5,807 research outputs found

    Threads and Or-Parallelism Unified

    Full text link
    One of the main advantages of Logic Programming (LP) is that it provides an excellent framework for the parallel execution of programs. In this work we investigate novel techniques to efficiently exploit parallelism from real-world applications in low cost multi-core architectures. To achieve these goals, we revive and redesign the YapOr system to exploit or-parallelism based on a multi-threaded implementation. Our new approach takes full advantage of the state-of-the-art fast and optimized YAP Prolog engine and shares the underlying execution environment, scheduler and most of the data structures used to support YapOr's model. Initial experiments with our new approach consistently achieve almost linear speedups for most of the applications, proving itself as a good alternative for exploiting implicit parallelism in the currently available low cost multi-core architectures.Comment: 17 pages, 21 figures, International Conference on Logic Programming (ICLP 2010

    A hybrid ant algorithm for scheduling independent jobs in heterogeneous computing environments

    Get PDF
    The efficient scheduling of independent computational jobs in a heterogeneous computing (HC) environment is an important problem in domains such as grid computing. Finding optimal schedules for such an environment is (in general) an NP-hard problem, and so heuristic approaches must be used. In this paper we describe an ant colony optimisation (ACO) algorithm that, when combined with local and tabu search, can find shorter schedules on benchmark problems than other techniques found in the literature

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Distributed Preemptive Process Management With Checkpointing And Migration For A Linux-Based Grid Operating System

    Get PDF
    Kemunculan perkomputeran grid telah membolehkan perkongsian sumber perkomputeran teragih antara peserta-peserta organisasi maya. Walau bagaimanapun, sistem pengoperasian kini tidak memberi sokongan paras rendah secukupnya untuk perlaksanaan perisian grid. Kemunculan suatu kelas sistem pengoperasian yang dipanggil sistem pengoperasian grid memberikan pengabstrakan peringkat sistem untuk sumber-sumber grid The advent of grid computing has enabled distributed computing resources to be shared amongst participants of virtual organisations. However, current operating systems do not adequately provide enough low-level facilities to accommodate grid software. There is an emerging class of operating systems called grid operating systems which provide systemslevel abstractions for grid resources

    Performance Portability Through Semi-explicit Placement in Distributed Erlang

    Get PDF
    We consider the problem of adapting distributed Erlang applications to large or heterogeneous architectures to achieve good performance in a portable way. In many architectures, and especially large architectures, the communication latency between pairs of virtual machines (nodes) is no longer uniform. We propose two language-level methods that enable programs to automatically adapt to heterogeneity and non-uniform communication latencies, and both provide information enabling a program to identify an appropriate node when spawning a process. We provide a means of recording node attributes describing the hardware and software capabilities of nodes, and mechanisms that allow an application to examine the attributes of remote nodes. We provide an abstraction of communication distances that enables an application to select nodes to facilitate efficient communication. We have developed open source libraries that implement these ideas. We show that the use of attributes for node selection can lead to significant performance improvements if different components of the application have different processing requirements. We report a detailed empirical investigation of non-uniform communication times in several representative architectures, and show that our abstract model provides a good description of the hierarchy of communication times

    Performance analysis of parallel branch and bound search with the hypercube architecture

    Get PDF
    With the availability of commercial parallel computers, researchers are examining new classes of problems which might benefit from parallel computing. This paper presents results of an investigation of the class of search intensive problems. The specific problem discussed is the Least-Cost Branch and Bound search method of deadline job scheduling. The object-oriented design methodology was used to map the problem into a parallel solution. While the initial design was good for a prototype, the best performance resulted from fine-tuning the algorithm for a specific computer. The experiments analyze the computation time, the speed up over a VAX 11/785, and the load balance of the problem when using loosely coupled multiprocessor system based on the hypercube architecture
    corecore