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PENGURUSAN PROSES PREEMPTIF 
TERAGIH DENGAN PENITIKSEMAKAN DAN 
MIGRASI UNTUK SISTEM PENGOPERASIAN 

GRID BERASASKAN LINUX 

ABSTRAK 

Kemunculan perkomputeran grid telah membolehkan perkongsian sumber perkomputer-

an teragih antara peserta-peserta organisasi maya. Walau bagaimanapun, sistem pengop-

erasian kini tidak memberi sokongan paras rendah secukupnya untuk perlaksanaan perisian 

grid. Kemunculan suatu kelas sistem pengoperasian yang dipanggil sistem pengoperasian 

grid memberikan pengabstrakan peringkat sistem untuk sumber-sumber grid. Tesis ini 

mencadangkan penambahan pengurusan proses preemptif teragih kepada sistem pengop-

erasian GNU jLinux untuk menjadikannya sistem pengoperasian grid. Dengan menampal 

inti Linux dengan kemudahan penitiksemakan yang dipanggil EPCKPT, pembuktian kon-

sep perisian tengah yang dipanggil Zinc telah dibina. Perisian Zinc menggunakan kemu-

dahan penitiksemakan dengan cekap untuk membolehkan pengurusan proses teragih yang 

merangkumi penskedulan, penempatan proses grid dan migrasi proses grid. Dengan meng-

gunakan daya pemprosesan (throughput) sebagai metrik pengukuran prestasi, kecekapan 

kemudahan migrasi proses telah diukur pada pelantar ujian grid yang terdiri daripada 

lduster PC di Pusat Pengajian Sains Komputer, Universiti Sains Malaysia. Proses-proses 

grid juga telah berjaya dimigrasikan melalui internet. Eksperimen telah dijalankan yang 

menunjukkan bahawa migrasi proses preemptif yang dijalankan oleh sistem pengoperasian 

membantu mengekalkan daya pemprosesan (throughput) yang tinggi tidak mengira strategi 

penempatan proses yang digunakan. 
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DISTRIBUTED PREEMPTIVE PROCESS 
MANAGEMENT WITH CHECKPOINTING AND 

MIGRATION FOR A LINUX-BASED GRID 
OPERATING SYSTEM 

ABSTRACT 

The advent of grid computing has enabled distributed computing resources to be shared 

amongst participants of virtual organisations. However, current operating systems do not 

adequately provide enough low-level facilities to accommodate grid software. There is an 

emerging class of operating systems called grid operating systems which provide systems-

level abstractions for grid resources. This thesis proposes the addition of preemptive dis-

tributed process management to GNU /Linux, thus building a subset of the required func­

tionality to turn GNU /Linux into a grid operating system. By patching the Linux kernel 

with a popular checkpointing facility called EPCKPT, a proof-of-concept grid middleware 

called Zinc was constructed which effectively makes use of checkpointing to provide dis-

tributed process management which encompasses scheduling, placement and migration of 

grid processes. By using job throughput as our performance metric, the effectiveness of the 

process migration facility was measured on a testbed grid which consisted of PC clusters 

in the School of Computer Science at Universiti Sains Malaysia. Grid processes were also 

successfully migrated over the internet. An experiment was carried out that showed that 

preemptive process migration in the operating system helps maintain system throughput 

that is consistently high, regardless of the process placement strategy used. 
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CHAPTER 1 

INTRODUCTION 

1.1 Concerning Grid Computing 

The growing ubiquity of cheap computing power and high-speed networks have given birth 

to distributed computing, which combine the resources of networked computers and har­

ness the resulting combined power of its constituent computing elements. Tanenbaum and 

Van Steen [74] describe distributed systems as "a collection of independent computers that 

appears to its users as a single coherent system". From this definition, it could be inferred 

that a distributed system has a generic goal of providing a transparent and coherent ser­

vice to users of systems comprising more than one physical computing machine. It could 

be said that grid computing is a special instance of distributed systems. Grid technology 

allows us to collectively perform complex computational tasks that would not be feasible 

on a single computer by means of pooling together resources that are shared by various in­

stitutions, organisations and individuals. Foster and Kesselman define computational grids 

as "hardware and software infrastructure that provides dependable, consistent, pervasive 

and inexpensive access to high-end computational capabilities"[22]. 

Grid computing grew out of metacomputing, an early effort to consolidate disparate 

and diverse computing resources to take advantage of the resulting combined computing 

power. Previously, Ct user trying to utilise such a wide collection of different resources had to 

put up with manually configuring and scheduling jobs on different user accounts, machines 

and programs. Current developments have produced automated tools and advanced job 
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scheduling and monitoring technologies to assist the user in the sharing of this collection 

of resources. These technologies form the fabric of grid computing. 

Various approaches have been taken to designing software that control and facilitate 

the computational grid. Usually, grid software is implemented as middleware, a layer of 

abstraction that lies between user programs and the host computational hardware and 

software. Examples of such software are Globus [21], Condor [46] and Legion [27]. These 

systems provide a collection of services for both users and user programs to help aggregate 

and share computing resources. 

This chapter is a prelude to the design and implementation of Zinc, a layer of grid 

software for the GNU /Linux operating system developed with the idea of making grid mid­

dleware as transparent and as easy to use as possible, while maximising the job throughput 

of the grid. The design of Zinc is from a perspective of an operating systems programmer, 

while its implementation covers kernel modifications and userspace tools to support those 

modifications. The primary goal of the system is to provide a foundation for which we can 

experiment with the possibilities opened up by extending the operating system to accom­

modate grid computing, with regard to process management. These extensions can be seen 

as a first step towards the creation of a grid operating system, which is an operating system 

that provides an abstraction of grid services to make the technology more transparent and 

easy to use by both end-users and programmers. 

1.2 Research Motivation 

1.2.1 Investigating The Factors That Influence Job Throughput 

Much literature has been written about the effect of process migration, scheduling algo­

rithms and other aspects of distributed computing on high-performance problems. How-
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ever, research on high throughput computing have not been as extensive, and warrants 

further investigation. We believe that the grid's primary function is an enabler of high-

throughput computing. Although many or most hardware in the grid is going to provide 

high-performance computing facilities to its users, the entire system as a whole exists to 

maximise the amount of work done with the resources available. Hence, looking into what 

conditions are favourable to increase the throughput in our distributed system is justified, 

and the results of our observations can be used to build better grids. 

1.2.2 Introducing Distributed Process Management Support Into 

GNU/Linux 

GNU /Linux1 is a Unix-like operating system which is worked on by various programmers 

over the world, both voluntarily and or for commercial purposes sponsored by various 

companies. GNU /Linux is a collection of open source programs that make up a free 

operating system which can be modified and redistributed by anyone. At the heart of 

GNU /Linux is the Linux kernel, a free operating system kernel licensed under the GNU 

General Public License (GPL). Linux was initiated by Finnish programmer Linus Torvalds, 

and at the time of writing, he continues to spearhead its development in collaboration with 

thousands of developers world wide to further improve and enhance the Linux kernel. The 

userspace of GNU /Linux consists largely of utilities derived from the GNU project founded 

by MIT hacker Richard Stallman to create a truly free Unix-like operating system. Since 

GNU /Linux tries to be a clone of Unix, it is also a centralised network-enabled operating 

system by design. We have thus chosen GNU /Linux as a platform for our grid operating 

system research, so that it can be extended to facilitate grid-specific requirements and 

1 In print, the usage of both the terms "GNU jLinux" and "Linux" refer to the operating system based 
on the Linux kernel. There is a difference of opinion on whether or not the "GNU" part should be included 
whfm referring to the OS, but for the purpose ofthis thesis, the di:;tinction between GNUjLinux and Linux 
is that GNU jLinux refers to the complete operating system (with userspace, C libraries, compilers and 
all) whereas Linux refers to just the Linux kernel. 
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investigate process migration. 

Most of the tools available in GNU /Linux distributions are clones of the original Unix 

tools, or new software developed from scratch to make a functional desktop and server. 

However, neither the Linux kernel nor the userspace of GNU /Linux is designed with grid 

extensions in mind. There are a number of kernel-related projects which provide check­

pointing and facilities for process migration such as MOSIX [3], but have not been fully 

developed for the purpose of internet-based migration for grid computing. MOSIX assumes 

a persistent, reliable and high-bandwidth network connection is available between hosts in 

the distributed system, an assumption which we can not make for internet migration. 

Most grid software such as Globus [21] or Condor [46] have GNU /Linux versions, but 

few projects attempt to fully integrate the userspace tools with added functionality in the 

operating system. Moreover, most distributed operating system projects were initiated 

before grids became popular, thus there is little effort to support grid computing in re­

search distributed operating systems. However, the Plan 9 [53] operating system is quite 

well-suited to grid computing, because of it's unique resource abstraction mechanism that 

presents everything on the system as network accessible files, even CPUs and other devices. 

However, Plan 9 does not support process migration or dynamic load sharing. Also, the 

problem with using research operating systems is that there is very little hardware and 

software support for them (most do not implement the full feature set of modern Unix­

like systems), and all applications that want to take ad vantage of the system must be at 

least recompiled, if not rewritten (plus there is inertia when users need to switch operating 

systems). 

Thel'efure, uur motivation in choosing GNU /Linux as our vessel for investigating the 

issues surrounding distributed process management, wide-area process migration, and grid 
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operating system design is because of the following: 

1. Non-restrictive licensing terms for copying, modifying and redistributing the system. 

2. Customisable open source kernel, and userspace software. 

3. A wide range of free developer tools plus support for almost all major programming 

languages. 

4. Very popular and supports a wide range of hardware device drivers. 

5. Popular computational, scientific and grid software is available for it. These existing 

tools could benefit from additional grid-specific improvements. 

6. It is evolving rapidly. Every few months, a new Linux kernel is released, with more 

feature added with each release. This rapid development process gives ample oppor­

tunity for new functionality to be included into a popular operating system (at least, 

gradually). This helps overcome the inertia of organisations and users refusing to 

totally change their operating systems, a problem described by the Legion team in 

Grimshaw et al. [26]. 

While GNU /Linux has been used extensively in grid computing, it was not designed as 

a grid operating system from the ground up. Padala [58] has proposed some enhancements 

to the network stack to the Linux kernel for improving network performance for grid 

applications. However, there have yet been no attempts to add on grid functionality to to 

GNU /Linux at a more fundamental operating system design level. Our research explores 

the idea of what a grid OS should look like, and proposes the design of a system for 

distributed process management as an enhancement to the GNU /Linux operating system. 
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1.2.3 Reducing Cruft 

The New Hacker's Dictionary [63] defines "cruft" as excess, superfluous junk; used especially 

of redundant or superseded code. Crufty software is software with a design that's overly 

(and perhaps unnecessarily) complex. The design philosophy of the Globus toolkit is 

to work at a middleware layer, using only internet protocols. The justification for this 

decision as presented in [23] is to enable Globus to work on heterogeneous architectures 

and operating systems, and that "traditional transparencies are unobtainable" for grids. 

However the introduction of various new APIs in each of the components of Globus also 

increases the complexity of utilising a grid. 

We disagree with Foster and Kesselman that trading off transparency and simplicity 

for heterogeneity is a necessary compromise in creating a grid. In Gabriel's essay on the 

design of Lisp [24], he characterises two software design strategies, one called "The MIT 

Approach" and another called "Worse-Is-Better". Both approaches stress the simplicity of 

design, where the "MIT Approach" would try and do the "right thing", where simplicity 

of the interface is more important than the simplicity of the implementation, whereas the 

"Worse-Is-Better" philosophy it is the other way around. The Globus toolkit however is 

both complex in terms of interface and implementation, which is in sharp disagreement 

with both software design philosophies. The simplicity of the design philosophy of Unix 

influenced the proposal of the implementation of a grid operating system in this thesis. 

We also assert that it is possible to provide extra transparency via operating systems 

modifications while maintaining the same amount of support for heterogeneous platforms as 

Globus does now. Since operating system extensions are mostly transparent to userspace, 

it is possible for toolkits such as Globus to make use of the underlying grid features when 

available and still achieve its goals. The advantage of operating system support for grid 
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functionality however, is that given a sufficiently large collection of computers of the same 

architecture, it is possible to create a grid without complex middleware toolkits. Consider­

ing that the Intel x86 architecture continues to be the most prevalent computing platform, 

plus the growing popularity of the GNU /Linux operating system, it is not inconceivable 

that a computational grid of reasonable size and usefulness can be constructed with rela­

tively homogeneous hardware. 

1.2.4 Enabling Internet Computing 

There exists a vast pool of computing resources worldwide, and the advent of fast internet 

technologies have enabled organisations willing to share their computing facilities to do so 

at an unprecedented level. Currently, projects such as SETI@Home [1] and Folding@Home 

[68] create a high-throughput computational environment via specialised programs to per­

form their tasks. We hope that with a grid operating system, it will be possible to easily 

create generic programs that work like SETI@home and Folding@Home. 

1.3 Research Objectives 

1.3.1 Integrating Process Checkpointing And Grid Process Scheduling 

Into The Linux Kernel 

Currently, the Linux kernel does not support process checkpointing, a feature necessary 

for process migration to work. Therefore, we will port and update the EPCKPT [61J 

checkpointing patch into the Linux kernel 2.4.22. We will also tweak the default kernel 

process scheduler to better handle CPU-intensive processes by enforcing a policy that 

favours long-running processes and by allowing userspace to have better control over process 

priorities. This will allow us the necessary functionality to create a foundation for our 

process migration and grid process management research. 

7 



1.3.2 Creating A Prototype Grid Process Management System 

With the necessary modifications to the Linux kernel, we will thus build a proof-of-concept 

grid process management software in userspace called Zinc. It will incorporate a userspace 

scheduler, monitoring daemons and command line tools for the user to submit jobs. The 

design goals for the system are as follows: 

1. Transparency - the user must be able to submit regular programs as jobs in the grid 

without modification 

2. High throughput - the system will try to accomplish the most amount of work for 

as long as it runs 

3. Adaptability to dynamic resources - the system will adapt to the variable conditions 

of the grid 

4. Decentralisation - the system must reflect the decentralised nature of the grid 

5. Minimising residual dependencies - the system must try to minimise the residual 

dependencies of a process when migrating it 

With this prototype system, we will have a controlled environment that will enable us to 

perform further experiments on throughput in a grid operating system. 

1.3.3 Enabling Wide-Area Process Migration 

For the paradigm of "grid processes" to be complete, we must allow processes to migrate 

around the grid to any node connected to the system. This requires that processes be able 

to migrate over wide areas, as the grid is a large-scale distributed system that may even 

span continents. Therefore, we will determine whether grid process migration is feasible 
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over a wide area by conducting an experiment to see the time required to migrate grid 

processes over the internet across continents. 

1.3.4 Investigating The Factors Influencing Throughput In The Grid as 

We are interested in the question of whether or not preemptive process migration will help 

job throughput in the grid operating system, and also the factors that influence throughput. 

Since grid operating systems are still in their infancy, we will use the prototype that we 

develop to conduct our experiments, as we will be able to control external factors while 

implementing only the features that we need. 

1.4 Scope Of Research 

In defining the extensions to operating systems (in this case, Linux) for grid computing, 

substantial changes need to be done to all the subsystems of the OS. However, for the 

purpose of this thesis, we will restrict the scope of the implementation to distributed pro­

cess management and process migration on the grid for the purpose of experimentation 

and implementation of a prototype kernel. Thus, grid filesystems, I/O, distributed device 

management, and distributed memory management was not implemented. These topics 

however, are discussed briefly in the last chapter. The implementation of process migra­

tion assumes the processes will not be performing inter-process communication. Thus the 

processes are "atomic" and may move about freely independent of other processes. The 

last chapter also discusses a scenario where IPC is allowed between processes and how 

wide-area process migration may take place in such a situation. 

In the implementation of the Zinc grid process management framework, our goal is 

to create a proof-of-concept system to provide for us a controlled experimental test-bed 
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to test the feasibility of wide-area process migration and to investigate the factors that 

influence throughput in the grid OS. Therefore, no benchmarking will be done to compare 

Zinc with existing similar systems such as Condor or MOSIX, as the latter projects have 

different design goals, thus a meaningful benchmark is not possible without compromising 

our own goals. 

1.5 Contributions 

This thesis explores the outcomes of adding explicit features to support grid computing into 

the Linux operating system. The primary contribution of this research is the introduction 

of the concept of grid process management and global process migration via the internet 

to GNU /Linux. Grid process management is a subset of the functionality required for a 

grid operating system, and is the subset that was chosen as a focus for this thesis. The 

design issues with Linux that need to be addressed when extending the operating system 

for grid process management were identified. The goal of the grid process management 

implementation is to provide transparent, wide-area process migration and a means to 

manage the aforementioned processes. To this end the EPCKPT [61] checkpointing patch 

available on the internet was applied to the Linux kernel as a foundation for the distributed 

process management algorithms. 

A two-level scheduling system was designed for the grid operating system which consists 

of a modified kernel scheduler which was produced in collaboration with Linux kernel 

developers [32], and a userspace distributed process scheduler which was implemented in 

a program called Zinc. Zinc is a prototype proof-of-concept implementation of resource 

discovery, process scheduling and execution monitoring software that takes advantage of 

the checkpointing mechanism and the kernel scheduler in the modified Linux kernel. 
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Within the Zinc userspace scheduler, an algorithm called Zinctask was introduced for 

placement of jobs on a distributed system which makes decisions based on state information 

collected from all nodes in the system. This algorithm improves upon placement algorithms 

based on run queue length alone [19] by adding information on full distributed state via 

the Name Dropper resource discovery algorithm. The Zinctask algorithm also takes into 

account the staleness of state information when making decisions, as well as memory and 

CPU loads of the system. Zinctask is evaluated against random placement of processes 

and is found to be superior to it in almost all scenarios in the grid test-bed used for the 

experiments. Together with Zinctask and process migration, the Zinc-enabled Linux-based 

grid operating system yields both high throughput and creates an efficient load-distribution 

system. 

Finally, with the implemented prototype systems and grid test-bed, the factors influ­

encing the throughput of grid computing jobs were studied. The factors of interest are: 

1. The availability of preemptive processes migration. 

2. The placement strategy of processes. 

3. The configuration of the machines in the grid. 

4. The length of the majority of jobs that are submitted to the grid. 

It was discovered that the different interactions between these factors influence through­

put on the grid test-bed, and certain combination of factors produce different levels of 

throughput. 
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1.6 Summary And Organisation Of Thesis 

This research aims to bridge the gap between existing grid middleware and operating 

systems development both of which are currently not integrating in a way to provide 

transparency to the user. Our goal of unifying these domains is presented in figure 1.1. 

Distributed Operating Systems Grid Computing Middleware 
(Globus, Legion, Condor-G) (Amoeba, Sprite) 

Grid Operating Systems 
(Linux + Zinc, Plan 9, 

Unux + MOSIX) 

Memory 
management 

Filesystem 
management 

Device 
rnanagetilent 

(Thesis focus) 

Figure 1.1: The Unification Of Operating Systems And Grid Computing 

The rest of this thesis is organised as follows. Chapter 2 presents a survey and discussion 

of existing research related to our own. Chapter 3 gives a brief look at the design goals we 

have with our Zinc system, whereas the details of the design is found in Chapter 4. Chapter 

5 describes the implementation of all the components of Zinc in depth. The experiments 
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we carried out with our system and grid test-bed is presented in Chapter 6, together with 

the results and discussion. Chapter 7 provides a conclusion and summary of the research 

plus suggestions for future work. 
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2.1 Introduction 

CHAPTER 2 

RELATED WORK 

In this chapter, we discuss the literature on existing work that is relevant to our research. 

Firstly, the properties of the grid environment is discussed in section 2.2. Then, in section 

2.3 we try and define what a grid operating system is based on previous definitions of exist­

ing operating systems. Section 2.4 discusses an efficient resource discovery algorithm that 

we use for Zinc. Section 2.5 presents definition of grid scheduling while section 2.6 discusses 

distributed scheduling algorithms design choices. Next, section 2.7 surveys process migra­

tion techniques while section 2.8 discusses some existing systems which implement process 

migration in different ways. The emerging field of grid operating systems are discussed in 

2.9 while a summary of the chapter is provided in 2.10. 

2.2 The Grid Environment 

In general, the computational grid comprises the following: 

1. A set of resources which are shared to the users of the grid. Resources can mean any 

computational infrastructure, such as hardware like CPU, RAM, disk space, network 

bandwidth and software like databases, shared libraries and compilers. 

2. Middleware to facilitate the coordinated sharing of all these resources to all the 

users. Grid software will automate the authentication of users, allocation of resources, 
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execution and monitoring of jobs, maintain the quality-of-service, throughput, and 

security of the entire system. 

Grid computing shares some similarities with cluster computing. They both take advan­

tage of the abundance of cheap hardware, and to some extent perform complex computa­

tional tasks in a collaborative manner between the different processing elements. However, 

there are a few differences between the two technologies: 

1. Clusters are tightly coupled, with processing elements consisting of individual com­

puters connected to each other via a high-speed networking interconnect such as fast 

Ethernet, Gigabit Ethernet or a specialised interconnect technology such as Myrinet. 

Grids are usually built on a bigger scale, encompassing distributed systems networked 

over wide distances such as LANs, WANs and the internet. The individual processing 

elements of a grid can be individual computers, mainframes or entire clusters. 

2. Clusters are centrally administered, and its processing elements are physically located 

close to each other, usually in the same room. For grids, each processing element 

may be independently administered by different parties, and each component that 

comprises the grid may be located at geographically distant locations. 

3. Clusters usually consist of homogeneous processing elements. Each node in a cluster 

(with perhaps the exception of the master node) have identical architecture, the 

same hardware and software configurations and usually cluster administrators try 

to set up a single system image with their clusters. Grids are usually comprised 

of different types of computers, storage devices, instruments and other networked 

gadgets, creating a heterogeneous computing environment for each of these machines 

and devices will have its own architecture, operating system, system libraries, and 

other features unique to each machine or device. 
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With these differences, there come certain implications that make software and al­

gorithms suited for cluster-type operation unusable or inefficient on grid systems. The 

following factors have to be taken into account when constructing grid software: 

1. The bandwidth and low latency readily available for cluster communication is not 

guaranteed on a grid. The more widely distributed the components on the grid, the 

more prone it is to suffer from bandwidth congestion, high latency and lag times, 

and other undesirable effects of wide area networking. 

2. The possibility that processes and jobs may be shared by different computing fa­

cilities that are separately administered creates a problem of security. How will 

systems administrators authenticate and set permissions for tasks that do not orig­

inate from within their administrative control? How is trust established between 

different administrative domains? Different administrative domains also mean there 

is no guarantee of the immediate availability of resources, since one administrator 

has no control over the equipment administered by another party. Furthermore, if 

there is a hardware or software failure at a different administrative domain, there is 

nothing the local administrator or grid software can do to correct it. Unlike centrally 

administered cluster software, a designer of grid software must take all these issues 

into consideration. 

3. The issue of heterogeneous architectures is the most problematic when designing grid 

software. Usually, programs compiled for a specific architecture cannot be run under 

normal circumstances on a different architecture. Even if the architectures are iden-

tical, it is seldom possible to run programs which are compiled for different families 

of operating systems such as Microsoft Windows and GNU /Linux. To get around 

this, users of heterogeneous systems standardise on a single portable bytecode-based 

programming language such as Java, Perl or Python. 
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These three points are an indication of a need for different approach to distributed com­

puting when thinking about grids. The software and algorithms used for clusters cannot 

be totally reapplied without consideration for the preceding issues. 

Most grid computing middleware is implemented as userspace daemons, libraries and 

programs. For example, Globus [21] is a collection of services that comprises a resource 

manager called GRAM (Globus Resource Allocation Manager), a communication library 

called Nexus, a directory service for state information called MDS (Metacomputing Di­

rectory Service), a remote data access service called GASS (Global Access To Secondary 

Storage), a monitoring tool called HBM (Heartbeat Monitor), a security and authentica­

tion framework called GSI (Globus Security Infrastructure) and an executable programs 

management service called GEM (Globus Executable Management). 

Of each of these services, almost all of them introduce a set of APIs for the programmer 

to use when designing grid programs. The disadvantage of this approach is the introduction 

of complexity and cruft, especially for the user who needs to create new programs designed 

specifically for the grid, as well as users who wish to run their existing applications on 

the new grid environment. Furthermore, grid software currently available runs on top of 

existing operating systems that are completely unaware of the existence of grid users and 

grid processes that are executing on top of it. Therefore, the process management of the OS 

cannot schedule or handle these grid tasks in a way that would benefit the grid application. 

The emergence of these grid applications has created unique new requirements for process 

management, which most mainstream operating systems have no support for. 
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2.3 Operating Systems Support For Grid Computing 

To argue the case for specific support for grid computing in operating systems, we shall 

briefly consider the different kinds of traditional operating systems and their different levels 

of support for networking and distributed resource sharing. Then we will identify another 

subclass of operating system which complements existing types of operating systems; the 

grid operating system. 

2.3.1 The Centralised/Local Operating System 

The centralised/local operating system represent a class of operating systems without net­

work support and were common in the earlier days of computers before networking became 

popular. They can be single user or multiuser, but lack a network stack to communicate 

with other computers. The early versions of Unix were entirely centralised and local oper­

ating systems. A local operating system generally implements the four basic components 

of operating systems : file management, device management, memory management and 

process management. 

2.3.2 The Network Operating System 

The network operating system is an OS which implements a network stack, and implements 

several network services such as remote file or print servers. All modern operating systems 

such as Windows NT and Unix have networking functionality, and thus qualify as network 

operating systems. Unix and Unix-like operating systems like GNU /Linux usually come 

with many networking protocols, but the most popular of protocols in the Internet era is 

TCP /IP. Unix-like systems implement TCP sockets as an extension of the file and device 

management components; every network connection socket can be treated as a file to which 

we can read and write from. 
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The network operating system grew out of local operating systems which were given 

networking support. Therefore, they are generally not designed for running on a collection 

of computing elements which act as a cohesive whole. A distributed operating system is 

an OS for multiprocessing and multicomputing environments and is run as a single system 

image.Tanenbaum and van Renesse [75J outline several fundamental characteristics of the 

network operating system as opposed to the distributed operating system: 

1. Each computer is running its own private operating system. 

2. Each user logs in on each computer individually without a single sign-on nor a single 

system image which dynamically allocates CPU usage to the user from a pool of 

available CPU's. 

3. File placement on different computers need to be managed manually; copying files 

from one machine to another requires manual network copy. 

4. Very little fault tolerance; if some computers are out of commission, the users on 

that computer cannot continue working. 

2.3.3 The Distributed Operating System 

The key distinguishing characteristic of a distributed operating system from the network 

operating system is the transparency of its operation on multiple computers. The user 

should be able to see the distributed operating system as a single system image, where 

every computing resource is represented as part of a whole. The user should authenticate 

and log in only once, be able to access files on a local or remote machine anywhere in 

the system, run a process on any CPU, and the failure of a single component should not 

cripple the system. All resources, whether files or CPUs, must be able to be accessed with 

the same usage semantics regardless of the physical machine they reside on. 
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There have been several experimental distributed operating systems, such as Amoeba 

[73], Sprite [57] and Plan 9 [60]. Sadly, they have not gained widespread acceptance 

beyond the OS research community. Even so, modern network operating systems have 

come a long way since early network operating systems were introduced, and many of the 

distributed operating systems' features have been incorporated into them. Modern Unix-

like systems can be equipped with NIS [34] or LDAP-based ([84], [80]) single system sign-on 

and authentication, and various distributed filesystems have been introduced such as NFS 

[65, 59J and Coda [66, 38J. Symmetric multiprocessor (SMP) and NUMA machines also 

incorporate dynamic CPU allocation across multiple CPUs. The Linux operating system 

supports all these technologies, and therefore is used on clustering and parallel processing 

platforms. However, the support for automatic distributed process management and CPU 

allocation outside of proprietary NUMA machines or SMP machines remains missing in 

mainstream GNU jLinux distributions. 

2.3.4 The Grid Operating System 

The current definitions of "local operating systems" and "network operating systems" are 

inadequate to describe an operating system with grid support. It might be convenient 

to group grid-enabled operating systems together in the "distributed operating system" 

category, but there are several aspects of grid computing which are not addressed by the 

definition of a distributed operating system. 

A distributed operating system implies a single administrative domain (where a single 

party is responsible for controlling access, maintaining and granting permissions to users), 

whereas a grid can encompass many different administrative domains that want to pool 

their selected resources together. This has two consequences: 
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1. A grid can be a very decentralised entity with different authentication systems, dif­

ferent administrators and different geographical locations. A decentralised system 

defined by rules on the sharing of distributed computing resources is referred to as 

a virtual organisation [23]. Thus, though there is a mutual agreement of the sharing 

of a resource pool, not all resources belonging to each party are shared, and perhaps 

not all the time as well. 

2. A distributed operating system assumes that all resources on the system can be 

allocated and scheduled with full authority. This is not the case in a grid resource 

pool which may encompass different administrative domains have their own allocation 

schemes and access control mechanisms which can not be overridden by another 

administrative domain. Hence, there is no central authority in grid systems. 

According to Mirtchovski et. al [53], current operating systems such as Windows and 

the Unix variants were designed predating the advent of networking and the internet. 

Therefore, they are poorly suited for grid computing. Thus, a need for a grid operating 

system is a real one. Just as traditional operating systems simplified the usage of com­

plicated assorted hardware resources by creating abstractions for them which a user can 

use transparently and easily, it is hoped grid operating systems will do the same for the 

eclectic mix of distributed resources on the grid. 

2.4 Resource Discovery 

The first step in the utilisation of the grid is resource discovery. In a fully decentralised 

distributed network, the task of querying a global state is done by first determining the 

existence of other nodes in the network. The process of each node on the network discov­

ering other nodes that want to cooperate with it for distributed processing is the solution 
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to what is known as the resource discovery problem. The system can be represented as a 

directed graph, where each vertex represents a node. A directed edge from node A to node 

B represents that node A knows about node Band B is said to be A's neighbour. 

The resource discovery problem was described by Harchol-Balter et al. [29] in 1999. The 

model for resource discovery proposed had the nodes in the distributed system partaking 

in a series scheduling events at synchronous intervals of unspecified length called "rounds". 

In each round, each node would send a list of its neighbours in to other nodes, and a node 

receiving a list of neighbours would be able to create connections to new nodes previously 

unknown to it and add the new nodes as neighbours. After a certain number of rounds, 

the graph would be fully connected (all nodes know about every other node). 

It is important that a robust resource discovery algorithm is used to give each node 

a picture of the global state of a distributed system. This information must be kept as 

current and as accurate as possible for each node. However, this must not be done at 

the expense of flooding the network, sending too many messages, or taking too long to 

complete. Harchol-Balter et al. outlined three metrics for evaluating the performance of 

resource discovery algorithms: 

1. The number of rounds taken for the graph to reach full connectivity. 

2. Pointer communication complexity - the number of "pointers" that is communicated 

during the course of the algorithm. 

3. Connection communication complexity - the number of connections that are made 

during the course of the algorithm. 

The Name Dropper algorithm was proposed by Harchol-Balter et al. III the same 
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paper. It works as follows; consider a node v, where f(v) is a set of all nodes which v 

knows about (the set of neighbours). In each round, each node v transmits f(v) to one 

randomly chosen node u where u C f(v). Upon receiving f(v), node u will update its 

own neighbour list r(u) with new information from v, i.e. f(u) t- f(u)Ur(v). The graph 

will achieve complete connectivity very quickly in O(log2n)) rounds with high probability, 

whereas pointer communication complexity is O(n2log2n) and connection communication 

complexity is O(nlog2n). 

Name Dropper is similar to gossiping [30] algorithms which is used to broadcast infor­

mation to a set of nodes. However, unlike gossiping, Name Dropper does not require each 

node to know about every other node in advance, nor does it require a fixed communications 

network. 

Zinc uses Name Dropper to propagate resource discovery and state information updates 

across administrative domains. Due to its efficiency and simple implementation, Name 

Dropper performs very efficiently for fast information propagation. 

2.5 Grid Scheduling Stages 

According to Schopf, the scheduling of a job will go through the following stages in the 

grid[67J: 

1. Resource discovery 

• Authorisation filtering - Restricting the search for resources that are only au­

thorised to be used by the user . 

• Application definition - Defining the requirements of the user's job to select the 

appropriate resources 
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• Minimum requirements filtering - Eliminating the resources that do not meet 

the minimum requirements criteria from the set of resources to choose from. 

2. System selection 

• Information gathering - Collecting state information from the grid, which is 

mainly derived from a Grid Information Service (GIS) and the local scheduler. 

• System selection - Deciding which system matches up with the requirements 

for the application. Examples of approaches for this are Condor Classads[62]' 

multi-criteria [42, 41] and meta-heuristics [50]. 

3. Job execution 

• Advanced reservation - An optional step, users may opt to reserve resources in 

advance. 

• Job Submission - The user submits the job to the system. Currently there is no 

standardised way of doing this in the different grid middleware implementations. 

• Preparation tasks - Ensuring the files needed are in place, claiming a reservation, 

or whatever "preparation" steps needed to run the job. 

• Monitoring progress- Enabling the user to track the status of his or her job 

• Job completion - When the job is completed, the user is notified. 

• Clean-up tasks - Removing temporary files, retrieving data files, resetting con­

figurations or other miscellaneous "clean-up" procedures. 

Note that though Schopf calls the first stage "resource discovery", the sub-stages listed 

are have more to do with user authentication and user requirements collection than the 

actual "discovery" of distributed resources as described by Harchol-Balter in [29], which is 

categorised by Schopf into a subset of "system selection". 
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