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Abstract
We consider the problem of adapting distributed Erlang applica-
tions to large or heterogeneous architectures to achieve good per-
formance in a portable way. In many architectures, and especially
large architectures, the communication latency between pairs of
virtual machines (nodes) is no longer uniform.

We propose two language-level methods that enable programs
to automatically adapt to heterogeneity and non-uniform communi-
cation latencies, and both provide information enabling a program
to identify an appropriate node when spawning a process. We pro-
vide a means of recording node attributes describing the hardware
and software capabilities of nodes, and mechanisms that allow an
application to examine the attributes of remote nodes. We provide
an abstraction of communication distances that enables an applica-
tion to select nodes to facilitate efficient communication.

We have developed open source libraries that implement these
ideas. We show that the use of attributes for node selection can
lead to significant performance improvements if different compo-
nents of the application have different processing requirements. We
report a detailed empirical investigation of non-uniform communi-
cation times in several representative architectures, and show that
our abstract model provides a good description of the hierarchy of
communication times.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniques—Concurrent Programming

Keywords Erlang, distributed computation, placement, attribute,
metric space.

1. Introduction
Applications on large distributed systems encounter issues that do
not arise in smaller systems, including the following.

• The individual machines comprising the system may not all be
the same: they may have differing amounts of RAM, different
software installed, and so on.
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• Communication times may be non-uniform: it may take consid-
erably longer to send a message from machine A to machine B
than it does to send a message from machine C to machine D.
This is particularly important in large distributed applications,
where communication times may begin to exceed the time re-
quired for individual processes to carry out their computations,
and may dominate execution time.

These factors will make it difficult to deploy applications, espe-
cially in a portable manner. A programmer may be able to use
system-specific knowledge to decide where to spawn processes so
as to enable an application to run efficiently, but if the application is
then deployed on a different system, or if the structure of the system
changes as virtual machines (nodes) fail or new nodes are added,
this knowledge could become useless. This problem could become
especially pernicious if the deployment strategy is built into the
code of the application.

To address these difficulties, we propose a notion of semi-
explicit placement, where the programmer selects nodes on which
to spawn processes based on run-time information about the prop-
erties of the nodes and of the overall system rather than selecting
nodes explicitly based on system-specific knowledge. For example,
if a process performs a lot of computation one would like to spawn
it on a node with a lot of computation power, or if two processes
are likely to communicate a lot then it would be desirable to spawn
them on a pair of nodes which communicate quickly.

We have implemented two Erlang libraries which address the
problems outlined above. The first deals with node attributes,
which describe the properties of individual Erlang nodes and the
physical machines on which they run. The second deals with a
notion of communication distances which models the communi-
cation times between nodes in a distributed system. Our libraries
are open source, and are available from https://github.com/
release-project/portability-libs/.

We describe the theory, implementation, and validation of these
ideas in Sections 2 and 3. Some issues which our initial experiences
have brought to light we discuss in Section 4. Related work is
discussed in Section 5, and then we conclude with a summary and
some possibilities for further work in Section 6.

The work described here was carried out as part of the RE-
LEASE project, whose overall aim was to improve scalability for
distributed Erlang: see http://www.release-project.eu/ for
more information.

2. Node Attributes
This section describes an implementation of a library for managing
attributes for Erlang nodes, and also a choose nodes/2 function
which makes use of these attributes to select nodes with certain



properties. The implementation is contained in a library called
attr.

2.1 Design and Implementation
2.1.1 Attributes
There are a large number of properties which may be of interest
when selecting an Erlang node on which to spawn a process. We
divide these into static and dynamic attributes.

Static attributes describe properties of a node which are not
expected to change during the lifetime of an Erlang application.
Some possibilities are

• The operating system type and version.
• The amount of RAM available.
• The number of cores used by the virtual machine (VM).
• Availability of other hardware features such as specialised float-

ing point units or GPUs.
• Availability of software features, such as particular libraries.

A specific example of this is that the Erlang crypto library
requires a C library from OpenSSL versions later than 0.9.8.
We have used a number of platforms where sufficiently recent
OpenSSL versions have not been installed, and this leads to run-
time failures of Erlang applications which use functions from
crypto.

• Access to shared filesystems. One reason for this might be that
an application may wish to use Erlang’s DETS tables (which are
stored on disk), and thus if a number of VMs all wish to access
the same table then they must all be able to access the same
filesystem. This may be possible if all of the VMs are running
in machines in the same cluster, but not if they are running on
different clusters.

On the other hand dynamic attributes describe properties which are
expected to vary during program execution; for example:

• The load on the physical machine as a whole including other
users’ processes.

• The number of Erlang processes running in the VM.
• The amount of memory which is currently available.
• Whether a particular type of Erlang process is currently running

on the machine. One might want to spawn a process on a VM
which is already running some other type of process, or one
might wish to avoid competing with a CPU-hungry process.

2.1.2 Propagation Strategy
One of the fundamental properties of attributes is that (in our use-
cases at least) they should be available to other VMs, so that a
suitable machine can be selected to spawn a process which has
special requirements. The question then arises of how attributes
should be propagated through a network. The technique adopted
in the present (prototype) implementation is to equip each Erlang
node with a small server which maintains a database of attributes.
When a process wishes to select another node to spawn a process
on, it queries the nodes it is interested in and asks for the values
of the attributes involved in the selection criterion. The servers on
these nodes return the attribute values to the original node, which
then makes a choice according to the information which it has
received. We discuss the merits and demerits of this approach in
Section 2.3.1, and suggest extensions and alternatives.

2.1.3 The Attribute Server
Attributes are stored in an attribute table on each node. Our cur-
rent implementation uses an ETS table for this, although Erlang’s

recently-introduced maps might be a more lightweight alternative.
The attribute table contains two types of entry:

• Static attributes are stored as name-value pairs, for example,
{num_cpus, 4} or {kernel_version, {3,11,0,12}}. The
first entry is an Erlang atom, and the second is an arbitrary
Erlang term (typically a number, string, or tuple).

• Dynamic attributes are represented by tuples of the form
{dynamic, {M,F}}. Here M is the name of a module and
F is the name of a zero-argument function in M . When a dy-
namic attribute is looked up, the function M:F() is evaluated
and its result is returned as the value of the attribute.
We also allow dynamic attributes of the form {dynamic,{M,F,A}}
where A is a list of arguments.

The attribute table is managed by a process which is registered with
the local name attr server. Remote nodes can request informa-
tion about attributes by evaluating a term of the form

{attr_server,Node} ! {self(),{report,Key,AttrNames}}.

Here AttrNames is a list of attribute names and Key is an Erlang
reference (see make_ref/0) which is used to match responses with
requests. When the server receives a request of this form, it looks up
all of the specified attributes and sends back a message containing
the attribute names and their values. If an attribute cannot be found,
or if there is some problem in evaluating a dynamic attribute, the
atom undefined is returned as the value of the attribute.

2.1.4 Populating the Attribute Table
How do the attributes get into the attribute table? The attribute
server can be started by calling attr:start(ConfigFile) where
ConfigFile is a string containing the name of a configuration file,
which in turn contains an Erlang list of attributes. For example, a
configuration file might contain

[{num_cpus, 4},
{hyperthreading, 2},
{cpu_speed, 2994.655},
{mem_total, 3203368},
{os, "Linux"},
{kernel_version, {3,11,0,12}},
{num_erlang_processes, {dynamic,

{erlang, system_info, [process_count]}}].

The final entry here is a dynamic attribute which evaluates erlang:
system_info(process_count): this returns the total number of
processes existing on the node at the current point in time.

We also provide functions insert_attr/2, update_attr/2
and delete_attr/1 which can be used to modify attributes during
program execution; one specific use of these would be for a node
to advertise the fact that it is running a particular type of process,
but see Section 4 below for a discussion of a potential problem with
this strategy.

This scheme is completely extensible. Users can define arbitrary
static and dynamic attributes. For dynamic attributes, they can even
use functions from their own libraries (although caution should be
exercised here since an attribute which takes a long time to cal-
culate could slow things down; also, an attribute whose evaluation
never terminates would cause the server to become locked up).

Discovering static attributes automatically. Many static proper-
ties of the system can be discovered automatically, for example, by
examining system files. The attr library includes a mechanism
for specifying such attributes in the configuration file by means
of terms of the form {automatic, {M,F}} and {automatic,
{M,F,A}}, where the given functions are evaluated once just after



the configuration file is read, with the resulting values being stored
in the attribute table in the same way as normal static attributes.

Non-instantaneous attribute values. When a dynamic attribute
is queried, the related function is called and the result is returned.
This will typically return the value of the attribute at a particular
moment, whereas in some cases it might be desirable to have a value
averaged over some time period. For example, it might be useful to
know the average number of Erlang processes running on a node
during the last five minutes. In some cases, the attribute may in fact
be implemented by calling some system function which already
performs such averaging: for example, the built-in loadavg15 at-
tribute (Table 2). In other cases, a user might want to implement
their own non-instantaneous attributes. This can in fact be done us-
ing the automatic attributes described above: one could specify
a function which would spawn a process which would then run at
regular intervals and use the update_attr/2 function to modify
the current value of the relevant attribute. This is not, however, how
we intend automatic attributes to be used, and it might be worth
extending the attr library to include explicit support for non-
instantaneous attributes. Note that Folsom [2] and Exometer [10]
both support means for collecting information over extended peri-
ods of time.

2.1.5 Built-in Attributes
As mentioned above, many system properties can be discovered au-
tomatically, for example, by examining files in the proc filesystem
on Linux, or by using functions such as erlang:system_info/1,
erlang:statistics/1, or functions in the os Erlang kernel li-
brary.

As an experiment, we have implemented a small number of
useful attributes of this form which are automatically loaded
when the attribute server is started. Most of these are kept in
a library called dynattr. The built-in attributes are loaded be-
fore the contents of the configuration file, and will be overridden
by user-defined versions. The attribute server can also be started
without a configuration file, by calling attr:start(); in this
case, only the built-in attributes will be loaded. One can also
call attr:start(nobuiltins) or attr:start(nobuiltins,
ConfigFile) to omit the built-in attributes.

The current built-in attributes are described in Tables 1 and 2.
This is just a sample implementation for experimental purposes.

However, it does show that quite a large range of properties can be
expressed by attributes. Note however that many of the attributes
(in particular system load) are found by consulting files in the Linux
proc filesystem. This definitely will not work on Windows (the
atom undefined will be returned), and perhaps not on other Unix
implementations where the precise format of the files may differ.

2.1.6 Querying Attributes
The attr library also contains a function called request_attrs/2
which can be used to query a list of nodes for the values of specified
attributes. This is done by a call of the form request_attrs (Nodes,
AttrNames) where Nodes is a list of node names and AttrNames
is a list of attribute names, for example:

request_attrs([vm1@osiris, vm1@bwlf01, vm2@bwlf02],
[loadavg1, cpu_speed])

The function returns a list of the form [NodeName, [{AttrName,
AttrValue}]].

2.1.7 Choosing Nodes
We have used the request_attrs/2 function to implement a
simple choose_nodes/2 function. This takes a list of nodes and
a list of predicates which those nodes must satisfy. For example:

choose_nodes(Nodes, [{cpu_speed, ge, 2000},
{loadavg5, le, 0.6}, {vm_num_processors, ge, 4}])

The function calls request_attrs/2 to get the values of the re-
quired attributes on the specified VMs, then evaluates the predicates
(discarding attributes whose values are undefined) and returns the
subset of the nodes for which all of the predicates are satisfied.

We currently provide two types of predicates. The first carries
out comparisons of attribute values against constants: {AttrName,
op, Const}. We currently have the usual six comparison opera-
tors: eq, ne, lt, le, gt, and ge. These correspond to the Er-
lang operators ==, /=, <, =<, >, and >=, respectively. These
operators can compare any two Erlang terms, although you some-
times have to be careful; for example, [1,2,3,4] < [1,2,4] but
{1,2,3,4} > {1,2,4}. Note also that we have used == and /=
instead of =:= and =/= so that we get the expected results when
comparing floats and integers.

The second type of predicate checks boolean values: we can say
{AttrName, true} and {AttrName, false} (or {AttrName,
yes} and {AttrName, no}).

This is a fairly minimal predicate grammar, implemented here
as a proof of concept. It should suffice for many purposes, but it
would not be hard to extend it if necessary by adding disjunction,
for example.

2.2 Experimental Validation
As a simple validation experiment, we ran a modified version of
one of our benchmark programs: multilevel Ant Colony Optimisa-
tion (ML-ACO) [11]. We hope to perform more extensive valida-
tion on more complex programs at a later date.

Ant Colony Optimisation (ACO) [7] is a metaheuristic inspired
by the foraging behaviour of real ant colonies which is used for
solving combinatorial optimisation problems. Our implementation
is specialised to solve a scheduling problem called the Single Ma-
chine Total Weighted Tardiness Problem [18]. In the basic single-
colony ACO algorithm, a number of artificial ants independently
construct candidate schedules guided by problem-specific heuris-
tics with occasional random deviations influenced by a structure
called the pheromone matrix which contains information about
choices of paths through the solution space which have previously
led to good solutions. After all of the ants have produced solutions,
the best solution is selected and used to update the pheromone ma-
trix. A new generation of ants is then created which constructs new
solutions guided by the improved pheromone matrix, and the pro-
cess is repeated until some halting criterion is satisfied. In our im-
plementation, the criterion is that some predetermined number of
generations have been completed. The algorithm is naturally par-
allelisable, with one process for each ant in the colony. Increasing
the amount of parallelism (i.e., the number of ants) does not lead to
any speedup, but does lead to an improvement in the quality of the
solution.

In the distributed setting, even more concurrency can be ex-
ploited by having several colonies which occasionally share phero-
mone information. In addition to increasing the number of ants ex-
ploring the solution space, distribution also gives the possibility
of having colonies with different parameters: for example, some
colonies might have more randomness in their search, making it
easier to escape from locally-optimal solutions which are not glob-
ally optimal.

In the context of Erlang, one can have a number of nodes
with one colony per node. Furthermore, we can connect colonies
together in various different topologies [20], providing us with a
variety of communication patterns.

As a specific example, our multilevel ACO application is struc-
tured as a tree: see Figure 1. There is a single master node M , and
a number of submaster nodes S and colony nodes C. The colony



Attribute name Value
os_type This calls os:type(), which returns a pair such as {unix, linux} giving the family (either unix or win32)

and type of the operating system.
os_version This calls os:version() which will return a tuple or string containing the OS version.
otp_release This calls erlang:system_info(otp_release) to get the OTP version.
vm_num_processors This calls erlang:system_info(logical_processors_available) to get the number of processors avail-

able to the VM. This may be less than the total number of processors on the physical machine if the VM is
restricted to use some subset of the processors.

mem_total Total memory on the system (in kB), found in /proc/meminfo.

Table 1: Built-in static attributes

Attribute name Value
cpu_speed Current speed (in GHz) of the first CPU , as found in /proc/cpuinfo.
mem_free Current free memory (kB) , from /proc/meminfo.
loadavg1 System load average over last minute, from /proc/loadavg. The value is a float between 0 and 1: see

man proc and man uptime for details.
loadavg5 Load average over last 5 minutes.
loadavg15 Load average over last 15 minutes.
kernel_entities Numbers of Linux scheduling entities (processes/threads), from /proc/loadavg. This returns a pair {R,E},

where R is the number of currently runnable entities and E is the total number of entities on the system.
num_erlang_processes Number of Erlang processes currently existing on the VM, from erlang:system_info(process_count).

Table 2: Built-in dynamic attributes

nodes independently construct solutions to the input problem, and
after a certain number of iterations report their solutions to a sub-
master node on the level above. Each submaster chooses the best
solution from its children and passes that to the level above, and so
on. Eventually, the master node selects the best solution from its
children, which is the best solution from among all of the colony
nodes. This solution is then sent back down the tree to the colony
nodes, which use it to update their pheromone matrices for future
searches. This process is repeated a number of times, after which
the master reports its current best solution and the application ter-
minates.

M

S S S

S S S

C C C C C C C C C

Figure 1: Multilevel ACO

The colony nodes perform a considerable amount of mathematical
computation (and themselves have many ant processes constructing
solutions concurrently), but the master and submaster nodes do not
do much work. It would therefore seem reasonable to run colonies
on VMs with lots of processors and master and submaster nodes on
colonies with fewer processors.

2.2.1 Attribute-aware ML-ACO
We modified ML-ACO so that it used attributes to spawn submas-
ters on small Erlang nodes (at most 4 processors) and colonies on
large ones (more than 4 processors). This was run on 256 compute
nodes in EDF’s Athos cluster; three machines each had 24 small
VMs running (one pinned to each core) and the other 253 had a
single large VM. We ran the modified ML-ACO version with the
VMs presented in random order, gradually increasing the load on
the VMs by increasing the number of ants in each colony from 1 to

80. For each number of ants, we recorded the mean execution time
over 5 runs, firstly using attributes for placement and then without
attributes. In the latter case, processes were just spawned on nodes
in the random order in which they were presented to the applica-
tion.

Figure 2 shows the resulting execution times. We see that the
program performs substantially better when attributes are used
for placement. This is unsurprising, since when attributes are not
used, colony nodes will often be placed on Erlang VMs which are
only using one core instead of 24. These colonies will take much
longer to execute than ones on VMs using lots of cores, and this
slows the entire program down. This is confirmed by Figure 3,
which shows the ratio of execution times without attributes to those
with attributes. For small numbers of ants, the performance of the
attribute-unaware version is similar to the attribute-aware version,
but the ratio become progressively worse as the number of ants (and
hence the number of concurrent processes) in the VM increases.
We expect that the ratio would asymptotically approach 24 with
very large numbers of ants.

This is admittedly a rather artificial example, since the effect
of introducing small VMs is quite predictable. However, it does
demonstrate that the use of node attributes can improve perfor-
mance in a heterogeneous network, and that this can be done with-
out any information about the network being coded into the pro-
gram. We plan to test the use of attributes with a large and complex
program such as Sim-Diasca [8] (one of the RELEASE project’s
use-cases) but we have not yet done this at the time of writing.

2.3 Discussion
2.3.1 Attribute Propagation Strategy
We have adopted a very simple strategy here: when a node wants
to know the value of an attribute on another node, it just asks for it.
Another approach would be to have nodes broadcast their attributes
to all the other nodes which they are connected to. We argue that
our present approach has several advantages:

• Information is only transmitted when it is required, and only to
nodes that require it. It is possible that in a real system, only
a limited number of nodes would actually be spawning remote
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processes, and they would be the only ones which would need to
receive attribute information. Perhaps one could have a model
where nodes have to register to receive attribute information

• Only those attributes which are required are computed and
transmitted. We presumably don’t want thousands of nodes

broadcasting their load average across an entire system once
a minute if it is seldom required.

• In this scheme, information about dynamic attributes is always
fresh. If attribute information has to be broadcast then it will
sometimes be out of date unless it is broadcast regularly, which
might lead to too much network activity. Also, some overhead
is incurred in finding the value of dynamic attributes, and this
would be adding extra load to machines if we had to calculate
dynamic attributes at frequent intervals.

On the other hand, there are some disadvantages to requesting
attributes at the time when a process is spawned:

• If many processes are being created, there will be a lot of re-
quests to the attribute servers, adding load to the target ma-
chines. There is a tension between this factor and the danger of
flooding the network with too many broadcast attributes. Like
other functions that require communication between multiple
nodes, the choose_nodes/2 and request_attributes/2
functions must be used with care.

• If there is a lot of latency in the network or just between the
machine which is making the request and a single member of
the list of machines it is querying, then request_attrs/2 and
hence choose_nodes/2 will take a long time every time it is
called. This could slow things down considerably in comparison
to the case where information is broadcast regularly.

It may be possible to find some middle ground by caching re-
sponses to the request_attrs/2 function, e.g. in an ETS table.
Once a static attribute has been retrieved once, it would never be
necessary to ask for it again (although one could end up with at-
tribute information belonging to defunct nodes, so it might be worth
invalidating all of the static attributes once every few hours). Dy-
namic attributes could be saved with a timestamp, and if they have
been in the cache too long then we could ask for their value again.
The time for which an attribute is valid could vary with the at-
tribute: we would wish to discard the 1-minute load average quite
quickly, but could keep the 15-minute load average for longer.

Given more time, we would have liked to implement a system
where attributes are broadcast across the network as well, and
to see how this method compares with the one we have already
implemented. It is possible that the second approach would be
more effective in certain situations, but this would depend on the
properties of the application.

2.3.2 Reliability
The present implementation is fairly simplistic, and makes no pre-
tence to reliability. If a node’s attribute server crashes for some rea-
son then there is no attempt to restart it. There are also problems
in querying such nodes. At the moment, request_attrs/2 times
out if it has to wait too long: if nothing happens for 5 seconds af-
ter receiving its most recent message, it just times out and returns
whatever attributes it has already received. If an attribute server has
gone down then request_attrs/2 will take at least 5 seconds ev-
ery time it requests information from a list of nodes which contains
a bad one. On the other hand, timing out runs the risk of missing a
response from a live node which is taking a long time to respond.

See Section 4 below for some related points.

2.3.3 Attributes and s groups
In earlier publications [5, 26] we have described and implemented
s groups, which partition the address space of distributed Erlang
applications and help to improve scalability by by avoiding the
default behaviour of having connections between every pair of
nodes.



In this paper we have not considered the interaction of node
attributes and s groups; however it should not be too difficult to
integrate the two. The current choose_nodes/2 function takes
a list of Erlang nodes as its first argument, so one can easily
supply it with the members of an s group, obtained using the
s_group:own_nodes/0 function for example. One could modify
attr:choose_nodes/2 to take an s group name as a parameter,
but this would make it quite tightly coupled to the s_group library,
which is not part of the standard Erlang/OTP distribution; our
current attr library can be used with any Erlang version.

3. Communication Distances
In many modern distributed computer installations, the inter-node
communication infrastructure has some kind of hierarchical struc-
ture. Within a particular organisation, machines in a cluster may be
connected together by a high-speed network, and this network may
in turn be connected to other machines within the organisation via
a network with slower communication. If the network spans sev-
eral sites in different geographical locations, then communication
between sites may be slower still. Connecting to machines in a dif-
ferent organisation may introduce further delays.

On a smaller scale, communication between processing units
within an SMP machine may be similarly hierarchical: inter-
processor communication rates may depend on the level of cache
which two processors share, or whether the processors are located
on the same socket.

In this section we describe an implementation of an abstract
model of communication times which can be used for process
placement in systems with this type of hierarchical communication
structure. We use an idea originating in [17].

Suppose we have a collection of Erlang nodes. A useful way to
think about inter-node communication times is to think of the nodes
as points in a space and to regard communication times as distances
between these points. An appropriate mathematical model is the
notion of a metric space (see [12, 6.12] or [28, 2.15], for example).

3.1 Metric and Ultrametric Spaces
Definition. A metric space is a set X together with a function

d : X ×X → R+ = {x ∈ R : x ≥ 0}

such that, for all x, y, z ∈ X ,

(i) d(x, y) = 0 if and only if x = y

(ii) d(x, y) = d(y, x)

(iii) d(x, z) ≤ d(x, y) + d(y, z)

The inequality (iii) is called the triangle inequality. If we replace
(iii) with

(iii′) d(x, z) ≤ max{d(x, y), d(y, z)}

then we obtain the definition of an ultrametric space [15] (and (iii′)
is called the ultrametric inequality). It is not hard to see that every
ultrametric space is a metric space.

Metric spaces give a very general model of distances, and admit
generalisations of many concepts from standard geometry. One
specific concept we will make use of is the closed disc.

Definition. Let X be a metric space. For x ∈ X and r ∈ R+, the
closed disc of radius r with centre x is

D(x, r) = {y ∈ X : d(x, y) ≤ r}.

3.2 Trees and Ultrametric Spaces
Given a tree with an arbitrary amount of branching, we can define
a metric (in fact, an ultrametric) on its set of leaves by

d(x, y) =

{
0 if x = y

2−`(x,y) if x 6= y.

where `(x, y) is the length of the longest subpath which is shared
by the paths from the root to x and y. We leave it as an exercise to
show that d is in fact an ultrametric.

Referring to the tree in Figure 4 we have

d(b, c) = 2−2 =
1

4

d(b, f) = 2−1 =
1

2

d(b, k) = 2−0 = 1

and so on.

h i j

e f ga b c d k l m

Figure 4

Similarly, some closed discs around b are

D(b, 0.3) = {a, b, c, d}
D(b, 0.8) = {a, b, c, d, e, f, g}
D(b, 1) = {a, b, c, d, e, f, g, h, i, j, k, l,m}

(see Figure 5, for example).

h i j

e f ga b c d k l m

Figure 5: D(b, 0.8)

This suggests why this particular metric might be useful for
studying communication distances: given a (computing) node in
some hierarchical communication system, the various closed discs
contain nodes which are in the same subclusters at various levels,
and hence which might be expected to have similar inter-node
communication times.

3.2.1 Implementation
We have implemented a simple Erlang library which carries out cal-
culations using ultrametric distances. It takes as input a tree (rep-
resented as an Erlang term) which describes the structure of a net-
work of Erlang VMs, and then uses closed discs to describe VMs



at various distances. The library includes a choose nodes/2 func-
tion similar to that in the attribute library: one can select machines
by making calls of the type

choose_nodes (Nodes, {dist, le, 0.2})

or

choose_nodes (Nodes, {dist, gt, 0.8})

to get machines which are close or far away, respectively. Eventu-
ally we intend to merge this library with the attribute library.

3.3 Comparing the Model with Reality
Our model is very abstract, and we claim that this is in fact an ad-
vantage. Given a computer network with a hierarchical communi-
cation structure, we can draw a tree which reflects the gross struc-
ture of the communication hierarchy and use its abstract metric
properties to reason about communication times, without having to
know details about the physical structure of the network, including
actual communication times.

The question arises of whether our model might be too abstract.
If we make decisions based on the abstract hierarchical structure of
the network, can we be sure that they bear a reasonable correspon-
dence to real communication times?

In an attempt to answer this question, we have carried out some
empirical studies of Erlang communication times on real-life sys-
tems. Our technique has been to look at the time taken for mes-
sages to pass between pairs of nodes in distributed Erlang systems
and then to use statistical techniques to study how nodes cluster to-
gether as determined by communication times. We can then com-
pare the outcome of the clustering process with our abstract view
of the system to see how they correspond.

We do not expect actual communication times to satisfy the met-
ric space axioms precisely. For example, messages sent from a node
to itself will not be sent instantaneously (see axiom (i)); however,
it is plausible that such messages will be significantly faster than
messages between different nodes. Similarly, communication times
will probably not be precisely symmetric (axiom (ii)), but we would
expect messages times from node A to node B to be very similar
to those from B to A. These expectations are confirmed by the data
from the experiments described below.

3.3.1 Empirical Validation
We have implemented a small Erlang application with two compo-
nents:

• A server which waits for messages and then replies immediately
to the sender.

• A client which sends a large number of messages to the server
and then calculates the average time between sending a message
and receiving a reply, using the functions in the Erlang timer
module.

Given a network of machines, we run the client and server on every
pair of machines to determine average communication times. We
then apply statistical methods to detect clusters within the network.

We view the machines in the network as points in a space and
the communication times as a measure of distance between the
points. This view is distinct from our earlier abstract view involving
metric spaces. Here we simply have empirical data and we have no
guarantee that it will satisfy any of the axioms of metric spaces.
The point of our experiments is to see how closely our empirical
data in fact conforms (or fails to conform) to our abstract model.

3.3.2 Cluster Analysis
To study the hierarchical structure of our results we use a tech-
nique known as hierarchical agglomerative clustering [9, Chapter

4], [14]. This collects data points into clusters according to how
close together they are. Furthermore, the clusters are arranged hier-
archically, with small clusters grouped together to form larger ones,
and so on.

The basic technique is as follows:

• Start off by placing every point in a cluster of its own.
• Look for the two clusters which are closest together and merge

them to form a large cluster.
• Repeat the previous step until we have only a single cluster.

This gives rise to a system of nested clusters, as illustrated in
Figure 6 for a set of points in the plane (with the usual Euclidean
metric).

a b

c

d

e

f

g

h i

Figure 6: Hierarchical clustering

A question arises here: we know the distance between two
points (that is our basic data), but how do we measure the distance
between two clusters? Various methods can be used. For example,
given two clusters A and B, any of the following could be used:

d(A,B) = max{d(a, b) : a ∈ A, b ∈ B}
d(A,B) = mean{d(a, b) : a ∈ A, b ∈ B}
d(A,B) = min{d(a, b) : a ∈ A, b ∈ B}

All of these methods (and others) are used in the clustering liter-
ature (see [9] or [14], for example), and all are useful in different
situations. We have chosen the first method, which is known as the
complete linkage method: d(A,B) = max{d(a, b) : a ∈ A, b ∈
B}. In terms of communication times, this tells us what the worst-
case communication time between a node in A and a node in B is;
this is reasonable from our point of view because we wish to have
upper bounds on communication time.

The hierarchical structure of clusters and subclusters can be
displayed in a type of diagram called a dendrogram. This is a
tree which has one node for each cluster, with the children of a
cluster being its subclusters. Figure 7 shows the dendrogram cor-
responding to Figure 6. The dendrogram was obtained using the
hclust command in the R system for statistical analysis and vi-
sualisation [23], using distances between points measured directly
from Figure 6. The dendrogram describes the hierarchical nested
structure seen in Figure 6, with the height of the internal nodes of
the dendrogram reflecting the distances between the corresponding
subclusters.

3.4 Measurements
We ran our distance-measuring Erlang application on several sys-
tems. Firstly we used it on a small scale to look at inter-processor
communication times within a multicore system, then we used it
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Figure 7: Dendrogram

on a larger scale to look at inter-node communication times on two
sizeable networks.

Our technique was to run Erlang VMs on each of the compo-
nents of the system (processing units within a single SMP machine,
individual physical machines within a network), and measure the
average time taken to send several messages back and forth be-
tween each pair of VMs. More precisely, our basic unit of mea-
surement was the time taken to send 100 messages back and forth:
we chose this number because the time taken for a single mes-
sage can be close to the one-microsecond resolution of Erlang’s
timer:tc/1,2,3 function, so it is difficult to get precise times for
single messages.

For each pair of VMs, we actually measured the mean time over
100 such 100-message batches, and used that as our final data. This
was an attempt to make sure that our figures were representative:
with a smaller number of datapoints, there was a danger that, for
example, one of the VMs might have been swapped out by the
operating system when the messages arrived, adding an unusual
delay. By sending 100 batches we hoped to mitigate such effects.

We also tried two different strategies. In the first, we ran a single
process on VM number 1 which broadcast messages to all other
VMs in parallel; once this had finished, we ran a similar process on
VM number 2, and then on VM number 3, and so on. In our second
strategy, we ran such processes on all VMs concurrently, so that
all pairs of VMs were communicating simultaneously. We found
that this gave more interesting results, because high traffic densities
made irregularities in communication times more apparent.

It should be pointed out that running multiple VMs on the same
physical machine is not obviously a sensible thing to do: within a
single VM, inter-process messages are transmitted directly within
the VM, by copying data between VM data-structures. This is
something like 40 times faster than TCP/IP communication be-
tween two VMs on the same physical machine, and hence having
more than one VM would appear to lead to inefficiency. However,
this is not necessarily the case. If a VM does not require too many
resources, then pinning it to some subset of the cores (on a single
socket, for example) might enable it to benefit from the same lo-
cality effects that we have seen above, and hence to operate more
efficiently than if it is using all of the cores. Whether or not this is
desirable would depend on the application being run.

3.4.1 Forty-eight Core Machine
We ran our experiment on an AMD Opteron 6348 machine with
48 cores. The structure of the machine is shown in Figure 8 (this
was obtained using the lstopo command included with the hwloc
library [4]) and a dendrogram of our results in Figure 9.

The structure of the dendrogram, and hence the communication
times from which it was derived, reflects the NUMA structure
of the machine very closely. Erlang uses TCP/IP for inter-VM
communications, and when the VMs are on the same host, this will
take place via the Application layer of the TCP/IP protocol [3],
where messages are transmitted within memory by the OS. This
means that there will be very little overhead, so communication
times are strongly affected by the cache structure of the machine.

Figure 8: Forty-eight-core machine (four sockets like this)
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Figure 9: Dendrogram for forty-eight-core machine

We have run similar experiments on other multicore machines and
in each case we obtained dendrograms which corresponded very
closely to the NUMA hierarchy.

3.4.2 Communication Times in Networks
The results in the previous subsection show that hierarchical com-
munication structures do appear in reality, and the dendrograms
which we obtain correspond very closely to the tree which we
would use in our metric space model, based on the physical struc-
ture of the system. However, our experiments involved Erlang VMs



pinned to individual cores of a multicore machine, a situation which
is definitely not typical of distributed Erlang applications.

We also ran experiments in more realistic settings, measuring
communication times between Erlang VMs running on computa-
tional nodes in distributed networks.

3.4.3 Departmental Network
We ran our tests on some machines in a departmental network
at Heriot-Watt University. We used 39 machines, including a 34-
node Beowulf cluster. The results are shown in Figure 10. Here,
the dendrogram picks out the Beowulf cluster, however, it is less
obvious what is happening with the other machines.
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Figure 10: Dendrogram for departmental network

3.4.4 A 256-node Network
Our final test-case was a 776-node cluster at EDF; the RELEASE
project was allowed simultaneous access to up to 256 nodes (6144
cores in total). Users interact with the cluster via a front-end node
and initially have no access to any of the compute nodes. Access to
the compute nodes is obtained via the SLURM workload manager
(see http://slurm.schedmd.com/), either interactively or via
a batch script which specifies how many nodes are required, and
for how long. Jobs wait in a queue until sufficient resources are
available, and then SLURM allocates a number of compute nodes,
which then become accessible (via ssh, for example). The user has
exclusive access to these machines, and no-one else’s code will
be running at the same time. Fragmentation issues mean that jobs
are not usually allocated a single contiguous block of machines,
but rather some subset scattered through the cluster: for example
nodes 127-144, 163-180, 217-288, 487-504, 537-648, 667-684.
These will typically be interspersed with machines allocated to
other users. Users can request specific (and perhaps contiguous)
node allocations, but it may take a long time before the desired
nodes are all free at once, leading to a very long wait in the SLURM
queue.

Athos was somewhat problematic. As we shall see shortly, com-
munication times were highly non-uniform. We hypothesise that
Athos communication takes place via a hierarchy of routers, but
the precise structure of the cluster is not publicly available. Fur-
thermore, SLURM tends to allocate a different set of nodes to each
job, so it is difficult to get repeatable results.

Figures 11 and 12 illustrate the complicated communication
structure that we have observed. Figure 11 shows a dendrogram
for communication times in a 256-node SLURM allocation on the

Athos cluster. We can see 9 or 10 distinct subclusters with fast intra-
cluster communication, but with substantially slower communica-
tion between the subclusters. However, it’s difficult to determine
exactly what’s going on due to the denseness of the diagram.

In an effort to make the data more comprehensible, Figure 12
shows two views of a three-dimensional plot of the communica-
tion times. The x- and y- axes show the source and target nodes
(i.e., the nodes which are sending and receiving messages, respec-
tively), and there is one point for each pair of machines, whose z-
coordinate represents the mean communication time observed be-
tween those machines. These points are coloured according to the
source machine, in an attempt to make the perspective views easier
to interpret. It is clear that communication times are highly quan-
tised: for some pairs of machines, the mean time taken to exchange
100 messages is on the order of 25ms, whereas for others, it is over
800ms. This is a 32-fold difference.

Remark. It is worth noting that communication times vary with
the amount of network traffic. We also ran our test program (dur-
ing the same SLURM job as above) with a different strategy, where
one machine at a time would exchange messages with all of the
others, then the next machine would do the same thing, and so on;
this involves much less network traffic. The distribution of mes-
sage times is much smoother: all communication between different
machines takes between about 50ms and 60ms for 100 exchanges.
This contrasts strongly with the situation in Figure 12, where the
mean communication time is much slower (585ms, as opposed to
58ms); Oddly, some of the communication is actually faster in Fig-
ure 12, where about 10% of the exchanges take between 20ms and
40ms.

Discussion. The earlier figures show that Athos does have a very
hierarchical communication structure (at least when there is a lot of
network traffic), but we have been unable to determine exactly what
that structure is. Information about the construction of the network
is not available to us, but we hypothesise that there is some tree-
shaped hierarchy of routers. When there is a lot of network traffic
(as there was in these experiments, where all nodes were talking
to all others simultaneously) this would mean that some messages
would have to travel up and back down through several layers of
routers, and some of the routers would become congested. There
appears to be an extra complication that node names do not cor-
respond cleanly to the hierarchical structure of the network; this
would explain some of the off-diagonal areas of fast communica-
tion at the bottom of the plots in Figure 12. The situation is made
even worse by the fact that we cannot observe the whole network
at once: we can only look through the 256-node windows supplied
by SLURM.

Despite these difficulties, the dendrogram in Figure 11 (and
similar ones obtained with different SLURM allocations) shows
that the communication times are strongly hierarchical, and fit our
metric-space model well. This is also the case with our earlier re-
sults for communication times between cores on NUMA machines.
Our model abstracts away detailed information about communi-
cation times, but the closed discs which it provides correspond
strongly to the clustering structure in actual communication times,
and so closed discs in the metric space provide a good descrip-
tion of sets of nodes which can communicate quickly. We have not
yet been able to test our methods with a large application, but the
large range of communication times (differing by a factor of 32 in
some cases) seen in the Athos cluster suggests that careful use of
information about communication distances could improve perfor-
mance significantly for applications which perform a large amount
of suitably localised communication.
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Figure 11: Dendrogram for Athos cluster

Figure 12: Athos communication times



4. Practical Issues & Future Work
The libraries for attributes and communication distances described
above are prototypes, and our experience so far suggests several
factors which it would be helpful to modify in libraries intended
for general use.

Concrete and abstract bounds. In practice it may be some-
what difficult to know what concrete bounds to use to make a
choice of nodes. For instance, at a particular time there may be
no nodes satisfying {loadavg5, lt, 0.1} but several satisfying
{loadavg5, lt, 0.3}. For practical use it might be worth hav-
ing predicates like {loadavg5, low} and {cpu_speed, high}
which would examine an entire list of candidate nodes and select
the ones whose attributes are relatively “good” in comparison with
the majority.

Similarly, programmers should not have to know about explicit
distances. Note that distances vary with the depth of a network hi-
erarchy: in a shallow network, the nearest node to a specified node
might be at a distance of 1

4
, whereas in a deeper network it could

be at a distance of 1
32

. In order to avoid this, we should provide the
programmer with some abstractions such as [very_near, near,
far, very_far, anywhere].

Conflicting constraints. Another issue is that a programmer may
supply conflicting constraints. For example, one might ask for a
node which has a large number of cores and has a particular library
installed, but it may not be possible to satisfy both requirements
at once. One could overcome this to some extent by, for example,
giving priority to the earlier constraints in a list. For debugging
purposes, it could be useful to include a mode in which such
conflicts are reported at runtime.

Avoiding clashes when spawning processes. There may be some
danger in using attributes to select nodes. If a large number of
processes are spawning other processes, there is a possibility that
many of them may select the same node, and then performance
will suffer. This could be mitigated to some extent by making a
random choice from a list of suitable candidates, but there could
be problems if there is a unique node which has some particularly
desirable properties. At some point it may be necessary to spawn
processes on a suboptimal node, but it is not entirely clear how to
do this in a portable manner.

Fault tolerance. Our current implementation of attribute scheme
is highly fault-tolerant as long as no applications dynamically mod-
ify the attributes of a node. Suppose that only static and built-in at-
tributes are used: in the event of the attribute server crashing, it can
simply be restarted and all of the node attributes will be restored;
similarly, if an application process crashes then it can be restarted
and the node attributes will be the same as they were before the
crash. However, if an application modifies the attributes (for exam-
ple, to register the fact that it is running on the node), then if the
attribute server crashes, this information will be lost; if the appli-
cation crashes then the attribute server could be left with stale at-
tributes belonging to a defunct process. More research on allowing
applications to modify node attributes may be needed.

Dynamic changes to network structure. Our current distance
scheme depends on a static description of the network structure. In
a long-running system, it is likely that nodes will leave the system,
or that new ones may join. We have some preliminary ideas as to
how to deal with this problem, but this will require further work.

Using attributes in practice. We have described mechanisms
which allow programmers to select nodes with useful properties,
but have not said anything about how these methods should be used
in practice. Finding optimal solutions to placement problems even

with a fixed number of tasks whose requirements are known in
advance is already difficult (consider the (NP-hard) Quadratic As-
signment Problem [22], for example), and we suspect that it would
become completely intractable when tasks whose requirements
may vary with time are created and destroyed dynamically. Our
hope is that a programmer’s intuition about the behaviour of their
program will will enable them to make reasonable choices about
where to spawn important processes, and that our techniques will
facilitate the construction of applications with good and portable
performance.

5. Related Work
Attributes. The Folsom [2] and Exometer [10] libraries provide
facilities for collecting per-node metrics on running Erlang appli-
cations; the built-in and user-defined metrics are similar to our at-
tributes, but are typically used for monitoring and analysing the
behaviour of the application (usually via external tools).

At the tool, rather than language level, WombatOAM [24, 25,
27] is a commercial product for deploying and monitoring Erlang
applications on large distributed systems, either physical or cloud-
based. Wombat can collect metrics from the nodes which it is
managing [24, §4.2.2]. WombatOAM metrics are properties such
as sizes of run queues, numbers of processes, numbers of atoms,
and so on. There are about 90 built-in metrics, and users can define
their own, using Folsom or Exometer, for example. Wombat uses
metrics for interactive monitoring the behaviour of Erlang nodes:
someone using Wombat to manage a distributed Erlang application
can ask for information about metrics, plot graphs of them, and so
on.

The metrics of Folsom, Exometer, and WombatOAM are closely
related to the attributes described below, but the crucial point about
our attributes is that they are made available to other nodes in order
to assist with process placement; the systems mentioned above all
use metrics for monitoring run-time behaviour.

Basho’s Riak Core – the framework underlying their distributed
Erlang database system, Riak – uses a notion of node capabili-
ties whereby nodes in a distributed system can publish informa-
tion which is then propagated to other nodes [19]. This feature is
intended for use during upgrades, so that, for example, one can de-
termine which version of a protocol to use to talk to other nodes.

Further afield, information about members of distributed sys-
tems is used in Grid scheduling, where one wishes to execute a
job on one or more remote machines: schedulers need information
about the properties of individual machines, including hardware ca-
pabilities, current load, the amount of work queued for later execu-
tion, and so on. Deciding how to schedule jobs can then involve
complex optimisation problems. This is a large field, and the most
we can do here is to refer the reader to surveys such as [29] and [6].

Communication distances. In a number of systems work distri-
bution is informed by communication topology, e.g. HotSLAW [21]
and hierarchical load balancing in CHARM++ [16]. Several paral-
lel functional languages have exploited communication topology,
e.g. parallel Haskells with a two-level topology [13], and a multi-
level topology [1, Chapter 5]. Our model of arbitrary communi-
cation distances is relatively sophisticated in combining multiple
levels and a notion of equidistant discs, i.e. suitable targets for work
distribution. The model is taken directly from Haskell distributed
parallel Haskell (HdpH) [17].

RELEASE technologies. The new attribute and communication
libraries are part of the Scalable Distributed Erlang technologies
developed in the EU RELEASE project, but can be used with any
distributed Erlang program. Moreover our language level adaption
mechanisms can be combined with existing deployment tools such
as WombatOAM, which was also developed in RELEASE.



6. Conclusion
We have designed, implemented, and performed a preliminary eval-
uation of semi-explicit work-placement mechanisms combining
host/node attributes and communication distances.

Our attribute library provides a flexible and user-extensible
method for Erlang nodes to advertise their properties to other nodes
in a distributed system (Section 2). We have performed a validation
of this which suggests that the use of attributes to select suitable
nodes to spawn remote processes on can lead to significant im-
provements in performance (Figures 2 and 3). Attributes can be
exploited without the programmer requiring any a priori knowl-
edge of the configuration of the system, and hence allows one to
achieve good performance in a portable way.

We have also proposed an abstract model of communication dis-
tances, and an empirical investigation of communication times on
representative architectures including NUMA, and both large and
small clusters (Section 3). Our method gives a good description of
hierarchical communication structures without requiring concrete
(and perhaps very complicated) information about communication
times (Section 3.4). This suggests strongly that in distributed appli-
cations with non-trivial communication, our model would improve
performance, again in a portable way.

In future research we hope to apply our techniques to larger and
more realistic Erlang applications in order to provide a more con-
vincing validation. We believe that the concept of communication
distances could profitably be applied to distributed computation in
general, and hope to experiment with other languages in addition
to Erlang.
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