
Strathprints Institutional Repository

Ritchie, G. and Levine, J. (2004) A hybrid ant algorithm for scheduling independent jobs in
heterogeneous computing environments. [Proceedings Paper]

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9033269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


A hybrid ant algorithm for scheduling independent jobs in heterogeneous
computing environments

Graham Ritchie and John Levine

Centre for Intelligent Systems and their Applications Department of Computer and Information Sciences
School of Informatics, University of Edinburgh University of Strathclyde

Appleton Tower, Crichton Street, Edinburgh, EH8 9LE Livingstone Tower, 26 Richmond Street, Glasgow, G1 1XH
Graham.Ritchie@ed.ac.uk John.Levine@cis.strath.ac.uk

Abstract

The efficient scheduling of independent computational jobs
in a heterogeneous computing (HC) environment is an im-
portant problem in domains such as grid computing. Finding
optimal schedules for such an environment is (in general) an
NP-hard problem, and so heuristic approaches must be used.
In this paper we describe an ant colony optimisation (ACO)
algorithm that, when combined with local and tabu search,
can find shorter schedules on benchmark problems than other
techniques found in the literature.

Introduction & Motivation
The efficient scheduling of independent computational jobs
in a heterogeneous computing (HC) environment such as a
computational grid is clearly important if good use is to be
made of such a valuable resource. However, finding optimal
schedules in such a system has been shown, in general, to
be NP-hard (it is a generalised reformulation of SS8 from
(Garey and Johnson, 1979)).

Static scheduling algorithms can be used in such a system
for several different requirements (Braun et al., 2001). The
first, and most common, is for planning an efficient sched-
ule for some set of jobs that are to be run at some time in
the future, and to work out if sufficient time or computa-
tional resources are available to complete the runa priori.
Static scheduling may also be useful for analysis of hetero-
geneous computing systems, to work out the effect that los-
ing (or gaining) a particular piece of hardware, or some sub-
network of a grid for example, will have. Static scheduling
techniques can also be used to evaluate the performance of
a dynamic scheduling system after it has run, to check how
effectively the system is using the resources available.

The ant colony optimisation (ACO) meta-heuristic was
first described by Dorigo (Dorigo, 1992) as a technique to
solve the travelling salesman problem, and was inspired
by the ability of real ant colonies to efficiently organ-
ise the foraging behaviour of the colony using external
chemicalpheromonetrails as a means of communication.
ACO algorithms have since been widely employed on many
other combinatorial optimisation problems (see (Dorigo and
Stützle, 2002) for a review), including several domains re-
lated to the problem in hand, such as bin packing (Levine

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

and Ducatelle, 2003) and job shop scheduling (van der
Zwaan and Marques, 1999), but ACO has not previously
been applied to finding good job schedules in an HC en-
vironment.

Simulation Model
Real-world HC systems, such as a computational grid, are
complex combinations of hardware, software and network
components and so it is often hard to make fair comparisons
of the different techniques that are being used on various dif-
ferent systems. To address this problem (Braun et al., 2001)
describes a benchmark simulation model for comparison of
static scheduling algorithms for HC environments. They
define the notion of ametataskas a collection of indepen-
dent jobs with no inter-job dependencies, and the goal of a
scheduling algorithm is to minimise the total execution time
of the metatask. As the scheduling is performed statically
all necessary information about the jobs in the metatask and
processors in the system is assumed to be availablea priori.
Essentially, the expected running time of each individual job
on each processor must be known, and this information can
be stored in an ‘expected time to compute’ (ETC) matrix. Of
course, in a real scheduler, there may be some difference be-
tween the expected time to compute and the real time taken
to complete a job, but for this paper we assume that the value
in the ETC matrix is the running time of the job and we leave
it to further work to test the scheduler in a more realistic en-
vironment. A row in an ETC matrix contains the ETC for
a single job on each of the available processors, and so any
ETC matrix will haven×m entries, wheren is the number
of jobs andm is the number of processors. A simple exam-
ple ETC matrix with details for 4 jobs and 2 processors is
given in table 1.

In any real heterogeneous computing system the running
time of a particular job is not the only factor that must be
taken into consideration when allocating jobs, the time that it
takes to move the executables and data associated with each
job should also be considered. To resolve this the entries
in the ETC matrix are assumed to include such overheads.
Also, if a job is not executable on a particular processor (for
whatever reason) then the entry in the ETC matrix is set to
infinity.

In order to simulate various possible heterogeneous
scheduling problems as realistically as possible (Braun et al.,



processor 1 processor 2
job 1 2 3
job 2 3 4
job 3 4 5
job 4 5 6

Table 1: An example ETC matrix. The figures indicate the
time that processorm is expected to take to execute jobn.
This is aconsistentETC matrix, as processor 1 is consis-
tently faster than processor 2.

2001) define different types of ETC matrix according to
three metrics:task heterogeneity, machine heterogeneityand
consistency. The task heterogeneity is defined as the amount
of variance possible among the execution times of the jobs,
two possible values were defined:high and low. Machine
heterogeneity, on the other hand, represents the possible
variation of the running time of a particular job across all the
processors, and again has two values:highandlow. In order
to try to capture some other possible features of real schedul-
ing problems, three different ETC consistencies were used:
consistent, inconsistentandsemi-consistent. An ETC matrix
is said to be consistent if whenever a processorpj executes a
job ji faster than another processorpk, thenpj will execute
all other jobs faster thanpk. A consistent ETC matrix can
therefore be seen as modelling a heterogeneous system in
which the processors differ only in their processing speed.
In an inconsistent ETC a processorpj may execute some
jobs faster thenpk and some slower. An inconsistent ETC
matrix could therefore simulate a network in which there are
different types of machine available, e.g. a UNIX machine
may perform jobs that involve a lot of symbolic computa-
tion faster than a Windows machine, but will perform jobs
that involve a lot of floating point arithmetic slower. A semi-
consistent ETC matrix is an inconsistent matrix which has a
consistent sub-matrix of a predefined size, and so could sim-
ulate, for example, a computational grid which incorporates
a sub-network of similar UNIX machines (but with differ-
ent processor speeds), but also includes an array of different
computational devices.

These different considerations combine to leave us with
12 distinct types of possible ETC matrix (e.g. high task,
low machine heterogeneity in an inconsistent matrix, etc.)
which simulate a range of different possible heterogeneous
systems. The matrices used in the comparison study of
(Braun et al., 2001) were randomly generated with various
constraints to attempt to simulate each of the matrix types
described above as realistically as possible. The methods
used to generate the matrices are briefly described here. Ini-
tially a m × 1 ‘baseline’ vectorB is generated by repeat-
edly selectingm uniform random floating point values from
between 1 andφb, the upper bound on values inB. Then
the ETC matrix is constructed by taking each valueB(i)
in B and multiplying it by a uniform random numberxi,k

r
which has an upper bound ofφr. xi,k

r is known as arow
multiplier. Each row in the ETC matrix is then given by
ETC(ji, pk) = B(i) × xi,k

r for 0 ≤ k ≤ n. The vec-

tor B is not used in the actual matrix. This process is re-
peated for each row until them × n matrix is full. Each
of the different task and machine heterogeneities described
above is modelled by using different baseline values: high
task heterogeneity was represented by settingφb=3000 and
low task heterogeneity usedφb=100. High machine hetero-
geneity was represented by settingφr=1000, and low ma-
chine heterogeneity was modelled usingφr=10. To model
a consistent matrix each row in the matrix was sorted inde-
pendently, with processorp1 always being the fastest, and
pm being the slowest. Inconsistent matrices were not sorted
at all and are left in the random state in which they are gen-
erated. Semi-consistent matrices are generated by extract-
ing the row elements{0, 2, 4, . . .} of each rowi, sorting
them and then replacing them in order, while the elements
{1, 3, 5, . . .} are left in their original order, this means that
the even columns are consistent while the odd columns are
(generally) inconsistent.

For their study 100 matrices were generated of each of the
12 possible types, modelling 16 processors and 512 jobs for
all matrices. Exactly the same matrices used in their study
were used in the experiments described below.

Current techniques
(Braun et al., 2001) provides a comparison of 11 static
heuristics for scheduling in HC environments, and the reader
is referred there for details of the various schemes that are
used. A range of simple greedy construction heuristic ap-
proaches are compared and some of these are briefly de-
scribed below.

Opportunistic Load Balancing (OLB) assigns each job
in arbitrary order to the processor with the shortest schedule,
irrespective of the ETC on that processor. OLB is intended
to try to balance the processors, but because it does not take
execution times into account it finds rather poor solutions.

Minimum Execution Time (MET) assigns each job in ar-
bitrary order to the processor on which it is expected to be
executed fastest, regardless of the current load on that pro-
cessor. MET tries to find good job-processor pairings, but
because it does not consider the current load on a processor
it will often cause load imbalance between the processors.

Minimum Completion Time (MCT) assigns each job in
arbitrary order to the processor with the minimum expected
completion timefor the job. The completion time of a job
j on a processorp is simply the ETC ofj on p added to
p’s current schedule length. This is a much more success-
ful heuristic as both execution times and processor loads are
considered.

Min-min establishes the minimum completion time for
every unscheduled job (in the same way as MCT), and then
assigns the job with theminimumminimum completion time
(hence Min-min) to the processor which offers it this time.



Min-min uses the same intuition as MCT, but because it con-
siders the minimum completion time for all jobs at each it-
eration it can schedule the job that will increase the overall
makespan the least, which helps to balance the processors
better than MCT.

Max-min is very similar to Min-min. Again the minimum
completion time for each job is established, but the job with
the maximumminimum completion time is assigned to the
corresponding processor. Max-min is based on the intuition
that it is good to schedule larger jobs earlier on so they won’t
‘stick out’ at the end causing a load imbalance. However
experimentation shows that Max-min cannot beat Min-min
on any of the test problems used here.

The best solution technique found in (Braun et al., 2001)’s
comparison was a genetic algorithm (GA). The GA de-
scribed works onchromosomeswhich represent a complete
solution to the problem. Each chromosome is simply a ar-
ray of n elements, in which positioni represents jobi, and
each entry in the array is a value between 1 andm which
represents the processor to which the corresponding job is
allocated. The main steps of the algorithm are described be-
low.

1. Generate an initial population of 200 chromosomes. Two
policies were used; either use 200 randomly generated
chromosomes, or use 199 randomly generated ones, plus
the Min-min solution (known asseedingthe population).

2. Evaluate the ‘fitness’ of each individual. The fitness is
defined simply as the makespan of the solution encoded
by a chromosome, a lower fitness is therefore preferable.

3. Create the next generation using:

• Selection of the fitter individuals. A rank-based roulette
wheel scheme was used that duplicated individuals
with a probability according to their fitness. Anelitist
strategy was also employed which guarantees that the
fittest individual is always duplicated in the next gener-
ation.

• Crossover between random pairs of individuals. Single
point crossover was used and each chromosome was
considered for crossover with a probability of 60%.

• Random mutation of individuals. A chromosome is
randomly selected, then a random task in the chromo-
some is randomly assigned to a new processor. Every
chromosome is considered for mutation with a proba-
bility of 40%.

4. While the stopping criteria are not met, repeat from step 2.
The GA stops when either 1000 iterations have been com-
pleted, there has been no change in the elite chromosome
for 150 iterations, or all chromosomes have converged to
the same solution.

This GA finds the best or equal best solutions to all the
ETC matrix types tested in (Braun et al., 2001), although it
does takes significantly longer that Min-min which was the
second best technique for most problems (around 60 seconds
compared to under a second for Min-Min).

Applying ACO to the problem
As noted before, ACO has been shown to be an effective
strategy for several problems closely related to scheduling
jobs in an HC environment, and so it seems that it may be an
effective strategy in this domain. In this section we describe
an ACO approach to the problem, largely following the ACO
algorithm design described in (Dorigo and Stützle, 2002).

Defining the pheromone trail
In any ACO algorithm we must first determine what infor-
mation we will encode in the pheromone trail, which will
allow the ants to share useful information about good solu-
tions. The fact that jobs will run at different speeds on differ-
ent processors suggests that it would be useful to store infor-
mation about good processors for each job. The pheromone
valueτ(i, j) was therefore selected to represent the favoura-
bility of scheduling a particular jobi onto a particular pro-
cessorj. The pheromone matrix will thus have a single
(real-valued) entry for each job-processor pair in the prob-
lem, allowing the ants to share information about good pro-
cessors for particular jobs.

The heuristic
The ants build their solution using both information encoded
in the pheromone trail and also problem-specific information
in the form of a heuristic. As discussed earlier, (Braun et al.,
2001) show that the Min-min heuristic is a relatively simple
but effective algorithm for this problem (it was only consis-
tently beaten by the GA approach). Min-min suggests that
the heuristic value of particular jobj should be proportional
to the MCT ofj, that is the timej can be expected to finish
on its ‘best’ processorpj

best. pj
best is established for each job

j according to equation 1. In this equationt(pi) is the cur-
rent total running time of a processorpi, andETC(j, p) is
the ETC matrix entry representing the ETC ofj onp.

min1≤i≤m(t(pi) + ETC(j, pi)) (1)

The completion time (ct()) of job j on pj
best (i.e. j’s

MCT) is then used for the heuristic function, a lower value
is preferable and so the inverse is used. The resultingη(j)
function used by the ants is defined in equation 2.

η(j) =
1

ct(j, pj
best)

(2)

If the MCT of j is large, as it often is when dealing
with the values in the ETC matrices,η(j) will be a very
small value. To allow this value to be effectively controlled
with theβ parameter (which determines the extent to which
heuristic information is used by the ants), it is necessary to
‘scale’ the heuristic value up. Therefore in the implemen-
tation of this function all theη(j) values are computed for
each job and then the job list is sorted into descending order
of these values. The value then used in equation 5 below is
the jobs position in the sorted list, which will be in the range
1 - n. A job with a lowerη(j) value will have thus have a
relatively larger integer heuristic value.



The fitness function
The goal of the fitness function is essentially to help the al-
gorithm discern between high and low quality solutions built
by the ants. Clearly the makespan of a solution is a sensible
metric, and as in this problem the chances of two different
solutions having equal makespans is very low, it was decided
that the ‘raw’ makespan could be used. As a lower makespan
is preferred the inverse is used, as shown in equation 3.

f(s) =
1

ms(s)
(3)

Updating the pheromone trail
To allow the ants to share information about good solutions a
policy for updating the pheromone trail must be established.
Dorigo’s originalAnt Systemfollowed the biological anal-
ogy closely and allowed all the ants to leave pheromone, but
Stützle & Hoos have shown with theirMax-Min Ant System
(MMAS, described in detail in (Stützle and Hoos, 2000))
that allowing only the best ant,sbest, to leave pheromone
after each iteration makes the search much more aggressive
and significantly improves the performance of ACO algo-
rithms. This was therefore the policy chosen. Also follow-
ing Sẗutzle & Hoos’ example, the best antsbest can be de-
fined as either the iteration best antsib, or the global best
antsgb (the best ant solution found so far), a parameterγ is
used to define how oftensib is used instead ofsgb when up-
dating the pheromone trail. Increasing the value ofγ allows
the search to be less aggressive, and encourages the ants to
explore more of the solution space. As mentioned above the
pheromone matrix will have an entry for each job-processor
pair in the problem, and each such pair insbest’s solution is
reinforced in proportion to the relative fitness value ofsbest

compared to the global best solutionsgb. If γ is 0 and so
only sgb is used for updates this proportion will always be 1.
In order to allow the ants to ‘forget’ poor information, each
pheromone value is also decayed at this stage, this is im-
plemented with a parameterρ which takes a value between
0 and 1, ifρ is set to 1 then no decay will take place, ifρ
is 0 then each pheromone value will be ‘wiped’ at each it-
eration and the pheromone trail is effectively switched off.
Equation 4 defines the policy.

τ(i, j) =


ρ.τ(i, j) + f(sbest)

f(sgb)
if job i is allocated to
processorj in sbest

ρ.τ(i, j) otherwise
(4)

Building a solution
With all our ACO policies in place we can now describe how
the ants actually build a solution, using both the informa-
tion stored in the pheromone trail and the heuristic function.
The ant solution building technique is an attempt to follow
the concept of the best heuristic method, Min-min. Each

ant starts with an empty schedule and the processorpji

best
which will complete each unscheduled jobj1 . . . jn earliest
is established (following the process described in section
above). A jobj is then probabilistically chosen to sched-
ule next based on the pheromone value betweenj and its
best processorpj

best, andj’s heuristic value (as determined
by the process in section above). The probability of select-
ing job j to schedule next is given by equation 5. In this
equationα is parameter which defines the relative weight-
ing given to the pheromone information, andβ defines the
relative weighting given to the heuristic information. Ifα is
set to 0 only heuristic information is used and the ants effec-
tively perform a probabilistic Min-min search. Ifβ is set to
0 then only pheromone information is used.

prob(j) =
[τ(j, pj

best)]
α.[η(j)]β∑n

i=1[τ(i, pi
best)]α.[η(i)]β

(5)

The chosen jobjc is then allocated topjc

best. This process
is repeated until all jobs have been scheduled and a com-
plete solution has been built. Each ant in the colony (the
size of which is defined by a parameter,numAnts) builds
a solution in this manner in each iteration. Once all the ants
have built a solution the pheromone trail update procedure
is performed as described above.

It was observed in test runs that the ants often take some
time to start building good solutions because it takes a
few iterations before the pheromone trail is populated with
good job-processor pairings. To attempt to resolve this a
pheromoneseedingstrategy was used which initially sets the
global best solutionsgb to be the Min-min solution after lo-
cal and tabu searches (described below), and a pheromone
update is performed once before the ants start building so-
lutions. This seems to work well as the ants start producing
solutions better than or near the global best almost immedi-
ately.

Adding local search
Other researchers (e.g. (Levine and Ducatelle, 2003),
(Dorigo and Sẗutzle, 2002)) have demonstrated that ACO
algorithms can often effectively be improved by combining
them with local search (LS) techniques. (Ritchie and Levine,
2003) describe a local search for the problem in hand which
can quickly and effectively improve the solutions found by
many solution building techniques. The reader is referred
there for details of the algorithm and detailed results, but
briefly the local search works as follows. Any solutions will
have (at least) one processor with a schedule length equal to
the makespan of the solution, we call this the ‘problem’ pro-
cessor (if there is more than one problem processor one is
picked arbitrarily). The neighbourhoodN of s is defined as
all solutions which differ by a single transfer of a job cur-
rently allocated to the problem processor to any other pro-
cessor, or by a single swap of a job currently allocated to
the problem processor with a job allocated to other proces-
sor. The local search procedure exhaustively analyses this
neighbourhood and selects the swap or transfer which re-
duces the maximum schedule length of the two processors



involved the most. This process is repeated until no further
improvement is possible.

This local search is applied to each of the solutions built
by the ants before the pheromone update stage to take the
ant solution to its local optimum in the search space.

Adding tabu search
Tabu search (TS) (Glover and Laguna, 1997) is essentially a
more sophisticated local search strategy which tries to avoid
entrapment in local minima by using atabu list of previ-
ously visited regions of the search space and disallowing
moves which would result in a solution that is contained in
the list, i.e. one that has been seen before. As a ‘smarter’
local search strategy, tabu search also seems like it might be
a useful addition to an ACO algorithm. (Ritchie, 2003) de-
scribes a fairly standard tabu search procedure for this prob-
lem (based on the approach described in (Thesen, 1998))
which uses the same notion of a solution neighbourhood as
used for the local search described above. The reader is
referred to (Ritchie, 2003) for implementation details (al-
though it should be noted that the tabu list size was set to 10
for all experiments discussed here).

When used in conjunction with the ACO algorithm the
tabu search is simply used fornTrials (a parameter) itera-
tions to try and improve the solution of the iteration best ant
(which will already have had local search applied to it). The
tabu search is not applied to every ant solution (as for the
local search) due to the longer running time. As can be seen
in the results below it cannot always improve on the locally
optimised ant solution, but it can sometimes ‘break through’
local optima, and adds significantly to the performance of
the algorithm as a whole.

Setting parameter values
This algorithm has many parameters, which seem to inter-
act in a fairly complex way, both with each other and with
the specific problem class under investigation. Due to the
time taken for a decent length run of the whole ACO algo-
rithm, and also to the stochasticity of the approach, finding
the optimal values for these parameters is a complex and
time-consuming task, for the purposes of brevity only a brief
rationale for each value used is given below.

• α determines the extent to which pheromone information
is used as the ants build their solution. Pheromone is crit-
ical for the success of this algorithm, and having experi-
mented with values between 1-50, it seems this algorithm
works best with a relatively high value of 10 for all prob-
lems.

• β determines the extent to which heuristic information is
used by the ants. Again, values between 1-50 were tested,
and a value of 10 worked well for most problem types,
and to allow fair comparison this was the value used for
all results presented here. Further tests on longer runs
show that lower values produce better long term results
for the inconsistent matrices. As a longer run progresses,
the ants’ solutions become significantly better than that
produced by the Min-min heuristic, and it was observed
that in long runs the ants could not reproduce solutions as

close to the global best as well as they could earlier on
in the run. It was therefore hypothesised that the highβ
value which is necessary to get good solutions to begin
with might actually be limiting the ants later in the run.
A β decay mechanism was therefore implemented to al-
low this value to gradually decrease as the run progresses.
Tests showed, however, that as theβ value decays the ants
start producing worse solutions, and so this feature was
not used.

• γ is used to indicate how many times the iteration best ant
is used in place of the global best ant in pheromone up-
dates. Initially it seemed that a value of 0 (i.e. only the
global best is ever used) worked best, and for comparison
this was the value used in the results shown below. How-
ever, again, longer test runs show that higher values could
work well for some problem instances. Specifically, the
very best result found for the problemu-c-hihi.0used aγ
value of 1.

• numAntsdefines the number of ants to use in the colony.
A value of 10 seems to be a good compromise between
amount of search per iteration and speed of execution.

• τmin defines the minimum pheromone value that can be
returned between any job and any processor. A value of
0.01 worked well, balancing exploration and avoiding bad
job-processor pairings.

• τ0 is the value to which the pheromone matrix values are
initialised, it was set toτmin for all test runs.

• ρ is the pheromone evaporation parameter, a value of 0.75
(as used in other ACO algorithms) gives good results.

• nTrials is the number of trials performed in the tabu search
phase. As the results below show, a value of around 1000
allows the tabu search to help improve solutions enough,
while a longer run would slow execution time without
providing significantly better results.

The values used work well enough, as the results below
show, but there is undoubtedly room for improvement. The
β decay mechanism did not prove to be helpful, but it may
be that changing the values of other parameters,γ in partic-
ular, over the course of a run would improve results. There
is a lot of scope for future work to experiment with changing
these values for various considerations, such as which work
best for particular problem types, or perhaps different val-
ues might work well depending on the length of run desired:
a highβ value may provide good solutions quickly, but a
lower value may provide better results after a longer period
of time.

Experimental results
In the original study by (Braun et al., 2001) 100 instances
of each of the 12 problem classes are used to test the ap-
proaches, leaving us with a total of 1200 instances. The
ACO approach as a whole takes a comparatively long time
to build solutions, approximately 12 seconds per iteration
(when 10 ants are used), and so it would be unfeasible to
run even a fair-sized test on all 1200 problems. Results are
therefore only provided for the first problem (wheren=0)



in each class of ETC matrix. The actual makespans found
are provided in table 2, along with the results from (Braun
et al., 2001) for Min-min and the GA, and results for local
and tabu searches described here applied to the Min-min so-
lution. Tests were carried out on 1.6 GHz machines running
Linux, and all programs were written in Java.

For these tests the ACO algorithm was allowed to run
for 1000 iterations which took an average of 12792 seconds
(just over 3.5 hours). The ACO algorithm is allowed to run
for so long because this allows it reasonable time to build up
a useful pheromone trail. The ants need a decent length run
to find solutions which significantly improve on the other
solutions. To allow fair comparison the tabu searches were
run for 1,000,000 iterations which took 12967 seconds for
the Min-min+Tabu search. The Min-min search took an av-
erage of 0.19 seconds, the Min-min+LS algorithm ran for
an average of 0.37 seconds, and the GA took an average
of 65.16 seconds. It would perhaps have been fairer to al-
low the GA to run for an equivalent amount of time to the
ACO algorithm but the program was not available for test-
ing. However, (Braun et al., 2001) note that the GA was
usually stopped because the elite chromosome (best solu-
tion) had not changed for 150 iterations, so it may be that
GA would not have found better solutions with much more
time anyway.

In the results the different problem instances are identified
according to the following scheme:w-x-yyzz.n, where:

• w denotes the probability distribution used; only uniform
distributions were used so this isu for all files.

• x denotes the type of consistency, one of:

– c: consistent matrix
– i: inconsistent matrix
– s: semi-consistent

• yy denotes the task heterogeneity, one of:

– hi: high heterogeneity
– lo: low heterogeneity

• zz denotes machine heterogeneity, one of

– hi: high heterogeneity
– lo: low heterogeneity

• n is the test case number, numbered from 0 to 99.

From these results it is clear that the ACO approach can
consistently find shorter makespans than any of the other
approaches for all classes of ETC matrix tested, and these
preliminary results suggest that it would beat all the other
approaches for the full problem suite (although more ex-
tensive tests should be carried out to confirm this, and also
to check how consistently the ACO approach works). The
ACO approach does, however, take significantly longer than
any other approach, at around 3.5 hours it takes approxi-
mately 200 times longer than the GA. For some applications,
such as an online grid scheduler, this amount of time may not
be acceptable, and so we would suggest simply using Min-
min with a local search (as described in (Ritchie and Levine,
2003)). However, for applications where the makespan is of

critical importance, and when there is plenty of time avail-
able to search for good schedules, such as perhaps advance
scheduling of jobs to performed on a satellite, the approach
described here could be used. We think that the suite of
techniques used here (LS, TS and ACO) provide a toolkit of
possible approaches to be used on scheduling problems with
different constraints.

As this is a hybrid algorithm it is interesting to com-
pare the results of the algorithm used with and without cer-
tain components, such as the local and tabu searches and
pheromone seeding. A decent comparison would, unfortu-
nately, take too long to describe, but the interested reader is
referred to (Ritchie, 2003) for such a discussion, along with
an analysis of an example run of the algorithm.

Conclusions and Future Work
Statically scheduling independent jobs in heterogeneous
computing environments is useful for several different con-
siderations in domains such as grid computing. The hybrid
ACO algorithm described here can consistently find better
schedules for several benchmark problems than other tech-
niques found in the literature, and it seems a promising ap-
proach to scheduling in HC environments. There is, how-
ever, much room for further investigation. More work could
be carried out with the algorithm described here, for exam-
ple investigating different parameter settings, ant solution
building techniques, or different local search strategies, and
also testing it in a more realistic environment. In broader
terms we feel that investigating the use of ACO strategies in
different forms of HC scheduling, such as scheduling jobs
with precedence constraints or in dynamic environments
might also be fruitful. The techniques used may have to di-
verge somewhat from those described here, but we hope that
the results presented here suggest that there is considerable
scope for future research in this area.

Acknowledgments
We would like to thank Tracy Braun and Howard Siegel for
sharing their test data and detailed results with us.

References
Braun, T. D., Siegel, H. J., Beck, N., Bölöni, L. L., Mah-
eswaran, M., Reuther, A. I., Robertson, J. P., Theys, M. D.,
Yao, B., Hensgen, D., and Freund, R. F. (2001). A compar-
ison of eleven static heuristics for mapping a class of in-
dependent tasks onto heterogeneous distributed computing
systems.Journal of Parallel and Distributed Computing,
61(6):810–837.

Dorigo, M. (1992). Optimization, Learning and Natural
Algorithms. PhD thesis, DEI, Polytecnico di Milano, Mi-
lan, Italy. (in Italian).

Dorigo, M. and Sẗutzle, T. (2002). The ant colony opti-
mization metaheuristic: Algorithms, applications, and ad-
vances. In Glover, F. and Kochenberger, G., editors,Hand-
book of Metaheuristics, volume 57 ofInternational Series
in Operations Research and Management Science, pages
251–285. Kluwer Academic Publishers.



problem Min-min GA Min-min+LS Min-min+Tabu ACO
u-c-hihi.0 8460675.00 8050844.50 7711037.16 7568871.83 7497200.85
u-c-hilo.0 164022.44 156249.20 154873.05 154644.48 154234.63
u-c-lohi.0 275837.34 258756.77 251434.50 245981.55 244097.28
u-c-lolo.0 5546.26 5272.25 5231.13 5202.51 5178.44
u-i-hihi.0 3513919.25 3104762.50 3021155.10 3021155.10 2947754.12
u-i-hilo.0 80755.68 75816.13 74400.68 74400.68 73776.24
u-i-lohi.0 120517.71 107500.72 104309.12 104309.12 102445.82
u-i-lolo.0 2779.09 2614.39 2580.62 2580.62 2553.54
u-s-hihi.0 5160343.00 4566206.00 4256736.40 4248200.21 4162547.92
u-s-hilo.0 104540.73 98519.40 97711.72 97711.72 96762.00
u-s-lohi.0 140284.48 130616.53 126117.51 126115.39 123922.03
u-s-lolo.0 3867.49 3583.44 3505.69 3505.69 3455.22

Table 2: Results for the first problem in each ETC matrix class, comparing the ACO approach with the other approaches.
The ACO algorithm was allowed to run for 1000 iterations and took an average of 12792 seconds (just over 3.5 hours). The
Min-min+Tabu search ran for an average of 12967 seconds. The best result is indicated in bold.

Garey, M. R. and Johnson, D. (1979).Computers and In-
tractability: A Guide to the theory of NP-Completeness.
Freeman and Company, San Francisco.
Glover, F. and Laguna, M. (1997).Tabu Search. Kluwer
Academic publishers, Boston.
Levine, J. and Ducatelle, F. (2003). Ant colony optimi-
sation and local search for bin packing and cutting stock
problems. Journal of the Operational Research Society.
(forthcoming).
Ritchie, G. (2003). Static multi-processor scheduling
with ant colony optimisation and local search. Mas-
ter’s thesis, University of Edinburgh. available at:
http://www.inf.ed.ac.uk/publications/thesis/msc.html.
Ritchie, G. and Levine, J. (2003). A fast, effective lo-
cal search for scheduling independent jobs in heteroge-
neous computing environments. In Porteous, J., editor,
Proceedings of the 22nd Workshop of the UK Planning and
Scheduling Special Interest Group (PLANSIG 2003), pages
178–183.
Stützle, T. and Hoos, H. (2000). Max-min ant system.Fu-
ture Generation Computer Systems, 16(8):889–914.
Thesen, A. (1998). Design and evaluation of tabu search al-
gorithms for multiprocessor scheduling.Journal of Heuris-
tics, 4:141–160.
van der Zwaan, S. and Marques, C. (1999). Ant colony
optimisation for job shop scheduling. InProceedings of
the Third Workshop on Genetic Algorithms and Artificial
Life (GAAL 99).


