is

false in µ or true, respectively. Each multiplier in front of each σµσ
⊤
µ is nonnegative (due

to µ being a substructure), and so the matrix Y is PSD, for any degree. For the same

reason, the localising matrices of the small clauses are always positive semidefinite.

Flags. The notation here is borrowed from [74], with minimal modifications to suit it

for our purposes.

Fix some ambient FO formula T and some k ∈ N. A k-flag ρ = (Dρ,Mρ, θρ) is a

T -substructure Mρ with domain Dρ, unlabeled apart from k distinguished elements

pointed at by the injective θρ : [k] → Mρ. (So a flag is basically a partially labeled

T -substructure.) Fk
n denotes all k-flags of size n, and Fk denotes the k-flags of any size.

We let |ρ| = |Dρ|. Given X a subset of the ground set of Mρ not in the image of θ, ρ|X
is the sub-T -substructure induced by X. A flag embedding α of ρl into ρr (both k-flags)

is a model embedding Mρl → Mρr respecting the labelings from [k]: α(θρl(i)) = θρr(i)

for all i ∈ [k]. We relate two flags by λ ⊆ µ if there exists a flag embedding from

λ into µ, and λ ⊂ µ if λ ⊆ µ and λ ̸= µ. Given some k-flag ρ of size n > k, we

define the instantiations Iρ of ρ to be all the T -substructures gotten by labeling the

unlabeled elements of ρ with the remaining labels [n]\ [k]. Finally, for ρ ∈ Fk
n , we define

Λρ(C) ⊆ Iρ to be the instantiations of ρ that satisfy C.

Define H(α, ρ) to be the set of flag embeddings of α into ρ and let H(α, ρ) := |H(α, ρ)|.

Definition 3.14. Let Mρ be the (PSD) matrix defined by Mρ(α, β) = |Λρ(α ∪ β)|.

Lemma 3.10. Let C := ∃i S(x, i) be any Skolem clause and fix any tuple g ⊇ x of some

distinguished elements of [n]. The PSDness of a localizing matrix of the Skolem clause

C (Skolem matrix for short) follows from the PSDness of a linear combination of the

form
∑

ρ∈Fk
n
aρMρ, where each aρ ∈ Z is the number of witnesses in ρ of the existential

claim generating the Skolem clause, minus one.

Proof. By relabelling we will assume g is of the form (1, 2, . . . , |g|).
We are concerned with the sum

|Λn|−1
∑

α,β∈Ad

x(α)x(β)

(
n∑

i=1

L [α ∪ β ∪ S(x, i)]− L [α ∪ β]

)
. (3.7)

Now, due to Corollary 3.3, we can assume that x(α) = x(β) for any two α, β differing

only by a permutation of [n] \ [g]. Then this can be expressed as

∑
α,β∈Fg

2g

x(α)x(β)
∑
σ∈Iα
σ′∈Iβ

(
n∑

i=1

L
[
σ ∪ σ′ ∪ S(x, i)

]
− L

[
σ ∪ σ′]) (3.8)
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where we have let g := 2|g|. We now show that the two terms in the subtraction together

are of the form claimed.

Lemma 3.11. Let α, β ∈ Fg
2g. We have

∑
σ∈Iα
σ′∈Iβ

L
[
σ ∪ σ′] = (n′)!

∑
ρ∈Λg

n

H(α, ρ)H(β, ρ)=
∑
ρ∈Λn

g

Mρ.

Proof. The notation in this proof appears quite dense, however the structure of the proof

is much more simple than the notation does suggest, and we describe it informally first.

Here α and β are partially labelled pseudomodels of size 2g, where the exactly the first

g elements are labelled. The leftmost term

∑
σ∈Iα
σ′∈Iβ

L
[
σ ∪ σ′]

is counting the number of fully labelled pseudomodels of size n consistent with any

‘filling in’ of the unlabelled elements, aka. an instantiation of, α and β. Let ια and ιβ be

any such pair of instantiations, and let ρ ∈ Λn(ια∪ ιβ) be a (fully labelled) pseudomodel

consistent with both ια and ιβ. This consistency of ρ with ια and ιβ can already be seen

as a ‘static’ embedding of ια and ιβ into ρ, in the sense that, if ια mentions some set

E ⊆ [n] (so |E| = 2g), ρ, when projected onto the elements in E, will contain ια as a

substructure.

For a concrete example the reader may take the LOP. Suppose g = 2 and let α =

P1,2P1,3P1,4. Now ρ could be the standard linear ordering

1 < 2 < 3 < 4 < 5 < 6 < . . . < n,

of [n] as natural numbers, which is certainly consistent with ια, and if one imagines this

linear ordering as a transitively closed directed path, the claw α can be found embedded

as the (noninduced) subgraph in the projection of ρ onto {1, 2, 3}, which is the lowest

part of the order. (This is where the terms of the form I|img(e) come from in the main

body of the proof to come.)

But note that, for any distinct pair {i, j} ⊆ [n] \ [2], P1,2P1,iP1,j is also consistent with

ρ, and is also isomorphic to ια with respect to the symmetric group S[n]\[g]. So all

(n − 2)(n − 3) embeddings of P1,2P1,iP1,j into ρ are isomorphic to α, and they act to

‘carry around’ the static embedding of ια into the prefix {1, 2, 3} over all embeddings of

the unlabelled originator α ∈ Fg
2g into the labelled version of ρ.
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Then the term (n − g)! comes from the unlabelling of ρ, by identifying pseudomodels

in Λg
n that differ only by some π ∈ S[n]\[g] - for example, the static embedding of the α

into the bottom of ρ is really the same embedding of α′ = P1,2P1,nP1,(n−1) into

ρ′ = 1 < 2 < n < n− 1 < n− 2 < . . . < 4 < 3,

and so is overcounted by each of the (n− g)! permutations of [n] \ [g].

Now, more formally, every pair e ∈ H(α, ρ), e′ ∈ H(β, ρ) of embeddings into ρ corre-

sponds exactly with (n − g)! pairs σ ∈ Iα, σ′ ∈ Iβ counted in
∑

σ∈Iα
σ′∈Iβ

L [σ ∪ σ′], which

are gotten by labelling everything outside of [g]. Namely, for each of the (n − g)! in-

stantiations I ∈ Iρ, we have I ∈ Λρ((I|img(e)) ∪ (I|img(e′))). So
∑

σ∈Iα
σ′∈Iβ

|Λρ(σ ∪ σ′)| =

(n− g)!H(α, ρ)H(β, ρ) and

∑
α,β∈Fg

2g

x(α)x(β)
∑
σ∈Iα
σ′∈Iβ

|Λρ(σ ∪ σ′)| = (n− g)!
∑

α,β∈Fg
2g

x(α)x(β)H(α, ρ)H(β, ρ).

Lemma 3.12.

∑
σ∈Iα
σ′∈Iβ

n∑
i=1

L
[
σ ∪ σ′ ∪ S(x, i)

]
= (n− g)!

∑
ρ∈Λg

n

ωρH(α, ρ)H(β, ρ) =
∑
ρ∈Λn

g

ωρMρ

where ωρ is the number of potential witnesses in ρ.

Proof. Similar to the previous lemma. The new term ωρ comes from the fact that now,

each pair of embeddings e ∈ H(α, ρ), e′ ∈ H(β, ρ) is not just counted once for each of

the (n − g)! instantiations of ρ, but additionally once more for each assignment of the

index i appearing in S(x, i) to each of the ωρ potential existential witnesses in ρ.

The coordinates indexing vectors need not correspond to pseudomodels - for example,

in the case of the TLNP, our vectors are currently indexed by partial orders, although

we count over total orders. The next lemma will address this.

Lemma 3.13. Fix L =
∑

ρ∈Λn
aρMρ for some coefficients aρ. Given vectors x, v ∈

RAk , nonzero only on elements in Ad (for some d) and symmetric with respect to some

permutation group G, we can produce vectors x′, v′ where
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1. x′, v′ are symmetric with respect to G,

2. x′, v′ are only nonzero on pseudomodels of size at most d, and

3. x⊤Lv = (x′)⊤Lv′.

Proof. Given any size-d subset Y ⊆ [n] and any σ ∈ ΛY , define the clause

Uσ :=
∏

e∈E(σ)

e.

If every nonzero coordinate in x and y is of the form Uσ for some σ we are done -

otherwise, fix some α and assume (without loss of generality, as L is symmetric and we

can take the transpose of x⊤Ly) that x(O(α)) ̸= 0.

Let Xα be the set of elements mentioned by α and Γ(α) := ΛXα(α) be the size-|α|
pseudomodels labeled with Xα that respect α.

We show that a generic clause α is really shorthand for a collection of submodels. More

formally, for any β,

Λρ(α ∪ β) =
⋃

σ∈Γ(α)

Λρ(Uσ ∪ β).

The inclusion from right to left comes from noting that α can be embedded into any

pseudomodel respecting Uσ for any σ ∈ Γ(α), and the inclusion from left to right comes

from noting that every σ ∈ Λρ(α) is in Λρ(Uσ′) with σ′ being σ restricted to Xα. The

sets on the right are pairwise disjoint (as any distinct σ, σ′ ∈ ΛXα disagrees on the status

of some edge in Xα, due to maximality according to ≺) so we even get

|Λρ(α ∪ β)| =
∑

σ∈Γ(α)

|Λρ(Uσ ∪ β)|. (3.9)

This gives, for any fixed β,

∑
σ∈Γ(α)

L(Uσ, β) =
∑

σ∈Γ(α)

∑
ρ∈Λn

aρ|Λρ(Uσ ∪ β)| =
∑
ρ∈Λn

aρ|Λρ(α ∪ β)| = L(α, β). (3.10)

We are going to add x(α) to all the x(Uσ), σ ∈ Γ(O(α)) and then set x(O(α)) to zero.

The two vectors reflecting this are:

y(β) =

0 if β ∈ O(α)

x(β) otherwise.
z(γ) =

χσ · x(α) if γ = Uσ for some σ

0 otherwise.
(3.11)
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where χσ := | {α′ ∈ O(α) : σ ∈ Γ(α′)} |. We will use

χπ∪σ = |
{
α′ ∈ O(α) : π ∪ σ ∈ Γ(α′)

}
| = |

{
α′ ∈ O(α) : σ ∈ Γ(π−1(α′))

}
| = χσ.

(3.12)

We claim that

(y + z)⊤ Lv = x⊤Lv.

The term y⊤Lv is exactly x⊤Lv missing any pairs where x(O(α)) appears:

y⊤Lv = x⊤Lv − x(α)

 ∑
α′∈O(α)

∑
β

v(β)L(α′, β)

 .

The second term z⊤Lv can be calculated from the definitions:

z⊤Lv =
∑
β,γ

z(γ)v(β)L(β, γ) = x(α)
∑
σ

∑
β

χσL(Uσ, β)

= x(α)

 ∑
α′∈O(α)
σ∈Γ(α′)

∑
β

x(β)L(Uσ, β)


= x(α)

 ∑
α′∈O(α)

∑
β

x(β)L(α′, β)

 .

The second equality follows from the fact that z(γ) is nonzero if and only if γ = Uσ.

The third followed from Equation (3.10) and the discussion preceding it. We can repeat

this until we get vectors of the appropriate form.

It remains to show that the symmetry under G is preserved. v has not been changed,

so we only need to check (y + z). And it is easy to see that each of the vectors y, z are

still symmetric under G: for y, a single orbit is set to 0 (and it is equal to x otherwise).

For z we need to show that z(γ) = z(π(γ)) for any π ∈ G:

z(π(γ)) =

χσ · x(α) if π(γ) = Uσ for some σ

0 otherwise.
=

χσ · x(α) if γ = π−1(Uσ) for some σ

0 otherwise.

and we finish by noting that π−1(Uσ) = Uπ−1∪σ and that χσ = χπ−1∪σ.
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Let Λi
n, 0 ≤ i ≤ n, denote the pseudomodels in Λn where there are i potential witnesses.

Then, appealing to Lemma 3.12, Equation (3.8) becomes

n∑
i=0

(i− 1)
∑
ρ∈Λi

n

(∑
α

xαH(α, ρ)

)2

=
n∑

i=0

(i− 1)
∑
ρ∈Λi

n

∑
α,β

xαxβH(α ∪ β, ρ)


=
∑
α,β

xαxβ

n∑
i=0

(i− 1)
∑
ρ∈Λi

n

H(α ∪ β, ρ).

So letting Ti :=
∑

ρ∈Λi
n
Mρ, we have the following:

Corollary 3.4. Let g = g(n) be some function of n. If
∑n

i=0(i − 1)Ti is positive

semidefinite whenever the Ti are indexed by elements in Λg
2g, then the principle considered

has SOS degree Ω(g).

3.2.4 Conclusions

In this section, we investigated a generic pseudodistribution appearing more specifically

throughout the literature, and we reduced the complex problem of showing the PSD-

ness of the several localising matrices to the PSDness of just a single type of matrix

- a comprehensible weighted summation of outer products, where the vectors forming

these outer products simply count homomorphisms from smaller structures into larger

structures, and the weights are just the number of witnesses in that larger structure

(minus one). Furthermore, these vectors are well studied [64, 74], and they enjoy many

algebraic properties that one imagines could be used to complete this result by showing

the PSDness of this single type of matrix.

Unfortunately we did not achieve this completion in this chapter, and this task is left

as an exercise for future researchers. We note that any results in this vein could not be

exactly the same dichotomy as found in [28], where existence of infinite models alone

and enough shows hardness of the principle. This is because, as we note below in

Section 4.5, the PHP already has constant degree in a proof system strictly weaker than

SOS, despite having infinite models, yet the LOP retains much more hardness [71]. An

accomplishment of this result would have to notice a further difference between these

two principles.

We are also left wondering, again, about the corresponding upper bound. As SOS

simulates SA, we can appeal to the upper bound in [28] and know any principle admitting
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no models at all has a constant degree SOS refutation. But this does not work for the

PHP for exactly the reasons just stated - it does have an (infinite) model. Exactly what

model theoretic properties create hardness or easiness for SOS is at the time of writing

is still completely unknown.



Chapter 4

Sherali-Adams and Binary

Encodings

In the previous chapter, we investigated the proof complexity of propositional con-

tradictions generated uniformly from FO sentences by the mechanism given by Riis

in 2001 [77]. But we could consider different translations from the FO to the propo-

sitional. For example, in this chapter, we study what happens if we opt to use a

more ‘concise’ encoding of existential demands. So for the Pigeonhole Principle,

instead of insisting that the ith pigeon goes into a hole by saying

n∑
j=1

Pi,j ≥ 1

we have instead ⌈log n⌉ many variables P ′
i,b, 1 ≤ b ≤ ⌈log n⌉, any binary setting of

which will point to the hole that the ith pigeon supposedly goes in to. We call the

first encoding considered so far the unary encoding, and the second one the binary

encoding.

For the unary encoding of the Pigeonhole Principle and the Least Ordering Principle,

it is known that linear rank is required for refutations in SA, although both admit

refutations of polynomial size [29, 75]. We prove that the binary encoding of the Pi-

geonhole Principle requires exponentially-sized SA refutations, whereas the binary

encoding of the Least Ordering Principle admits logarithmic rank, polynomially-

sized SA refutations. We continue by considering a refutation system between SA

and Sum Of Squares, which we call ‘SA+Squares’. In this system, the unary encod-

ing of the Least Ordering Principle requires linear rank while the unary encoding of

the Pigeonhole Principle becomes constant rank.

76
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4.1 Introduction

Following Riis ([77] and summarised in Section 1.1.1), for any tuple x, it is typical to

encode the existential demand of their being at least one least one witnesses satisfying

some FO formula in longhand, with a big disjunction of the form Sx,1∨ . . .∨Sx,n, asking

explicitly that the first element of the domain serves as a witness, or that the second

element serves as a witness, etcetera. So for example, in the pigeonhole clause ∃i Pij ,

j is the sole member of the tuple x, and after fixing some finite domain size n this

becomes
∨

i∈[n] Pij (that the witness becomes before or after the tuple in the subscript

is only superficial). This we designate the unary encoding. If the existential demand in

question to be transformed along the lines of Section 1.1.1, the arity of the tuple x is the

number of universally quantified variables preceding the existentially quantified variable

on which it might depend.

As recently investigated in [12, 13, 26, 34, 48, 60], we might opt instead to encode the

existence of such witnesses succinctly by the use of a binary encoding. Briefly, instead of

the n many Sx,1 ∨ . . . ∨ Sx,n, we have log n many variables Sx,1, . . . , Sx,logn, any binary

setting of which implicitly pointing to a proposed witness in [n]; whereas in the unary

encoding a solitary true literal tells us which is the witness. In this chapter we generally

assume, without loss of much generality, that n is a power of 2. Cases where n is not

a power of 2 are handled in the binary encoding by explicitly forbidding possibilities

(which involves only linearly many clauses and bits).

More specifically, in the context of Section 1.1.1, the binary encoding includes, for every

Skolem relation Sx appearing in the principle, ⌈log n⌉ many binary variables {Sx,α :

α ∈ [⌈log n⌉]}. Now the binarization exhibits the following differences from the unary

(and recall that at this point the tuples in these clauses have been instantiated with

elements in some [n])

� We omit the Skolem clauses (as they exist implicitly due to the fact that any

setting of the Sα defines some potential witness w),

� any (unquantified) clause
(∨

i∈V1
Ei(ri)

)
∨
(∨

i∈V2
¬Fi(si)

)
(Ei, Fi relational vari-

ables and ri, si tuples of the appropriate arity) remains unchanged, and

� any (unquantified) clause
(∧

i∈V Si(x, yi)
)
→
(∨

i∈V1
Ei(ri)

)
∨
(∨

i∈V2
¬Fi(si)

)
(Ei, Fi

relational variables and ri, si tuples of the appropriate arity and yi free) becomes

∨
i∈V

⌈logn⌉∨
j=1

S
1−yi,j
i,x,j

 ∨

∨
i∈V1

(Ei)ri

 ∨

∨
i∈V2

¬(Fi)si
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where, for any variable x, x1 denotes x and x0 denotes ¬x, and yi,j is the jth bit in the

binary representation of yi. The notation is perhaps cumbersome, but it may be read

as ‘either some setting of a bit of the Si is different to the corresponding yi, or all the

Si are indeed pointing to the yi and the remaining clause should hold’.

Combinatorial principles encoded in binary are interesting to study for Resolution-type

systems since they still preserve whatever ‘inherent hardness’ of the combinatorial prin-

ciple while giving a more succinct propositional representation. In certain cases this

leads to significant lower bounds more directly than with the unary case [13, 26, 34, 60].

The binary encoding, however, implicitly enforces an at-most-one constraint at the same

time as it does at-least-one. When some wide existential disjunction Sx,1 ∨ . . . ∨ Sx,n of

the unary encoding is translated to constraints for an ILP it becomes Sx,1+. . .+Sx,n ≥ 1.

Were we to insist that Sx,1+ . . .+Sx,n = 1 then we encode immediately also the at-most-

one constraint. We paraphrase this variant as being (the unary) encoding with equalities

or ‘SA-with-equalities’.

In [29] it was proved that the SA rank of the unary encoding the Pigeonhole Principle

and Least Ordering Principles is n−2 (where n is the number of pigeons and elements in

the poset, respectively). It is known that SA polynomially simulates Resolution (see e.g.

[29]) and it follows there is a polynomially-sized refutation in SA of the Least Ordering

Principle. That there is a polynomially-sized refutation in SA of the Pigeonhole Principle

is noted in [75].

In this chapter we consider the binary encodings of the Pigeonhole Principle and the

Least Ordering Principle as ILPs. We additionally consider their (unary) encoding with

equalities. We first prove that the binary encoding of the Pigeonhole Principle requires

exponential size in SA. We then prove that the (unary) encoding of the Least Ordering

Principle with equalities has SA rank 2 and polynomial size. This allows us to prove

that the binary encoding of the Least Ordering Principle has SA rank at most 2 log n

and polynomial size. The divergent behaviour of these two combinatorial principles is

surprising – while the Least Ordering Principle becomes easier for SA in the binary

encoding (in terms of rank), the Pigeonhole Principle becomes harder (in terms of size).

Such variable behaviour has been observed for the Pigeonhole Principle in Resolution,

where the binary encoding makes it easier for treelike Resolution (in terms of size) [26].

We continue by considering a refutation system we call SA+Squares which (in terms

of power) lays somewhere in between SA and Sum of Squares. SA+Squares appears

as Static LS+ in [44] In this system one can always assume the non-negativity of (the

linearisation of) any squared polynomial. In contrast to our system SA-with-equalities,

we see that the rank of the unary encoding of the Pigeonhole Principle is 2, while the
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rank of the Least Ordering Principle is linear. We prove this by showing a certain mo-

ment matrix is positive semidefinite. Our rank results for the unary encoding can be

contrasted in Table 4.1.

unary case SA SA-with-equalities SA+Squares

PHP linear linear constant

OP linear constant linear

binary case SA

PHP exponential

OP polynomial

unary case SA SA-with-equalities SA+Squares

PHP [29] [29] [44]

OP [29] Theorem 4.3 Theorem 4.5

binary case SA

PHP Theorem 4.1

OP Corollary 4.3

Table 4.1: Rank based complexity for the unary encoding in different systems (on
the top) and size based complexity for the binary encoding (on the bottom). The lower

table shows where the corresponding result is proved.

4.2 Preliminaries

A term is a conjunction of propositional literals. Let us now consider principles which are

expressible as first-order formulae, with no finite models, in Π2-form, i.e. as ∀x⃗∃w⃗φ(x⃗, w⃗)
where φ(x⃗, w⃗) is a formula built on a family of relations R⃗. For example the Least

Ordering Principle, which states that a finite partial order has a minimal element, is

one of such principles. Its negation can be expressed in Π2-form as:

∀x, y, z∃w ¬R(x, x) ∧ (R(x, y) ∧R(y, z) → R(x, z)) ∧R(x,w).

This can be translated into a unsatisfiable CNF using a unary encoding of the witness,

as shown below alongside the binary encoding.
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OPn : Unary encoding

P i,i ∀i ∈ [n]

P i,j ∨ P j,k ∨ Pi,k ∀i, j, k ∈ [n]

Si,j ∨ Pi,j ∀i, j ∈ [n]∨
i∈[n] Si,j ∀j ∈ [n]

OPn : Binary encoding

P i,i ∀x ∈ [n]

P i,j ∨ P j,k ∨ Pi,k ∀i, j, k ∈ [n]∨
i∈[logn] S

1−ai
i,j ∨ Pj,a ∀j, a ∈ [n]

where a1 . . . alogn = bin(a)

Note that we placed the witness in the Skolem variables Si,x as the first argument and not

the second, as we had in the introduction. This is to be consistent with the the standard

formulation of OP in the proof complexity literature. A more traditional form of the

(unary encoding of the) OPn has clauses
∨

i∈[n] Pi,j which are consequent on
∨

i∈[n] Si,j

and Si,j ∨ Pi,j (for all i ∈ [n]), as was told in Section 1.1.1.

Indeed, one can see how to generate a binary encoding of C from any combinatorial

principle C expressible as a first order formula in Π2-form with no finite models. Exact

details can be found in Definition 4 in [26].

As a second example we consider the Pigeonhole Principle which states that a total

mapping from [m] to [n] has necessarily a collision when m and n are integers with

m > n. The negation of its relational form for m = n + 1 can be expressed as a

Π2-formula like

∀x, y, z∃w ¬P (x, 1) ∧ (P (x, z) ∧ P (y, z) → x = y) ∧ P (x,w)

where the constant 1 represents the object that is among the [n+1] but not among the

[n]. Its usual unary and binary propositional encoding are:

PHPm
n : Unary encoding∨n

j=1 Pi,j ∀i ∈ [m]

P i,j ∨ P i′,j ∀i ̸= i′ ∈ [m], j ∈ [n]

PHPm
n : Binary encoding∨logn

j=1 P
1−aj
i,j ∨

∨logn
j=1 P

1−aj
i′,j

∀a ∈ [n], i ̸= i′ ∈ [m]

where a1 . . . alogn = bin(a)

where 1 no longer appears now m and n are explicit.

When we consider the Sherali-Adams r-lifts of, e.g., the Least Ordering Principle, we

will identify terms of the form ZPi,j∧Si′,j′∧...
as Pi,jSi′,j′ . . .. Thus, we take the subscript
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and use overline for negation and concatenation for conjunction. This prefigures the

multilinear notation we will revert to in Section 4.5, but the reader should view for now

Pi,jSi′,j′ . . . as a single variable (in a linear program, or a proof system based on linear

programming) and not a multilinear monomial. Finally, we wish to discuss the encoding

of the Least Ordering Principle and Pigeonhole Principle as ILPs with equality. For this,

we take the now familiar unary encoding, but instead of translating the wide clauses

from
∨

i∈[n] Si,x to S1,x+ . . .+Sn,x ≥ 1, we instead use S1,x+ . . .+Sn,x = 1. This makes

the constraint at-least-one into exactly-one (which is a priori enforced in the binary

encoding). A reader who would like a specific reading of the following Lemma should

consider the Least Ordering Principle as the combinatorial principle under discourse.

4.3 The lower bound for the binary Pigeonhole Principle

In this section we study the inequalities derived from the binary encoding of the Pi-

geonhole principle, whose axioms we remind the reader of now. BinPHPm
n has, for each

two distinct pigeons i ̸= i′ ∈ [m] and each hole a ∈ [n], the axiom
∑logn

j=1 ω
(1−aj)
i,j +∑logn

j=1 ω
(1−aj)
i′,j ≥ 1, where a1 . . . alogn is the binary representation of a. We first prove a

certain SA rank lower bound for a version of the binary PHP, in which only a subset of

the holes is available.

Lemma 4.1. Let H ⊆ [n] be a subset of the holes and let us consider BinPHPm
|H| where

each pigeon can go to a hole in H only. Any SA refutation of BinPHPm
|H| involves a term

that mentions at least |H| pigeons.

Proof. We get a valuation v from a partial matching in an obvious way. That is, if a

pigeon i is assigned to hole a, whose representation in binary is a1 . . . alogn, then we

set each ω
aj
i,j to aj . We say that a product term P =

∏
j∈J ω

bj
ij ,kj

mentions the set of

pigeons M = {ij : j ∈ J}. Let us denote the number of available holes by n′ := |H|.
Every product term that mentions at most n′ pigeons is assigned a value v (P ) as follows.

The set of pigeons mentioned in M is first extended arbitrarily to a set M ′ of exactly

n′ pigeons. v (P ) is then the probability that a matching between M ′ and H taken

uniformly at random is consistent with the product term P . In other words, v (P ) is the

number of perfect matchings between M ′ and H that are consistent with P , divided by

the total, (n′)!. Obviously, this value does not depend on howM is extended toM ′. Also,

it is symmetric, i.e. if π is a permutation of the pigeons, v
(∏

ω
bj
ij ,kj

)
= v

(∏
ω
bj
π(ij),kj

)
.

All lifts of axioms of equality ωj,k+¬ωj,k = 1 are automatically satisfied since a matching

consistent with P is consistent either with Pωb
j,k or with Pω1−b

j,k but not with both, and



4. Sherali-Adams and Binary Encodings 82

thus

v (P ) = v
(
Pωb

j,k

)
+ v

(
Pω1−b

j,k

)
.

Regarding the lifts of the disequality of two pigeons i ̸= j in one hole, that is, the

inequalities coming from the only clauses in BinPHPm
|H|, it is enough to observe that it is

consistent with any perfect matching, i.e. at least one variable on the LHS is one under

such a matching. Thus, for a product term P , any perfect matching consistent with P

will also be consistent with Pω1−bk
i,k or with Pω1−bk

j,k for some k.

4.3.1 The ordinary Pigeonhole Principle

The proof of the size lower bound for the BinPHPn+1
n , which we are about to give, is

then by a standard random restriction argument, combined with the rank lower bound

above. Assume, without loss of generality, that n is a power of two. For the random

restrictions R, we consider the pigeons one by one and with probability 1/4 we assign the

pigeon uniformly at random to one of the holes still available. We first need to show that

the restriction is “good” with high probability, i.e. neither too big nor too small. The

former is needed so that in the restricted version we have a good lower bound, while the

latter will be needed to show that a good restriction coincides well with any reasonably

big term, in the sense that they have in common a sufficiency of pigeons.

We will make use of the following version of the Chernoff Bound as it appears in [67].

Lemma 4.2 (Theorems 4.4 and 4.5 in [67]). Let X1, X2, . . . , Xn be independent 0/1

random variables with Pr [Xi = 1] = pi. Let X =
∑n

i=1Xi and µ = E [X]. Then, for

every δ, 0 < δ ≤ 1, the following bound holds

Pr [X ≥ (1 + δ)µ] ≤ e
−µδ2

3

and similarly

Pr [X ≤ (1− δ)µ] ≤ e
−µδ2

3 .

Lemma 4.3. If |R| is the number of pigeons (or holes) assigned by R, the probability

that |R| > 3(n+1)
8 is at most e−

(n+1)
48 .

Proof. We use the Chernoff Bound from Lemma 4.2. We have pi =
1
4 (and thus µ = n+1

4 )

and δ = 1
2 . Thus, the probability the restriction assigns more than 3(n+1)

8 pigeons to

holes is at most e−(n+1)/48.
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We first prove that any given wide product term, i.e. a term that mentions a constant

fraction of the pigeons, survives the random restrictions with exponentially small prob-

ability.

Lemma 4.4. Let P be a product term that mentions at least n+1
2 pigeons. The probability

that P does not evaluate to zero under the random restrictions is at most
(
5
6

)n/16
(for n

large enough).

Proof. We will desire |R| ≤ 3(n+1)
8 to ensure that at least 5(n+1)

8 holes remain unused in

R (for n large enough). This will involve the probability e−(n+1)/48 from Lemma 4.3.

A further application of the Chernoff Bound from Lemma 4.2 ( µ = n+1
8 , δ = −1

2) gives

the probability that fewer than n+1
16 pigeons mentioned by P are assigned by R is at

most e−(n+1)/96.

For each of these assigned pigeons the probability that a single bit-variable in P belonging

to the pigeon is set by R to zero is at least 1
5 . This is because when R sets the pigeon,

and thus the bit-variable, there were at least 5(n+1)
8 holes available, while at most n+1

2

choices set the bit-variable to one. The difference – which will be a lower bound on the

number of holes available setting the selected bit to 0 – is n+1
8 which when divided by

5(n+1)
8 (to normalise the probability) gives 1

5 . Thus P survives under R with probability

at most e−(n+1)/48 + e−(n+1)/96 +
(
4
5

)(n+1)/16
<
(
5
6

)n/16
.

Theorem 4.1. Any SA refutation of the BinPHPn+1
n has to contain at least

(
7
6

)n/16
terms.

Proof. Assume, towards a contradiction, that there is a smaller refutation. We wish

to argue that there is a random restriction with |R| ≤ 3(n+1)
8 that evaluates to zero

all terms that mention at least n+1
2 pigeons. There are at most

(
7
6

)n/16
such terms so

an application of the union-bound together with Lemma 4.3 and Lemma 4.4 gives a

probability that some term mentioning at least n+1
2 pigeons does not evaluate to zero of

(
5

6

)n/16

×
(
7

6

)n/16

+ e−(n+1)/48 < 1.

Now we apply the random restriction which we know must exist to leave no terms

mentioning at least n+1
2 pigeons in an SA refutation of the binary PHPm′

n′ , where m′ >

n′ ≥ 5(n+1)
8 . However, since n′ > n+1

2 , this contradicts Lemma 4.1.

Corollary 4.1. Any SA refutation of the BinPHPn+1
n must have size 2Ω(n).
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4.3.2 The weak Pigeonhole Principle

We now consider the so-called weak binary PHP, BinPHPm
n , where m is potentially much

larger than n. The weak unary PHPm
n is interesting because it admits (significantly)

subexponential-in-n refutations in Resolution when m is sufficiently large [16]. It follows

that this size upper bound is mirrored in SA. We will see here that the weak binary

BinPHPm
n remains almost-exponential-in-n for minimally sized refutations in SA. In

this weak binary case, the random restrictions R above do not work, so we apply quite

different restrictions R′ that are as follows: for each pigeon select independently a single

bit uniformly at random and set it to 0 or 1 with probability of 1/2 each.

Lemma 4.5. A product term P that mentions n′ pigeons does not evaluate to zero under

R′ with probability at most e−n′/2 logn.

Proof. For each pigeon mentioned in P , the probability that the bit-variable present in

P is set by the random restriction is 1
logn , and if so, the probability that the bit-variable

evaluates to zero is 1
2 . Since this happens independently for all n′ mentioned pigeons,

the probability that they all survive is at most
(
1− 1

2 logn

)n′

.

Lemma 4.6. The probability that R′ fails to have, for each k ∈ [log n] and b ∈ {0, 1},
at least m

4 logn pigeons with the kth bit set to b, is at most e−n/48 logn.

Proof. We apply the Chernoff Bound of Lemma 4.2 to deduce that for each bit position

k, 1 ≤ k ≤ (log n) and a value b, 0 or 1, the probability that there are fewer than m
4 logn

pigeons for which the kth bit is set to b is at most e−m/24 logn. This uses µ = m
2 logn and

δ = −1
2 . Since m > n, by the union bound, the probability that this holds for some

position k and some value b is at most (2 log n)e−m/24 logn ≤ e−n/48 logn.

In order to conclude our result, we will profit from a graph-theoretic treatment of Hall’s

Marriage Theorem [46]. Suppose G is a finite bipartite graph with bipartitions X and

Y , then an X-saturating matching is a matching which covers every vertex in X. For

a subset W of X, let NG(W ) denote the neighbourhood of W in G, i.e. the set of all

vertices in Y adjacent to some element of W .

Theorem 4.2 ([46] (see Theorem 5.1 in [86])). Let G be a finite bipartite graph with

bipartitions X and Y . There is an X-saturating matching if and only if for every subset

W of X, |W | ≤ |NG(W )|.

Corollary 4.2. Any SA refutation of the BinPHPm
n , m > n, has to contain at least

en/32 log2 n terms.
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Proof. Assume for a contradiction that there is a refutation with fewer than en/32 log2 n

product terms. We first show, by an application of the probabilistic method standard

in proof complexity, that there exists a random restriction evaluating all terms that

mention at least n
4 logn pigeons to zero while satisfying the condition of Lemma 4.6. Using

a union bound and Lemma 4.5 we upper bound the probability this fails to happen as

e−n/8 log2 n · en/32 log2 n + e−n/48 logn < 1, so such a random restriction R′ does exist.

Then, R′ leaves at least m
4 logn pigeons of each type (k, b), i.e. the kth bit of the pigeon

is set to b. Recalling m ≥ n, we now pick a set of pigeons S that has (∗) precisely n
4 logn

pigeons of each type and thus is of size n/2.

We will give an evaluation of the restricted principle which contradicts the claim that

the original object was a refutation. We evaluate any product term P that mentions at

most n
4 logn pigeons by first relabeling the mentioned pigeons, injectively, using the labels

of pigeons in S while preserving types, which we can do due to property (∗), and then

giving it a value as before. That is, by taking the probability that a perfect matching

between S and some set of n/2 holes consistent with the random restriction, is consistent

with P .

To finish the proof, we need to show that such a set of n/2 holes exists, that is, such

a matching exists. But this follows trivially from Theorem 4.2 as every pigeon has n/2

holes available, so at least the same applies to any set of pigeons.

4.4 The SA rank upper bound for Ordering Principle with

equality

Let us remind ourselves of the Ordering Principle in both unary and binary.

OP : Unary encoding

¬vi,i ∀i ∈ [n]

¬vi,j ∨ ¬vj,k ∨ vi,k ∀i, j, k ∈ [n]

¬wi,j ∨ vi,j ∀i, j ∈ [n]∨
i∈[n]

wi,j ∀j ∈ [n]

BinOPn : Binary encoding

¬νi,i ∀i ∈ [n]

¬νi,j ∨ ¬νj,k ∨ νi,k ∀i, j, k ∈ [n]∨
i∈[logn]

ω1−ai
i,j ∨ νj,a ∀j, a ∈ [n]

where a1 . . . alogn = bin(a)

Note that we placed the witness in the variables wi,x as the first argument and not

the second, as we had in the introduction. This is to be consistent with the vi,j and
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the standard formulation of OP as the least, and not greatest, number principle. A

more traditional form of the (unary encoding of the) OP has clauses
∨

i∈[n] vi,j which are

consequent on
∨

i∈[n]wi,j and ¬wi,j ∨ vi,j (for all i ∈ [n]).

In SA we wish to discuss the encoding of the Ordering Principle (and Pigeonhole Princi-

ple) as ILPs with equality. For this, we take the unary encoding but instead of translating

the wide clauses (e.g. from the OP) from
∨

i∈[n]wi,x to w1,x + . . .+wn,x ≥ 1, we instead

use w1,x+ . . .+wn,x = 1. This makes the constraint at-least-one into exactly-one (which

is a priori enforced in the binary encoding). A reader favouring a specific example may

consider the Ordering Principle as the combinatorial principle of the following lemma.

Lemma 4.7. Let C be any combinatorial principle expressible as a first order formula in

Π2-form with no finite models. Suppose the unary encoding of C with equalities has an

SA refutation of rank r and size s. Then the binary encoding of C has an SA refutation

of rank at most r log n and size at most s.

Proof. We take the SA refutation of the unary encoding of C with equalities of rank r,

in the form of a set of inequalities, and build an SA refutation of the binary encoding

of C of rank r log n, by substituting terms wx,a in the former with ωa1
x,1 · · ·ω

alogn

x,logn, where

a1 . . . alogn = bin(a), in the latter. ¬wx,a is substituted by 1− ωa1
x,1 · · ·ω

alogn

x,logn. Variables

vx,a and ¬vx,a are substituted by νx,a and 1− νx,a, respectively.

It remains to show we can build the translation of the SA with equalities axioms in the

binary case from the true axioms of the binary case. Axioms from the binary case that

involve only variables νxa appear perfectly reproduced. Axioms of the form

∑
a∈[n]:a1...alogn=bin(a)

ωa1
x,1 · · ·ω

alogn

x,logn = 1

follow from the equalities of negation Equation (1.11). Finally, axioms of the form

ωa1
x,1 . . . ω

alogn

x,logn ≤ νx,a, can also be built since ωx,jωx,j = 0 for each j ∈ [log n]. Let us

explain this in detail. The axioms are of the form
∨

i∈[logn] ω
1−ai
j,i ∨ νj,a which becomes

ω1−a1
j,1 + · · · + ω

1−alogn

j,logn + νj,a ≥ 1. We now lift through by ωa1
j,1, . . . , ω

alogn

j,logn to obtain

ωa1
x,1 . . . ω

alogn

x,logn ≤ ωa1
x,1 . . . ω

alogn

x,lognνx,a ≤ νx,a.

The unary Ordering Principle (OP) with equality has the following set of SA axioms:

self : vi,i = 0 ∀ i ∈ n

trans : vi,k − vi,j − vj,k + 1 ≥ 0 ∀ i, j, k ∈ [n]

impl : vi,j − wi,j ≥ 0 ∀ i, j ∈ [n]

lower :
∑

i∈[n]wi,j − 1 = 0 ∀ j ∈ [n]
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Note that we need the w-variables since we use the equality form. Axioms of the form∑
i∈[n] xi,j − 1 = 0 made just from v-variables are plainly incompatible with, e.g., tran-

sitivity. Strictly speaking Sherali-Adams is defined for inequalities only. An equality

axiom a = 0 is simulated by the two inequalities a ≥ 0,−a ≥ 0, which we refer to as

the positive and negative instances of that axiom, respectively. Also, note that we have

used vi,j + vi,j = 1 to derive this formulation. We call two product terms isomorphic if

one product term can be gotten from the other by relabelling the indices appearing in

the subscripts by a permutation.

Theorem 4.3. The SA rank of the OP with equality is at most 2 and SA size at most

polynomial in n.

Proof. Note that if the polytope POP
2 is nonempty there must exist a point where any

isomorphic variables are given the same value. We can find such a point by averaging

an asymmetric valuation over all permutations of [n].

So suppose towards a contradiction there is such a symmetric point. First note vi,i =

wi,i = 0 by self and impl. We start by lifting the jth instance of lower by vi,j to get

wi,jvi,j +
∑
k ̸=i,j

wk,jvi,j = vi,j .

Equating (by symmetry with respect to k) the product terms wk,jvi,j this is actually

wi,jvi,j + (n− 2)wk,jvi,j = vi,j .

Lift this by wk,j to get

wk,jwi,jvi,j + (n− 2)wk,jvi,j = wk,jvi,j .

We can delete the leftmost product term by proving it must be 0. Let us take an

instance of lower lifted by wk,jvi,j for any k ̸= i, j along with an instance of monotonicity

wk,jwm,jvi,j ≥ 0 for every m ̸= j, k:

wk,jvi,j

1−
∑
m̸=j

wm,j

+
∑

m̸=j,k,i

wk,jwm,jvi,j

= −
∑

m ̸=k,j

wk,jwm,jvi,j +
∑

m ̸=j,k,i

wk,jwm,jvi,j

= −wk,jwi,jvi,j . (4.1)

The left hand side of this equation is greater than 0 so we can deduce wk,jwi,jvi,j = 0.
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This results in

(n− 2)wk,jvi,j = wk,jvi,j which is wk,jvi,j = 0.

We lift impl by wi,j to obtain wi,j ≤ wi,jvi,j . Monotonicity gives us the opposite in-

equality and we can proceed as if we had the equality wk,jvk,j = wk,j (as we are using

equality as shorthand for inequality in both directions) .

So repeating the derivation of wk,jvi,j = 0 for every i ̸= k and then adding wk,jvk,j = wk,j

gets us
∑

mwk,jvm,j = wk,j . Repeating this again for every k and summing up gives

0 =
∑
k,m

wk,jvm,j −
∑
k

wk,j =
∑
k,m

wk,jvm,j − 1

with the last equality coming from the addition of the positive lower instance
∑

k wk,j−
1 = 0. Finally adding the lifted lower instance vm,j −

∑
k wk,jvm,j= 0 for every m gives

∑
m

vm,j = 1. (4.2)

By lifting the trans axiom vi,k − vi,j − vj,k + 1 ≥ 0 by vj,k we get

vi,kvj,k − vi,jvj,k ≥ 0. (4.3)

Now, due to a manipulation similar to Equation (4.1) using Equation (4.2)

vk,jvi,j

1−
∑
m̸=j

vm,j

+
∑

m̸=j,k,i

vk,jvm,jvi,j

= −
∑

m ̸=k,j

vk,jvm,jvi,j +
∑

m ̸=j,k,i

vk,jvm,jvi,j

= −vk,jvi,jvi,j (4.4)

= −vk,jvi,j . (4.5)

Thus vi,kvj,k must be zero whenever i ̸= j. Along with Equation (4.3) we derive vi,jvj,k =

0. Noting vi,jvj,i = 0 follows from trans and self, we lift Equation (4.2) by vj,x for some

x to get

vj,x
∑
m

vm,j =
∑

m ̸=x,j

vm,jvj,x = vj,x

where we know the left hand side is zero (Equation (4.3)). Thus we can derive vi,j = 0

for any i and j, resulting in a contradiction when combined with Equation (4.2).
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Before we derive our corollary, let us explicitly give the SA axioms of BinOPn.

self : νi,i = 0 ∀ i ∈ n

trans : νi,k − νi,j − νj,k + 1 ≥ 0 ∀ i, j, k ∈ [n]

impl :
∑

i∈[logn]

ω1−ai
i,j + νj,a ≥ 0 ∀ j ∈ [n]

where a1 . . . alogn = bin(a)

Corollary 4.3. The binary encoding of the Ordering Principle, BinOPn, has SA rank

at most 2 log n and SA size at most polynomial in n.

Proof. Immediate from Lemma 4.7.

4.5 SA+Squares

In this section we consider a proof system, SA+Squares, based on inequalities of mul-

tilinear polynomials. We now consider axioms as degree-1 polynomials in some set of

variables and refutations as polynomials in those same variables. Then this system is

gotten from SA by allowing addition of (linearised) squares of polynomials. In terms of

strength this system will be strictly stronger than SA and at most as strong as Lasserre

(also known as Sum-of-Squares), although we do not at this point see an exponential

separation between SA+Squares and Lasserre. See [5, 57] for more on the Lasserre proof

system and [59] for tight degree lower bound results.

Consider the polynomial wi,jvi,j − wi,jvi,k. The square of this is

wi,jvi,jwi,jvi,j + wi,jvi,kwi,jvi,k − 2wi,jvi,jwi,jvi,k.

Using idempotence this linearises to wi,jvi,j+wi,jvi,k−2wi,jvi,jvi,k, and so we know that

this last polynomial is non-negative for all 0/1 settings of the variables.

A degree-d SA+Squares refutation of a set of linear inequalities (over terms) q1 ≥
0, . . . , qx ≥ 0 is an equation of the form

x∑
i=1

piqi +

y∑
i=1

r2i = −1 (4.6)

where the pi are polynomials with nonnegative coefficients and the degree of the poly-

nomials piqi, r
2
i is at most d. We want to underline that we now consider a (product)

term like wi,jvi,jvi,k as a product of its constituent variables, that is genuinely a term in

the sense of part of a polynomial. This is opposed to the preceding sections in which we
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viewed it as a single variable Zwi,j∧vi,j∧vi,k . The translation from the degree discussed

here to SA rank previously introduced may be paraphrased by “rank = degree− 1”.

We note that the unary PHPn+1
n becomes easy in this stronger proof system (see, e.g.,

Example 2.1 in [44]) while we shall see that the LOP remains hard (in terms of degree).

The following is based on Example 2.1 in [44].

Theorem 4.4. The BinPHPn+1
n has an SA+Squares refutation of degree 2 log n+1 and

size O(n3).

Proof. For short let m = n+1 denote the number of pigeons. We begin by squaring the

polynomial

1−
m∑
i=1

logn∏
j=1

ω
aj
i,j

to get the degree 2 log n, size quadratic in m inequality

1− 2
m∑
i=1

logn∏
j=1

ω
aj
i,j +

∑
1≤i,i′≤m

logn∏
j=1

ω
aj
i,j

logn∏
j=1

ω
aj
i′,j

 ≥ 0 (4.7)

for every hole a ∈ [n]. On the other hand, by lifting each axiom

logn∑
j=1

ω
1−aj
i,j +

logn∑
j=1

ω
1−aj
i′,j ≥ 1 (whenever i ̸= i′)

by
(∏logn

j=1 ω
aj
i,j

)(∏logn
j=1 ω

aj
i′,j

)
we find 0 ≥

(∏logn
j=1 ω

aj
i,j

)(∏logn
j=1 ω

aj
i′,j

)
, in degree 2 log n+1.

Adding these inequalities to (4.7) gives

1−
m∑
i=1

logn∏
j=1

ω
aj
i,j ≥ 0

in size again quadratic in m. Iterating this for every hole a ∈ [n] we find

n−
n∑

a=1

m∑
i=1

logn∏
j=1

ω
aj
i,j ≥ 0 (4.8)

in cubic size.

Note that for any pigeon i ∈ [m], we can find in SA the linearly sized equality

n∑
a=1

logn∏
j=1

ω
aj
i,j = 1. (4.9)

in size linear in n.
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This is done by induction on the number of bits involved (the range of j in the summa-

tion). For the base case of just j = 1 we clearly have

ωi,1 + (1− ωi,1) = 1.

Now suppose that for k < log n, we have
∑

a∈[2k]
∏k

j=1 ω
aj
i,j = 1. Multiplying both

sides by 1 = ωi,(k+1) + (1 − ωi,(k+1)) gets the inductive step. The final term is of size

O(2logn) = O(n).

Summing 4.9 for every such hole i we find

m∑
i=1

n∑
a=1

logn∏
j=1

ω
aj
i,j ≥ m. (4.10)

Adding 4.10 to 4.8, we get the desired contradiction, n−m ≥ 0.

This last theorem, combined with the exponential SA size lower bound given in Theorem

4.1, shows us that SA+Squares is exponentially separated from SA (in terms of size).

We now turn our attention to LOP, whose SA axioms we reproduce to refresh the reader’s

memory.

self : vi,i = 0 ∀ i ∈ n

trans : vi,k − vi,j − vj,k + 1 ≥ 0 ∀ i, j, k ∈ [n]

impl : vi,j − wi,j ≥ 0 ∀ i, j ∈ [n]

total : vi,j + vj,i − 1 ≥ 0 ∀ i ̸= j ∈ [n]

lower :
∑
i∈[n]

wi,j − 1 ≥ 0 ∀ j ∈ [n]

We give our lower bound for the unary LOP by producing a linear function ν (which we

will call a valuation) from terms into R such that

1. for each axiom p ≥ 0 and every term X with deg(Xp) ≤ d we have ν(Xp) ≥ 0,

and

2. we have ν(r2) ≥ 0 whenever deg(r2) ≤ d.

3. ν(1) = 1.

The existence of such a valuation clearly implies that a degree-d SA+Squares refutation

cannot exist, as it would result in a contradiction when applied to both sides of eq. (4.6).

To verify that ν(r2) ≥ 0 whenever deg(r2) ≤ d we show that the so-called moment-

matrix Mν is positive semidefinite. The degree-d moment matrix is defined to be the
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symmetric square matrix whose rows and columns are indexed by terms of size at most

d/2 and each entry is the valuation of the product of the two terms indexing that entry.

Given any polynomial σ of degree at most d/2 let c be its vector of coefficients. Then if

Mv is positive semidefinite:

ν(σ2) =
∑

deg(T1),deg(T2)≤d/2

c(T1)c(T2)v(T1T2) = c⊤Mvc ≥ 0.

(For more on this see e.g. [57], Section 2.)

Theorem 4.5. There is no SA+Squares refutation of the (unary) LOP with degree at

most (n− 3)/2.

Proof. For each term T , let ν (T ) be the probability that T is consistent with a per-

mutation on the n elements taken uniformly at random or, in other words, the number

of permutations consistent with T divided by n!. Here we view wx,y as equal to vx,y.

This valuation trivially satisfies the lifts of the self, trans and total axioms as they are

satisfied by each permutation (linear order). It satisfies the lifts of the impl axioms by

construction. We now claim that the lifts of the lower axioms (those containing only

w variables) of degree up to n−3
2 are also satisfied by v (.). Indeed, let us consider the

lifting by T of the lower axiom for x

n∑
y=1

Twx,y ≥ T. (4.11)

Since T mentions at most n − 3 elements, there must be at least two y1 ̸= y2 that are

different from all of them and from x. For any permutation that is consistent with T ,

the probability that each of the y1 and y2 is smaller than x is precisely a half, and thus

ν (Twx,y1) + ν (Twx,y2) = ν (T ) .

Therefore the valuation of the LHS of (4.11) is always greater than or equal to the

valuation of T .

Finally, we need to show that the valuation is consistent with the non-negativity of (the

linearisation of) any squared polynomial. It is easy to see that the moment matrix for

ν can be written as
1

n!

∑
σ

VσV
T
σ

where the summation is over all permutations on n elements and for a permutation σ,

Vσ is its characteristic vector. The characteristic vector of a permutation σ is a Boolean
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column vector indexed by terms and whose entries are 1 or 0 depending on whether

the respective index term is consistent or not with the permutation σ. Clearly the

moment matrix is positive semidefinite being a sum of (rank one) positive semidefinite

matrices.

An alternative formulation of the Least Ordering Principle asks that the order be total,

and this is enforced with axioms anti-sym of the form Pi,j ∨ Pj,i, or Pi,j + Pj,i ≥ 1, for

i ̸= j ∈ [n]. Let us call this alternative formulation OP. Ideally, lower bounds should

be proved for OP, because they are potentially stronger. Conversely, upper bounds are

stronger when they are proved on the ordinary OP, without the total order. Looking

into the last proof, one sees that the lifts of anti-sym are satisfied as we derive our

valuation exclusively from total orders. This is interesting because an upper bound in

Sum of Squares of order
√
n log(n) is known for OPn [71]. It is proved for a different

formulation of OPn than ours, which we relate here, and purposefully give in the variables

xi,j (as well as the continuous zj) instead of our Pi,j .

xi,j + xj,i = 1 for all distinct i, j ∈ [n]

xi,jxj,k(1− xi,k) = 0 for all distinct i, j, k ∈ [n]∑
i∈[n],i ̸=i

xi,j = 1 + z2j

We show that the difference is only superficial. Note that anything we can prove using

transitivity of the form xi,jxj,k(1− xi,k) = 0 we can prove using Pi,k − Pi,j − Pj,k ≥ −1.

That Pi,jPj,k ≥ Pi,jPj,kPi,k comes from monotonicity, and the opposite inequality comes

from lifting by Pi,jPj,k:

−Pi,jPj,k ≤ Pi,jPj,kPi,k − 2Pi,jPj,k =⇒ Pi,jPj,k ≤ Pi,jPj,kPi,k.

Potechin’s proof moves along the following lines. Define an operator E on terms that

behaves the same as the v used in Theorem 4.5, but

1. If some zj appears with degree 1 in T , then E[T ] = 0, and

2. If T is of the form z2jT
′ for some j and T ′, E[T ] = E

[(∑
i∈[n],i ̸=i xij − 1

)
T ′
]

Potechin proves the following.

Lemma 4.8 (Lemma 4.2 in [71]). There exists a polynomial g, only in the variables xi,j

and of degree O(
√
n log n) such that

E

∑
i ̸=j

xi,j − 1

 g2

 = v

∑
i ̸=j

xi,j − 1

 g2

 < 0.
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Potechin then proves the following SOS identity using only the totality and transitivity

axioms (which exist also in our formulation). Note Sk is the symmetric group on the

elements of [k].

Lemma 4.9 (Lemma 4.7 in [71]). For all A = {i1, i2, . . . , ik} ⊆ [n], there exists a degree

k + 2 proof that ∑
π∈Sk

k−1∏
j=1

xiπ(j)iπ(j+1)
= 1.

Finally, Potechin proves that the ‘symmetric group average’ of a polynomial can be

shown to be equal to its valuation.

Lemma 4.10 (Lemma 4.8 in [71]). For any polynomial p of degree d in the variables

xij, there exists a proof of at most degree 3d+ 2 that

1

n!

∑
π∈Sn

π(p) = v(p)

(where the action of Sn is to permute the indices in the monomials of p).

Lemma 4.8 and 4.10 together furnish a SOS refutation of the required form. Thus,

Theorem 4.5, together with [71], shows a quadratic rank separation between SA+Squares

and Sum of Squares.

4.6 Conclusions

In this section, we showed that, for SA, the movement between unary and binary encod-

ings is not monotonic in terms of complexity - we saw that the PHP became exponentially

harder in terms of size, and that the LOP became exponentially easier in terms of rank.

This leaves one wondering if there could be any completely systematic categorisation

of the complexity of the unary and binary encodings at all - the results of this chapter

suggest, but do not prove, that there can be no such thing for SA.

The results of this vein in this chapter, however, are given for SA and its strengthenings

only, and we are less sure about the analogous situation in different proof systems. This

brings us to our first open problem of the epilogue of this thesis.



Chapter 5

Further directions

In the previous Chapter 4, we showed that the relationship between binary and unary

encodings is a function of the principle at hand. In particular, we showed that for the

LOP (in SA) the unary version is harder in terms of degree than its binary relative.

However, we do not know if this is possible in Resolution.

Open Problem 1. What is the relationship, if any, between the binary and unary

encodings of a principle in Resolution? Are there any examples of a principle where the

unary encoding requires higher width than the binary encoding?

In the same Chapter, we pointed out a system - namely, SA+Squares - that lies some-

where in between SA and SOS in terms of power. We then provided an exponential

separation between SA+Squares and SA across both rank and size. We also noted a

quadratic degree separation between SA+Squares and SOS. But we are not sure if there

are stronger examples of a separation in this direction.

Open Problem 2. Is there a strong degree or size separation of SA+Squares from SOS?

In Section 3.2 we began to lay out a framework to prove lower bounds against SOS for

a large class of principles. As noticed in the conclusions to that section, the completion

of that result is in itself an open problem. However, in order to achieve this completion,

you would have to along the way give some new model-theoretic distinction between two

of the most important principles in Proof Complexity.

Open Problem 3. What exactly is the model-theoretic difference between the PHP and

LOP that causes the latter to be harder for SOS than the former? Also, is there a model-

theoretic explanation for their different complexities in SA, in terms of the movement

between unary and binary encodings?
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In Chapter 2 we provided some tight lower bounds - for example, in the case of the

SPHP, we demonstrated an O(log n) depth upper bound and a matching Ω(log(n))

lower bound. However, for Tseitin, there is a logarithmic gap between, for example, the

Ω(log(n)) lower bound given in Corollary 2.4 and the O(log2(n)) upper bound given (for

constant degree graphs) in the seminal [7]. This leads us to question:

Open Problem 4. Where, exactly, does the SP depth of Ts(G,ω) lie in the interval

[log(|G|), log(|G|)2]?

Given how much power our techniques seem to leave on the table (as discussed in the

conclusion to Chapter 2), we conjecture it should lie at the high end of this interval.

In Section 1.2.3, we began by defining the Positivstellensatz proof system, and then

defining the SOS proof system as a restricted version. The restriction seems to be quite

severe - in the case of the full Positivstellensatz we are allowed to use, if promised the

nonnegativity of some polynomials q1 ≥ 0, . . . , qm ≥ 0, that
∏

i∈I qi ≥ 0 also, for any

index set I ⊆ [m]. In the case of SOS, which has certainly received the most attention,

we are only allowed to use only the nonnegativity that was given. It is interesting to

note that the reality of this restriction has not been properly demonstrated:

Open Problem 5. Is there a principle admitting more efficient refutations by Posi-

tivstellensatz than by SOS? Or is it the case that SOS can actually simulate Positivstel-

lensatz?

We finish by returning to the dichotomy given in [28], where it is shown that for SA,

a principle is hard if and only if it has only infinite models. Systems like SOS and

SA+Squares cannot exhibit the same complexity gap, as both have a constant degree

upper bound for the PHP, which has only infinite models. However, to our knowledge,

CP might have the same gap.

Open Problem 6. Let T be a theory having only infinite models. Does Tn have non-

constant CP rank?
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the 0/1-cube. Combinatorica 23, 2 (2003), 245–261.



Bibliography 100

[34] Filmus, Y., Lauria, M., Nordström, J., Ron-Zewi, N., and Thapen, N.

Space complexity in polynomial calculus. SIAM J. Comput. 44, 4 (2015), 1119–

1153.
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[76] Rhodes, M. N. C. On the chvátal rank of the pigeonhole principle. Theor.

Comput. Sci. 410, 27-29 (2009), 2774–2778.

[77] Riis, S. A complexity gap for tree resolution. Computational Complexity 10, 3

(2001), 179–209.

[78] Riis, S. On the asymptotic nullstellensatz and polynomial calculus proof complex-

ity. In Logic in Computer Science, 2008. LICS’08. 23rd Annual IEEE Symposium

on (2008), IEEE, pp. 272–283.

[79] Robinson, J. A. A machine-oriented logic based on the resolution principle. J.

ACM 12, 1 (1965), 23–41.

[80] Rothvoß, T. The lasserre hierarchy in approximation algorithms.

[81] Schrijver, A., et al. On cutting planes. Combinatorics 79 (1980), 291–296.

[82] Selman, B., Kautz, H. A., and McAllester, D. A. Ten challenges in proposi-

tional reasoning and search. In Proceedings of the Fifteenth International Joint Con-

ference on Artificial Intelligence, IJCAI 97, Nagoya, Japan, August 23-29, 1997, 2

Volumes (1997), Morgan Kaufmann, pp. 50–54.

[83] Sherali, H. D., and Adams, W. P. A hierarchy of relaxations between the

continuous and convex hull representations for zero-one programming problems.

SIAM J. Discrete Math. 3, 3 (1990), 411–430.

[84] Tseitin, G. S. On the complexity of proof in prepositional calculus. Zapiski

Nauchnykh Seminarov POMI 8 (1968), 234–259.



Bibliography 104

[85] Urquhart, A. Hard examples for resolution. J. ACM 34, 1 (1987), 209–219.

[86] Van Lint, J., and Wilson, R. A course in combinatorics. Cambridge Univ.

Press, New York (1992).

[87] van Lint, J. H., and Wilson, R. M. A Course in Combinatorics. Cambridge

University Press, Cambridge, U.K.; New York, 2001.

[88] Yehuda, G., and Yehudayoff, A. A lower bound for essential covers of the

cube. arXiv preprint arXiv:2105.13615 (2021).


